xref: /openbmc/qemu/tests/fp/fp-bench.c (revision 30b6852c)
1 /*
2  * fp-bench.c - A collection of simple floating point microbenchmarks.
3  *
4  * Copyright (C) 2018, Emilio G. Cota <cota@braap.org>
5  *
6  * License: GNU GPL, version 2 or later.
7  *   See the COPYING file in the top-level directory.
8  */
9 #ifndef HW_POISON_H
10 #error Must define HW_POISON_H to work around TARGET_* poisoning
11 #endif
12 
13 #include "qemu/osdep.h"
14 #include <math.h>
15 #include <fenv.h>
16 #include "qemu/timer.h"
17 #include "qemu/int128.h"
18 #include "fpu/softfloat.h"
19 
20 /* amortize the computation of random inputs */
21 #define OPS_PER_ITER     50000
22 
23 #define MAX_OPERANDS 3
24 
25 #define SEED_A 0xdeadfacedeadface
26 #define SEED_B 0xbadc0feebadc0fee
27 #define SEED_C 0xbeefdeadbeefdead
28 
29 enum op {
30     OP_ADD,
31     OP_SUB,
32     OP_MUL,
33     OP_DIV,
34     OP_FMA,
35     OP_SQRT,
36     OP_CMP,
37     OP_MAX_NR,
38 };
39 
40 static const char * const op_names[] = {
41     [OP_ADD] = "add",
42     [OP_SUB] = "sub",
43     [OP_MUL] = "mul",
44     [OP_DIV] = "div",
45     [OP_FMA] = "mulAdd",
46     [OP_SQRT] = "sqrt",
47     [OP_CMP] = "cmp",
48     [OP_MAX_NR] = NULL,
49 };
50 
51 enum precision {
52     PREC_SINGLE,
53     PREC_DOUBLE,
54     PREC_QUAD,
55     PREC_FLOAT32,
56     PREC_FLOAT64,
57     PREC_FLOAT128,
58     PREC_MAX_NR,
59 };
60 
61 enum rounding {
62     ROUND_EVEN,
63     ROUND_ZERO,
64     ROUND_DOWN,
65     ROUND_UP,
66     ROUND_TIEAWAY,
67     N_ROUND_MODES,
68 };
69 
70 static const char * const round_names[] = {
71     [ROUND_EVEN] = "even",
72     [ROUND_ZERO] = "zero",
73     [ROUND_DOWN] = "down",
74     [ROUND_UP] = "up",
75     [ROUND_TIEAWAY] = "tieaway",
76 };
77 
78 enum tester {
79     TESTER_SOFT,
80     TESTER_HOST,
81     TESTER_MAX_NR,
82 };
83 
84 static const char * const tester_names[] = {
85     [TESTER_SOFT] = "soft",
86     [TESTER_HOST] = "host",
87     [TESTER_MAX_NR] = NULL,
88 };
89 
90 union fp {
91     float f;
92     double d;
93     float32 f32;
94     float64 f64;
95     float128 f128;
96     uint64_t u64;
97 };
98 
99 struct op_state;
100 
101 typedef float (*float_func_t)(const struct op_state *s);
102 typedef double (*double_func_t)(const struct op_state *s);
103 
104 union fp_func {
105     float_func_t float_func;
106     double_func_t double_func;
107 };
108 
109 typedef void (*bench_func_t)(void);
110 
111 struct op_desc {
112     const char * const name;
113 };
114 
115 #define DEFAULT_DURATION_SECS 1
116 
117 static uint64_t random_ops[MAX_OPERANDS] = {
118     SEED_A, SEED_B, SEED_C,
119 };
120 
121 static float128 random_quad_ops[MAX_OPERANDS] = {
122     {SEED_A, SEED_B}, {SEED_B, SEED_C}, {SEED_C, SEED_A},
123 };
124 static float_status soft_status;
125 static enum precision precision;
126 static enum op operation;
127 static enum tester tester;
128 static uint64_t n_completed_ops;
129 static unsigned int duration = DEFAULT_DURATION_SECS;
130 static int64_t ns_elapsed;
131 /* disable optimizations with volatile */
132 static volatile union fp res;
133 
134 /*
135  * From: https://en.wikipedia.org/wiki/Xorshift
136  * This is faster than rand_r(), and gives us a wider range (RAND_MAX is only
137  * guaranteed to be >= INT_MAX).
