1 /* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 /* define it to use liveness analysis (better code) */ 26 #define USE_TCG_OPTIMIZATIONS 27 28 #include "qemu/osdep.h" 29 30 /* Define to jump the ELF file used to communicate with GDB. */ 31 #undef DEBUG_JIT 32 33 #include "qemu/error-report.h" 34 #include "qemu/cutils.h" 35 #include "qemu/host-utils.h" 36 #include "qemu/qemu-print.h" 37 #include "qemu/timer.h" 38 #include "qemu/cacheflush.h" 39 40 /* Note: the long term plan is to reduce the dependencies on the QEMU 41 CPU definitions. Currently they are used for qemu_ld/st 42 instructions */ 43 #define NO_CPU_IO_DEFS 44 #include "cpu.h" 45 46 #include "exec/exec-all.h" 47 48 #if !defined(CONFIG_USER_ONLY) 49 #include "hw/boards.h" 50 #endif 51 52 #include "tcg/tcg-op.h" 53 54 #if UINTPTR_MAX == UINT32_MAX 55 # define ELF_CLASS ELFCLASS32 56 #else 57 # define ELF_CLASS ELFCLASS64 58 #endif 59 #ifdef HOST_WORDS_BIGENDIAN 60 # define ELF_DATA ELFDATA2MSB 61 #else 62 # define ELF_DATA ELFDATA2LSB 63 #endif 64 65 #include "elf.h" 66 #include "exec/log.h" 67 #include "sysemu/sysemu.h" 68 69 /* Forward declarations for functions declared in tcg-target.c.inc and 70 used here. */ 71 static void tcg_target_init(TCGContext *s); 72 static void tcg_target_qemu_prologue(TCGContext *s); 73 static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 74 intptr_t value, intptr_t addend); 75 76 /* The CIE and FDE header definitions will be common to all hosts. */ 77 typedef struct { 78 uint32_t len __attribute__((aligned((sizeof(void *))))); 79 uint32_t id; 80 uint8_t version; 81 char augmentation[1]; 82 uint8_t code_align; 83 uint8_t data_align; 84 uint8_t return_column; 85 } DebugFrameCIE; 86 87 typedef struct QEMU_PACKED { 88 uint32_t len __attribute__((aligned((sizeof(void *))))); 89 uint32_t cie_offset; 90 uintptr_t func_start; 91 uintptr_t func_len; 92 } DebugFrameFDEHeader; 93 94 typedef struct QEMU_PACKED { 95 DebugFrameCIE cie; 96 DebugFrameFDEHeader fde; 97 } DebugFrameHeader; 98 99 static void tcg_register_jit_int(const void *buf, size_t size, 100 const void *debug_frame, 101 size_t debug_frame_size) 102 __attribute__((unused)); 103 104 /* Forward declarations for functions declared and used in tcg-target.c.inc. */ 105 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, 106 intptr_t arg2); 107 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg); 108 static void tcg_out_movi(TCGContext *s, TCGType type, 109 TCGReg ret, tcg_target_long arg); 110 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, 111 const int *const_args); 112 #if TCG_TARGET_MAYBE_vec 113 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 114 TCGReg dst, TCGReg src); 115 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 116 TCGReg dst, TCGReg base, intptr_t offset); 117 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 118 TCGReg dst, int64_t arg); 119 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 120 unsigned vece, const TCGArg *args, 121 const int *const_args); 122 #else 123 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 124 TCGReg dst, TCGReg src) 125 { 126 g_assert_not_reached(); 127 } 128 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 129 TCGReg dst, TCGReg base, intptr_t offset) 130 { 131 g_assert_not_reached(); 132 } 133 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 134 TCGReg dst, int64_t arg) 135 { 136 g_assert_not_reached(); 137 } 138 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 139 unsigned vece, const TCGArg *args, 140 const int *const_args) 141 { 142 g_assert_not_reached(); 143 } 144 #endif 145 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, 146 intptr_t arg2); 147 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 148 TCGReg base, intptr_t ofs); 149 static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target); 150 static int tcg_target_const_match(tcg_target_long val, TCGType type, 151 const TCGArgConstraint *arg_ct); 152 #ifdef TCG_TARGET_NEED_LDST_LABELS 153 static int tcg_out_ldst_finalize(TCGContext *s); 154 #endif 155 156 #define TCG_HIGHWATER 1024 157 158 static TCGContext **tcg_ctxs; 159 static unsigned int n_tcg_ctxs; 160 TCGv_env cpu_env = 0; 161 const void *tcg_code_gen_epilogue; 162 uintptr_t tcg_splitwx_diff; 163 164 #ifndef CONFIG_TCG_INTERPRETER 165 tcg_prologue_fn *tcg_qemu_tb_exec; 166 #endif 167 168 struct tcg_region_tree { 169 QemuMutex lock; 170 GTree *tree; 171 /* padding to avoid false sharing is computed at run-time */ 172 }; 173 174 /* 175 * We divide code_gen_buffer into equally-sized "regions" that TCG threads 176 * dynamically allocate from as demand dictates. Given appropriate region 177 * sizing, this minimizes flushes even when some TCG threads generate a lot 178 * more code than others. 179 */ 180 struct tcg_region_state { 181 QemuMutex lock; 182 183 /* fields set at init time */ 184 void *start; 185 void *start_aligned; 186 void *end; 187 size_t n; 188 size_t size; /* size of one region */ 189 size_t stride; /* .size + guard size */ 190 191 /* fields protected by the lock */ 192 size_t current; /* current region index */ 193 size_t agg_size_full; /* aggregate size of full regions */ 194 }; 195 196 static struct tcg_region_state region; 197 /* 198 * This is an array of struct tcg_region_tree's, with padding. 199 * We use void * to simplify the computation of region_trees[i]; each 200 * struct is found every tree_size bytes. 201 */ 202 static void *region_trees; 203 static size_t tree_size; 204 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT]; 205 static TCGRegSet tcg_target_call_clobber_regs; 206 207 #if TCG_TARGET_INSN_UNIT_SIZE == 1 208 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v) 209 { 210 *s->code_ptr++ = v; 211 } 212 213 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p, 214 uint8_t v) 215 { 216 *p = v; 217 } 218 #endif 219 220 #if TCG_TARGET_INSN_UNIT_SIZE <= 2 221 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v) 222 { 223 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 224 *s->code_ptr++ = v; 225 } else { 226 tcg_insn_unit *p = s->code_ptr; 227 memcpy(p, &v, sizeof(v)); 228 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE); 229 } 230 } 231 232 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p, 233 uint16_t v) 234 { 235 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 236 *p = v; 237 } else { 238 memcpy(p, &v, sizeof(v)); 239 } 240 } 241 #endif 242 243 #if TCG_TARGET_INSN_UNIT_SIZE <= 4 244 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v) 245 { 246 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 247 *s->code_ptr++ = v; 248 } else { 249 tcg_insn_unit *p = s->code_ptr; 250 memcpy(p, &v, sizeof(v)); 251 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE); 252 } 253 } 254 255 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p, 256 uint32_t v) 257 { 258 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 259 *p = v; 260 } else { 261 memcpy(p, &v, sizeof(v)); 262 } 263 } 264 #endif 265 266 #if TCG_TARGET_INSN_UNIT_SIZE <= 8 267 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v) 268 { 269 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 270 *s->code_ptr++ = v; 271 } else { 272 tcg_insn_unit *p = s->code_ptr; 273 memcpy(p, &v, sizeof(v)); 274 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE); 275 } 276 } 277 278 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p, 279 uint64_t v) 280 { 281 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 282 *p = v; 283 } else { 284 memcpy(p, &v, sizeof(v)); 285 } 286 } 287 #endif 288 289 /* label relocation processing */ 290 291 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type, 292 TCGLabel *l, intptr_t addend) 293 { 294 TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation)); 295 296 r->type = type; 297 r->ptr = code_ptr; 298 r->addend = addend; 299 QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next); 300 } 301 302 static void tcg_out_label(TCGContext *s, TCGLabel *l) 303 { 304 tcg_debug_assert(!l->has_value); 305 l->has_value = 1; 306 l->u.value_ptr = tcg_splitwx_to_rx(s->code_ptr); 307 } 308 309 TCGLabel *gen_new_label(void) 310 { 311 TCGContext *s = tcg_ctx; 312 TCGLabel *l = tcg_malloc(sizeof(TCGLabel)); 313 314 memset(l, 0, sizeof(TCGLabel)); 315 l->id = s->nb_labels++; 316 QSIMPLEQ_INIT(&l->relocs); 317 318 QSIMPLEQ_INSERT_TAIL(&s->labels, l, next); 319 320 return l; 321 } 322 323 static bool tcg_resolve_relocs(TCGContext *s) 324 { 325 TCGLabel *l; 326 327 QSIMPLEQ_FOREACH(l, &s->labels, next) { 328 TCGRelocation *r; 329 uintptr_t value = l->u.value; 330 331 QSIMPLEQ_FOREACH(r, &l->relocs, next) { 332 if (!patch_reloc(r->ptr, r->type, value, r->addend)) { 333 return false; 334 } 335 } 336 } 337 return true; 338 } 339 340 static void set_jmp_reset_offset(TCGContext *s, int which) 341 { 342 /* 343 * We will check for overflow at the end of the opcode loop in 344 * tcg_gen_code, where we bound tcg_current_code_size to UINT16_MAX. 345 */ 346 s->tb_jmp_reset_offset[which] = tcg_current_code_size(s); 347 } 348 349 /* Signal overflow, starting over with fewer guest insns. */ 350 static void QEMU_NORETURN tcg_raise_tb_overflow(TCGContext *s) 351 { 352 siglongjmp(s->jmp_trans, -2); 353 } 354 355 #define C_PFX1(P, A) P##A 356 #define C_PFX2(P, A, B) P##A##_##B 357 #define C_PFX3(P, A, B, C) P##A##_##B##_##C 358 #define C_PFX4(P, A, B, C, D) P##A##_##B##_##C##_##D 359 #define C_PFX5(P, A, B, C, D, E) P##A##_##B##_##C##_##D##_##E 360 #define C_PFX6(P, A, B, C, D, E, F) P##A##_##B##_##C##_##D##_##E##_##F 361 362 /* Define an enumeration for the various combinations. */ 363 364 #define C_O0_I1(I1) C_PFX1(c_o0_i1_, I1), 365 #define C_O0_I2(I1, I2) C_PFX2(c_o0_i2_, I1, I2), 366 #define C_O0_I3(I1, I2, I3) C_PFX3(c_o0_i3_, I1, I2, I3), 367 #define C_O0_I4(I1, I2, I3, I4) C_PFX4(c_o0_i4_, I1, I2, I3, I4), 368 369 #define C_O1_I1(O1, I1) C_PFX2(c_o1_i1_, O1, I1), 370 #define C_O1_I2(O1, I1, I2) C_PFX3(c_o1_i2_, O1, I1, I2), 371 #define C_O1_I3(O1, I1, I2, I3) C_PFX4(c_o1_i3_, O1, I1, I2, I3), 372 #define C_O1_I4(O1, I1, I2, I3, I4) C_PFX5(c_o1_i4_, O1, I1, I2, I3, I4), 373 374 #define C_N1_I2(O1, I1, I2) C_PFX3(c_n1_i2_, O1, I1, I2), 375 376 #define C_O2_I1(O1, O2, I1) C_PFX3(c_o2_i1_, O1, O2, I1), 377 #define C_O2_I2(O1, O2, I1, I2) C_PFX4(c_o2_i2_, O1, O2, I1, I2), 378 #define C_O2_I3(O1, O2, I1, I2, I3) C_PFX5(c_o2_i3_, O1, O2, I1, I2, I3), 379 #define C_O2_I4(O1, O2, I1, I2, I3, I4) C_PFX6(c_o2_i4_, O1, O2, I1, I2, I3, I4), 380 381 typedef enum { 382 #include "tcg-target-con-set.h" 383 } TCGConstraintSetIndex; 384 385 static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode); 386 387 #undef C_O0_I1 388 #undef C_O0_I2 389 #undef C_O0_I3 390 #undef C_O0_I4 391 #undef C_O1_I1 392 #undef C_O1_I2 393 #undef C_O1_I3 394 #undef C_O1_I4 395 #undef C_N1_I2 396 #undef C_O2_I1 397 #undef C_O2_I2 398 #undef C_O2_I3 399 #undef C_O2_I4 400 401 /* Put all of the constraint sets into an array, indexed by the enum. */ 402 403 #define C_O0_I1(I1) { .args_ct_str = { #I1 } }, 404 #define C_O0_I2(I1, I2) { .args_ct_str = { #I1, #I2 } }, 405 #define C_O0_I3(I1, I2, I3) { .args_ct_str = { #I1, #I2, #I3 } }, 406 #define C_O0_I4(I1, I2, I3, I4) { .args_ct_str = { #I1, #I2, #I3, #I4 } }, 407 408 #define C_O1_I1(O1, I1) { .args_ct_str = { #O1, #I1 } }, 409 #define C_O1_I2(O1, I1, I2) { .args_ct_str = { #O1, #I1, #I2 } }, 410 #define C_O1_I3(O1, I1, I2, I3) { .args_ct_str = { #O1, #I1, #I2, #I3 } }, 411 #define C_O1_I4(O1, I1, I2, I3, I4) { .args_ct_str = { #O1, #I1, #I2, #I3, #I4 } }, 412 413 #define C_N1_I2(O1, I1, I2) { .args_ct_str = { "&" #O1, #I1, #I2 } }, 414 415 #define C_O2_I1(O1, O2, I1) { .args_ct_str = { #O1, #O2, #I1 } }, 416 #define C_O2_I2(O1, O2, I1, I2) { .args_ct_str = { #O1, #O2, #I1, #I2 } }, 417 #define C_O2_I3(O1, O2, I1, I2, I3) { .args_ct_str = { #O1, #O2, #I1, #I2, #I3 } }, 418 #define C_O2_I4(O1, O2, I1, I2, I3, I4) { .args_ct_str = { #O1, #O2, #I1, #I2, #I3, #I4 } }, 419 420 static const TCGTargetOpDef constraint_sets[] = { 421 #include "tcg-target-con-set.h" 422 }; 423 424 425 #undef C_O0_I1 426 #undef C_O0_I2 427 #undef C_O0_I3 428 #undef C_O0_I4 429 #undef C_O1_I1 430 #undef C_O1_I2 431 #undef C_O1_I3 432 #undef C_O1_I4 433 #undef C_N1_I2 434 #undef C_O2_I1 435 #undef C_O2_I2 436 #undef C_O2_I3 437 #undef C_O2_I4 438 439 /* Expand the enumerator to be returned from tcg_target_op_def(). */ 440 441 #define C_O0_I1(I1) C_PFX1(c_o0_i1_, I1) 442 #define C_O0_I2(I1, I2) C_PFX2(c_o0_i2_, I1, I2) 443 #define C_O0_I3(I1, I2, I3) C_PFX3(c_o0_i3_, I1, I2, I3) 444 #define C_O0_I4(I1, I2, I3, I4) C_PFX4(c_o0_i4_, I1, I2, I3, I4) 445 446 #define C_O1_I1(O1, I1) C_PFX2(c_o1_i1_, O1, I1) 447 #define C_O1_I2(O1, I1, I2) C_PFX3(c_o1_i2_, O1, I1, I2) 448 #define C_O1_I3(O1, I1, I2, I3) C_PFX4(c_o1_i3_, O1, I1, I2, I3) 449 #define C_O1_I4(O1, I1, I2, I3, I4) C_PFX5(c_o1_i4_, O1, I1, I2, I3, I4) 450 451 #define C_N1_I2(O1, I1, I2) C_PFX3(c_n1_i2_, O1, I1, I2) 452 453 #define C_O2_I1(O1, O2, I1) C_PFX3(c_o2_i1_, O1, O2, I1) 454 #define C_O2_I2(O1, O2, I1, I2) C_PFX4(c_o2_i2_, O1, O2, I1, I2) 455 #define C_O2_I3(O1, O2, I1, I2, I3) C_PFX5(c_o2_i3_, O1, O2, I1, I2, I3) 456 #define C_O2_I4(O1, O2, I1, I2, I3, I4) C_PFX6(c_o2_i4_, O1, O2, I1, I2, I3, I4) 457 458 #include "tcg-target.c.inc" 459 460 /* compare a pointer @ptr and a tb_tc @s */ 461 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) 462 { 463 if (ptr >= s->ptr + s->size) { 464 return 1; 465 } else if (ptr < s->ptr) { 466 return -1; 467 } 468 return 0; 469 } 470 471 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp) 472 { 473 const struct tb_tc *a = ap; 474 const struct tb_tc *b = bp; 475 476 /* 477 * When both sizes are set, we know this isn't a lookup. 478 * This is the most likely case: every TB must be inserted; lookups 479 * are a lot less frequent. 480 */ 481 if (likely(a->size && b->size)) { 482 if (a->ptr > b->ptr) { 483 return 1; 484 } else if (a->ptr < b->ptr) { 485 return -1; 486 } 487 /* a->ptr == b->ptr should happen only on deletions */ 488 g_assert(a->size == b->size); 489 return 0; 490 } 491 /* 492 * All lookups have either .size field set to 0. 493 * From the glib sources we see that @ap is always the lookup key. However 494 * the docs provide no guarantee, so we just mark this case as likely. 495 */ 496 if (likely(a->size == 0)) { 497 return ptr_cmp_tb_tc(a->ptr, b); 498 } 499 return ptr_cmp_tb_tc(b->ptr, a); 500 } 501 502 static void tcg_region_trees_init(void) 503 { 504 size_t i; 505 506 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); 507 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); 508 for (i = 0; i < region.n; i++) { 509 struct tcg_region_tree *rt = region_trees + i * tree_size; 510 511 qemu_mutex_init(&rt->lock); 512 rt->tree = g_tree_new(tb_tc_cmp); 513 } 514 } 515 516 static struct tcg_region_tree *tc_ptr_to_region_tree(const void *p) 517 { 518 size_t region_idx; 519 520 /* 521 * Like tcg_splitwx_to_rw, with no assert. The pc may come from 522 * a signal handler over which the caller has no control. 523 */ 524 if (!in_code_gen_buffer(p)) { 525 p -= tcg_splitwx_diff; 526 if (!in_code_gen_buffer(p)) { 527 return NULL; 528 } 529 } 530 531 if (p < region.start_aligned) { 532 region_idx = 0; 533 } else { 534 ptrdiff_t offset = p - region.start_aligned; 535 536 if (offset > region.stride * (region.n - 1)) { 537 region_idx = region.n - 1; 538 } else { 539 region_idx = offset / region.stride; 540 } 541 } 542 return region_trees + region_idx * tree_size; 543 } 544 545 void tcg_tb_insert(TranslationBlock *tb) 546 { 547 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 548 549 g_assert(rt != NULL); 550 qemu_mutex_lock(&rt->lock); 551 g_tree_insert(rt->tree, &tb->tc, tb); 552 qemu_mutex_unlock(&rt->lock); 553 } 554 555 void tcg_tb_remove(TranslationBlock *tb) 556 { 557 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 558 559 g_assert(rt != NULL); 560 qemu_mutex_lock(&rt->lock); 561 g_tree_remove(rt->tree, &tb->tc); 562 qemu_mutex_unlock(&rt->lock); 563 } 564 565 /* 566 * Find the TB 'tb' such that 567 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size 568 * Return NULL if not found. 569 */ 570 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) 571 { 572 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); 573 TranslationBlock *tb; 574 struct tb_tc s = { .ptr = (void *)tc_ptr }; 575 576 if (rt == NULL) { 577 return NULL; 578 } 579 580 qemu_mutex_lock(&rt->lock); 581 tb = g_tree_lookup(rt->tree, &s); 582 qemu_mutex_unlock(&rt->lock); 583 return tb; 584 } 585 586 static void tcg_region_tree_lock_all(void) 587 { 588 size_t i; 589 590 for (i = 0; i < region.n; i++) { 591 struct tcg_region_tree *rt = region_trees + i * tree_size; 592 593 qemu_mutex_lock(&rt->lock); 594 } 595 } 596 597 static void tcg_region_tree_unlock_all(void) 598 { 599 size_t i; 600 601 for (i = 0; i < region.n; i++) { 602 struct tcg_region_tree *rt = region_trees + i * tree_size; 603 604 qemu_mutex_unlock(&rt->lock); 605 } 606 } 607 608 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) 609 { 610 size_t i; 611 612 tcg_region_tree_lock_all(); 613 for (i = 0; i < region.n; i++) { 614 struct tcg_region_tree *rt = region_trees + i * tree_size; 615 616 g_tree_foreach(rt->tree, func, user_data); 617 } 618 tcg_region_tree_unlock_all(); 619 } 620 621 size_t tcg_nb_tbs(void) 622 { 623 size_t nb_tbs = 0; 624 size_t i; 625 626 tcg_region_tree_lock_all(); 627 for (i = 0; i < region.n; i++) { 628 struct tcg_region_tree *rt = region_trees + i * tree_size; 629 630 nb_tbs += g_tree_nnodes(rt->tree); 631 } 632 tcg_region_tree_unlock_all(); 633 return nb_tbs; 634 } 635 636 static gboolean tcg_region_tree_traverse(gpointer k, gpointer v, gpointer data) 637 { 638 TranslationBlock *tb = v; 639 640 tb_destroy(tb); 641 return FALSE; 642 } 643 644 static void tcg_region_tree_reset_all(void) 645 { 646 size_t i; 647 648 tcg_region_tree_lock_all(); 649 for (i = 0; i < region.n; i++) { 650 struct tcg_region_tree *rt = region_trees + i * tree_size; 651 652 g_tree_foreach(rt->tree, tcg_region_tree_traverse, NULL); 653 /* Increment the refcount first so that destroy acts as a reset */ 654 g_tree_ref(rt->tree); 655 g_tree_destroy(rt->tree); 656 } 657 tcg_region_tree_unlock_all(); 658 } 659 660 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) 661 { 662 void *start, *end; 663 664 start = region.start_aligned + curr_region * region.stride; 665 end = start + region.size; 666 667 if (curr_region == 0) { 668 start = region.start; 669 } 670 if (curr_region == region.n - 1) { 671 end = region.end; 672 } 673 674 *pstart = start; 675 *pend = end; 676 } 677 678 static void tcg_region_assign(TCGContext *s, size_t curr_region) 679 { 680 void *start, *end; 681 682 tcg_region_bounds(curr_region, &start, &end); 683 684 s->code_gen_buffer = start; 685 s->code_gen_ptr = start; 686 s->code_gen_buffer_size = end - start; 687 s->code_gen_highwater = end - TCG_HIGHWATER; 688 } 689 690 static bool tcg_region_alloc__locked(TCGContext *s) 691 { 692 if (region.current == region.n) { 693 return true; 694 } 695 tcg_region_assign(s, region.current); 696 region.current++; 697 return false; 698 } 699 700 /* 701 * Request a new region once the one in use has filled up. 702 * Returns true on error. 