xref: /openbmc/qemu/tests/qtest/fuzz/generic_fuzz.c (revision 53c7c924)
1 /*
2  * Generic Virtual-Device Fuzzing Target
3  *
4  * Copyright Red Hat Inc., 2020
5  *
6  * Authors:
7  *  Alexander Bulekov   <alxndr@bu.edu>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 
15 #include <wordexp.h>
16 
17 #include "hw/core/cpu.h"
18 #include "tests/qtest/libqtest.h"
19 #include "tests/qtest/libqos/pci-pc.h"
20 #include "fuzz.h"
21 #include "string.h"
22 #include "exec/memory.h"
23 #include "exec/ramblock.h"
24 #include "hw/qdev-core.h"
25 #include "hw/pci/pci.h"
26 #include "hw/pci/pci_device.h"
27 #include "hw/boards.h"
28 #include "generic_fuzz_configs.h"
29 #include "hw/mem/sparse-mem.h"
30 
31 static void pci_enum(gpointer pcidev, gpointer bus);
32 
33 /*
34  * SEPARATOR is used to separate "operations" in the fuzz input
35  */
36 #define SEPARATOR "FUZZ"
37 
38 enum cmds {
39     OP_IN,
40     OP_OUT,
41     OP_READ,
42     OP_WRITE,
43     OP_PCI_READ,
44     OP_PCI_WRITE,
45     OP_DISABLE_PCI,
46     OP_ADD_DMA_PATTERN,
47     OP_CLEAR_DMA_PATTERNS,
48     OP_CLOCK_STEP,
49 };
50 
51 #define USEC_IN_SEC 1000000000
52 
53 #define MAX_DMA_FILL_SIZE 0x10000
54 #define MAX_TOTAL_DMA_SIZE 0x10000000
55 
56 #define PCI_HOST_BRIDGE_CFG 0xcf8
57 #define PCI_HOST_BRIDGE_DATA 0xcfc
58 
59 typedef struct {
60     ram_addr_t addr;
61     ram_addr_t size; /* The number of bytes until the end of the I/O region */
62 } address_range;
63 
64 static bool qtest_log_enabled;
65 size_t dma_bytes_written;
66 
67 MemoryRegion *sparse_mem_mr;
68 
69 /*
70  * A pattern used to populate a DMA region or perform a memwrite. This is
71  * useful for e.g. populating tables of unique addresses.
72  * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
73  * Renders as: 00 01 02   00 03 02   00 05 02   00 07 02 ...
74  */
75 typedef struct {
76     uint8_t index;      /* Index of a byte to increment by stride */
77     uint8_t stride;     /* Increment each index'th byte by this amount */
78     size_t len;
79     const uint8_t *data;
80 } pattern;
81 
82 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
83 static bool avoid_double_fetches;
84 
85 static QTestState *qts_global; /* Need a global for the DMA callback */
86 
87 /*
88  * List of memory regions that are children of QOM objects specified by the
89  * user for fuzzing.
90  */
91 static GHashTable *fuzzable_memoryregions;
92 static GPtrArray *fuzzable_pci_devices;
93 
94 struct get_io_cb_info {
95     int index;
96     int found;
97     address_range result;
98 };
99 
100 static bool get_io_address_cb(Int128 start, Int128 size,
101                               const MemoryRegion *mr,
102                               hwaddr offset_in_region,
103                               void *opaque)
104 {
105     struct get_io_cb_info *info = opaque;
106     if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
107         if (info->index == 0) {
108             info->result.addr = (ram_addr_t)start;
109             info->result.size = (ram_addr_t)size;
110             info->found = 1;
111             return true;
112         }
113         info->index--;
114     }
115     return false;
116 }
117 
118 /*
119  * List of dma regions populated since the last fuzzing command. Used to ensure
120  * that we only write to each DMA address once, to avoid race conditions when
121  * building reproducers.
122  */
123 static GArray *dma_regions;
124 
125 static GArray *dma_patterns;
126 static int dma_pattern_index;
127 static bool pci_disabled;
128 
129 /*
130  * Allocate a block of memory and populate it with a pattern.
