xref: /openbmc/qemu/tests/qtest/fuzz/generic_fuzz.c (revision a10b9d93)
1 /*
2  * Generic Virtual-Device Fuzzing Target
3  *
4  * Copyright Red Hat Inc., 2020
5  *
6  * Authors:
7  *  Alexander Bulekov   <alxndr@bu.edu>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 
15 #include <wordexp.h>
16 
17 #include "hw/core/cpu.h"
18 #include "tests/qtest/libqos/libqtest.h"
19 #include "tests/qtest/libqos/pci-pc.h"
20 #include "fuzz.h"
21 #include "fork_fuzz.h"
22 #include "exec/address-spaces.h"
23 #include "string.h"
24 #include "exec/memory.h"
25 #include "exec/ramblock.h"
26 #include "exec/address-spaces.h"
27 #include "hw/qdev-core.h"
28 #include "hw/pci/pci.h"
29 #include "hw/boards.h"
30 #include "generic_fuzz_configs.h"
31 
32 /*
33  * SEPARATOR is used to separate "operations" in the fuzz input
34  */
35 #define SEPARATOR "FUZZ"
36 
37 enum cmds {
38     OP_IN,
39     OP_OUT,
40     OP_READ,
41     OP_WRITE,
42     OP_PCI_READ,
43     OP_PCI_WRITE,
44     OP_DISABLE_PCI,
45     OP_ADD_DMA_PATTERN,
46     OP_CLEAR_DMA_PATTERNS,
47     OP_CLOCK_STEP,
48 };
49 
50 #define DEFAULT_TIMEOUT_US 100000
51 #define USEC_IN_SEC 1000000000
52 
53 #define MAX_DMA_FILL_SIZE 0x10000
54 
55 #define PCI_HOST_BRIDGE_CFG 0xcf8
56 #define PCI_HOST_BRIDGE_DATA 0xcfc
57 
58 typedef struct {
59     ram_addr_t addr;
60     ram_addr_t size; /* The number of bytes until the end of the I/O region */
61 } address_range;
62 
63 static useconds_t timeout = DEFAULT_TIMEOUT_US;
64 
65 static bool qtest_log_enabled;
66 
67 /*
68  * A pattern used to populate a DMA region or perform a memwrite. This is
69  * useful for e.g. populating tables of unique addresses.
70  * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
71  * Renders as: 00 01 02   00 03 02   00 05 02   00 07 02 ...
72  */
73 typedef struct {
74     uint8_t index;      /* Index of a byte to increment by stride */
75     uint8_t stride;     /* Increment each index'th byte by this amount */
76     size_t len;
77     const uint8_t *data;
78 } pattern;
79 
80 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
81 static bool avoid_double_fetches;
82 
83 static QTestState *qts_global; /* Need a global for the DMA callback */
84 
85 /*
86  * List of memory regions that are children of QOM objects specified by the
87  * user for fuzzing.
88  */
89 static GHashTable *fuzzable_memoryregions;
90 static GPtrArray *fuzzable_pci_devices;
91 
92 struct get_io_cb_info {
93     int index;
94     int found;
95     address_range result;
96 };
97 
98 static int get_io_address_cb(Int128 start, Int128 size,
99                           const MemoryRegion *mr, void *opaque) {
100     struct get_io_cb_info *info = opaque;
101     if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
102         if (info->index == 0) {
103             info->result.addr = (ram_addr_t)start;
104             info->result.size = (ram_addr_t)size;
105             info->found = 1;
106             return 1;
107         }
108         info->index--;
109     }
110     return 0;
111 }
112 
113 /*
114  * List of dma regions populated since the last fuzzing command. Used to ensure
115  * that we only write to each DMA address once, to avoid race conditions when
116  * building reproducers.
117  */
118 static GArray *dma_regions;
119 
120 static GArray *dma_patterns;
121 static int dma_pattern_index;
122 static bool pci_disabled;
123 
124 /*
125  * Allocate a block of memory and populate it with a pattern.
