xref: /openbmc/qemu/tests/qemu-iotests/112 (revision 11a82d14)
1*11a82d14SPhilippe Mathieu-Daudé#!/usr/bin/env bash
2d2eed8c6SMax Reitz#
3d2eed8c6SMax Reitz# Test cases for different refcount_bits values
4d2eed8c6SMax Reitz#
5d2eed8c6SMax Reitz# Copyright (C) 2015 Red Hat, Inc.
6d2eed8c6SMax Reitz#
7d2eed8c6SMax Reitz# This program is free software; you can redistribute it and/or modify
8d2eed8c6SMax Reitz# it under the terms of the GNU General Public License as published by
9d2eed8c6SMax Reitz# the Free Software Foundation; either version 2 of the License, or
10d2eed8c6SMax Reitz# (at your option) any later version.
11d2eed8c6SMax Reitz#
12d2eed8c6SMax Reitz# This program is distributed in the hope that it will be useful,
13d2eed8c6SMax Reitz# but WITHOUT ANY WARRANTY; without even the implied warranty of
14d2eed8c6SMax Reitz# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15d2eed8c6SMax Reitz# GNU General Public License for more details.
16d2eed8c6SMax Reitz#
17d2eed8c6SMax Reitz# You should have received a copy of the GNU General Public License
18d2eed8c6SMax Reitz# along with this program.  If not, see <http://www.gnu.org/licenses/>.
19d2eed8c6SMax Reitz#
20d2eed8c6SMax Reitz
21d2eed8c6SMax Reitz# creator
22d2eed8c6SMax Reitzowner=mreitz@redhat.com
23d2eed8c6SMax Reitz
24d2eed8c6SMax Reitzseq="$(basename $0)"
25d2eed8c6SMax Reitzecho "QA output created by $seq"
26d2eed8c6SMax Reitz
27d2eed8c6SMax Reitzstatus=1	# failure is the default!
28d2eed8c6SMax Reitz
29d2eed8c6SMax Reitz_cleanup()
30d2eed8c6SMax Reitz{
31d2eed8c6SMax Reitz	_cleanup_test_img
32d2eed8c6SMax Reitz}
33d2eed8c6SMax Reitztrap "_cleanup; exit \$status" 0 1 2 3 15
34d2eed8c6SMax Reitz
35d2eed8c6SMax Reitz# get standard environment, filters and checks
36d2eed8c6SMax Reitz. ./common.rc
37d2eed8c6SMax Reitz. ./common.filter
38d2eed8c6SMax Reitz
39d2eed8c6SMax Reitz# This tests qcow2-specific low-level functionality
40d2eed8c6SMax Reitz_supported_fmt qcow2
41d2eed8c6SMax Reitz_supported_proto file
42d2eed8c6SMax Reitz_supported_os Linux
43d2eed8c6SMax Reitz# This test will set refcount_bits on its own which would conflict with the
44d2eed8c6SMax Reitz# manual setting; compat will be overridden as well
45d2eed8c6SMax Reitz_unsupported_imgopts refcount_bits 'compat=0.10'
46d2eed8c6SMax Reitz
478cedcffdSEric Blakeprint_refcount_bits()
48d2eed8c6SMax Reitz{
49d2eed8c6SMax Reitz    $QEMU_IMG info "$TEST_IMG" | sed -n '/refcount bits:/ s/^ *//p'
50d2eed8c6SMax Reitz}
51d2eed8c6SMax Reitz
52d2eed8c6SMax Reitzecho
53d2eed8c6SMax Reitzecho '=== refcount_bits limits ==='
54d2eed8c6SMax Reitzecho
55d2eed8c6SMax Reitz
56d2eed8c6SMax Reitz# Must be positive (non-zero)
57d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=0" _make_test_img 64M
58d2eed8c6SMax Reitz# Must be positive (non-negative)
59d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=-1" _make_test_img 64M
60d2eed8c6SMax Reitz# May not exceed 64
