xref: /openbmc/qemu/tests/qemu-iotests/121 (revision 57284d2a)
111a82d14SPhilippe Mathieu-Daudé#!/usr/bin/env bash
20e8a3714SMax Reitz#
30e8a3714SMax Reitz# Test cases for qcow2 refcount table growth
40e8a3714SMax Reitz#
50e8a3714SMax Reitz# Copyright (C) 2015 Red Hat, Inc.
60e8a3714SMax Reitz#
70e8a3714SMax Reitz# This program is free software; you can redistribute it and/or modify
80e8a3714SMax Reitz# it under the terms of the GNU General Public License as published by
90e8a3714SMax Reitz# the Free Software Foundation; either version 2 of the License, or
100e8a3714SMax Reitz# (at your option) any later version.
110e8a3714SMax Reitz#
120e8a3714SMax Reitz# This program is distributed in the hope that it will be useful,
130e8a3714SMax Reitz# but WITHOUT ANY WARRANTY; without even the implied warranty of
140e8a3714SMax Reitz# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
150e8a3714SMax Reitz# GNU General Public License for more details.
160e8a3714SMax Reitz#
170e8a3714SMax Reitz# You should have received a copy of the GNU General Public License
180e8a3714SMax Reitz# along with this program.  If not, see <http://www.gnu.org/licenses/>.
190e8a3714SMax Reitz#
200e8a3714SMax Reitz
210e8a3714SMax Reitz# creator
220e8a3714SMax Reitzowner=mreitz@redhat.com
230e8a3714SMax Reitz
240e8a3714SMax Reitzseq="$(basename $0)"
250e8a3714SMax Reitzecho "QA output created by $seq"
260e8a3714SMax Reitz
270e8a3714SMax Reitzstatus=1	# failure is the default!
280e8a3714SMax Reitz
290e8a3714SMax Reitz_cleanup()
300e8a3714SMax Reitz{
310e8a3714SMax Reitz	_cleanup_test_img
320e8a3714SMax Reitz}
330e8a3714SMax Reitztrap "_cleanup; exit \$status" 0 1 2 3 15
340e8a3714SMax Reitz
350e8a3714SMax Reitz# get standard environment, filters and checks
360e8a3714SMax Reitz. ./common.rc
370e8a3714SMax Reitz. ./common.filter
380e8a3714SMax Reitz
390e8a3714SMax Reitz_supported_fmt qcow2
40*57284d2aSMax Reitz_supported_proto file fuse
410e8a3714SMax Reitz_supported_os Linux
423be2024aSMax Reitz# Refcount structures are used much differently with external data
433be2024aSMax Reitz# files
443be2024aSMax Reitz_unsupported_imgopts data_file
450e8a3714SMax Reitz
460e8a3714SMax Reitzecho
470e8a3714SMax Reitzecho '=== New refcount structures may not conflict with existing structures ==='
480e8a3714SMax Reitz
490e8a3714SMax Reitzecho
500e8a3714SMax Reitzecho '--- Test 1 ---'
510e8a3714SMax Reitzecho
520e8a3714SMax Reitz
530e8a3714SMax Reitz# Preallocation speeds up the write operation, but preallocating everything will
540e8a3714SMax Reitz# destroy the purpose of the write; so preallocate one KB less than what would
550e8a3714SMax Reitz# cause a reftable growth...
56407fb56aSMax Reitz_make_test_img -o 'preallocation=metadata,cluster_size=1k' 64512K
570e8a3714SMax Reitz# ...and make the image the desired size afterwards.
580e8a3714SMax Reitz$QEMU_IMG resize "$TEST_IMG" 65M
590e8a3714SMax Reitz
600e8a3714SMax Reitz# The first write results in a growth of the refcount table during an allocation
610e8a3714SMax Reitz# which has precisely the required size so that the new refcount block allocated
620e8a3714SMax Reitz# in alloc_refcount_block() is right after cluster_index; this did lead to a
630e8a3714SMax Reitz# different refcount block being written to disk (a zeroed cluster) than what is
640e8a3714SMax Reitz# cached (a refblock with one entry having a refcount of 1), and the second
650e8a3714SMax Reitz# write would then result in that cached cluster being marked dirty and then
660e8a3714SMax Reitz# in it being written to disk.