126  */
127 static void *pattern_alloc(pattern p, size_t len)
128 {
129     int i;
130     uint8_t *buf = g_malloc(len);
131     uint8_t sum = 0;
132 
133     for (i = 0; i < len; ++i) {
134         buf[i] = p.data[i % p.len];
135         if ((i % p.len) == p.index) {
136             buf[i] += sum;
137             sum += p.stride;
138         }
139     }
140     return buf;
141 }
142 
143 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
144 {
145     unsigned access_size_max = mr->ops->valid.max_access_size;
146 
147     /*
148      * Regions are assumed to support 1-4 byte accesses unless
149      * otherwise specified.
150      */
151     if (access_size_max == 0) {
152         access_size_max = 4;
153     }
154 
155     /* Bound the maximum access by the alignment of the address.  */
156     if (!mr->ops->impl.unaligned) {
157         unsigned align_size_max = addr & -addr;
158         if (align_size_max != 0 && align_size_max < access_size_max) {
159             access_size_max = align_size_max;
160         }
161     }
162 
163     /* Don't attempt accesses larger than the maximum.  */
164     if (l > access_size_max) {
165         l = access_size_max;
166     }
167     l = pow2floor(l);
168 
169     return l;
170 }
171 
172 /*
173  * Call-back for functions that perform DMA reads from guest memory. Confirm
174  * that the region has not already been populated since the last loop in
175  * generic_fuzz(), avoiding potential race-conditions, which we don't have
176  * a good way for reproducing right now.
177  */
178 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr, bool is_write)
179 {
180     /* Are we in the generic-fuzzer or are we using another fuzz-target? */
181     if (!qts_global) {
182         return;
183     }
184 
185     /*
186      * Return immediately if:
187      * - We have no DMA patterns defined
188      * - The length of the DMA read request is zero
189      * - The DMA read is hitting an MR other than the machine's main RAM
190      * - The DMA request is not a read (what happens for a address_space_map
191      *   with is_write=True? Can the device use the same pointer to do reads?)
192      * - The DMA request hits past the bounds of our RAM
193      */
194     if (dma_patterns->len == 0
195         || len == 0
196         || mr != current_machine->ram
197         || is_write
198         || addr > current_machine->ram_size) {
199         return;
200     }
201 
202     /*
203      * If we overlap with any existing dma_regions, split the range and only
204      * populate the non-overlapping parts.
205      */
206     address_range region;
207     bool double_fetch = false;
208     for (int i = 0;
209          i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
210          ++i) {
211         region = g_array_index(dma_regions, address_range, i);
212         if (addr < region.addr + region.size && addr + len > region.addr) {
213             double_fetch = true;
214             if (addr < region.addr
215                 && avoid_double_fetches) {
216                 fuzz_dma_read_cb(addr, region.addr - addr, mr, is_write);
217             }
218             if (addr + len > region.addr + region.size
219                 && avoid_double_fetches) {
220                 fuzz_dma_read_cb(region.addr + region.size,
221                         addr + len - (region.addr + region.size), mr, is_write);
222             }
223             return;
224         }
225     }
226 
227     /* Cap the length of the DMA access to something reasonable */
228     len = MIN(len, MAX_DMA_FILL_SIZE);
229 
230     address_range ar = {addr, len};
231     g_array_append_val(dma_regions, ar);
232     pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
233     void *buf_base = pattern_alloc(p, ar.size);
234     void *buf = buf_base;
235     hwaddr l, addr1;
236     MemoryRegion *mr1;
237     while (len > 0) {
238         l = len;
239         mr1 = address_space_translate(first_cpu->as,
240                                       addr, &addr1, &l, true,
241                                       MEMTXATTRS_UNSPECIFIED);
242 
243         if (!(memory_region_is_ram(mr1) ||
244               memory_region_is_romd(mr1))) {
245             l = memory_access_size(mr1, l, addr1);
246         } else {
247             /* ROM/RAM case */
248             if (qtest_log_enabled) {
249                 /*
250                 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
251                 * that will be written by qtest.c with a DMA tag, so we can reorder
252                 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
253                 * command.
254                 */
255                 fprintf(stderr, "[DMA] ");
256                 if (double_fetch) {
257                     fprintf(stderr, "[DOUBLE-FETCH] ");
258                 }
259                 fflush(stderr);
260             }
261             qtest_memwrite(qts_global, addr, buf, l);
262         }
263         len -= l;
264         buf += l;
265         addr += l;
266 
267     }
268     g_free(buf_base);
269 
270     /* Increment the index of the pattern for the next DMA access */
271     dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
272 }
273 
274 /*
275  * Here we want to convert a fuzzer-provided [io-region-index, offset] to
276  * a physical address. To do this, we iterate over all of the matched
277  * MemoryRegions. Check whether each region exists within the particular io
278  * space. Return the absolute address of the offset within the index'th region
279  * that is a subregion of the io_space and the distance until the end of the
280  * memory region.
