xref: /openbmc/qemu/tests/qtest/fuzz/generic_fuzz.c (revision 46627f41)
1 /*
2  * Generic Virtual-Device Fuzzing Target
3  *
4  * Copyright Red Hat Inc., 2020
5  *
6  * Authors:
7  *  Alexander Bulekov   <alxndr@bu.edu>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 
15 #include <wordexp.h>
16 
17 #include "hw/core/cpu.h"
18 #include "tests/qtest/libqos/libqtest.h"
19 #include "tests/qtest/libqos/pci-pc.h"
20 #include "fuzz.h"
21 #include "fork_fuzz.h"
22 #include "string.h"
23 #include "exec/memory.h"
24 #include "exec/ramblock.h"
25 #include "hw/qdev-core.h"
26 #include "hw/pci/pci.h"
27 #include "hw/boards.h"
28 #include "generic_fuzz_configs.h"
29 #include "hw/mem/sparse-mem.h"
30 
31 /*
32  * SEPARATOR is used to separate "operations" in the fuzz input
33  */
34 #define SEPARATOR "FUZZ"
35 
36 enum cmds {
37     OP_IN,
38     OP_OUT,
39     OP_READ,
40     OP_WRITE,
41     OP_PCI_READ,
42     OP_PCI_WRITE,
43     OP_DISABLE_PCI,
44     OP_ADD_DMA_PATTERN,
45     OP_CLEAR_DMA_PATTERNS,
46     OP_CLOCK_STEP,
47 };
48 
49 #define DEFAULT_TIMEOUT_US 100000
50 #define USEC_IN_SEC 1000000000
51 
52 #define MAX_DMA_FILL_SIZE 0x10000
53 
54 #define PCI_HOST_BRIDGE_CFG 0xcf8
55 #define PCI_HOST_BRIDGE_DATA 0xcfc
56 
57 typedef struct {
58     ram_addr_t addr;
59     ram_addr_t size; /* The number of bytes until the end of the I/O region */
60 } address_range;
61 
62 static useconds_t timeout = DEFAULT_TIMEOUT_US;
63 
64 static bool qtest_log_enabled;
65 
66 MemoryRegion *sparse_mem_mr;
67 
68 /*
69  * A pattern used to populate a DMA region or perform a memwrite. This is
70  * useful for e.g. populating tables of unique addresses.
71  * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
72  * Renders as: 00 01 02   00 03 02   00 05 02   00 07 02 ...
73  */
74 typedef struct {
75     uint8_t index;      /* Index of a byte to increment by stride */
76     uint8_t stride;     /* Increment each index'th byte by this amount */
77     size_t len;
78     const uint8_t *data;
79 } pattern;
80 
81 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
82 static bool avoid_double_fetches;
83 
84 static QTestState *qts_global; /* Need a global for the DMA callback */
85 
86 /*
87  * List of memory regions that are children of QOM objects specified by the
88  * user for fuzzing.
89  */
90 static GHashTable *fuzzable_memoryregions;
91 static GPtrArray *fuzzable_pci_devices;
92 
93 struct get_io_cb_info {
94     int index;
95     int found;
96     address_range result;
97 };
98 
99 static bool get_io_address_cb(Int128 start, Int128 size,
100                               const MemoryRegion *mr,
101                               hwaddr offset_in_region,
102                               void *opaque)
103 {
104     struct get_io_cb_info *info = opaque;
105     if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
106         if (info->index == 0) {
107             info->result.addr = (ram_addr_t)start;
108             info->result.size = (ram_addr_t)size;
109             info->found = 1;
110             return true;
111         }
112         info->index--;
113     }
114     return false;
115 }
116 
117 /*
118  * List of dma regions populated since the last fuzzing command. Used to ensure
119  * that we only write to each DMA address once, to avoid race conditions when
120  * building reproducers.
