xref: /openbmc/qemu/tests/qemu-iotests/121 (revision 0e8a3714)
1*0e8a3714SMax Reitz#!/bin/bash
2*0e8a3714SMax Reitz#
3*0e8a3714SMax Reitz# Test cases for qcow2 refcount table growth
4*0e8a3714SMax Reitz#
5*0e8a3714SMax Reitz# Copyright (C) 2015 Red Hat, Inc.
6*0e8a3714SMax Reitz#
7*0e8a3714SMax Reitz# This program is free software; you can redistribute it and/or modify
8*0e8a3714SMax Reitz# it under the terms of the GNU General Public License as published by
9*0e8a3714SMax Reitz# the Free Software Foundation; either version 2 of the License, or
10*0e8a3714SMax Reitz# (at your option) any later version.
11*0e8a3714SMax Reitz#
12*0e8a3714SMax Reitz# This program is distributed in the hope that it will be useful,
13*0e8a3714SMax Reitz# but WITHOUT ANY WARRANTY; without even the implied warranty of
14*0e8a3714SMax Reitz# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15*0e8a3714SMax Reitz# GNU General Public License for more details.
16*0e8a3714SMax Reitz#
17*0e8a3714SMax Reitz# You should have received a copy of the GNU General Public License
18*0e8a3714SMax Reitz# along with this program.  If not, see <http://www.gnu.org/licenses/>.
19*0e8a3714SMax Reitz#
20*0e8a3714SMax Reitz
21*0e8a3714SMax Reitz# creator
22*0e8a3714SMax Reitzowner=mreitz@redhat.com
23*0e8a3714SMax Reitz
24*0e8a3714SMax Reitzseq="$(basename $0)"
25*0e8a3714SMax Reitzecho "QA output created by $seq"
26*0e8a3714SMax Reitz
27*0e8a3714SMax Reitzhere="$PWD"
28*0e8a3714SMax Reitztmp=/tmp/$$
29*0e8a3714SMax Reitzstatus=1	# failure is the default!
30*0e8a3714SMax Reitz
31*0e8a3714SMax Reitz_cleanup()
32*0e8a3714SMax Reitz{
33*0e8a3714SMax Reitz	_cleanup_test_img
34*0e8a3714SMax Reitz}
35*0e8a3714SMax Reitztrap "_cleanup; exit \$status" 0 1 2 3 15
36*0e8a3714SMax Reitz
37*0e8a3714SMax Reitz# get standard environment, filters and checks
38*0e8a3714SMax Reitz. ./common.rc
39*0e8a3714SMax Reitz. ./common.filter
40*0e8a3714SMax Reitz
41*0e8a3714SMax Reitz_supported_fmt qcow2
42*0e8a3714SMax Reitz_supported_proto file
43*0e8a3714SMax Reitz_supported_os Linux
44*0e8a3714SMax Reitz
45*0e8a3714SMax Reitzecho
46*0e8a3714SMax Reitzecho '=== New refcount structures may not conflict with existing structures ==='
47*0e8a3714SMax Reitz
48*0e8a3714SMax Reitzecho
49*0e8a3714SMax Reitzecho '--- Test 1 ---'
50*0e8a3714SMax Reitzecho
51*0e8a3714SMax Reitz
52*0e8a3714SMax Reitz# Preallocation speeds up the write operation, but preallocating everything will
53*0e8a3714SMax Reitz# destroy the purpose of the write; so preallocate one KB less than what would
54*0e8a3714SMax Reitz# cause a reftable growth...
55*0e8a3714SMax ReitzIMGOPTS='preallocation=metadata,cluster_size=1k' _make_test_img 64512K
56*0e8a3714SMax Reitz# ...and make the image the desired size afterwards.
57*0e8a3714SMax Reitz$QEMU_IMG resize "$TEST_IMG" 65M
58*0e8a3714SMax Reitz
59*0e8a3714SMax Reitz# The first write results in a growth of the refcount table during an allocation
60*0e8a3714SMax Reitz# which has precisely the required size so that the new refcount block allocated
61*0e8a3714SMax Reitz# in alloc_refcount_block() is right after cluster_index; this did lead to a
62*0e8a3714SMax Reitz# different refcount block being written to disk (a zeroed cluster) than what is
63*0e8a3714SMax Reitz# cached (a refblock with one entry having a refcount of 1), and the second
64*0e8a3714SMax Reitz# write would then result in that cached cluster being marked dirty and then
65*0e8a3714SMax Reitz# in it being written to disk.
66*0e8a3714SMax Reitz# This should not happen, the new refcount structures may not conflict with
67*0e8a3714SMax Reitz# new_block.
68*0e8a3714SMax Reitz# (Note that for some reason, 'write 63M 1K' does not trigger the problem)
69*0e8a3714SMax Reitz$QEMU_IO -c 'write 62M 1025K' -c 'write 64M 1M' "$TEST_IMG" | _filter_qemu_io
70*0e8a3714SMax Reitz
71*0e8a3714SMax Reitz_check_test_img
72*0e8a3714SMax Reitz
73*0e8a3714SMax Reitz
74*0e8a3714SMax Reitzecho
75*0e8a3714SMax Reitzecho '--- Test 2 ---'
76*0e8a3714SMax Reitzecho
77*0e8a3714SMax Reitz
78*0e8a3714SMax ReitzIMGOPTS='preallocation=metadata,cluster_size=1k' _make_test_img 64513K
79*0e8a3714SMax Reitz# This results in an L1 table growth which in turn results in some clusters at
80*0e8a3714SMax Reitz# the start of the image becoming free
81*0e8a3714SMax Reitz$QEMU_IMG resize "$TEST_IMG" 65M
82*0e8a3714SMax Reitz
83*0e8a3714SMax Reitz# This write results in a refcount table growth; but the refblock allocated
84*0e8a3714SMax Reitz# immediately before that (new_block) takes cluster index 4 (which is now free)
85*0e8a3714SMax Reitz# and is thus not self-describing (in contrast to test 1, where new_block was
86*0e8a3714SMax Reitz# self-describing). The refcount table growth algorithm then used to place the
87*0e8a3714SMax Reitz# new refcount structures at cluster index 65536 (which is the same as the
88*0e8a3714SMax Reitz# cluster_index parameter in this case), allocating a new refcount block for
89*0e8a3714SMax Reitz# that cluster while new_block already existed, leaking new_block.
90*0e8a3714SMax Reitz# Therefore, the new refcount structures may not be put at cluster_index
91*0e8a3714SMax Reitz# (because new_block already describes that cluster, and the new structures try
92*0e8a3714SMax Reitz# to be self-describing).
93*0e8a3714SMax Reitz$QEMU_IO -c 'write 63M 130K' "$TEST_IMG" | _filter_qemu_io
94*0e8a3714SMax Reitz
95*0e8a3714SMax Reitz_check_test_img
96*0e8a3714SMax Reitz
97*0e8a3714SMax Reitz
98*0e8a3714SMax Reitz# success, all done
99*0e8a3714SMax Reitzecho
100*0e8a3714SMax Reitzecho '*** done'
101*0e8a3714SMax Reitzrm -f $seq.full
102*0e8a3714SMax Reitzstatus=0
103