131  */
132 static void *pattern_alloc(pattern p, size_t len)
133 {
134     int i;
135     uint8_t *buf = g_malloc(len);
136     uint8_t sum = 0;
137 
138     for (i = 0; i < len; ++i) {
139         buf[i] = p.data[i % p.len];
140         if ((i % p.len) == p.index) {
141             buf[i] += sum;
142             sum += p.stride;
143         }
144     }
145     return buf;
146 }
147 
148 static int fuzz_memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
149 {
150     unsigned access_size_max = mr->ops->valid.max_access_size;
151 
152     /*
153      * Regions are assumed to support 1-4 byte accesses unless
154      * otherwise specified.
155      */
156     if (access_size_max == 0) {
157         access_size_max = 4;
158     }
159 
160     /* Bound the maximum access by the alignment of the address.  */
161     if (!mr->ops->impl.unaligned) {
162         unsigned align_size_max = addr & -addr;
163         if (align_size_max != 0 && align_size_max < access_size_max) {
164             access_size_max = align_size_max;
165         }
166     }
167 
168     /* Don't attempt accesses larger than the maximum.  */
169     if (l > access_size_max) {
170         l = access_size_max;
171     }
172     l = pow2floor(l);
173 
174     return l;
175 }
176 
177 /*
178  * Call-back for functions that perform DMA reads from guest memory. Confirm
179  * that the region has not already been populated since the last loop in
180  * generic_fuzz(), avoiding potential race-conditions, which we don't have
181  * a good way for reproducing right now.
182  */
183 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
184 {
185     /* Are we in the generic-fuzzer or are we using another fuzz-target? */
186     if (!qts_global) {
187         return;
188     }
189 
190     /*
191      * Return immediately if:
192      * - We have no DMA patterns defined
193      * - The length of the DMA read request is zero
194      * - The DMA read is hitting an MR other than the machine's main RAM
195      * - The DMA request hits past the bounds of our RAM
196      */
197     if (dma_patterns->len == 0
198         || len == 0
199         || dma_bytes_written + len > MAX_TOTAL_DMA_SIZE
200         || (mr != current_machine->ram && mr != sparse_mem_mr)) {
201         return;
202     }
203 
204     /*
205      * If we overlap with any existing dma_regions, split the range and only
206      * populate the non-overlapping parts.
207      */
208     address_range region;
209     bool double_fetch = false;
210     for (int i = 0;
211          i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
212          ++i) {
213         region = g_array_index(dma_regions, address_range, i);
214         if (addr < region.addr + region.size && addr + len > region.addr) {
215             double_fetch = true;
216             if (addr < region.addr
217                 && avoid_double_fetches) {
218                 fuzz_dma_read_cb(addr, region.addr - addr, mr);
219             }
220             if (addr + len > region.addr + region.size
221                 && avoid_double_fetches) {
222                 fuzz_dma_read_cb(region.addr + region.size,
223                         addr + len - (region.addr + region.size), mr);
224             }
225             return;
226         }
227     }
228 
229     /* Cap the length of the DMA access to something reasonable */
230     len = MIN(len, MAX_DMA_FILL_SIZE);
231 
232     address_range ar = {addr, len};
233     g_array_append_val(dma_regions, ar);
234     pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
235     void *buf_base = pattern_alloc(p, ar.size);
236     void *buf = buf_base;
237     hwaddr l, addr1;
238     MemoryRegion *mr1;
239     while (len > 0) {
240         l = len;
241         mr1 = address_space_translate(first_cpu->as,
242                                       addr, &addr1, &l, true,
243                                       MEMTXATTRS_UNSPECIFIED);
244 
245         /*
246          *  If mr1 isn't RAM, address_space_translate doesn't update l. Use
247          *  fuzz_memory_access_size to identify the number of bytes that it
248          *  is safe to write without accidentally writing to another
249          *  MemoryRegion.
250          */
251         if (!memory_region_is_ram(mr1)) {
252             l = fuzz_memory_access_size(mr1, l, addr1);
253         }
254         if (memory_region_is_ram(mr1) ||
255             memory_region_is_romd(mr1) ||
256             mr1 == sparse_mem_mr) {
257             /* ROM/RAM case */
258             if (qtest_log_enabled) {
259                 /*
260                 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
261                 * that will be written by qtest.c with a DMA tag, so we can reorder
262                 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
263                 * command.
