1 /* 2 * Generic Virtual-Device Fuzzing Target 3 * 4 * Copyright Red Hat Inc., 2020 5 * 6 * Authors: 7 * Alexander Bulekov <alxndr@bu.edu> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 15 #include <wordexp.h> 16 17 #include "hw/core/cpu.h" 18 #include "tests/qtest/libqos/libqtest.h" 19 #include "tests/qtest/libqos/pci-pc.h" 20 #include "fuzz.h" 21 #include "fork_fuzz.h" 22 #include "exec/address-spaces.h" 23 #include "string.h" 24 #include "exec/memory.h" 25 #include "exec/ramblock.h" 26 #include "exec/address-spaces.h" 27 #include "hw/qdev-core.h" 28 #include "hw/pci/pci.h" 29 #include "hw/boards.h" 30 #include "generic_fuzz_configs.h" 31 #include "hw/mem/sparse-mem.h" 32 33 /* 34 * SEPARATOR is used to separate "operations" in the fuzz input 35 */ 36 #define SEPARATOR "FUZZ" 37 38 enum cmds { 39 OP_IN, 40 OP_OUT, 41 OP_READ, 42 OP_WRITE, 43 OP_PCI_READ, 44 OP_PCI_WRITE, 45 OP_DISABLE_PCI, 46 OP_ADD_DMA_PATTERN, 47 OP_CLEAR_DMA_PATTERNS, 48 OP_CLOCK_STEP, 49 }; 50 51 #define DEFAULT_TIMEOUT_US 100000 52 #define USEC_IN_SEC 1000000000 53 54 #define MAX_DMA_FILL_SIZE 0x10000 55 56 #define PCI_HOST_BRIDGE_CFG 0xcf8 57 #define PCI_HOST_BRIDGE_DATA 0xcfc 58 59 typedef struct { 60 ram_addr_t addr; 61 ram_addr_t size; /* The number of bytes until the end of the I/O region */ 62 } address_range; 63 64 static useconds_t timeout = DEFAULT_TIMEOUT_US; 65 66 static bool qtest_log_enabled; 67 68 MemoryRegion *sparse_mem_mr; 69 70 /* 71 * A pattern used to populate a DMA region or perform a memwrite. This is 72 * useful for e.g. populating tables of unique addresses. 73 * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"} 74 * Renders as: 00 01 02 00 03 02 00 05 02 00 07 02 ... 75 */ 76 typedef struct { 77 uint8_t index; /* Index of a byte to increment by stride */ 78 uint8_t stride; /* Increment each index'th byte by this amount */ 79 size_t len; 80 const uint8_t *data; 81 } pattern; 82 83 /* Avoid filling the same DMA region between MMIO/PIO commands ? */ 84 static bool avoid_double_fetches; 85 86 static QTestState *qts_global; /* Need a global for the DMA callback */ 87 88 /* 89 * List of memory regions that are children of QOM objects specified by the 90 * user for fuzzing. 91 */ 92 static GHashTable *fuzzable_memoryregions; 93 static GPtrArray *fuzzable_pci_devices; 94 95 struct get_io_cb_info { 96 int index; 97 int found; 98 address_range result; 99 }; 100 101 static bool get_io_address_cb(Int128 start, Int128 size, 102 const MemoryRegion *mr, 103 hwaddr offset_in_region, 104 void *opaque) 105 { 106 struct get_io_cb_info *info = opaque; 107 if (g_hash_table_lookup(fuzzable_memoryregions, mr)) { 108 if (info->index == 0) { 109 info->result.addr = (ram_addr_t)start; 110 info->result.size = (ram_addr_t)size; 111 info->found = 1; 112 return true; 113 } 114 info->index--; 115 } 116 return false; 117 } 118 119 /* 120 * List of dma regions populated since the last fuzzing command. Used to ensure 121 * that we only write to each DMA address once, to avoid race conditions when 122 * building reproducers. 123 */ 124 static GArray *dma_regions; 125 126 static GArray *dma_patterns; 127 static int dma_pattern_index; 128 static bool pci_disabled; 129 130 /* 131 * Allocate a block of memory and populate it with a pattern. 132 */ 133 static void *pattern_alloc(pattern p, size_t len) 134 { 135 int i; 136 uint8_t *buf = g_malloc(len); 137 uint8_t sum = 0; 138 139 for (i = 0; i < len; ++i) { 140 buf[i] = p.data[i % p.len]; 141 if ((i % p.len) == p.index) { 142 buf[i] += sum; 143 sum += p.stride; 144 } 145 } 146 return buf; 147 } 148 149 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) 150 { 151 unsigned access_size_max = mr->ops->valid.max_access_size; 152 153 /* 154 * Regions are assumed to support 1-4 byte accesses unless 155 * otherwise specified. 