121  */
122 static GArray *dma_regions;
123 
124 static GArray *dma_patterns;
125 static int dma_pattern_index;
126 static bool pci_disabled;
127 
128 /*
129  * Allocate a block of memory and populate it with a pattern.
130  */
131 static void *pattern_alloc(pattern p, size_t len)
132 {
133     int i;
134     uint8_t *buf = g_malloc(len);
135     uint8_t sum = 0;
136 
137     for (i = 0; i < len; ++i) {
138         buf[i] = p.data[i % p.len];
139         if ((i % p.len) == p.index) {
140             buf[i] += sum;
141             sum += p.stride;
142         }
143     }
144     return buf;
145 }
146 
147 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
148 {
149     unsigned access_size_max = mr->ops->valid.max_access_size;
150 
151     /*
152      * Regions are assumed to support 1-4 byte accesses unless
153      * otherwise specified.
154      */
155     if (access_size_max == 0) {
156         access_size_max = 4;
157     }
158 
159     /* Bound the maximum access by the alignment of the address.  */
160     if (!mr->ops->impl.unaligned) {
161         unsigned align_size_max = addr & -addr;
162         if (align_size_max != 0 && align_size_max < access_size_max) {
163             access_size_max = align_size_max;
164         }
165     }
166 
167     /* Don't attempt accesses larger than the maximum.  */
168     if (l > access_size_max) {
169         l = access_size_max;
170     }
171     l = pow2floor(l);
172 
173     return l;
174 }
175 
176 /*
177  * Call-back for functions that perform DMA reads from guest memory. Confirm
178  * that the region has not already been populated since the last loop in
179  * generic_fuzz(), avoiding potential race-conditions, which we don't have
180  * a good way for reproducing right now.
181  */
182 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
183 {
184     /* Are we in the generic-fuzzer or are we using another fuzz-target? */
185     if (!qts_global) {
186         return;
187     }
188 
189     /*
190      * Return immediately if:
191      * - We have no DMA patterns defined
192      * - The length of the DMA read request is zero
193      * - The DMA read is hitting an MR other than the machine's main RAM
194      * - The DMA request hits past the bounds of our RAM
195      */
196     if (dma_patterns->len == 0
197         || len == 0
198         || (mr != current_machine->ram && mr != sparse_mem_mr)) {
199         return;
200     }
201 
202     /*
203      * If we overlap with any existing dma_regions, split the range and only
204      * populate the non-overlapping parts.
205      */
206     address_range region;
207     bool double_fetch = false;
208     for (int i = 0;
209          i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
210          ++i) {
211         region = g_array_index(dma_regions, address_range, i);
212         if (addr < region.addr + region.size && addr + len > region.addr) {
213             double_fetch = true;
214             if (addr < region.addr
215                 && avoid_double_fetches) {
216                 fuzz_dma_read_cb(addr, region.addr - addr, mr);
217             }
218             if (addr + len > region.addr + region.size
219                 && avoid_double_fetches) {
220                 fuzz_dma_read_cb(region.addr + region.size,
221                         addr + len - (region.addr + region.size), mr);
222             }
223             return;
224         }
225     }
226 
227     /* Cap the length of the DMA access to something reasonable */
228     len = MIN(len, MAX_DMA_FILL_SIZE);
229 
230     address_range ar = {addr, len};
231     g_array_append_val(dma_regions, ar);
232     pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
233     void *buf_base = pattern_alloc(p, ar.size);
234     void *buf = buf_base;
235     hwaddr l, addr1;
236     MemoryRegion *mr1;
237     while (len > 0) {
238         l = len;
239         mr1 = address_space_translate(first_cpu->as,
240                                       addr, &addr1, &l, true,
241                                       MEMTXATTRS_UNSPECIFIED);
242 
243         if (!(memory_region_is_ram(mr1) ||
244               memory_region_is_romd(mr1)) && mr1 != sparse_mem_mr) {
245             l = memory_access_size(mr1, l, addr1);
246         } else {
247             /* ROM/RAM case */
248             if (qtest_log_enabled) {
249                 /*
250                 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
251                 * that will be written by qtest.c with a DMA tag, so we can reorder
252                 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
253                 * command.