281  */
282 static bool get_io_address(address_range *result, AddressSpace *as,
283                             uint8_t index,
284                             uint32_t offset) {
285     FlatView *view;
286     view = as->current_map;
287     g_assert(view);
288     struct get_io_cb_info cb_info = {};
289 
290     cb_info.index = index;
291 
292     /*
293      * Loop around the FlatView until we match "index" number of
294      * fuzzable_memoryregions, or until we know that there are no matching
295      * memory_regions.
296      */
297     do {
298         flatview_for_each_range(view, get_io_address_cb , &cb_info);
299     } while (cb_info.index != index && !cb_info.found);
300 
301     *result = cb_info.result;
302     if (result->size) {
303         offset = offset % result->size;
304         result->addr += offset;
305         result->size -= offset;
306     }
307     return cb_info.found;
308 }
309 
310 static bool get_pio_address(address_range *result,
311                             uint8_t index, uint16_t offset)
312 {
313     /*
314      * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
315      * can contain an addr that extends past the PIO space. When we pass this
316      * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
317      * up fuzzing a completely different MemoryRegion/Device. Therefore, check
318      * that the address here is within the PIO space limits.
319      */
320     bool found = get_io_address(result, &address_space_io, index, offset);
321     return result->addr <= 0xFFFF ? found : false;
322 }
323 
324 static bool get_mmio_address(address_range *result,
325                              uint8_t index, uint32_t offset)
326 {
327     return get_io_address(result, &address_space_memory, index, offset);
328 }
329 
330 static void op_in(QTestState *s, const unsigned char * data, size_t len)
331 {
332     enum Sizes {Byte, Word, Long, end_sizes};
333     struct {
334         uint8_t size;
335         uint8_t base;
336         uint16_t offset;
337     } a;
338     address_range abs;
339 
340     if (len < sizeof(a)) {
341         return;
342     }
343     memcpy(&a, data, sizeof(a));
344     if (get_pio_address(&abs, a.base, a.offset) == 0) {
345         return;
346     }
347 
348     switch (a.size %= end_sizes) {
349     case Byte:
350         qtest_inb(s, abs.addr);
351         break;
352     case Word:
353         if (abs.size >= 2) {
354             qtest_inw(s, abs.addr);
355         }
356         break;
357     case Long:
358         if (abs.size >= 4) {
359             qtest_inl(s, abs.addr);
360         }
361         break;
362     }
363 }
364 
365 static void op_out(QTestState *s, const unsigned char * data, size_t len)
366 {
367     enum Sizes {Byte, Word, Long, end_sizes};
368     struct {
369         uint8_t size;
370         uint8_t base;
371         uint16_t offset;
372         uint32_t value;
373     } a;
374     address_range abs;
375 
376     if (len < sizeof(a)) {
377         return;
378     }
379     memcpy(&a, data, sizeof(a));
380 
381     if (get_pio_address(&abs, a.base, a.offset) == 0) {
382         return;
383     }
384 
385     switch (a.size %= end_sizes) {
386     case Byte:
387         qtest_outb(s, abs.addr, a.value & 0xFF);
388         break;
389     case Word:
390         if (abs.size >= 2) {
391             qtest_outw(s, abs.addr, a.value & 0xFFFF);
392         }
393         break;
394     case Long:
395         if (abs.size >= 4) {
396             qtest_outl(s, abs.addr, a.value);
397         }
398         break;
399     }
400 }
401 
402 static void op_read(QTestState *s, const unsigned char * data, size_t len)
403 {
404     enum Sizes {Byte, Word, Long, Quad, end_sizes};
405     struct {
406         uint8_t size;
407         uint8_t base;
408         uint32_t offset;
409     } a;
410     address_range abs;
411 
412     if (len < sizeof(a)) {
413         return;
414     }
415     memcpy(&a, data, sizeof(a));
416 
417     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
418         return;
419     }
420 
421     switch (a.size %= end_sizes) {
422     case Byte:
423         qtest_readb(s, abs.addr);
424         break;
425     case Word:
426         if (abs.size >= 2) {
427             qtest_readw(s, abs.addr);
428         }
429         break;
430     case Long:
431         if (abs.size >= 4) {
432             qtest_readl(s, abs.addr);
433         }
434         break;
435     case Quad:
436         if (abs.size >= 8) {
437             qtest_readq(s, abs.addr);
438         }
439         break;
440     }
441 }
442 
443 static void op_write(QTestState *s, const unsigned char * data, size_t len)
