xref: /openbmc/qemu/tests/qemu-iotests/121 (revision 9dd003a9)
111a82d14SPhilippe Mathieu-Daudé#!/usr/bin/env bash
2*9dd003a9SVladimir Sementsov-Ogievskiy# group: rw
30e8a3714SMax Reitz#
40e8a3714SMax Reitz# Test cases for qcow2 refcount table growth
50e8a3714SMax Reitz#
60e8a3714SMax Reitz# Copyright (C) 2015 Red Hat, Inc.
70e8a3714SMax Reitz#
80e8a3714SMax Reitz# This program is free software; you can redistribute it and/or modify
90e8a3714SMax Reitz# it under the terms of the GNU General Public License as published by
100e8a3714SMax Reitz# the Free Software Foundation; either version 2 of the License, or
110e8a3714SMax Reitz# (at your option) any later version.
120e8a3714SMax Reitz#
130e8a3714SMax Reitz# This program is distributed in the hope that it will be useful,
140e8a3714SMax Reitz# but WITHOUT ANY WARRANTY; without even the implied warranty of
150e8a3714SMax Reitz# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
160e8a3714SMax Reitz# GNU General Public License for more details.
170e8a3714SMax Reitz#
180e8a3714SMax Reitz# You should have received a copy of the GNU General Public License
190e8a3714SMax Reitz# along with this program.  If not, see <http://www.gnu.org/licenses/>.
200e8a3714SMax Reitz#
210e8a3714SMax Reitz
220e8a3714SMax Reitz# creator
230e8a3714SMax Reitzowner=mreitz@redhat.com
240e8a3714SMax Reitz
250e8a3714SMax Reitzseq="$(basename $0)"
260e8a3714SMax Reitzecho "QA output created by $seq"
270e8a3714SMax Reitz
280e8a3714SMax Reitzstatus=1	# failure is the default!
290e8a3714SMax Reitz
300e8a3714SMax Reitz_cleanup()
310e8a3714SMax Reitz{
320e8a3714SMax Reitz	_cleanup_test_img
330e8a3714SMax Reitz}
340e8a3714SMax Reitztrap "_cleanup; exit \$status" 0 1 2 3 15
350e8a3714SMax Reitz
360e8a3714SMax Reitz# get standard environment, filters and checks
370e8a3714SMax Reitz. ./common.rc
380e8a3714SMax Reitz. ./common.filter
390e8a3714SMax Reitz
400e8a3714SMax Reitz_supported_fmt qcow2
4157284d2aSMax Reitz_supported_proto file fuse
420e8a3714SMax Reitz_supported_os Linux
433be2024aSMax Reitz# Refcount structures are used much differently with external data
443be2024aSMax Reitz# files
453be2024aSMax Reitz_unsupported_imgopts data_file
460e8a3714SMax Reitz
470e8a3714SMax Reitzecho
480e8a3714SMax Reitzecho '=== New refcount structures may not conflict with existing structures ==='
490e8a3714SMax Reitz
500e8a3714SMax Reitzecho
510e8a3714SMax Reitzecho '--- Test 1 ---'
520e8a3714SMax Reitzecho
530e8a3714SMax Reitz
540e8a3714SMax Reitz# Preallocation speeds up the write operation, but preallocating everything will
550e8a3714SMax Reitz# destroy the purpose of the write; so preallocate one KB less than what would
560e8a3714SMax Reitz# cause a reftable growth...
57407fb56aSMax Reitz_make_test_img -o 'preallocation=metadata,cluster_size=1k' 64512K
580e8a3714SMax Reitz# ...and make the image the desired size afterwards.
590e8a3714SMax Reitz$QEMU_IMG resize "$TEST_IMG" 65M
600e8a3714SMax Reitz
610e8a3714SMax Reitz# The first write results in a growth of the refcount table during an allocation
620e8a3714SMax Reitz# which has precisely the required size so that the new refcount block allocated
630e8a3714SMax Reitz# in alloc_refcount_block() is right after cluster_index; this did lead to a
640e8a3714SMax Reitz# different refcount block being written to disk (a zeroed cluster) than what is
650e8a3714SMax Reitz# cached (a refblock with one entry having a refcount of 1), and the second
660e8a3714SMax Reitz# write would then result in that cached cluster being marked dirty and then
670e8a3714SMax Reitz# in it being written to disk.