264                 */
265                 fprintf(stderr, "[DMA] ");
266                 if (double_fetch) {
267                     fprintf(stderr, "[DOUBLE-FETCH] ");
268                 }
269                 fflush(stderr);
270             }
271             qtest_memwrite(qts_global, addr, buf, l);
272             dma_bytes_written += l;
273         }
274         len -= l;
275         buf += l;
276         addr += l;
277 
278     }
279     g_free(buf_base);
280 
281     /* Increment the index of the pattern for the next DMA access */
282     dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
283 }
284 
285 /*
286  * Here we want to convert a fuzzer-provided [io-region-index, offset] to
287  * a physical address. To do this, we iterate over all of the matched
288  * MemoryRegions. Check whether each region exists within the particular io
289  * space. Return the absolute address of the offset within the index'th region
290  * that is a subregion of the io_space and the distance until the end of the
291  * memory region.
292  */
293 static bool get_io_address(address_range *result, AddressSpace *as,
294                             uint8_t index,
295                             uint32_t offset) {
296     FlatView *view;
297     view = as->current_map;
298     g_assert(view);
299     struct get_io_cb_info cb_info = {};
300 
301     cb_info.index = index;
302 
303     /*
304      * Loop around the FlatView until we match "index" number of
305      * fuzzable_memoryregions, or until we know that there are no matching
306      * memory_regions.
307      */
308     do {
309         flatview_for_each_range(view, get_io_address_cb , &cb_info);
310     } while (cb_info.index != index && !cb_info.found);
311 
312     *result = cb_info.result;
313     if (result->size) {
314         offset = offset % result->size;
315         result->addr += offset;
316         result->size -= offset;
317     }
318     return cb_info.found;
319 }
320 
321 static bool get_pio_address(address_range *result,
322                             uint8_t index, uint16_t offset)
323 {
324     /*
325      * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
326      * can contain an addr that extends past the PIO space. When we pass this
327      * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
328      * up fuzzing a completely different MemoryRegion/Device. Therefore, check
329      * that the address here is within the PIO space limits.
330      */
331     bool found = get_io_address(result, &address_space_io, index, offset);
332     return result->addr <= 0xFFFF ? found : false;
333 }
334 
335 static bool get_mmio_address(address_range *result,
336                              uint8_t index, uint32_t offset)
337 {
338     return get_io_address(result, &address_space_memory, index, offset);
339 }
340 
341 static void op_in(QTestState *s, const unsigned char * data, size_t len)
342 {
343     enum Sizes {Byte, Word, Long, end_sizes};
344     struct {
345         uint8_t size;
346         uint8_t base;
347         uint16_t offset;
348     } a;
349     address_range abs;
350 
351     if (len < sizeof(a)) {
352         return;
353     }
354     memcpy(&a, data, sizeof(a));
355     if (get_pio_address(&abs, a.base, a.offset) == 0) {
356         return;
357     }
358 
359     switch (a.size %= end_sizes) {
360     case Byte:
361         qtest_inb(s, abs.addr);
362         break;
363     case Word:
364         if (abs.size >= 2) {
365             qtest_inw(s, abs.addr);
366         }
367         break;
368     case Long:
369         if (abs.size >= 4) {
370             qtest_inl(s, abs.addr);
371         }
372         break;
373     }
374 }
375 
376 static void op_out(QTestState *s, const unsigned char * data, size_t len)
377 {
378     enum Sizes {Byte, Word, Long, end_sizes};
379     struct {
380         uint8_t size;
381         uint8_t base;
382         uint16_t offset;
383         uint32_t value;
384     } a;
385     address_range abs;
386 
387     if (len < sizeof(a)) {
388         return;
389     }
390     memcpy(&a, data, sizeof(a));
391 
392     if (get_pio_address(&abs, a.base, a.offset) == 0) {
393         return;
394     }
395 
396     switch (a.size %= end_sizes) {
397     case Byte:
398         qtest_outb(s, abs.addr, a.value & 0xFF);
399         break;
400     case Word:
401         if (abs.size >= 2) {
402             qtest_outw(s, abs.addr, a.value & 0xFFFF);
403         }
404         break;
405     case Long:
406         if (abs.size >= 4) {
407             qtest_outl(s, abs.addr, a.value);
408         }
409         break;
410     }
411 }
412 
413 static void op_read(QTestState *s, const unsigned char * data, size_t len)
414 {
415     enum Sizes {Byte, Word, Long, Quad, end_sizes};
416     struct {
417         uint8_t size;
418         uint8_t base;
419         uint32_t offset;
420     } a;
421     address_range abs;
422 
423     if (len < sizeof(a)) {
424         return;
425     }
426     memcpy(&a, data, sizeof(a));
427 
428     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