254                 */
255                 fprintf(stderr, "[DMA] ");
256                 if (double_fetch) {
257                     fprintf(stderr, "[DOUBLE-FETCH] ");
258                 }
259                 fflush(stderr);
260             }
261             qtest_memwrite(qts_global, addr, buf, l);
262         }
263         len -= l;
264         buf += l;
265         addr += l;
266 
267     }
268     g_free(buf_base);
269 
270     /* Increment the index of the pattern for the next DMA access */
271     dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
272 }
273 
274 /*
275  * Here we want to convert a fuzzer-provided [io-region-index, offset] to
276  * a physical address. To do this, we iterate over all of the matched
277  * MemoryRegions. Check whether each region exists within the particular io
278  * space. Return the absolute address of the offset within the index'th region
279  * that is a subregion of the io_space and the distance until the end of the
280  * memory region.
281  */
282 static bool get_io_address(address_range *result, AddressSpace *as,
283                             uint8_t index,
284                             uint32_t offset) {
285     FlatView *view;
286     view = as->current_map;
287     g_assert(view);
288     struct get_io_cb_info cb_info = {};
289 
290     cb_info.index = index;
291 
292     /*
293      * Loop around the FlatView until we match "index" number of
294      * fuzzable_memoryregions, or until we know that there are no matching
295      * memory_regions.
296      */
297     do {
298         flatview_for_each_range(view, get_io_address_cb , &cb_info);
299     } while (cb_info.index != index && !cb_info.found);
300 
301     *result = cb_info.result;
302     if (result->size) {
303         offset = offset % result->size;
304         result->addr += offset;
305         result->size -= offset;
306     }
307     return cb_info.found;
308 }
309 
310 static bool get_pio_address(address_range *result,
311                             uint8_t index, uint16_t offset)
312 {
313     /*
314      * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
315      * can contain an addr that extends past the PIO space. When we pass this
316      * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
317      * up fuzzing a completely different MemoryRegion/Device. Therefore, check
318      * that the address here is within the PIO space limits.
319      */
320     bool found = get_io_address(result, &address_space_io, index, offset);
321     return result->addr <= 0xFFFF ? found : false;
322 }
323 
324 static bool get_mmio_address(address_range *result,
325                              uint8_t index, uint32_t offset)
326 {
327     return get_io_address(result, &address_space_memory, index, offset);
328 }
329 
330 static void op_in(QTestState *s, const unsigned char * data, size_t len)
331 {
332     enum Sizes {Byte, Word, Long, end_sizes};
333     struct {
334         uint8_t size;
335         uint8_t base;
336         uint16_t offset;
337     } a;
338     address_range abs;
339 
340     if (len < sizeof(a)) {
341         return;
342     }
343     memcpy(&a, data, sizeof(a));
344     if (get_pio_address(&abs, a.base, a.offset) == 0) {
345         return;
346     }
347 
348     switch (a.size %= end_sizes) {
349     case Byte:
350         qtest_inb(s, abs.addr);
351         break;
352     case Word:
353         if (abs.size >= 2) {
354             qtest_inw(s, abs.addr);
355         }
356         break;
357     case Long:
358         if (abs.size >= 4) {
359             qtest_inl(s, abs.addr);
360         }
361         break;
362     }
363 }
364 
365 static void op_out(QTestState *s, const unsigned char * data, size_t len)
366 {
367     enum Sizes {Byte, Word, Long, end_sizes};
368     struct {
369         uint8_t size;
370         uint8_t base;
371         uint16_t offset;
372         uint32_t value;
373     } a;
374     address_range abs;
375 
376     if (len < sizeof(a)) {
377         return;
378     }
379     memcpy(&a, data, sizeof(a));
380 
381     if (get_pio_address(&abs, a.base, a.offset) == 0) {
382         return;
383     }
384 
385     switch (a.size %= end_sizes) {
386     case Byte:
387         qtest_outb(s, abs.addr, a.value & 0xFF);
388         break;
389     case Word:
390         if (abs.size >= 2) {
391             qtest_outw(s, abs.addr, a.value & 0xFFFF);
392         }
393         break;
394     case Long:
395         if (abs.size >= 4) {
396             qtest_outl(s, abs.addr, a.value);
397         }
398         break;
399     }
400 }
401 
402 static void op_read(QTestState *s, const unsigned char * data, size_t len)
403 {
404     enum Sizes {Byte, Word, Long, Quad, end_sizes};
405     struct {
406         uint8_t size;
407         uint8_t base;
408         uint32_t offset;
409     } a;
410     address_range abs;
411 
412     if (len < sizeof(a)) {
413         return;
414     }
415     memcpy(&a, data, sizeof(a));
416 
417     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
418         return;
419     }
420 
421     switch (a.size %= end_sizes) {
422     case Byte:
423         qtest_readb(s, abs.addr);
424         break;
425     case Word:
426         if (abs.size >= 2) {
427             qtest_readw(s, abs.addr);
428         }
429         break;
430     case Long:
431         if (abs.size >= 4) {
432             qtest_readl(s, abs.addr);
433         }
434         break;
435     case Quad:
436         if (abs.size >= 8) {
437             qtest_readq(s, abs.addr);
438         }
439         break;
440     }
441 }
442 
443 static void op_write(QTestState *s, const unsigned char * data, size_t len)
444 {
445     enum Sizes {Byte, Word, Long, Quad, end_sizes};
446     struct {
447         uint8_t size;
448         uint8_t base;
449         uint32_t offset;
450         uint64_t value;
451     } a;
452     address_range abs;
453 
454     if (len < sizeof(a)) {
455         return;
456     }
457     memcpy(&a, data, sizeof(a));
458 
459     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
460         return;
461     }
462 
463     switch (a.size %= end_sizes) {
464     case Byte:
465             qtest_writeb(s, abs.addr, a.value & 0xFF);
466         break;
467     case Word:
468         if (abs.size >= 2) {
469             qtest_writew(s, abs.addr, a.value & 0xFFFF);
470         }
471         break;
472     case Long:
473         if (abs.size >= 4) {
474             qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
475         }
476         break;
477     case Quad:
478         if (abs.size >= 8) {
479             qtest_writeq(s, abs.addr, a.value);
480         }
481         break;
482     }
483 }
484 
485 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
486 {
487     enum Sizes {Byte, Word, Long, end_sizes};
488     struct {
489         uint8_t size;
490         uint8_t base;
491         uint8_t offset;
492     } a;
493     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
494         return;
495     }
496     memcpy(&a, data, sizeof(a));
497     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
498                                   a.base % fuzzable_pci_devices->len);
499     int devfn = dev->devfn;
500     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
501     switch (a.size %= end_sizes) {
502     case Byte:
503         qtest_inb(s, PCI_HOST_BRIDGE_DATA);
504         break;
505     case Word:
506         qtest_inw(s, PCI_HOST_BRIDGE_DATA);
507         break;
508     case Long:
509         qtest_inl(s, PCI_HOST_BRIDGE_DATA);
510         break;
511     }
512 }
513 
514 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
515 {
516     enum Sizes {Byte, Word, Long, end_sizes};
517     struct {
518         uint8_t size;
519         uint8_t base;
520         uint8_t offset;
521         uint32_t value;
522     } a;
523     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
524         return;
525     }
526     memcpy(&a, data, sizeof(a));
527     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
528                                   a.base % fuzzable_pci_devices->len);
529     int devfn = dev->devfn;
530     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
531     switch (a.size %= end_sizes) {
532     case Byte:
533         qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
534         break;
535     case Word:
536         qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
537         break;
538     case Long:
539         qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
540         break;
541     }
542 }
543 
544 static void op_add_dma_pattern(QTestState *s,
545                                const unsigned char *data, size_t len)
546 {
547     struct {
548         /*
549          * index and stride can be used to increment the index-th byte of the
550          * pattern by the value stride, for each loop of the pattern.
