xref: /openbmc/qemu/tests/qtest/fuzz/generic_fuzz.c (revision 19f4ed36)
1 /*
2  * Generic Virtual-Device Fuzzing Target
3  *
4  * Copyright Red Hat Inc., 2020
5  *
6  * Authors:
7  *  Alexander Bulekov   <alxndr@bu.edu>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 
15 #include <wordexp.h>
16 
17 #include "hw/core/cpu.h"
18 #include "tests/qtest/libqos/libqtest.h"
19 #include "tests/qtest/libqos/pci-pc.h"
20 #include "fuzz.h"
21 #include "fork_fuzz.h"
22 #include "exec/address-spaces.h"
23 #include "string.h"
24 #include "exec/memory.h"
25 #include "exec/ramblock.h"
26 #include "exec/address-spaces.h"
27 #include "hw/qdev-core.h"
28 #include "hw/pci/pci.h"
29 #include "hw/boards.h"
30 #include "generic_fuzz_configs.h"
31 #include "hw/mem/sparse-mem.h"
32 
33 /*
34  * SEPARATOR is used to separate "operations" in the fuzz input
35  */
36 #define SEPARATOR "FUZZ"
37 
38 enum cmds {
39     OP_IN,
40     OP_OUT,
41     OP_READ,
42     OP_WRITE,
43     OP_PCI_READ,
44     OP_PCI_WRITE,
45     OP_DISABLE_PCI,
46     OP_ADD_DMA_PATTERN,
47     OP_CLEAR_DMA_PATTERNS,
48     OP_CLOCK_STEP,
49 };
50 
51 #define DEFAULT_TIMEOUT_US 100000
52 #define USEC_IN_SEC 1000000000
53 
54 #define MAX_DMA_FILL_SIZE 0x10000
55 
56 #define PCI_HOST_BRIDGE_CFG 0xcf8
57 #define PCI_HOST_BRIDGE_DATA 0xcfc
58 
59 typedef struct {
60     ram_addr_t addr;
61     ram_addr_t size; /* The number of bytes until the end of the I/O region */
62 } address_range;
63 
64 static useconds_t timeout = DEFAULT_TIMEOUT_US;
65 
66 static bool qtest_log_enabled;
67 
68 MemoryRegion *sparse_mem_mr;
69 
70 /*
71  * A pattern used to populate a DMA region or perform a memwrite. This is
72  * useful for e.g. populating tables of unique addresses.
73  * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
74  * Renders as: 00 01 02   00 03 02   00 05 02   00 07 02 ...
75  */
76 typedef struct {
77     uint8_t index;      /* Index of a byte to increment by stride */
78     uint8_t stride;     /* Increment each index'th byte by this amount */
79     size_t len;
80     const uint8_t *data;
81 } pattern;
82 
83 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
84 static bool avoid_double_fetches;
85 
86 static QTestState *qts_global; /* Need a global for the DMA callback */
87 
88 /*
89  * List of memory regions that are children of QOM objects specified by the
90  * user for fuzzing.
91  */
92 static GHashTable *fuzzable_memoryregions;
93 static GPtrArray *fuzzable_pci_devices;
94 
95 struct get_io_cb_info {
96     int index;
97     int found;
98     address_range result;
99 };
100 
101 static bool get_io_address_cb(Int128 start, Int128 size,
102                               const MemoryRegion *mr,
103                               hwaddr offset_in_region,
104                               void *opaque)
105 {
106     struct get_io_cb_info *info = opaque;
107     if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
108         if (info->index == 0) {
109             info->result.addr = (ram_addr_t)start;
110             info->result.size = (ram_addr_t)size;
111             info->found = 1;
112             return true;
113         }
114         info->index--;
115     }
116     return false;
117 }
118 
119 /*
120  * List of dma regions populated since the last fuzzing command. Used to ensure
121  * that we only write to each DMA address once, to avoid race conditions when
122  * building reproducers.
