1 /* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 /* define it to use liveness analysis (better code) */ 26 #define USE_TCG_OPTIMIZATIONS 27 28 #include "qemu/osdep.h" 29 30 /* Define to jump the ELF file used to communicate with GDB. */ 31 #undef DEBUG_JIT 32 33 #include "qemu/error-report.h" 34 #include "qemu/cutils.h" 35 #include "qemu/host-utils.h" 36 #include "qemu/qemu-print.h" 37 #include "qemu/timer.h" 38 39 /* Note: the long term plan is to reduce the dependencies on the QEMU 40 CPU definitions. Currently they are used for qemu_ld/st 41 instructions */ 42 #define NO_CPU_IO_DEFS 43 #include "cpu.h" 44 45 #include "exec/cpu-common.h" 46 #include "exec/exec-all.h" 47 48 #include "tcg-op.h" 49 50 #if UINTPTR_MAX == UINT32_MAX 51 # define ELF_CLASS ELFCLASS32 52 #else 53 # define ELF_CLASS ELFCLASS64 54 #endif 55 #ifdef HOST_WORDS_BIGENDIAN 56 # define ELF_DATA ELFDATA2MSB 57 #else 58 # define ELF_DATA ELFDATA2LSB 59 #endif 60 61 #include "elf.h" 62 #include "exec/log.h" 63 #include "sysemu/sysemu.h" 64 65 /* Forward declarations for functions declared in tcg-target.inc.c and 66 used here. */ 67 static void tcg_target_init(TCGContext *s); 68 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode); 69 static void tcg_target_qemu_prologue(TCGContext *s); 70 static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 71 intptr_t value, intptr_t addend); 72 73 /* The CIE and FDE header definitions will be common to all hosts. */ 74 typedef struct { 75 uint32_t len __attribute__((aligned((sizeof(void *))))); 76 uint32_t id; 77 uint8_t version; 78 char augmentation[1]; 79 uint8_t code_align; 80 uint8_t data_align; 81 uint8_t return_column; 82 } DebugFrameCIE; 83 84 typedef struct QEMU_PACKED { 85 uint32_t len __attribute__((aligned((sizeof(void *))))); 86 uint32_t cie_offset; 87 uintptr_t func_start; 88 uintptr_t func_len; 89 } DebugFrameFDEHeader; 90 91 typedef struct QEMU_PACKED { 92 DebugFrameCIE cie; 93 DebugFrameFDEHeader fde; 94 } DebugFrameHeader; 95 96 static void tcg_register_jit_int(void *buf, size_t size, 97 const void *debug_frame, 98 size_t debug_frame_size) 99 __attribute__((unused)); 100 101 /* Forward declarations for functions declared and used in tcg-target.inc.c. */ 102 static const char *target_parse_constraint(TCGArgConstraint *ct, 103 const char *ct_str, TCGType type); 104 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, 105 intptr_t arg2); 106 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg); 107 static void tcg_out_movi(TCGContext *s, TCGType type, 108 TCGReg ret, tcg_target_long arg); 109 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, 110 const int *const_args); 111 #if TCG_TARGET_MAYBE_vec 112 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 113 TCGReg dst, TCGReg src); 114 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 115 TCGReg dst, TCGReg base, intptr_t offset); 116 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, 117 TCGReg dst, tcg_target_long arg); 118 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 119 unsigned vece, const TCGArg *args, 120 const int *const_args); 121 #else 122 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 123 TCGReg dst, TCGReg src) 124 { 125 g_assert_not_reached(); 126 } 127 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 128 TCGReg dst, TCGReg base, intptr_t offset) 129 { 130 g_assert_not_reached(); 131 } 132 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type, 133 TCGReg dst, tcg_target_long arg) 134 { 135 g_assert_not_reached(); 136 } 137 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 138 unsigned vece, const TCGArg *args, 139 const int *const_args) 140 { 141 g_assert_not_reached(); 142 } 143 #endif 144 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, 145 intptr_t arg2); 146 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 147 TCGReg base, intptr_t ofs); 148 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target); 149 static int tcg_target_const_match(tcg_target_long val, TCGType type, 150 const TCGArgConstraint *arg_ct); 151 #ifdef TCG_TARGET_NEED_LDST_LABELS 152 static int tcg_out_ldst_finalize(TCGContext *s); 153 #endif 154 155 #define TCG_HIGHWATER 1024 156 157 static TCGContext **tcg_ctxs; 158 static unsigned int n_tcg_ctxs; 159 TCGv_env cpu_env = 0; 160 161 struct tcg_region_tree { 162 QemuMutex lock; 163 GTree *tree; 164 /* padding to avoid false sharing is computed at run-time */ 165 }; 166 167 /* 168 * We divide code_gen_buffer into equally-sized "regions" that TCG threads 169 * dynamically allocate from as demand dictates. Given appropriate region 170 * sizing, this minimizes flushes even when some TCG threads generate a lot 171 * more code than others. 172 */ 173 struct tcg_region_state { 174 QemuMutex lock; 175 176 /* fields set at init time */ 177 void *start; 178 void *start_aligned; 179 void *end; 180 size_t n; 181 size_t size; /* size of one region */ 182 size_t stride; /* .size + guard size */ 183 184 /* fields protected by the lock */ 185 size_t current; /* current region index */ 186 size_t agg_size_full; /* aggregate size of full regions */ 187 }; 188 189 static struct tcg_region_state region; 190 /* 191 * This is an array of struct tcg_region_tree's, with padding. 192 * We use void * to simplify the computation of region_trees[i]; each 193 * struct is found every tree_size bytes. 194 */ 195 static void *region_trees; 196 static size_t tree_size; 197 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT]; 198 static TCGRegSet tcg_target_call_clobber_regs; 199 200 #if TCG_TARGET_INSN_UNIT_SIZE == 1 201 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v) 202 { 203 *s->code_ptr++ = v; 204 } 205 206 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p, 207 uint8_t v) 208 { 209 *p = v; 210 } 211 #endif 212 213 #if TCG_TARGET_INSN_UNIT_SIZE <= 2 214 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v) 215 { 216 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 217 *s->code_ptr++ = v; 218 } else { 219 tcg_insn_unit *p = s->code_ptr; 220 memcpy(p, &v, sizeof(v)); 221 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE); 222 } 223 } 224 225 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p, 226 uint16_t v) 227 { 228 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 229 *p = v; 230 } else { 231 memcpy(p, &v, sizeof(v)); 232 } 233 } 234 #endif 235 236 #if TCG_TARGET_INSN_UNIT_SIZE <= 4 237 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v) 238 { 239 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 240 *s->code_ptr++ = v; 241 } else { 242 tcg_insn_unit *p = s->code_ptr; 243 memcpy(p, &v, sizeof(v)); 244 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE); 245 } 246 } 247 248 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p, 249 uint32_t v) 250 { 251 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 252 *p = v; 253 } else { 254 memcpy(p, &v, sizeof(v)); 255 } 256 } 257 #endif 258 259 #if TCG_TARGET_INSN_UNIT_SIZE <= 8 260 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v) 261 { 262 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 263 *s->code_ptr++ = v; 264 } else { 265 tcg_insn_unit *p = s->code_ptr; 266 memcpy(p, &v, sizeof(v)); 267 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE); 268 } 269 } 270 271 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p, 272 uint64_t v) 273 { 274 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 275 *p = v; 276 } else { 277 memcpy(p, &v, sizeof(v)); 278 } 279 } 280 #endif 281 282 /* label relocation processing */ 283 284 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type, 285 TCGLabel *l, intptr_t addend) 286 { 287 TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation)); 288 289 r->type = type; 290 r->ptr = code_ptr; 291 r->addend = addend; 292 QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next); 293 } 294 295 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr) 296 { 297 tcg_debug_assert(!l->has_value); 298 l->has_value = 1; 299 l->u.value_ptr = ptr; 300 } 301 302 TCGLabel *gen_new_label(void) 303 { 304 TCGContext *s = tcg_ctx; 305 TCGLabel *l = tcg_malloc(sizeof(TCGLabel)); 306 307 memset(l, 0, sizeof(TCGLabel)); 308 l->id = s->nb_labels++; 309 QSIMPLEQ_INIT(&l->relocs); 310 311 QSIMPLEQ_INSERT_TAIL(&s->labels, l, next); 312 313 return l; 314 } 315 316 static bool tcg_resolve_relocs(TCGContext *s) 317 { 318 TCGLabel *l; 319 320 QSIMPLEQ_FOREACH(l, &s->labels, next) { 321 TCGRelocation *r; 322 uintptr_t value = l->u.value; 323 324 QSIMPLEQ_FOREACH(r, &l->relocs, next) { 325 if (!patch_reloc(r->ptr, r->type, value, r->addend)) { 326 return false; 327 } 328 } 329 } 330 return true; 331 } 332 333 static void set_jmp_reset_offset(TCGContext *s, int which) 334 { 335 size_t off = tcg_current_code_size(s); 336 s->tb_jmp_reset_offset[which] = off; 337 /* Make sure that we didn't overflow the stored offset. */ 338 assert(s->tb_jmp_reset_offset[which] == off); 339 } 340 341 #include "tcg-target.inc.c" 342 343 /* compare a pointer @ptr and a tb_tc @s */ 344 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) 345 { 346 if (ptr >= s->ptr + s->size) { 347 return 1; 348 } else if (ptr < s->ptr) { 349 return -1; 350 } 351 return 0; 352 } 353 354 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp) 355 { 356 const struct tb_tc *a = ap; 357 const struct tb_tc *b = bp; 358 359 /* 360 * When both sizes are set, we know this isn't a lookup. 361 * This is the most likely case: every TB must be inserted; lookups 362 * are a lot less frequent. 363 */ 364 if (likely(a->size && b->size)) { 365 if (a->ptr > b->ptr) { 366 return 1; 367 } else if (a->ptr < b->ptr) { 368 return -1; 369 } 370 /* a->ptr == b->ptr should happen only on deletions */ 371 g_assert(a->size == b->size); 372 return 0; 373 } 374 /* 375 * All lookups have either .size field set to 0. 376 * From the glib sources we see that @ap is always the lookup key. However 377 * the docs provide no guarantee, so we just mark this case as likely. 