138  */
139 static uint64_t xorshift64star(uint64_t x)
140 {
141     x ^= x >> 12; /* a */
142     x ^= x << 25; /* b */
143     x ^= x >> 27; /* c */
144     return x * UINT64_C(2685821657736338717);
145 }
146 
147 static void update_random_ops(int n_ops, enum precision prec)
148 {
149     int i;
150 
151     for (i = 0; i < n_ops; i++) {
152 
153         switch (prec) {
154         case PREC_SINGLE:
155         case PREC_FLOAT32:
156         {
157             uint64_t r = random_ops[i];
158             do {
159                 r = xorshift64star(r);
160             } while (!float32_is_normal(r));
161             random_ops[i] = r;
162             break;
163         }
164         case PREC_DOUBLE:
165         case PREC_FLOAT64:
166         {
167             uint64_t r = random_ops[i];
168             do {
169                 r = xorshift64star(r);
170             } while (!float64_is_normal(r));
171             random_ops[i] = r;
172             break;
173         }
174         case PREC_QUAD:
175         case PREC_FLOAT128:
176         {
177             float128 r = random_quad_ops[i];
178             uint64_t hi = r.high;
179             uint64_t lo = r.low;
180             do {
181                 hi = xorshift64star(hi);
182                 lo = xorshift64star(lo);
183                 r = make_float128(hi, lo);
184             } while (!float128_is_normal(r));
185             random_quad_ops[i] = r;
186             break;
187         }
188         default:
189             g_assert_not_reached();
190         }
191     }
192 }
193 
194 static void fill_random(union fp *ops, int n_ops, enum precision prec,
195                         bool no_neg)
196 {
197     int i;
198 
199     for (i = 0; i < n_ops; i++) {
200         switch (prec) {
201         case PREC_SINGLE:
202         case PREC_FLOAT32:
203             ops[i].f32 = make_float32(random_ops[i]);
204             if (no_neg && float32_is_neg(ops[i].f32)) {
205                 ops[i].f32 = float32_chs(ops[i].f32);
206             }
207             break;
208         case PREC_DOUBLE:
209         case PREC_FLOAT64:
210             ops[i].f64 = make_float64(random_ops[i]);
211             if (no_neg && float64_is_neg(ops[i].f64)) {
212                 ops[i].f64 = float64_chs(ops[i].f64);
213             }
214             break;
215         case PREC_QUAD:
216         case PREC_FLOAT128:
217             ops[i].f128 = random_quad_ops[i];
218             if (no_neg && float128_is_neg(ops[i].f128)) {
219                 ops[i].f128 = float128_chs(ops[i].f128);
220             }
221             break;
222         default:
223             g_assert_not_reached();
224         }
225     }
226 }
227 
228 /*
229  * The main benchmark function. Instead of (ab)using macros, we rely
230  * on the compiler to unfold this at compile-time.