123  */
124 static GArray *dma_regions;
125 
126 static GArray *dma_patterns;
127 static int dma_pattern_index;
128 static bool pci_disabled;
129 
130 /*
131  * Allocate a block of memory and populate it with a pattern.
132  */
133 static void *pattern_alloc(pattern p, size_t len)
134 {
135     int i;
136     uint8_t *buf = g_malloc(len);
137     uint8_t sum = 0;
138 
139     for (i = 0; i < len; ++i) {
140         buf[i] = p.data[i % p.len];
141         if ((i % p.len) == p.index) {
142             buf[i] += sum;
143             sum += p.stride;
144         }
145     }
146     return buf;
147 }
148 
149 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
150 {
151     unsigned access_size_max = mr->ops->valid.max_access_size;
152 
153     /*
154      * Regions are assumed to support 1-4 byte accesses unless
155      * otherwise specified.
156      */
157     if (access_size_max == 0) {
158         access_size_max = 4;
159     }
160 
161     /* Bound the maximum access by the alignment of the address.  */
162     if (!mr->ops->impl.unaligned) {
163         unsigned align_size_max = addr & -addr;
164         if (align_size_max != 0 && align_size_max < access_size_max) {
165             access_size_max = align_size_max;
166         }
167     }
168 
169     /* Don't attempt accesses larger than the maximum.  */
170     if (l > access_size_max) {
171         l = access_size_max;
172     }
173     l = pow2floor(l);
174 
175     return l;
176 }
177 
178 /*
179  * Call-back for functions that perform DMA reads from guest memory. Confirm
180  * that the region has not already been populated since the last loop in
181  * generic_fuzz(), avoiding potential race-conditions, which we don't have
182  * a good way for reproducing right now.
183  */
184 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
185 {
186     /* Are we in the generic-fuzzer or are we using another fuzz-target? */
187     if (!qts_global) {
188         return;
189     }
190 
191     /*
192      * Return immediately if:
193      * - We have no DMA patterns defined
194      * - The length of the DMA read request is zero
195      * - The DMA read is hitting an MR other than the machine's main RAM
196      * - The DMA request hits past the bounds of our RAM
197      */
198     if (dma_patterns->len == 0
199         || len == 0
200         || (mr != current_machine->ram && mr != sparse_mem_mr)) {
201         return;
202     }
203 
204     /*
205      * If we overlap with any existing dma_regions, split the range and only
206      * populate the non-overlapping parts.
207      */
208     address_range region;
209     bool double_fetch = false;
210     for (int i = 0;
211          i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
212          ++i) {
213         region = g_array_index(dma_regions, address_range, i);
214         if (addr < region.addr + region.size && addr + len > region.addr) {
215             double_fetch = true;
216             if (addr < region.addr
217                 && avoid_double_fetches) {
218                 fuzz_dma_read_cb(addr, region.addr - addr, mr);
219             }
220             if (addr + len > region.addr + region.size
221                 && avoid_double_fetches) {
222                 fuzz_dma_read_cb(region.addr + region.size,
223                         addr + len - (region.addr + region.size), mr);
224             }
225             return;
226         }
227     }
228 
229     /* Cap the length of the DMA access to something reasonable */
230     len = MIN(len, MAX_DMA_FILL_SIZE);
231 
232     address_range ar = {addr, len};
233     g_array_append_val(dma_regions, ar);
234     pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
235     void *buf_base = pattern_alloc(p, ar.size);
236     void *buf = buf_base;
237     hwaddr l, addr1;
238     MemoryRegion *mr1;
239     while (len > 0) {
240         l = len;
241         mr1 = address_space_translate(first_cpu->as,
242                                       addr, &addr1, &l, true,
243                                       MEMTXATTRS_UNSPECIFIED);
244 
245         if (!(memory_region_is_ram(mr1) ||
246               memory_region_is_romd(mr1)) && mr1 != sparse_mem_mr) {
247             l = memory_access_size(mr1, l, addr1);
248         } else {
249             /* ROM/RAM case */
250             if (qtest_log_enabled) {
251                 /*
252                 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
253                 * that will be written by qtest.c with a DMA tag, so we can reorder
254                 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
255                 * command.