551          */
552         uint8_t index;
553         uint8_t stride;
554     } a;
555 
556     if (len < sizeof(a) + 1) {
557         return;
558     }
559     memcpy(&a, data, sizeof(a));
560     pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
561     p.index = a.index % p.len;
562     g_array_append_val(dma_patterns, p);
563     return;
564 }
565 
566 static void op_clear_dma_patterns(QTestState *s,
567                                   const unsigned char *data, size_t len)
568 {
569     g_array_set_size(dma_patterns, 0);
570     dma_pattern_index = 0;
571 }
572 
573 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
574 {
575     qtest_clock_step_next(s);
576 }
577 
578 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
579 {
580     pci_disabled = true;
581 }
582 
583 static void handle_timeout(int sig)
584 {
585     if (qtest_log_enabled) {
586         fprintf(stderr, "[Timeout]\n");
587         fflush(stderr);
588     }
589 
590     /*
591      * If there is a crash, libfuzzer/ASAN forks a child to run an
592      * "llvm-symbolizer" process for printing out a pretty stacktrace. It
593      * communicates with this child using a pipe.  If we timeout+Exit, while
594      * libfuzzer is still communicating with the llvm-symbolizer child, we will
595      * be left with an orphan llvm-symbolizer process. Sometimes, this appears
596      * to lead to a deadlock in the forkserver. Use waitpid to check if there
597      * are any waitable children. If so, exit out of the signal-handler, and
598      * let libfuzzer finish communicating with the child, and exit, on its own.
599      */
600     if (waitpid(-1, NULL, WNOHANG) == 0) {
601         return;
602     }
603 
604     _Exit(0);
605 }
606 
607 /*
608  * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
609  * Some commands can be variable-width, so we use a separator, SEPARATOR, to
610  * specify the boundaries between commands. SEPARATOR is used to separate
611  * "operations" in the fuzz input. Why use a separator, instead of just using
612  * the operations' length to identify operation boundaries?
613  *   1. This is a simple way to support variable-length operations
614  *   2. This adds "stability" to the input.
615  *      For example take the input "AbBcgDefg", where there is no separator and
616  *      Opcodes are capitalized.
617  *      Simply, by removing the first byte, we end up with a very different
618  *      sequence:
619  *      BbcGdefg...
620  *      By adding a separator, we avoid this problem:
621  *      Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
622  *      Since B uses two additional bytes as operands, the first "B" will be
623  *      ignored. The fuzzer actively tries to reduce inputs, so such unused
624  *      bytes are likely to be pruned, eventually.
625  *
626  *  SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
627  *  SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
628  *  -dict), though this should not be necessary.
629  *
630  * As a result, the stream of bytes is converted into a sequence of commands.
631  * In a simplified example where SEPARATOR is 0xFF:
632  * 00 01 02 FF 03 04 05 06 FF 01 FF ...
633  * becomes this sequence of commands:
634  * 00 01 02    -> op00 (0102)   -> in (0102, 2)
635  * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
636  * 01          -> op01 (-,0)    -> out (-,0)
637  * ...
638  *
639  * Note here that it is the job of the individual opcode functions to check
640  * that enough data was provided. I.e. in the last command out (,0), out needs
641  * to check that there is not enough data provided to select an address/value
642  * for the operation.