680e8a3714SMax Reitz# This should not happen, the new refcount structures may not conflict with
690e8a3714SMax Reitz# new_block.
700e8a3714SMax Reitz# (Note that for some reason, 'write 63M 1K' does not trigger the problem)
710e8a3714SMax Reitz$QEMU_IO -c 'write 62M 1025K' -c 'write 64M 1M' "$TEST_IMG" | _filter_qemu_io
720e8a3714SMax Reitz
730e8a3714SMax Reitz_check_test_img
740e8a3714SMax Reitz
750e8a3714SMax Reitz
760e8a3714SMax Reitzecho
770e8a3714SMax Reitzecho '--- Test 2 ---'
780e8a3714SMax Reitzecho
790e8a3714SMax Reitz
80407fb56aSMax Reitz_make_test_img -o 'preallocation=metadata,cluster_size=1k' 64513K
810e8a3714SMax Reitz# This results in an L1 table growth which in turn results in some clusters at
820e8a3714SMax Reitz# the start of the image becoming free
830e8a3714SMax Reitz$QEMU_IMG resize "$TEST_IMG" 65M
840e8a3714SMax Reitz
850e8a3714SMax Reitz# This write results in a refcount table growth; but the refblock allocated
860e8a3714SMax Reitz# immediately before that (new_block) takes cluster index 4 (which is now free)
870e8a3714SMax Reitz# and is thus not self-describing (in contrast to test 1, where new_block was
880e8a3714SMax Reitz# self-describing). The refcount table growth algorithm then used to place the
890e8a3714SMax Reitz# new refcount structures at cluster index 65536 (which is the same as the
900e8a3714SMax Reitz# cluster_index parameter in this case), allocating a new refcount block for
910e8a3714SMax Reitz# that cluster while new_block already existed, leaking new_block.
920e8a3714SMax Reitz# Therefore, the new refcount structures may not be put at cluster_index
930e8a3714SMax Reitz# (because new_block already describes that cluster, and the new structures try
940e8a3714SMax Reitz# to be self-describing).
950e8a3714SMax Reitz$QEMU_IO -c 'write 63M 130K' "$TEST_IMG" | _filter_qemu_io
960e8a3714SMax Reitz
970e8a3714SMax Reitz_check_test_img
980e8a3714SMax Reitz
99abf754feSAlberto Garciaecho
100abf754feSAlberto Garciaecho '=== Allocating a new refcount block must not leave holes in the image ==='
101abf754feSAlberto Garciaecho
102abf754feSAlberto Garcia
103407fb56aSMax Reitz_make_test_img -o 'cluster_size=512,refcount_bits=16' 1M
104abf754feSAlberto Garcia
105abf754feSAlberto Garcia# This results in an image with 256 used clusters: the qcow2 header,
106abf754feSAlberto Garcia# the refcount table, one refcount block, the L1 table, four L2 tables
107abf754feSAlberto Garcia# and 248 data clusters
108abf754feSAlberto Garcia$QEMU_IO -c 'write 0 124k' "$TEST_IMG" | _filter_qemu_io
109abf754feSAlberto Garcia
110abf754feSAlberto Garcia# 256 clusters of 512 bytes each give us a 128K image
111abf754feSAlberto Garciastat -c "size=%s (expected 131072)" $TEST_IMG
112abf754feSAlberto Garcia
113abf754feSAlberto Garcia# All 256 entries of the refcount block are used, so writing a new
114abf754feSAlberto Garcia# data cluster also allocates a new refcount block
115abf754feSAlberto Garcia$QEMU_IO -c 'write 124k 512' "$TEST_IMG" | _filter_qemu_io
116abf754feSAlberto Garcia
117abf754feSAlberto Garcia# Two more clusters, the image size should be 129K now
118abf754feSAlberto Garciastat -c "size=%s (expected 132096)" $TEST_IMG
1190e8a3714SMax Reitz
1200e8a3714SMax Reitz# success, all done
1210e8a3714SMax Reitzecho
1220e8a3714SMax Reitzecho '*** done'
1230e8a3714SMax Reitzrm -f $seq.full
1240e8a3714SMax Reitzstatus=0
125