156 */ 157 if (access_size_max == 0) { 158 access_size_max = 4; 159 } 160 161 /* Bound the maximum access by the alignment of the address. */ 162 if (!mr->ops->impl.unaligned) { 163 unsigned align_size_max = addr & -addr; 164 if (align_size_max != 0 && align_size_max < access_size_max) { 165 access_size_max = align_size_max; 166 } 167 } 168 169 /* Don't attempt accesses larger than the maximum. */ 170 if (l > access_size_max) { 171 l = access_size_max; 172 } 173 l = pow2floor(l); 174 175 return l; 176 } 177 178 /* 179 * Call-back for functions that perform DMA reads from guest memory. Confirm 180 * that the region has not already been populated since the last loop in 181 * generic_fuzz(), avoiding potential race-conditions, which we don't have 182 * a good way for reproducing right now. 183 */ 184 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr) 185 { 186 /* Are we in the generic-fuzzer or are we using another fuzz-target? */ 187 if (!qts_global) { 188 return; 189 } 190 191 /* 192 * Return immediately if: 193 * - We have no DMA patterns defined 194 * - The length of the DMA read request is zero 195 * - The DMA read is hitting an MR other than the machine's main RAM 196 * - The DMA request hits past the bounds of our RAM 197 */ 198 if (dma_patterns->len == 0 199 || len == 0 200 || (mr != current_machine->ram && mr != sparse_mem_mr)) { 201 return; 202 } 203 204 /* 205 * If we overlap with any existing dma_regions, split the range and only 206 * populate the non-overlapping parts. 207 */ 208 address_range region; 209 bool double_fetch = false; 210 for (int i = 0; 211 i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled); 212 ++i) { 213 region = g_array_index(dma_regions, address_range, i); 214 if (addr < region.addr + region.size && addr + len > region.addr) { 215 double_fetch = true; 216 if (addr < region.addr 217 && avoid_double_fetches) { 218 fuzz_dma_read_cb(addr, region.addr - addr, mr); 219 } 220 if (addr + len > region.addr + region.size 221 && avoid_double_fetches) { 222 fuzz_dma_read_cb(region.addr + region.size, 223 addr + len - (region.addr + region.size), mr); 224 } 225 return; 226 } 227 } 228 229 /* Cap the length of the DMA access to something reasonable */ 230 len = MIN(len, MAX_DMA_FILL_SIZE); 231 232 address_range ar = {addr, len}; 233 g_array_append_val(dma_regions, ar); 234 pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index); 235 void *buf_base = pattern_alloc(p, ar.size); 236 void *buf = buf_base; 237 hwaddr l, addr1; 238 MemoryRegion *mr1; 239 while (len > 0) { 240 l = len; 241 mr1 = address_space_translate(first_cpu->as, 242 addr, &addr1, &l, true, 243 MEMTXATTRS_UNSPECIFIED); 244 245 if (!(memory_region_is_ram(mr1) || 246 memory_region_is_romd(mr1)) && mr1 != sparse_mem_mr) { 247 l = memory_access_size(mr1, l, addr1); 248 } else { 249 /* ROM/RAM case */ 250 if (qtest_log_enabled) { 251 /* 252 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log 253 * that will be written by qtest.c with a DMA tag, so we can reorder 254 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO 255 * command. 