643  */
644 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
645 {
646     void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
647         [OP_IN]                 = op_in,
648         [OP_OUT]                = op_out,
649         [OP_READ]               = op_read,
650         [OP_WRITE]              = op_write,
651         [OP_PCI_READ]           = op_pci_read,
652         [OP_PCI_WRITE]          = op_pci_write,
653         [OP_DISABLE_PCI]        = op_disable_pci,
654         [OP_ADD_DMA_PATTERN]    = op_add_dma_pattern,
655         [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
656         [OP_CLOCK_STEP]         = op_clock_step,
657     };
658     const unsigned char *cmd = Data;
659     const unsigned char *nextcmd;
660     size_t cmd_len;
661     uint8_t op;
662 
663     if (fork() == 0) {
664         /*
665          * Sometimes the fuzzer will find inputs that take quite a long time to
666          * process. Often times, these inputs do not result in new coverage.
667          * Even if these inputs might be interesting, they can slow down the
668          * fuzzer, overall. Set a timeout to avoid hurting performance, too much
669          */
670         if (timeout) {
671             struct sigaction sact;
672             struct itimerval timer;
673 
674             sigemptyset(&sact.sa_mask);
675             sact.sa_flags   = SA_NODEFER;
676             sact.sa_handler = handle_timeout;
677             sigaction(SIGALRM, &sact, NULL);
678 
679             memset(&timer, 0, sizeof(timer));
680             timer.it_value.tv_sec = timeout / USEC_IN_SEC;
681             timer.it_value.tv_usec = timeout % USEC_IN_SEC;
682             setitimer(ITIMER_VIRTUAL, &timer, NULL);
683         }
684 
685         op_clear_dma_patterns(s, NULL, 0);
686         pci_disabled = false;
687 
688         while (cmd && Size) {
689             /* Get the length until the next command or end of input */
690             nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
691             cmd_len = nextcmd ? nextcmd - cmd : Size;
692 
693             if (cmd_len > 0) {
694                 /* Interpret the first byte of the command as an opcode */
695                 op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
696                 ops[op](s, cmd + 1, cmd_len - 1);
697 
698                 /* Run the main loop */
699                 flush_events(s);
700             }
701             /* Advance to the next command */
702             cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
703             Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
704             g_array_set_size(dma_regions, 0);
705         }
706         _Exit(0);
707     } else {
708         flush_events(s);
709         wait(0);
710     }
711 }
712 
713 static void usage(void)
714 {
715     printf("Please specify the following environment variables:\n");
716     printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
717     printf("QEMU_FUZZ_OBJECTS= "
718             "a space separated list of QOM type names for objects to fuzz\n");
719     printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
720             "Try to avoid racy DMA double fetch bugs? %d by default\n",
721             avoid_double_fetches);
722     printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
723             "0 to disable. %d by default\n", timeout);
724     exit(0);
725 }
726 
727 static int locate_fuzz_memory_regions(Object *child, void *opaque)
728 {
729     const char *name;
730     MemoryRegion *mr;
731     if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
732         mr = MEMORY_REGION(child);
733         if ((memory_region_is_ram(mr) ||
734             memory_region_is_ram_device(mr) ||
735             memory_region_is_rom(mr)) == false) {
736             name = object_get_canonical_path_component(child);
737             /*
738              * We don't want duplicate pointers to the same MemoryRegion, so
739              * try to remove copies of the pointer, before adding it.
740              */
741             g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
742         }
743     }
744     return 0;
745 }
746 
747 static int locate_fuzz_objects(Object *child, void *opaque)
748 {
749     char *pattern = opaque;
750     if (g_pattern_match_simple(pattern, object_get_typename(child))) {
751         /* Find and save ptrs to any child MemoryRegions */
752         object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
753 
754         /*
755          * We matched an object. If its a PCI device, store a pointer to it so
756          * we can map BARs and fuzz its config space.
757          */
758         if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
759             /*
760              * Don't want duplicate pointers to the same PCIDevice, so remove
761              * copies of the pointer, before adding it.