61d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=128" _make_test_img 64M
62d2eed8c6SMax Reitz# Must be a power of two
63d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=42" _make_test_img 64M
64d2eed8c6SMax Reitz
65d2eed8c6SMax Reitz# 1 is the minimum
66d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=1" _make_test_img 64M
67d2eed8c6SMax Reitzprint_refcount_bits
68d2eed8c6SMax Reitz
69d2eed8c6SMax Reitz# 64 is the maximum
70d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=64" _make_test_img 64M
71d2eed8c6SMax Reitzprint_refcount_bits
72d2eed8c6SMax Reitz
73d2eed8c6SMax Reitz# 16 is the default
74d2eed8c6SMax Reitz_make_test_img 64M
75d2eed8c6SMax Reitzprint_refcount_bits
76d2eed8c6SMax Reitz
77d2eed8c6SMax Reitzecho
78d2eed8c6SMax Reitzecho '=== refcount_bits and compat=0.10 ==='
79d2eed8c6SMax Reitzecho
80d2eed8c6SMax Reitz
81d2eed8c6SMax Reitz# Should work
82d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,compat=0.10,refcount_bits=16" _make_test_img 64M
83d2eed8c6SMax Reitzprint_refcount_bits
84d2eed8c6SMax Reitz
85d2eed8c6SMax Reitz# Should not work
86d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,compat=0.10,refcount_bits=1" _make_test_img 64M
87d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,compat=0.10,refcount_bits=64" _make_test_img 64M
88d2eed8c6SMax Reitz
89d2eed8c6SMax Reitz
90d2eed8c6SMax Reitzecho
91d2eed8c6SMax Reitzecho '=== Snapshot limit on refcount_bits=1 ==='
92d2eed8c6SMax Reitzecho
93d2eed8c6SMax Reitz
94d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=1" _make_test_img 64M
95d2eed8c6SMax Reitzprint_refcount_bits
96d2eed8c6SMax Reitz
97d2eed8c6SMax Reitz$QEMU_IO -c 'write 0 512' "$TEST_IMG" | _filter_qemu_io
98d2eed8c6SMax Reitz
99d2eed8c6SMax Reitz# Should fail for now; in the future, this might be supported by automatically
100d2eed8c6SMax Reitz# copying all clusters with overflowing refcount
101d2eed8c6SMax Reitz$QEMU_IMG snapshot -c foo "$TEST_IMG"
102d2eed8c6SMax Reitz
103d2eed8c6SMax Reitz# The new L1 table could/should be leaked
104d2eed8c6SMax Reitz_check_test_img
105d2eed8c6SMax Reitz
106d2eed8c6SMax Reitzecho
107d2eed8c6SMax Reitzecho '=== Snapshot limit on refcount_bits=2 ==='
108d2eed8c6SMax Reitzecho
109d2eed8c6SMax Reitz
110d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=2" _make_test_img 64M
111d2eed8c6SMax Reitzprint_refcount_bits
112d2eed8c6SMax Reitz
113d2eed8c6SMax Reitz$QEMU_IO -c 'write 0 512' "$TEST_IMG" | _filter_qemu_io
114d2eed8c6SMax Reitz
115d2eed8c6SMax Reitz# Should succeed
116d2eed8c6SMax Reitz$QEMU_IMG snapshot -c foo "$TEST_IMG"
117d2eed8c6SMax Reitz$QEMU_IMG snapshot -c bar "$TEST_IMG"
118d2eed8c6SMax Reitz# Should fail (4th reference)
119d2eed8c6SMax Reitz$QEMU_IMG snapshot -c baz "$TEST_IMG"
120d2eed8c6SMax Reitz
121d2eed8c6SMax Reitz# The new L1 table could/should be leaked
122d2eed8c6SMax Reitz_check_test_img
123d2eed8c6SMax Reitz
124d2eed8c6SMax Reitzecho
125d2eed8c6SMax Reitzecho '=== Compressed clusters with refcount_bits=1 ==='