256                 */
257                 fprintf(stderr, "[DMA] ");
258                 if (double_fetch) {
259                     fprintf(stderr, "[DOUBLE-FETCH] ");
260                 }
261                 fflush(stderr);
262             }
263             qtest_memwrite(qts_global, addr, buf, l);
264         }
265         len -= l;
266         buf += l;
267         addr += l;
268 
269     }
270     g_free(buf_base);
271 
272     /* Increment the index of the pattern for the next DMA access */
273     dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
274 }
275 
276 /*
277  * Here we want to convert a fuzzer-provided [io-region-index, offset] to
278  * a physical address. To do this, we iterate over all of the matched
279  * MemoryRegions. Check whether each region exists within the particular io
280  * space. Return the absolute address of the offset within the index'th region
281  * that is a subregion of the io_space and the distance until the end of the
282  * memory region.
283  */
284 static bool get_io_address(address_range *result, AddressSpace *as,
285                             uint8_t index,
286                             uint32_t offset) {
287     FlatView *view;
288     view = as->current_map;
289     g_assert(view);
290     struct get_io_cb_info cb_info = {};
291 
292     cb_info.index = index;
293 
294     /*
295      * Loop around the FlatView until we match "index" number of
296      * fuzzable_memoryregions, or until we know that there are no matching
297      * memory_regions.
298      */
299     do {
300         flatview_for_each_range(view, get_io_address_cb , &cb_info);
301     } while (cb_info.index != index && !cb_info.found);
302 
303     *result = cb_info.result;
304     if (result->size) {
305         offset = offset % result->size;
306         result->addr += offset;
307         result->size -= offset;
308     }
309     return cb_info.found;
310 }
311 
312 static bool get_pio_address(address_range *result,
313                             uint8_t index, uint16_t offset)
314 {
315     /*
316      * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
317      * can contain an addr that extends past the PIO space. When we pass this
318      * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
319      * up fuzzing a completely different MemoryRegion/Device. Therefore, check
320      * that the address here is within the PIO space limits.
321      */
322     bool found = get_io_address(result, &address_space_io, index, offset);
323     return result->addr <= 0xFFFF ? found : false;
324 }
325 
326 static bool get_mmio_address(address_range *result,
327                              uint8_t index, uint32_t offset)
328 {
329     return get_io_address(result, &address_space_memory, index, offset);
330 }
331 
332 static void op_in(QTestState *s, const unsigned char * data, size_t len)
333 {
334     enum Sizes {Byte, Word, Long, end_sizes};
335     struct {
336         uint8_t size;
337         uint8_t base;
338         uint16_t offset;
339     } a;
340     address_range abs;
341 
342     if (len < sizeof(a)) {
343         return;
344     }
345     memcpy(&a, data, sizeof(a));
346     if (get_pio_address(&abs, a.base, a.offset) == 0) {
347         return;
348     }
349 
350     switch (a.size %= end_sizes) {
351     case Byte:
352         qtest_inb(s, abs.addr);
353         break;
354     case Word:
355         if (abs.size >= 2) {
356             qtest_inw(s, abs.addr);
357         }
358         break;
359     case Long:
360         if (abs.size >= 4) {
361             qtest_inl(s, abs.addr);
362         }
363         break;
364     }
365 }
366 
367 static void op_out(QTestState *s, const unsigned char * data, size_t len)
368 {
369     enum Sizes {Byte, Word, Long, end_sizes};
370     struct {
371         uint8_t size;
372         uint8_t base;
373         uint16_t offset;
374         uint32_t value;
375     } a;
376     address_range abs;
377 
378     if (len < sizeof(a)) {
379         return;
380     }
381     memcpy(&a, data, sizeof(a));
382 
383     if (get_pio_address(&abs, a.base, a.offset) == 0) {
384         return;
385     }
386 
387     switch (a.size %= end_sizes) {
388     case Byte:
389         qtest_outb(s, abs.addr, a.value & 0xFF);
390         break;
391     case Word:
392         if (abs.size >= 2) {
393             qtest_outw(s, abs.addr, a.value & 0xFFFF);
394         }
395         break;
396     case Long:
397         if (abs.size >= 4) {
398             qtest_outl(s, abs.addr, a.value);
399         }
400         break;
401     }
402 }
403 
404 static void op_read(QTestState *s, const unsigned char * data, size_t len)
405 {
406     enum Sizes {Byte, Word, Long, Quad, end_sizes};
407     struct {
408         uint8_t size;
409         uint8_t base;
410         uint32_t offset;
411     } a;
412     address_range abs;
413 
414     if (len < sizeof(a)) {
415         return;
416     }
417     memcpy(&a, data, sizeof(a));
418 
419     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
420         return;
421     }
422 
423     switch (a.size %= end_sizes) {
424     case Byte:
425         qtest_readb(s, abs.addr);
426         break;
427     case Word:
428         if (abs.size >= 2) {
429             qtest_readw(s, abs.addr);
430         }
431         break;
432     case Long:
433         if (abs.size >= 4) {
434             qtest_readl(s, abs.addr);
435         }
436         break;
437     case Quad:
438         if (abs.size >= 8) {
439             qtest_readq(s, abs.addr);
440         }
441         break;
442     }
443 }
444 
445 static void op_write(QTestState *s, const unsigned char * data, size_t len)
446 {
447     enum Sizes {Byte, Word, Long, Quad, end_sizes};
448     struct {
449         uint8_t size;
450         uint8_t base;
451         uint32_t offset;
452         uint64_t value;
453     } a;
454     address_range abs;
455 
456     if (len < sizeof(a)) {
457         return;
458     }
459     memcpy(&a, data, sizeof(a));
460 
461     if (get_mmio_address(&abs, a.base, a.offset) == 0) {
462         return;
463     }
464 
465     switch (a.size %= end_sizes) {
466     case Byte:
467             qtest_writeb(s, abs.addr, a.value & 0xFF);
468         break;
469     case Word:
470         if (abs.size >= 2) {
471             qtest_writew(s, abs.addr, a.value & 0xFFFF);
472         }
473         break;
474     case Long:
475         if (abs.size >= 4) {
476             qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
477         }
478         break;
479     case Quad:
480         if (abs.size >= 8) {
481             qtest_writeq(s, abs.addr, a.value);
482         }
483         break;
484     }
485 }
486 
487 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
488 {
489     enum Sizes {Byte, Word, Long, end_sizes};
490     struct {
491         uint8_t size;
492         uint8_t base;
493         uint8_t offset;
494     } a;
495     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
496         return;
497     }
498     memcpy(&a, data, sizeof(a));
499     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
500                                   a.base % fuzzable_pci_devices->len);
501     int devfn = dev->devfn;
502     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
503     switch (a.size %= end_sizes) {
504     case Byte:
505         qtest_inb(s, PCI_HOST_BRIDGE_DATA);
506         break;
507     case Word:
508         qtest_inw(s, PCI_HOST_BRIDGE_DATA);
509         break;
510     case Long:
511         qtest_inl(s, PCI_HOST_BRIDGE_DATA);
512         break;
513     }
514 }
515 
516 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
517 {
518     enum Sizes {Byte, Word, Long, end_sizes};
519     struct {
520         uint8_t size;
521         uint8_t base;
522         uint8_t offset;
523         uint32_t value;
524     } a;
525     if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
526         return;
527     }
528     memcpy(&a, data, sizeof(a));
529     PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
530                                   a.base % fuzzable_pci_devices->len);
531     int devfn = dev->devfn;
532     qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
533     switch (a.size %= end_sizes) {
534     case Byte:
535         qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
536         break;
537     case Word:
538         qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
539         break;
540     case Long:
541         qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
542         break;
543     }
544 }
545 
546 static void op_add_dma_pattern(QTestState *s,
547                                const unsigned char *data, size_t len)
548 {
549     struct {
550         /*
551          * index and stride can be used to increment the index-th byte of the
552          * pattern by the value stride, for each loop of the pattern.