670e8a3714SMax Reitz# This should not happen, the new refcount structures may not conflict with
680e8a3714SMax Reitz# new_block.
690e8a3714SMax Reitz# (Note that for some reason, 'write 63M 1K' does not trigger the problem)
700e8a3714SMax Reitz$QEMU_IO -c 'write 62M 1025K' -c 'write 64M 1M' "$TEST_IMG" | _filter_qemu_io
710e8a3714SMax Reitz
720e8a3714SMax Reitz_check_test_img
730e8a3714SMax Reitz
740e8a3714SMax Reitz
750e8a3714SMax Reitzecho
760e8a3714SMax Reitzecho '--- Test 2 ---'
770e8a3714SMax Reitzecho
780e8a3714SMax Reitz
79407fb56aSMax Reitz_make_test_img -o 'preallocation=metadata,cluster_size=1k' 64513K
800e8a3714SMax Reitz# This results in an L1 table growth which in turn results in some clusters at
810e8a3714SMax Reitz# the start of the image becoming free
820e8a3714SMax Reitz$QEMU_IMG resize "$TEST_IMG" 65M
830e8a3714SMax Reitz
840e8a3714SMax Reitz# This write results in a refcount table growth; but the refblock allocated
850e8a3714SMax Reitz# immediately before that (new_block) takes cluster index 4 (which is now free)
860e8a3714SMax Reitz# and is thus not self-describing (in contrast to test 1, where new_block was
870e8a3714SMax Reitz# self-describing). The refcount table growth algorithm then used to place the
880e8a3714SMax Reitz# new refcount structures at cluster index 65536 (which is the same as the
890e8a3714SMax Reitz# cluster_index parameter in this case), allocating a new refcount block for
900e8a3714SMax Reitz# that cluster while new_block already existed, leaking new_block.
910e8a3714SMax Reitz# Therefore, the new refcount structures may not be put at cluster_index
920e8a3714SMax Reitz# (because new_block already describes that cluster, and the new structures try
930e8a3714SMax Reitz# to be self-describing).
940e8a3714SMax Reitz$QEMU_IO -c 'write 63M 130K' "$TEST_IMG" | _filter_qemu_io
950e8a3714SMax Reitz
960e8a3714SMax Reitz_check_test_img
970e8a3714SMax Reitz
98abf754feSAlberto Garciaecho
99abf754feSAlberto Garciaecho '=== Allocating a new refcount block must not leave holes in the image ==='
100abf754feSAlberto Garciaecho
101abf754feSAlberto Garcia
102407fb56aSMax Reitz_make_test_img -o 'cluster_size=512,refcount_bits=16' 1M
103abf754feSAlberto Garcia
104abf754feSAlberto Garcia# This results in an image with 256 used clusters: the qcow2 header,
105abf754feSAlberto Garcia# the refcount table, one refcount block, the L1 table, four L2 tables
106abf754feSAlberto Garcia# and 248 data clusters
107abf754feSAlberto Garcia$QEMU_IO -c 'write 0 124k' "$TEST_IMG" | _filter_qemu_io
108abf754feSAlberto Garcia
109abf754feSAlberto Garcia# 256 clusters of 512 bytes each give us a 128K image
110abf754feSAlberto Garciastat -c "size=%s (expected 131072)" $TEST_IMG
111abf754feSAlberto Garcia
112abf754feSAlberto Garcia# All 256 entries of the refcount block are used, so writing a new
113abf754feSAlberto Garcia# data cluster also allocates a new refcount block
114abf754feSAlberto Garcia$QEMU_IO -c 'write 124k 512' "$TEST_IMG" | _filter_qemu_io
115abf754feSAlberto Garcia
116abf754feSAlberto Garcia# Two more clusters, the image size should be 129K now
117abf754feSAlberto Garciastat -c "size=%s (expected 132096)" $TEST_IMG
1180e8a3714SMax Reitz
1190e8a3714SMax Reitz# success, all done
1200e8a3714SMax Reitzecho
1210e8a3714SMax Reitzecho '*** done'
1220e8a3714SMax Reitzrm -f $seq.full
1230e8a3714SMax Reitzstatus=0
124