378 */ 379 if (likely(a->size == 0)) { 380 return ptr_cmp_tb_tc(a->ptr, b); 381 } 382 return ptr_cmp_tb_tc(b->ptr, a); 383 } 384 385 static void tcg_region_trees_init(void) 386 { 387 size_t i; 388 389 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); 390 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); 391 for (i = 0; i < region.n; i++) { 392 struct tcg_region_tree *rt = region_trees + i * tree_size; 393 394 qemu_mutex_init(&rt->lock); 395 rt->tree = g_tree_new(tb_tc_cmp); 396 } 397 } 398 399 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p) 400 { 401 size_t region_idx; 402 403 if (p < region.start_aligned) { 404 region_idx = 0; 405 } else { 406 ptrdiff_t offset = p - region.start_aligned; 407 408 if (offset > region.stride * (region.n - 1)) { 409 region_idx = region.n - 1; 410 } else { 411 region_idx = offset / region.stride; 412 } 413 } 414 return region_trees + region_idx * tree_size; 415 } 416 417 void tcg_tb_insert(TranslationBlock *tb) 418 { 419 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 420 421 qemu_mutex_lock(&rt->lock); 422 g_tree_insert(rt->tree, &tb->tc, tb); 423 qemu_mutex_unlock(&rt->lock); 424 } 425 426 void tcg_tb_remove(TranslationBlock *tb) 427 { 428 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 429 430 qemu_mutex_lock(&rt->lock); 431 g_tree_remove(rt->tree, &tb->tc); 432 qemu_mutex_unlock(&rt->lock); 433 } 434 435 /* 436 * Find the TB 'tb' such that 437 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size 438 * Return NULL if not found. 439 */ 440 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) 441 { 442 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); 443 TranslationBlock *tb; 444 struct tb_tc s = { .ptr = (void *)tc_ptr }; 445 446 qemu_mutex_lock(&rt->lock); 447 tb = g_tree_lookup(rt->tree, &s); 448 qemu_mutex_unlock(&rt->lock); 449 return tb; 450 } 451 452 static void tcg_region_tree_lock_all(void) 453 { 454 size_t i; 455 456 for (i = 0; i < region.n; i++) { 457 struct tcg_region_tree *rt = region_trees + i * tree_size; 458 459 qemu_mutex_lock(&rt->lock); 460 } 461 } 462 463 static void tcg_region_tree_unlock_all(void) 464 { 465 size_t i; 466 467 for (i = 0; i < region.n; i++) { 468 struct tcg_region_tree *rt = region_trees + i * tree_size; 469 470 qemu_mutex_unlock(&rt->lock); 471 } 472 } 473 474 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) 475 { 476 size_t i; 477 478 tcg_region_tree_lock_all(); 479 for (i = 0; i < region.n; i++) { 480 struct tcg_region_tree *rt = region_trees + i * tree_size; 481 482 g_tree_foreach(rt->tree, func, user_data); 483 } 484 tcg_region_tree_unlock_all(); 485 } 486 487 size_t tcg_nb_tbs(void) 488 { 489 size_t nb_tbs = 0; 490 size_t i; 491 492 tcg_region_tree_lock_all(); 493 for (i = 0; i < region.n; i++) { 494 struct tcg_region_tree *rt = region_trees + i * tree_size; 495 496 nb_tbs += g_tree_nnodes(rt->tree); 497 } 498 tcg_region_tree_unlock_all(); 499 return nb_tbs; 500 } 501 502 static void tcg_region_tree_reset_all(void) 503 { 504 size_t i; 505 506 tcg_region_tree_lock_all(); 507 for (i = 0; i < region.n; i++) { 508 struct tcg_region_tree *rt = region_trees + i * tree_size; 509 510 /* Increment the refcount first so that destroy acts as a reset */ 511 g_tree_ref(rt->tree); 512 g_tree_destroy(rt->tree); 513 } 514 tcg_region_tree_unlock_all(); 515 } 516 517 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) 518 { 519 void *start, *end; 520 521 start = region.start_aligned + curr_region * region.stride; 522 end = start + region.size; 523 524 if (curr_region == 0) { 525 start = region.start; 526 } 527 if (curr_region == region.n - 1) { 528 end = region.end; 529 } 530 531 *pstart = start; 532 *pend = end; 533 } 534 535 static void tcg_region_assign(TCGContext *s, size_t curr_region) 536 { 537 void *start, *end; 538 539 tcg_region_bounds(curr_region, &start, &end); 540 541 s->code_gen_buffer = start; 542 s->code_gen_ptr = start; 543 s->code_gen_buffer_size = end - start; 544 s->code_gen_highwater = end - TCG_HIGHWATER; 545 } 546 547 static bool tcg_region_alloc__locked(TCGContext *s) 548 { 549 if (region.current == region.n) { 550 return true; 551 } 552 tcg_region_assign(s, region.current); 553 region.current++; 554 return false; 555 } 556 557 /* 558 * Request a new region once the one in use has filled up. 559 * Returns true on error. 560 */ 561 static bool tcg_region_alloc(TCGContext *s) 562 { 563 bool err; 564 /* read the region size now; alloc__locked will overwrite it on success */ 565 size_t size_full = s->code_gen_buffer_size; 566 567 qemu_mutex_lock(®ion.lock); 568 err = tcg_region_alloc__locked(s); 569 if (!err) { 570 region.agg_size_full += size_full - TCG_HIGHWATER; 571 } 572 qemu_mutex_unlock(®ion.lock); 573 return err; 574 } 575 576 /* 577 * Perform a context's first region allocation. 578 * This function does _not_ increment region.agg_size_full. 579 */ 580 static inline bool tcg_region_initial_alloc__locked(TCGContext *s) 581 { 582 return tcg_region_alloc__locked(s); 583 } 584 585 /* Call from a safe-work context */ 586 void tcg_region_reset_all(void) 587 { 588 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 589 unsigned int i; 590 591 qemu_mutex_lock(®ion.lock); 592 region.current = 0; 593 region.agg_size_full = 0; 594 595 for (i = 0; i < n_ctxs; i++) { 596 TCGContext *s = atomic_read(&tcg_ctxs[i]); 597 bool err = tcg_region_initial_alloc__locked(s); 598 599 g_assert(!err); 600 } 601 qemu_mutex_unlock(®ion.lock); 602 603 tcg_region_tree_reset_all(); 604 } 605 606 #ifdef CONFIG_USER_ONLY 607 static size_t tcg_n_regions(void) 608 { 609 return 1; 610 } 611 #else 612 /* 613 * It is likely that some vCPUs will translate more code than others, so we 614 * first try to set more regions than max_cpus, with those regions being of 615 * reasonable size. If that's not possible we make do by evenly dividing 616 * the code_gen_buffer among the vCPUs. 617 */ 618 static size_t tcg_n_regions(void) 619 { 620 size_t i; 621 622 /* Use a single region if all we have is one vCPU thread */ 623 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { 624 return 1; 625 } 626 627 /* Try to have more regions than max_cpus, with each region being >= 2 MB */ 628 for (i = 8; i > 0; i--) { 629 size_t regions_per_thread = i; 630 size_t region_size; 631 632 region_size = tcg_init_ctx.code_gen_buffer_size; 633 region_size /= max_cpus * regions_per_thread; 634 635 if (region_size >= 2 * 1024u * 1024) { 636 return max_cpus * regions_per_thread; 637 } 638 } 639 /* If we can't, then just allocate one region per vCPU thread */ 640 return max_cpus; 641 } 642 #endif 643 644 /* 645 * Initializes region partitioning. 646 * 647 * Called at init time from the parent thread (i.e. the one calling 648 * tcg_context_init), after the target's TCG globals have been set. 649 * 650 * Region partitioning works by splitting code_gen_buffer into separate regions, 651 * and then assigning regions to TCG threads so that the threads can translate 652 * code in parallel without synchronization. 653 * 654 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at 655 * least max_cpus regions in MTTCG. In !MTTCG we use a single region. 656 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) 657 * must have been parsed before calling this function, since it calls 658 * qemu_tcg_mttcg_enabled(). 659 * 660 * In user-mode we use a single region. Having multiple regions in user-mode 661 * is not supported, because the number of vCPU threads (recall that each thread 662 * spawned by the guest corresponds to a vCPU thread) is only bounded by the 663 * OS, and usually this number is huge (tens of thousands is not uncommon). 664 * Thus, given this large bound on the number of vCPU threads and the fact 665 * that code_gen_buffer is allocated at compile-time, we cannot guarantee 666 * that the availability of at least one region per vCPU thread. 667 * 668 * However, this user-mode limitation is unlikely to be a significant problem 669 * in practice. Multi-threaded guests share most if not all of their translated 670 * code, which makes parallel code generation less appealing than in softmmu. 671 */ 672 void tcg_region_init(void) 673 { 674 void *buf = tcg_init_ctx.code_gen_buffer; 675 void *aligned; 676 size_t size = tcg_init_ctx.code_gen_buffer_size; 677 size_t page_size = qemu_real_host_page_size; 678 size_t region_size; 679 size_t n_regions; 680 size_t i; 681 682 n_regions = tcg_n_regions(); 683 684 /* The first region will be 'aligned - buf' bytes larger than the others */ 685 aligned = QEMU_ALIGN_PTR_UP(buf, page_size); 686 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size); 687 /* 688 * Make region_size a multiple of page_size, using aligned as the start. 689 * As a result of this we might end up with a few extra pages at the end of 690 * the buffer; we will assign those to the last region. 691 */ 692 region_size = (size - (aligned - buf)) / n_regions; 693 region_size = QEMU_ALIGN_DOWN(region_size, page_size); 694 695 /* A region must have at least 2 pages; one code, one guard */ 696 g_assert(region_size >= 2 * page_size); 697 698 /* init the region struct */ 699 qemu_mutex_init(®ion.lock); 700 region.n = n_regions; 701 region.size = region_size - page_size; 702 region.stride = region_size; 703 region.start = buf; 704 region.start_aligned = aligned; 705 /* page-align the end, since its last page will be a guard page */ 706 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size); 707 /* account for that last guard page */ 708 region.end -= page_size; 709 710 /* set guard pages */ 711 for (i = 0; i < region.n; i++) { 712 void *start, *end; 713 int rc; 714 715 tcg_region_bounds(i, &start, &end); 716 rc = qemu_mprotect_none(end, page_size); 717 g_assert(!rc); 718 } 719 720 tcg_region_trees_init(); 721 722 /* In user-mode we support only one ctx, so do the initial allocation now */ 723 #ifdef CONFIG_USER_ONLY 724 { 725 bool err = tcg_region_initial_alloc__locked(tcg_ctx); 726 727 g_assert(!err); 728 } 729 #endif 730 } 731 732 /* 733 * All TCG threads except the parent (i.e. the one that called tcg_context_init 734 * and registered the target's TCG globals) must register with this function 735 * before initiating translation. 736 * 737 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation 738 * of tcg_region_init() for the reasoning behind this. 739 * 740 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in 741 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context 742 * is not used anymore for translation once this function is called. 