553          */
554         uint8_t index;
555         uint8_t stride;
556     } a;
557 
558     if (len < sizeof(a) + 1) {
559         return;
560     }
561     memcpy(&a, data, sizeof(a));
562     pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
563     p.index = a.index % p.len;
564     g_array_append_val(dma_patterns, p);
565     return;
566 }
567 
568 static void op_clear_dma_patterns(QTestState *s,
569                                   const unsigned char *data, size_t len)
570 {
571     g_array_set_size(dma_patterns, 0);
572     dma_pattern_index = 0;
573 }
574 
575 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
576 {
577     qtest_clock_step_next(s);
578 }
579 
580 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
581 {
582     pci_disabled = true;
583 }
584 
585 static void handle_timeout(int sig)
586 {
587     if (qtest_log_enabled) {
588         fprintf(stderr, "[Timeout]\n");
589         fflush(stderr);
590     }
591 
592     /*
593      * If there is a crash, libfuzzer/ASAN forks a child to run an
594      * "llvm-symbolizer" process for printing out a pretty stacktrace. It
595      * communicates with this child using a pipe.  If we timeout+Exit, while
596      * libfuzzer is still communicating with the llvm-symbolizer child, we will
597      * be left with an orphan llvm-symbolizer process. Sometimes, this appears
598      * to lead to a deadlock in the forkserver. Use waitpid to check if there
599      * are any waitable children. If so, exit out of the signal-handler, and
600      * let libfuzzer finish communicating with the child, and exit, on its own.
601      */
602     if (waitpid(-1, NULL, WNOHANG) == 0) {
603         return;
604     }
605 
606     _Exit(0);
607 }
608 
609 /*
610  * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
611  * Some commands can be variable-width, so we use a separator, SEPARATOR, to
612  * specify the boundaries between commands. SEPARATOR is used to separate
613  * "operations" in the fuzz input. Why use a separator, instead of just using
614  * the operations' length to identify operation boundaries?
615  *   1. This is a simple way to support variable-length operations
616  *   2. This adds "stability" to the input.
617  *      For example take the input "AbBcgDefg", where there is no separator and
618  *      Opcodes are capitalized.
619  *      Simply, by removing the first byte, we end up with a very different
620  *      sequence:
621  *      BbcGdefg...
622  *      By adding a separator, we avoid this problem:
623  *      Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
624  *      Since B uses two additional bytes as operands, the first "B" will be
625  *      ignored. The fuzzer actively tries to reduce inputs, so such unused
626  *      bytes are likely to be pruned, eventually.
627  *
628  *  SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
629  *  SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
630  *  -dict), though this should not be necessary.
631  *
632  * As a result, the stream of bytes is converted into a sequence of commands.
633  * In a simplified example where SEPARATOR is 0xFF:
634  * 00 01 02 FF 03 04 05 06 FF 01 FF ...
635  * becomes this sequence of commands:
636  * 00 01 02    -> op00 (0102)   -> in (0102, 2)
637  * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
638  * 01          -> op01 (-,0)    -> out (-,0)
639  * ...
640  *
641  * Note here that it is the job of the individual opcode functions to check
642  * that enough data was provided. I.e. in the last command out (,0), out needs
643  * to check that there is not enough data provided to select an address/value
644  * for the operation.
