1 /* 2 * Generic Virtual-Device Fuzzing Target 3 * 4 * Copyright Red Hat Inc., 2020 5 * 6 * Authors: 7 * Alexander Bulekov <alxndr@bu.edu> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 15 #include <wordexp.h> 16 17 #include "hw/core/cpu.h" 18 #include "tests/qtest/libqos/libqtest.h" 19 #include "tests/qtest/libqos/pci-pc.h" 20 #include "fuzz.h" 21 #include "fork_fuzz.h" 22 #include "string.h" 23 #include "exec/memory.h" 24 #include "exec/ramblock.h" 25 #include "hw/qdev-core.h" 26 #include "hw/pci/pci.h" 27 #include "hw/boards.h" 28 #include "generic_fuzz_configs.h" 29 #include "hw/mem/sparse-mem.h" 30 31 /* 32 * SEPARATOR is used to separate "operations" in the fuzz input 33 */ 34 #define SEPARATOR "FUZZ" 35 36 enum cmds { 37 OP_IN, 38 OP_OUT, 39 OP_READ, 40 OP_WRITE, 41 OP_PCI_READ, 42 OP_PCI_WRITE, 43 OP_DISABLE_PCI, 44 OP_ADD_DMA_PATTERN, 45 OP_CLEAR_DMA_PATTERNS, 46 OP_CLOCK_STEP, 47 }; 48 49 #define DEFAULT_TIMEOUT_US 100000 50 #define USEC_IN_SEC 1000000000 51 52 #define MAX_DMA_FILL_SIZE 0x10000 53 54 #define PCI_HOST_BRIDGE_CFG 0xcf8 55 #define PCI_HOST_BRIDGE_DATA 0xcfc 56 57 typedef struct { 58 ram_addr_t addr; 59 ram_addr_t size; /* The number of bytes until the end of the I/O region */ 60 } address_range; 61 62 static useconds_t timeout = DEFAULT_TIMEOUT_US; 63 64 static bool qtest_log_enabled; 65 66 MemoryRegion *sparse_mem_mr; 67 68 /* 69 * A pattern used to populate a DMA region or perform a memwrite. This is 70 * useful for e.g. populating tables of unique addresses. 71 * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"} 72 * Renders as: 00 01 02 00 03 02 00 05 02 00 07 02 ... 73 */ 74 typedef struct { 75 uint8_t index; /* Index of a byte to increment by stride */ 76 uint8_t stride; /* Increment each index'th byte by this amount */ 77 size_t len; 78 const uint8_t *data; 79 } pattern; 80 81 /* Avoid filling the same DMA region between MMIO/PIO commands ? */ 82 static bool avoid_double_fetches; 83 84 static QTestState *qts_global; /* Need a global for the DMA callback */ 85 86 /* 87 * List of memory regions that are children of QOM objects specified by the 88 * user for fuzzing. 89 */ 90 static GHashTable *fuzzable_memoryregions; 91 static GPtrArray *fuzzable_pci_devices; 92 93 struct get_io_cb_info { 94 int index; 95 int found; 96 address_range result; 97 }; 98 99 static bool get_io_address_cb(Int128 start, Int128 size, 100 const MemoryRegion *mr, 101 hwaddr offset_in_region, 102 void *opaque) 103 { 104 struct get_io_cb_info *info = opaque; 105 if (g_hash_table_lookup(fuzzable_memoryregions, mr)) { 106 if (info->index == 0) { 107 info->result.addr = (ram_addr_t)start; 108 info->result.size = (ram_addr_t)size; 109 info->found = 1; 110 return true; 111 } 112 info->index--; 113 } 114 return false; 115 } 116 117 /* 118 * List of dma regions populated since the last fuzzing command. Used to ensure 119 * that we only write to each DMA address once, to avoid race conditions when 120 * building reproducers. 121 */ 122 static GArray *dma_regions; 123 124 static GArray *dma_patterns; 125 static int dma_pattern_index; 126 static bool pci_disabled; 127 128 /* 129 * Allocate a block of memory and populate it with a pattern. 130 */ 131 static void *pattern_alloc(pattern p, size_t len) 132 { 133 int i; 134 uint8_t *buf = g_malloc(len); 135 uint8_t sum = 0; 136 137 for (i = 0; i < len; ++i) { 138 buf[i] = p.data[i % p.len]; 139 if ((i % p.len) == p.index) { 140 buf[i] += sum; 141 sum += p.stride; 142 } 143 } 144 return buf; 145 } 146 147 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 148 { 149 unsigned access_size_max = mr->ops->valid.max_access_size; 150 151 /* 152 * Regions are assumed to support 1-4 byte accesses unless 153 * otherwise specified. 