743 * 744 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates 745 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode. 746 */ 747 #ifdef CONFIG_USER_ONLY 748 void tcg_register_thread(void) 749 { 750 tcg_ctx = &tcg_init_ctx; 751 } 752 #else 753 void tcg_register_thread(void) 754 { 755 TCGContext *s = g_malloc(sizeof(*s)); 756 unsigned int i, n; 757 bool err; 758 759 *s = tcg_init_ctx; 760 761 /* Relink mem_base. */ 762 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) { 763 if (tcg_init_ctx.temps[i].mem_base) { 764 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps; 765 tcg_debug_assert(b >= 0 && b < n); 766 s->temps[i].mem_base = &s->temps[b]; 767 } 768 } 769 770 /* Claim an entry in tcg_ctxs */ 771 n = atomic_fetch_inc(&n_tcg_ctxs); 772 g_assert(n < max_cpus); 773 atomic_set(&tcg_ctxs[n], s); 774 775 tcg_ctx = s; 776 qemu_mutex_lock(®ion.lock); 777 err = tcg_region_initial_alloc__locked(tcg_ctx); 778 g_assert(!err); 779 qemu_mutex_unlock(®ion.lock); 780 } 781 #endif /* !CONFIG_USER_ONLY */ 782 783 /* 784 * Returns the size (in bytes) of all translated code (i.e. from all regions) 785 * currently in the cache. 786 * See also: tcg_code_capacity() 787 * Do not confuse with tcg_current_code_size(); that one applies to a single 788 * TCG context. 789 */ 790 size_t tcg_code_size(void) 791 { 792 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 793 unsigned int i; 794 size_t total; 795 796 qemu_mutex_lock(®ion.lock); 797 total = region.agg_size_full; 798 for (i = 0; i < n_ctxs; i++) { 799 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 800 size_t size; 801 802 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer; 803 g_assert(size <= s->code_gen_buffer_size); 804 total += size; 805 } 806 qemu_mutex_unlock(®ion.lock); 807 return total; 808 } 809 810 /* 811 * Returns the code capacity (in bytes) of the entire cache, i.e. including all 812 * regions. 813 * See also: tcg_code_size() 814 */ 815 size_t tcg_code_capacity(void) 816 { 817 size_t guard_size, capacity; 818 819 /* no need for synchronization; these variables are set at init time */ 820 guard_size = region.stride - region.size; 821 capacity = region.end + guard_size - region.start; 822 capacity -= region.n * (guard_size + TCG_HIGHWATER); 823 return capacity; 824 } 825 826 size_t tcg_tb_phys_invalidate_count(void) 827 { 828 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 829 unsigned int i; 830 size_t total = 0; 831 832 for (i = 0; i < n_ctxs; i++) { 833 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 834 835 total += atomic_read(&s->tb_phys_invalidate_count); 836 } 837 return total; 838 } 839 840 /* pool based memory allocation */ 841 void *tcg_malloc_internal(TCGContext *s, int size) 842 { 843 TCGPool *p; 844 int pool_size; 845 846 if (size > TCG_POOL_CHUNK_SIZE) { 847 /* big malloc: insert a new pool (XXX: could optimize) */ 848 p = g_malloc(sizeof(TCGPool) + size); 849 p->size = size; 850 p->next = s->pool_first_large; 851 s->pool_first_large = p; 852 return p->data; 853 } else { 854 p = s->pool_current; 855 if (!p) { 856 p = s->pool_first; 857 if (!p) 858 goto new_pool; 859 } else { 860 if (!p->next) { 861 new_pool: 862 pool_size = TCG_POOL_CHUNK_SIZE; 863 p = g_malloc(sizeof(TCGPool) + pool_size); 864 p->size = pool_size; 865 p->next = NULL; 866 if (s->pool_current) 867 s->pool_current->next = p; 868 else 869 s->pool_first = p; 870 } else { 871 p = p->next; 872 } 873 } 874 } 875 s->pool_current = p; 876 s->pool_cur = p->data + size; 877 s->pool_end = p->data + p->size; 878 return p->data; 879 } 880 881 void tcg_pool_reset(TCGContext *s) 882 { 883 TCGPool *p, *t; 884 for (p = s->pool_first_large; p; p = t) { 885 t = p->next; 886 g_free(p); 887 } 888 s->pool_first_large = NULL; 889 s->pool_cur = s->pool_end = NULL; 890 s->pool_current = NULL; 891 } 892 893 typedef struct TCGHelperInfo { 894 void *func; 895 const char *name; 896 unsigned flags; 897 unsigned sizemask; 898 } TCGHelperInfo; 899 900 #include "exec/helper-proto.h" 901 902 static const TCGHelperInfo all_helpers[] = { 903 #include "exec/helper-tcg.h" 904 }; 905 static GHashTable *helper_table; 906 907 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)]; 908 static void process_op_defs(TCGContext *s); 909 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 910 TCGReg reg, const char *name); 911 912 void tcg_context_init(TCGContext *s) 913 { 914 int op, total_args, n, i; 915 TCGOpDef *def; 916 TCGArgConstraint *args_ct; 917 int *sorted_args; 918 TCGTemp *ts; 919 920 memset(s, 0, sizeof(*s)); 921 s->nb_globals = 0; 922 923 /* Count total number of arguments and allocate the corresponding 924 space */ 925 total_args = 0; 926 for(op = 0; op < NB_OPS; op++) { 927 def = &tcg_op_defs[op]; 928 n = def->nb_iargs + def->nb_oargs; 929 total_args += n; 930 } 931 932 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args); 933 sorted_args = g_malloc(sizeof(int) * total_args); 934 935 for(op = 0; op < NB_OPS; op++) { 936 def = &tcg_op_defs[op]; 937 def->args_ct = args_ct; 938 def->sorted_args = sorted_args; 939 n = def->nb_iargs + def->nb_oargs; 940 sorted_args += n; 941 args_ct += n; 942 } 943 944 /* Register helpers. */ 945 /* Use g_direct_hash/equal for direct pointer comparisons on func. */ 946 helper_table = g_hash_table_new(NULL, NULL); 947 948 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) { 949 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func, 950 (gpointer)&all_helpers[i]); 951 } 952 953 tcg_target_init(s); 954 process_op_defs(s); 955 956 /* Reverse the order of the saved registers, assuming they're all at 957 the start of tcg_target_reg_alloc_order. */ 958 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) { 959 int r = tcg_target_reg_alloc_order[n]; 960 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) { 961 break; 962 } 963 } 964 for (i = 0; i < n; ++i) { 965 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i]; 966 } 967 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) { 968 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i]; 969 } 970 971 tcg_ctx = s; 972 /* 973 * In user-mode we simply share the init context among threads, since we 974 * use a single region. See the documentation tcg_region_init() for the 975 * reasoning behind this. 976 * In softmmu we will have at most max_cpus TCG threads. 977 */ 978 #ifdef CONFIG_USER_ONLY 979 tcg_ctxs = &tcg_ctx; 980 n_tcg_ctxs = 1; 981 #else 982 tcg_ctxs = g_new(TCGContext *, max_cpus); 983 #endif 984 985 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0)); 986 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env"); 987 cpu_env = temp_tcgv_ptr(ts); 988 } 989 990 /* 991 * Allocate TBs right before their corresponding translated code, making 992 * sure that TBs and code are on different cache lines. 993 */ 994 TranslationBlock *tcg_tb_alloc(TCGContext *s) 995 { 996 uintptr_t align = qemu_icache_linesize; 997 TranslationBlock *tb; 998 void *next; 999 1000 retry: 1001 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align); 1002 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align); 1003 1004 if (unlikely(next > s->code_gen_highwater)) { 1005 if (tcg_region_alloc(s)) { 1006 return NULL; 1007 } 1008 goto retry; 1009 } 1010 atomic_set(&s->code_gen_ptr, next); 1011 s->data_gen_ptr = NULL; 1012 return tb; 1013 } 1014 1015 void tcg_prologue_init(TCGContext *s) 1016 { 1017 size_t prologue_size, total_size; 1018 void *buf0, *buf1; 1019 1020 /* Put the prologue at the beginning of code_gen_buffer. */ 1021 buf0 = s->code_gen_buffer; 1022 total_size = s->code_gen_buffer_size; 1023 s->code_ptr = buf0; 1024 s->code_buf = buf0; 1025 s->data_gen_ptr = NULL; 1026 s->code_gen_prologue = buf0; 1027 1028 /* Compute a high-water mark, at which we voluntarily flush the buffer 1029 and start over. The size here is arbitrary, significantly larger 1030 than we expect the code generation for any one opcode to require. */ 1031 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER); 1032 1033 #ifdef TCG_TARGET_NEED_POOL_LABELS 1034 s->pool_labels = NULL; 1035 #endif 1036 1037 /* Generate the prologue. */ 1038 tcg_target_qemu_prologue(s); 1039 1040 #ifdef TCG_TARGET_NEED_POOL_LABELS 1041 /* Allow the prologue to put e.g. guest_base into a pool entry. */ 1042 { 1043 int result = tcg_out_pool_finalize(s); 1044 tcg_debug_assert(result == 0); 1045 } 1046 #endif 1047 1048 buf1 = s->code_ptr; 1049 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1); 1050 1051 /* Deduct the prologue from the buffer. */ 1052 prologue_size = tcg_current_code_size(s); 1053 s->code_gen_ptr = buf1; 1054 s->code_gen_buffer = buf1; 1055 s->code_buf = buf1; 1056 total_size -= prologue_size; 1057 s->code_gen_buffer_size = total_size; 1058 1059 tcg_register_jit(s->code_gen_buffer, total_size); 1060 1061 #ifdef DEBUG_DISAS 1062 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { 1063 qemu_log_lock(); 1064 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size); 1065 if (s->data_gen_ptr) { 1066 size_t code_size = s->data_gen_ptr - buf0; 1067 size_t data_size = prologue_size - code_size; 1068 size_t i; 1069 1070 log_disas(buf0, code_size); 1071 1072 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1073 if (sizeof(tcg_target_ulong) == 8) { 1074 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1075 (uintptr_t)s->data_gen_ptr + i, 1076 *(uint64_t *)(s->data_gen_ptr + i)); 1077 } else { 1078 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1079 (uintptr_t)s->data_gen_ptr + i, 1080 *(uint32_t *)(s->data_gen_ptr + i)); 1081 } 1082 } 1083 } else { 1084 log_disas(buf0, prologue_size); 1085 } 1086 qemu_log("\n"); 1087 qemu_log_flush(); 1088 qemu_log_unlock(); 1089 } 1090 #endif 1091 1092 /* Assert that goto_ptr is implemented completely. */ 1093 if (TCG_TARGET_HAS_goto_ptr) { 1094 tcg_debug_assert(s->code_gen_epilogue != NULL); 1095 } 1096 } 1097 1098 void tcg_func_start(TCGContext *s) 1099 { 1100 tcg_pool_reset(s); 1101 s->nb_temps = s->nb_globals; 1102 1103 /* No temps have been previously allocated for size or locality. */ 1104 memset(s->free_temps, 0, sizeof(s->free_temps)); 1105 1106 s->nb_ops = 0; 1107 s->nb_labels = 0; 1108 s->current_frame_offset = s->frame_start; 1109 1110 #ifdef CONFIG_DEBUG_TCG 1111 s->goto_tb_issue_mask = 0; 1112 #endif 1113 1114 QTAILQ_INIT(&s->ops); 1115 QTAILQ_INIT(&s->free_ops); 1116 QSIMPLEQ_INIT(&s->labels); 1117 } 1118 1119 static inline TCGTemp *tcg_temp_alloc(TCGContext *s) 1120 { 1121 int n = s->nb_temps++; 1122 tcg_debug_assert(n < TCG_MAX_TEMPS); 1123 return memset(&s->temps[n], 0, sizeof(TCGTemp)); 1124 } 1125 1126 static inline TCGTemp *tcg_global_alloc(TCGContext *s) 1127 { 1128 TCGTemp *ts; 1129 1130 tcg_debug_assert(s->nb_globals == s->nb_temps); 1131 s->nb_globals++; 1132 ts = tcg_temp_alloc(s); 1133 ts->temp_global = 1; 1134 1135 return ts; 1136 } 1137 1138 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 1139 TCGReg reg, const char *name) 1140 { 1141 TCGTemp *ts; 1142 1143 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) { 1144 tcg_abort(); 1145 } 1146 1147 ts = tcg_global_alloc(s); 1148 ts->base_type = type; 1149 ts->type = type; 1150 ts->fixed_reg = 1; 1151 ts->reg = reg; 1152 ts->name = name; 1153 tcg_regset_set_reg(s->reserved_regs, reg); 1154 1155 return ts; 1156 } 1157 1158 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size) 1159 { 1160 s->frame_start = start; 1161 s->frame_end = start + size; 1162 s->frame_temp 1163 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame"); 1164 } 1165 1166 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base, 1167 intptr_t offset, const char *name) 1168 { 1169 TCGContext *s = tcg_ctx; 1170 TCGTemp *base_ts = tcgv_ptr_temp(base); 1171 TCGTemp *ts = tcg_global_alloc(s); 1172 int indirect_reg = 0, bigendian = 0; 1173 #ifdef HOST_WORDS_BIGENDIAN 1174 bigendian = 1; 1175 #endif 1176 1177 if (!base_ts->fixed_reg) { 1178 /* We do not support double-indirect registers. */ 1179 tcg_debug_assert(!base_ts->indirect_reg); 1180 base_ts->indirect_base = 1; 1181 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64 1182 ? 2 : 1); 1183 indirect_reg = 1; 1184 } 1185 1186 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1187 TCGTemp *ts2 = tcg_global_alloc(s); 1188 char buf[64]; 1189 1190 ts->base_type = TCG_TYPE_I64; 1191 ts->type = TCG_TYPE_I32; 1192 ts->indirect_reg = indirect_reg; 1193 ts->mem_allocated = 1; 1194 ts->mem_base = base_ts; 1195 ts->mem_offset = offset + bigendian * 4; 1196 pstrcpy(buf, sizeof(buf), name); 1197 pstrcat(buf, sizeof(buf), "_0"); 1198 ts->name = strdup(buf); 1199 1200 tcg_debug_assert(ts2 == ts + 1); 1201 ts2->base_type = TCG_TYPE_I64; 1202 ts2->type = TCG_TYPE_I32; 1203 ts2->indirect_reg = indirect_reg; 1204 ts2->mem_allocated = 1; 1205 ts2->mem_base = base_ts; 1206 ts2->mem_offset = offset + (1 - bigendian) * 4; 1207 pstrcpy(buf, sizeof(buf), name); 1208 pstrcat(buf, sizeof(buf), "_1"); 1209 ts2->name = strdup(buf); 1210 } else { 1211 ts->base_type = type; 1212 ts->type = type; 1213 ts->indirect_reg = indirect_reg; 1214 ts->mem_allocated = 1; 1215 ts->mem_base = base_ts; 1216 ts->mem_offset = offset; 1217 ts->name = name; 1218 } 1219 return ts; 1220 } 1221 1222 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local) 1223 { 1224 TCGContext *s = tcg_ctx; 1225 TCGTemp *ts; 1226 int idx, k; 1227 1228 k = type + (temp_local ? TCG_TYPE_COUNT : 0); 1229 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS); 1230 if (idx < TCG_MAX_TEMPS) { 1231 /* There is already an available temp with the right type. */ 1232 clear_bit(idx, s->free_temps[k].l); 1233 1234 ts = &s->temps[idx]; 1235 ts->temp_allocated = 1; 1236 tcg_debug_assert(ts->base_type == type); 1237 tcg_debug_assert(ts->temp_local == temp_local); 1238 } else { 1239 ts = tcg_temp_alloc(s); 1240 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1241 TCGTemp *ts2 = tcg_temp_alloc(s); 1242 1243 ts->base_type = type; 1244 ts->type = TCG_TYPE_I32; 1245 ts->temp_allocated = 1; 1246 ts->temp_local = temp_local; 1247 1248 tcg_debug_assert(ts2 == ts + 1); 1249 ts2->base_type = TCG_TYPE_I64; 1250 ts2->type = TCG_TYPE_I32; 1251 ts2->temp_allocated = 1; 1252 ts2->temp_local = temp_local; 1253 } else { 1254 ts->base_type = type; 1255 ts->type = type; 1256 ts->temp_allocated = 1; 1257 ts->temp_local = temp_local; 1258 } 1259 } 1260 1261 #if defined(CONFIG_DEBUG_TCG) 1262 s->temps_in_use++; 1263 #endif 1264 return ts; 1265 } 1266 1267 TCGv_vec tcg_temp_new_vec(TCGType type) 1268 { 1269 TCGTemp *t; 1270 1271 #ifdef CONFIG_DEBUG_TCG 1272 switch (type) { 1273 case TCG_TYPE_V64: 1274 assert(TCG_TARGET_HAS_v64); 1275 break; 1276 case TCG_TYPE_V128: 1277 assert(TCG_TARGET_HAS_v128); 1278 break; 1279 case TCG_TYPE_V256: 1280 assert(TCG_TARGET_HAS_v256); 1281 break; 1282 default: 1283 g_assert_not_reached(); 1284 } 1285 #endif 1286 1287 t = tcg_temp_new_internal(type, 0); 1288 return temp_tcgv_vec(t); 1289 } 1290 1291 /* Create a new temp of the same type as an existing temp. */ 1292 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match) 1293 { 1294 TCGTemp *t = tcgv_vec_temp(match); 1295 1296 tcg_debug_assert(t->temp_allocated != 0); 1297 1298 t = tcg_temp_new_internal(t->base_type, 0); 1299 return temp_tcgv_vec(t); 1300 } 1301 1302 void tcg_temp_free_internal(TCGTemp *ts) 1303 { 1304 TCGContext *s = tcg_ctx; 1305 int k, idx; 1306 1307 #if defined(CONFIG_DEBUG_TCG) 1308 s->temps_in_use--; 1309 if (s->temps_in_use < 0) { 1310 fprintf(stderr, "More temporaries freed than allocated!\n"); 1311 } 1312 #endif 1313 1314 tcg_debug_assert(ts->temp_global == 0); 1315 tcg_debug_assert(ts->temp_allocated != 0); 1316 ts->temp_allocated = 0; 1317 1318 idx = temp_idx(ts); 1319 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0); 1320 set_bit(idx, s->free_temps[k].l); 1321 } 1322 1323 TCGv_i32 tcg_const_i32(int32_t val) 1324 { 1325 TCGv_i32 t0; 1326 t0 = tcg_temp_new_i32(); 1327 tcg_gen_movi_i32(t0, val); 1328 return t0; 1329 } 1330 1331 TCGv_i64 tcg_const_i64(int64_t val) 1332 { 1333 TCGv_i64 t0; 1334 t0 = tcg_temp_new_i64(); 1335 tcg_gen_movi_i64(t0, val); 1336 return t0; 1337 } 1338 1339 TCGv_i32 tcg_const_local_i32(int32_t val) 1340 { 1341 TCGv_i32 t0; 1342 t0 = tcg_temp_local_new_i32(); 1343 tcg_gen_movi_i32(t0, val); 1344 return t0; 1345 } 1346 1347 TCGv_i64 tcg_const_local_i64(int64_t val) 1348 { 1349 TCGv_i64 t0; 1350 t0 = tcg_temp_local_new_i64(); 1351 tcg_gen_movi_i64(t0, val); 1352 return t0; 1353 } 1354 1355 #if defined(CONFIG_DEBUG_TCG) 1356 void tcg_clear_temp_count(void) 1357 { 1358 TCGContext *s = tcg_ctx; 1359 s->temps_in_use = 0; 1360 } 1361 1362 int tcg_check_temp_count(void) 1363 { 1364 TCGContext *s = tcg_ctx; 1365 if (s->temps_in_use) { 1366 /* Clear the count so that we don't give another 1367 * warning immediately next time around. 1368 */ 1369 s->temps_in_use = 0; 1370 return 1; 1371 } 1372 return 0; 1373 } 1374 #endif 1375 1376 /* Return true if OP may appear in the opcode stream. 1377 Test the runtime variable that controls each opcode. */ 1378 bool tcg_op_supported(TCGOpcode op) 1379 { 1380 const bool have_vec 1381 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256; 1382 1383 switch (op) { 1384 case INDEX_op_discard: 1385 case INDEX_op_set_label: 1386 case INDEX_op_call: 1387 case INDEX_op_br: 1388 case INDEX_op_mb: 1389 case INDEX_op_insn_start: 1390 case INDEX_op_exit_tb: 1391 case INDEX_op_goto_tb: 1392 case INDEX_op_qemu_ld_i32: 1393 case INDEX_op_qemu_st_i32: 1394 case INDEX_op_qemu_ld_i64: 1395 case INDEX_op_qemu_st_i64: 1396 return true; 1397 1398 case INDEX_op_goto_ptr: 1399 return TCG_TARGET_HAS_goto_ptr; 1400 1401 case INDEX_op_mov_i32: 1402 case INDEX_op_movi_i32: 1403 case INDEX_op_setcond_i32: 1404 case INDEX_op_brcond_i32: 1405 case INDEX_op_ld8u_i32: 1406 case INDEX_op_ld8s_i32: 1407 case INDEX_op_ld16u_i32: 1408 case INDEX_op_ld16s_i32: 1409 case INDEX_op_ld_i32: 1410 case INDEX_op_st8_i32: 1411 case INDEX_op_st16_i32: 1412 case INDEX_op_st_i32: 1413 case INDEX_op_add_i32: 1414 case INDEX_op_sub_i32: 1415 case INDEX_op_mul_i32: 1416 case INDEX_op_and_i32: 1417 case INDEX_op_or_i32: 1418 case INDEX_op_xor_i32: 1419 case INDEX_op_shl_i32: 1420 case INDEX_op_shr_i32: 1421 case INDEX_op_sar_i32: 1422 return true; 1423 1424 case INDEX_op_movcond_i32: 1425 return TCG_TARGET_HAS_movcond_i32; 1426 case INDEX_op_div_i32: 1427 case INDEX_op_divu_i32: 1428 return TCG_TARGET_HAS_div_i32; 1429 case INDEX_op_rem_i32: 1430 case INDEX_op_remu_i32: 1431 return TCG_TARGET_HAS_rem_i32; 1432 case INDEX_op_div2_i32: 1433 case INDEX_op_divu2_i32: 1434 return TCG_TARGET_HAS_div2_i32; 1435 case INDEX_op_rotl_i32: 1436 case INDEX_op_rotr_i32: 1437 return TCG_TARGET_HAS_rot_i32; 1438 case INDEX_op_deposit_i32: 1439 return TCG_TARGET_HAS_deposit_i32; 1440 case INDEX_op_extract_i32: 1441 return TCG_TARGET_HAS_extract_i32; 1442 case INDEX_op_sextract_i32: 1443 return TCG_TARGET_HAS_sextract_i32; 1444 case INDEX_op_extract2_i32: 1445 return TCG_TARGET_HAS_extract2_i32; 1446 case INDEX_op_add2_i32: 1447 return TCG_TARGET_HAS_add2_i32; 1448 case INDEX_op_sub2_i32: 1449 return TCG_TARGET_HAS_sub2_i32; 1450 case INDEX_op_mulu2_i32: 1451 return TCG_TARGET_HAS_mulu2_i32; 1452 case INDEX_op_muls2_i32: 1453 return TCG_TARGET_HAS_muls2_i32; 1454 case INDEX_op_muluh_i32: 1455 return TCG_TARGET_HAS_muluh_i32; 1456 case INDEX_op_mulsh_i32: 1457 return TCG_TARGET_HAS_mulsh_i32; 1458 case INDEX_op_ext8s_i32: 1459 return TCG_TARGET_HAS_ext8s_i32; 1460 case INDEX_op_ext16s_i32: 1461 return TCG_TARGET_HAS_ext16s_i32; 1462 case INDEX_op_ext8u_i32: 1463 return TCG_TARGET_HAS_ext8u_i32; 1464 case INDEX_op_ext16u_i32: 1465 return TCG_TARGET_HAS_ext16u_i32; 1466 case INDEX_op_bswap16_i32: 1467 return TCG_TARGET_HAS_bswap16_i32; 1468 case INDEX_op_bswap32_i32: 1469 return TCG_TARGET_HAS_bswap32_i32; 1470 case INDEX_op_not_i32: 1471 return TCG_TARGET_HAS_not_i32; 1472 case INDEX_op_neg_i32: 1473 return TCG_TARGET_HAS_neg_i32; 1474 case INDEX_op_andc_i32: 1475 return TCG_TARGET_HAS_andc_i32; 1476 case INDEX_op_orc_i32: 1477 return TCG_TARGET_HAS_orc_i32; 1478 case INDEX_op_eqv_i32: 1479 return TCG_TARGET_HAS_eqv_i32; 1480 case INDEX_op_nand_i32: 1481 return TCG_TARGET_HAS_nand_i32; 1482 case INDEX_op_nor_i32: 1483 return TCG_TARGET_HAS_nor_i32; 1484 case INDEX_op_clz_i32: 1485 return TCG_TARGET_HAS_clz_i32; 1486 case INDEX_op_ctz_i32: 1487 return TCG_TARGET_HAS_ctz_i32; 1488 case INDEX_op_ctpop_i32: 1489 return TCG_TARGET_HAS_ctpop_i32; 1490 1491 case INDEX_op_brcond2_i32: 1492 case INDEX_op_setcond2_i32: 1493 return TCG_TARGET_REG_BITS == 32; 1494 1495 case INDEX_op_mov_i64: 1496 case INDEX_op_movi_i64: 1497 case INDEX_op_setcond_i64: 1498 case INDEX_op_brcond_i64: 1499 case INDEX_op_ld8u_i64: 1500 case INDEX_op_ld8s_i64: 1501 case INDEX_op_ld16u_i64: 1502 case INDEX_op_ld16s_i64: 