256 */ 257 fprintf(stderr, "[DMA] "); 258 if (double_fetch) { 259 fprintf(stderr, "[DOUBLE-FETCH] "); 260 } 261 fflush(stderr); 262 } 263 qtest_memwrite(qts_global, addr, buf, l); 264 } 265 len -= l; 266 buf += l; 267 addr += l; 268 269 } 270 g_free(buf_base); 271 272 /* Increment the index of the pattern for the next DMA access */ 273 dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len; 274 } 275 276 /* 277 * Here we want to convert a fuzzer-provided [io-region-index, offset] to 278 * a physical address. To do this, we iterate over all of the matched 279 * MemoryRegions. Check whether each region exists within the particular io 280 * space. Return the absolute address of the offset within the index'th region 281 * that is a subregion of the io_space and the distance until the end of the 282 * memory region. 283 */ 284 static bool get_io_address(address_range *result, AddressSpace *as, 285 uint8_t index, 286 uint32_t offset) { 287 FlatView *view; 288 view = as->current_map; 289 g_assert(view); 290 struct get_io_cb_info cb_info = {}; 291 292 cb_info.index = index; 293 294 /* 295 * Loop around the FlatView until we match "index" number of 296 * fuzzable_memoryregions, or until we know that there are no matching 297 * memory_regions. 298 */ 299 do { 300 flatview_for_each_range(view, get_io_address_cb , &cb_info); 301 } while (cb_info.index != index && !cb_info.found); 302 303 *result = cb_info.result; 304 if (result->size) { 305 offset = offset % result->size; 306 result->addr += offset; 307 result->size -= offset; 308 } 309 return cb_info.found; 310 } 311 312 static bool get_pio_address(address_range *result, 313 uint8_t index, uint16_t offset) 314 { 315 /* 316 * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result 317 * can contain an addr that extends past the PIO space. When we pass this 318 * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end 319 * up fuzzing a completely different MemoryRegion/Device. Therefore, check 320 * that the address here is within the PIO space limits. 321 */ 322 bool found = get_io_address(result, &address_space_io, index, offset); 323 return result->addr <= 0xFFFF ? found : false; 324 } 325 326 static bool get_mmio_address(address_range *result, 327 uint8_t index, uint32_t offset) 328 { 329 return get_io_address(result, &address_space_memory, index, offset); 330 } 331 332 static void op_in(QTestState *s, const unsigned char * data, size_t len) 333 { 334 enum Sizes {Byte, Word, Long, end_sizes}; 335 struct { 336 uint8_t size; 337 uint8_t base; 338 uint16_t offset; 339 } a; 340 address_range abs; 341 342 if (len < sizeof(a)) { 343 return; 344 } 345 memcpy(&a, data, sizeof(a)); 346 if (get_pio_address(&abs, a.base, a.offset) == 0) { 347 return; 348 } 349 350 switch (a.size %= end_sizes) { 351 case Byte: 352 qtest_inb(s, abs.addr); 353 break; 354 case Word: 355 if (abs.size >= 2) { 356 qtest_inw(s, abs.addr); 357 } 358 break; 359 case Long: 360 if (abs.size >= 4) { 361 qtest_inl(s, abs.addr); 362 } 363 break; 364 } 365 } 366 367 static void op_out(QTestState *s, const unsigned char * data, size_t len) 368 { 369 enum Sizes {Byte, Word, Long, end_sizes}; 370 struct { 371 uint8_t size; 372 uint8_t base; 373 uint16_t offset; 374 uint32_t value; 375 } a; 376 address_range abs; 377 378 if (len < sizeof(a)) { 379 return; 380 } 381 memcpy(&a, data, sizeof(a)); 382 383 if (get_pio_address(&abs, a.base, a.offset) == 0) { 384 return; 385 } 386 387 switch (a.size %= end_sizes) { 388 case Byte: 389 qtest_outb(s, abs.addr, a.value & 0xFF); 390 break; 391 case Word: 392 if (abs.size >= 2) { 393 qtest_outw(s, abs.addr, a.value & 0xFFFF); 394 } 395 break; 396 case Long: 397 if (abs.size >= 4) { 398 qtest_outl(s, abs.addr, a.value); 399 } 400 break; 401 } 402 } 403 404 static void op_read(QTestState *s, const unsigned char * data, size_t len) 