154 */ 155 if (access_size_max == 0) { 156 access_size_max = 4; 157 } 158 159 /* Bound the maximum access by the alignment of the address. */ 160 if (!mr->ops->impl.unaligned) { 161 unsigned align_size_max = addr & -addr; 162 if (align_size_max != 0 && align_size_max < access_size_max) { 163 access_size_max = align_size_max; 164 } 165 } 166 167 /* Don't attempt accesses larger than the maximum. */ 168 if (l > access_size_max) { 169 l = access_size_max; 170 } 171 l = pow2floor(l); 172 173 return l; 174 } 175 176 /* 177 * Call-back for functions that perform DMA reads from guest memory. Confirm 178 * that the region has not already been populated since the last loop in 179 * generic_fuzz(), avoiding potential race-conditions, which we don't have 180 * a good way for reproducing right now. 181 */ 182 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr) 183 { 184 /* Are we in the generic-fuzzer or are we using another fuzz-target? */ 185 if (!qts_global) { 186 return; 187 } 188 189 /* 190 * Return immediately if: 191 * - We have no DMA patterns defined 192 * - The length of the DMA read request is zero 193 * - The DMA read is hitting an MR other than the machine's main RAM 194 * - The DMA request hits past the bounds of our RAM 195 */ 196 if (dma_patterns->len == 0 197 || len == 0 198 || (mr != current_machine->ram && mr != sparse_mem_mr)) { 199 return; 200 } 201 202 /* 203 * If we overlap with any existing dma_regions, split the range and only 204 * populate the non-overlapping parts. 205 */ 206 address_range region; 207 bool double_fetch = false; 208 for (int i = 0; 209 i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled); 210 ++i) { 211 region = g_array_index(dma_regions, address_range, i); 212 if (addr < region.addr + region.size && addr + len > region.addr) { 213 double_fetch = true; 214 if (addr < region.addr 215 && avoid_double_fetches) { 216 fuzz_dma_read_cb(addr, region.addr - addr, mr); 217 } 218 if (addr + len > region.addr + region.size 219 && avoid_double_fetches) { 220 fuzz_dma_read_cb(region.addr + region.size, 221 addr + len - (region.addr + region.size), mr); 222 } 223 return; 224 } 225 } 226 227 /* Cap the length of the DMA access to something reasonable */ 228 len = MIN(len, MAX_DMA_FILL_SIZE); 229 230 address_range ar = {addr, len}; 231 g_array_append_val(dma_regions, ar); 232 pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index); 233 void *buf_base = pattern_alloc(p, ar.size); 234 void *buf = buf_base; 235 hwaddr l, addr1; 236 MemoryRegion *mr1; 237 while (len > 0) { 238 l = len; 239 mr1 = address_space_translate(first_cpu->as, 240 addr, &addr1, &l, true, 241 MEMTXATTRS_UNSPECIFIED); 242 243 if (!(memory_region_is_ram(mr1) || 244 memory_region_is_romd(mr1)) && mr1 != sparse_mem_mr) { 245 l = memory_access_size(mr1, l, addr1); 246 } else { 247 /* ROM/RAM case */ 248 if (qtest_log_enabled) { 249 /* 250 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log 251 * that will be written by qtest.c with a DMA tag, so we can reorder 252 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO 253 * command. 