1503 case INDEX_op_ld32u_i64: 1504 case INDEX_op_ld32s_i64: 1505 case INDEX_op_ld_i64: 1506 case INDEX_op_st8_i64: 1507 case INDEX_op_st16_i64: 1508 case INDEX_op_st32_i64: 1509 case INDEX_op_st_i64: 1510 case INDEX_op_add_i64: 1511 case INDEX_op_sub_i64: 1512 case INDEX_op_mul_i64: 1513 case INDEX_op_and_i64: 1514 case INDEX_op_or_i64: 1515 case INDEX_op_xor_i64: 1516 case INDEX_op_shl_i64: 1517 case INDEX_op_shr_i64: 1518 case INDEX_op_sar_i64: 1519 case INDEX_op_ext_i32_i64: 1520 case INDEX_op_extu_i32_i64: 1521 return TCG_TARGET_REG_BITS == 64; 1522 1523 case INDEX_op_movcond_i64: 1524 return TCG_TARGET_HAS_movcond_i64; 1525 case INDEX_op_div_i64: 1526 case INDEX_op_divu_i64: 1527 return TCG_TARGET_HAS_div_i64; 1528 case INDEX_op_rem_i64: 1529 case INDEX_op_remu_i64: 1530 return TCG_TARGET_HAS_rem_i64; 1531 case INDEX_op_div2_i64: 1532 case INDEX_op_divu2_i64: 1533 return TCG_TARGET_HAS_div2_i64; 1534 case INDEX_op_rotl_i64: 1535 case INDEX_op_rotr_i64: 1536 return TCG_TARGET_HAS_rot_i64; 1537 case INDEX_op_deposit_i64: 1538 return TCG_TARGET_HAS_deposit_i64; 1539 case INDEX_op_extract_i64: 1540 return TCG_TARGET_HAS_extract_i64; 1541 case INDEX_op_sextract_i64: 1542 return TCG_TARGET_HAS_sextract_i64; 1543 case INDEX_op_extract2_i64: 1544 return TCG_TARGET_HAS_extract2_i64; 1545 case INDEX_op_extrl_i64_i32: 1546 return TCG_TARGET_HAS_extrl_i64_i32; 1547 case INDEX_op_extrh_i64_i32: 1548 return TCG_TARGET_HAS_extrh_i64_i32; 1549 case INDEX_op_ext8s_i64: 1550 return TCG_TARGET_HAS_ext8s_i64; 1551 case INDEX_op_ext16s_i64: 1552 return TCG_TARGET_HAS_ext16s_i64; 1553 case INDEX_op_ext32s_i64: 1554 return TCG_TARGET_HAS_ext32s_i64; 1555 case INDEX_op_ext8u_i64: 1556 return TCG_TARGET_HAS_ext8u_i64; 1557 case INDEX_op_ext16u_i64: 1558 return TCG_TARGET_HAS_ext16u_i64; 1559 case INDEX_op_ext32u_i64: 1560 return TCG_TARGET_HAS_ext32u_i64; 1561 case INDEX_op_bswap16_i64: 1562 return TCG_TARGET_HAS_bswap16_i64; 1563 case INDEX_op_bswap32_i64: 1564 return TCG_TARGET_HAS_bswap32_i64; 1565 case INDEX_op_bswap64_i64: 1566 return TCG_TARGET_HAS_bswap64_i64; 1567 case INDEX_op_not_i64: 1568 return TCG_TARGET_HAS_not_i64; 1569 case INDEX_op_neg_i64: 1570 return TCG_TARGET_HAS_neg_i64; 1571 case INDEX_op_andc_i64: 1572 return TCG_TARGET_HAS_andc_i64; 1573 case INDEX_op_orc_i64: 1574 return TCG_TARGET_HAS_orc_i64; 1575 case INDEX_op_eqv_i64: 1576 return TCG_TARGET_HAS_eqv_i64; 1577 case INDEX_op_nand_i64: 1578 return TCG_TARGET_HAS_nand_i64; 1579 case INDEX_op_nor_i64: 1580 return TCG_TARGET_HAS_nor_i64; 1581 case INDEX_op_clz_i64: 1582 return TCG_TARGET_HAS_clz_i64; 1583 case INDEX_op_ctz_i64: 1584 return TCG_TARGET_HAS_ctz_i64; 1585 case INDEX_op_ctpop_i64: 1586 return TCG_TARGET_HAS_ctpop_i64; 1587 case INDEX_op_add2_i64: 1588 return TCG_TARGET_HAS_add2_i64; 1589 case INDEX_op_sub2_i64: 1590 return TCG_TARGET_HAS_sub2_i64; 1591 case INDEX_op_mulu2_i64: 1592 return TCG_TARGET_HAS_mulu2_i64; 1593 case INDEX_op_muls2_i64: 1594 return TCG_TARGET_HAS_muls2_i64; 1595 case INDEX_op_muluh_i64: 1596 return TCG_TARGET_HAS_muluh_i64; 1597 case INDEX_op_mulsh_i64: 1598 return TCG_TARGET_HAS_mulsh_i64; 1599 1600 case INDEX_op_mov_vec: 1601 case INDEX_op_dup_vec: 1602 case INDEX_op_dupi_vec: 1603 case INDEX_op_dupm_vec: 1604 case INDEX_op_ld_vec: 1605 case INDEX_op_st_vec: 1606 case INDEX_op_add_vec: 1607 case INDEX_op_sub_vec: 1608 case INDEX_op_and_vec: 1609 case INDEX_op_or_vec: 1610 case INDEX_op_xor_vec: 1611 case INDEX_op_cmp_vec: 1612 return have_vec; 1613 case INDEX_op_dup2_vec: 1614 return have_vec && TCG_TARGET_REG_BITS == 32; 1615 case INDEX_op_not_vec: 1616 return have_vec && TCG_TARGET_HAS_not_vec; 1617 case INDEX_op_neg_vec: 1618 return have_vec && TCG_TARGET_HAS_neg_vec; 1619 case INDEX_op_abs_vec: 1620 return have_vec && TCG_TARGET_HAS_abs_vec; 1621 case INDEX_op_andc_vec: 1622 return have_vec && TCG_TARGET_HAS_andc_vec; 1623 case INDEX_op_orc_vec: 1624 return have_vec && TCG_TARGET_HAS_orc_vec; 1625 case INDEX_op_mul_vec: 1626 return have_vec && TCG_TARGET_HAS_mul_vec; 1627 case INDEX_op_shli_vec: 1628 case INDEX_op_shri_vec: 1629 case INDEX_op_sari_vec: 1630 return have_vec && TCG_TARGET_HAS_shi_vec; 1631 case INDEX_op_shls_vec: 1632 case INDEX_op_shrs_vec: 1633 case INDEX_op_sars_vec: 1634 return have_vec && TCG_TARGET_HAS_shs_vec; 1635 case INDEX_op_shlv_vec: 1636 case INDEX_op_shrv_vec: 1637 case INDEX_op_sarv_vec: 1638 return have_vec && TCG_TARGET_HAS_shv_vec; 1639 case INDEX_op_ssadd_vec: 1640 case INDEX_op_usadd_vec: 1641 case INDEX_op_sssub_vec: 1642 case INDEX_op_ussub_vec: 1643 return have_vec && TCG_TARGET_HAS_sat_vec; 1644 case INDEX_op_smin_vec: 1645 case INDEX_op_umin_vec: 1646 case INDEX_op_smax_vec: 1647 case INDEX_op_umax_vec: 1648 return have_vec && TCG_TARGET_HAS_minmax_vec; 1649 case INDEX_op_bitsel_vec: 1650 return have_vec && TCG_TARGET_HAS_bitsel_vec; 1651 case INDEX_op_cmpsel_vec: 1652 return have_vec && TCG_TARGET_HAS_cmpsel_vec; 1653 1654 default: 1655 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS); 1656 return true; 1657 } 1658 } 1659 1660 /* Note: we convert the 64 bit args to 32 bit and do some alignment 1661 and endian swap. Maybe it would be better to do the alignment 1662 and endian swap in tcg_reg_alloc_call(). */ 1663 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args) 1664 { 1665 int i, real_args, nb_rets, pi; 1666 unsigned sizemask, flags; 1667 TCGHelperInfo *info; 1668 TCGOp *op; 1669 1670 info = g_hash_table_lookup(helper_table, (gpointer)func); 1671 flags = info->flags; 1672 sizemask = info->sizemask; 1673 1674 #if defined(__sparc__) && !defined(__arch64__) \ 1675 && !defined(CONFIG_TCG_INTERPRETER) 1676 /* We have 64-bit values in one register, but need to pass as two 1677 separate parameters. Split them. */ 1678 int orig_sizemask = sizemask; 1679 int orig_nargs = nargs; 1680 TCGv_i64 retl, reth; 1681 TCGTemp *split_args[MAX_OPC_PARAM]; 1682 1683 retl = NULL; 1684 reth = NULL; 1685 if (sizemask != 0) { 1686 for (i = real_args = 0; i < nargs; ++i) { 1687 int is_64bit = sizemask & (1 << (i+1)*2); 1688 if (is_64bit) { 1689 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1690 TCGv_i32 h = tcg_temp_new_i32(); 1691 TCGv_i32 l = tcg_temp_new_i32(); 1692 tcg_gen_extr_i64_i32(l, h, orig); 1693 split_args[real_args++] = tcgv_i32_temp(h); 1694 split_args[real_args++] = tcgv_i32_temp(l); 1695 } else { 1696 split_args[real_args++] = args[i]; 1697 } 1698 } 1699 nargs = real_args; 1700 args = split_args; 1701 sizemask = 0; 1702 } 1703 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1704 for (i = 0; i < nargs; ++i) { 1705 int is_64bit = sizemask & (1 << (i+1)*2); 1706 int is_signed = sizemask & (2 << (i+1)*2); 1707 if (!is_64bit) { 1708 TCGv_i64 temp = tcg_temp_new_i64(); 1709 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1710 if (is_signed) { 1711 tcg_gen_ext32s_i64(temp, orig); 1712 } else { 1713 tcg_gen_ext32u_i64(temp, orig); 1714 } 1715 args[i] = tcgv_i64_temp(temp); 1716 } 1717 } 1718 #endif /* TCG_TARGET_EXTEND_ARGS */ 1719 1720 op = tcg_emit_op(INDEX_op_call); 1721 1722 pi = 0; 1723 if (ret != NULL) { 1724 #if defined(__sparc__) && !defined(__arch64__) \ 1725 && !defined(CONFIG_TCG_INTERPRETER) 1726 if (orig_sizemask & 1) { 1727 /* The 32-bit ABI is going to return the 64-bit value in 1728 the %o0/%o1 register pair. Prepare for this by using 1729 two return temporaries, and reassemble below. */ 1730 retl = tcg_temp_new_i64(); 1731 reth = tcg_temp_new_i64(); 1732 op->args[pi++] = tcgv_i64_arg(reth); 1733 op->args[pi++] = tcgv_i64_arg(retl); 1734 nb_rets = 2; 1735 } else { 1736 op->args[pi++] = temp_arg(ret); 1737 nb_rets = 1; 1738 } 1739 #else 1740 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) { 1741 #ifdef HOST_WORDS_BIGENDIAN 1742 op->args[pi++] = temp_arg(ret + 1); 1743 op->args[pi++] = temp_arg(ret); 1744 #else 1745 op->args[pi++] = temp_arg(ret); 1746 op->args[pi++] = temp_arg(ret + 1); 1747 #endif 1748 nb_rets = 2; 1749 } else { 1750 op->args[pi++] = temp_arg(ret); 1751 nb_rets = 1; 1752 } 1753 #endif 1754 } else { 1755 nb_rets = 0; 1756 } 1757 TCGOP_CALLO(op) = nb_rets; 1758 1759 real_args = 0; 1760 for (i = 0; i < nargs; i++) { 1761 int is_64bit = sizemask & (1 << (i+1)*2); 1762 if (TCG_TARGET_REG_BITS < 64 && is_64bit) { 1763 #ifdef TCG_TARGET_CALL_ALIGN_ARGS 1764 /* some targets want aligned 64 bit args */ 1765 if (real_args & 1) { 1766 op->args[pi++] = TCG_CALL_DUMMY_ARG; 1767 real_args++; 1768 } 1769 #endif 1770 /* If stack grows up, then we will be placing successive 1771 arguments at lower addresses, which means we need to 1772 reverse the order compared to how we would normally 1773 treat either big or little-endian. For those arguments 1774 that will wind up in registers, this still works for 1775 HPPA (the only current STACK_GROWSUP target) since the 1776 argument registers are *also* allocated in decreasing 1777 order. If another such target is added, this logic may 1778 have to get more complicated to differentiate between 1779 stack arguments and register arguments. */ 1780 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP) 1781 op->args[pi++] = temp_arg(args[i] + 1); 1782 op->args[pi++] = temp_arg(args[i]); 1783 #else 1784 op->args[pi++] = temp_arg(args[i]); 1785 op->args[pi++] = temp_arg(args[i] + 1); 1786 #endif 1787 real_args += 2; 1788 continue; 1789 } 1790 1791 op->args[pi++] = temp_arg(args[i]); 1792 real_args++; 1793 } 1794 op->args[pi++] = (uintptr_t)func; 1795 op->args[pi++] = flags; 1796 TCGOP_CALLI(op) = real_args; 1797 1798 /* Make sure the fields didn't overflow. */ 1799 tcg_debug_assert(TCGOP_CALLI(op) == real_args); 1800 tcg_debug_assert(pi <= ARRAY_SIZE(op->args)); 1801 1802 #if defined(__sparc__) && !defined(__arch64__) \ 1803 && !defined(CONFIG_TCG_INTERPRETER) 1804 /* Free all of the parts we allocated above. */ 1805 for (i = real_args = 0; i < orig_nargs; ++i) { 1806 int is_64bit = orig_sizemask & (1 << (i+1)*2); 1807 if (is_64bit) { 1808 tcg_temp_free_internal(args[real_args++]); 1809 tcg_temp_free_internal(args[real_args++]); 1810 } else { 1811 real_args++; 1812 } 1813 } 1814 if (orig_sizemask & 1) { 1815 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them. 1816 Note that describing these as TCGv_i64 eliminates an unnecessary 1817 zero-extension that tcg_gen_concat_i32_i64 would create. */ 