126d2eed8c6SMax Reitzecho
127d2eed8c6SMax Reitz
128d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=1" _make_test_img 64M
129d2eed8c6SMax Reitzprint_refcount_bits
130d2eed8c6SMax Reitz
131d2eed8c6SMax Reitz# Both should fit into a single host cluster; instead of failing to increase the
132d2eed8c6SMax Reitz# refcount of that cluster, qemu should just allocate a new cluster and make
133d2eed8c6SMax Reitz# this operation succeed
134d2eed8c6SMax Reitz$QEMU_IO -c 'write -P 0 -c  0  64k' \
135d2eed8c6SMax Reitz         -c 'write -P 1 -c 64k 64k' \
136d2eed8c6SMax Reitz         "$TEST_IMG" | _filter_qemu_io
137d2eed8c6SMax Reitz
138d2eed8c6SMax Reitz_check_test_img
139d2eed8c6SMax Reitz
140d2eed8c6SMax Reitzecho
141d2eed8c6SMax Reitzecho '=== MSb set in 64 bit refcount ==='
142d2eed8c6SMax Reitzecho
143d2eed8c6SMax Reitz
144d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=64" _make_test_img 64M
145d2eed8c6SMax Reitzprint_refcount_bits
146d2eed8c6SMax Reitz
147d2eed8c6SMax Reitz$QEMU_IO -c 'write 0 512' "$TEST_IMG" | _filter_qemu_io
148d2eed8c6SMax Reitz
149d2eed8c6SMax Reitz# Set the MSb in the refblock entry of the data cluster
150d2eed8c6SMax Reitzpoke_file "$TEST_IMG" $((0x20028)) "\x80\x00\x00\x00\x00\x00\x00\x00"
151d2eed8c6SMax Reitz
152d2eed8c6SMax Reitz# Clear OFLAG_COPIED in the L2 entry of the data cluster
153d2eed8c6SMax Reitzpoke_file "$TEST_IMG" $((0x40000)) "\x00\x00\x00\x00\x00\x05\x00\x00"
154d2eed8c6SMax Reitz
155d2eed8c6SMax Reitz# Try to write to that cluster (should work, even though the MSb is set)
156d2eed8c6SMax Reitz$QEMU_IO -c 'write 0 512' "$TEST_IMG" | _filter_qemu_io
157d2eed8c6SMax Reitz
158d2eed8c6SMax Reitzecho
159d2eed8c6SMax Reitzecho '=== Snapshot on maximum 64 bit refcount value ==='
160d2eed8c6SMax Reitzecho
161d2eed8c6SMax Reitz
162d2eed8c6SMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=64" _make_test_img 64M
163d2eed8c6SMax Reitzprint_refcount_bits
164d2eed8c6SMax Reitz
165d2eed8c6SMax Reitz$QEMU_IO -c 'write 0 512' "$TEST_IMG" | _filter_qemu_io
166d2eed8c6SMax Reitz
167d2eed8c6SMax Reitz# Set the refblock entry to the maximum value possible
168d2eed8c6SMax Reitzpoke_file "$TEST_IMG" $((0x20028)) "\xff\xff\xff\xff\xff\xff\xff\xff"
169d2eed8c6SMax Reitz
170d2eed8c6SMax Reitz# Clear OFLAG_COPIED in the L2 entry of the data cluster
171d2eed8c6SMax Reitzpoke_file "$TEST_IMG" $((0x40000)) "\x00\x00\x00\x00\x00\x05\x00\x00"
172d2eed8c6SMax Reitz
173d2eed8c6SMax Reitz# Try a snapshot (should correctly identify the overflow; may work in the future
174d2eed8c6SMax Reitz# by falling back to COW)
175d2eed8c6SMax Reitz$QEMU_IMG snapshot -c foo "$TEST_IMG"
176d2eed8c6SMax Reitz
177d2eed8c6SMax Reitz# The new L1 table could/should be leaked; and obviously the data cluster is
178d2eed8c6SMax Reitz# leaked (refcount=UINT64_MAX reference=1)
179d2eed8c6SMax Reitz_check_test_img
180d2eed8c6SMax Reitz
181e9dbdc5eSMax Reitzecho