254 */ 255 fprintf(stderr, "[DMA] "); 256 if (double_fetch) { 257 fprintf(stderr, "[DOUBLE-FETCH] "); 258 } 259 fflush(stderr); 260 } 261 qtest_memwrite(qts_global, addr, buf, l); 262 } 263 len -= l; 264 buf += l; 265 addr += l; 266 267 } 268 g_free(buf_base); 269 270 /* Increment the index of the pattern for the next DMA access */ 271 dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len; 272 } 273 274 /* 275 * Here we want to convert a fuzzer-provided [io-region-index, offset] to 276 * a physical address. To do this, we iterate over all of the matched 277 * MemoryRegions. Check whether each region exists within the particular io 278 * space. Return the absolute address of the offset within the index'th region 279 * that is a subregion of the io_space and the distance until the end of the 280 * memory region. 281 */ 282 static bool get_io_address(address_range *result, AddressSpace *as, 283 uint8_t index, 284 uint32_t offset) { 285 FlatView *view; 286 view = as->current_map; 287 g_assert(view); 288 struct get_io_cb_info cb_info = {}; 289 290 cb_info.index = index; 291 292 /* 293 * Loop around the FlatView until we match "index" number of 294 * fuzzable_memoryregions, or until we know that there are no matching 295 * memory_regions. 296 */ 297 do { 298 flatview_for_each_range(view, get_io_address_cb , &cb_info); 299 } while (cb_info.index != index && !cb_info.found); 300 301 *result = cb_info.result; 302 if (result->size) { 303 offset = offset % result->size; 304 result->addr += offset; 305 result->size -= offset; 306 } 307 return cb_info.found; 308 } 309 310 static bool get_pio_address(address_range *result, 311 uint8_t index, uint16_t offset) 312 { 313 /* 314 * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result 315 * can contain an addr that extends past the PIO space. When we pass this 316 * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end 317 * up fuzzing a completely different MemoryRegion/Device. Therefore, check 318 * that the address here is within the PIO space limits. 319 */ 320 bool found = get_io_address(result, &address_space_io, index, offset); 321 return result->addr <= 0xFFFF ? found : false; 322 } 323 324 static bool get_mmio_address(address_range *result, 325 uint8_t index, uint32_t offset) 326 { 327 return get_io_address(result, &address_space_memory, index, offset); 328 } 329 330 static void op_in(QTestState *s, const unsigned char * data, size_t len) 331 { 332 enum Sizes {Byte, Word, Long, end_sizes}; 333 struct { 334 uint8_t size; 335 uint8_t base; 336 uint16_t offset; 337 } a; 338 address_range abs; 339 340 if (len < sizeof(a)) { 341 return; 342 } 343 memcpy(&a, data, sizeof(a)); 344 if (get_pio_address(&abs, a.base, a.offset) == 0) { 345 return; 346 } 347 348 switch (a.size %= end_sizes) { 349 case Byte: 350 qtest_inb(s, abs.addr); 351 break; 352 case Word: 353 if (abs.size >= 2) { 354 qtest_inw(s, abs.addr); 355 } 356 break; 357 case Long: 358 if (abs.size >= 4) { 359 qtest_inl(s, abs.addr); 360 } 361 break; 362 } 363 } 364 365 static void op_out(QTestState *s, const unsigned char * data, size_t len) 366 { 367 enum Sizes {Byte, Word, Long, end_sizes}; 368 struct { 369 uint8_t size; 370 uint8_t base; 371 uint16_t offset; 372 uint32_t value; 373 } a; 374 address_range abs; 375 376 if (len < sizeof(a)) { 377 return; 378 } 379 memcpy(&a, data, sizeof(a)); 380 381 if (get_pio_address(&abs, a.base, a.offset) == 0) { 382 return; 383 } 384 385 switch (a.size %= end_sizes) { 386 case Byte: 387 qtest_outb(s, abs.addr, a.value & 0xFF); 388 break; 389 case Word: 390 if (abs.size >= 2) { 391 qtest_outw(s, abs.addr, a.value & 0xFFFF); 392 } 393 break; 394 case Long: 395 if (abs.size >= 4) { 396 qtest_outl(s, abs.addr, a.value); 397 } 398 break; 399 } 400 } 401 402 static void op_read(QTestState *s, const unsigned char * data, size_t len) 403 { 404 enum Sizes {Byte, Word, Long, Quad, end_sizes}; 