444 {
445     enum Sizes {Byte, Word, Long, Quad, end_sizes};
446     struct {
447         uint8_t size;
448         uint8_t base;
449         uint32_t offset;
450         uint64_t value;
451     } a;
452     address_range abs;
453 
454     if (len < sizeof(a)) {
455         return;
456     }
457     memcpy(&a, data, sizeof(a));
458 
459     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
460         return;
461     }
462 
463     switch (a.size %= end_sizes) {
464     case Byte:
465             qtest_writeb(s, abs.addr, a.value & 0xFF);
466         break;
467     case Word:
468         if (abs.size >= 2) {
469             qtest_writew(s, abs.addr, a.value & 0xFFFF);
470         }
471         break;
472     case Long:
473         if (abs.size >= 4) {
474             qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
475         }
476         break;
477     case Quad:
478         if (abs.size >= 8) {
479             qtest_writeq(s, abs.addr, a.value);
480         }
481         break;
482     }
483 }
484 
485 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
486 {
487     enum Sizes {Byte, Word, Long, end_sizes};
488     struct {
489         uint8_t size;
490         uint8_t base;
491         uint8_t offset;
492     } a;
493     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
494         return;
495     }
496     memcpy(&a, data, sizeof(a));
497     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
498                                   a.base % fuzzable_pci_devices->len);
499     int devfn = dev->devfn;
500     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
501     switch (a.size %= end_sizes) {
502     case Byte:
503         qtest_inb(s, PCI_HOST_BRIDGE_DATA);
504         break;
505     case Word:
506         qtest_inw(s, PCI_HOST_BRIDGE_DATA);
507         break;
508     case Long:
509         qtest_inl(s, PCI_HOST_BRIDGE_DATA);
510         break;
511     }
512 }
513 
514 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
515 {
516     enum Sizes {Byte, Word, Long, end_sizes};
517     struct {
518         uint8_t size;
519         uint8_t base;
520         uint8_t offset;
521         uint32_t value;
522     } a;
523     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
524         return;
525     }
526     memcpy(&a, data, sizeof(a));
527     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
528                                   a.base % fuzzable_pci_devices->len);
529     int devfn = dev->devfn;
530     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
531     switch (a.size %= end_sizes) {
532     case Byte:
533         qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
534         break;
535     case Word:
536         qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
537         break;
538     case Long:
539         qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
540         break;
541     }
542 }
543 
544 static void op_add_dma_pattern(QTestState *s,
545                                const unsigned char *data, size_t len)
546 {
547     struct {
548         /*
549          * index and stride can be used to increment the index-th byte of the
550          * pattern by the value stride, for each loop of the pattern.
551          */
552         uint8_t index;
553         uint8_t stride;
554     } a;
555 
556     if (len < sizeof(a) + 1) {
557         return;
558     }
559     memcpy(&a, data, sizeof(a));
560     pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
561     p.index = a.index % p.len;
562     g_array_append_val(dma_patterns, p);
563     return;
564 }
565 
566 static void op_clear_dma_patterns(QTestState *s,
567                                   const unsigned char *data, size_t len)
568 {
569     g_array_set_size(dma_patterns, 0);
570     dma_pattern_index = 0;
571 }
572 
573 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
574 {
575     qtest_clock_step_next(s);
576 }
577 
578 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
579 {
580     pci_disabled = true;
581 }
582 
583 static void handle_timeout(int sig)
584 {
585     if (qtest_log_enabled) {
586         fprintf(stderr, "[Timeout]\n");
587         fflush(stderr);
588     }
589     _Exit(0);
590 }
591 
592 /*
593  * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
594  * Some commands can be variable-width, so we use a separator, SEPARATOR, to
595  * specify the boundaries between commands. SEPARATOR is used to separate
596  * "operations" in the fuzz input. Why use a separator, instead of just using
597  * the operations' length to identify operation boundaries?