182e9dbdc5eSMax Reitzecho '=== Amend from refcount_bits=16 to refcount_bits=1 ==='
183e9dbdc5eSMax Reitzecho
184e9dbdc5eSMax Reitz
185e9dbdc5eSMax Reitz_make_test_img 64M
186e9dbdc5eSMax Reitzprint_refcount_bits
187e9dbdc5eSMax Reitz
188e9dbdc5eSMax Reitz$QEMU_IO -c 'write 16M 32M' "$TEST_IMG" | _filter_qemu_io
189e9dbdc5eSMax Reitz$QEMU_IMG amend -o refcount_bits=1 "$TEST_IMG"
190e9dbdc5eSMax Reitz_check_test_img
191e9dbdc5eSMax Reitzprint_refcount_bits
192e9dbdc5eSMax Reitz
193e9dbdc5eSMax Reitzecho
194e9dbdc5eSMax Reitzecho '=== Amend from refcount_bits=1 to refcount_bits=64 ==='
195e9dbdc5eSMax Reitzecho
196e9dbdc5eSMax Reitz
197e9dbdc5eSMax Reitz$QEMU_IMG amend -o refcount_bits=64 "$TEST_IMG"
198e9dbdc5eSMax Reitz_check_test_img
199e9dbdc5eSMax Reitzprint_refcount_bits
200e9dbdc5eSMax Reitz
201e9dbdc5eSMax Reitzecho
202e9dbdc5eSMax Reitzecho '=== Amend to compat=0.10 ==='
203e9dbdc5eSMax Reitzecho
204e9dbdc5eSMax Reitz
205e9dbdc5eSMax Reitz# Should not work because refcount_bits needs to be 16 for compat=0.10
206e9dbdc5eSMax Reitz$QEMU_IMG amend -o compat=0.10 "$TEST_IMG"
207e9dbdc5eSMax Reitzprint_refcount_bits
208e9dbdc5eSMax Reitz# Should work
209e9dbdc5eSMax Reitz$QEMU_IMG amend -o compat=0.10,refcount_bits=16 "$TEST_IMG"
210e9dbdc5eSMax Reitz_check_test_img
211e9dbdc5eSMax Reitzprint_refcount_bits
212e9dbdc5eSMax Reitz
213e9dbdc5eSMax Reitz# Get back to compat=1.1 and refcount_bits=16
214e9dbdc5eSMax Reitz$QEMU_IMG amend -o compat=1.1 "$TEST_IMG"
215e9dbdc5eSMax Reitzprint_refcount_bits
216e9dbdc5eSMax Reitz# Should not work
217e9dbdc5eSMax Reitz$QEMU_IMG amend -o refcount_bits=32,compat=0.10 "$TEST_IMG"
218e9dbdc5eSMax Reitzprint_refcount_bits
219e9dbdc5eSMax Reitz
220e9dbdc5eSMax Reitzecho
221e9dbdc5eSMax Reitzecho '=== Amend with snapshot ==='
222e9dbdc5eSMax Reitzecho
223e9dbdc5eSMax Reitz
224e9dbdc5eSMax Reitz$QEMU_IMG snapshot -c foo "$TEST_IMG"
225e9dbdc5eSMax Reitz# Just to have different refcounts across the image
226e9dbdc5eSMax Reitz$QEMU_IO -c 'write 0 16M' "$TEST_IMG" | _filter_qemu_io
227e9dbdc5eSMax Reitz
228e9dbdc5eSMax Reitz# Should not work (may work in the future by first decreasing all refcounts so
229e9dbdc5eSMax Reitz# they fit into the target range by copying them)
230e9dbdc5eSMax Reitz$QEMU_IMG amend -o refcount_bits=1 "$TEST_IMG"
231e9dbdc5eSMax Reitz_check_test_img
232e9dbdc5eSMax Reitzprint_refcount_bits
233e9dbdc5eSMax Reitz
234e9dbdc5eSMax Reitz# Should work
235e9dbdc5eSMax Reitz$QEMU_IMG amend -o refcount_bits=2 "$TEST_IMG"
236e9dbdc5eSMax Reitz_check_test_img
237e9dbdc5eSMax Reitzprint_refcount_bits
238e9dbdc5eSMax Reitz
239e9dbdc5eSMax Reitzecho
240e9dbdc5eSMax Reitzecho '=== Testing too many references for check ==='
241e9dbdc5eSMax Reitzecho
242e9dbdc5eSMax Reitz
243e9dbdc5eSMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=1" _make_test_img 64M
244e9dbdc5eSMax Reitzprint_refcount_bits
245e9dbdc5eSMax Reitz
246e9dbdc5eSMax Reitz# This cluster should be created at 0x50000