703 */ 704 static bool tcg_region_alloc(TCGContext *s) 705 { 706 bool err; 707 /* read the region size now; alloc__locked will overwrite it on success */ 708 size_t size_full = s->code_gen_buffer_size; 709 710 qemu_mutex_lock(®ion.lock); 711 err = tcg_region_alloc__locked(s); 712 if (!err) { 713 region.agg_size_full += size_full - TCG_HIGHWATER; 714 } 715 qemu_mutex_unlock(®ion.lock); 716 return err; 717 } 718 719 /* 720 * Perform a context's first region allocation. 721 * This function does _not_ increment region.agg_size_full. 722 */ 723 static inline bool tcg_region_initial_alloc__locked(TCGContext *s) 724 { 725 return tcg_region_alloc__locked(s); 726 } 727 728 /* Call from a safe-work context */ 729 void tcg_region_reset_all(void) 730 { 731 unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); 732 unsigned int i; 733 734 qemu_mutex_lock(®ion.lock); 735 region.current = 0; 736 region.agg_size_full = 0; 737 738 for (i = 0; i < n_ctxs; i++) { 739 TCGContext *s = qatomic_read(&tcg_ctxs[i]); 740 bool err = tcg_region_initial_alloc__locked(s); 741 742 g_assert(!err); 743 } 744 qemu_mutex_unlock(®ion.lock); 745 746 tcg_region_tree_reset_all(); 747 } 748 749 #ifdef CONFIG_USER_ONLY 750 static size_t tcg_n_regions(void) 751 { 752 return 1; 753 } 754 #else 755 /* 756 * It is likely that some vCPUs will translate more code than others, so we 757 * first try to set more regions than max_cpus, with those regions being of 758 * reasonable size. If that's not possible we make do by evenly dividing 759 * the code_gen_buffer among the vCPUs. 760 */ 761 static size_t tcg_n_regions(void) 762 { 763 size_t i; 764 765 /* Use a single region if all we have is one vCPU thread */ 766 #if !defined(CONFIG_USER_ONLY) 767 MachineState *ms = MACHINE(qdev_get_machine()); 768 unsigned int max_cpus = ms->smp.max_cpus; 769 #endif 770 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { 771 return 1; 772 } 773 774 /* Try to have more regions than max_cpus, with each region being >= 2 MB */ 775 for (i = 8; i > 0; i--) { 776 size_t regions_per_thread = i; 777 size_t region_size; 778 779 region_size = tcg_init_ctx.code_gen_buffer_size; 780 region_size /= max_cpus * regions_per_thread; 781 782 if (region_size >= 2 * 1024u * 1024) { 783 return max_cpus * regions_per_thread; 784 } 785 } 786 /* If we can't, then just allocate one region per vCPU thread */ 787 return max_cpus; 788 } 789 #endif 790 791 /* 792 * Initializes region partitioning. 793 * 794 * Called at init time from the parent thread (i.e. the one calling 795 * tcg_context_init), after the target's TCG globals have been set. 796 * 797 * Region partitioning works by splitting code_gen_buffer into separate regions, 798 * and then assigning regions to TCG threads so that the threads can translate 799 * code in parallel without synchronization. 800 * 801 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at 802 * least max_cpus regions in MTTCG. In !MTTCG we use a single region. 803 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) 804 * must have been parsed before calling this function, since it calls 805 * qemu_tcg_mttcg_enabled(). 806 * 807 * In user-mode we use a single region. Having multiple regions in user-mode 808 * is not supported, because the number of vCPU threads (recall that each thread 809 * spawned by the guest corresponds to a vCPU thread) is only bounded by the 810 * OS, and usually this number is huge (tens of thousands is not uncommon). 811 * Thus, given this large bound on the number of vCPU threads and the fact 812 * that code_gen_buffer is allocated at compile-time, we cannot guarantee 813 * that the availability of at least one region per vCPU thread. 814 * 815 * However, this user-mode limitation is unlikely to be a significant problem 816 * in practice. Multi-threaded guests share most if not all of their translated 817 * code, which makes parallel code generation less appealing than in softmmu. 818 */ 819 void tcg_region_init(void) 820 { 821 void *buf = tcg_init_ctx.code_gen_buffer; 822 void *aligned; 823 size_t size = tcg_init_ctx.code_gen_buffer_size; 824 size_t page_size = qemu_real_host_page_size; 825 size_t region_size; 826 size_t n_regions; 827 size_t i; 828 uintptr_t splitwx_diff; 829 830 n_regions = tcg_n_regions(); 831 832 /* The first region will be 'aligned - buf' bytes larger than the others */ 833 aligned = QEMU_ALIGN_PTR_UP(buf, page_size); 834 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size); 835 /* 836 * Make region_size a multiple of page_size, using aligned as the start. 837 * As a result of this we might end up with a few extra pages at the end of 838 * the buffer; we will assign those to the last region. 839 */ 840 region_size = (size - (aligned - buf)) / n_regions; 841 region_size = QEMU_ALIGN_DOWN(region_size, page_size); 842 843 /* A region must have at least 2 pages; one code, one guard */ 844 g_assert(region_size >= 2 * page_size); 845 846 /* init the region struct */ 847 qemu_mutex_init(®ion.lock); 848 region.n = n_regions; 849 region.size = region_size - page_size; 850 region.stride = region_size; 851 region.start = buf; 852 region.start_aligned = aligned; 853 /* page-align the end, since its last page will be a guard page */ 854 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size); 855 /* account for that last guard page */ 856 region.end -= page_size; 857 858 /* set guard pages */ 859 splitwx_diff = tcg_splitwx_diff; 860 for (i = 0; i < region.n; i++) { 861 void *start, *end; 862 int rc; 863 864 tcg_region_bounds(i, &start, &end); 865 rc = qemu_mprotect_none(end, page_size); 866 g_assert(!rc); 867 if (splitwx_diff) { 868 rc = qemu_mprotect_none(end + splitwx_diff, page_size); 869 g_assert(!rc); 870 } 871 } 872 873 tcg_region_trees_init(); 874 875 /* In user-mode we support only one ctx, so do the initial allocation now */ 876 #ifdef CONFIG_USER_ONLY 877 { 878 bool err = tcg_region_initial_alloc__locked(tcg_ctx); 879 880 g_assert(!err); 881 } 882 #endif 883 } 884 885 #ifdef CONFIG_DEBUG_TCG 886 const void *tcg_splitwx_to_rx(void *rw) 887 { 888 /* Pass NULL pointers unchanged. */ 889 if (rw) { 890 g_assert(in_code_gen_buffer(rw)); 891 rw += tcg_splitwx_diff; 892 } 893 return rw; 894 } 895 896 void *tcg_splitwx_to_rw(const void *rx) 897 { 898 /* Pass NULL pointers unchanged. */ 899 if (rx) { 900 rx -= tcg_splitwx_diff; 901 /* Assert that we end with a pointer in the rw region. */ 902 g_assert(in_code_gen_buffer(rx)); 903 } 904 return (void *)rx; 905 } 906 #endif /* CONFIG_DEBUG_TCG */ 907 908 static void alloc_tcg_plugin_context(TCGContext *s) 909 { 910 #ifdef CONFIG_PLUGIN 911 s->plugin_tb = g_new0(struct qemu_plugin_tb, 1); 912 s->plugin_tb->insns = 913 g_ptr_array_new_with_free_func(qemu_plugin_insn_cleanup_fn); 914 #endif 915 } 916 917 /* 918 * All TCG threads except the parent (i.e. the one that called tcg_context_init 919 * and registered the target's TCG globals) must register with this function 920 * before initiating translation. 921 * 922 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation 923 * of tcg_region_init() for the reasoning behind this. 924 * 925 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in 926 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context 927 * is not used anymore for translation once this function is called. 928 * 929 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates 930 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode. 931 */ 932 #ifdef CONFIG_USER_ONLY 933 void tcg_register_thread(void) 934 { 935 tcg_ctx = &tcg_init_ctx; 936 } 937 #else 938 void tcg_register_thread(void) 939 { 940 MachineState *ms = MACHINE(qdev_get_machine()); 941 TCGContext *s = g_malloc(sizeof(*s)); 942 unsigned int i, n; 943 bool err; 944 945 *s = tcg_init_ctx; 946 947 /* Relink mem_base. */ 948 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) { 949 if (tcg_init_ctx.temps[i].mem_base) { 950 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps; 951 tcg_debug_assert(b >= 0 && b < n); 952 s->temps[i].mem_base = &s->temps[b]; 953 } 954 } 955 956 /* Claim an entry in tcg_ctxs */ 957 n = qatomic_fetch_inc(&n_tcg_ctxs); 958 g_assert(n < ms->smp.max_cpus); 959 qatomic_set(&tcg_ctxs[n], s); 960 961 if (n > 0) { 962 alloc_tcg_plugin_context(s); 963 } 964 965 tcg_ctx = s; 966 qemu_mutex_lock(®ion.lock); 967 err = tcg_region_initial_alloc__locked(tcg_ctx); 968 g_assert(!err); 969 qemu_mutex_unlock(®ion.lock); 970 } 971 #endif /* !CONFIG_USER_ONLY */ 972 973 /* 974 * Returns the size (in bytes) of all translated code (i.e. from all regions) 975 * currently in the cache. 976 * See also: tcg_code_capacity() 977 * Do not confuse with tcg_current_code_size(); that one applies to a single 978 * TCG context. 979 */ 980 size_t tcg_code_size(void) 981 { 982 unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); 983 unsigned int i; 984 size_t total; 985 986 qemu_mutex_lock(®ion.lock); 987 total = region.agg_size_full; 988 for (i = 0; i < n_ctxs; i++) { 989 const TCGContext *s = qatomic_read(&tcg_ctxs[i]); 990 size_t size; 991 992 size = qatomic_read(&s->code_gen_ptr) - s->code_gen_buffer; 993 g_assert(size <= s->code_gen_buffer_size); 994 total += size; 995 } 996 qemu_mutex_unlock(®ion.lock); 997 return total; 998 } 999 1000 /* 1001 * Returns the code capacity (in bytes) of the entire cache, i.e. including all 1002 * regions. 1003 * See also: tcg_code_size() 1004 */ 1005 size_t tcg_code_capacity(void) 1006 { 1007 size_t guard_size, capacity; 1008 1009 /* no need for synchronization; these variables are set at init time */ 1010 guard_size = region.stride - region.size; 1011 capacity = region.end + guard_size - region.start; 1012 capacity -= region.n * (guard_size + TCG_HIGHWATER); 1013 return capacity; 1014 } 1015 1016 size_t tcg_tb_phys_invalidate_count(void) 1017 { 1018 unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); 1019 unsigned int i; 1020 size_t total = 0; 1021 1022 for (i = 0; i < n_ctxs; i++) { 1023 const TCGContext *s = qatomic_read(&tcg_ctxs[i]); 1024 1025 total += qatomic_read(&s->tb_phys_invalidate_count); 1026 } 1027 return total; 1028 } 1029 1030 /* pool based memory allocation */ 1031 void *tcg_malloc_internal(TCGContext *s, int size) 1032 { 1033 TCGPool *p; 1034 int pool_size; 1035 1036 if (size > TCG_POOL_CHUNK_SIZE) { 1037 /* big malloc: insert a new pool (XXX: could optimize) */ 1038 p = g_malloc(sizeof(TCGPool) + size); 1039 p->size = size; 1040 p->next = s->pool_first_large; 1041 s->pool_first_large = p; 1042 return p->data; 1043 } else { 1044 p = s->pool_current; 1045 if (!p) { 1046 p = s->pool_first; 1047 if (!p) 1048 goto new_pool; 1049 } else { 1050 if (!p->next) { 1051 new_pool: 1052 pool_size = TCG_POOL_CHUNK_SIZE; 1053 p = g_malloc(sizeof(TCGPool) + pool_size); 1054 p->size = pool_size; 1055 p->next = NULL; 1056 if (s->pool_current) 1057 s->pool_current->next = p; 1058 else 1059 s->pool_first = p; 1060 } else { 1061 p = p->next; 1062 } 1063 } 1064 } 1065 s->pool_current = p; 1066 s->pool_cur = p->data + size; 1067 s->pool_end = p->data + p->size; 1068 return p->data; 1069 } 1070 1071 void tcg_pool_reset(TCGContext *s) 1072 { 1073 TCGPool *p, *t; 1074 for (p = s->pool_first_large; p; p = t) { 1075 t = p->next; 1076 g_free(p); 1077 } 1078 s->pool_first_large = NULL; 1079 s->pool_cur = s->pool_end = NULL; 1080 s->pool_current = NULL; 1081 } 1082 1083 typedef struct TCGHelperInfo { 1084 void *func; 1085 const char *name; 1086 unsigned flags; 1087 unsigned sizemask; 1088 } TCGHelperInfo; 1089 1090 #include "exec/helper-proto.h" 1091 1092 static const TCGHelperInfo all_helpers[] = { 1093 #include "exec/helper-tcg.h" 1094 }; 1095 static GHashTable *helper_table; 1096 1097 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)]; 1098 static void process_op_defs(TCGContext *s); 1099 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 1100 TCGReg reg, const char *name); 1101 1102 void tcg_context_init(TCGContext *s) 1103 { 1104 int op, total_args, n, i; 1105 TCGOpDef *def; 1106 TCGArgConstraint *args_ct; 1107 TCGTemp *ts; 1108 1109 memset(s, 0, sizeof(*s)); 1110 s->nb_globals = 0; 1111 1112 /* Count total number of arguments and allocate the corresponding 1113 space */ 1114 total_args = 0; 1115 for(op = 0; op < NB_OPS; op++) { 1116 def = &tcg_op_defs[op]; 1117 n = def->nb_iargs + def->nb_oargs; 1118 total_args += n; 1119 } 1120 1121 args_ct = g_new0(TCGArgConstraint, total_args); 1122 1123 for(op = 0; op < NB_OPS; op++) { 1124 def = &tcg_op_defs[op]; 1125 def->args_ct = args_ct; 1126 n = def->nb_iargs + def->nb_oargs; 1127 args_ct += n; 1128 } 1129 1130 /* Register helpers. */ 1131 /* Use g_direct_hash/equal for direct pointer comparisons on func. */ 1132 helper_table = g_hash_table_new(NULL, NULL); 1133 1134 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) { 1135 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func, 1136 (gpointer)&all_helpers[i]); 1137 } 1138 1139 tcg_target_init(s); 1140 process_op_defs(s); 1141 1142 /* Reverse the order of the saved registers, assuming they're all at 1143 the start of tcg_target_reg_alloc_order. */ 1144 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) { 1145 int r = tcg_target_reg_alloc_order[n]; 1146 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) { 1147 break; 1148 } 1149 } 1150 for (i = 0; i < n; ++i) { 1151 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i]; 1152 } 1153 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) { 1154 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i]; 1155 } 1156 1157 alloc_tcg_plugin_context(s); 1158 1159 tcg_ctx = s; 1160 /* 1161 * In user-mode we simply share the init context among threads, since we 1162 * use a single region. See the documentation tcg_region_init() for the 1163 * reasoning behind this. 1164 * In softmmu we will have at most max_cpus TCG threads. 1165 */ 1166 #ifdef CONFIG_USER_ONLY 1167 tcg_ctxs = &tcg_ctx; 1168 n_tcg_ctxs = 1; 1169 #else 1170 MachineState *ms = MACHINE(qdev_get_machine()); 1171 unsigned int max_cpus = ms->smp.max_cpus; 1172 tcg_ctxs = g_new(TCGContext *, max_cpus); 1173 #endif 1174 1175 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0)); 1176 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env"); 1177 cpu_env = temp_tcgv_ptr(ts); 1178 } 1179 1180 /* 1181 * Allocate TBs right before their corresponding translated code, making 1182 * sure that TBs and code are on different cache lines. 1183 */ 1184 TranslationBlock *tcg_tb_alloc(TCGContext *s) 1185 { 1186 uintptr_t align = qemu_icache_linesize; 1187 TranslationBlock *tb; 1188 void *next; 1189 1190 retry: 1191 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align); 1192 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align); 1193 1194 if (unlikely(next > s->code_gen_highwater)) { 1195 if (tcg_region_alloc(s)) { 1196 return NULL; 1197 } 1198 goto retry; 1199 } 1200 qatomic_set(&s->code_gen_ptr, next); 1201 s->data_gen_ptr = NULL; 1202 return tb; 1203 } 1204 1205 void tcg_prologue_init(TCGContext *s) 1206 { 1207 size_t prologue_size, total_size; 1208 void *buf0, *buf1; 1209 1210 /* Put the prologue at the beginning of code_gen_buffer. */ 1211 buf0 = s->code_gen_buffer; 1212 total_size = s->code_gen_buffer_size; 1213 s->code_ptr = buf0; 1214 s->code_buf = buf0; 1215 s->data_gen_ptr = NULL; 1216 1217 /* 1218 * The region trees are not yet configured, but tcg_splitwx_to_rx 1219 * needs the bounds for an assert. 