1818 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth); 1819 tcg_temp_free_i64(retl); 1820 tcg_temp_free_i64(reth); 1821 } 1822 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1823 for (i = 0; i < nargs; ++i) { 1824 int is_64bit = sizemask & (1 << (i+1)*2); 1825 if (!is_64bit) { 1826 tcg_temp_free_internal(args[i]); 1827 } 1828 } 1829 #endif /* TCG_TARGET_EXTEND_ARGS */ 1830 } 1831 1832 static void tcg_reg_alloc_start(TCGContext *s) 1833 { 1834 int i, n; 1835 TCGTemp *ts; 1836 1837 for (i = 0, n = s->nb_globals; i < n; i++) { 1838 ts = &s->temps[i]; 1839 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM); 1840 } 1841 for (n = s->nb_temps; i < n; i++) { 1842 ts = &s->temps[i]; 1843 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 1844 ts->mem_allocated = 0; 1845 ts->fixed_reg = 0; 1846 } 1847 1848 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp)); 1849 } 1850 1851 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size, 1852 TCGTemp *ts) 1853 { 1854 int idx = temp_idx(ts); 1855 1856 if (ts->temp_global) { 1857 pstrcpy(buf, buf_size, ts->name); 1858 } else if (ts->temp_local) { 1859 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals); 1860 } else { 1861 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals); 1862 } 1863 return buf; 1864 } 1865 1866 static char *tcg_get_arg_str(TCGContext *s, char *buf, 1867 int buf_size, TCGArg arg) 1868 { 1869 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg)); 1870 } 1871 1872 /* Find helper name. */ 1873 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val) 1874 { 1875 const char *ret = NULL; 1876 if (helper_table) { 1877 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val); 1878 if (info) { 1879 ret = info->name; 1880 } 1881 } 1882 return ret; 1883 } 1884 1885 static const char * const cond_name[] = 1886 { 1887 [TCG_COND_NEVER] = "never", 1888 [TCG_COND_ALWAYS] = "always", 1889 [TCG_COND_EQ] = "eq", 1890 [TCG_COND_NE] = "ne", 1891 [TCG_COND_LT] = "lt", 1892 [TCG_COND_GE] = "ge", 1893 [TCG_COND_LE] = "le", 1894 [TCG_COND_GT] = "gt", 1895 [TCG_COND_LTU] = "ltu", 1896 [TCG_COND_GEU] = "geu", 1897 [TCG_COND_LEU] = "leu", 1898 [TCG_COND_GTU] = "gtu" 1899 }; 1900 1901 static const char * const ldst_name[] = 1902 { 1903 [MO_UB] = "ub", 1904 [MO_SB] = "sb", 1905 [MO_LEUW] = "leuw", 1906 [MO_LESW] = "lesw", 1907 [MO_LEUL] = "leul", 1908 [MO_LESL] = "lesl", 1909 [MO_LEQ] = "leq", 1910 [MO_BEUW] = "beuw", 1911 [MO_BESW] = "besw", 1912 [MO_BEUL] = "beul", 1913 [MO_BESL] = "besl", 1914 [MO_BEQ] = "beq", 1915 }; 1916 1917 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = { 1918 #ifdef ALIGNED_ONLY 1919 [MO_UNALN >> MO_ASHIFT] = "un+", 1920 [MO_ALIGN >> MO_ASHIFT] = "", 1921 #else 1922 [MO_UNALN >> MO_ASHIFT] = "", 1923 [MO_ALIGN >> MO_ASHIFT] = "al+", 1924 #endif 1925 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+", 1926 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+", 1927 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+", 1928 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+", 1929 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+", 1930 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+", 1931 }; 1932 1933 static inline bool tcg_regset_single(TCGRegSet d) 1934 { 1935 return (d & (d - 1)) == 0; 1936 } 1937 1938 static inline TCGReg tcg_regset_first(TCGRegSet d) 1939 { 1940 if (TCG_TARGET_NB_REGS <= 32) { 1941 return ctz32(d); 1942 } else { 1943 return ctz64(d); 1944 } 1945 } 1946 1947 static void tcg_dump_ops(TCGContext *s, bool have_prefs) 1948 { 1949 char buf[128]; 1950 TCGOp *op; 1951 1952 QTAILQ_FOREACH(op, &s->ops, link) { 1953 int i, k, nb_oargs, nb_iargs, nb_cargs; 1954 const TCGOpDef *def; 1955 TCGOpcode c; 1956 int col = 0; 1957 1958 c = op->opc; 1959 def = &tcg_op_defs[c]; 1960 1961 if (c == INDEX_op_insn_start) { 1962 nb_oargs = 0; 1963 col += qemu_log("\n ----"); 1964 1965 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 1966 target_ulong a; 1967 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 1968 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 1969 #else 1970 a = op->args[i]; 1971 #endif 1972 col += qemu_log(" " TARGET_FMT_lx, a); 1973 } 1974 } else if (c == INDEX_op_call) { 1975 /* variable number of arguments */ 1976 nb_oargs = TCGOP_CALLO(op); 1977 nb_iargs = TCGOP_CALLI(op); 1978 nb_cargs = def->nb_cargs; 1979 1980 /* function name, flags, out args */ 1981 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name, 1982 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]), 1983 op->args[nb_oargs + nb_iargs + 1], nb_oargs); 1984 for (i = 0; i < nb_oargs; i++) { 1985 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf), 1986 op->args[i])); 1987 } 1988 for (i = 0; i < nb_iargs; i++) { 1989 TCGArg arg = op->args[nb_oargs + i]; 1990 const char *t = "<dummy>"; 1991 if (arg != TCG_CALL_DUMMY_ARG) { 1992 t = tcg_get_arg_str(s, buf, sizeof(buf), arg); 1993 } 1994 col += qemu_log(",%s", t); 1995 } 1996 } else { 1997 col += qemu_log(" %s ", def->name); 1998 1999 nb_oargs = def->nb_oargs; 2000 nb_iargs = def->nb_iargs; 2001 nb_cargs = def->nb_cargs; 2002 2003 if (def->flags & TCG_OPF_VECTOR) { 2004 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op), 2005 8 << TCGOP_VECE(op)); 2006 } 2007 2008 k = 0; 2009 for (i = 0; i < nb_oargs; i++) { 2010 if (k != 0) { 2011 col += qemu_log(","); 2012 } 2013 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2014 op->args[k++])); 2015 } 2016 for (i = 0; i < nb_iargs; i++) { 2017 if (k != 0) { 2018 col += qemu_log(","); 2019 } 2020 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2021 op->args[k++])); 2022 } 2023 switch (c) { 2024 case INDEX_op_brcond_i32: 2025 case INDEX_op_setcond_i32: 2026 case INDEX_op_movcond_i32: 2027 case INDEX_op_brcond2_i32: 2028 case INDEX_op_setcond2_i32: 2029 case INDEX_op_brcond_i64: 2030 case INDEX_op_setcond_i64: 2031 case INDEX_op_movcond_i64: 2032 case INDEX_op_cmp_vec: 2033 case INDEX_op_cmpsel_vec: 2034 if (op->args[k] < ARRAY_SIZE(cond_name) 2035 && cond_name[op->args[k]]) { 2036 col += qemu_log(",%s", cond_name[op->args[k++]]); 2037 } else { 2038 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]); 2039 } 2040 i = 1; 2041 break; 2042 case INDEX_op_qemu_ld_i32: 2043 case INDEX_op_qemu_st_i32: 2044 case INDEX_op_qemu_ld_i64: 2045 case INDEX_op_qemu_st_i64: 2046 { 2047 TCGMemOpIdx oi = op->args[k++]; 2048 TCGMemOp op = get_memop(oi); 2049 unsigned ix = get_mmuidx(oi); 2050 2051 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) { 2052 col += qemu_log(",$0x%x,%u", op, ix); 2053 } else { 2054 const char *s_al, *s_op; 2055 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT]; 2056 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)]; 2057 col += qemu_log(",%s%s,%u", s_al, s_op, ix); 2058 } 2059 i = 1; 2060 } 2061 break; 2062 default: 2063 i = 0; 2064 break; 2065 } 2066 switch (c) { 2067 case INDEX_op_set_label: 2068 case INDEX_op_br: 2069 case INDEX_op_brcond_i32: 2070 case INDEX_op_brcond_i64: 2071 case INDEX_op_brcond2_i32: 2072 col += qemu_log("%s$L%d", k ? "," : "", 2073 arg_label(op->args[k])->id); 2074 i++, k++; 2075 break; 2076 default: 2077 break; 2078 } 2079 for (; i < nb_cargs; i++, k++) { 2080 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]); 2081 } 2082 } 2083 2084 if (have_prefs || op->life) { 2085 for (; col < 40; ++col) { 2086 putc(' ', qemu_logfile); 2087 } 2088 } 2089 2090 if (op->life) { 2091 unsigned life = op->life; 2092 2093 if (life & (SYNC_ARG * 3)) { 2094 qemu_log(" sync:"); 2095 for (i = 0; i < 2; ++i) { 2096 if (life & (SYNC_ARG << i)) { 2097 qemu_log(" %d", i); 2098 } 2099 } 2100 } 2101 life /= DEAD_ARG; 2102 if (life) { 2103 qemu_log(" dead:"); 2104 for (i = 0; life; ++i, life >>= 1) { 2105 if (life & 1) { 2106 qemu_log(" %d", i); 2107 } 2108 } 2109 } 2110 } 2111 2112 if (have_prefs) { 2113 for (i = 0; i < nb_oargs; ++i) { 2114 TCGRegSet set = op->output_pref[i]; 2115 2116 if (i == 0) { 2117 qemu_log(" pref="); 2118 } else { 2119 qemu_log(","); 2120 } 2121 if (set == 0) { 2122 qemu_log("none"); 2123 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) { 2124 qemu_log("all"); 2125 #ifdef CONFIG_DEBUG_TCG 2126 } else if (tcg_regset_single(set)) { 2127 TCGReg reg = tcg_regset_first(set); 2128 qemu_log("%s", tcg_target_reg_names[reg]); 2129 #endif 2130 } else if (TCG_TARGET_NB_REGS <= 32) { 2131 qemu_log("%#x", (uint32_t)set); 2132 } else { 2133 qemu_log("%#" PRIx64, (uint64_t)set); 2134 } 2135 } 2136 } 2137 2138 qemu_log("\n"); 2139 } 2140 } 2141 2142 /* we give more priority to constraints with less registers */ 2143 static int get_constraint_priority(const TCGOpDef *def, int k) 2144 { 2145 const TCGArgConstraint *arg_ct; 2146 2147 int i, n; 2148 arg_ct = &def->args_ct[k]; 2149 if (arg_ct->ct & TCG_CT_ALIAS) { 2150 /* an alias is equivalent to a single register */ 2151 n = 1; 2152 } else { 2153 if (!(arg_ct->ct & TCG_CT_REG)) 2154 return 0; 2155 n = 0; 2156 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 2157 if (tcg_regset_test_reg(arg_ct->u.regs, i)) 2158 n++; 2159 } 2160 } 2161 return TCG_TARGET_NB_REGS - n + 1; 2162 } 2163 2164 /* sort from highest priority to lowest */ 2165 static void sort_constraints(TCGOpDef *def, int start, int n) 2166 { 2167 int i, j, p1, p2, tmp; 2168 2169 for(i = 0; i < n; i++) 2170 def->sorted_args[start + i] = start + i; 2171 if (n <= 1) 2172 return; 2173 for(i = 0; i < n - 1; i++) { 2174 for(j = i + 1; j < n; j++) { 2175 p1 = get_constraint_priority(def, def->sorted_args[start + i]); 2176 p2 = get_constraint_priority(def, def->sorted_args[start + j]); 2177 if (p1 < p2) { 2178 tmp = def->sorted_args[start + i]; 2179 def->sorted_args[start + i] = def->sorted_args[start + j]; 2180 def->sorted_args[start + j] = tmp; 2181 } 2182 } 2183 } 2184 } 2185 2186 static void process_op_defs(TCGContext *s) 2187 { 2188 TCGOpcode op; 2189 2190 for (op = 0; op < NB_OPS; op++) { 2191 TCGOpDef *def = &tcg_op_defs[op]; 2192 const TCGTargetOpDef *tdefs; 2193 TCGType type; 2194 int i, nb_args; 2195 2196 if (def->flags & TCG_OPF_NOT_PRESENT) { 2197 continue; 2198 } 2199 2200 nb_args = def->nb_iargs + def->nb_oargs; 2201 if (nb_args == 0) { 2202 continue; 2203 } 2204 2205 tdefs = tcg_target_op_def(op); 2206 /* Missing TCGTargetOpDef entry. */ 2207 tcg_debug_assert(tdefs != NULL); 2208 2209 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32); 2210 for (i = 0; i < nb_args; i++) { 2211 const char *ct_str = tdefs->args_ct_str[i]; 2212 /* Incomplete TCGTargetOpDef entry. */ 2213 tcg_debug_assert(ct_str != NULL); 2214 2215 def->args_ct[i].u.regs = 0; 2216 def->args_ct[i].ct = 0; 2217 while (*ct_str != '\0') { 2218 switch(*ct_str) { 2219 case '0' ... '9': 2220 { 2221 int oarg = *ct_str - '0'; 2222 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]); 2223 tcg_debug_assert(oarg < def->nb_oargs); 2224 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG); 2225 /* TCG_CT_ALIAS is for the output arguments. 