598  *   1. This is a simple way to support variable-length operations
599  *   2. This adds "stability" to the input.
600  *      For example take the input "AbBcgDefg", where there is no separator and
601  *      Opcodes are capitalized.
602  *      Simply, by removing the first byte, we end up with a very different
603  *      sequence:
604  *      BbcGdefg...
605  *      By adding a separator, we avoid this problem:
606  *      Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
607  *      Since B uses two additional bytes as operands, the first "B" will be
608  *      ignored. The fuzzer actively tries to reduce inputs, so such unused
609  *      bytes are likely to be pruned, eventually.
610  *
611  *  SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
612  *  SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
613  *  -dict), though this should not be necessary.
614  *
615  * As a result, the stream of bytes is converted into a sequence of commands.
616  * In a simplified example where SEPARATOR is 0xFF:
617  * 00 01 02 FF 03 04 05 06 FF 01 FF ...
618  * becomes this sequence of commands:
619  * 00 01 02    -> op00 (0102)   -> in (0102, 2)
620  * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
621  * 01          -> op01 (-,0)    -> out (-,0)
622  * ...
623  *
624  * Note here that it is the job of the individual opcode functions to check
625  * that enough data was provided. I.e. in the last command out (,0), out needs
626  * to check that there is not enough data provided to select an address/value
627  * for the operation.
628  */
629 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
630 {
631     void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
632         [OP_IN]                 = op_in,
633         [OP_OUT]                = op_out,
634         [OP_READ]               = op_read,
635         [OP_WRITE]              = op_write,
636         [OP_PCI_READ]           = op_pci_read,
637         [OP_PCI_WRITE]          = op_pci_write,
638         [OP_DISABLE_PCI]        = op_disable_pci,
639         [OP_ADD_DMA_PATTERN]    = op_add_dma_pattern,
640         [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
641         [OP_CLOCK_STEP]         = op_clock_step,
642     };
643     const unsigned char *cmd = Data;
644     const unsigned char *nextcmd;
645     size_t cmd_len;
646     uint8_t op;
647 
648     if (fork() == 0) {
649         /*
650          * Sometimes the fuzzer will find inputs that take quite a long time to
651          * process. Often times, these inputs do not result in new coverage.
652          * Even if these inputs might be interesting, they can slow down the
653          * fuzzer, overall. Set a timeout to avoid hurting performance, too much
654          */
655         if (timeout) {
656             struct sigaction sact;
657             struct itimerval timer;
658 
659             sigemptyset(&sact.sa_mask);
660             sact.sa_flags   = SA_NODEFER;
661             sact.sa_handler = handle_timeout;
662             sigaction(SIGALRM, &sact, NULL);
663 
664             memset(&timer, 0, sizeof(timer));
665             timer.it_value.tv_sec = timeout / USEC_IN_SEC;
666             timer.it_value.tv_usec = timeout % USEC_IN_SEC;
667             setitimer(ITIMER_VIRTUAL, &timer, NULL);
668         }
669 
670         op_clear_dma_patterns(s, NULL, 0);
671         pci_disabled = false;
672 
673         while (cmd && Size) {
674             /* Get the length until the next command or end of input */
675             nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
676             cmd_len = nextcmd ? nextcmd - cmd : Size;
677 
678             if (cmd_len > 0) {
679                 /* Interpret the first byte of the command as an opcode */
680                 op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
681                 ops[op](s, cmd + 1, cmd_len - 1);
682 
683                 /* Run the main loop */
684                 flush_events(s);
685             }
686             /* Advance to the next command */
687             cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
688             Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
689             g_array_set_size(dma_regions, 0);
690         }
691         _Exit(0);
692     } else {
693         flush_events(s);
694         wait(0);
695     }
696 }
697 
698 static void usage(void)
699 {
700     printf("Please specify the following environment variables:\n");
701     printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
702     printf("QEMU_FUZZ_OBJECTS= "
703             "a space separated list of QOM type names for objects to fuzz\n");
704     printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
705             "Try to avoid racy DMA double fetch bugs? %d by default\n",
706             avoid_double_fetches);
707     printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
708             "0 to disable. %d by default\n", timeout);
709     exit(0);
710 }
711 
712 static int locate_fuzz_memory_regions(Object *child, void *opaque)
713 {
714     const char *name;
715     MemoryRegion *mr;
716     if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
717         mr = MEMORY_REGION(child);
718         if ((memory_region_is_ram(mr) ||
719             memory_region_is_ram_device(mr) ||
720             memory_region_is_rom(mr)) == false) {
721             name = object_get_canonical_path_component(child);
722             /*
723              * We don't want duplicate pointers to the same MemoryRegion, so
724              * try to remove copies of the pointer, before adding it.