645  */
646 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
647 {
648     void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
649         [OP_IN]                 = op_in,
650         [OP_OUT]                = op_out,
651         [OP_READ]               = op_read,
652         [OP_WRITE]              = op_write,
653         [OP_PCI_READ]           = op_pci_read,
654         [OP_PCI_WRITE]          = op_pci_write,
655         [OP_DISABLE_PCI]        = op_disable_pci,
656         [OP_ADD_DMA_PATTERN]    = op_add_dma_pattern,
657         [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
658         [OP_CLOCK_STEP]         = op_clock_step,
659     };
660     const unsigned char *cmd = Data;
661     const unsigned char *nextcmd;
662     size_t cmd_len;
663     uint8_t op;
664 
665     if (fork() == 0) {
666         /*
667          * Sometimes the fuzzer will find inputs that take quite a long time to
668          * process. Often times, these inputs do not result in new coverage.
669          * Even if these inputs might be interesting, they can slow down the
670          * fuzzer, overall. Set a timeout to avoid hurting performance, too much
671          */
672         if (timeout) {
673             struct sigaction sact;
674             struct itimerval timer;
675 
676             sigemptyset(&sact.sa_mask);
677             sact.sa_flags   = SA_NODEFER;
678             sact.sa_handler = handle_timeout;
679             sigaction(SIGALRM, &sact, NULL);
680 
681             memset(&timer, 0, sizeof(timer));
682             timer.it_value.tv_sec = timeout / USEC_IN_SEC;
683             timer.it_value.tv_usec = timeout % USEC_IN_SEC;
684             setitimer(ITIMER_VIRTUAL, &timer, NULL);
685         }
686 
687         op_clear_dma_patterns(s, NULL, 0);
688         pci_disabled = false;
689 
690         while (cmd && Size) {
691             /* Get the length until the next command or end of input */
692             nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
693             cmd_len = nextcmd ? nextcmd - cmd : Size;
694 
695             if (cmd_len > 0) {
696                 /* Interpret the first byte of the command as an opcode */
697                 op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
698                 ops[op](s, cmd + 1, cmd_len - 1);
699 
700                 /* Run the main loop */
701                 flush_events(s);
702             }
703             /* Advance to the next command */
704             cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
705             Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
706             g_array_set_size(dma_regions, 0);
707         }
708         _Exit(0);
709     } else {
710         flush_events(s);
711         wait(0);
712     }
713 }
714 
715 static void usage(void)
716 {
717     printf("Please specify the following environment variables:\n");
718     printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
719     printf("QEMU_FUZZ_OBJECTS= "
720             "a space separated list of QOM type names for objects to fuzz\n");
721     printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
722             "Try to avoid racy DMA double fetch bugs? %d by default\n",
723             avoid_double_fetches);
724     printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). "
725             "0 to disable. %d by default\n", timeout);
726     exit(0);
727 }
728 
729 static int locate_fuzz_memory_regions(Object *child, void *opaque)
730 {
731     const char *name;
732     MemoryRegion *mr;
733     if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
734         mr = MEMORY_REGION(child);
735         if ((memory_region_is_ram(mr) ||
736             memory_region_is_ram_device(mr) ||
737             memory_region_is_rom(mr)) == false) {
738             name = object_get_canonical_path_component(child);
739             /*
740              * We don't want duplicate pointers to the same MemoryRegion, so
741              * try to remove copies of the pointer, before adding it.
742              */
743             g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
744         }
745     }
746     return 0;
747 }
748 
749 static int locate_fuzz_objects(Object *child, void *opaque)
750 {
751     char *pattern = opaque;
752     if (g_pattern_match_simple(pattern, object_get_typename(child))) {
753         /* Find and save ptrs to any child MemoryRegions */
754         object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
755 
756         /*
757          * We matched an object. If its a PCI device, store a pointer to it so
758          * we can map BARs and fuzz its config space.
759          */
760         if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
761             /*
762              * Don't want duplicate pointers to the same PCIDevice, so remove
763              * copies of the pointer, before adding it.