1220 */ 1221 region.start = buf0; 1222 region.end = buf0 + total_size; 1223 1224 #ifndef CONFIG_TCG_INTERPRETER 1225 tcg_qemu_tb_exec = (tcg_prologue_fn *)tcg_splitwx_to_rx(buf0); 1226 #endif 1227 1228 /* Compute a high-water mark, at which we voluntarily flush the buffer 1229 and start over. The size here is arbitrary, significantly larger 1230 than we expect the code generation for any one opcode to require. */ 1231 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER); 1232 1233 #ifdef TCG_TARGET_NEED_POOL_LABELS 1234 s->pool_labels = NULL; 1235 #endif 1236 1237 qemu_thread_jit_write(); 1238 /* Generate the prologue. */ 1239 tcg_target_qemu_prologue(s); 1240 1241 #ifdef TCG_TARGET_NEED_POOL_LABELS 1242 /* Allow the prologue to put e.g. guest_base into a pool entry. */ 1243 { 1244 int result = tcg_out_pool_finalize(s); 1245 tcg_debug_assert(result == 0); 1246 } 1247 #endif 1248 1249 buf1 = s->code_ptr; 1250 #ifndef CONFIG_TCG_INTERPRETER 1251 flush_idcache_range((uintptr_t)tcg_splitwx_to_rx(buf0), (uintptr_t)buf0, 1252 tcg_ptr_byte_diff(buf1, buf0)); 1253 #endif 1254 1255 /* Deduct the prologue from the buffer. */ 1256 prologue_size = tcg_current_code_size(s); 1257 s->code_gen_ptr = buf1; 1258 s->code_gen_buffer = buf1; 1259 s->code_buf = buf1; 1260 total_size -= prologue_size; 1261 s->code_gen_buffer_size = total_size; 1262 1263 tcg_register_jit(tcg_splitwx_to_rx(s->code_gen_buffer), total_size); 1264 1265 #ifdef DEBUG_DISAS 1266 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { 1267 FILE *logfile = qemu_log_lock(); 1268 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size); 1269 if (s->data_gen_ptr) { 1270 size_t code_size = s->data_gen_ptr - buf0; 1271 size_t data_size = prologue_size - code_size; 1272 size_t i; 1273 1274 log_disas(buf0, code_size); 1275 1276 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1277 if (sizeof(tcg_target_ulong) == 8) { 1278 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1279 (uintptr_t)s->data_gen_ptr + i, 1280 *(uint64_t *)(s->data_gen_ptr + i)); 1281 } else { 1282 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1283 (uintptr_t)s->data_gen_ptr + i, 1284 *(uint32_t *)(s->data_gen_ptr + i)); 1285 } 1286 } 1287 } else { 1288 log_disas(buf0, prologue_size); 1289 } 1290 qemu_log("\n"); 1291 qemu_log_flush(); 1292 qemu_log_unlock(logfile); 1293 } 1294 #endif 1295 1296 /* Assert that goto_ptr is implemented completely. */ 1297 if (TCG_TARGET_HAS_goto_ptr) { 1298 tcg_debug_assert(tcg_code_gen_epilogue != NULL); 1299 } 1300 } 1301 1302 void tcg_func_start(TCGContext *s) 1303 { 1304 tcg_pool_reset(s); 1305 s->nb_temps = s->nb_globals; 1306 1307 /* No temps have been previously allocated for size or locality. */ 1308 memset(s->free_temps, 0, sizeof(s->free_temps)); 1309 1310 /* No constant temps have been previously allocated. */ 1311 for (int i = 0; i < TCG_TYPE_COUNT; ++i) { 1312 if (s->const_table[i]) { 1313 g_hash_table_remove_all(s->const_table[i]); 1314 } 1315 } 1316 1317 s->nb_ops = 0; 1318 s->nb_labels = 0; 1319 s->current_frame_offset = s->frame_start; 1320 1321 #ifdef CONFIG_DEBUG_TCG 1322 s->goto_tb_issue_mask = 0; 1323 #endif 1324 1325 QTAILQ_INIT(&s->ops); 1326 QTAILQ_INIT(&s->free_ops); 1327 QSIMPLEQ_INIT(&s->labels); 1328 } 1329 1330 static TCGTemp *tcg_temp_alloc(TCGContext *s) 1331 { 1332 int n = s->nb_temps++; 1333 1334 if (n >= TCG_MAX_TEMPS) { 1335 tcg_raise_tb_overflow(s); 1336 } 1337 return memset(&s->temps[n], 0, sizeof(TCGTemp)); 1338 } 1339 1340 static TCGTemp *tcg_global_alloc(TCGContext *s) 1341 { 1342 TCGTemp *ts; 1343 1344 tcg_debug_assert(s->nb_globals == s->nb_temps); 1345 tcg_debug_assert(s->nb_globals < TCG_MAX_TEMPS); 1346 s->nb_globals++; 1347 ts = tcg_temp_alloc(s); 1348 ts->kind = TEMP_GLOBAL; 1349 1350 return ts; 1351 } 1352 1353 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 1354 TCGReg reg, const char *name) 1355 { 1356 TCGTemp *ts; 1357 1358 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) { 1359 tcg_abort(); 1360 } 1361 1362 ts = tcg_global_alloc(s); 1363 ts->base_type = type; 1364 ts->type = type; 1365 ts->kind = TEMP_FIXED; 1366 ts->reg = reg; 1367 ts->name = name; 1368 tcg_regset_set_reg(s->reserved_regs, reg); 1369 1370 return ts; 1371 } 1372 1373 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size) 1374 { 1375 s->frame_start = start; 1376 s->frame_end = start + size; 1377 s->frame_temp 1378 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame"); 1379 } 1380 1381 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base, 1382 intptr_t offset, const char *name) 1383 { 1384 TCGContext *s = tcg_ctx; 1385 TCGTemp *base_ts = tcgv_ptr_temp(base); 1386 TCGTemp *ts = tcg_global_alloc(s); 1387 int indirect_reg = 0, bigendian = 0; 1388 #ifdef HOST_WORDS_BIGENDIAN 1389 bigendian = 1; 1390 #endif 1391 1392 switch (base_ts->kind) { 1393 case TEMP_FIXED: 1394 break; 1395 case TEMP_GLOBAL: 1396 /* We do not support double-indirect registers. */ 1397 tcg_debug_assert(!base_ts->indirect_reg); 1398 base_ts->indirect_base = 1; 1399 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64 1400 ? 2 : 1); 1401 indirect_reg = 1; 1402 break; 1403 default: 1404 g_assert_not_reached(); 1405 } 1406 1407 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1408 TCGTemp *ts2 = tcg_global_alloc(s); 1409 char buf[64]; 1410 1411 ts->base_type = TCG_TYPE_I64; 1412 ts->type = TCG_TYPE_I32; 1413 ts->indirect_reg = indirect_reg; 1414 ts->mem_allocated = 1; 1415 ts->mem_base = base_ts; 1416 ts->mem_offset = offset + bigendian * 4; 1417 pstrcpy(buf, sizeof(buf), name); 1418 pstrcat(buf, sizeof(buf), "_0"); 1419 ts->name = strdup(buf); 1420 1421 tcg_debug_assert(ts2 == ts + 1); 1422 ts2->base_type = TCG_TYPE_I64; 1423 ts2->type = TCG_TYPE_I32; 1424 ts2->indirect_reg = indirect_reg; 1425 ts2->mem_allocated = 1; 1426 ts2->mem_base = base_ts; 1427 ts2->mem_offset = offset + (1 - bigendian) * 4; 1428 pstrcpy(buf, sizeof(buf), name); 1429 pstrcat(buf, sizeof(buf), "_1"); 1430 ts2->name = strdup(buf); 1431 } else { 1432 ts->base_type = type; 1433 ts->type = type; 1434 ts->indirect_reg = indirect_reg; 1435 ts->mem_allocated = 1; 1436 ts->mem_base = base_ts; 1437 ts->mem_offset = offset; 1438 ts->name = name; 1439 } 1440 return ts; 1441 } 1442 1443 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local) 1444 { 1445 TCGContext *s = tcg_ctx; 1446 TCGTempKind kind = temp_local ? TEMP_LOCAL : TEMP_NORMAL; 1447 TCGTemp *ts; 1448 int idx, k; 1449 1450 k = type + (temp_local ? TCG_TYPE_COUNT : 0); 1451 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS); 1452 if (idx < TCG_MAX_TEMPS) { 1453 /* There is already an available temp with the right type. */ 1454 clear_bit(idx, s->free_temps[k].l); 1455 1456 ts = &s->temps[idx]; 1457 ts->temp_allocated = 1; 1458 tcg_debug_assert(ts->base_type == type); 1459 tcg_debug_assert(ts->kind == kind); 1460 } else { 1461 ts = tcg_temp_alloc(s); 1462 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1463 TCGTemp *ts2 = tcg_temp_alloc(s); 1464 1465 ts->base_type = type; 1466 ts->type = TCG_TYPE_I32; 1467 ts->temp_allocated = 1; 1468 ts->kind = kind; 1469 1470 tcg_debug_assert(ts2 == ts + 1); 1471 ts2->base_type = TCG_TYPE_I64; 1472 ts2->type = TCG_TYPE_I32; 1473 ts2->temp_allocated = 1; 1474 ts2->kind = kind; 1475 } else { 1476 ts->base_type = type; 1477 ts->type = type; 1478 ts->temp_allocated = 1; 1479 ts->kind = kind; 1480 } 1481 } 1482 1483 #if defined(CONFIG_DEBUG_TCG) 1484 s->temps_in_use++; 1485 #endif 1486 return ts; 1487 } 1488 1489 TCGv_vec tcg_temp_new_vec(TCGType type) 1490 { 1491 TCGTemp *t; 1492 1493 #ifdef CONFIG_DEBUG_TCG 1494 switch (type) { 1495 case TCG_TYPE_V64: 1496 assert(TCG_TARGET_HAS_v64); 1497 break; 1498 case TCG_TYPE_V128: 1499 assert(TCG_TARGET_HAS_v128); 1500 break; 1501 case TCG_TYPE_V256: 1502 assert(TCG_TARGET_HAS_v256); 1503 break; 1504 default: 1505 g_assert_not_reached(); 1506 } 1507 #endif 1508 1509 t = tcg_temp_new_internal(type, 0); 1510 return temp_tcgv_vec(t); 1511 } 1512 1513 /* Create a new temp of the same type as an existing temp. */ 1514 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match) 1515 { 1516 TCGTemp *t = tcgv_vec_temp(match); 1517 1518 tcg_debug_assert(t->temp_allocated != 0); 1519 1520 t = tcg_temp_new_internal(t->base_type, 0); 1521 return temp_tcgv_vec(t); 1522 } 1523 1524 void tcg_temp_free_internal(TCGTemp *ts) 1525 { 1526 TCGContext *s = tcg_ctx; 1527 int k, idx; 1528 1529 /* In order to simplify users of tcg_constant_*, silently ignore free. */ 1530 if (ts->kind == TEMP_CONST) { 1531 return; 1532 } 1533 1534 #if defined(CONFIG_DEBUG_TCG) 1535 s->temps_in_use--; 1536 if (s->temps_in_use < 0) { 1537 fprintf(stderr, "More temporaries freed than allocated!\n"); 1538 } 1539 #endif 1540 1541 tcg_debug_assert(ts->kind < TEMP_GLOBAL); 1542 tcg_debug_assert(ts->temp_allocated != 0); 1543 ts->temp_allocated = 0; 1544 1545 idx = temp_idx(ts); 1546 k = ts->base_type + (ts->kind == TEMP_NORMAL ? 0 : TCG_TYPE_COUNT); 1547 set_bit(idx, s->free_temps[k].l); 1548 } 1549 1550 TCGTemp *tcg_constant_internal(TCGType type, int64_t val) 1551 { 1552 TCGContext *s = tcg_ctx; 1553 GHashTable *h = s->const_table[type]; 1554 TCGTemp *ts; 1555 1556 if (h == NULL) { 1557 h = g_hash_table_new(g_int64_hash, g_int64_equal); 1558 s->const_table[type] = h; 1559 } 1560 1561 ts = g_hash_table_lookup(h, &val); 1562 if (ts == NULL) { 1563 ts = tcg_temp_alloc(s); 1564 1565 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1566 TCGTemp *ts2 = tcg_temp_alloc(s); 1567 1568 ts->base_type = TCG_TYPE_I64; 1569 ts->type = TCG_TYPE_I32; 1570 ts->kind = TEMP_CONST; 1571 ts->temp_allocated = 1; 1572 /* 1573 * Retain the full value of the 64-bit constant in the low 1574 * part, so that the hash table works. Actual uses will 1575 * truncate the value to the low part. 1576 */ 1577 ts->val = val; 1578 1579 tcg_debug_assert(ts2 == ts + 1); 1580 ts2->base_type = TCG_TYPE_I64; 1581 ts2->type = TCG_TYPE_I32; 1582 ts2->kind = TEMP_CONST; 1583 ts2->temp_allocated = 1; 1584 ts2->val = val >> 32; 1585 } else { 1586 ts->base_type = type; 1587 ts->type = type; 1588 ts->kind = TEMP_CONST; 1589 ts->temp_allocated = 1; 1590 ts->val = val; 1591 } 1592 g_hash_table_insert(h, &ts->val, ts); 1593 } 1594 1595 return ts; 1596 } 1597 1598 TCGv_vec tcg_constant_vec(TCGType type, unsigned vece, int64_t val) 1599 { 1600 val = dup_const(vece, val); 1601 return temp_tcgv_vec(tcg_constant_internal(type, val)); 1602 } 1603 1604 TCGv_vec tcg_constant_vec_matching(TCGv_vec match, unsigned vece, int64_t val) 1605 { 1606 TCGTemp *t = tcgv_vec_temp(match); 1607 1608 tcg_debug_assert(t->temp_allocated != 0); 1609 return tcg_constant_vec(t->base_type, vece, val); 1610 } 1611 1612 TCGv_i32 tcg_const_i32(int32_t val) 1613 { 1614 TCGv_i32 t0; 1615 t0 = tcg_temp_new_i32(); 1616 tcg_gen_movi_i32(t0, val); 1617 return t0; 1618 } 1619 1620 TCGv_i64 tcg_const_i64(int64_t val) 1621 { 1622 TCGv_i64 t0; 1623 t0 = tcg_temp_new_i64(); 1624 tcg_gen_movi_i64(t0, val); 1625 return t0; 1626 } 1627 1628 TCGv_i32 tcg_const_local_i32(int32_t val) 1629 { 1630 TCGv_i32 t0; 1631 t0 = tcg_temp_local_new_i32(); 1632 tcg_gen_movi_i32(t0, val); 1633 return t0; 1634 } 1635 1636 TCGv_i64 tcg_const_local_i64(int64_t val) 1637 { 1638 TCGv_i64 t0; 1639 t0 = tcg_temp_local_new_i64(); 1640 tcg_gen_movi_i64(t0, val); 1641 return t0; 1642 } 1643 1644 #if defined(CONFIG_DEBUG_TCG) 1645 void tcg_clear_temp_count(void) 1646 { 1647 TCGContext *s = tcg_ctx; 1648 s->temps_in_use = 0; 1649 } 1650 1651 int tcg_check_temp_count(void) 1652 { 1653 TCGContext *s = tcg_ctx; 1654 if (s->temps_in_use) { 1655 /* Clear the count so that we don't give another 1656 * warning immediately next time around. 1657 */ 1658 s->temps_in_use = 0; 1659 return 1; 1660 } 1661 return 0; 1662 } 1663 #endif 1664 1665 /* Return true if OP may appear in the opcode stream. 1666 Test the runtime variable that controls each opcode. */ 1667 bool tcg_op_supported(TCGOpcode op) 1668 { 1669 const bool have_vec 1670 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256; 1671 1672 switch (op) { 1673 case INDEX_op_discard: 1674 case INDEX_op_set_label: 1675 case INDEX_op_call: 1676 case INDEX_op_br: 1677 case INDEX_op_mb: 1678 case INDEX_op_insn_start: 1679 case INDEX_op_exit_tb: 1680 case INDEX_op_goto_tb: 1681 case INDEX_op_qemu_ld_i32: 1682 case INDEX_op_qemu_st_i32: 1683 case INDEX_op_qemu_ld_i64: 1684 case INDEX_op_qemu_st_i64: 1685 return true; 1686 1687 case INDEX_op_qemu_st8_i32: 1688 return TCG_TARGET_HAS_qemu_st8_i32; 1689 1690 case INDEX_op_goto_ptr: 1691 return TCG_TARGET_HAS_goto_ptr; 1692 1693 case INDEX_op_mov_i32: 1694 case INDEX_op_setcond_i32: 1695 case INDEX_op_brcond_i32: 1696 case INDEX_op_ld8u_i32: 1697 case INDEX_op_ld8s_i32: 1698 case INDEX_op_ld16u_i32: 1699 case INDEX_op_ld16s_i32: 1700 case INDEX_op_ld_i32: 1701 case INDEX_op_st8_i32: 1702 case INDEX_op_st16_i32: 1703 case INDEX_op_st_i32: 1704 case INDEX_op_add_i32: 1705 case INDEX_op_sub_i32: 1706 case INDEX_op_mul_i32: 1707 case INDEX_op_and_i32: 1708 case INDEX_op_or_i32: 1709 case INDEX_op_xor_i32: 1710 case INDEX_op_shl_i32: 1711 case INDEX_op_shr_i32: 1712 case INDEX_op_sar_i32: 1713 return true; 1714 1715 case INDEX_op_movcond_i32: 1716 return TCG_TARGET_HAS_movcond_i32; 1717 case INDEX_op_div_i32: 1718 case INDEX_op_divu_i32: 1719 return TCG_TARGET_HAS_div_i32; 1720 case INDEX_op_rem_i32: 1721 case INDEX_op_remu_i32: 1722 return TCG_TARGET_HAS_rem_i32; 1723 case INDEX_op_div2_i32: 1724 case INDEX_op_divu2_i32: 1725 return TCG_TARGET_HAS_div2_i32; 1726 case INDEX_op_rotl_i32: 1727 case INDEX_op_rotr_i32: 1728 return TCG_TARGET_HAS_rot_i32; 1729 case INDEX_op_deposit_i32: 1730 return TCG_TARGET_HAS_deposit_i32; 1731 case INDEX_op_extract_i32: 1732 return TCG_TARGET_HAS_extract_i32; 1733 case INDEX_op_sextract_i32: 1734 return TCG_TARGET_HAS_sextract_i32; 1735 case INDEX_op_extract2_i32: 1736 return TCG_TARGET_HAS_extract2_i32; 1737 case INDEX_op_add2_i32: 1738 return TCG_TARGET_HAS_add2_i32; 1739 case INDEX_op_sub2_i32: 1740 return TCG_TARGET_HAS_sub2_i32; 1741 case INDEX_op_mulu2_i32: 1742 return TCG_TARGET_HAS_mulu2_i32; 1743 case INDEX_op_muls2_i32: 1744 return TCG_TARGET_HAS_muls2_i32; 1745 case INDEX_op_muluh_i32: 1746 return TCG_TARGET_HAS_muluh_i32; 1747 case INDEX_op_mulsh_i32: 1748 return TCG_TARGET_HAS_mulsh_i32; 1749 case INDEX_op_ext8s_i32: 1750 return TCG_TARGET_HAS_ext8s_i32; 1751 case INDEX_op_ext16s_i32: 1752 return TCG_TARGET_HAS_ext16s_i32; 1753 case INDEX_op_ext8u_i32: 1754 return TCG_TARGET_HAS_ext8u_i32; 1755 case INDEX_op_ext16u_i32: 1756 return TCG_TARGET_HAS_ext16u_i32; 1757 case INDEX_op_bswap16_i32: 1758 return TCG_TARGET_HAS_bswap16_i32; 1759 case INDEX_op_bswap32_i32: 1760 return TCG_TARGET_HAS_bswap32_i32; 1761 case INDEX_op_not_i32: 1762 return TCG_TARGET_HAS_not_i32; 1763 case INDEX_op_neg_i32: 1764 return TCG_TARGET_HAS_neg_i32; 1765 case INDEX_op_andc_i32: 1766 return TCG_TARGET_HAS_andc_i32; 1767 case INDEX_op_orc_i32: 1768 return TCG_TARGET_HAS_orc_i32; 1769 case INDEX_op_eqv_i32: 1770 return TCG_TARGET_HAS_eqv_i32; 1771 case INDEX_op_nand_i32: 1772 return TCG_TARGET_HAS_nand_i32; 1773 case INDEX_op_nor_i32: 1774 return TCG_TARGET_HAS_nor_i32; 1775 case INDEX_op_clz_i32: 1776 return TCG_TARGET_HAS_clz_i32; 1777 case INDEX_op_ctz_i32: 1778 return TCG_TARGET_HAS_ctz_i32; 1779 case INDEX_op_ctpop_i32: 1780 return TCG_TARGET_HAS_ctpop_i32; 1781 1782 case INDEX_op_brcond2_i32: 1783 case INDEX_op_setcond2_i32: 1784 return TCG_TARGET_REG_BITS == 32; 1785 1786 case INDEX_op_mov_i64: 1787 case INDEX_op_setcond_i64: 1788 case INDEX_op_brcond_i64: 1789 case INDEX_op_ld8u_i64: 1790 case INDEX_op_ld8s_i64: 1791 case INDEX_op_ld16u_i64: 1792 case INDEX_op_ld16s_i64: 1793 case INDEX_op_ld32u_i64: 1794 case INDEX_op_ld32s_i64: 1795 case INDEX_op_ld_i64: 1796 case INDEX_op_st8_i64: 1797 case INDEX_op_st16_i64: 1798 case INDEX_op_st32_i64: 1799 case INDEX_op_st_i64: 1800 case INDEX_op_add_i64: 1801 case INDEX_op_sub_i64: 1802 case INDEX_op_mul_i64: 1803 case INDEX_op_and_i64: 1804 case INDEX_op_or_i64: 1805 case INDEX_op_xor_i64: 1806 case INDEX_op_shl_i64: 1807 case INDEX_op_shr_i64: 1808 case INDEX_op_sar_i64: 1809 case INDEX_op_ext_i32_i64: 1810 case INDEX_op_extu_i32_i64: 1811 return TCG_TARGET_REG_BITS == 64; 1812 1813 case INDEX_op_movcond_i64: 1814 return TCG_TARGET_HAS_movcond_i64; 1815 case INDEX_op_div_i64: 1816 case INDEX_op_divu_i64: 1817 return TCG_TARGET_HAS_div_i64; 1818 case INDEX_op_rem_i64: 1819 case INDEX_op_remu_i64: 1820 return TCG_TARGET_HAS_rem_i64; 1821 case INDEX_op_div2_i64: 1822 case INDEX_op_divu2_i64: 1823 return TCG_TARGET_HAS_div2_i64; 1824 case INDEX_op_rotl_i64: 1825 case INDEX_op_rotr_i64: 1826 return TCG_TARGET_HAS_rot_i64; 1827 case INDEX_op_deposit_i64: 1828 return TCG_TARGET_HAS_deposit_i64; 1829 case INDEX_op_extract_i64: 1830 return TCG_TARGET_HAS_extract_i64; 1831 case INDEX_op_sextract_i64: 1832 return TCG_TARGET_HAS_sextract_i64; 1833 case INDEX_op_extract2_i64: 1834 return TCG_TARGET_HAS_extract2_i64; 1835 case INDEX_op_extrl_i64_i32: 1836 return TCG_TARGET_HAS_extrl_i64_i32; 1837 case INDEX_op_extrh_i64_i32: 1838 return TCG_TARGET_HAS_extrh_i64_i32; 1839 case INDEX_op_ext8s_i64: 1840 return TCG_TARGET_HAS_ext8s_i64; 1841 case INDEX_op_ext16s_i64: 1842 return TCG_TARGET_HAS_ext16s_i64; 1843 case INDEX_op_ext32s_i64: 1844 return TCG_TARGET_HAS_ext32s_i64; 1845 case INDEX_op_ext8u_i64: 1846 return TCG_TARGET_HAS_ext8u_i64; 1847 case INDEX_op_ext16u_i64: 1848 return TCG_TARGET_HAS_ext16u_i64; 1849 case INDEX_op_ext32u_i64: 1850 return TCG_TARGET_HAS_ext32u_i64; 1851 case INDEX_op_bswap16_i64: 1852 return TCG_TARGET_HAS_bswap16_i64; 1853 case INDEX_op_bswap32_i64: 1854 return TCG_TARGET_HAS_bswap32_i64; 1855 case INDEX_op_bswap64_i64: 1856 return TCG_TARGET_HAS_bswap64_i64; 1857 case INDEX_op_not_i64: 1858 return TCG_TARGET_HAS_not_i64; 1859 case INDEX_op_neg_i64: 1860 return TCG_TARGET_HAS_neg_i64; 1861 case INDEX_op_andc_i64: 1862 return TCG_TARGET_HAS_andc_i64; 1863 case INDEX_op_orc_i64: 1864 return TCG_TARGET_HAS_orc_i64; 1865 case INDEX_op_eqv_i64: 1866 return TCG_TARGET_HAS_eqv_i64; 1867 case INDEX_op_nand_i64: 1868 return TCG_TARGET_HAS_nand_i64; 1869 case INDEX_op_nor_i64: 1870 return TCG_TARGET_HAS_nor_i64; 1871 case INDEX_op_clz_i64: 1872 return TCG_TARGET_HAS_clz_i64; 1873 case INDEX_op_ctz_i64: 1874 return TCG_TARGET_HAS_ctz_i64; 1875 case INDEX_op_ctpop_i64: 1876 return TCG_TARGET_HAS_ctpop_i64; 1877 case INDEX_op_add2_i64: 1878 return TCG_TARGET_HAS_add2_i64; 1879 case INDEX_op_sub2_i64: 1880 return TCG_TARGET_HAS_sub2_i64; 1881 case INDEX_op_mulu2_i64: 1882 return TCG_TARGET_HAS_mulu2_i64; 1883 case INDEX_op_muls2_i64: 1884 return TCG_TARGET_HAS_muls2_i64; 1885 case INDEX_op_muluh_i64: 1886 return TCG_TARGET_HAS_muluh_i64; 1887 case INDEX_op_mulsh_i64: 1888 return TCG_TARGET_HAS_mulsh_i64; 1889 1890 case INDEX_op_mov_vec: 1891 case INDEX_op_dup_vec: 1892 case INDEX_op_dupm_vec: 1893 case INDEX_op_ld_vec: 1894 case INDEX_op_st_vec: 1895 case INDEX_op_add_vec: 1896 case INDEX_op_sub_vec: 1897 case INDEX_op_and_vec: 1898 case INDEX_op_or_vec: 1899 case INDEX_op_xor_vec: 1900 case INDEX_op_cmp_vec: 1901 return have_vec; 1902 case INDEX_op_dup2_vec: 1903 return have_vec && TCG_TARGET_REG_BITS == 32; 1904 case INDEX_op_not_vec: 1905 return have_vec && TCG_TARGET_HAS_not_vec; 1906 case INDEX_op_neg_vec: 1907 return have_vec && TCG_TARGET_HAS_neg_vec; 1908 case INDEX_op_abs_vec: 1909 return have_vec && TCG_TARGET_HAS_abs_vec; 1910 case INDEX_op_andc_vec: 1911 return have_vec && TCG_TARGET_HAS_andc_vec; 1912 case INDEX_op_orc_vec: 1913 return have_vec && TCG_TARGET_HAS_orc_vec; 1914 case INDEX_op_mul_vec: 1915 return have_vec && TCG_TARGET_HAS_mul_vec; 1916 case INDEX_op_shli_vec: 1917 case INDEX_op_shri_vec: 1918 case INDEX_op_sari_vec: 1919 return have_vec && TCG_TARGET_HAS_shi_vec; 1920 case INDEX_op_shls_vec: 1921 case INDEX_op_shrs_vec: 1922 case INDEX_op_sars_vec: 1923 return have_vec && TCG_TARGET_HAS_shs_vec; 1924 case INDEX_op_shlv_vec: 1925 case INDEX_op_shrv_vec: 1926 case INDEX_op_sarv_vec: 1927 return have_vec && TCG_TARGET_HAS_shv_vec; 1928 case INDEX_op_rotli_vec: 1929 return have_vec && TCG_TARGET_HAS_roti_vec; 1930 case INDEX_op_rotls_vec: 1931 return have_vec && TCG_TARGET_HAS_rots_vec; 1932 case INDEX_op_rotlv_vec: 1933 case INDEX_op_rotrv_vec: 1934 return have_vec && TCG_TARGET_HAS_rotv_vec; 1935 case INDEX_op_ssadd_vec: 1936 case INDEX_op_usadd_vec: 1937 case INDEX_op_sssub_vec: 1938 case INDEX_op_ussub_vec: 1939 return have_vec && TCG_TARGET_HAS_sat_vec; 1940 case INDEX_op_smin_vec: 1941 case INDEX_op_umin_vec: 1942 case INDEX_op_smax_vec: 1943 case INDEX_op_umax_vec: 1944 return have_vec && TCG_TARGET_HAS_minmax_vec; 1945 case INDEX_op_bitsel_vec: 1946 return have_vec && TCG_TARGET_HAS_bitsel_vec; 1947 case INDEX_op_cmpsel_vec: 1948 return have_vec && TCG_TARGET_HAS_cmpsel_vec; 1949 1950 default: 1951 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS); 1952 return true; 1953 } 1954 } 1955 1956 /* Note: we convert the 64 bit args to 32 bit and do some alignment 1957 and endian swap. Maybe it would be better to do the alignment 1958 and endian swap in tcg_reg_alloc_call(). */ 1959 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args) 1960 { 1961 int i, real_args, nb_rets, pi; 1962 unsigned sizemask, flags; 1963 TCGHelperInfo *info; 1964 TCGOp *op; 1965 1966 info = g_hash_table_lookup(helper_table, (gpointer)func); 1967 flags = info->flags; 1968 sizemask = info->sizemask; 1969 1970 #ifdef CONFIG_PLUGIN 1971 /* detect non-plugin helpers */ 1972 if (tcg_ctx->plugin_insn && unlikely(strncmp(info->name, "plugin_", 7))) { 1973 tcg_ctx->plugin_insn->calls_helpers = true; 1974 } 1975 #endif 1976 1977 #if defined(__sparc__) && !defined(__arch64__) \ 1978 && !defined(CONFIG_TCG_INTERPRETER) 1979 /* We have 64-bit values in one register, but need to pass as two 1980 separate parameters. Split them. */ 1981 int orig_sizemask = sizemask; 1982 int orig_nargs = nargs; 1983 TCGv_i64 retl, reth; 1984 TCGTemp *split_args[MAX_OPC_PARAM]; 1985 1986 retl = NULL; 1987 reth = NULL; 1988 if (sizemask != 0) { 1989 for (i = real_args = 0; i < nargs; ++i) { 1990 int is_64bit = sizemask & (1 << (i+1)*2); 1991 if (is_64bit) { 1992 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1993 TCGv_i32 h = tcg_temp_new_i32(); 1994 TCGv_i32 l = tcg_temp_new_i32(); 1995 tcg_gen_extr_i64_i32(l, h, orig); 1996 split_args[real_args++] = tcgv_i32_temp(h); 1997 split_args[real_args++] = tcgv_i32_temp(l); 1998 } else { 1999 split_args[real_args++] = args[i]; 2000 } 2001 } 2002 nargs = real_args; 2003 args = split_args; 2004 sizemask = 0; 2005 } 2006 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 2007 for (i = 0; i < nargs; ++i) { 2008 int is_64bit = sizemask & (1 << (i+1)*2); 2009 int is_signed = sizemask & (2 << (i+1)*2); 2010 if (!is_64bit) { 2011 TCGv_i64 temp = tcg_temp_new_i64(); 2012 TCGv_i64 orig = temp_tcgv_i64(args[i]); 2013 if (is_signed) { 2014 tcg_gen_ext32s_i64(temp, orig); 2015 } else { 2016 tcg_gen_ext32u_i64(temp, orig); 2017 } 2018 args[i] = tcgv_i64_temp(temp); 2019 } 2020 } 2021 #endif /* TCG_TARGET_EXTEND_ARGS */ 2022 2023 op = tcg_emit_op(INDEX_op_call); 2024 2025 pi = 0; 2026 if (ret != NULL) { 2027 #if defined(__sparc__) && !defined(__arch64__) \ 2028 && !defined(CONFIG_TCG_INTERPRETER) 2029 if (orig_sizemask & 1) { 2030 /* The 32-bit ABI is going to return the 64-bit value in 2031 the %o0/%o1 register pair. Prepare for this by using 2032 two return temporaries, and reassemble below. */ 2033 retl = tcg_temp_new_i64(); 2034 reth = tcg_temp_new_i64(); 2035 op->args[pi++] = tcgv_i64_arg(reth); 2036 op->args[pi++] = tcgv_i64_arg(retl); 2037 nb_rets = 2; 2038 } else { 2039 op->args[pi++] = temp_arg(ret); 2040 nb_rets = 1; 2041 } 2042 #else 2043 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) { 2044 #ifdef HOST_WORDS_BIGENDIAN 2045 op->args[pi++] = temp_arg(ret + 1); 2046 op->args[pi++] = temp_arg(ret); 2047 #else 2048 op->args[pi++] = temp_arg(ret); 2049 op->args[pi++] = temp_arg(ret + 1); 2050 #endif 2051 nb_rets = 2; 2052 } else { 2053 op->args[pi++] = temp_arg(ret); 2054 nb_rets = 1; 2055 } 2056 #endif 2057 } else { 2058 nb_rets = 0; 2059 } 2060 TCGOP_CALLO(op) = nb_rets; 2061 2062 real_args = 0; 2063 for (i = 0; i < nargs; i++) { 2064 int is_64bit = sizemask & (1 << (i+1)*2); 2065 if (TCG_TARGET_REG_BITS < 64 && is_64bit) { 2066 #ifdef TCG_TARGET_CALL_ALIGN_ARGS 2067 /* some targets want aligned 64 bit args */ 2068 if (real_args & 1) { 2069 op->args[pi++] = TCG_CALL_DUMMY_ARG; 2070 real_args++; 2071 } 2072 #endif 2073 /* If stack grows up, then we will be placing successive 2074 arguments at lower addresses, which means we need to 2075 reverse the order compared to how we would normally 2076 treat either big or little-endian. For those arguments 2077 that will wind up in registers, this still works for 2078 HPPA (the only current STACK_GROWSUP target) since the 2079 argument registers are *also* allocated in decreasing 2080 order. If another such target is added, this logic may 2081 have to get more complicated to differentiate between 2082 stack arguments and register arguments. */ 2083 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP) 2084 op->args[pi++] = temp_arg(args[i] + 1); 2085 op->args[pi++] = temp_arg(args[i]); 2086 #else 2087 op->args[pi++] = temp_arg(args[i]); 2088 op->args[pi++] = temp_arg(args[i] + 1); 2089 #endif 2090 real_args += 2; 2091 continue; 2092 } 2093 2094 op->args[pi++] = temp_arg(args[i]); 2095 real_args++; 2096 } 2097 op->args[pi++] = (uintptr_t)func; 2098 op->args[pi++] = flags; 2099 TCGOP_CALLI(op) = real_args; 2100 2101 /* Make sure the fields didn't overflow. */ 2102 tcg_debug_assert(TCGOP_CALLI(op) == real_args); 2103 tcg_debug_assert(pi <= ARRAY_SIZE(op->args)); 2104 2105 #if defined(__sparc__) && !defined(__arch64__) \ 2106 && !defined(CONFIG_TCG_INTERPRETER) 2107 /* Free all of the parts we allocated above. */ 2108 for (i = real_args = 0; i < orig_nargs; ++i) { 2109 int is_64bit = orig_sizemask & (1 << (i+1)*2); 2110 if (is_64bit) { 2111 tcg_temp_free_internal(args[real_args++]); 2112 tcg_temp_free_internal(args[real_args++]); 2113 } else { 2114 real_args++; 2115 } 2116 } 2117 if (orig_sizemask & 1) { 2118 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them. 2119 Note that describing these as TCGv_i64 eliminates an unnecessary 2120 zero-extension that tcg_gen_concat_i32_i64 would create. */ 2121 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth); 2122 tcg_temp_free_i64(retl); 2123 tcg_temp_free_i64(reth); 2124 } 2125 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 2126 for (i = 0; i < nargs; ++i) { 2127 int is_64bit = sizemask & (1 << (i+1)*2); 2128 if (!is_64bit) { 2129 tcg_temp_free_internal(args[i]); 2130 } 2131 } 2132 #endif /* TCG_TARGET_EXTEND_ARGS */ 2133 } 2134 2135 static void tcg_reg_alloc_start(TCGContext *s) 2136 { 2137 int i, n; 2138 2139 for (i = 0, n = s->nb_temps; i < n; i++) { 2140 TCGTemp *ts = &s->temps[i]; 2141 TCGTempVal val = TEMP_VAL_MEM; 2142 2143 switch (ts->kind) { 2144 case TEMP_CONST: 2145 val = TEMP_VAL_CONST; 2146 break; 2147 case TEMP_FIXED: 2148 val = TEMP_VAL_REG; 2149 break; 2150 case TEMP_GLOBAL: 2151 break; 2152 case TEMP_NORMAL: 2153 val = TEMP_VAL_DEAD; 2154 /* fall through */ 2155 case TEMP_LOCAL: 2156 ts->mem_allocated = 0; 2157 break; 2158 default: 2159 g_assert_not_reached(); 2160 } 2161 ts->val_type = val; 2162 } 2163 2164 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp)); 2165 } 2166 2167 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size, 2168 TCGTemp *ts) 2169 { 2170 int idx = temp_idx(ts); 2171 2172 switch (ts->kind) { 2173 case TEMP_FIXED: 2174 case TEMP_GLOBAL: 2175 pstrcpy(buf, buf_size, ts->name); 2176 break; 2177 case TEMP_LOCAL: 2178 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals); 2179 break; 2180 case TEMP_NORMAL: 2181 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals); 2182 break; 2183 case TEMP_CONST: 2184 switch (ts->type) { 2185 case TCG_TYPE_I32: 2186 snprintf(buf, buf_size, "$0x%x", (int32_t)ts->val); 2187 break; 2188 #if TCG_TARGET_REG_BITS > 32 2189 case TCG_TYPE_I64: 2190 snprintf(buf, buf_size, "$0x%" PRIx64, ts->val); 2191 break; 2192 #endif 2193 case TCG_TYPE_V64: 2194 case TCG_TYPE_V128: 2195 case TCG_TYPE_V256: 2196 snprintf(buf, buf_size, "v%d$0x%" PRIx64, 2197 64 << (ts->type - TCG_TYPE_V64), ts->val); 2198 break; 2199 default: 2200 g_assert_not_reached(); 2201 } 2202 break; 2203 } 2204 return buf; 2205 } 2206 2207 static char *tcg_get_arg_str(TCGContext *s, char *buf, 2208 int buf_size, TCGArg arg) 2209 { 2210 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg)); 2211 } 2212 2213 /* Find helper name. */ 2214 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val) 2215 { 2216 const char *ret = NULL; 2217 if (helper_table) { 2218 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val); 2219 if (info) { 2220 ret = info->name; 2221 } 2222 } 2223 return ret; 2224 } 2225 2226 static const char * const cond_name[] = 2227 { 2228 [TCG_COND_NEVER] = "never", 2229 [TCG_COND_ALWAYS] = "always", 2230 [TCG_COND_EQ] = "eq", 2231 [TCG_COND_NE] = "ne", 2232 [TCG_COND_LT] = "lt", 2233 [TCG_COND_GE] = "ge", 2234 [TCG_COND_LE] = "le", 2235 [TCG_COND_GT] = "gt", 2236 [TCG_COND_LTU] = "ltu", 2237 [TCG_COND_GEU] = "geu", 2238 [TCG_COND_LEU] = "leu", 2239 [TCG_COND_GTU] = "gtu" 2240 }; 2241 2242 static const char * const ldst_name[] = 2243 { 2244 [MO_UB] = "ub", 2245 [MO_SB] = "sb", 2246 [MO_LEUW] = "leuw", 2247 [MO_LESW] = "lesw", 2248 [MO_LEUL] = "leul", 2249 [MO_LESL] = "lesl", 2250 [MO_LEQ] = "leq", 2251 [MO_BEUW] = "beuw", 2252 [MO_BESW] = "besw", 2253 [MO_BEUL] = "beul", 2254 [MO_BESL] = "besl", 2255 [MO_BEQ] = "beq", 2256 }; 2257 2258 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = { 2259 #ifdef TARGET_ALIGNED_ONLY 2260 [MO_UNALN >> MO_ASHIFT] = "un+", 2261 [MO_ALIGN >> MO_ASHIFT] = "", 2262 #else 2263 [MO_UNALN >> MO_ASHIFT] = "", 2264 [MO_ALIGN >> MO_ASHIFT] = "al+", 2265 #endif 2266 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+", 2267 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+", 2268 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+", 2269 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+", 2270 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+", 2271 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+", 2272 }; 2273 2274 static inline bool tcg_regset_single(TCGRegSet d) 2275 { 2276 return (d & (d - 1)) == 0; 2277 } 2278 2279 static inline TCGReg tcg_regset_first(TCGRegSet d) 2280 { 2281 if (TCG_TARGET_NB_REGS <= 32) { 2282 return ctz32(d); 2283 } else { 2284 return ctz64(d); 2285 } 2286 } 2287 2288 static void tcg_dump_ops(TCGContext *s, bool have_prefs) 2289 { 2290 char buf[128]; 2291 TCGOp *op; 2292 2293 QTAILQ_FOREACH(op, &s->ops, link) { 2294 int i, k, nb_oargs, nb_iargs, nb_cargs; 2295 const TCGOpDef *def; 2296 TCGOpcode c; 2297 int col = 0; 2298 2299 c = op->opc; 2300 def = &tcg_op_defs[c]; 2301 2302 if (c == INDEX_op_insn_start) { 2303 nb_oargs = 0; 2304 col += qemu_log("\n ----"); 2305 2306 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 2307 target_ulong a; 2308 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 2309 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 2310 #else 2311 a = op->args[i]; 2312 #endif 2313 col += qemu_log(" " TARGET_FMT_lx, a); 2314 } 2315 } else if (c == INDEX_op_call) { 2316 /* variable number of arguments */ 2317 nb_oargs = TCGOP_CALLO(op); 2318 nb_iargs = TCGOP_CALLI(op); 2319 nb_cargs = def->nb_cargs; 2320 2321 /* function name, flags, out args */ 2322 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name, 2323 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]), 2324 op->args[nb_oargs + nb_iargs + 1], nb_oargs); 2325 for (i = 0; i < nb_oargs; i++) { 2326 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf), 2327 op->args[i])); 2328 } 2329 for (i = 0; i < nb_iargs; i++) { 2330 TCGArg arg = op->args[nb_oargs + i]; 2331 const char *t = "<dummy>"; 2332 if (arg != TCG_CALL_DUMMY_ARG) { 2333 t = tcg_get_arg_str(s, buf, sizeof(buf), arg); 2334 } 2335 col += qemu_log(",%s", t); 2336 } 2337 } else { 2338 col += qemu_log(" %s ", def->name); 2339 2340 nb_oargs = def->nb_oargs; 2341 nb_iargs = def->nb_iargs; 2342 nb_cargs = def->nb_cargs; 2343 2344 if (def->flags & TCG_OPF_VECTOR) { 2345 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op), 2346 8 << TCGOP_VECE(op)); 2347 } 2348 2349 k = 0; 2350 for (i = 0; i < nb_oargs; i++) { 2351 if (k != 0) { 2352 col += qemu_log(","); 2353 } 2354 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2355 op->args[k++])); 2356 } 2357 for (i = 0; i < nb_iargs; i++) { 2358 if (k != 0) { 2359 col += qemu_log(","); 2360 } 2361 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2362 op->args[k++])); 2363 } 2364 switch (c) { 2365 case INDEX_op_brcond_i32: 2366 case INDEX_op_setcond_i32: 2367 case INDEX_op_movcond_i32: 2368 case INDEX_op_brcond2_i32: 2369 case INDEX_op_setcond2_i32: 2370 case INDEX_op_brcond_i64: 2371 case INDEX_op_setcond_i64: 2372 case INDEX_op_movcond_i64: 2373 case INDEX_op_cmp_vec: 2374 case INDEX_op_cmpsel_vec: 2375 if (op->args[k] < ARRAY_SIZE(cond_name) 2376 && cond_name[op->args[k]]) { 2377 col += qemu_log(",%s", cond_name[op->args[k++]]); 2378 } else { 2379 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]); 2380 } 2381 i = 1; 2382 break; 2383 case INDEX_op_qemu_ld_i32: 2384 case INDEX_op_qemu_st_i32: 2385 case INDEX_op_qemu_st8_i32: 2386 case INDEX_op_qemu_ld_i64: 2387 case INDEX_op_qemu_st_i64: 2388 { 2389 TCGMemOpIdx oi = op->args[k++]; 2390 MemOp op = get_memop(oi); 2391 unsigned ix = get_mmuidx(oi); 2392 2393 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) { 2394 col += qemu_log(",$0x%x,%u", op, ix); 2395 } else { 2396 const char *s_al, *s_op; 2397 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT]; 2398 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)]; 2399 col += qemu_log(",%s%s,%u", s_al, s_op, ix); 2400 } 2401 i = 1; 2402 } 2403 break; 2404 default: 2405 i = 0; 2406 break; 2407 } 2408 switch (c) { 2409 case INDEX_op_set_label: 2410 case INDEX_op_br: 2411 case INDEX_op_brcond_i32: 2412 case INDEX_op_brcond_i64: 2413 case INDEX_op_brcond2_i32: 2414 col += qemu_log("%s$L%d", k ? "," : "", 2415 arg_label(op->args[k])->id); 2416 i++, k++; 2417 break; 2418 default: 2419 break; 2420 } 2421 for (; i < nb_cargs; i++, k++) { 2422 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]); 2423 } 2424 } 2425 2426 if (have_prefs || op->life) { 2427 2428 QemuLogFile *logfile; 2429 2430 rcu_read_lock(); 2431 logfile = qatomic_rcu_read(&qemu_logfile); 2432 if (logfile) { 2433 for (; col < 40; ++col) { 2434 putc(' ', logfile->fd); 2435 } 2436 } 2437 rcu_read_unlock(); 2438 } 2439 2440 if (op->life) { 2441 unsigned life = op->life; 2442 2443 if (life & (SYNC_ARG * 3)) { 2444 qemu_log(" sync:"); 2445 for (i = 0; i < 2; ++i) { 2446 if (life & (SYNC_ARG << i)) { 2447 qemu_log(" %d", i); 2448 } 2449 } 2450 } 2451 life /= DEAD_ARG; 2452 if (life) { 2453 qemu_log(" dead:"); 2454 for (i = 0; life; ++i, life >>= 1) { 2455 if (life & 1) { 2456 qemu_log(" %d", i); 2457 } 2458 } 2459 } 2460 } 2461 2462 if (have_prefs) { 2463 for (i = 0; i < nb_oargs; ++i) { 2464 TCGRegSet set = op->output_pref[i]; 2465 2466 if (i == 0) { 2467 qemu_log(" pref="); 2468 } else { 2469 qemu_log(","); 2470 } 2471 if (set == 0) { 2472 qemu_log("none"); 2473 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) { 2474 qemu_log("all"); 2475 #ifdef CONFIG_DEBUG_TCG 2476 } else if (tcg_regset_single(set)) { 2477 TCGReg reg = tcg_regset_first(set); 2478 qemu_log("%s", tcg_target_reg_names[reg]); 2479 #endif 2480 } else if (TCG_TARGET_NB_REGS <= 32) { 2481 qemu_log("%#x", (uint32_t)set); 2482 } else { 2483 qemu_log("%#" PRIx64, (uint64_t)set); 2484 } 2485 } 2486 } 2487 2488 qemu_log("\n"); 2489 } 2490 } 2491 2492 /* we give more priority to constraints with less registers */ 2493 static int get_constraint_priority(const TCGOpDef *def, int k) 2494 { 2495 const TCGArgConstraint *arg_ct = &def->args_ct[k]; 2496 int n; 2497 2498 if (arg_ct->oalias) { 2499 /* an alias is equivalent to a single register */ 2500 n = 1; 2501 } else { 2502 n = ctpop64(arg_ct->regs); 2503 } 2504 return TCG_TARGET_NB_REGS - n + 1; 2505 } 2506 2507 /* sort from highest priority to lowest */ 2508 static void sort_constraints(TCGOpDef *def, int start, int n) 2509 { 2510 int i, j; 2511 TCGArgConstraint *a = def->args_ct; 2512 2513 for (i = 0; i < n; i++) { 2514 a[start + i].sort_index = start + i; 2515 } 2516 if (n <= 1) { 2517 return; 2518 } 2519 for (i = 0; i < n - 1; i++) { 2520 for (j = i + 1; j < n; j++) { 2521 int p1 = get_constraint_priority(def, a[start + i].sort_index); 2522 int p2 = get_constraint_priority(def, a[start + j].sort_index); 2523 if (p1 < p2) { 2524 int tmp = a[start + i].sort_index; 2525 a[start + i].sort_index = a[start + j].sort_index; 2526 a[start + j].sort_index = tmp; 2527 } 2528 } 2529 } 2530 } 2531 2532 static void process_op_defs(TCGContext *s) 2533 { 2534 TCGOpcode op; 2535 2536 for (op = 0; op < NB_OPS; op++) { 2537 TCGOpDef *def = &tcg_op_defs[op]; 2538 const TCGTargetOpDef *tdefs; 2539 int i, nb_args; 2540 2541 if (def->flags & TCG_OPF_NOT_PRESENT) { 2542 continue; 2543 } 2544 2545 nb_args = def->nb_iargs + def->nb_oargs; 2546 if (nb_args == 0) { 2547 continue; 2548 } 2549 2550 /* 2551 * Macro magic should make it impossible, but double-check that 2552 * the array index is in range. Since the signness of an enum 2553 * is implementation defined, force the result to unsigned. 