2226 The input is tagged with TCG_CT_IALIAS. */ 2227 def->args_ct[i] = def->args_ct[oarg]; 2228 def->args_ct[oarg].ct |= TCG_CT_ALIAS; 2229 def->args_ct[oarg].alias_index = i; 2230 def->args_ct[i].ct |= TCG_CT_IALIAS; 2231 def->args_ct[i].alias_index = oarg; 2232 } 2233 ct_str++; 2234 break; 2235 case '&': 2236 def->args_ct[i].ct |= TCG_CT_NEWREG; 2237 ct_str++; 2238 break; 2239 case 'i': 2240 def->args_ct[i].ct |= TCG_CT_CONST; 2241 ct_str++; 2242 break; 2243 default: 2244 ct_str = target_parse_constraint(&def->args_ct[i], 2245 ct_str, type); 2246 /* Typo in TCGTargetOpDef constraint. */ 2247 tcg_debug_assert(ct_str != NULL); 2248 } 2249 } 2250 } 2251 2252 /* TCGTargetOpDef entry with too much information? */ 2253 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL); 2254 2255 /* sort the constraints (XXX: this is just an heuristic) */ 2256 sort_constraints(def, 0, def->nb_oargs); 2257 sort_constraints(def, def->nb_oargs, def->nb_iargs); 2258 } 2259 } 2260 2261 void tcg_op_remove(TCGContext *s, TCGOp *op) 2262 { 2263 TCGLabel *label; 2264 2265 switch (op->opc) { 2266 case INDEX_op_br: 2267 label = arg_label(op->args[0]); 2268 label->refs--; 2269 break; 2270 case INDEX_op_brcond_i32: 2271 case INDEX_op_brcond_i64: 2272 label = arg_label(op->args[3]); 2273 label->refs--; 2274 break; 2275 case INDEX_op_brcond2_i32: 2276 label = arg_label(op->args[5]); 2277 label->refs--; 2278 break; 2279 default: 2280 break; 2281 } 2282 2283 QTAILQ_REMOVE(&s->ops, op, link); 2284 QTAILQ_INSERT_TAIL(&s->free_ops, op, link); 2285 s->nb_ops--; 2286 2287 #ifdef CONFIG_PROFILER 2288 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1); 2289 #endif 2290 } 2291 2292 static TCGOp *tcg_op_alloc(TCGOpcode opc) 2293 { 2294 TCGContext *s = tcg_ctx; 2295 TCGOp *op; 2296 2297 if (likely(QTAILQ_EMPTY(&s->free_ops))) { 2298 op = tcg_malloc(sizeof(TCGOp)); 2299 } else { 2300 op = QTAILQ_FIRST(&s->free_ops); 2301 QTAILQ_REMOVE(&s->free_ops, op, link); 2302 } 2303 memset(op, 0, offsetof(TCGOp, link)); 2304 op->opc = opc; 2305 s->nb_ops++; 2306 2307 return op; 2308 } 2309 2310 TCGOp *tcg_emit_op(TCGOpcode opc) 2311 { 2312 TCGOp *op = tcg_op_alloc(opc); 2313 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link); 2314 return op; 2315 } 2316 2317 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2318 { 2319 TCGOp *new_op = tcg_op_alloc(opc); 2320 QTAILQ_INSERT_BEFORE(old_op, new_op, link); 2321 return new_op; 2322 } 2323 2324 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2325 { 2326 TCGOp *new_op = tcg_op_alloc(opc); 2327 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link); 2328 return new_op; 2329 } 2330 2331 /* Reachable analysis : remove unreachable code. */ 2332 static void reachable_code_pass(TCGContext *s) 2333 { 2334 TCGOp *op, *op_next; 2335 bool dead = false; 2336 2337 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2338 bool remove = dead; 2339 TCGLabel *label; 2340 int call_flags; 2341 2342 switch (op->opc) { 2343 case INDEX_op_set_label: 2344 label = arg_label(op->args[0]); 2345 if (label->refs == 0) { 2346 /* 2347 * While there is an occasional backward branch, virtually 2348 * all branches generated by the translators are forward. 2349 * Which means that generally we will have already removed 2350 * all references to the label that will be, and there is 2351 * little to be gained by iterating. 2352 */ 2353 remove = true; 2354 } else { 2355 /* Once we see a label, insns become live again. */ 2356 dead = false; 2357 remove = false; 2358 2359 /* 2360 * Optimization can fold conditional branches to unconditional. 2361 * If we find a label with one reference which is preceded by 2362 * an unconditional branch to it, remove both. This needed to 2363 * wait until the dead code in between them was removed. 2364 */ 2365 if (label->refs == 1) { 2366 TCGOp *op_prev = QTAILQ_PREV(op, link); 2367 if (op_prev->opc == INDEX_op_br && 2368 label == arg_label(op_prev->args[0])) { 2369 tcg_op_remove(s, op_prev); 2370 remove = true; 2371 } 2372 } 2373 } 2374 break; 2375 2376 case INDEX_op_br: 2377 case INDEX_op_exit_tb: 2378 case INDEX_op_goto_ptr: 2379 /* Unconditional branches; everything following is dead. */ 2380 dead = true; 2381 break; 2382 2383 case INDEX_op_call: 2384 /* Notice noreturn helper calls, raising exceptions. */ 2385 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1]; 2386 if (call_flags & TCG_CALL_NO_RETURN) { 2387 dead = true; 2388 } 2389 break; 2390 2391 case INDEX_op_insn_start: 2392 /* Never remove -- we need to keep these for unwind. */ 2393 remove = false; 2394 break; 2395 2396 default: 2397 break; 2398 } 2399 2400 if (remove) { 2401 tcg_op_remove(s, op); 2402 } 2403 } 2404 } 2405 2406 #define TS_DEAD 1 2407 #define TS_MEM 2 2408 2409 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n))) 2410 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n))) 2411 2412 /* For liveness_pass_1, the register preferences for a given temp. */ 2413 static inline TCGRegSet *la_temp_pref(TCGTemp *ts) 2414 { 2415 return ts->state_ptr; 2416 } 2417 2418 /* For liveness_pass_1, reset the preferences for a given temp to the 2419 * maximal regset for its type. 2420 */ 2421 static inline void la_reset_pref(TCGTemp *ts) 2422 { 2423 *la_temp_pref(ts) 2424 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]); 2425 } 2426 2427 /* liveness analysis: end of function: all temps are dead, and globals 2428 should be in memory. */ 2429 static void la_func_end(TCGContext *s, int ng, int nt) 2430 { 2431 int i; 2432 2433 for (i = 0; i < ng; ++i) { 2434 s->temps[i].state = TS_DEAD | TS_MEM; 2435 la_reset_pref(&s->temps[i]); 2436 } 2437 for (i = ng; i < nt; ++i) { 2438 s->temps[i].state = TS_DEAD; 2439 la_reset_pref(&s->temps[i]); 2440 } 2441 } 2442 2443 /* liveness analysis: end of basic block: all temps are dead, globals 2444 and local temps should be in memory. */ 2445 static void la_bb_end(TCGContext *s, int ng, int nt) 2446 { 2447 int i; 2448 2449 for (i = 0; i < ng; ++i) { 2450 s->temps[i].state = TS_DEAD | TS_MEM; 2451 la_reset_pref(&s->temps[i]); 2452 } 2453 for (i = ng; i < nt; ++i) { 2454 s->temps[i].state = (s->temps[i].temp_local 2455 ? TS_DEAD | TS_MEM 2456 : TS_DEAD); 2457 la_reset_pref(&s->temps[i]); 2458 } 2459 } 2460 2461 /* liveness analysis: sync globals back to memory. */ 2462 static void la_global_sync(TCGContext *s, int ng) 2463 { 2464 int i; 2465 2466 for (i = 0; i < ng; ++i) { 2467 int state = s->temps[i].state; 2468 s->temps[i].state = state | TS_MEM; 2469 if (state == TS_DEAD) { 2470 /* If the global was previously dead, reset prefs. */ 2471 la_reset_pref(&s->temps[i]); 2472 } 2473 } 2474 } 2475 2476 /* liveness analysis: sync globals back to memory and kill. */ 2477 static void la_global_kill(TCGContext *s, int ng) 2478 { 2479 int i; 2480 2481 for (i = 0; i < ng; i++) { 2482 s->temps[i].state = TS_DEAD | TS_MEM; 2483 la_reset_pref(&s->temps[i]); 2484 } 2485 } 2486 2487 /* liveness analysis: note live globals crossing calls. */ 2488 static void la_cross_call(TCGContext *s, int nt) 2489 { 2490 TCGRegSet mask = ~tcg_target_call_clobber_regs; 2491 int i; 2492 2493 for (i = 0; i < nt; i++) { 2494 TCGTemp *ts = &s->temps[i]; 2495 if (!(ts->state & TS_DEAD)) { 2496 TCGRegSet *pset = la_temp_pref(ts); 2497 TCGRegSet set = *pset; 2498 2499 set &= mask; 2500 /* If the combination is not possible, restart. */ 2501 if (set == 0) { 2502 set = tcg_target_available_regs[ts->type] & mask; 2503 } 2504 *pset = set; 2505 } 2506 } 2507 } 2508 2509 /* Liveness analysis : update the opc_arg_life array to tell if a 2510 given input arguments is dead. Instructions updating dead 2511 temporaries are removed. */ 2512 static void liveness_pass_1(TCGContext *s) 2513 { 2514 int nb_globals = s->nb_globals; 2515 int nb_temps = s->nb_temps; 2516 TCGOp *op, *op_prev; 2517 TCGRegSet *prefs; 2518 int i; 2519 2520 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps); 2521 for (i = 0; i < nb_temps; ++i) { 2522 s->temps[i].state_ptr = prefs + i; 2523 } 2524 2525 /* ??? Should be redundant with the exit_tb that ends the TB. */ 2526 la_func_end(s, nb_globals, nb_temps); 2527 2528 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) { 2529 int nb_iargs, nb_oargs; 2530 TCGOpcode opc_new, opc_new2; 2531 bool have_opc_new2; 2532 TCGLifeData arg_life = 0; 2533 TCGTemp *ts; 2534 TCGOpcode opc = op->opc; 2535 const TCGOpDef *def = &tcg_op_defs[opc]; 2536 2537 switch (opc) { 2538 case INDEX_op_call: 2539 { 2540 int call_flags; 2541 int nb_call_regs; 2542 2543 nb_oargs = TCGOP_CALLO(op); 2544 nb_iargs = TCGOP_CALLI(op); 2545 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2546 2547 /* pure functions can be removed if their result is unused */ 2548 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) { 2549 for (i = 0; i < nb_oargs; i++) { 2550 ts = arg_temp(op->args[i]); 2551 if (ts->state != TS_DEAD) { 2552 goto do_not_remove_call; 2553 } 2554 } 2555 goto do_remove; 2556 } 2557 do_not_remove_call: 2558 2559 /* Output args are dead. */ 2560 for (i = 0; i < nb_oargs; i++) { 2561 ts = arg_temp(op->args[i]); 2562 if (ts->state & TS_DEAD) { 2563 arg_life |= DEAD_ARG << i; 2564 } 2565 if (ts->state & TS_MEM) { 2566 arg_life |= SYNC_ARG << i; 2567 } 2568 ts->state = TS_DEAD; 2569 la_reset_pref(ts); 2570 2571 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */ 2572 op->output_pref[i] = 0; 2573 } 2574 2575 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS | 2576 TCG_CALL_NO_READ_GLOBALS))) { 2577 la_global_kill(s, nb_globals); 2578 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) { 2579 la_global_sync(s, nb_globals); 2580 } 2581 2582 /* Record arguments that die in this helper. */ 2583 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2584 ts = arg_temp(op->args[i]); 2585 if (ts && ts->state & TS_DEAD) { 2586 arg_life |= DEAD_ARG << i; 2587 } 2588 } 2589 2590 /* For all live registers, remove call-clobbered prefs. */ 2591 la_cross_call(s, nb_temps); 2592 2593 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 2594 2595 /* Input arguments are live for preceding opcodes. */ 2596 for (i = 0; i < nb_iargs; i++) { 2597 ts = arg_temp(op->args[i + nb_oargs]); 2598 if (ts && ts->state & TS_DEAD) { 2599 /* For those arguments that die, and will be allocated 2600 * in registers, clear the register set for that arg, 2601 * to be filled in below. For args that will be on 2602 * the stack, reset to any available reg. 2603 */ 2604 *la_temp_pref(ts) 2605 = (i < nb_call_regs ? 