764              */
765             g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
766             g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
767         }
768     } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
769         if (g_pattern_match_simple(pattern,
770             object_get_canonical_path_component(child))) {
771             MemoryRegion *mr;
772             mr = MEMORY_REGION(child);
773             if ((memory_region_is_ram(mr) ||
774                  memory_region_is_ram_device(mr) ||
775                  memory_region_is_rom(mr)) == false) {
776                 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
777             }
778         }
779     }
780     return 0;
781 }
782 
783 
784 static void pci_enum(gpointer pcidev, gpointer bus)
785 {
786     PCIDevice *dev = pcidev;
787     QPCIDevice *qdev;
788     int i;
789 
790     qdev = qpci_device_find(bus, dev->devfn);
791     g_assert(qdev != NULL);
792     for (i = 0; i < 6; i++) {
793         if (dev->io_regions[i].size) {
794             qpci_iomap(qdev, i, NULL);
795         }
796     }
797     qpci_device_enable(qdev);
798     g_free(qdev);
799 }
800 
801 static void generic_pre_fuzz(QTestState *s)
802 {
803     GHashTableIter iter;
804     MemoryRegion *mr;
805     QPCIBus *pcibus;
806     char **result;
807 
808     if (!getenv("QEMU_FUZZ_OBJECTS")) {
809         usage();
810     }
811     if (getenv("QTEST_LOG")) {
812         qtest_log_enabled = 1;
813     }
814     if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
815         avoid_double_fetches = 1;
816     }
817     if (getenv("QEMU_FUZZ_TIMEOUT")) {
818         timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0);
819     }
820     qts_global = s;
821 
822     /*
823      * Create a special device that we can use to back DMA buffers at very
824      * high memory addresses
825      */
826     sparse_mem_mr = sparse_mem_init(0, UINT64_MAX);
827 
828     dma_regions = g_array_new(false, false, sizeof(address_range));
829     dma_patterns = g_array_new(false, false, sizeof(pattern));
830 
831     fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
832     fuzzable_pci_devices   = g_ptr_array_new();
833 
834     result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
835     for (int i = 0; result[i] != NULL; i++) {
836         printf("Matching objects by name %s\n", result[i]);
837         object_child_foreach_recursive(qdev_get_machine(),
838                                     locate_fuzz_objects,
839                                     result[i]);
840     }
841     g_strfreev(result);
842     printf("This process will try to fuzz the following MemoryRegions:\n");
843 
844     g_hash_table_iter_init(&iter, fuzzable_memoryregions);
845     while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
846         printf("  * %s (size %lx)\n",
847                object_get_canonical_path_component(&(mr->parent_obj)),
848                (uint64_t)mr->size);
849     }
850 
851     if (!g_hash_table_size(fuzzable_memoryregions)) {
852         printf("No fuzzable memory regions found...\n");
853         exit(1);
854     }
855 
856     pcibus = qpci_new_pc(s, NULL);
857     g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
858     qpci_free_pc(pcibus);
859 
860     counter_shm_init();
861 }
862 
863 /*
864  * When libfuzzer gives us two inputs to combine, return a new input with the
865  * following structure:
866  *
867  * Input 1 (data1)
868  * SEPARATOR
869  * Clear out the DMA Patterns
870  * SEPARATOR
871  * Disable the pci_read/write instructions
872  * SEPARATOR
873  * Input 2 (data2)
874  *
875  * The idea is to collate the core behaviors of the two inputs.
876  * For example:
877  * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
878  *          device functionality A
879  * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
880  *          functionality B
881  *
882  * This function attempts to produce an input that:
883  * Ouptut: maps a device's BARs, set up three DMA patterns, triggers
884  *          functionality A device, replaces the DMA patterns with a single
885  *          patten, and triggers device functionality B.