2554 */ 2555 unsigned con_set = tcg_target_op_def(op); 2556 tcg_debug_assert(con_set < ARRAY_SIZE(constraint_sets)); 2557 tdefs = &constraint_sets[con_set]; 2558 2559 for (i = 0; i < nb_args; i++) { 2560 const char *ct_str = tdefs->args_ct_str[i]; 2561 /* Incomplete TCGTargetOpDef entry. */ 2562 tcg_debug_assert(ct_str != NULL); 2563 2564 while (*ct_str != '\0') { 2565 switch(*ct_str) { 2566 case '0' ... '9': 2567 { 2568 int oarg = *ct_str - '0'; 2569 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]); 2570 tcg_debug_assert(oarg < def->nb_oargs); 2571 tcg_debug_assert(def->args_ct[oarg].regs != 0); 2572 def->args_ct[i] = def->args_ct[oarg]; 2573 /* The output sets oalias. */ 2574 def->args_ct[oarg].oalias = true; 2575 def->args_ct[oarg].alias_index = i; 2576 /* The input sets ialias. */ 2577 def->args_ct[i].ialias = true; 2578 def->args_ct[i].alias_index = oarg; 2579 } 2580 ct_str++; 2581 break; 2582 case '&': 2583 def->args_ct[i].newreg = true; 2584 ct_str++; 2585 break; 2586 case 'i': 2587 def->args_ct[i].ct |= TCG_CT_CONST; 2588 ct_str++; 2589 break; 2590 2591 /* Include all of the target-specific constraints. */ 2592 2593 #undef CONST 2594 #define CONST(CASE, MASK) \ 2595 case CASE: def->args_ct[i].ct |= MASK; ct_str++; break; 2596 #define REGS(CASE, MASK) \ 2597 case CASE: def->args_ct[i].regs |= MASK; ct_str++; break; 2598 2599 #include "tcg-target-con-str.h" 2600 2601 #undef REGS 2602 #undef CONST 2603 default: 2604 /* Typo in TCGTargetOpDef constraint. */ 2605 g_assert_not_reached(); 2606 } 2607 } 2608 } 2609 2610 /* TCGTargetOpDef entry with too much information? */ 2611 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL); 2612 2613 /* sort the constraints (XXX: this is just an heuristic) */ 2614 sort_constraints(def, 0, def->nb_oargs); 2615 sort_constraints(def, def->nb_oargs, def->nb_iargs); 2616 } 2617 } 2618 2619 void tcg_op_remove(TCGContext *s, TCGOp *op) 2620 { 2621 TCGLabel *label; 2622 2623 switch (op->opc) { 2624 case INDEX_op_br: 2625 label = arg_label(op->args[0]); 2626 label->refs--; 2627 break; 2628 case INDEX_op_brcond_i32: 2629 case INDEX_op_brcond_i64: 2630 label = arg_label(op->args[3]); 2631 label->refs--; 2632 break; 2633 case INDEX_op_brcond2_i32: 2634 label = arg_label(op->args[5]); 2635 label->refs--; 2636 break; 2637 default: 2638 break; 2639 } 2640 2641 QTAILQ_REMOVE(&s->ops, op, link); 2642 QTAILQ_INSERT_TAIL(&s->free_ops, op, link); 2643 s->nb_ops--; 2644 2645 #ifdef CONFIG_PROFILER 2646 qatomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1); 2647 #endif 2648 } 2649 2650 static TCGOp *tcg_op_alloc(TCGOpcode opc) 2651 { 2652 TCGContext *s = tcg_ctx; 2653 TCGOp *op; 2654 2655 if (likely(QTAILQ_EMPTY(&s->free_ops))) { 2656 op = tcg_malloc(sizeof(TCGOp)); 2657 } else { 2658 op = QTAILQ_FIRST(&s->free_ops); 2659 QTAILQ_REMOVE(&s->free_ops, op, link); 2660 } 2661 memset(op, 0, offsetof(TCGOp, link)); 2662 op->opc = opc; 2663 s->nb_ops++; 2664 2665 return op; 2666 } 2667 2668 TCGOp *tcg_emit_op(TCGOpcode opc) 2669 { 2670 TCGOp *op = tcg_op_alloc(opc); 2671 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link); 2672 return op; 2673 } 2674 2675 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2676 { 2677 TCGOp *new_op = tcg_op_alloc(opc); 2678 QTAILQ_INSERT_BEFORE(old_op, new_op, link); 2679 return new_op; 2680 } 2681 2682 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2683 { 2684 TCGOp *new_op = tcg_op_alloc(opc); 2685 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link); 2686 return new_op; 2687 } 2688 2689 /* Reachable analysis : remove unreachable code. */ 2690 static void reachable_code_pass(TCGContext *s) 2691 { 2692 TCGOp *op, *op_next; 2693 bool dead = false; 2694 2695 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2696 bool remove = dead; 2697 TCGLabel *label; 2698 int call_flags; 2699 2700 switch (op->opc) { 2701 case INDEX_op_set_label: 2702 label = arg_label(op->args[0]); 2703 if (label->refs == 0) { 2704 /* 2705 * While there is an occasional backward branch, virtually 2706 * all branches generated by the translators are forward. 2707 * Which means that generally we will have already removed 2708 * all references to the label that will be, and there is 2709 * little to be gained by iterating. 2710 */ 2711 remove = true; 2712 } else { 2713 /* Once we see a label, insns become live again. */ 2714 dead = false; 2715 remove = false; 2716 2717 /* 2718 * Optimization can fold conditional branches to unconditional. 2719 * If we find a label with one reference which is preceded by 2720 * an unconditional branch to it, remove both. This needed to 2721 * wait until the dead code in between them was removed. 2722 */ 2723 if (label->refs == 1) { 2724 TCGOp *op_prev = QTAILQ_PREV(op, link); 2725 if (op_prev->opc == INDEX_op_br && 2726 label == arg_label(op_prev->args[0])) { 2727 tcg_op_remove(s, op_prev); 2728 remove = true; 2729 } 2730 } 2731 } 2732 break; 2733 2734 case INDEX_op_br: 2735 case INDEX_op_exit_tb: 2736 case INDEX_op_goto_ptr: 2737 /* Unconditional branches; everything following is dead. */ 2738 dead = true; 2739 break; 2740 2741 case INDEX_op_call: 2742 /* Notice noreturn helper calls, raising exceptions. */ 2743 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1]; 2744 if (call_flags & TCG_CALL_NO_RETURN) { 2745 dead = true; 2746 } 2747 break; 2748 2749 case INDEX_op_insn_start: 2750 /* Never remove -- we need to keep these for unwind. */ 2751 remove = false; 2752 break; 2753 2754 default: 2755 break; 2756 } 2757 2758 if (remove) { 2759 tcg_op_remove(s, op); 2760 } 2761 } 2762 } 2763 2764 #define TS_DEAD 1 2765 #define TS_MEM 2 2766 2767 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n))) 2768 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n))) 2769 2770 /* For liveness_pass_1, the register preferences for a given temp. */ 2771 static inline TCGRegSet *la_temp_pref(TCGTemp *ts) 2772 { 2773 return ts->state_ptr; 2774 } 2775 2776 /* For liveness_pass_1, reset the preferences for a given temp to the 2777 * maximal regset for its type. 2778 */ 2779 static inline void la_reset_pref(TCGTemp *ts) 2780 { 2781 *la_temp_pref(ts) 2782 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]); 2783 } 2784 2785 /* liveness analysis: end of function: all temps are dead, and globals 2786 should be in memory. */ 2787 static void la_func_end(TCGContext *s, int ng, int nt) 2788 { 2789 int i; 2790 2791 for (i = 0; i < ng; ++i) { 2792 s->temps[i].state = TS_DEAD | TS_MEM; 2793 la_reset_pref(&s->temps[i]); 2794 } 2795 for (i = ng; i < nt; ++i) { 2796 s->temps[i].state = TS_DEAD; 2797 la_reset_pref(&s->temps[i]); 2798 } 2799 } 2800 2801 /* liveness analysis: end of basic block: all temps are dead, globals 2802 and local temps should be in memory. */ 2803 static void la_bb_end(TCGContext *s, int ng, int nt) 2804 { 2805 int i; 2806 2807 for (i = 0; i < nt; ++i) { 2808 TCGTemp *ts = &s->temps[i]; 2809 int state; 2810 2811 switch (ts->kind) { 2812 case TEMP_FIXED: 2813 case TEMP_GLOBAL: 2814 case TEMP_LOCAL: 2815 state = TS_DEAD | TS_MEM; 2816 break; 2817 case TEMP_NORMAL: 2818 case TEMP_CONST: 2819 state = TS_DEAD; 2820 break; 2821 default: 2822 g_assert_not_reached(); 2823 } 2824 ts->state = state; 2825 la_reset_pref(ts); 2826 } 2827 } 2828 2829 /* liveness analysis: sync globals back to memory. */ 2830 static void la_global_sync(TCGContext *s, int ng) 2831 { 2832 int i; 2833 2834 for (i = 0; i < ng; ++i) { 2835 int state = s->temps[i].state; 2836 s->temps[i].state = state | TS_MEM; 2837 if (state == TS_DEAD) { 2838 /* If the global was previously dead, reset prefs. */ 2839 la_reset_pref(&s->temps[i]); 2840 } 2841 } 2842 } 2843 2844 /* 2845 * liveness analysis: conditional branch: all temps are dead, 2846 * globals and local temps should be synced. 2847 */ 2848 static void la_bb_sync(TCGContext *s, int ng, int nt) 2849 { 2850 la_global_sync(s, ng); 2851 2852 for (int i = ng; i < nt; ++i) { 2853 TCGTemp *ts = &s->temps[i]; 2854 int state; 2855 2856 switch (ts->kind) { 2857 case TEMP_LOCAL: 2858 state = ts->state; 2859 ts->state = state | TS_MEM; 2860 if (state != TS_DEAD) { 2861 continue; 2862 } 2863 break; 2864 case TEMP_NORMAL: 2865 s->temps[i].state = TS_DEAD; 2866 break; 2867 case TEMP_CONST: 2868 continue; 2869 default: 2870 g_assert_not_reached(); 2871 } 2872 la_reset_pref(&s->temps[i]); 2873 } 2874 } 2875 2876 /* liveness analysis: sync globals back to memory and kill. */ 2877 static void la_global_kill(TCGContext *s, int ng) 2878 { 2879 int i; 2880 2881 for (i = 0; i < ng; i++) { 2882 s->temps[i].state = TS_DEAD | TS_MEM; 2883 la_reset_pref(&s->temps[i]); 2884 } 2885 } 2886 2887 /* liveness analysis: note live globals crossing calls. */ 2888 static void la_cross_call(TCGContext *s, int nt) 2889 { 2890 TCGRegSet mask = ~tcg_target_call_clobber_regs; 2891 int i; 2892 2893 for (i = 0; i < nt; i++) { 2894 TCGTemp *ts = &s->temps[i]; 2895 if (!(ts->state & TS_DEAD)) { 2896 TCGRegSet *pset = la_temp_pref(ts); 2897 TCGRegSet set = *pset; 2898 2899 set &= mask; 2900 /* If the combination is not possible, restart. */ 2901 if (set == 0) { 2902 set = tcg_target_available_regs[ts->type] & mask; 2903 } 2904 *pset = set; 2905 } 2906 } 2907 } 2908 2909 /* Liveness analysis : update the opc_arg_life array to tell if a 2910 given input arguments is dead. Instructions updating dead 2911 temporaries are removed. */ 2912 static void liveness_pass_1(TCGContext *s) 2913 { 2914 int nb_globals = s->nb_globals; 2915 int nb_temps = s->nb_temps; 2916 TCGOp *op, *op_prev; 2917 TCGRegSet *prefs; 2918 int i; 2919 2920 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps); 2921 for (i = 0; i < nb_temps; ++i) { 2922 s->temps[i].state_ptr = prefs + i; 2923 } 2924 2925 /* ??? Should be redundant with the exit_tb that ends the TB. */ 2926 la_func_end(s, nb_globals, nb_temps); 2927 2928 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) { 2929 int nb_iargs, nb_oargs; 2930 TCGOpcode opc_new, opc_new2; 2931 bool have_opc_new2; 2932 TCGLifeData arg_life = 0; 2933 TCGTemp *ts; 2934 TCGOpcode opc = op->opc; 2935 const TCGOpDef *def = &tcg_op_defs[opc]; 2936 2937 switch (opc) { 2938 case INDEX_op_call: 2939 { 2940 int call_flags; 2941 int nb_call_regs; 2942 2943 nb_oargs = TCGOP_CALLO(op); 2944 nb_iargs = TCGOP_CALLI(op); 2945 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2946 2947 /* pure functions can be removed if their result is unused */ 2948 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) { 2949 for (i = 0; i < nb_oargs; i++) { 2950 ts = arg_temp(op->args[i]); 2951 if (ts->state != TS_DEAD) { 2952 goto do_not_remove_call; 2953 } 2954 } 2955 goto do_remove; 2956 } 2957 do_not_remove_call: 2958 2959 /* Output args are dead. */ 2960 for (i = 0; i < nb_oargs; i++) { 2961 ts = arg_temp(op->args[i]); 2962 if (ts->state & TS_DEAD) { 2963 arg_life |= DEAD_ARG << i; 2964 } 2965 if (ts->state & TS_MEM) { 2966 arg_life |= SYNC_ARG << i; 2967 } 2968 ts->state = TS_DEAD; 2969 la_reset_pref(ts); 2970 2971 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */ 2972 op->output_pref[i] = 0; 2973 } 2974 2975 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS | 2976 TCG_CALL_NO_READ_GLOBALS))) { 2977 la_global_kill(s, nb_globals); 2978 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) { 2979 la_global_sync(s, nb_globals); 2980 } 2981 2982 /* Record arguments that die in this helper. */ 2983 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2984 ts = arg_temp(op->args[i]); 2985 if (ts && ts->state & TS_DEAD) { 2986 arg_life |= DEAD_ARG << i; 2987 } 2988 } 2989 2990 /* For all live registers, remove call-clobbered prefs. */ 2991 la_cross_call(s, nb_temps); 2992 2993 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 2994 2995 /* Input arguments are live for preceding opcodes. */ 2996 for (i = 0; i < nb_iargs; i++) { 2997 ts = arg_temp(op->args[i + nb_oargs]); 2998 if (ts && ts->state & TS_DEAD) { 2999 /* For those arguments that die, and will be allocated 3000 * in registers, clear the register set for that arg, 3001 * to be filled in below. For args that will be on 3002 * the stack, reset to any available reg. 3003 */ 3004 *la_temp_pref(ts) 3005 = (i < nb_call_regs ? 0 : 3006 tcg_target_available_regs[ts->type]); 3007 ts->state &= ~TS_DEAD; 3008 } 3009 } 3010 3011 /* For each input argument, add its input register to prefs. 3012 If a temp is used once, this produces a single set bit. */ 3013 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) { 3014 ts = arg_temp(op->args[i + nb_oargs]); 3015 if (ts) { 3016 tcg_regset_set_reg(*la_temp_pref(ts), 3017 tcg_target_call_iarg_regs[i]); 3018 } 3019 } 3020 } 3021 break; 3022 case INDEX_op_insn_start: 3023 break; 3024 case INDEX_op_discard: 3025 /* mark the temporary as dead */ 3026 ts = arg_temp(op->args[0]); 3027 ts->state = TS_DEAD; 3028 la_reset_pref(ts); 3029 break; 3030 3031 case INDEX_op_add2_i32: 3032 opc_new = INDEX_op_add_i32; 3033 goto do_addsub2; 3034 case INDEX_op_sub2_i32: 3035 opc_new = INDEX_op_sub_i32; 3036 goto do_addsub2; 3037 case INDEX_op_add2_i64: 3038 opc_new = INDEX_op_add_i64; 3039 goto do_addsub2; 3040 case INDEX_op_sub2_i64: 3041 opc_new = INDEX_op_sub_i64; 3042 do_addsub2: 3043 nb_iargs = 4; 3044 nb_oargs = 2; 3045 /* Test if the high part of the operation is dead, but not 3046 the low part. The result can be optimized to a simple 3047 add or sub. This happens often for x86_64 guest when the 3048 cpu mode is set to 32 bit. */ 3049 if (arg_temp(op->args[1])->state == TS_DEAD) { 3050 if (arg_temp(op->args[0])->state == TS_DEAD) { 3051 goto do_remove; 3052 } 3053 /* Replace the opcode and adjust the args in place, 3054 leaving 3 unused args at the end. */ 3055 op->opc = opc = opc_new; 3056 op->args[1] = op->args[2]; 3057 op->args[2] = op->args[4]; 3058 /* Fall through and mark the single-word operation live. */ 3059 nb_iargs = 2; 3060 nb_oargs = 1; 3061 } 3062 goto do_not_remove; 3063 3064 case INDEX_op_mulu2_i32: 3065 opc_new = INDEX_op_mul_i32; 3066 opc_new2 = INDEX_op_muluh_i32; 3067 have_opc_new2 = TCG_TARGET_HAS_muluh_i32; 3068 goto do_mul2; 3069 case INDEX_op_muls2_i32: 3070 opc_new = INDEX_op_mul_i32; 3071 opc_new2 = INDEX_op_mulsh_i32; 3072 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32; 3073 goto do_mul2; 3074 case INDEX_op_mulu2_i64: 3075 opc_new = INDEX_op_mul_i64; 3076 opc_new2 = INDEX_op_muluh_i64; 3077 have_opc_new2 = TCG_TARGET_HAS_muluh_i64; 3078 goto do_mul2; 3079 case INDEX_op_muls2_i64: 3080 opc_new = INDEX_op_mul_i64; 3081 opc_new2 = INDEX_op_mulsh_i64; 3082 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64; 3083 goto do_mul2; 3084 do_mul2: 3085 nb_iargs = 2; 3086 nb_oargs = 2; 3087 if (arg_temp(op->args[1])->state == TS_DEAD) { 3088 if (arg_temp(op->args[0])->state == TS_DEAD) { 3089 /* Both parts of the operation are dead. */ 3090 goto do_remove; 3091 } 3092 /* The high part of the operation is dead; generate the low. */ 3093 op->opc = opc = opc_new; 3094 op->args[1] = op->args[2]; 3095 op->args[2] = op->args[3]; 3096 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) { 3097 /* The low part of the operation is dead; generate the high. */ 3098 op->opc = opc = opc_new2; 3099 op->args[0] = op->args[1]; 3100 op->args[1] = op->args[2]; 3101 op->args[2] = op->args[3]; 3102 } else { 3103 goto do_not_remove; 3104 } 3105 /* Mark the single-word operation live. */ 3106 nb_oargs = 1; 3107 goto do_not_remove; 3108 3109 default: 3110 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */ 3111 nb_iargs = def->nb_iargs; 3112 nb_oargs = def->nb_oargs; 3113 3114 /* Test if the operation can be removed because all 3115 its outputs are dead. We assume that nb_oargs == 0 3116 implies side effects */ 3117 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) { 3118 for (i = 0; i < nb_oargs; i++) { 3119 if (arg_temp(op->args[i])->state != TS_DEAD) { 3120 goto do_not_remove; 3121 } 3122 } 3123 goto do_remove; 3124 } 3125 goto do_not_remove; 3126 3127 do_remove: 3128 tcg_op_remove(s, op); 3129 break; 3130 3131 do_not_remove: 3132 for (i = 0; i < nb_oargs; i++) { 3133 ts = arg_temp(op->args[i]); 3134 3135 /* Remember the preference of the uses that followed. */ 3136 op->output_pref[i] = *la_temp_pref(ts); 3137 3138 /* Output args are dead. */ 3139 if (ts->state & TS_DEAD) { 3140 arg_life |= DEAD_ARG << i; 3141 } 3142 if (ts->state & TS_MEM) { 3143 arg_life |= SYNC_ARG << i; 3144 } 3145 ts->state = TS_DEAD; 3146 la_reset_pref(ts); 3147 } 3148 3149 /* If end of basic block, update. */ 3150 if (def->flags & TCG_OPF_BB_EXIT) { 3151 la_func_end(s, nb_globals, nb_temps); 3152 } else if (def->flags & TCG_OPF_COND_BRANCH) { 3153 la_bb_sync(s, nb_globals, nb_temps); 3154 } else if (def->flags & TCG_OPF_BB_END) { 3155 la_bb_end(s, nb_globals, nb_temps); 3156 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 3157 la_global_sync(s, nb_globals); 3158 if (def->flags & TCG_OPF_CALL_CLOBBER) { 3159 la_cross_call(s, nb_temps); 3160 } 3161 } 3162 3163 /* Record arguments that die in this opcode. */ 3164 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3165 ts = arg_temp(op->args[i]); 3166 if (ts->state & TS_DEAD) { 3167 arg_life |= DEAD_ARG << i; 3168 } 3169 } 3170 3171 /* Input arguments are live for preceding opcodes. */ 3172 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3173 ts = arg_temp(op->args[i]); 3174 if (ts->state & TS_DEAD) { 3175 /* For operands that were dead, initially allow 3176 all regs for the type. */ 3177 *la_temp_pref(ts) = tcg_target_available_regs[ts->type]; 3178 ts->state &= ~TS_DEAD; 3179 } 3180 } 3181 3182 /* Incorporate constraints for this operand. */ 3183 switch (opc) { 3184 case INDEX_op_mov_i32: 3185 case INDEX_op_mov_i64: 3186 /* Note that these are TCG_OPF_NOT_PRESENT and do not 3187 have proper constraints. That said, special case 3188 moves to propagate preferences backward. */ 3189 if (IS_DEAD_ARG(1)) { 3190 *la_temp_pref(arg_temp(op->args[0])) 3191 = *la_temp_pref(arg_temp(op->args[1])); 3192 } 3193 break; 3194 3195 default: 3196 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3197 const TCGArgConstraint *ct = &def->args_ct[i]; 3198 TCGRegSet set, *pset; 3199 3200 ts = arg_temp(op->args[i]); 3201 pset = la_temp_pref(ts); 3202 set = *pset; 3203 3204 set &= ct->regs; 3205 if (ct->ialias) { 3206 set &= op->output_pref[ct->alias_index]; 3207 } 3208 /* If the combination is not possible, restart. */ 3209 if (set == 0) { 3210 set = ct->regs; 3211 } 3212 *pset = set; 3213 } 3214 break; 3215 } 3216 break; 3217 } 3218 op->life = arg_life; 3219 } 3220 } 3221 3222 /* Liveness analysis: Convert indirect regs to direct temporaries. */ 3223 static bool liveness_pass_2(TCGContext *s) 3224 { 3225 int nb_globals = s->nb_globals; 3226 int nb_temps, i; 3227 bool changes = false; 3228 TCGOp *op, *op_next; 3229 3230 /* Create a temporary for each indirect global. */ 3231 for (i = 0; i < nb_globals; ++i) { 3232 TCGTemp *its = &s->temps[i]; 3233 if (its->indirect_reg) { 3234 TCGTemp *dts = tcg_temp_alloc(s); 3235 dts->type = its->type; 3236 dts->base_type = its->base_type; 3237 its->state_ptr = dts; 3238 } else { 3239 its->state_ptr = NULL; 3240 } 3241 /* All globals begin dead. */ 3242 its->state = TS_DEAD; 3243 } 3244 for (nb_temps = s->nb_temps; i < nb_temps; ++i) { 3245 TCGTemp *its = &s->temps[i]; 3246 its->state_ptr = NULL; 3247 its->state = TS_DEAD; 3248 } 3249 3250 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 3251 TCGOpcode opc = op->opc; 3252 const TCGOpDef *def = &tcg_op_defs[opc]; 3253 TCGLifeData arg_life = op->life; 3254 int nb_iargs, nb_oargs, call_flags; 3255 TCGTemp *arg_ts, *dir_ts; 3256 3257 if (opc == INDEX_op_call) { 3258 nb_oargs = TCGOP_CALLO(op); 3259 nb_iargs = TCGOP_CALLI(op); 3260 call_flags = op->args[nb_oargs + nb_iargs + 1]; 3261 } else { 3262 nb_iargs = def->nb_iargs; 3263 nb_oargs = def->nb_oargs; 3264 3265 /* Set flags similar to how calls require. */ 3266 if (def->flags & TCG_OPF_COND_BRANCH) { 3267 /* Like reading globals: sync_globals */ 3268 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 3269 } else if (def->flags & TCG_OPF_BB_END) { 3270 /* Like writing globals: save_globals */ 3271 