405 struct { 406 uint8_t size; 407 uint8_t base; 408 uint32_t offset; 409 } a; 410 address_range abs; 411 412 if (len < sizeof(a)) { 413 return; 414 } 415 memcpy(&a, data, sizeof(a)); 416 417 if (get_mmio_address(&abs, a.base, a.offset) == 0) { 418 return; 419 } 420 421 switch (a.size %= end_sizes) { 422 case Byte: 423 qtest_readb(s, abs.addr); 424 break; 425 case Word: 426 if (abs.size >= 2) { 427 qtest_readw(s, abs.addr); 428 } 429 break; 430 case Long: 431 if (abs.size >= 4) { 432 qtest_readl(s, abs.addr); 433 } 434 break; 435 case Quad: 436 if (abs.size >= 8) { 437 qtest_readq(s, abs.addr); 438 } 439 break; 440 } 441 } 442 443 static void op_write(QTestState *s, const unsigned char * data, size_t len) 444 { 445 enum Sizes {Byte, Word, Long, Quad, end_sizes}; 446 struct { 447 uint8_t size; 448 uint8_t base; 449 uint32_t offset; 450 uint64_t value; 451 } a; 452 address_range abs; 453 454 if (len < sizeof(a)) { 455 return; 456 } 457 memcpy(&a, data, sizeof(a)); 458 459 if (get_mmio_address(&abs, a.base, a.offset) == 0) { 460 return; 461 } 462 463 switch (a.size %= end_sizes) { 464 case Byte: 465 qtest_writeb(s, abs.addr, a.value & 0xFF); 466 break; 467 case Word: 468 if (abs.size >= 2) { 469 qtest_writew(s, abs.addr, a.value & 0xFFFF); 470 } 471 break; 472 case Long: 473 if (abs.size >= 4) { 474 qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF); 475 } 476 break; 477 case Quad: 478 if (abs.size >= 8) { 479 qtest_writeq(s, abs.addr, a.value); 480 } 481 break; 482 } 483 } 484 485 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len) 486 { 487 enum Sizes {Byte, Word, Long, end_sizes}; 488 struct { 489 uint8_t size; 490 uint8_t base; 491 uint8_t offset; 492 } a; 493 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) { 494 return; 495 } 496 memcpy(&a, data, sizeof(a)); 497 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices, 498 a.base % fuzzable_pci_devices->len); 499 int devfn = dev->devfn; 500 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset); 501 switch (a.size %= end_sizes) { 502 case Byte: 503 qtest_inb(s, PCI_HOST_BRIDGE_DATA); 504 break; 505 case Word: 506 qtest_inw(s, PCI_HOST_BRIDGE_DATA); 507 break; 508 case Long: 509 qtest_inl(s, PCI_HOST_BRIDGE_DATA); 510 break; 511 } 512 } 513 514 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len) 515 { 516 enum Sizes {Byte, Word, Long, end_sizes}; 517 struct { 518 uint8_t size; 519 uint8_t base; 520 uint8_t offset; 521 uint32_t value; 522 } a; 523 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) { 524 return; 525 } 526 memcpy(&a, data, sizeof(a)); 527 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices, 528 a.base % fuzzable_pci_devices->len); 529 int devfn = dev->devfn; 530 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset); 531 switch (a.size %= end_sizes) { 532 case Byte: 533 qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF); 534 break; 535 case Word: 536 qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF); 537 break; 538 case Long: 539 qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF); 540 break; 541 } 542 } 543 544 static void op_add_dma_pattern(QTestState *s, 545 const unsigned char *data, size_t len) 546 { 547 struct { 548 /* 549 * index and stride can be used to increment the index-th byte of the 550 * pattern by the value stride, for each loop of the pattern. 