429         return;
430     }
431 
432     switch (a.size %= end_sizes) {
433     case Byte:
434         qtest_readb(s, abs.addr);
435         break;
436     case Word:
437         if (abs.size >= 2) {
438             qtest_readw(s, abs.addr);
439         }
440         break;
441     case Long:
442         if (abs.size >= 4) {
443             qtest_readl(s, abs.addr);
444         }
445         break;
446     case Quad:
447         if (abs.size >= 8) {
448             qtest_readq(s, abs.addr);
449         }
450         break;
451     }
452 }
453 
454 static void op_write(QTestState *s, const unsigned char * data, size_t len)
455 {
456     enum Sizes {Byte, Word, Long, Quad, end_sizes};
457     struct {
458         uint8_t size;
459         uint8_t base;
460         uint32_t offset;
461         uint64_t value;
462     } a;
463     address_range abs;
464 
465     if (len < sizeof(a)) {
466         return;
467     }
468     memcpy(&a, data, sizeof(a));
469 
470     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
471         return;
472     }
473 
474     switch (a.size %= end_sizes) {
475     case Byte:
476             qtest_writeb(s, abs.addr, a.value & 0xFF);
477         break;
478     case Word:
479         if (abs.size >= 2) {
480             qtest_writew(s, abs.addr, a.value & 0xFFFF);
481         }
482         break;
483     case Long:
484         if (abs.size >= 4) {
485             qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
486         }
487         break;
488     case Quad:
489         if (abs.size >= 8) {
490             qtest_writeq(s, abs.addr, a.value);
491         }
492         break;
493     }
494 }
495 
496 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
497 {
498     enum Sizes {Byte, Word, Long, end_sizes};
499     struct {
500         uint8_t size;
501         uint8_t base;
502         uint8_t offset;
503     } a;
504     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
505         return;
506     }
507     memcpy(&a, data, sizeof(a));
508     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
509                                   a.base % fuzzable_pci_devices->len);
510     int devfn = dev->devfn;
511     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
512     switch (a.size %= end_sizes) {
513     case Byte:
514         qtest_inb(s, PCI_HOST_BRIDGE_DATA);
515         break;
516     case Word:
517         qtest_inw(s, PCI_HOST_BRIDGE_DATA);
518         break;
519     case Long:
520         qtest_inl(s, PCI_HOST_BRIDGE_DATA);
521         break;
522     }
523 }
524 
525 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
526 {
527     enum Sizes {Byte, Word, Long, end_sizes};
528     struct {
529         uint8_t size;
530         uint8_t base;
531         uint8_t offset;
532         uint32_t value;
533     } a;
534     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
535         return;
536     }
537     memcpy(&a, data, sizeof(a));
538     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
539                                   a.base % fuzzable_pci_devices->len);
540     int devfn = dev->devfn;
541     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
542     switch (a.size %= end_sizes) {
543     case Byte:
544         qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
545         break;
546     case Word:
547         qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
548         break;
549     case Long:
550         qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
551         break;
552     }
553 }
554 
555 static void op_add_dma_pattern(QTestState *s,
556                                const unsigned char *data, size_t len)
557 {
558     struct {
559         /*
560          * index and stride can be used to increment the index-th byte of the
561          * pattern by the value stride, for each loop of the pattern.
562          */
563         uint8_t index;
564         uint8_t stride;
565     } a;
566 
567     if (len < sizeof(a) + 1) {
568         return;
569     }
570     memcpy(&a, data, sizeof(a));
571     pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
572     p.index = a.index % p.len;
573     g_array_append_val(dma_patterns, p);
574     return;
575 }
576 
577 static void op_clear_dma_patterns(QTestState *s,
578                                   const unsigned char *data, size_t len)
579 {
580     g_array_set_size(dma_patterns, 0);
581     dma_pattern_index = 0;
582 }
583 
584 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
585 {
586     qtest_clock_step_next(s);
587 }
588 
589 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
590 {
591     pci_disabled = true;
592 }
593 
594 /*
595  * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
596  * Some commands can be variable-width, so we use a separator, SEPARATOR, to
597  * specify the boundaries between commands. SEPARATOR is used to separate
598  * "operations" in the fuzz input. Why use a separator, instead of just using
599  * the operations' length to identify operation boundaries?