405 { 406 enum Sizes {Byte, Word, Long, Quad, end_sizes}; 407 struct { 408 uint8_t size; 409 uint8_t base; 410 uint32_t offset; 411 } a; 412 address_range abs; 413 414 if (len < sizeof(a)) { 415 return; 416 } 417 memcpy(&a, data, sizeof(a)); 418 419 if (get_mmio_address(&abs, a.base, a.offset) == 0) { 420 return; 421 } 422 423 switch (a.size %= end_sizes) { 424 case Byte: 425 qtest_readb(s, abs.addr); 426 break; 427 case Word: 428 if (abs.size >= 2) { 429 qtest_readw(s, abs.addr); 430 } 431 break; 432 case Long: 433 if (abs.size >= 4) { 434 qtest_readl(s, abs.addr); 435 } 436 break; 437 case Quad: 438 if (abs.size >= 8) { 439 qtest_readq(s, abs.addr); 440 } 441 break; 442 } 443 } 444 445 static void op_write(QTestState *s, const unsigned char * data, size_t len) 446 { 447 enum Sizes {Byte, Word, Long, Quad, end_sizes}; 448 struct { 449 uint8_t size; 450 uint8_t base; 451 uint32_t offset; 452 uint64_t value; 453 } a; 454 address_range abs; 455 456 if (len < sizeof(a)) { 457 return; 458 } 459 memcpy(&a, data, sizeof(a)); 460 461 if (get_mmio_address(&abs, a.base, a.offset) == 0) { 462 return; 463 } 464 465 switch (a.size %= end_sizes) { 466 case Byte: 467 qtest_writeb(s, abs.addr, a.value & 0xFF); 468 break; 469 case Word: 470 if (abs.size >= 2) { 471 qtest_writew(s, abs.addr, a.value & 0xFFFF); 472 } 473 break; 474 case Long: 475 if (abs.size >= 4) { 476 qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF); 477 } 478 break; 479 case Quad: 480 if (abs.size >= 8) { 481 qtest_writeq(s, abs.addr, a.value); 482 } 483 break; 484 } 485 } 486 487 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len) 488 { 489 enum Sizes {Byte, Word, Long, end_sizes}; 490 struct { 491 uint8_t size; 492 uint8_t base; 493 uint8_t offset; 494 } a; 495 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) { 496 return; 497 } 498 memcpy(&a, data, sizeof(a)); 499 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices, 500 a.base % fuzzable_pci_devices->len); 501 int devfn = dev->devfn; 502 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset); 503 switch (a.size %= end_sizes) { 504 case Byte: 505 qtest_inb(s, PCI_HOST_BRIDGE_DATA); 506 break; 507 case Word: 508 qtest_inw(s, PCI_HOST_BRIDGE_DATA); 509 break; 510 case Long: 511 qtest_inl(s, PCI_HOST_BRIDGE_DATA); 512 break; 513 } 514 } 515 516 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len) 517 { 518 enum Sizes {Byte, Word, Long, end_sizes}; 519 struct { 520 uint8_t size; 521 uint8_t base; 522 uint8_t offset; 523 uint32_t value; 524 } a; 525 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) { 526 return; 527 } 528 memcpy(&a, data, sizeof(a)); 529 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices, 530 a.base % fuzzable_pci_devices->len); 531 int devfn = dev->devfn; 532 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset); 533 switch (a.size %= end_sizes) { 534 case Byte: 535 qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF); 536 break; 537 case Word: 538 qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF); 539 break; 540 case Long: 541 qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF); 542 break; 543 } 544 } 545 546 static void op_add_dma_pattern(QTestState *s, 547 const unsigned char *data, size_t len) 548 { 549 struct { 550 /* 551 * index and stride can be used to increment the index-th byte of the 552 * pattern by the value stride, for each loop of the pattern. 