551 */ 552 uint8_t index; 553 uint8_t stride; 554 } a; 555 556 if (len < sizeof(a) + 1) { 557 return; 558 } 559 memcpy(&a, data, sizeof(a)); 560 pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)}; 561 p.index = a.index % p.len; 562 g_array_append_val(dma_patterns, p); 563 return; 564 } 565 566 static void op_clear_dma_patterns(QTestState *s, 567 const unsigned char *data, size_t len) 568 { 569 g_array_set_size(dma_patterns, 0); 570 dma_pattern_index = 0; 571 } 572 573 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len) 574 { 575 qtest_clock_step_next(s); 576 } 577 578 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len) 579 { 580 pci_disabled = true; 581 } 582 583 static void handle_timeout(int sig) 584 { 585 if (qtest_log_enabled) { 586 fprintf(stderr, "[Timeout]\n"); 587 fflush(stderr); 588 } 589 590 /* 591 * If there is a crash, libfuzzer/ASAN forks a child to run an 592 * "llvm-symbolizer" process for printing out a pretty stacktrace. It 593 * communicates with this child using a pipe. If we timeout+Exit, while 594 * libfuzzer is still communicating with the llvm-symbolizer child, we will 595 * be left with an orphan llvm-symbolizer process. Sometimes, this appears 596 * to lead to a deadlock in the forkserver. Use waitpid to check if there 597 * are any waitable children. If so, exit out of the signal-handler, and 598 * let libfuzzer finish communicating with the child, and exit, on its own. 599 */ 600 if (waitpid(-1, NULL, WNOHANG) == 0) { 601 return; 602 } 603 604 _Exit(0); 605 } 606 607 /* 608 * Here, we interpret random bytes from the fuzzer, as a sequence of commands. 609 * Some commands can be variable-width, so we use a separator, SEPARATOR, to 610 * specify the boundaries between commands. SEPARATOR is used to separate 611 * "operations" in the fuzz input. Why use a separator, instead of just using 612 * the operations' length to identify operation boundaries? 613 * 1. This is a simple way to support variable-length operations 614 * 2. This adds "stability" to the input. 615 * For example take the input "AbBcgDefg", where there is no separator and 616 * Opcodes are capitalized. 617 * Simply, by removing the first byte, we end up with a very different 618 * sequence: 619 * BbcGdefg... 620 * By adding a separator, we avoid this problem: 621 * Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg 622 * Since B uses two additional bytes as operands, the first "B" will be 623 * ignored. The fuzzer actively tries to reduce inputs, so such unused 624 * bytes are likely to be pruned, eventually. 625 * 626 * SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally, 627 * SEPARATOR can be manually specified as a dictionary value (see libfuzzer's 628 * -dict), though this should not be necessary. 629 * 630 * As a result, the stream of bytes is converted into a sequence of commands. 631 * In a simplified example where SEPARATOR is 0xFF: 632 * 00 01 02 FF 03 04 05 06 FF 01 FF ... 633 * becomes this sequence of commands: 634 * 00 01 02 -> op00 (0102) -> in (0102, 2) 635 * 03 04 05 06 -> op03 (040506) -> write (040506, 3) 636 * 01 -> op01 (-,0) -> out (-,0) 637 * ... 638 * 639 * Note here that it is the job of the individual opcode functions to check 640 * that enough data was provided. I.e. in the last command out (,0), out needs 641 * to check that there is not enough data provided to select an address/value 642 * for the operation. 