231  */
232 static void bench(enum precision prec, enum op op, int n_ops, bool no_neg)
233 {
234     int64_t tf = get_clock() + duration * 1000000000LL;
235 
236     while (get_clock() < tf) {
237         union fp ops[MAX_OPERANDS];
238         int64_t t0;
239         int i;
240 
241         update_random_ops(n_ops, prec);
242         switch (prec) {
243         case PREC_SINGLE:
244             fill_random(ops, n_ops, prec, no_neg);
245             t0 = get_clock();
246             for (i = 0; i < OPS_PER_ITER; i++) {
247                 float a = ops[0].f;
248                 float b = ops[1].f;
249                 float c = ops[2].f;
250 
251                 switch (op) {
252                 case OP_ADD:
253                     res.f = a + b;
254                     break;
255                 case OP_SUB:
256                     res.f = a - b;
257                     break;
258                 case OP_MUL:
259                     res.f = a * b;
260                     break;
261                 case OP_DIV:
262                     res.f = a / b;
263                     break;
264                 case OP_FMA:
265                     res.f = fmaf(a, b, c);
266                     break;
267                 case OP_SQRT:
268                     res.f = sqrtf(a);
269                     break;
270                 case OP_CMP:
271                     res.u64 = isgreater(a, b);
272                     break;
273                 default:
274                     g_assert_not_reached();
275                 }
276             }
277             break;
278         case PREC_DOUBLE:
279             fill_random(ops, n_ops, prec, no_neg);
280             t0 = get_clock();
281             for (i = 0; i < OPS_PER_ITER; i++) {
282                 double a = ops[0].d;
283                 double b = ops[1].d;
284                 double c = ops[2].d;
285 
286                 switch (op) {
287                 case OP_ADD:
288                     res.d = a + b;
289                     break;
290                 case OP_SUB:
291                     res.d = a - b;
292                     break;
293                 case OP_MUL:
294                     res.d = a * b;
295                     break;
296                 case OP_DIV:
297                     res.d = a / b;
298                     break;
299                 case OP_FMA:
300                     res.d = fma(a, b, c);
301                     break;
302                 case OP_SQRT:
303                     res.d = sqrt(a);
304                     break;
305                 case OP_CMP:
306                     res.u64 = isgreater(a, b);
307                     break;
308                 default:
309                     g_assert_not_reached();
310                 }
311             }
312             break;
313         case PREC_FLOAT32:
314             fill_random(ops, n_ops, prec, no_neg);
315             t0 = get_clock();
316             for (i = 0; i < OPS_PER_ITER; i++) {
317                 float32 a = ops[0].f32;
318                 float32 b = ops[1].f32;
319                 float32 c = ops[2].f32;
320 
321                 switch (op) {
322                 case OP_ADD:
323                     res.f32 = float32_add(a, b, &soft_status);
324                     break;
325                 case OP_SUB:
326                     res.f32 = float32_sub(a, b, &soft_status);
327                     break;
328                 case OP_MUL:
329                     res.f = float32_mul(a, b, &soft_status);
330                     break;
331                 case OP_DIV:
332                     res.f32 = float32_div(a, b, &soft_status);
333                     break;
334                 case OP_FMA:
335                     res.f32 = float32_muladd(a, b, c, 0, &soft_status);
336                     break;
337                 case OP_SQRT:
338                     res.f32 = float32_sqrt(a, &soft_status);
339                     break;
340                 case OP_CMP:
341                     res.u64 = float32_compare_quiet(a, b, &soft_status);
342                     break;
343                 default:
344                     g_assert_not_reached();
345                 }