553 */ 554 uint8_t index; 555 uint8_t stride; 556 } a; 557 558 if (len < sizeof(a) + 1) { 559 return; 560 } 561 memcpy(&a, data, sizeof(a)); 562 pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)}; 563 p.index = a.index % p.len; 564 g_array_append_val(dma_patterns, p); 565 return; 566 } 567 568 static void op_clear_dma_patterns(QTestState *s, 569 const unsigned char *data, size_t len) 570 { 571 g_array_set_size(dma_patterns, 0); 572 dma_pattern_index = 0; 573 } 574 575 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len) 576 { 577 qtest_clock_step_next(s); 578 } 579 580 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len) 581 { 582 pci_disabled = true; 583 } 584 585 static void handle_timeout(int sig) 586 { 587 if (qtest_log_enabled) { 588 fprintf(stderr, "[Timeout]\n"); 589 fflush(stderr); 590 } 591 592 /* 593 * If there is a crash, libfuzzer/ASAN forks a child to run an 594 * "llvm-symbolizer" process for printing out a pretty stacktrace. It 595 * communicates with this child using a pipe. If we timeout+Exit, while 596 * libfuzzer is still communicating with the llvm-symbolizer child, we will 597 * be left with an orphan llvm-symbolizer process. Sometimes, this appears 598 * to lead to a deadlock in the forkserver. Use waitpid to check if there 599 * are any waitable children. If so, exit out of the signal-handler, and 600 * let libfuzzer finish communicating with the child, and exit, on its own. 601 */ 602 if (waitpid(-1, NULL, WNOHANG) == 0) { 603 return; 604 } 605 606 _Exit(0); 607 } 608 609 /* 610 * Here, we interpret random bytes from the fuzzer, as a sequence of commands. 611 * Some commands can be variable-width, so we use a separator, SEPARATOR, to 612 * specify the boundaries between commands. SEPARATOR is used to separate 613 * "operations" in the fuzz input. Why use a separator, instead of just using 614 * the operations' length to identify operation boundaries? 615 * 1. This is a simple way to support variable-length operations 616 * 2. This adds "stability" to the input. 617 * For example take the input "AbBcgDefg", where there is no separator and 618 * Opcodes are capitalized. 619 * Simply, by removing the first byte, we end up with a very different 620 * sequence: 621 * BbcGdefg... 622 * By adding a separator, we avoid this problem: 623 * Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg 624 * Since B uses two additional bytes as operands, the first "B" will be 625 * ignored. The fuzzer actively tries to reduce inputs, so such unused 626 * bytes are likely to be pruned, eventually. 627 * 628 * SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally, 629 * SEPARATOR can be manually specified as a dictionary value (see libfuzzer's 630 * -dict), though this should not be necessary. 631 * 632 * As a result, the stream of bytes is converted into a sequence of commands. 633 * In a simplified example where SEPARATOR is 0xFF: 634 * 00 01 02 FF 03 04 05 06 FF 01 FF ... 635 * becomes this sequence of commands: 636 * 00 01 02 -> op00 (0102) -> in (0102, 2) 637 * 03 04 05 06 -> op03 (040506) -> write (040506, 3) 638 * 01 -> op01 (-,0) -> out (-,0) 639 * ... 640 * 641 * Note here that it is the job of the individual opcode functions to check 642 * that enough data was provided. I.e. in the last command out (,0), out needs 643 * to check that there is not enough data provided to select an address/value 644 * for the operation. 