725              */
726             g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
727         }
728     }
729     return 0;
730 }
731 
732 static int locate_fuzz_objects(Object *child, void *opaque)
733 {
734     char *pattern = opaque;
735     if (g_pattern_match_simple(pattern, object_get_typename(child))) {
736         /* Find and save ptrs to any child MemoryRegions */
737         object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
738 
739         /*
740          * We matched an object. If its a PCI device, store a pointer to it so
741          * we can map BARs and fuzz its config space.
742          */
743         if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
744             /*
745              * Don't want duplicate pointers to the same PCIDevice, so remove
746              * copies of the pointer, before adding it.
747              */
748             g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
749             g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
750         }
751     } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
752         if (g_pattern_match_simple(pattern,
753             object_get_canonical_path_component(child))) {
754             MemoryRegion *mr;
755             mr = MEMORY_REGION(child);
756             if ((memory_region_is_ram(mr) ||
757                  memory_region_is_ram_device(mr) ||
758                  memory_region_is_rom(mr)) == false) {
759                 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
760             }
761         }
762     }
763     return 0;
764 }
765 
766 
767 static void pci_enum(gpointer pcidev, gpointer bus)
768 {
769     PCIDevice *dev = pcidev;
770     QPCIDevice *qdev;
771     int i;
772 
773     qdev = qpci_device_find(bus, dev->devfn);
774     g_assert(qdev != NULL);
775     for (i = 0; i < 6; i++) {
776         if (dev->io_regions[i].size) {
777             qpci_iomap(qdev, i, NULL);
778         }
779     }
780     qpci_device_enable(qdev);
781     g_free(qdev);
782 }
783 
784 static void generic_pre_fuzz(QTestState *s)
785 {
786     GHashTableIter iter;
787     MemoryRegion *mr;
788     QPCIBus *pcibus;
789     char **result;
790 
791     if (!getenv("QEMU_FUZZ_OBJECTS")) {
792         usage();
793     }
794     if (getenv("QTEST_LOG")) {
795         qtest_log_enabled = 1;
796     }
797     if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
798         avoid_double_fetches = 1;
799     }
800     if (getenv("QEMU_FUZZ_TIMEOUT")) {
801         timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
802     }
803     qts_global = s;
804 
805     dma_regions = g_array_new(false, false, sizeof(address_range));
806     dma_patterns = g_array_new(false, false, sizeof(pattern));
807 
808     fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
809     fuzzable_pci_devices   = g_ptr_array_new();
810 
811     result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
812     for (int i = 0; result[i] != NULL; i++) {
813         printf("Matching objects by name %s\n", result[i]);
814         object_child_foreach_recursive(qdev_get_machine(),
815                                     locate_fuzz_objects,
816                                     result[i]);
817     }
818     g_strfreev(result);
819     printf("This process will try to fuzz the following MemoryRegions:\n");
820 
821     g_hash_table_iter_init(&iter, fuzzable_memoryregions);
822     while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
823         printf("  * %s (size %lx)\n",
824                object_get_canonical_path_component(&(mr->parent_obj)),
825                (uint64_t)mr->size);
826     }
827 
828     if (!g_hash_table_size(fuzzable_memoryregions)) {
829         printf("No fuzzable memory regions found...\n");
830         exit(1);
831     }
832 
833     pcibus = qpci_new_pc(s, NULL);
834     g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
835     qpci_free_pc(pcibus);
836 
837     counter_shm_init();
838 }
839 
840 /*
841  * When libfuzzer gives us two inputs to combine, return a new input with the
842  * following structure:
843  *
844  * Input 1 (data1)
845  * SEPARATOR
846  * Clear out the DMA Patterns
847  * SEPARATOR
848  * Disable the pci_read/write instructions
849  * SEPARATOR
850  * Input 2 (data2)
851  *
852  * The idea is to collate the core behaviors of the two inputs.