346             }
347             break;
348         case PREC_FLOAT64:
349             fill_random(ops, n_ops, prec, no_neg);
350             t0 = get_clock();
351             for (i = 0; i < OPS_PER_ITER; i++) {
352                 float64 a = ops[0].f64;
353                 float64 b = ops[1].f64;
354                 float64 c = ops[2].f64;
355 
356                 switch (op) {
357                 case OP_ADD:
358                     res.f64 = float64_add(a, b, &soft_status);
359                     break;
360                 case OP_SUB:
361                     res.f64 = float64_sub(a, b, &soft_status);
362                     break;
363                 case OP_MUL:
364                     res.f = float64_mul(a, b, &soft_status);
365                     break;
366                 case OP_DIV:
367                     res.f64 = float64_div(a, b, &soft_status);
368                     break;
369                 case OP_FMA:
370                     res.f64 = float64_muladd(a, b, c, 0, &soft_status);
371                     break;
372                 case OP_SQRT:
373                     res.f64 = float64_sqrt(a, &soft_status);
374                     break;
375                 case OP_CMP:
376                     res.u64 = float64_compare_quiet(a, b, &soft_status);
377                     break;
378                 default:
379                     g_assert_not_reached();
380                 }
381             }
382             break;
383         case PREC_FLOAT128:
384             fill_random(ops, n_ops, prec, no_neg);
385             t0 = get_clock();
386             for (i = 0; i < OPS_PER_ITER; i++) {
387                 float128 a = ops[0].f128;
388                 float128 b = ops[1].f128;
389                 float128 c = ops[2].f128;
390 
391                 switch (op) {
392                 case OP_ADD:
393                     res.f128 = float128_add(a, b, &soft_status);
394                     break;
395                 case OP_SUB:
396                     res.f128 = float128_sub(a, b, &soft_status);
397                     break;
398                 case OP_MUL:
399                     res.f128 = float128_mul(a, b, &soft_status);
400                     break;
401                 case OP_DIV:
402                     res.f128 = float128_div(a, b, &soft_status);
403                     break;
404                 case OP_FMA:
405                     res.f128 = float128_muladd(a, b, c, 0, &soft_status);
406                     break;
407                 case OP_SQRT:
408                     res.f128 = float128_sqrt(a, &soft_status);
409                     break;
410                 case OP_CMP:
411                     res.u64 = float128_compare_quiet(a, b, &soft_status);
412                     break;
413                 default:
414                     g_assert_not_reached();
415                 }
416             }
417             break;
418         default:
419             g_assert_not_reached();
420         }
421         ns_elapsed += get_clock() - t0;
422         n_completed_ops += OPS_PER_ITER;
423     }
424 }
425 
426 #define GEN_BENCH(name, type, prec, op, n_ops)          \
427     static void __attribute__((flatten)) name(void)     \
428     {                                                   \
429         bench(prec, op, n_ops, false);                  \
430     }
431 
432 #define GEN_BENCH_NO_NEG(name, type, prec, op, n_ops)   \
433     static void __attribute__((flatten)) name(void)     \
434     {                                                   \
435         bench(prec, op, n_ops, true);                   \
436     }
437 
438 #define GEN_BENCH_ALL_TYPES(opname, op, n_ops)                          \
439     GEN_BENCH(bench_ ## opname ## _float, float, PREC_SINGLE, op, n_ops) \
440     GEN_BENCH(bench_ ## opname ## _double, double, PREC_DOUBLE, op, n_ops) \
441     GEN_BENCH(bench_ ## opname ## _float32, float32, PREC_FLOAT32, op, n_ops) \
442     GEN_BENCH(bench_ ## opname ## _float64, float64, PREC_FLOAT64, op, n_ops) \
443     GEN_BENCH(bench_ ## opname ## _float128, float128, PREC_FLOAT128, op, n_ops)
444 
445 GEN_BENCH_ALL_TYPES(add, OP_ADD, 2)
446 GEN_BENCH_ALL_TYPES(sub, OP_SUB, 2)