645 */ 646 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size) 647 { 648 void (*ops[]) (QTestState *s, const unsigned char* , size_t) = { 649 [OP_IN] = op_in, 650 [OP_OUT] = op_out, 651 [OP_READ] = op_read, 652 [OP_WRITE] = op_write, 653 [OP_PCI_READ] = op_pci_read, 654 [OP_PCI_WRITE] = op_pci_write, 655 [OP_DISABLE_PCI] = op_disable_pci, 656 [OP_ADD_DMA_PATTERN] = op_add_dma_pattern, 657 [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns, 658 [OP_CLOCK_STEP] = op_clock_step, 659 }; 660 const unsigned char *cmd = Data; 661 const unsigned char *nextcmd; 662 size_t cmd_len; 663 uint8_t op; 664 665 if (fork() == 0) { 666 /* 667 * Sometimes the fuzzer will find inputs that take quite a long time to 668 * process. Often times, these inputs do not result in new coverage. 669 * Even if these inputs might be interesting, they can slow down the 670 * fuzzer, overall. Set a timeout to avoid hurting performance, too much 671 */ 672 if (timeout) { 673 struct sigaction sact; 674 struct itimerval timer; 675 676 sigemptyset(&sact.sa_mask); 677 sact.sa_flags = SA_NODEFER; 678 sact.sa_handler = handle_timeout; 679 sigaction(SIGALRM, &sact, NULL); 680 681 memset(&timer, 0, sizeof(timer)); 682 timer.it_value.tv_sec = timeout / USEC_IN_SEC; 683 timer.it_value.tv_usec = timeout % USEC_IN_SEC; 684 setitimer(ITIMER_VIRTUAL, &timer, NULL); 685 } 686 687 op_clear_dma_patterns(s, NULL, 0); 688 pci_disabled = false; 689 690 while (cmd && Size) { 691 /* Get the length until the next command or end of input */ 692 nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR)); 693 cmd_len = nextcmd ? nextcmd - cmd : Size; 694 695 if (cmd_len > 0) { 696 /* Interpret the first byte of the command as an opcode */ 697 op = *cmd % (sizeof(ops) / sizeof((ops)[0])); 698 ops[op](s, cmd + 1, cmd_len - 1); 699 700 /* Run the main loop */ 701 flush_events(s); 702 } 703 /* Advance to the next command */ 704 cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd; 705 Size = Size - (cmd_len + sizeof(SEPARATOR) - 1); 706 g_array_set_size(dma_regions, 0); 707 } 708 _Exit(0); 709 } else { 710 flush_events(s); 711 wait(0); 712 } 713 } 714 715 static void usage(void) 716 { 717 printf("Please specify the following environment variables:\n"); 718 printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n"); 719 printf("QEMU_FUZZ_OBJECTS= " 720 "a space separated list of QOM type names for objects to fuzz\n"); 721 printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= " 722 "Try to avoid racy DMA double fetch bugs? %d by default\n", 723 avoid_double_fetches); 724 printf("Optionally: QEMU_FUZZ_TIMEOUT= Specify a custom timeout (us). " 725 "0 to disable. %d by default\n", timeout); 726 exit(0); 727 } 728 729 static int locate_fuzz_memory_regions(Object *child, void *opaque) 730 { 731 const char *name; 732 MemoryRegion *mr; 733 if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) { 734 mr = MEMORY_REGION(child); 735 if ((memory_region_is_ram(mr) || 736 memory_region_is_ram_device(mr) || 737 memory_region_is_rom(mr)) == false) { 738 name = object_get_canonical_path_component(child); 739 /* 740 * We don't want duplicate pointers to the same MemoryRegion, so 741 * try to remove copies of the pointer, before adding it. 742 */ 743 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true); 744 } 745 } 746 return 0; 747 } 748 749 static int locate_fuzz_objects(Object *child, void *opaque) 750 { 751 char *pattern = opaque; 752 if (g_pattern_match_simple(pattern, object_get_typename(child))) { 753 /* Find and save ptrs to any child MemoryRegions */ 754 object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL); 755 756 /* 757 * We matched an object. If its a PCI device, store a pointer to it so 758 * we can map BARs and fuzz its config space. 