600  *   1. This is a simple way to support variable-length operations
601  *   2. This adds "stability" to the input.
602  *      For example take the input "AbBcgDefg", where there is no separator and
603  *      Opcodes are capitalized.
604  *      Simply, by removing the first byte, we end up with a very different
605  *      sequence:
606  *      BbcGdefg...
607  *      By adding a separator, we avoid this problem:
608  *      Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
609  *      Since B uses two additional bytes as operands, the first "B" will be
610  *      ignored. The fuzzer actively tries to reduce inputs, so such unused
611  *      bytes are likely to be pruned, eventually.
612  *
613  *  SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
614  *  SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
615  *  -dict), though this should not be necessary.
616  *
617  * As a result, the stream of bytes is converted into a sequence of commands.
618  * In a simplified example where SEPARATOR is 0xFF:
619  * 00 01 02 FF 03 04 05 06 FF 01 FF ...
620  * becomes this sequence of commands:
621  * 00 01 02    -> op00 (0102)   -> in (0102, 2)
622  * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
623  * 01          -> op01 (-,0)    -> out (-,0)
624  * ...
625  *
626  * Note here that it is the job of the individual opcode functions to check
627  * that enough data was provided. I.e. in the last command out (,0), out needs
628  * to check that there is not enough data provided to select an address/value
629  * for the operation.
630  */
631 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
632 {
633     void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
634         [OP_IN]                 = op_in,
635         [OP_OUT]                = op_out,
636         [OP_READ]               = op_read,
637         [OP_WRITE]              = op_write,
638         [OP_PCI_READ]           = op_pci_read,
639         [OP_PCI_WRITE]          = op_pci_write,
640         [OP_DISABLE_PCI]        = op_disable_pci,
641         [OP_ADD_DMA_PATTERN]    = op_add_dma_pattern,
642         [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
643         [OP_CLOCK_STEP]         = op_clock_step,
644     };
645     const unsigned char *cmd = Data;
646     const unsigned char *nextcmd;
647     size_t cmd_len;
648     uint8_t op;
649 
650     op_clear_dma_patterns(s, NULL, 0);
651     pci_disabled = false;
652     dma_bytes_written = 0;
653 
654     QPCIBus *pcibus = qpci_new_pc(s, NULL);
655     g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
656     qpci_free_pc(pcibus);
657 
658     while (cmd && Size) {
659         /* Get the length until the next command or end of input */
660         nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
661         cmd_len = nextcmd ? nextcmd - cmd : Size;
662 
663         if (cmd_len > 0) {
664             /* Interpret the first byte of the command as an opcode */
665             op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
666             ops[op](s, cmd + 1, cmd_len - 1);
667 
668             /* Run the main loop */
669             flush_events(s);
670         }
671         /* Advance to the next command */
672         cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
673         Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
674         g_array_set_size(dma_regions, 0);
675     }
676     fuzz_reset(s);
677 }
678 
679 static void usage(void)
680 {
681     printf("Please specify the following environment variables:\n");
682     printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
683     printf("QEMU_FUZZ_OBJECTS= "
684             "a space separated list of QOM type names for objects to fuzz\n");
685     printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
686             "Try to avoid racy DMA double fetch bugs? %d by default\n",
687             avoid_double_fetches);
688     exit(0);
689 }
690 
691 static int locate_fuzz_memory_regions(Object *child, void *opaque)
692 {
693     MemoryRegion *mr;
694     if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
695         mr = MEMORY_REGION(child);
696         if ((memory_region_is_ram(mr) ||
697             memory_region_is_ram_device(mr) ||
698             memory_region_is_rom(mr)) == false) {
699             /*
700              * We don't want duplicate pointers to the same MemoryRegion, so
701              * try to remove copies of the pointer, before adding it.