643 */ 644 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size) 645 { 646 void (*ops[]) (QTestState *s, const unsigned char* , size_t) = { 647 [OP_IN] = op_in, 648 [OP_OUT] = op_out, 649 [OP_READ] = op_read, 650 [OP_WRITE] = op_write, 651 [OP_PCI_READ] = op_pci_read, 652 [OP_PCI_WRITE] = op_pci_write, 653 [OP_DISABLE_PCI] = op_disable_pci, 654 [OP_ADD_DMA_PATTERN] = op_add_dma_pattern, 655 [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns, 656 [OP_CLOCK_STEP] = op_clock_step, 657 }; 658 const unsigned char *cmd = Data; 659 const unsigned char *nextcmd; 660 size_t cmd_len; 661 uint8_t op; 662 663 if (fork() == 0) { 664 /* 665 * Sometimes the fuzzer will find inputs that take quite a long time to 666 * process. Often times, these inputs do not result in new coverage. 667 * Even if these inputs might be interesting, they can slow down the 668 * fuzzer, overall. Set a timeout to avoid hurting performance, too much 669 */ 670 if (timeout) { 671 struct sigaction sact; 672 struct itimerval timer; 673 674 sigemptyset(&sact.sa_mask); 675 sact.sa_flags = SA_NODEFER; 676 sact.sa_handler = handle_timeout; 677 sigaction(SIGALRM, &sact, NULL); 678 679 memset(&timer, 0, sizeof(timer)); 680 timer.it_value.tv_sec = timeout / USEC_IN_SEC; 681 timer.it_value.tv_usec = timeout % USEC_IN_SEC; 682 setitimer(ITIMER_VIRTUAL, &timer, NULL); 683 } 684 685 op_clear_dma_patterns(s, NULL, 0); 686 pci_disabled = false; 687 688 while (cmd && Size) { 689 /* Get the length until the next command or end of input */ 690 nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR)); 691 cmd_len = nextcmd ? nextcmd - cmd : Size; 692 693 if (cmd_len > 0) { 694 /* Interpret the first byte of the command as an opcode */ 695 op = *cmd % (sizeof(ops) / sizeof((ops)[0])); 696 ops[op](s, cmd + 1, cmd_len - 1); 697 698 /* Run the main loop */ 699 flush_events(s); 700 } 701 /* Advance to the next command */ 702 cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd; 703 Size = Size - (cmd_len + sizeof(SEPARATOR) - 1); 704 g_array_set_size(dma_regions, 0); 705 } 706 _Exit(0); 707 } else { 708 flush_events(s); 709 wait(0); 710 } 711 } 712 713 static void usage(void) 714 { 715 printf("Please specify the following environment variables:\n"); 716 printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n"); 717 printf("QEMU_FUZZ_OBJECTS= " 718 "a space separated list of QOM type names for objects to fuzz\n"); 719 printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= " 720 "Try to avoid racy DMA double fetch bugs? %d by default\n", 721 avoid_double_fetches); 722 printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). " 723 "0 to disable. %d by default\n", timeout); 724 exit(0); 725 } 726 727 static int locate_fuzz_memory_regions(Object *child, void *opaque) 728 { 729 const char *name; 730 MemoryRegion *mr; 731 if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) { 732 mr = MEMORY_REGION(child); 733 if ((memory_region_is_ram(mr) || 734 memory_region_is_ram_device(mr) || 735 memory_region_is_rom(mr)) == false) { 736 name = object_get_canonical_path_component(child); 737 /* 738 * We don't want duplicate pointers to the same MemoryRegion, so 739 * try to remove copies of the pointer, before adding it. 740 */ 741 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true); 742 } 743 } 744 return 0; 745 } 746 747 static int locate_fuzz_objects(Object *child, void *opaque) 748 { 749 char *pattern = opaque; 750 if (g_pattern_match_simple(pattern, object_get_typename(child))) { 751 /* Find and save ptrs to any child MemoryRegions */ 752 object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL); 753 754 /* 755 * We matched an object. If its a PCI device, store a pointer to it so 756 * we can map BARs and fuzz its config space. 