759 */ 760 if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) { 761 /* 762 * Don't want duplicate pointers to the same PCIDevice, so remove 763 * copies of the pointer, before adding it. 764 */ 765 g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child)); 766 g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child)); 767 } 768 } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) { 769 if (g_pattern_match_simple(pattern, 770 object_get_canonical_path_component(child))) { 771 MemoryRegion *mr; 772 mr = MEMORY_REGION(child); 773 if ((memory_region_is_ram(mr) || 774 memory_region_is_ram_device(mr) || 775 memory_region_is_rom(mr)) == false) { 776 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true); 777 } 778 } 779 } 780 return 0; 781 } 782 783 784 static void pci_enum(gpointer pcidev, gpointer bus) 785 { 786 PCIDevice *dev = pcidev; 787 QPCIDevice *qdev; 788 int i; 789 790 qdev = qpci_device_find(bus, dev->devfn); 791 g_assert(qdev != NULL); 792 for (i = 0; i < 6; i++) { 793 if (dev->io_regions[i].size) { 794 qpci_iomap(qdev, i, NULL); 795 } 796 } 797 qpci_device_enable(qdev); 798 g_free(qdev); 799 } 800 801 static void generic_pre_fuzz(QTestState *s) 802 { 803 GHashTableIter iter; 804 MemoryRegion *mr; 805 QPCIBus *pcibus; 806 char **result; 807 808 if (!getenv("QEMU_FUZZ_OBJECTS")) { 809 usage(); 810 } 811 if (getenv("QTEST_LOG")) { 812 qtest_log_enabled = 1; 813 } 814 if (getenv("QEMU_AVOID_DOUBLE_FETCH")) { 815 avoid_double_fetches = 1; 816 } 817 if (getenv("QEMU_FUZZ_TIMEOUT")) { 818 timeout = g_ascii_strtoll(getenv("QEMU_FUZZ_TIMEOUT"), NULL, 0); 819 } 820 qts_global = s; 821 822 /* 823 * Create a special device that we can use to back DMA buffers at very 824 * high memory addresses 825 */ 826 sparse_mem_mr = sparse_mem_init(0, UINT64_MAX); 827 828 dma_regions = g_array_new(false, false, sizeof(address_range)); 829 dma_patterns = g_array_new(false, false, sizeof(pattern)); 830 831 fuzzable_memoryregions = g_hash_table_new(NULL, NULL); 832 fuzzable_pci_devices = g_ptr_array_new(); 833 834 result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1); 835 for (int i = 0; result[i] != NULL; i++) { 836 printf("Matching objects by name %s\n", result[i]); 837 object_child_foreach_recursive(qdev_get_machine(), 838 locate_fuzz_objects, 839 result[i]); 840 } 841 g_strfreev(result); 842 printf("This process will try to fuzz the following MemoryRegions:\n"); 843 844 g_hash_table_iter_init(&iter, fuzzable_memoryregions); 845 while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) { 846 printf(" * %s (size %lx)\n", 847 object_get_canonical_path_component(&(mr->parent_obj)), 848 (uint64_t)mr->size); 849 } 850 851 if (!g_hash_table_size(fuzzable_memoryregions)) { 852 printf("No fuzzable memory regions found...\n"); 853 exit(1); 854 } 855 856 pcibus = qpci_new_pc(s, NULL); 857 g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus); 858 qpci_free_pc(pcibus); 859 860 counter_shm_init(); 861 } 862 863 /* 864 * When libfuzzer gives us two inputs to combine, return a new input with the 865 * following structure: 866 * 867 * Input 1 (data1) 868 * SEPARATOR 869 * Clear out the DMA Patterns 870 * SEPARATOR 871 * Disable the pci_read/write instructions 872 * SEPARATOR 873 * Input 2 (data2) 874 * 875 * The idea is to collate the core behaviors of the two inputs. 