call_flags = 0; 3272 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 3273 /* Like reading globals: sync_globals */ 3274 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 3275 } else { 3276 /* No effect on globals. */ 3277 call_flags = (TCG_CALL_NO_READ_GLOBALS | 3278 TCG_CALL_NO_WRITE_GLOBALS); 3279 } 3280 } 3281 3282 /* Make sure that input arguments are available. */ 3283 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 3284 arg_ts = arg_temp(op->args[i]); 3285 if (arg_ts) { 3286 dir_ts = arg_ts->state_ptr; 3287 if (dir_ts && arg_ts->state == TS_DEAD) { 3288 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32 3289 ? INDEX_op_ld_i32 3290 : INDEX_op_ld_i64); 3291 TCGOp *lop = tcg_op_insert_before(s, op, lopc); 3292 3293 lop->args[0] = temp_arg(dir_ts); 3294 lop->args[1] = temp_arg(arg_ts->mem_base); 3295 lop->args[2] = arg_ts->mem_offset; 3296 3297 /* Loaded, but synced with memory. */ 3298 arg_ts->state = TS_MEM; 3299 } 3300 } 3301 } 3302 3303 /* Perform input replacement, and mark inputs that became dead. 3304 No action is required except keeping temp_state up to date 3305 so that we reload when needed. */ 3306 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 3307 arg_ts = arg_temp(op->args[i]); 3308 if (arg_ts) { 3309 dir_ts = arg_ts->state_ptr; 3310 if (dir_ts) { 3311 op->args[i] = temp_arg(dir_ts); 3312 changes = true; 3313 if (IS_DEAD_ARG(i)) { 3314 arg_ts->state = TS_DEAD; 3315 } 3316 } 3317 } 3318 } 3319 3320 /* Liveness analysis should ensure that the following are 3321 all correct, for call sites and basic block end points. */ 3322 if (call_flags & TCG_CALL_NO_READ_GLOBALS) { 3323 /* Nothing to do */ 3324 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) { 3325 for (i = 0; i < nb_globals; ++i) { 3326 /* Liveness should see that globals are synced back, 3327 that is, either TS_DEAD or TS_MEM. */ 3328 arg_ts = &s->temps[i]; 3329 tcg_debug_assert(arg_ts->state_ptr == 0 3330 || arg_ts->state != 0); 3331 } 3332 } else { 3333 for (i = 0; i < nb_globals; ++i) { 3334 /* Liveness should see that globals are saved back, 3335 that is, TS_DEAD, waiting to be reloaded. */ 3336 arg_ts = &s->temps[i]; 3337 tcg_debug_assert(arg_ts->state_ptr == 0 3338 || arg_ts->state == TS_DEAD); 3339 } 3340 } 3341 3342 /* Outputs become available. */ 3343 if (opc == INDEX_op_mov_i32 || opc == INDEX_op_mov_i64) { 3344 arg_ts = arg_temp(op->args[0]); 3345 dir_ts = arg_ts->state_ptr; 3346 if (dir_ts) { 3347 op->args[0] = temp_arg(dir_ts); 3348 changes = true; 3349 3350 /* The output is now live and modified. */ 3351 arg_ts->state = 0; 3352 3353 if (NEED_SYNC_ARG(0)) { 3354 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 3355 ? INDEX_op_st_i32 3356 : INDEX_op_st_i64); 3357 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 3358 TCGTemp *out_ts = dir_ts; 3359 3360 if (IS_DEAD_ARG(0)) { 3361 out_ts = arg_temp(op->args[1]); 3362 arg_ts->state = TS_DEAD; 3363 tcg_op_remove(s, op); 3364 } else { 3365 arg_ts->state = TS_MEM; 3366 } 3367 3368 sop->args[0] = temp_arg(out_ts); 3369 sop->args[1] = temp_arg(arg_ts->mem_base); 3370 sop->args[2] = arg_ts->mem_offset; 3371 } else { 3372 tcg_debug_assert(!IS_DEAD_ARG(0)); 3373 } 3374 } 3375 } else { 3376 for (i = 0; i < nb_oargs; i++) { 3377 arg_ts = arg_temp(op->args[i]); 3378 dir_ts = arg_ts->state_ptr; 3379 if (!dir_ts) { 3380 continue; 3381 } 3382 op->args[i] = temp_arg(dir_ts); 3383 changes = true; 3384 3385 /* The output is now live and modified. */ 3386 arg_ts->state = 0; 3387 3388 /* Sync outputs upon their last write. */ 3389 if (NEED_SYNC_ARG(i)) { 3390 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 3391 ? INDEX_op_st_i32 3392 : INDEX_op_st_i64); 3393 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 3394 3395 sop->args[0] = temp_arg(dir_ts); 3396 sop->args[1] = temp_arg(arg_ts->mem_base); 3397 sop->args[2] = arg_ts->mem_offset; 3398 3399 arg_ts->state = TS_MEM; 3400 } 3401 /* Drop outputs that are dead. */ 3402 if (IS_DEAD_ARG(i)) { 3403 arg_ts->state = TS_DEAD; 3404 } 3405 } 3406 } 3407 } 3408 3409 return changes; 3410 } 3411 3412 #ifdef CONFIG_DEBUG_TCG 3413 static void dump_regs(TCGContext *s) 3414 { 3415 TCGTemp *ts; 3416 int i; 3417 char buf[64]; 3418 3419 for(i = 0; i < s->nb_temps; i++) { 3420 ts = &s->temps[i]; 3421 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3422 switch(ts->val_type) { 3423 case TEMP_VAL_REG: 3424 printf("%s", tcg_target_reg_names[ts->reg]); 3425 break; 3426 case TEMP_VAL_MEM: 3427 printf("%d(%s)", (int)ts->mem_offset, 3428 tcg_target_reg_names[ts->mem_base->reg]); 3429 break; 3430 case TEMP_VAL_CONST: 3431 printf("$0x%" PRIx64, ts->val); 3432 break; 3433 case TEMP_VAL_DEAD: 3434 printf("D"); 3435 break; 3436 default: 3437 printf("???"); 3438 break; 3439 } 3440 printf("\n"); 3441 } 3442 3443 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 3444 if (s->reg_to_temp[i] != NULL) { 3445 printf("%s: %s\n", 3446 tcg_target_reg_names[i], 3447 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i])); 3448 } 3449 } 3450 } 3451 3452 static void check_regs(TCGContext *s) 3453 { 3454 int reg; 3455 int k; 3456 TCGTemp *ts; 3457 char buf[64]; 3458 3459 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) { 3460 ts = s->reg_to_temp[reg]; 3461 if (ts != NULL) { 3462 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) { 3463 printf("Inconsistency for register %s:\n", 3464 tcg_target_reg_names[reg]); 3465 goto fail; 3466 } 3467 } 3468 } 3469 for (k = 0; k < s->nb_temps; k++) { 3470 ts = &s->temps[k]; 3471 if (ts->val_type == TEMP_VAL_REG 3472 && ts->kind != TEMP_FIXED 3473 && s->reg_to_temp[ts->reg] != ts) { 3474 printf("Inconsistency for temp %s:\n", 3475 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3476 fail: 3477 printf("reg state:\n"); 3478 dump_regs(s); 3479 tcg_abort(); 3480 } 3481 } 3482 } 3483 #endif 3484 3485 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts) 3486 { 3487 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64) 3488 /* Sparc64 stack is accessed with offset of 2047 */ 3489 s->current_frame_offset = (s->current_frame_offset + 3490 (tcg_target_long)sizeof(tcg_target_long) - 1) & 3491 ~(sizeof(tcg_target_long) - 1); 3492 #endif 3493 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) > 3494 s->frame_end) { 3495 tcg_abort(); 3496 } 3497 ts->mem_offset = s->current_frame_offset; 3498 ts->mem_base = s->frame_temp; 3499 ts->mem_allocated = 1; 3500 s->current_frame_offset += sizeof(tcg_target_long); 3501 } 3502 3503 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet); 3504 3505 /* Mark a temporary as free or dead. If 'free_or_dead' is negative, 3506 mark it free; otherwise mark it dead. */ 3507 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead) 3508 { 3509 TCGTempVal new_type; 3510 3511 switch (ts->kind) { 3512 case TEMP_FIXED: 3513 return; 3514 case TEMP_GLOBAL: 3515 case TEMP_LOCAL: 3516 new_type = TEMP_VAL_MEM; 3517 break; 3518 case TEMP_NORMAL: 3519 new_type = free_or_dead < 0 ? TEMP_VAL_MEM : TEMP_VAL_DEAD; 3520 break; 3521 case TEMP_CONST: 3522 new_type = TEMP_VAL_CONST; 3523 break; 3524 default: 3525 g_assert_not_reached(); 3526 } 3527 if (ts->val_type == TEMP_VAL_REG) { 3528 s->reg_to_temp[ts->reg] = NULL; 3529 } 3530 ts->val_type = new_type; 3531 } 3532 3533 /* Mark a temporary as dead. */ 3534 static inline void temp_dead(TCGContext *s, TCGTemp *ts) 3535 { 3536 temp_free_or_dead(s, ts, 1); 3537 } 3538 3539 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary 3540 registers needs to be allocated to store a constant. If 'free_or_dead' 3541 is non-zero, subsequently release the temporary; if it is positive, the 3542 temp is dead; if it is negative, the temp is free. */ 3543 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs, 3544 TCGRegSet preferred_regs, int free_or_dead) 3545 { 3546 if (!temp_readonly(ts) && !ts->mem_coherent) { 3547 if (!ts->mem_allocated) { 3548 temp_allocate_frame(s, ts); 3549 } 3550 switch (ts->val_type) { 3551 case TEMP_VAL_CONST: 3552 /* If we're going to free the temp immediately, then we won't 3553 require it later in a register, so attempt to store the 3554 constant to memory directly. */ 3555 if (free_or_dead 3556 && tcg_out_sti(s, ts->type, ts->val, 3557 ts->mem_base->reg, ts->mem_offset)) { 3558 break; 3559 } 3560 temp_load(s, ts, tcg_target_available_regs[ts->type], 3561 allocated_regs, preferred_regs); 3562 /* fallthrough */ 3563 3564 case TEMP_VAL_REG: 3565 tcg_out_st(s, ts->type, ts->reg, 3566 ts->mem_base->reg, ts->mem_offset); 3567 break; 3568 3569 case TEMP_VAL_MEM: 3570 break; 3571 3572 case TEMP_VAL_DEAD: 3573 default: 3574 tcg_abort(); 3575 } 3576 ts->mem_coherent = 1; 3577 } 3578 if (free_or_dead) { 3579 temp_free_or_dead(s, ts, free_or_dead); 3580 } 3581 } 3582 3583 /* free register 'reg' by spilling the corresponding temporary if necessary */ 3584 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs) 3585 { 3586 TCGTemp *ts = s->reg_to_temp[reg]; 3587 if (ts != NULL) { 3588 temp_sync(s, ts, allocated_regs, 0, -1); 3589 } 3590 } 3591 3592 /** 3593 * tcg_reg_alloc: 3594 * @required_regs: Set of registers in which we must allocate. 3595 * @allocated_regs: Set of registers which must be avoided. 3596 * @preferred_regs: Set of registers we should prefer. 3597 * @rev: True if we search the registers in "indirect" order. 3598 * 3599 * The allocated register must be in @required_regs & ~@allocated_regs, 3600 * but if we can put it in @preferred_regs we may save a move later. 3601 */ 3602 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs, 3603 TCGRegSet allocated_regs, 3604 TCGRegSet preferred_regs, bool rev) 3605 { 3606 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order); 3607 TCGRegSet reg_ct[2]; 3608 const int *order; 3609 3610 reg_ct[1] = required_regs & ~allocated_regs; 3611 tcg_debug_assert(reg_ct[1] != 0); 3612 reg_ct[0] = reg_ct[1] & preferred_regs; 3613 3614 /* Skip the preferred_regs option if it cannot be satisfied, 3615 or if the preference made no difference. */ 3616 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1]; 3617 3618 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order; 3619 3620 /* Try free registers, preferences first. */ 3621 for (j = f; j < 2; j++) { 3622 TCGRegSet set = reg_ct[j]; 3623 3624 if (tcg_regset_single(set)) { 3625 /* One register in the set. */ 3626 TCGReg reg = tcg_regset_first(set); 3627 if (s->reg_to_temp[reg] == NULL) { 3628 return reg; 3629 } 3630 } else { 3631 for (i = 0; i < n; i++) { 3632 TCGReg reg = order[i]; 3633 if (s->reg_to_temp[reg] == NULL && 3634 tcg_regset_test_reg(set, reg)) { 3635 return reg; 3636 } 3637 } 3638 } 3639 } 3640 3641 /* We must spill something. */ 3642 for (j = f; j < 2; j++) { 3643 TCGRegSet set = reg_ct[j]; 3644 3645 if (tcg_regset_single(set)) { 3646 /* One register in the set. */ 3647 TCGReg reg = tcg_regset_first(set); 3648 tcg_reg_free(s, reg, allocated_regs); 3649 return reg; 3650 } else { 3651 for (i = 0; i < n; i++) { 3652 TCGReg reg = order[i]; 3653 if (tcg_regset_test_reg(set, reg)) { 3654 tcg_reg_free(s, reg, allocated_regs); 3655 return reg; 3656 } 3657 } 3658 } 3659 } 3660 3661 tcg_abort(); 3662 } 3663 3664 /* Make sure the temporary is in a register. If needed, allocate the register 3665 from DESIRED while avoiding ALLOCATED. */ 3666 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs, 3667 TCGRegSet allocated_regs, TCGRegSet preferred_regs) 3668 { 3669 TCGReg reg; 3670 3671 switch (ts->val_type) { 3672 case TEMP_VAL_REG: 3673 return; 3674 case TEMP_VAL_CONST: 3675 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3676 preferred_regs, ts->indirect_base); 3677 if (ts->type <= TCG_TYPE_I64) { 3678 tcg_out_movi(s, ts->type, reg, ts->val); 3679 } else { 3680 uint64_t val = ts->val; 3681 MemOp vece = MO_64; 3682 3683 /* 3684 * Find the minimal vector element that matches the constant. 3685 * The targets will, in general, have to do this search anyway, 3686 * do this generically. 3687 */ 3688 if (val == dup_const(MO_8, val)) { 3689 vece = MO_8; 3690 } else if (val == dup_const(MO_16, val)) { 3691 vece = MO_16; 3692 } else if (val == dup_const(MO_32, val)) { 3693 vece = MO_32; 3694 } 3695 3696 tcg_out_dupi_vec(s, ts->type, vece, reg, ts->val); 3697 } 3698 ts->mem_coherent = 0; 3699 break; 3700 case TEMP_VAL_MEM: 3701 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3702 preferred_regs, ts->indirect_base); 3703 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset); 3704 ts->mem_coherent = 1; 3705 break; 3706 case TEMP_VAL_DEAD: 3707 default: 3708 tcg_abort(); 3709 } 3710 ts->reg = reg; 3711 ts->val_type = TEMP_VAL_REG; 3712 s->reg_to_temp[reg] = ts; 3713 } 3714 3715 /* Save a temporary to memory. 'allocated_regs' is used in case a 3716 temporary registers needs to be allocated to store a constant. */ 3717 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs) 3718 { 3719 /* The liveness analysis already ensures that globals are back 3720 in memory. Keep an tcg_debug_assert for safety. */ 3721 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || temp_readonly(ts)); 3722 } 3723 3724 /* save globals to their canonical location and assume they can be 3725 modified be the following code. 'allocated_regs' is used in case a 3726 temporary registers needs to be allocated to store a constant. */ 3727 static void save_globals(TCGContext *s, TCGRegSet allocated_regs) 3728 { 3729 int i, n; 3730 3731 for (i = 0, n = s->nb_globals; i < n; i++) { 3732 temp_save(s, &s->temps[i], allocated_regs); 3733 } 3734 } 3735 3736 /* sync globals to their canonical location and assume they can be 3737 read by the following code. 'allocated_regs' is used in case a 3738 temporary registers needs to be allocated to store a constant. */ 3739 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs) 3740 { 3741 int i, n; 3742 3743 for (i = 0, n = s->nb_globals; i < n; i++) { 3744 TCGTemp *ts = &s->temps[i]; 3745 tcg_debug_assert(ts->val_type != TEMP_VAL_REG 3746 || ts->kind == TEMP_FIXED 3747 || ts->mem_coherent); 3748 } 3749 } 3750 3751 /* at the end of a basic block, we assume all temporaries are dead and 3752 all globals are stored at their canonical location. */ 3753 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs) 3754 { 3755 int i; 3756 3757 for (i = s->nb_globals; i < s->nb_temps; i++) { 3758 TCGTemp *ts = &s->temps[i]; 3759 3760 switch (ts->kind) { 3761 case TEMP_LOCAL: 3762 temp_save(s, ts, allocated_regs); 3763 break; 3764 case TEMP_NORMAL: 3765 /* The liveness analysis already ensures that temps are dead. 3766 Keep an tcg_debug_assert for safety. */ 3767 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3768 break; 3769 case TEMP_CONST: 3770 /* Similarly, we should have freed any allocated register. */ 3771 tcg_debug_assert(ts->val_type == TEMP_VAL_CONST); 3772 break; 3773 default: 3774 g_assert_not_reached(); 3775 } 3776 } 3777 3778 save_globals(s, allocated_regs); 3779 } 3780 3781 /* 3782 * At a conditional branch, we assume all temporaries are dead and 3783 * all globals and local temps are synced to their location. 3784 */ 3785 static void tcg_reg_alloc_cbranch(TCGContext *s, TCGRegSet allocated_regs) 3786 { 3787 sync_globals(s, allocated_regs); 3788 3789 for (int i = s->nb_globals; i < s->nb_temps; i++) { 3790 TCGTemp *ts = &s->temps[i]; 3791 /* 3792 * The liveness analysis already ensures that temps are dead. 3793 * Keep tcg_debug_asserts for safety. 3794 */ 3795 switch (ts->kind) { 3796 case TEMP_LOCAL: 3797 tcg_debug_assert(ts->val_type != TEMP_VAL_REG || ts->mem_coherent); 3798 break; 3799 case TEMP_NORMAL: 3800 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3801 break; 3802 case TEMP_CONST: 3803 break; 3804 default: 3805 g_assert_not_reached(); 3806 } 3807 } 3808 } 3809 3810 /* 3811 * Specialized code generation for INDEX_op_mov_* with a constant. 3812 */ 3813 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots, 3814 tcg_target_ulong val, TCGLifeData arg_life, 3815 TCGRegSet preferred_regs) 3816 { 3817 /* ENV should not be modified. */ 3818 tcg_debug_assert(!temp_readonly(ots)); 3819 3820 /* The movi is not explicitly generated here. */ 3821 if (ots->val_type == TEMP_VAL_REG) { 3822 s->reg_to_temp[ots->reg] = NULL; 3823 } 3824 ots->val_type = TEMP_VAL_CONST; 3825 ots->val = val; 3826 ots->mem_coherent = 0; 3827 if (NEED_SYNC_ARG(0)) { 3828 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0)); 3829 } else if (IS_DEAD_ARG(0)) { 3830 temp_dead(s, ots); 3831 } 3832 } 3833 3834 /* 3835 * Specialized code generation for INDEX_op_mov_*. 3836 */ 3837 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op) 3838 { 3839 const TCGLifeData arg_life = op->life; 3840 TCGRegSet allocated_regs, preferred_regs; 3841 TCGTemp *ts, *ots; 3842 TCGType otype, itype; 3843 3844 allocated_regs = s->reserved_regs; 3845 preferred_regs = op->output_pref[0]; 3846 ots = arg_temp(op->args[0]); 3847 ts = arg_temp(op->args[1]); 3848 3849 /* ENV should not be modified. */ 3850 tcg_debug_assert(!temp_readonly(ots)); 3851 3852 /* Note that otype != itype for no-op truncation. */ 3853 otype = ots->type; 3854 itype = ts->type; 3855 3856 if (ts->val_type == TEMP_VAL_CONST) { 3857 /* propagate constant or generate sti */ 3858 tcg_target_ulong val = ts->val; 3859 if (IS_DEAD_ARG(1)) { 3860 temp_dead(s, ts); 3861 } 3862 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs); 3863 return; 3864 } 3865 3866 /* If the source value is in memory we're going to be forced 3867 to have it in a register in order to perform the copy. Copy 3868 the SOURCE value into its own register first, that way we 3869 don't have to reload SOURCE the next time it is used. */ 3870 if (ts->val_type == TEMP_VAL_MEM) { 3871 temp_load(s, ts, tcg_target_available_regs[itype], 3872 allocated_regs, preferred_regs); 3873 } 3874 3875 tcg_debug_assert(ts->val_type == TEMP_VAL_REG); 3876 if (IS_DEAD_ARG(0)) { 3877 /* mov to a non-saved dead register makes no sense (even with 3878 liveness analysis disabled). */ 3879 tcg_debug_assert(NEED_SYNC_ARG(0)); 3880 if (!ots->mem_allocated) { 3881 temp_allocate_frame(s, ots); 3882 } 3883 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset); 3884 if (IS_DEAD_ARG(1)) { 3885 temp_dead(s, ts); 3886 } 3887 temp_dead(s, ots); 3888 } else { 3889 if (IS_DEAD_ARG(1) && ts->kind != TEMP_FIXED) { 3890 /* the mov can be suppressed */ 3891 if (ots->val_type == TEMP_VAL_REG) { 3892 s->reg_to_temp[ots->reg] = NULL; 3893 } 3894 ots->reg = ts->reg; 3895 temp_dead(s, ts); 3896 } else { 3897 if (ots->val_type != TEMP_VAL_REG) { 3898 /* When allocating a new register, make sure to not spill the 3899 input one. */ 3900 tcg_regset_set_reg(allocated_regs, ts->reg); 3901 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype], 3902 allocated_regs, preferred_regs, 3903 ots->indirect_base); 3904 } 3905 if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) { 3906 /* 3907 * Cross register class move not supported. 