762              */
763             g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
764             g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
765         }
766     } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
767         if (g_pattern_match_simple(pattern,
768             object_get_canonical_path_component(child))) {
769             MemoryRegion *mr;
770             mr = MEMORY_REGION(child);
771             if ((memory_region_is_ram(mr) ||
772                  memory_region_is_ram_device(mr) ||
773                  memory_region_is_rom(mr)) == false) {
774                 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
775             }
776         }
777     }
778     return 0;
779 }
780 
781 
782 static void pci_enum(gpointer pcidev, gpointer bus)
783 {
784     PCIDevice *dev = pcidev;
785     QPCIDevice *qdev;
786     int i;
787 
788     qdev = qpci_device_find(bus, dev->devfn);
789     g_assert(qdev != NULL);
790     for (i = 0; i < 6; i++) {
791         if (dev->io_regions[i].size) {
792             qpci_iomap(qdev, i, NULL);
793         }
794     }
795     qpci_device_enable(qdev);
796     g_free(qdev);
797 }
798 
799 static void generic_pre_fuzz(QTestState *s)
800 {
801     GHashTableIter iter;
802     MemoryRegion *mr;
803     QPCIBus *pcibus;
804     char **result;
805 
806     if (!getenv("QEMU_FUZZ_OBJECTS")) {
807         usage();
808     }
809     if (getenv("QTEST_LOG")) {
810         qtest_log_enabled = 1;
811     }
812     if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
813         avoid_double_fetches = 1;
814     }
815     if (getenv("QEMU_FUZZ_TIMEOUT")) {
816         timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
817     }
818     qts_global = s;
819 
820     /*
821      * Create a special device that we can use to back DMA buffers at very
822      * high memory addresses
823      */
824     sparse_mem_mr = sparse_mem_init(0, UINT64_MAX);
825 
826     dma_regions = g_array_new(false, false, sizeof(address_range));
827     dma_patterns = g_array_new(false, false, sizeof(pattern));
828 
829     fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
830     fuzzable_pci_devices   = g_ptr_array_new();
831 
832     result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
833     for (int i = 0; result[i] != NULL; i++) {
834         printf("Matching objects by name %s\n", result[i]);
835         object_child_foreach_recursive(qdev_get_machine(),
836                                     locate_fuzz_objects,
837                                     result[i]);
838     }
839     g_strfreev(result);
840     printf("This process will try to fuzz the following MemoryRegions:\n");
841 
842     g_hash_table_iter_init(&iter, fuzzable_memoryregions);
843     while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
844         printf("  * %s (size %lx)\n",
845                object_get_canonical_path_component(&(mr->parent_obj)),
846                (uint64_t)mr->size);
847     }
848 
849     if (!g_hash_table_size(fuzzable_memoryregions)) {
850         printf("No fuzzable memory regions found...\n");
851         exit(1);
852     }
853 
854     pcibus = qpci_new_pc(s, NULL);
855     g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
856     qpci_free_pc(pcibus);
857 
858     counter_shm_init();
859 }
860 
861 /*
862  * When libfuzzer gives us two inputs to combine, return a new input with the
863  * following structure:
864  *
865  * Input 1 (data1)
866  * SEPARATOR
867  * Clear out the DMA Patterns
868  * SEPARATOR
869  * Disable the pci_read/write instructions
870  * SEPARATOR
871  * Input 2 (data2)
872  *
873  * The idea is to collate the core behaviors of the two inputs.
874  * For example:
875  * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
876  *          device functionality A
877  * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
878  *          functionality B
879  *
880  * This function attempts to produce an input that:
881  * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
882  *          functionality A device, replaces the DMA patterns with a single
883  *          patten, and triggers device functionality B.