447 GEN_BENCH_ALL_TYPES(mul, OP_MUL, 2)
448 GEN_BENCH_ALL_TYPES(div, OP_DIV, 2)
449 GEN_BENCH_ALL_TYPES(fma, OP_FMA, 3)
450 GEN_BENCH_ALL_TYPES(cmp, OP_CMP, 2)
451 #undef GEN_BENCH_ALL_TYPES
452 
453 #define GEN_BENCH_ALL_TYPES_NO_NEG(name, op, n)                         \
454     GEN_BENCH_NO_NEG(bench_ ## name ## _float, float, PREC_SINGLE, op, n) \
455     GEN_BENCH_NO_NEG(bench_ ## name ## _double, double, PREC_DOUBLE, op, n) \
456     GEN_BENCH_NO_NEG(bench_ ## name ## _float32, float32, PREC_FLOAT32, op, n) \
457     GEN_BENCH_NO_NEG(bench_ ## name ## _float64, float64, PREC_FLOAT64, op, n) \
458     GEN_BENCH_NO_NEG(bench_ ## name ## _float128, float128, PREC_FLOAT128, op, n)
459 
460 GEN_BENCH_ALL_TYPES_NO_NEG(sqrt, OP_SQRT, 1)
461 #undef GEN_BENCH_ALL_TYPES_NO_NEG
462 
463 #undef GEN_BENCH_NO_NEG
464 #undef GEN_BENCH
465 
466 #define GEN_BENCH_FUNCS(opname, op)                             \
467     [op] = {                                                    \
468         [PREC_SINGLE]    = bench_ ## opname ## _float,          \
469         [PREC_DOUBLE]    = bench_ ## opname ## _double,         \
470         [PREC_FLOAT32]   = bench_ ## opname ## _float32,        \
471         [PREC_FLOAT64]   = bench_ ## opname ## _float64,        \
472         [PREC_FLOAT128]   = bench_ ## opname ## _float128,      \
473     }
474 
475 static const bench_func_t bench_funcs[OP_MAX_NR][PREC_MAX_NR] = {
476     GEN_BENCH_FUNCS(add, OP_ADD),
477     GEN_BENCH_FUNCS(sub, OP_SUB),
478     GEN_BENCH_FUNCS(mul, OP_MUL),
479     GEN_BENCH_FUNCS(div, OP_DIV),
480     GEN_BENCH_FUNCS(fma, OP_FMA),
481     GEN_BENCH_FUNCS(sqrt, OP_SQRT),
482     GEN_BENCH_FUNCS(cmp, OP_CMP),
483 };
484 
485 #undef GEN_BENCH_FUNCS
486 
487 static void run_bench(void)
488 {
489     bench_func_t f;
490 
491     f = bench_funcs[operation][precision];
492     g_assert(f);
493     f();
494 }
495 
496 /* @arr must be NULL-terminated */
497 static int find_name(const char * const *arr, const char *name)
498 {
499     int i;
500 
501     for (i = 0; arr[i] != NULL; i++) {
502         if (strcmp(name, arr[i]) == 0) {
503             return i;
504         }
505     }
506     return -1;
507 }
508 
509 static void usage_complete(int argc, char *argv[])
510 {
511     gchar *op_list = g_strjoinv(", ", (gchar **)op_names);
512     gchar *tester_list = g_strjoinv(", ", (gchar **)tester_names);
513 
514     fprintf(stderr, "Usage: %s [options]\n", argv[0]);
515     fprintf(stderr, "options:\n");
516     fprintf(stderr, " -d = duration, in seconds. Default: %d\n",
517             DEFAULT_DURATION_SECS);
518     fprintf(stderr, " -h = show this help message.\n");
519     fprintf(stderr, " -o = floating point operation (%s). Default: %s\n",
520             op_list, op_names[0]);
521     fprintf(stderr, " -p = floating point precision (single, double, quad[soft only]). "
522             "Default: single\n");
523     fprintf(stderr, " -r = rounding mode (even, zero, down, up, tieaway). "
524             "Default: even\n");
525     fprintf(stderr, " -t = tester (%s). Default: %s\n",
526             tester_list, tester_names[0]);
527     fprintf(stderr, " -z = flush inputs to zero (soft tester only). "
528             "Default: disabled\n");
529     fprintf(stderr, " -Z = flush output to zero (soft tester only). "
530             "Default: disabled\n");
531 
532     g_free(tester_list);
533     g_free(op_list);
534 }
535 
536 static int round_name_to_mode(const char *name)
537 {
538     int i;
539 
540     for (i = 0; i < N_ROUND_MODES; i++) {
541         if (!strcmp(round_names[i], name)) {
542             return i;
543         }
544     }
545     return -1;
546 }
547 
548 static void QEMU_NORETURN die_host_rounding(enum rounding rounding)
549 {
550     fprintf(stderr, "fatal: '%s' rounding not supported on this host\n",
551             round_names[rounding]);
552     exit(EXIT_FAILURE);
553 }
554 
555 static void set_host_precision(enum rounding rounding)
556 {
557     int rhost;
558 
559     switch (rounding) {
560     case ROUND_EVEN:
561         rhost = FE_TONEAREST;
562         break;
563     case ROUND_ZERO:
564         rhost = FE_TOWARDZERO;
565         break;
566     case ROUND_DOWN:
567         rhost = FE_DOWNWARD;
568         break;
569     case ROUND_UP:
570         rhost = FE_UPWARD;
571         break;
572     case ROUND_TIEAWAY:
573         die_host_rounding(rounding);
574         return;
575     default:
576         g_assert_not_reached();
577     }
578 
579     if (fesetround(rhost)) {
580         die_host_rounding(rounding);
581     }
582 }
583 
584 static void set_soft_precision(enum rounding rounding)
585 {
586     signed char mode;
587 
588     switch (rounding) {
589     case ROUND_EVEN:
590         mode = float_round_nearest_even;
591         break;
592     case ROUND_ZERO:
593         mode = float_round_to_zero;
594         break;
595     case ROUND_DOWN:
596         mode = float_round_down;
597         break;
598     case ROUND_UP:
599         mode = float_round_up;
600         break;
601     case ROUND_TIEAWAY:
602         mode = float_round_ties_away;
603         break;
604     default:
605         g_assert_not_reached();
606     }
607     soft_status.float_rounding_mode = mode;
608 }
609 
610 static void parse_args(int argc, char *argv[])
611 {
612     int c;
613     int val;
614     int rounding = ROUND_EVEN;
615 
616     for (;;) {
617         c = getopt(argc, argv, "d:ho:p:r:t:zZ");
618         if (c < 0) {
619             break;
620         }
621         switch (c) {
622         case 'd':
623             duration = atoi(optarg);
624             break;
625         case 'h':
626             usage_complete(argc, argv);
627             exit(EXIT_SUCCESS);
628         case 'o':
629             val = find_name(op_names, optarg);
630             if (val < 0) {
631                 fprintf(stderr, "Unsupported op '%s'\n", optarg);
632                 exit(EXIT_FAILURE);
633             }
634             operation = val;
635             break;
636         case 'p':
637             if (!strcmp(optarg, "single")) {
638                 precision = PREC_SINGLE;
639             } else if (!strcmp(optarg, "double")) {
640                 precision = PREC_DOUBLE;
641             } else if (!strcmp(optarg, "quad")) {
642                 precision = PREC_QUAD;
643             } else {
644                 fprintf(stderr, "Unsupported precision '%s'\n", optarg);
645                 exit(EXIT_FAILURE);
646             }
647             break;
648         case 'r':
649             rounding = round_name_to_mode(optarg);
650             if (rounding < 0) {
651                 fprintf(stderr, "fatal: invalid rounding mode '%s'\n", optarg);
652                 exit(EXIT_FAILURE);
653             }
654             break;
655         case 't':
656             val = find_name(tester_names, optarg);
657             if (val < 0) {
658                 fprintf(stderr, "Unsupported tester '%s'\n", optarg);
659                 exit(EXIT_FAILURE);
660             }
661             tester = val;
662             break;
663         case 'z':
664             soft_status.flush_inputs_to_zero = 1;
665             break;
666         case 'Z':
667             soft_status.flush_to_zero = 1;
668             break;
669         }
670     }
671 
672     /* set precision and rounding mode based on the tester */
673     switch (tester) {
674     case TESTER_HOST:
675         set_host_precision(rounding);
676         break;
677     case TESTER_SOFT:
678         set_soft_precision(rounding);
679         switch (precision) {
680         case PREC_SINGLE:
681             precision = PREC_FLOAT32;
682             break;
683         case PREC_DOUBLE:
684             precision = PREC_FLOAT64;
685             break;
686         case PREC_QUAD:
687             precision = PREC_FLOAT128;
688             break;
689         default:
690             g_assert_not_reached();
691         }
692         break;
693     default:
694         g_assert_not_reached();
695     }
696 }
697 
698 static void pr_stats(void)
699 {
700     printf("%.2f MFlops\n", (double)n_completed_ops / ns_elapsed * 1e3);
701 }
702 
703 int main(int argc, char *argv[])
704 {
705     parse_args(argc, argv);
706     run_bench();
707     pr_stats();
708     return 0;
709 }
710