757 */ 758 if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) { 759 /* 760 * Don't want duplicate pointers to the same PCIDevice, so remove 761 * copies of the pointer, before adding it. 762 */ 763 g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child)); 764 g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child)); 765 } 766 } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) { 767 if (g_pattern_match_simple(pattern, 768 object_get_canonical_path_component(child))) { 769 MemoryRegion *mr; 770 mr = MEMORY_REGION(child); 771 if ((memory_region_is_ram(mr) || 772 memory_region_is_ram_device(mr) || 773 memory_region_is_rom(mr)) == false) { 774 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true); 775 } 776 } 777 } 778 return 0; 779 } 780 781 782 static void pci_enum(gpointer pcidev, gpointer bus) 783 { 784 PCIDevice *dev = pcidev; 785 QPCIDevice *qdev; 786 int i; 787 788 qdev = qpci_device_find(bus, dev->devfn); 789 g_assert(qdev != NULL); 790 for (i = 0; i < 6; i++) { 791 if (dev->io_regions[i].size) { 792 qpci_iomap(qdev, i, NULL); 793 } 794 } 795 qpci_device_enable(qdev); 796 g_free(qdev); 797 } 798 799 static void generic_pre_fuzz(QTestState *s) 800 { 801 GHashTableIter iter; 802 MemoryRegion *mr; 803 QPCIBus *pcibus; 804 char **result; 805 806 if (!getenv("QEMU_FUZZ_OBJECTS")) { 807 usage(); 808 } 809 if (getenv("QTEST_LOG")) { 810 qtest_log_enabled = 1; 811 } 812 if (getenv("QEMU_AVOID_DOUBLE_FETCH")) { 813 avoid_double_fetches = 1; 814 } 815 if (getenv("QEMU_FUZZ_TIMEOUT")) { 816 timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0); 817 } 818 qts_global = s; 819 820 /* 821 * Create a special device that we can use to back DMA buffers at very 822 * high memory addresses 823 */ 824 sparse_mem_mr = sparse_mem_init(0, UINT64_MAX); 825 826 dma_regions = g_array_new(false, false, sizeof(address_range)); 827 dma_patterns = g_array_new(false, false, sizeof(pattern)); 828 829 fuzzable_memoryregions = g_hash_table_new(NULL, NULL); 830 fuzzable_pci_devices = g_ptr_array_new(); 831 832 result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1); 833 for (int i = 0; result[i] != NULL; i++) { 834 printf("Matching objects by name %s\n", result[i]); 835 object_child_foreach_recursive(qdev_get_machine(), 836 locate_fuzz_objects, 837 result[i]); 838 } 839 g_strfreev(result); 840 printf("This process will try to fuzz the following MemoryRegions:\n"); 841 842 g_hash_table_iter_init(&iter, fuzzable_memoryregions); 843 while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) { 844 printf(" * %s (size 0x%" PRIx64 ")\n", 845 object_get_canonical_path_component(&(mr->parent_obj)), 846 memory_region_size(mr)); 847 } 848 849 if (!g_hash_table_size(fuzzable_memoryregions)) { 850 printf("No fuzzable memory regions found...\n"); 851 exit(1); 852 } 853 854 pcibus = qpci_new_pc(s, NULL); 855 g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus); 856 qpci_free_pc(pcibus); 857 858 counter_shm_init(); 859 } 860 861 /* 862 * When libfuzzer gives us two inputs to combine, return a new input with the 863 * following structure: 864 * 865 * Input 1 (data1) 866 * SEPARATOR 867 * Clear out the DMA Patterns 868 * SEPARATOR 869 * Disable the pci_read/write instructions 870 * SEPARATOR 871 * Input 2 (data2) 872 * 873 * The idea is to collate the core behaviors of the two inputs. 