3908 * Store the source register into the destination slot 3909 * and leave the destination temp as TEMP_VAL_MEM. 3910 */ 3911 assert(!temp_readonly(ots)); 3912 if (!ts->mem_allocated) { 3913 temp_allocate_frame(s, ots); 3914 } 3915 tcg_out_st(s, ts->type, ts->reg, 3916 ots->mem_base->reg, ots->mem_offset); 3917 ots->mem_coherent = 1; 3918 temp_free_or_dead(s, ots, -1); 3919 return; 3920 } 3921 } 3922 ots->val_type = TEMP_VAL_REG; 3923 ots->mem_coherent = 0; 3924 s->reg_to_temp[ots->reg] = ots; 3925 if (NEED_SYNC_ARG(0)) { 3926 temp_sync(s, ots, allocated_regs, 0, 0); 3927 } 3928 } 3929 } 3930 3931 /* 3932 * Specialized code generation for INDEX_op_dup_vec. 3933 */ 3934 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op) 3935 { 3936 const TCGLifeData arg_life = op->life; 3937 TCGRegSet dup_out_regs, dup_in_regs; 3938 TCGTemp *its, *ots; 3939 TCGType itype, vtype; 3940 intptr_t endian_fixup; 3941 unsigned vece; 3942 bool ok; 3943 3944 ots = arg_temp(op->args[0]); 3945 its = arg_temp(op->args[1]); 3946 3947 /* ENV should not be modified. */ 3948 tcg_debug_assert(!temp_readonly(ots)); 3949 3950 itype = its->type; 3951 vece = TCGOP_VECE(op); 3952 vtype = TCGOP_VECL(op) + TCG_TYPE_V64; 3953 3954 if (its->val_type == TEMP_VAL_CONST) { 3955 /* Propagate constant via movi -> dupi. */ 3956 tcg_target_ulong val = its->val; 3957 if (IS_DEAD_ARG(1)) { 3958 temp_dead(s, its); 3959 } 3960 tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]); 3961 return; 3962 } 3963 3964 dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].regs; 3965 dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].regs; 3966 3967 /* Allocate the output register now. */ 3968 if (ots->val_type != TEMP_VAL_REG) { 3969 TCGRegSet allocated_regs = s->reserved_regs; 3970 3971 if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) { 3972 /* Make sure to not spill the input register. */ 3973 tcg_regset_set_reg(allocated_regs, its->reg); 3974 } 3975 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs, 3976 op->output_pref[0], ots->indirect_base); 3977 ots->val_type = TEMP_VAL_REG; 3978 ots->mem_coherent = 0; 3979 s->reg_to_temp[ots->reg] = ots; 3980 } 3981 3982 switch (its->val_type) { 3983 case TEMP_VAL_REG: 3984 /* 3985 * The dup constriaints must be broad, covering all possible VECE. 3986 * However, tcg_op_dup_vec() gets to see the VECE and we allow it 3987 * to fail, indicating that extra moves are required for that case. 3988 */ 3989 if (tcg_regset_test_reg(dup_in_regs, its->reg)) { 3990 if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) { 3991 goto done; 3992 } 3993 /* Try again from memory or a vector input register. */ 3994 } 3995 if (!its->mem_coherent) { 3996 /* 3997 * The input register is not synced, and so an extra store 3998 * would be required to use memory. Attempt an integer-vector 3999 * register move first. We do not have a TCGRegSet for this. 4000 */ 4001 if (tcg_out_mov(s, itype, ots->reg, its->reg)) { 4002 break; 4003 } 4004 /* Sync the temp back to its slot and load from there. */ 4005 temp_sync(s, its, s->reserved_regs, 0, 0); 4006 } 4007 /* fall through */ 4008 4009 case TEMP_VAL_MEM: 4010 #ifdef HOST_WORDS_BIGENDIAN 4011 endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8; 4012 endian_fixup -= 1 << vece; 4013 #else 4014 endian_fixup = 0; 4015 #endif 4016 if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg, 4017 its->mem_offset + endian_fixup)) { 4018 goto done; 4019 } 4020 tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset); 4021 break; 4022 4023 default: 4024 g_assert_not_reached(); 4025 } 4026 4027 /* We now have a vector input register, so dup must succeed. */ 4028 ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg); 4029 tcg_debug_assert(ok); 4030 4031 done: 4032 if (IS_DEAD_ARG(1)) { 4033 temp_dead(s, its); 4034 } 4035 if (NEED_SYNC_ARG(0)) { 4036 temp_sync(s, ots, s->reserved_regs, 0, 0); 4037 } 4038 if (IS_DEAD_ARG(0)) { 4039 temp_dead(s, ots); 4040 } 4041 } 4042 4043 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op) 4044 { 4045 const TCGLifeData arg_life = op->life; 4046 const TCGOpDef * const def = &tcg_op_defs[op->opc]; 4047 TCGRegSet i_allocated_regs; 4048 TCGRegSet o_allocated_regs; 4049 int i, k, nb_iargs, nb_oargs; 4050 TCGReg reg; 4051 TCGArg arg; 4052 const TCGArgConstraint *arg_ct; 4053 TCGTemp *ts; 4054 TCGArg new_args[TCG_MAX_OP_ARGS]; 4055 int const_args[TCG_MAX_OP_ARGS]; 4056 4057 nb_oargs = def->nb_oargs; 4058 nb_iargs = def->nb_iargs; 4059 4060 /* copy constants */ 4061 memcpy(new_args + nb_oargs + nb_iargs, 4062 op->args + nb_oargs + nb_iargs, 4063 sizeof(TCGArg) * def->nb_cargs); 4064 4065 i_allocated_regs = s->reserved_regs; 4066 o_allocated_regs = s->reserved_regs; 4067 4068 /* satisfy input constraints */ 4069 for (k = 0; k < nb_iargs; k++) { 4070 TCGRegSet i_preferred_regs, o_preferred_regs; 4071 4072 i = def->args_ct[nb_oargs + k].sort_index; 4073 arg = op->args[i]; 4074 arg_ct = &def->args_ct[i]; 4075 ts = arg_temp(arg); 4076 4077 if (ts->val_type == TEMP_VAL_CONST 4078 && tcg_target_const_match(ts->val, ts->type, arg_ct)) { 4079 /* constant is OK for instruction */ 4080 const_args[i] = 1; 4081 new_args[i] = ts->val; 4082 continue; 4083 } 4084 4085 i_preferred_regs = o_preferred_regs = 0; 4086 if (arg_ct->ialias) { 4087 o_preferred_regs = op->output_pref[arg_ct->alias_index]; 4088 4089 /* 4090 * If the input is readonly, then it cannot also be an 4091 * output and aliased to itself. If the input is not 4092 * dead after the instruction, we must allocate a new 4093 * register and move it. 4094 */ 4095 if (temp_readonly(ts) || !IS_DEAD_ARG(i)) { 4096 goto allocate_in_reg; 4097 } 4098 4099 /* 4100 * Check if the current register has already been allocated 4101 * for another input aliased to an output. 4102 */ 4103 if (ts->val_type == TEMP_VAL_REG) { 4104 reg = ts->reg; 4105 for (int k2 = 0; k2 < k; k2++) { 4106 int i2 = def->args_ct[nb_oargs + k2].sort_index; 4107 if (def->args_ct[i2].ialias && reg == new_args[i2]) { 4108 goto allocate_in_reg; 4109 } 4110 } 4111 } 4112 i_preferred_regs = o_preferred_regs; 4113 } 4114 4115 temp_load(s, ts, arg_ct->regs, i_allocated_regs, i_preferred_regs); 4116 reg = ts->reg; 4117 4118 if (!tcg_regset_test_reg(arg_ct->regs, reg)) { 4119 allocate_in_reg: 4120 /* 4121 * Allocate a new register matching the constraint 4122 * and move the temporary register into it. 4123 */ 4124 temp_load(s, ts, tcg_target_available_regs[ts->type], 4125 i_allocated_regs, 0); 4126 reg = tcg_reg_alloc(s, arg_ct->regs, i_allocated_regs, 4127 o_preferred_regs, ts->indirect_base); 4128 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 4129 /* 4130 * Cross register class move not supported. Sync the 4131 * temp back to its slot and load from there. 4132 */ 4133 temp_sync(s, ts, i_allocated_regs, 0, 0); 4134 tcg_out_ld(s, ts->type, reg, 4135 ts->mem_base->reg, ts->mem_offset); 4136 } 4137 } 4138 new_args[i] = reg; 4139 const_args[i] = 0; 4140 tcg_regset_set_reg(i_allocated_regs, reg); 4141 } 4142 4143 /* mark dead temporaries and free the associated registers */ 4144 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 4145 if (IS_DEAD_ARG(i)) { 4146 temp_dead(s, arg_temp(op->args[i])); 4147 } 4148 } 4149 4150 if (def->flags & TCG_OPF_COND_BRANCH) { 4151 tcg_reg_alloc_cbranch(s, i_allocated_regs); 4152 } else if (def->flags & TCG_OPF_BB_END) { 4153 tcg_reg_alloc_bb_end(s, i_allocated_regs); 4154 } else { 4155 if (def->flags & TCG_OPF_CALL_CLOBBER) { 4156 /* XXX: permit generic clobber register list ? */ 4157 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 4158 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 4159 tcg_reg_free(s, i, i_allocated_regs); 4160 } 4161 } 4162 } 4163 if (def->flags & TCG_OPF_SIDE_EFFECTS) { 4164 /* sync globals if the op has side effects and might trigger 4165 an exception. */ 4166 sync_globals(s, i_allocated_regs); 4167 } 4168 4169 /* satisfy the output constraints */ 4170 for(k = 0; k < nb_oargs; k++) { 4171 i = def->args_ct[k].sort_index; 4172 arg = op->args[i]; 4173 arg_ct = &def->args_ct[i]; 4174 ts = arg_temp(arg); 4175 4176 /* ENV should not be modified. */ 4177 tcg_debug_assert(!temp_readonly(ts)); 4178 4179 if (arg_ct->oalias && !const_args[arg_ct->alias_index]) { 4180 reg = new_args[arg_ct->alias_index]; 4181 } else if (arg_ct->newreg) { 4182 reg = tcg_reg_alloc(s, arg_ct->regs, 4183 i_allocated_regs | o_allocated_regs, 4184 op->output_pref[k], ts->indirect_base); 4185 } else { 4186 reg = tcg_reg_alloc(s, arg_ct->regs, o_allocated_regs, 4187 op->output_pref[k], ts->indirect_base); 4188 } 4189 tcg_regset_set_reg(o_allocated_regs, reg); 4190 if (ts->val_type == TEMP_VAL_REG) { 4191 s->reg_to_temp[ts->reg] = NULL; 4192 } 4193 ts->val_type = TEMP_VAL_REG; 4194 ts->reg = reg; 4195 /* 4196 * Temp value is modified, so the value kept in memory is 4197 * potentially not the same. 4198 */ 4199 ts->mem_coherent = 0; 4200 s->reg_to_temp[reg] = ts; 4201 new_args[i] = reg; 4202 } 4203 } 4204 4205 /* emit instruction */ 4206 if (def->flags & TCG_OPF_VECTOR) { 4207 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op), 4208 new_args, const_args); 4209 } else { 4210 tcg_out_op(s, op->opc, new_args, const_args); 4211 } 4212 4213 /* move the outputs in the correct register if needed */ 4214 for(i = 0; i < nb_oargs; i++) { 4215 ts = arg_temp(op->args[i]); 4216 4217 /* ENV should not be modified. */ 4218 tcg_debug_assert(!temp_readonly(ts)); 4219 4220 if (NEED_SYNC_ARG(i)) { 4221 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i)); 4222 } else if (IS_DEAD_ARG(i)) { 4223 temp_dead(s, ts); 4224 } 4225 } 4226 } 4227 4228 static bool tcg_reg_alloc_dup2(TCGContext *s, const TCGOp *op) 4229 { 4230 const TCGLifeData arg_life = op->life; 4231 TCGTemp *ots, *itsl, *itsh; 4232 TCGType vtype = TCGOP_VECL(op) + TCG_TYPE_V64; 4233 4234 /* This opcode is only valid for 32-bit hosts, for 64-bit elements. */ 4235 tcg_debug_assert(TCG_TARGET_REG_BITS == 32); 4236 tcg_debug_assert(TCGOP_VECE(op) == MO_64); 4237 4238 ots = arg_temp(op->args[0]); 4239 itsl = arg_temp(op->args[1]); 4240 itsh = arg_temp(op->args[2]); 4241 4242 /* ENV should not be modified. */ 4243 tcg_debug_assert(!temp_readonly(ots)); 4244 4245 /* Allocate the output register now. */ 4246 if (ots->val_type != TEMP_VAL_REG) { 4247 TCGRegSet allocated_regs = s->reserved_regs; 4248 TCGRegSet dup_out_regs = 4249 tcg_op_defs[INDEX_op_dup_vec].args_ct[0].regs; 4250 4251 /* Make sure to not spill the input registers. */ 4252 if (!IS_DEAD_ARG(1) && itsl->val_type == TEMP_VAL_REG) { 4253 tcg_regset_set_reg(allocated_regs, itsl->reg); 4254 } 4255 if (!IS_DEAD_ARG(2) && itsh->val_type == TEMP_VAL_REG) { 4256 tcg_regset_set_reg(allocated_regs, itsh->reg); 4257 } 4258 4259 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs, 4260 op->output_pref[0], ots->indirect_base); 4261 ots->val_type = TEMP_VAL_REG; 4262 ots->mem_coherent = 0; 4263 s->reg_to_temp[ots->reg] = ots; 4264 } 4265 4266 /* Promote dup2 of immediates to dupi_vec. */ 4267 if (itsl->val_type == TEMP_VAL_CONST && itsh->val_type == TEMP_VAL_CONST) { 4268 uint64_t val = deposit64(itsl->val, 32, 32, itsh->val); 4269 MemOp vece = MO_64; 4270 4271 if (val == dup_const(MO_8, val)) { 4272 vece = MO_8; 4273 } else if (val == dup_const(MO_16, val)) { 4274 vece = MO_16; 4275 } else if (val == dup_const(MO_32, val)) { 4276 vece = MO_32; 4277 } 4278 4279 tcg_out_dupi_vec(s, vtype, vece, ots->reg, val); 4280 goto done; 4281 } 4282 4283 /* If the two inputs form one 64-bit value, try dupm_vec. */ 4284 if (itsl + 1 == itsh && itsl->base_type == TCG_TYPE_I64) { 4285 if (!itsl->mem_coherent) { 4286 temp_sync(s, itsl, s->reserved_regs, 0, 0); 4287 } 4288 if (!itsh->mem_coherent) { 4289 temp_sync(s, itsh, s->reserved_regs, 0, 0); 4290 } 4291 #ifdef HOST_WORDS_BIGENDIAN 4292 TCGTemp *its = itsh; 4293 #else 4294 TCGTemp *its = itsl; 4295 #endif 4296 if (tcg_out_dupm_vec(s, vtype, MO_64, ots->reg, 4297 its->mem_base->reg, its->mem_offset)) { 4298 goto done; 4299 } 4300 } 4301 4302 /* Fall back to generic expansion. */ 4303 return false; 4304 4305 done: 4306 if (IS_DEAD_ARG(1)) { 4307 temp_dead(s, itsl); 4308 } 4309 if (IS_DEAD_ARG(2)) { 4310 temp_dead(s, itsh); 4311 } 4312 if (NEED_SYNC_ARG(0)) { 4313 temp_sync(s, ots, s->reserved_regs, 0, IS_DEAD_ARG(0)); 4314 } else if (IS_DEAD_ARG(0)) { 4315 temp_dead(s, ots); 4316 } 4317 return true; 4318 } 4319 4320 #ifdef TCG_TARGET_STACK_GROWSUP 4321 #define STACK_DIR(x) (-(x)) 4322 #else 4323 #define STACK_DIR(x) (x) 4324 #endif 4325 4326 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op) 4327 { 4328 const int nb_oargs = TCGOP_CALLO(op); 4329 const int nb_iargs = TCGOP_CALLI(op); 4330 const TCGLifeData arg_life = op->life; 4331 int flags, nb_regs, i; 4332 TCGReg reg; 4333 TCGArg arg; 4334 TCGTemp *ts; 4335 intptr_t stack_offset; 4336 size_t call_stack_size; 4337 tcg_insn_unit *func_addr; 4338 int allocate_args; 4339 TCGRegSet allocated_regs; 4340 4341 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs]; 4342 flags = op->args[nb_oargs + nb_iargs + 1]; 4343 4344 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 4345 if (nb_regs > nb_iargs) { 4346 nb_regs = nb_iargs; 4347 } 4348 4349 /* assign stack slots first */ 4350 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long); 4351 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) & 4352 ~(TCG_TARGET_STACK_ALIGN - 1); 4353 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE); 4354 if (allocate_args) { 4355 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed, 4356 preallocate call stack */ 4357 tcg_abort(); 4358 } 4359 4360 stack_offset = TCG_TARGET_CALL_STACK_OFFSET; 4361 for (i = nb_regs; i < nb_iargs; i++) { 4362 arg = op->args[nb_oargs + i]; 4363 #ifdef TCG_TARGET_STACK_GROWSUP 4364 stack_offset -= sizeof(tcg_target_long); 4365 #endif 4366 if (arg != TCG_CALL_DUMMY_ARG) { 4367 ts = arg_temp(arg); 4368 temp_load(s, ts, tcg_target_available_regs[ts->type], 4369 s->reserved_regs, 0); 4370 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset); 4371 } 4372 #ifndef TCG_TARGET_STACK_GROWSUP 4373 stack_offset += sizeof(tcg_target_long); 4374 #endif 4375 } 4376 4377 /* assign input registers */ 4378 allocated_regs = s->reserved_regs; 4379 for (i = 0; i < nb_regs; i++) { 4380 arg = op->args[nb_oargs + i]; 4381 if (arg != TCG_CALL_DUMMY_ARG) { 4382 ts = arg_temp(arg); 4383 reg = tcg_target_call_iarg_regs[i]; 4384 4385 if (ts->val_type == TEMP_VAL_REG) { 4386 if (ts->reg != reg) { 4387 tcg_reg_free(s, reg, allocated_regs); 4388 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 4389 /* 4390 * Cross register class move not supported. Sync the 4391 * temp back to its slot and load from there. 4392 */ 4393 temp_sync(s, ts, allocated_regs, 0, 0); 4394 tcg_out_ld(s, ts->type, reg, 4395 ts->mem_base->reg, ts->mem_offset); 4396 } 4397 } 4398 } else { 4399 TCGRegSet arg_set = 0; 4400 4401 tcg_reg_free(s, reg, allocated_regs); 4402 tcg_regset_set_reg(arg_set, reg); 4403 temp_load(s, ts, arg_set, allocated_regs, 0); 4404 } 4405 4406 tcg_regset_set_reg(allocated_regs, reg); 4407 } 4408 } 4409 4410 /* mark dead temporaries and free the associated registers */ 4411 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 4412 if (IS_DEAD_ARG(i)) { 4413 temp_dead(s, arg_temp(op->args[i])); 4414 } 4415 } 4416 4417 /* clobber call registers */ 4418 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 4419 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 4420 tcg_reg_free(s, i, allocated_regs); 4421 } 4422 } 4423 4424 /* Save globals if they might be written by the helper, sync them if 4425 they might be read. */ 4426 if (flags & TCG_CALL_NO_READ_GLOBALS) { 4427 /* Nothing to do */ 4428 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) { 4429 sync_globals(s, allocated_regs); 4430 } else { 4431 save_globals(s, allocated_regs); 4432 } 4433 4434 tcg_out_call(s, func_addr); 4435 4436 /* assign output registers and emit moves if needed */ 4437 for(i = 0; i < nb_oargs; i++) { 4438 arg = op->args[i]; 4439 ts = arg_temp(arg); 4440 4441 /* ENV should not be modified. */ 4442 tcg_debug_assert(!temp_readonly(ts)); 4443 4444 reg = tcg_target_call_oarg_regs[i]; 4445 tcg_debug_assert(s->reg_to_temp[reg] == NULL); 4446 if (ts->val_type == TEMP_VAL_REG) { 4447 s->reg_to_temp[ts->reg] = NULL; 4448 } 4449 ts->val_type = TEMP_VAL_REG; 4450 ts->reg = reg; 4451 ts->mem_coherent = 0; 4452 s->reg_to_temp[reg] = ts; 4453 if (NEED_SYNC_ARG(i)) { 4454 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i)); 4455 } else if (IS_DEAD_ARG(i)) { 4456 temp_dead(s, ts); 4457 } 4458 } 4459 } 4460 4461 #ifdef CONFIG_PROFILER 4462 4463 /* avoid copy/paste errors */ 4464 #define PROF_ADD(to, from, field) \ 4465 do { \ 4466 (to)->field += qatomic_read(&((from)->field)); \ 4467 } while (0) 4468 4469 #define PROF_MAX(to, from, field) \ 4470 do { \ 4471 typeof((from)->field) val__ = qatomic_read(&((from)->field)); \ 4472 if (val__ > (to)->field) { \ 4473 (to)->field = val__; \ 4474 } \ 4475 } while (0) 4476 4477 /* Pass in a zero'ed @prof */ 4478 static inline 4479 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table) 4480 { 4481 unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); 4482 unsigned int i; 4483 4484 for (i = 0; i < n_ctxs; i++) { 4485 TCGContext *s = qatomic_read(&tcg_ctxs[i]); 4486 const TCGProfile *orig = &s->prof; 4487 4488 if (counters) { 4489 PROF_ADD(prof, orig, cpu_exec_time); 4490 PROF_ADD(prof, orig, tb_count1); 4491 PROF_ADD(prof, orig, tb_count); 4492 PROF_ADD(prof, orig, op_count); 4493 PROF_MAX(prof, orig, op_count_max); 4494 PROF_ADD(prof, orig, temp_count); 4495 PROF_MAX(prof, orig, temp_count_max); 4496 PROF_ADD(prof, orig, del_op_count); 4497 PROF_ADD(prof, orig, code_in_len); 4498 PROF_ADD(prof, orig, code_out_len); 4499 PROF_ADD(prof, orig, search_out_len); 4500 PROF_ADD(prof, orig, interm_time); 4501 PROF_ADD(prof, orig, code_time); 4502 PROF_ADD(prof, orig, la_time); 4503 PROF_ADD(prof, orig, opt_time); 4504 PROF_ADD(prof, orig, restore_count); 4505 PROF_ADD(prof, orig, restore_time); 4506 } 4507 if (table) { 4508 int i; 4509 4510 for (i = 0; i < NB_OPS; i++) { 4511 PROF_ADD(prof, orig, table_op_count[i]); 4512 } 4513 } 4514 } 4515 } 4516 4517 #undef PROF_ADD 4518 #undef PROF_MAX 4519 4520 static void tcg_profile_snapshot_counters(TCGProfile *prof) 4521 { 4522 tcg_profile_snapshot(prof, true, false); 4523 } 4524 4525 static void tcg_profile_snapshot_table(TCGProfile *prof) 4526 { 4527 tcg_profile_snapshot(prof, false, true); 4528 } 4529 4530 void tcg_dump_op_count(void) 4531 { 4532 TCGProfile prof = {}; 4533 int i; 4534 4535 tcg_profile_snapshot_table(&prof); 4536 for (i = 0; i < NB_OPS; i++) { 4537 qemu_printf("%s %" PRId64 "\n", tcg_op_defs[i].name, 4538 prof.table_op_count[i]); 4539 } 4540 } 4541 4542 int64_t tcg_cpu_exec_time(void) 4543 { 4544 unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); 4545 unsigned int i; 4546 int64_t ret = 0; 4547 4548 for (i = 0; i < n_ctxs; i++) { 4549 const TCGContext *s = qatomic_read(&tcg_ctxs[i]); 4550 const TCGProfile *prof = &s->prof; 4551 4552 ret += qatomic_read(&prof->cpu_exec_time); 4553 } 4554 return ret; 4555 } 4556 #else 4557 void tcg_dump_op_count(void) 4558 { 4559 qemu_printf("[TCG profiler not compiled]\n"); 4560 } 4561 4562 int64_t tcg_cpu_exec_time(void) 4563 { 4564 error_report("%s: TCG profiler not compiled", __func__); 4565 exit(EXIT_FAILURE); 4566 } 4567 #endif 4568 4569 4570 int tcg_gen_code(TCGContext *s, TranslationBlock *tb) 4571 { 4572 #ifdef CONFIG_PROFILER 4573 TCGProfile *prof = &s->prof; 4574 #endif 4575 int i, num_insns; 4576 TCGOp *op; 4577 4578 #ifdef CONFIG_PROFILER 4579 { 4580 int n = 0; 4581 4582 QTAILQ_FOREACH(op, &s->ops, link) { 4583 n++; 4584 } 4585 qatomic_set(&prof->op_count, prof->op_count + n); 4586 if (n > prof->op_count_max) { 4587 qatomic_set(&prof->op_count_max, n); 4588 } 4589 4590 n = s->nb_temps; 4591 qatomic_set(&prof->temp_count, prof->temp_count + n); 4592 if (n > prof->temp_count_max) { 4593 qatomic_set(&prof->temp_count_max, n); 4594 } 4595 } 4596 #endif 4597 4598 #ifdef DEBUG_DISAS 4599 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP) 4600 && qemu_log_in_addr_range(tb->pc))) { 4601 FILE *logfile = qemu_log_lock(); 4602 qemu_log("OP:\n"); 4603 tcg_dump_ops(s, false); 4604 qemu_log("\n"); 4605 qemu_log_unlock(logfile); 4606 } 4607 #endif 4608 4609 #ifdef CONFIG_DEBUG_TCG 4610 /* Ensure all labels referenced have been emitted. */ 4611 { 4612 TCGLabel *l; 4613 bool error = false; 4614 4615 QSIMPLEQ_FOREACH(l, &s->labels, next) { 4616 if (unlikely(!l->present) && l->refs) { 4617 qemu_log_mask(CPU_LOG_TB_OP, 4618 "$L%d referenced but not present.