876 * For example: 877 * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers 878 * device functionality A 879 * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device 880 * functionality B 881 * 882 * This function attempts to produce an input that: 883 * Ouptut: maps a device's BARs, set up three DMA patterns, triggers 884 * functionality A device, replaces the DMA patterns with a single 885 * patten, and triggers device functionality B. 886 */ 887 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const 888 uint8_t *data2, size_t size2, uint8_t *out, 889 size_t max_out_size, unsigned int seed) 890 { 891 size_t copy_len = 0, size = 0; 892 893 /* Check that we have enough space for data1 and at least part of data2 */ 894 if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) { 895 return 0; 896 } 897 898 /* Copy_Len in the first input */ 899 copy_len = size1; 900 memcpy(out + size, data1, copy_len); 901 size += copy_len; 902 max_out_size -= copy_len; 903 904 /* Append a separator */ 905 copy_len = strlen(SEPARATOR); 906 memcpy(out + size, SEPARATOR, copy_len); 907 size += copy_len; 908 max_out_size -= copy_len; 909 910 /* Clear out the DMA Patterns */ 911 copy_len = 1; 912 if (copy_len) { 913 out[size] = OP_CLEAR_DMA_PATTERNS; 914 } 915 size += copy_len; 916 max_out_size -= copy_len; 917 918 /* Append a separator */ 919 copy_len = strlen(SEPARATOR); 920 memcpy(out + size, SEPARATOR, copy_len); 921 size += copy_len; 922 max_out_size -= copy_len; 923 924 /* Disable PCI ops. Assume data1 took care of setting up PCI */ 925 copy_len = 1; 926 if (copy_len) { 927 out[size] = OP_DISABLE_PCI; 928 } 929 size += copy_len; 930 max_out_size -= copy_len; 931 932 /* Append a separator */ 933 copy_len = strlen(SEPARATOR); 934 memcpy(out + size, SEPARATOR, copy_len); 935 size += copy_len; 936 max_out_size -= copy_len; 937 938 /* Copy_Len over the second input */ 939 copy_len = MIN(size2, max_out_size); 940 memcpy(out + size, data2, copy_len); 941 size += copy_len; 942 max_out_size -= copy_len; 943 944 return size; 945 } 946 947 948 static GString *generic_fuzz_cmdline(FuzzTarget *t) 949 { 950 GString *cmd_line = g_string_new(TARGET_NAME); 951 if (!getenv("QEMU_FUZZ_ARGS")) { 952 usage(); 953 } 954 g_string_append_printf(cmd_line, " -display none \ 955 -machine accel=qtest, \ 956 -m 512M %s ", getenv("QEMU_FUZZ_ARGS")); 957 return cmd_line; 958 } 959 960 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t) 961 { 962 gchar *args; 963 const generic_fuzz_config *config; 964 g_assert(t->opaque); 965 966 config = t->opaque; 967 setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1); 968 if (config->argfunc) { 969 args = config->argfunc(); 970 setenv("QEMU_FUZZ_ARGS", args, 1); 971 g_free(args); 972 } else { 973 g_assert_nonnull(config->args); 974 setenv("QEMU_FUZZ_ARGS", config->args, 1); 975 } 976 setenv("QEMU_FUZZ_OBJECTS", config->objects, 1); 977 return generic_fuzz_cmdline(t); 978 } 979 980 static void register_generic_fuzz_targets(void) 981 { 982 fuzz_add_target(&(FuzzTarget){ 983 .name = "generic-fuzz", 984 .description = "Fuzz based on any qemu command-line args. ", 985 .get_init_cmdline = generic_fuzz_cmdline, 986 .pre_fuzz = generic_pre_fuzz, 987 .fuzz = generic_fuzz, 988 .crossover = generic_fuzz_crossover 989 }); 990 991 GString *name; 992 const generic_fuzz_config *config; 993 994 for (int i = 0; 995 i < sizeof(predefined_configs) / sizeof(generic_fuzz_config); 996 i++) { 997 config = predefined_configs + i; 998 name = g_string_new("generic-fuzz"); 999 g_string_append_printf(name, "-%s", config->name); 1000 fuzz_add_target(&(FuzzTarget){ 1001 .name = name->str, 1002 .description = "Predefined generic-fuzz config.", 1003 .get_init_cmdline = generic_fuzz_predefined_config_cmdline, 1004 .pre_fuzz = generic_pre_fuzz, 1005 .fuzz = generic_fuzz, 1006 .crossover = generic_fuzz_crossover, 1007 .opaque = (void *)config 1008 }); 1009 } 1010 } 1011 1012 fuzz_target_init(register_generic_fuzz_targets); 1013