702              */
703             g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
704         }
705     }
706     return 0;
707 }
708 
709 static int locate_fuzz_objects(Object *child, void *opaque)
710 {
711     GString *type_name;
712     GString *path_name;
713     char *pattern = opaque;
714 
715     type_name = g_string_new(object_get_typename(child));
716     g_string_ascii_down(type_name);
717     if (g_pattern_match_simple(pattern, type_name->str)) {
718         /* Find and save ptrs to any child MemoryRegions */
719         object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
720 
721         /*
722          * We matched an object. If its a PCI device, store a pointer to it so
723          * we can map BARs and fuzz its config space.
724          */
725         if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
726             /*
727              * Don't want duplicate pointers to the same PCIDevice, so remove
728              * copies of the pointer, before adding it.
729              */
730             g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
731             g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
732         }
733     } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
734         path_name = g_string_new(object_get_canonical_path_component(child));
735         g_string_ascii_down(path_name);
736         if (g_pattern_match_simple(pattern, path_name->str)) {
737             MemoryRegion *mr;
738             mr = MEMORY_REGION(child);
739             if ((memory_region_is_ram(mr) ||
740                  memory_region_is_ram_device(mr) ||
741                  memory_region_is_rom(mr)) == false) {
742                 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
743             }
744         }
745         g_string_free(path_name, true);
746     }
747     g_string_free(type_name, true);
748     return 0;
749 }
750 
751 
752 static void pci_enum(gpointer pcidev, gpointer bus)
753 {
754     PCIDevice *dev = pcidev;
755     QPCIDevice *qdev;
756     int i;
757 
758     qdev = qpci_device_find(bus, dev->devfn);
759     g_assert(qdev != NULL);
760     for (i = 0; i < 6; i++) {
761         if (dev->io_regions[i].size) {
762             qpci_iomap(qdev, i, NULL);
763         }
764     }
765     qpci_device_enable(qdev);
766     g_free(qdev);
767 }
768 
769 static void generic_pre_fuzz(QTestState *s)
770 {
771     GHashTableIter iter;
772     MemoryRegion *mr;
773     char **result;
774     GString *name_pattern;
775 
776     if (!getenv("QEMU_FUZZ_OBJECTS")) {
777         usage();
778     }
779     if (getenv("QTEST_LOG")) {
780         qtest_log_enabled = 1;
781     }
782     if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
783         avoid_double_fetches = 1;
784     }
785     qts_global = s;
786 
787     /*
788      * Create a special device that we can use to back DMA buffers at very
789      * high memory addresses
790      */
791     sparse_mem_mr = sparse_mem_init(0, UINT64_MAX);
792 
793     dma_regions = g_array_new(false, false, sizeof(address_range));
794     dma_patterns = g_array_new(false, false, sizeof(pattern));
795 
796     fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
797     fuzzable_pci_devices   = g_ptr_array_new();
798 
799     result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
800     for (int i = 0; result[i] != NULL; i++) {
801         name_pattern = g_string_new(result[i]);
802         /*
803          * Make the pattern lowercase. We do the same for all the MemoryRegion
804          * and Type names so the configs are case-insensitive.
805          */
806         g_string_ascii_down(name_pattern);
807         printf("Matching objects by name %s\n", result[i]);
808         object_child_foreach_recursive(qdev_get_machine(),
809                                     locate_fuzz_objects,
810                                     name_pattern->str);
811         g_string_free(name_pattern, true);
812     }
813     g_strfreev(result);
814     printf("This process will try to fuzz the following MemoryRegions:\n");
815 
816     g_hash_table_iter_init(&iter, fuzzable_memoryregions);
817     while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
818         printf("  * %s (size 0x%" PRIx64 ")\n",
819                object_get_canonical_path_component(&(mr->parent_obj)),
820                memory_region_size(mr));
821     }
822 
823     if (!g_hash_table_size(fuzzable_memoryregions)) {
824         printf("No fuzzable memory regions found...\n");
825         exit(1);
826     }
827 }
828 
829 /*
830  * When libfuzzer gives us two inputs to combine, return a new input with the
831  * following structure:
832  *
833  * Input 1 (data1)
834  * SEPARATOR
835  * Clear out the DMA Patterns
836  * SEPARATOR
837  * Disable the pci_read/write instructions
838  * SEPARATOR
839  * Input 2 (data2)
840  *
841  * The idea is to collate the core behaviors of the two inputs.