884  */
885 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
886                                      uint8_t *data2, size_t size2, uint8_t *out,
887                                      size_t max_out_size, unsigned int seed)
888 {
889     size_t copy_len = 0, size = 0;
890 
891     /* Check that we have enough space for data1 and at least part of data2 */
892     if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
893         return 0;
894     }
895 
896     /* Copy_Len in the first input */
897     copy_len = size1;
898     memcpy(out + size, data1, copy_len);
899     size += copy_len;
900     max_out_size -= copy_len;
901 
902     /* Append a separator */
903     copy_len = strlen(SEPARATOR);
904     memcpy(out + size, SEPARATOR, copy_len);
905     size += copy_len;
906     max_out_size -= copy_len;
907 
908     /* Clear out the DMA Patterns */
909     copy_len = 1;
910     if (copy_len) {
911         out[size] = OP_CLEAR_DMA_PATTERNS;
912     }
913     size += copy_len;
914     max_out_size -= copy_len;
915 
916     /* Append a separator */
917     copy_len = strlen(SEPARATOR);
918     memcpy(out + size, SEPARATOR, copy_len);
919     size += copy_len;
920     max_out_size -= copy_len;
921 
922     /* Disable PCI ops. Assume data1 took care of setting up PCI */
923     copy_len = 1;
924     if (copy_len) {
925         out[size] = OP_DISABLE_PCI;
926     }
927     size += copy_len;
928     max_out_size -= copy_len;
929 
930     /* Append a separator */
931     copy_len = strlen(SEPARATOR);
932     memcpy(out + size, SEPARATOR, copy_len);
933     size += copy_len;
934     max_out_size -= copy_len;
935 
936     /* Copy_Len over the second input */
937     copy_len = MIN(size2, max_out_size);
938     memcpy(out + size, data2, copy_len);
939     size += copy_len;
940     max_out_size -= copy_len;
941 
942     return  size;
943 }
944 
945 
946 static GString *generic_fuzz_cmdline(FuzzTarget *t)
947 {
948     GString *cmd_line = g_string_new(TARGET_NAME);
949     if (!getenv("QEMU_FUZZ_ARGS")) {
950         usage();
951     }
952     g_string_append_printf(cmd_line, " -display none \
953                                       -machine accel=qtest, \
954                                       -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
955     return cmd_line;
956 }
957 
958 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
959 {
960     gchar *args;
961     const generic_fuzz_config *config;
962     g_assert(t->opaque);
963 
964     config = t->opaque;
965     setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
966     if (config->argfunc) {
967         args = config->argfunc();
968         setenv("QEMU_FUZZ_ARGS", args, 1);
969         g_free(args);
970     } else {
971         g_assert_nonnull(config->args);
972         setenv("QEMU_FUZZ_ARGS", config->args, 1);
973     }
974     setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
975     return generic_fuzz_cmdline(t);
976 }
977 
978 static void register_generic_fuzz_targets(void)
979 {
980     fuzz_add_target(&(FuzzTarget){
981             .name = "generic-fuzz",
982             .description = "Fuzz based on any qemu command-line args. ",
983             .get_init_cmdline = generic_fuzz_cmdline,
984             .pre_fuzz = generic_pre_fuzz,
985             .fuzz = generic_fuzz,
986             .crossover = generic_fuzz_crossover
987     });
988 
989     GString *name;
990     const generic_fuzz_config *config;
991 
992     for (int i = 0;
993          i < sizeof(predefined_configs) / sizeof(generic_fuzz_config);
994          i++) {
995         config = predefined_configs + i;
996         name = g_string_new("generic-fuzz");
997         g_string_append_printf(name, "-%s", config->name);
998         fuzz_add_target(&(FuzzTarget){
999                 .name = name->str,
1000                 .description = "Predefined generic-fuzz config.",
1001                 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
1002                 .pre_fuzz = generic_pre_fuzz,
1003                 .fuzz = generic_fuzz,
1004                 .crossover = generic_fuzz_crossover,
1005                 .opaque = (void *)config
1006         });
1007     }
1008 }
1009 
1010 fuzz_target_init(register_generic_fuzz_targets);
1011