\n", l->id); 4619 error = true; 4620 } 4621 } 4622 assert(!error); 4623 } 4624 #endif 4625 4626 #ifdef CONFIG_PROFILER 4627 qatomic_set(&prof->opt_time, prof->opt_time - profile_getclock()); 4628 #endif 4629 4630 #ifdef USE_TCG_OPTIMIZATIONS 4631 tcg_optimize(s); 4632 #endif 4633 4634 #ifdef CONFIG_PROFILER 4635 qatomic_set(&prof->opt_time, prof->opt_time + profile_getclock()); 4636 qatomic_set(&prof->la_time, prof->la_time - profile_getclock()); 4637 #endif 4638 4639 reachable_code_pass(s); 4640 liveness_pass_1(s); 4641 4642 if (s->nb_indirects > 0) { 4643 #ifdef DEBUG_DISAS 4644 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND) 4645 && qemu_log_in_addr_range(tb->pc))) { 4646 FILE *logfile = qemu_log_lock(); 4647 qemu_log("OP before indirect lowering:\n"); 4648 tcg_dump_ops(s, false); 4649 qemu_log("\n"); 4650 qemu_log_unlock(logfile); 4651 } 4652 #endif 4653 /* Replace indirect temps with direct temps. */ 4654 if (liveness_pass_2(s)) { 4655 /* If changes were made, re-run liveness. */ 4656 liveness_pass_1(s); 4657 } 4658 } 4659 4660 #ifdef CONFIG_PROFILER 4661 qatomic_set(&prof->la_time, prof->la_time + profile_getclock()); 4662 #endif 4663 4664 #ifdef DEBUG_DISAS 4665 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT) 4666 && qemu_log_in_addr_range(tb->pc))) { 4667 FILE *logfile = qemu_log_lock(); 4668 qemu_log("OP after optimization and liveness analysis:\n"); 4669 tcg_dump_ops(s, true); 4670 qemu_log("\n"); 4671 qemu_log_unlock(logfile); 4672 } 4673 #endif 4674 4675 tcg_reg_alloc_start(s); 4676 4677 /* 4678 * Reset the buffer pointers when restarting after overflow. 4679 * TODO: Move this into translate-all.c with the rest of the 4680 * buffer management. Having only this done here is confusing. 4681 */ 4682 s->code_buf = tcg_splitwx_to_rw(tb->tc.ptr); 4683 s->code_ptr = s->code_buf; 4684 4685 #ifdef TCG_TARGET_NEED_LDST_LABELS 4686 QSIMPLEQ_INIT(&s->ldst_labels); 4687 #endif 4688 #ifdef TCG_TARGET_NEED_POOL_LABELS 4689 s->pool_labels = NULL; 4690 #endif 4691 4692 num_insns = -1; 4693 QTAILQ_FOREACH(op, &s->ops, link) { 4694 TCGOpcode opc = op->opc; 4695 4696 #ifdef CONFIG_PROFILER 4697 qatomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1); 4698 #endif 4699 4700 switch (opc) { 4701 case INDEX_op_mov_i32: 4702 case INDEX_op_mov_i64: 4703 case INDEX_op_mov_vec: 4704 tcg_reg_alloc_mov(s, op); 4705 break; 4706 case INDEX_op_dup_vec: 4707 tcg_reg_alloc_dup(s, op); 4708 break; 4709 case INDEX_op_insn_start: 4710 if (num_insns >= 0) { 4711 size_t off = tcg_current_code_size(s); 4712 s->gen_insn_end_off[num_insns] = off; 4713 /* Assert that we do not overflow our stored offset. */ 4714 assert(s->gen_insn_end_off[num_insns] == off); 4715 } 4716 num_insns++; 4717 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 4718 target_ulong a; 4719 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 4720 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 4721 #else 4722 a = op->args[i]; 4723 #endif 4724 s->gen_insn_data[num_insns][i] = a; 4725 } 4726 break; 4727 case INDEX_op_discard: 4728 temp_dead(s, arg_temp(op->args[0])); 4729 break; 4730 case INDEX_op_set_label: 4731 tcg_reg_alloc_bb_end(s, s->reserved_regs); 4732 tcg_out_label(s, arg_label(op->args[0])); 4733 break; 4734 case INDEX_op_call: 4735 tcg_reg_alloc_call(s, op); 4736 break; 4737 case INDEX_op_dup2_vec: 4738 if (tcg_reg_alloc_dup2(s, op)) { 4739 break; 4740 } 4741 /* fall through */ 4742 default: 4743 /* Sanity check that we've not introduced any unhandled opcodes. */ 4744 tcg_debug_assert(tcg_op_supported(opc)); 4745 /* Note: in order to speed up the code, it would be much 4746 faster to have specialized register allocator functions for 4747 some common argument patterns */ 4748 tcg_reg_alloc_op(s, op); 4749 break; 4750 } 4751 #ifdef CONFIG_DEBUG_TCG 4752 check_regs(s); 4753 #endif 4754 /* Test for (pending) buffer overflow. The assumption is that any 4755 one operation beginning below the high water mark cannot overrun 4756 the buffer completely. Thus we can test for overflow after 4757 generating code without having to check during generation. */ 4758 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) { 4759 return -1; 4760 } 4761 /* Test for TB overflow, as seen by gen_insn_end_off. */ 4762 if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) { 4763 return -2; 4764 } 4765 } 4766 tcg_debug_assert(num_insns >= 0); 4767 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); 4768 4769 /* Generate TB finalization at the end of block */ 4770 #ifdef TCG_TARGET_NEED_LDST_LABELS 4771 i = tcg_out_ldst_finalize(s); 4772 if (i < 0) { 4773 return i; 4774 } 4775 #endif 4776 #ifdef TCG_TARGET_NEED_POOL_LABELS 4777 i = tcg_out_pool_finalize(s); 4778 if (i < 0) { 4779 return i; 4780 } 4781 #endif 4782 if (!tcg_resolve_relocs(s)) { 4783 return -2; 4784 } 4785 4786 #ifndef CONFIG_TCG_INTERPRETER 4787 /* flush instruction cache */ 4788 flush_idcache_range((uintptr_t)tcg_splitwx_to_rx(s->code_buf), 4789 (uintptr_t)s->code_buf, 4790 tcg_ptr_byte_diff(s->code_ptr, s->code_buf)); 4791 #endif 4792 4793 return tcg_current_code_size(s); 4794 } 4795 4796 #ifdef CONFIG_PROFILER 4797 void tcg_dump_info(void) 4798 { 4799 TCGProfile prof = {}; 4800 const TCGProfile *s; 4801 int64_t tb_count; 4802 int64_t tb_div_count; 4803 int64_t tot; 4804 4805 tcg_profile_snapshot_counters(&prof); 4806 s = &prof; 4807 tb_count = s->tb_count; 4808 tb_div_count = tb_count ? tb_count : 1; 4809 tot = s->interm_time + s->code_time; 4810 4811 qemu_printf("JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n", 4812 tot, tot / 2.4e9); 4813 qemu_printf("translated TBs %" PRId64 " (aborted=%" PRId64 4814 " %0.1f%%)\n", 4815 tb_count, s->tb_count1 - tb_count, 4816 (double)(s->tb_count1 - s->tb_count) 4817 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0); 4818 qemu_printf("avg ops/TB %0.1f max=%d\n", 4819 (double)s->op_count / tb_div_count, s->op_count_max); 4820 qemu_printf("deleted ops/TB %0.2f\n", 4821 (double)s->del_op_count / tb_div_count); 4822 qemu_printf("avg temps/TB %0.2f max=%d\n", 4823 (double)s->temp_count / tb_div_count, s->temp_count_max); 4824 qemu_printf("avg host code/TB %0.1f\n", 4825 (double)s->code_out_len / tb_div_count); 4826 qemu_printf("avg search data/TB %0.1f\n", 4827 (double)s->search_out_len / tb_div_count); 4828 4829 qemu_printf("cycles/op %0.1f\n", 4830 s->op_count ? (double)tot / s->op_count : 0); 4831 qemu_printf("cycles/in byte %0.1f\n", 4832 s->code_in_len ? (double)tot / s->code_in_len : 0); 4833 qemu_printf("cycles/out byte %0.1f\n", 4834 s->code_out_len ? (double)tot / s->code_out_len : 0); 4835 qemu_printf("cycles/search byte %0.1f\n", 4836 s->search_out_len ? (double)tot / s->search_out_len : 0); 4837 if (tot == 0) { 4838 tot = 1; 4839 } 4840 qemu_printf(" gen_interm time %0.1f%%\n", 4841 (double)s->interm_time / tot * 100.0); 4842 qemu_printf(" gen_code time %0.1f%%\n", 4843 (double)s->code_time / tot * 100.0); 4844 qemu_printf("optim./code time %0.1f%%\n", 4845 (double)s->opt_time / (s->code_time ? s->code_time : 1) 4846 * 100.0); 4847 qemu_printf("liveness/code time %0.1f%%\n", 4848 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0); 4849 qemu_printf("cpu_restore count %" PRId64 "\n", 4850 s->restore_count); 4851 qemu_printf(" avg cycles %0.1f\n", 4852 s->restore_count ? (double)s->restore_time / s->restore_count : 0); 4853 } 4854 #else 4855 void tcg_dump_info(void) 4856 { 4857 qemu_printf("[TCG profiler not compiled]\n"); 4858 } 4859 #endif 4860 4861 #ifdef ELF_HOST_MACHINE 4862 /* In order to use this feature, the backend needs to do three things: 4863 4864 (1) Define ELF_HOST_MACHINE to indicate both what value to 4865 put into the ELF image and to indicate support for the feature. 4866 4867 (2) Define tcg_register_jit. This should create a buffer containing 4868 the contents of a .debug_frame section that describes the post- 4869 prologue unwind info for the tcg machine. 4870 4871 (3) Call tcg_register_jit_int, with the constructed .debug_frame. 4872 */ 4873 4874 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */ 4875 typedef enum { 4876 JIT_NOACTION = 0, 4877 JIT_REGISTER_FN, 4878 JIT_UNREGISTER_FN 4879 } jit_actions_t; 4880 4881 struct jit_code_entry { 4882 struct jit_code_entry *next_entry; 4883 struct jit_code_entry *prev_entry; 4884 const void *symfile_addr; 4885 uint64_t symfile_size; 4886 }; 4887 4888 struct jit_descriptor { 4889 uint32_t version; 4890 uint32_t action_flag; 4891 struct jit_code_entry *relevant_entry; 4892 struct jit_code_entry *first_entry; 4893 }; 4894 4895 void __jit_debug_register_code(void) __attribute__((noinline)); 4896 void __jit_debug_register_code(void) 4897 { 4898 asm(""); 4899 } 4900 4901 /* Must statically initialize the version, because GDB may check 4902 the version before we can set it. */ 4903 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 4904 4905 /* End GDB interface. */ 4906 4907 static int find_string(const char *strtab, const char *str) 4908 { 4909 const char *p = strtab + 1; 4910 4911 while (1) { 4912 if (strcmp(p, str) == 0) { 4913 return p - strtab; 4914 } 4915 p += strlen(p) + 1; 4916 } 4917 } 4918 4919 static void tcg_register_jit_int(const void *buf_ptr, size_t buf_size, 4920 const void *debug_frame, 4921 size_t debug_frame_size) 4922 { 4923 struct __attribute__((packed)) DebugInfo { 4924 uint32_t len; 4925 uint16_t version; 4926 uint32_t abbrev; 4927 uint8_t ptr_size; 4928 uint8_t cu_die; 4929 uint16_t cu_lang; 4930 uintptr_t cu_low_pc; 4931 uintptr_t cu_high_pc; 4932 uint8_t fn_die; 4933 char fn_name[16]; 4934 uintptr_t fn_low_pc; 4935 uintptr_t fn_high_pc; 4936 uint8_t cu_eoc; 4937 }; 4938 4939 struct ElfImage { 4940 ElfW(Ehdr) ehdr; 4941 ElfW(Phdr) phdr; 4942 ElfW(Shdr) shdr[7]; 4943 ElfW(Sym) sym[2]; 4944 struct DebugInfo di; 4945 uint8_t da[24]; 4946 char str[80]; 4947 }; 4948 4949 struct ElfImage *img; 4950 4951 static const struct ElfImage img_template = { 4952 .ehdr = { 4953 .e_ident[EI_MAG0] = ELFMAG0, 4954 .e_ident[EI_MAG1] = ELFMAG1, 4955 .e_ident[EI_MAG2] = ELFMAG2, 4956 .e_ident[EI_MAG3] = ELFMAG3, 4957 .e_ident[EI_CLASS] = ELF_CLASS, 4958 .e_ident[EI_DATA] = ELF_DATA, 4959 .e_ident[EI_VERSION] = EV_CURRENT, 4960 .e_type = ET_EXEC, 4961 .e_machine = ELF_HOST_MACHINE, 4962 .e_version = EV_CURRENT, 4963 .e_phoff = offsetof(struct ElfImage, phdr), 4964 .e_shoff = offsetof(struct ElfImage, shdr), 4965 .e_ehsize = sizeof(ElfW(Shdr)), 4966 .e_phentsize = sizeof(ElfW(Phdr)), 4967 .e_phnum = 1, 4968 .e_shentsize = sizeof(ElfW(Shdr)), 4969 .e_shnum = ARRAY_SIZE(img->shdr), 4970 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1, 4971 #ifdef ELF_HOST_FLAGS 4972 .e_flags = ELF_HOST_FLAGS, 4973 #endif 4974 #ifdef ELF_OSABI 4975 .e_ident[EI_OSABI] = ELF_OSABI, 4976 #endif 4977 }, 4978 .phdr = { 4979 .p_type = PT_LOAD, 4980 .p_flags = PF_X, 4981 }, 4982 .shdr = { 4983 [0] = { .sh_type = SHT_NULL }, 4984 /* Trick: The contents of code_gen_buffer are not present in 4985 this fake ELF file; that got allocated elsewhere. Therefore 4986 we mark .text as SHT_NOBITS (similar to .bss) so that readers 4987 will not look for contents. We can record any address. */ 4988 [1] = { /* .text */ 4989 .sh_type = SHT_NOBITS, 4990 .sh_flags = SHF_EXECINSTR | SHF_ALLOC, 4991 }, 4992 [2] = { /* .debug_info */ 4993 .sh_type = SHT_PROGBITS, 4994 .sh_offset = offsetof(struct ElfImage, di), 4995 .sh_size = sizeof(struct DebugInfo), 4996 }, 4997 [3] = { /* .debug_abbrev */ 4998 .sh_type = SHT_PROGBITS, 4999 .sh_offset = offsetof(struct ElfImage, da), 5000 .sh_size = sizeof(img->da), 5001 }, 5002 [4] = { /* .debug_frame */ 5003 .sh_type = SHT_PROGBITS, 5004 .sh_offset = sizeof(struct ElfImage), 5005 }, 5006 [5] = { /* .symtab */ 5007 .sh_type = SHT_SYMTAB, 5008 .sh_offset = offsetof(struct ElfImage, sym), 5009 .sh_size = sizeof(img->sym), 5010 .sh_info = 1, 5011 .sh_link = ARRAY_SIZE(img->shdr) - 1, 5012 .sh_entsize = sizeof(ElfW(Sym)), 5013 }, 5014 [6] = { /* .strtab */ 5015 .sh_type = SHT_STRTAB, 5016 .sh_offset = offsetof(struct ElfImage, str), 5017 .sh_size = sizeof(img->str), 5018 } 5019 }, 5020 .sym = { 5021 [1] = { /* code_gen_buffer */ 5022 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC), 5023 .st_shndx = 1, 5024 } 5025 }, 5026 .di = { 5027 .len = sizeof(struct DebugInfo) - 4, 5028 .version = 2, 5029 .ptr_size = sizeof(void *), 5030 .cu_die = 1, 5031 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */ 5032 .fn_die = 2, 5033 .fn_name = "code_gen_buffer" 5034 }, 5035 .da = { 5036 1, /* abbrev number (the cu) */ 5037 0x11, 1, /* DW_TAG_compile_unit, has children */ 5038 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */ 5039 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 5040 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 5041 0, 0, /* end of abbrev */ 5042 2, /* abbrev number (the fn) */ 5043 0x2e, 0, /* DW_TAG_subprogram, no children */ 5044 0x3, 0x8, /* DW_AT_name, DW_FORM_string */ 5045 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 5046 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 5047 0, 0, /* end of abbrev */ 5048 0 /* no more abbrev */ 5049 }, 5050 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0" 5051 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer", 5052 }; 5053 5054 /* We only need a single jit entry; statically allocate it. */ 5055 static struct jit_code_entry one_entry; 5056 5057 uintptr_t buf = (uintptr_t)buf_ptr; 5058 size_t img_size = sizeof(struct ElfImage) + debug_frame_size; 5059 DebugFrameHeader *dfh; 5060 5061 img = g_malloc(img_size); 5062 *img = img_template; 5063 5064 img->phdr.p_vaddr = buf; 5065 img->phdr.p_paddr = buf; 5066 img->phdr.p_memsz = buf_size; 5067 5068 img->shdr[1].sh_name = find_string(img->str, ".text"); 5069 img->shdr[1].sh_addr = buf; 5070 img->shdr[1].sh_size = buf_size; 5071 5072 img->shdr[2].sh_name = find_string(img->str, ".debug_info"); 5073 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev"); 5074 5075 img->shdr[4].sh_name = find_string(img->str, ".debug_frame"); 5076 img->shdr[4].sh_size = debug_frame_size; 5077 5078 img->shdr[5].sh_name = find_string(img->str, ".symtab"); 5079 img->shdr[6].sh_name = find_string(img->str, ".strtab"); 5080 5081 img->sym[1].st_name = find_string(img->str, "code_gen_buffer"); 5082 img->sym[1].st_value = buf; 5083 img->sym[1].st_size = buf_size; 5084 5085 img->di.cu_low_pc = buf; 5086 img->di.cu_high_pc = buf + buf_size; 5087 img->di.fn_low_pc = buf; 5088 img->di.fn_high_pc = buf + buf_size; 5089 5090 dfh = (DebugFrameHeader *)(img + 1); 5091 memcpy(dfh, debug_frame, debug_frame_size); 5092 dfh->fde.func_start = buf; 5093 dfh->fde.func_len = buf_size; 5094 5095 #ifdef DEBUG_JIT 5096 /* Enable this block to be able to debug the ELF image file creation. 5097 One can use readelf, objdump, or other inspection utilities. */ 5098 { 5099 FILE *f = fopen("/tmp/qemu.jit", "w+b"); 5100 if (f) { 5101 if (fwrite(img, img_size, 1, f) != img_size) { 5102 /* Avoid stupid unused return value warning for fwrite. */ 5103 } 5104 fclose(f); 5105 } 5106 } 5107 #endif 5108 5109 one_entry.symfile_addr = img; 5110 one_entry.symfile_size = img_size; 5111 5112 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; 5113 __jit_debug_descriptor.relevant_entry = &one_entry; 5114 __jit_debug_descriptor.first_entry = &one_entry; 5115 __jit_debug_register_code(); 5116 } 5117 #else 5118 /* No support for the feature. Provide the entry point expected by exec.c, 5119 and implement the internal function we declared earlier. */ 5120 5121 static void tcg_register_jit_int(const void *buf, size_t size, 5122 const void *debug_frame, 5123 size_t debug_frame_size) 5124 { 5125 } 5126 5127 void tcg_register_jit(const void *buf, size_t buf_size) 5128 { 5129 } 5130 #endif /* ELF_HOST_MACHINE */ 5131 5132 #if !TCG_TARGET_MAYBE_vec 5133 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...) 5134 { 5135 g_assert_not_reached(); 5136 } 5137 #endif 5138