874 * For example: 875 * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers 876 * device functionality A 877 * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device 878 * functionality B 879 * 880 * This function attempts to produce an input that: 881 * Ouptut: maps a device's BARs, set up three DMA patterns, triggers 882 * functionality A device, replaces the DMA patterns with a single 883 * patten, and triggers device functionality B. 884 */ 885 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const 886 uint8_t *data2, size_t size2, uint8_t *out, 887 size_t max_out_size, unsigned int seed) 888 { 889 size_t copy_len = 0, size = 0; 890 891 /* Check that we have enough space for data1 and at least part of data2 */ 892 if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) { 893 return 0; 894 } 895 896 /* Copy_Len in the first input */ 897 copy_len = size1; 898 memcpy(out + size, data1, copy_len); 899 size += copy_len; 900 max_out_size -= copy_len; 901 902 /* Append a separator */ 903 copy_len = strlen(SEPARATOR); 904 memcpy(out + size, SEPARATOR, copy_len); 905 size += copy_len; 906 max_out_size -= copy_len; 907 908 /* Clear out the DMA Patterns */ 909 copy_len = 1; 910 if (copy_len) { 911 out[size] = OP_CLEAR_DMA_PATTERNS; 912 } 913 size += copy_len; 914 max_out_size -= copy_len; 915 916 /* Append a separator */ 917 copy_len = strlen(SEPARATOR); 918 memcpy(out + size, SEPARATOR, copy_len); 919 size += copy_len; 920 max_out_size -= copy_len; 921 922 /* Disable PCI ops. Assume data1 took care of setting up PCI */ 923 copy_len = 1; 924 if (copy_len) { 925 out[size] = OP_DISABLE_PCI; 926 } 927 size += copy_len; 928 max_out_size -= copy_len; 929 930 /* Append a separator */ 931 copy_len = strlen(SEPARATOR); 932 memcpy(out + size, SEPARATOR, copy_len); 933 size += copy_len; 934 max_out_size -= copy_len; 935 936 /* Copy_Len over the second input */ 937 copy_len = MIN(size2, max_out_size); 938 memcpy(out + size, data2, copy_len); 939 size += copy_len; 940 max_out_size -= copy_len; 941 942 return size; 943 } 944 945 946 static GString *generic_fuzz_cmdline(FuzzTarget *t) 947 { 948 GString *cmd_line = g_string_new(TARGET_NAME); 949 if (!getenv("QEMU_FUZZ_ARGS")) { 950 usage(); 951 } 952 g_string_append_printf(cmd_line, " -display none \ 953 -machine accel=qtest, \ 954 -m 512M %s ", getenv("QEMU_FUZZ_ARGS")); 955 return cmd_line; 956 } 957 958 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t) 959 { 960 gchar *args; 961 const generic_fuzz_config *config; 962 g_assert(t->opaque); 963 964 config = t->opaque; 965 setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1); 966 if (config->argfunc) { 967 args = config->argfunc(); 968 setenv("QEMU_FUZZ_ARGS", args, 1); 969 g_free(args); 970 } else { 971 g_assert_nonnull(config->args); 972 setenv("QEMU_FUZZ_ARGS", config->args, 1); 973 } 974 setenv("QEMU_FUZZ_OBJECTS", config->objects, 1); 975 return generic_fuzz_cmdline(t); 976 } 977 978 static void register_generic_fuzz_targets(void) 979 { 980 fuzz_add_target(&(FuzzTarget){ 981 .name = "generic-fuzz", 982 .description = "Fuzz based on any qemu command-line args. ", 983 .get_init_cmdline = generic_fuzz_cmdline, 984 .pre_fuzz = generic_pre_fuzz, 985 .fuzz = generic_fuzz, 986 .crossover = generic_fuzz_crossover 987 }); 988 989 GString *name; 990 const generic_fuzz_config *config; 991 992 for (int i = 0; 993 i < sizeof(predefined_configs) / sizeof(generic_fuzz_config); 994 i++) { 995 config = predefined_configs + i; 996 name = g_string_new("generic-fuzz"); 997 g_string_append_printf(name, "-%s", config->name); 998 fuzz_add_target(&(FuzzTarget){ 999 .name = name->str, 1000 .description = "Predefined generic-fuzz config.", 1001 .get_init_cmdline = generic_fuzz_predefined_config_cmdline, 1002 .pre_fuzz = generic_pre_fuzz, 1003 .fuzz = generic_fuzz, 1004 .crossover = generic_fuzz_crossover, 1005 .opaque = (void *)config 1006 }); 1007 } 1008 } 1009 1010 fuzz_target_init(register_generic_fuzz_targets); 1011