886  */
887 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
888                                      uint8_t *data2, size_t size2, uint8_t *out,
889                                      size_t max_out_size, unsigned int seed)
890 {
891     size_t copy_len = 0, size = 0;
892 
893     /* Check that we have enough space for data1 and at least part of data2 */
894     if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
895         return 0;
896     }
897 
898     /* Copy_Len in the first input */
899     copy_len = size1;
900     memcpy(out + size, data1, copy_len);
901     size += copy_len;
902     max_out_size -= copy_len;
903 
904     /* Append a separator */
905     copy_len = strlen(SEPARATOR);
906     memcpy(out + size, SEPARATOR, copy_len);
907     size += copy_len;
908     max_out_size -= copy_len;
909 
910     /* Clear out the DMA Patterns */
911     copy_len = 1;
912     if (copy_len) {
913         out[size] = OP_CLEAR_DMA_PATTERNS;
914     }
915     size += copy_len;
916     max_out_size -= copy_len;
917 
918     /* Append a separator */
919     copy_len = strlen(SEPARATOR);
920     memcpy(out + size, SEPARATOR, copy_len);
921     size += copy_len;
922     max_out_size -= copy_len;
923 
924     /* Disable PCI ops. Assume data1 took care of setting up PCI */
925     copy_len = 1;
926     if (copy_len) {
927         out[size] = OP_DISABLE_PCI;
928     }
929     size += copy_len;
930     max_out_size -= copy_len;
931 
932     /* Append a separator */
933     copy_len = strlen(SEPARATOR);
934     memcpy(out + size, SEPARATOR, copy_len);
935     size += copy_len;
936     max_out_size -= copy_len;
937 
938     /* Copy_Len over the second input */
939     copy_len = MIN(size2, max_out_size);
940     memcpy(out + size, data2, copy_len);
941     size += copy_len;
942     max_out_size -= copy_len;
943 
944     return  size;
945 }
946 
947 
948 static GString *generic_fuzz_cmdline(FuzzTarget *t)
949 {
950     GString *cmd_line = g_string_new(TARGET_NAME);
951     if (!getenv("QEMU_FUZZ_ARGS")) {
952         usage();
953     }
954     g_string_append_printf(cmd_line, " -display none \
955                                       -machine accel=qtest, \
956                                       -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
957     return cmd_line;
958 }
959 
960 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
961 {
962     gchar *args;
963     const generic_fuzz_config *config;
964     g_assert(t->opaque);
965 
966     config = t->opaque;
967     setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
968     if (config->argfunc) {
969         args = config->argfunc();
970         setenv("QEMU_FUZZ_ARGS", args, 1);
971         g_free(args);
972     } else {
973         g_assert_nonnull(config->args);
974         setenv("QEMU_FUZZ_ARGS", config->args, 1);
975     }
976     setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
977     return generic_fuzz_cmdline(t);
978 }
979 
980 static void register_generic_fuzz_targets(void)
981 {
982     fuzz_add_target(&(FuzzTarget){
983             .name = "generic-fuzz",
984             .description = "Fuzz based on any qemu command-line args. ",
985             .get_init_cmdline = generic_fuzz_cmdline,
986             .pre_fuzz = generic_pre_fuzz,
987             .fuzz = generic_fuzz,
988             .crossover = generic_fuzz_crossover
989     });
990 
991     GString *name;
992     const generic_fuzz_config *config;
993 
994     for (int i = 0;
995          i < sizeof(predefined_configs) / sizeof(generic_fuzz_config);
996          i++) {
997         config = predefined_configs + i;
998         name = g_string_new("generic-fuzz");
999         g_string_append_printf(name, "-%s", config->name);
1000         fuzz_add_target(&(FuzzTarget){
1001                 .name = name->str,
1002                 .description = "Predefined generic-fuzz config.",
1003                 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
1004                 .pre_fuzz = generic_pre_fuzz,
1005                 .fuzz = generic_fuzz,
1006                 .crossover = generic_fuzz_crossover,
1007                 .opaque = (void *)config
1008         });
1009     }
1010 }
1011 
1012 fuzz_target_init(register_generic_fuzz_targets);
1013