842  * For example:
843  * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
844  *          device functionality A
845  * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
846  *          functionality B
847  *
848  * This function attempts to produce an input that:
849  * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
850  *          functionality A device, replaces the DMA patterns with a single
851  *          patten, and triggers device functionality B.
852  */
853 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
854                                      uint8_t *data2, size_t size2, uint8_t *out,
855                                      size_t max_out_size, unsigned int seed)
856 {
857     size_t copy_len = 0, size = 0;
858 
859     /* Check that we have enough space for data1 and at least part of data2 */
860     if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
861         return 0;
862     }
863 
864     /* Copy_Len in the first input */
865     copy_len = size1;
866     memcpy(out + size, data1, copy_len);
867     size += copy_len;
868     max_out_size -= copy_len;
869 
870     /* Append a separator */
871     copy_len = strlen(SEPARATOR);
872     memcpy(out + size, SEPARATOR, copy_len);
873     size += copy_len;
874     max_out_size -= copy_len;
875 
876     /* Clear out the DMA Patterns */
877     copy_len = 1;
878     if (copy_len) {
879         out[size] = OP_CLEAR_DMA_PATTERNS;
880     }
881     size += copy_len;
882     max_out_size -= copy_len;
883 
884     /* Append a separator */
885     copy_len = strlen(SEPARATOR);
886     memcpy(out + size, SEPARATOR, copy_len);
887     size += copy_len;
888     max_out_size -= copy_len;
889 
890     /* Disable PCI ops. Assume data1 took care of setting up PCI */
891     copy_len = 1;
892     if (copy_len) {
893         out[size] = OP_DISABLE_PCI;
894     }
895     size += copy_len;
896     max_out_size -= copy_len;
897 
898     /* Append a separator */
899     copy_len = strlen(SEPARATOR);
900     memcpy(out + size, SEPARATOR, copy_len);
901     size += copy_len;
902     max_out_size -= copy_len;
903 
904     /* Copy_Len over the second input */
905     copy_len = MIN(size2, max_out_size);
906     memcpy(out + size, data2, copy_len);
907     size += copy_len;
908     max_out_size -= copy_len;
909 
910     return  size;
911 }
912 
913 
914 static GString *generic_fuzz_cmdline(FuzzTarget *t)
915 {
916     GString *cmd_line = g_string_new(TARGET_NAME);
917     if (!getenv("QEMU_FUZZ_ARGS")) {
918         usage();
919     }
920     g_string_append_printf(cmd_line, " -display none \
921                                       -machine accel=qtest, \
922                                       -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
923     return cmd_line;
924 }
925 
926 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
927 {
928     gchar *args;
929     const generic_fuzz_config *config;
930     g_assert(t->opaque);
931 
932     config = t->opaque;
933     g_setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
934     if (config->argfunc) {
935         args = config->argfunc();
936         g_setenv("QEMU_FUZZ_ARGS", args, 1);
937         g_free(args);
938     } else {
939         g_assert_nonnull(config->args);
940         g_setenv("QEMU_FUZZ_ARGS", config->args, 1);
941     }
942     g_setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
943     return generic_fuzz_cmdline(t);
944 }
945 
946 static void register_generic_fuzz_targets(void)
947 {
948     fuzz_add_target(&(FuzzTarget){
949             .name = "generic-fuzz",
950             .description = "Fuzz based on any qemu command-line args. ",
951             .get_init_cmdline = generic_fuzz_cmdline,
952             .pre_fuzz = generic_pre_fuzz,
953             .fuzz = generic_fuzz,
954             .crossover = generic_fuzz_crossover
955     });
956 
957     for (int i = 0; i < ARRAY_SIZE(predefined_configs); i++) {
958         const generic_fuzz_config *config = predefined_configs + i;
959         fuzz_add_target(&(FuzzTarget){
960                 .name = g_strconcat("generic-fuzz-", config->name, NULL),
961                 .description = "Predefined generic-fuzz config.",
962                 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
963                 .pre_fuzz = generic_pre_fuzz,
964                 .fuzz = generic_fuzz,
965                 .crossover = generic_fuzz_crossover,
966                 .opaque = (void *)config
967         });
968     }
969 }
970 
971 fuzz_target_init(register_generic_fuzz_targets);
972