853  * For example:
854  * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
855  *          device functionality A
856  * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
857  *          functionality B
858  *
859  * This function attempts to produce an input that:
860  * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
861  *          functionality A device, replaces the DMA patterns with a single
862  *          patten, and triggers device functionality B.
863  */
864 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
865                                      uint8_t *data2, size_t size2, uint8_t *out,
866                                      size_t max_out_size, unsigned int seed)
867 {
868     size_t copy_len = 0, size = 0;
869 
870     /* Check that we have enough space for data1 and at least part of data2 */
871     if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
872         return 0;
873     }
874 
875     /* Copy_Len in the first input */
876     copy_len = size1;
877     memcpy(out + size, data1, copy_len);
878     size += copy_len;
879     max_out_size -= copy_len;
880 
881     /* Append a separator */
882     copy_len = strlen(SEPARATOR);
883     memcpy(out + size, SEPARATOR, copy_len);
884     size += copy_len;
885     max_out_size -= copy_len;
886 
887     /* Clear out the DMA Patterns */
888     copy_len = 1;
889     if (copy_len) {
890         out[size] = OP_CLEAR_DMA_PATTERNS;
891     }
892     size += copy_len;
893     max_out_size -= copy_len;
894 
895     /* Append a separator */
896     copy_len = strlen(SEPARATOR);
897     memcpy(out + size, SEPARATOR, copy_len);
898     size += copy_len;
899     max_out_size -= copy_len;
900 
901     /* Disable PCI ops. Assume data1 took care of setting up PCI */
902     copy_len = 1;
903     if (copy_len) {
904         out[size] = OP_DISABLE_PCI;
905     }
906     size += copy_len;
907     max_out_size -= copy_len;
908 
909     /* Append a separator */
910     copy_len = strlen(SEPARATOR);
911     memcpy(out + size, SEPARATOR, copy_len);
912     size += copy_len;
913     max_out_size -= copy_len;
914 
915     /* Copy_Len over the second input */
916     copy_len = MIN(size2, max_out_size);
917     memcpy(out + size, data2, copy_len);
918     size += copy_len;
919     max_out_size -= copy_len;
920 
921     return  size;
922 }
923 
924 
925 static GString *generic_fuzz_cmdline(FuzzTarget *t)
926 {
927     GString *cmd_line = g_string_new(TARGET_NAME);
928     if (!getenv("QEMU_FUZZ_ARGS")) {
929         usage();
930     }
931     g_string_append_printf(cmd_line, " -display none \
932                                       -machine accel=qtest, \
933                                       -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
934     return cmd_line;
935 }
936 
937 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
938 {
939     const generic_fuzz_config *config;
940     g_assert(t->opaque);
941 
942     config = t->opaque;
943     setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
944     setenv("QEMU_FUZZ_ARGS", config->args, 1);
945     setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
946     return generic_fuzz_cmdline(t);
947 }
948 
949 static void register_generic_fuzz_targets(void)
950 {
951     fuzz_add_target(&(FuzzTarget){
952             .name = "generic-fuzz",
953             .description = "Fuzz based on any qemu command-line args. ",
954             .get_init_cmdline = generic_fuzz_cmdline,
955             .pre_fuzz = generic_pre_fuzz,
956             .fuzz = generic_fuzz,
957             .crossover = generic_fuzz_crossover
958     });
959 
960     GString *name;
961     const generic_fuzz_config *config;
962 
963     for (int i = 0;
964          i < sizeof(predefined_configs) / sizeof(generic_fuzz_config);
965          i++) {
966         config = predefined_configs + i;
967         name = g_string_new("generic-fuzz");
968         g_string_append_printf(name, "-%s", config->name);
969         fuzz_add_target(&(FuzzTarget){
970                 .name = name->str,
971                 .description = "Predefined generic-fuzz config.",
972                 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
973                 .pre_fuzz = generic_pre_fuzz,
974                 .fuzz = generic_fuzz,
975                 .crossover = generic_fuzz_crossover,
976                 .opaque = (void *)config
977         });
978     }
979 }
980 
981 fuzz_target_init(register_generic_fuzz_targets);
982