247e9dbdc5eSMax Reitz$QEMU_IO -c 'write 0 64k' "$TEST_IMG" | _filter_qemu_io
248e9dbdc5eSMax Reitz# Now make the second L2 entry (the L2 table should be at 0x40000) point to that
249e9dbdc5eSMax Reitz# cluster, so we have two references
250e9dbdc5eSMax Reitzpoke_file "$TEST_IMG" $((0x40008)) "\x80\x00\x00\x00\x00\x05\x00\x00"
251e9dbdc5eSMax Reitz
252e9dbdc5eSMax Reitz# This should say "please use amend"
253e9dbdc5eSMax Reitz_check_test_img -r all
254e9dbdc5eSMax Reitz
255e9dbdc5eSMax Reitz# So we do that
256e9dbdc5eSMax Reitz$QEMU_IMG amend -o refcount_bits=2 "$TEST_IMG"
257e9dbdc5eSMax Reitzprint_refcount_bits
258e9dbdc5eSMax Reitz
259e9dbdc5eSMax Reitz# And try again
260e9dbdc5eSMax Reitz_check_test_img -r all
261e9dbdc5eSMax Reitz
262e9dbdc5eSMax Reitzecho
263e9dbdc5eSMax Reitzecho '=== Multiple walks necessary during amend ==='
264e9dbdc5eSMax Reitzecho
265e9dbdc5eSMax Reitz
266e9dbdc5eSMax ReitzIMGOPTS="$IMGOPTS,refcount_bits=1,cluster_size=512" _make_test_img 64k
267e9dbdc5eSMax Reitz
268e9dbdc5eSMax Reitz# Cluster 0 is the image header, clusters 1 to 4 are used by the L1 table, a
269e9dbdc5eSMax Reitz# single L2 table, the reftable and a single refblock. This creates 58 data
270e9dbdc5eSMax Reitz# clusters (actually, the L2 table is created here, too), so in total there are
271e9dbdc5eSMax Reitz# then 63 used clusters in the image. With a refcount width of 64, one refblock
272e9dbdc5eSMax Reitz# describes 64 clusters (512 bytes / 64 bits/entry = 64 entries), so this will
273e9dbdc5eSMax Reitz# make the first refblock in the amended image have exactly one free entry.
274e9dbdc5eSMax Reitz$QEMU_IO -c "write 0 $((58 * 512))" "$TEST_IMG" | _filter_qemu_io
275e9dbdc5eSMax Reitz
276e9dbdc5eSMax Reitz# Now change the refcount width; since the first new refblock will have exactly
277e9dbdc5eSMax Reitz# one free entry, that entry will be used to store its own reference. No other
278e9dbdc5eSMax Reitz# refblocks are needed, so then the new reftable will be allocated; since the
279e9dbdc5eSMax Reitz# first new refblock is completely filled up, this will require a new refblock
280e9dbdc5eSMax Reitz# which is why the refcount width changing function will need to run through
281e9dbdc5eSMax Reitz# everything one more time until the allocations are stable.
282e9dbdc5eSMax Reitz# Having more walks than usual should be visible as regressing progress (from
283e9dbdc5eSMax Reitz# 66.67 % (2/3 walks) to 50.00 % (2/4 walks)).
284e9dbdc5eSMax Reitz$QEMU_IMG amend -o refcount_bits=64 -p "$TEST_IMG" | tr '\r' '\n' \
285e9dbdc5eSMax Reitz                                                   | grep -A 1 '66.67'
286e9dbdc5eSMax Reitzprint_refcount_bits
287e9dbdc5eSMax Reitz
288e9dbdc5eSMax Reitz_check_test_img
289e9dbdc5eSMax Reitz
290d2eed8c6SMax Reitz
291d2eed8c6SMax Reitz# success, all done
292d2eed8c6SMax Reitzecho '*** done'
293d2eed8c6SMax Reitzrm -f $seq.full
294d2eed8c6SMax Reitzstatus=0
295