0 : 2606 tcg_target_available_regs[ts->type]); 2607 ts->state &= ~TS_DEAD; 2608 } 2609 } 2610 2611 /* For each input argument, add its input register to prefs. 2612 If a temp is used once, this produces a single set bit. */ 2613 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) { 2614 ts = arg_temp(op->args[i + nb_oargs]); 2615 if (ts) { 2616 tcg_regset_set_reg(*la_temp_pref(ts), 2617 tcg_target_call_iarg_regs[i]); 2618 } 2619 } 2620 } 2621 break; 2622 case INDEX_op_insn_start: 2623 break; 2624 case INDEX_op_discard: 2625 /* mark the temporary as dead */ 2626 ts = arg_temp(op->args[0]); 2627 ts->state = TS_DEAD; 2628 la_reset_pref(ts); 2629 break; 2630 2631 case INDEX_op_add2_i32: 2632 opc_new = INDEX_op_add_i32; 2633 goto do_addsub2; 2634 case INDEX_op_sub2_i32: 2635 opc_new = INDEX_op_sub_i32; 2636 goto do_addsub2; 2637 case INDEX_op_add2_i64: 2638 opc_new = INDEX_op_add_i64; 2639 goto do_addsub2; 2640 case INDEX_op_sub2_i64: 2641 opc_new = INDEX_op_sub_i64; 2642 do_addsub2: 2643 nb_iargs = 4; 2644 nb_oargs = 2; 2645 /* Test if the high part of the operation is dead, but not 2646 the low part. The result can be optimized to a simple 2647 add or sub. This happens often for x86_64 guest when the 2648 cpu mode is set to 32 bit. */ 2649 if (arg_temp(op->args[1])->state == TS_DEAD) { 2650 if (arg_temp(op->args[0])->state == TS_DEAD) { 2651 goto do_remove; 2652 } 2653 /* Replace the opcode and adjust the args in place, 2654 leaving 3 unused args at the end. */ 2655 op->opc = opc = opc_new; 2656 op->args[1] = op->args[2]; 2657 op->args[2] = op->args[4]; 2658 /* Fall through and mark the single-word operation live. */ 2659 nb_iargs = 2; 2660 nb_oargs = 1; 2661 } 2662 goto do_not_remove; 2663 2664 case INDEX_op_mulu2_i32: 2665 opc_new = INDEX_op_mul_i32; 2666 opc_new2 = INDEX_op_muluh_i32; 2667 have_opc_new2 = TCG_TARGET_HAS_muluh_i32; 2668 goto do_mul2; 2669 case INDEX_op_muls2_i32: 2670 opc_new = INDEX_op_mul_i32; 2671 opc_new2 = INDEX_op_mulsh_i32; 2672 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32; 2673 goto do_mul2; 2674 case INDEX_op_mulu2_i64: 2675 opc_new = INDEX_op_mul_i64; 2676 opc_new2 = INDEX_op_muluh_i64; 2677 have_opc_new2 = TCG_TARGET_HAS_muluh_i64; 2678 goto do_mul2; 2679 case INDEX_op_muls2_i64: 2680 opc_new = INDEX_op_mul_i64; 2681 opc_new2 = INDEX_op_mulsh_i64; 2682 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64; 2683 goto do_mul2; 2684 do_mul2: 2685 nb_iargs = 2; 2686 nb_oargs = 2; 2687 if (arg_temp(op->args[1])->state == TS_DEAD) { 2688 if (arg_temp(op->args[0])->state == TS_DEAD) { 2689 /* Both parts of the operation are dead. */ 2690 goto do_remove; 2691 } 2692 /* The high part of the operation is dead; generate the low. */ 2693 op->opc = opc = opc_new; 2694 op->args[1] = op->args[2]; 2695 op->args[2] = op->args[3]; 2696 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) { 2697 /* The low part of the operation is dead; generate the high. */ 2698 op->opc = opc = opc_new2; 2699 op->args[0] = op->args[1]; 2700 op->args[1] = op->args[2]; 2701 op->args[2] = op->args[3]; 2702 } else { 2703 goto do_not_remove; 2704 } 2705 /* Mark the single-word operation live. */ 2706 nb_oargs = 1; 2707 goto do_not_remove; 2708 2709 default: 2710 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */ 2711 nb_iargs = def->nb_iargs; 2712 nb_oargs = def->nb_oargs; 2713 2714 /* Test if the operation can be removed because all 2715 its outputs are dead. We assume that nb_oargs == 0 2716 implies side effects */ 2717 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) { 2718 for (i = 0; i < nb_oargs; i++) { 2719 if (arg_temp(op->args[i])->state != TS_DEAD) { 2720 goto do_not_remove; 2721 } 2722 } 2723 goto do_remove; 2724 } 2725 goto do_not_remove; 2726 2727 do_remove: 2728 tcg_op_remove(s, op); 2729 break; 2730 2731 do_not_remove: 2732 for (i = 0; i < nb_oargs; i++) { 2733 ts = arg_temp(op->args[i]); 2734 2735 /* Remember the preference of the uses that followed. */ 2736 op->output_pref[i] = *la_temp_pref(ts); 2737 2738 /* Output args are dead. */ 2739 if (ts->state & TS_DEAD) { 2740 arg_life |= DEAD_ARG << i; 2741 } 2742 if (ts->state & TS_MEM) { 2743 arg_life |= SYNC_ARG << i; 2744 } 2745 ts->state = TS_DEAD; 2746 la_reset_pref(ts); 2747 } 2748 2749 /* If end of basic block, update. */ 2750 if (def->flags & TCG_OPF_BB_EXIT) { 2751 la_func_end(s, nb_globals, nb_temps); 2752 } else if (def->flags & TCG_OPF_BB_END) { 2753 la_bb_end(s, nb_globals, nb_temps); 2754 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2755 la_global_sync(s, nb_globals); 2756 if (def->flags & TCG_OPF_CALL_CLOBBER) { 2757 la_cross_call(s, nb_temps); 2758 } 2759 } 2760 2761 /* Record arguments that die in this opcode. */ 2762 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2763 ts = arg_temp(op->args[i]); 2764 if (ts->state & TS_DEAD) { 2765 arg_life |= DEAD_ARG << i; 2766 } 2767 } 2768 2769 /* Input arguments are live for preceding opcodes. */ 2770 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2771 ts = arg_temp(op->args[i]); 2772 if (ts->state & TS_DEAD) { 2773 /* For operands that were dead, initially allow 2774 all regs for the type. */ 2775 *la_temp_pref(ts) = tcg_target_available_regs[ts->type]; 2776 ts->state &= ~TS_DEAD; 2777 } 2778 } 2779 2780 /* Incorporate constraints for this operand. */ 2781 switch (opc) { 2782 case INDEX_op_mov_i32: 2783 case INDEX_op_mov_i64: 2784 /* Note that these are TCG_OPF_NOT_PRESENT and do not 2785 have proper constraints. That said, special case 2786 moves to propagate preferences backward. */ 2787 if (IS_DEAD_ARG(1)) { 2788 *la_temp_pref(arg_temp(op->args[0])) 2789 = *la_temp_pref(arg_temp(op->args[1])); 2790 } 2791 break; 2792 2793 default: 2794 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2795 const TCGArgConstraint *ct = &def->args_ct[i]; 2796 TCGRegSet set, *pset; 2797 2798 ts = arg_temp(op->args[i]); 2799 pset = la_temp_pref(ts); 2800 set = *pset; 2801 2802 set &= ct->u.regs; 2803 if (ct->ct & TCG_CT_IALIAS) { 2804 set &= op->output_pref[ct->alias_index]; 2805 } 2806 /* If the combination is not possible, restart. */ 2807 if (set == 0) { 2808 set = ct->u.regs; 2809 } 2810 *pset = set; 2811 } 2812 break; 2813 } 2814 break; 2815 } 2816 op->life = arg_life; 2817 } 2818 } 2819 2820 /* Liveness analysis: Convert indirect regs to direct temporaries. */ 2821 static bool liveness_pass_2(TCGContext *s) 2822 { 2823 int nb_globals = s->nb_globals; 2824 int nb_temps, i; 2825 bool changes = false; 2826 TCGOp *op, *op_next; 2827 2828 /* Create a temporary for each indirect global. */ 2829 for (i = 0; i < nb_globals; ++i) { 2830 TCGTemp *its = &s->temps[i]; 2831 if (its->indirect_reg) { 2832 TCGTemp *dts = tcg_temp_alloc(s); 2833 dts->type = its->type; 2834 dts->base_type = its->base_type; 2835 its->state_ptr = dts; 2836 } else { 2837 its->state_ptr = NULL; 2838 } 2839 /* All globals begin dead. */ 2840 its->state = TS_DEAD; 2841 } 2842 for (nb_temps = s->nb_temps; i < nb_temps; ++i) { 2843 TCGTemp *its = &s->temps[i]; 2844 its->state_ptr = NULL; 2845 its->state = TS_DEAD; 2846 } 2847 2848 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2849 TCGOpcode opc = op->opc; 2850 const TCGOpDef *def = &tcg_op_defs[opc]; 2851 TCGLifeData arg_life = op->life; 2852 int nb_iargs, nb_oargs, call_flags; 2853 TCGTemp *arg_ts, *dir_ts; 2854 2855 if (opc == INDEX_op_call) { 2856 nb_oargs = TCGOP_CALLO(op); 2857 nb_iargs = TCGOP_CALLI(op); 2858 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2859 } else { 2860 nb_iargs = def->nb_iargs; 2861 nb_oargs = def->nb_oargs; 2862 2863 /* Set flags similar to how calls require. */ 2864 if (def->flags & TCG_OPF_BB_END) { 2865 /* Like writing globals: save_globals */ 2866 call_flags = 0; 2867 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2868 /* Like reading globals: sync_globals */ 2869 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 2870 } else { 2871 /* No effect on globals. */ 2872 call_flags = (TCG_CALL_NO_READ_GLOBALS | 2873 TCG_CALL_NO_WRITE_GLOBALS); 2874 } 2875 } 2876 2877 /* Make sure that input arguments are available. */ 2878 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2879 arg_ts = arg_temp(op->args[i]); 2880 if (arg_ts) { 2881 dir_ts = arg_ts->state_ptr; 2882 if (dir_ts && arg_ts->state == TS_DEAD) { 2883 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32 2884 ? INDEX_op_ld_i32 2885 : INDEX_op_ld_i64); 2886 TCGOp *lop = tcg_op_insert_before(s, op, lopc); 2887 2888 lop->args[0] = temp_arg(dir_ts); 2889 lop->args[1] = temp_arg(arg_ts->mem_base); 2890 lop->args[2] = arg_ts->mem_offset; 2891 2892 /* Loaded, but synced with memory. */ 2893 arg_ts->state = TS_MEM; 2894 } 2895 } 2896 } 2897 2898 /* Perform input replacement, and mark inputs that became dead. 2899 No action is required except keeping temp_state up to date 2900 so that we reload when needed. */ 2901 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2902 arg_ts = arg_temp(op->args[i]); 2903 if (arg_ts) { 2904 dir_ts = arg_ts->state_ptr; 2905 if (dir_ts) { 2906 op->args[i] = temp_arg(dir_ts); 2907 changes = true; 2908 if (IS_DEAD_ARG(i)) { 2909 arg_ts->state = TS_DEAD; 2910 } 2911 } 2912 } 2913 } 2914 2915 /* Liveness analysis should ensure that the following are 2916 all correct, for call sites and basic block end points. */ 2917 if (call_flags & TCG_CALL_NO_READ_GLOBALS) { 2918 /* Nothing to do */ 2919 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) { 2920 for (i = 0; i < nb_globals; ++i) { 2921 /* Liveness should see that globals are synced back, 2922 that is, either TS_DEAD or TS_MEM. */ 2923 arg_ts = &s->temps[i]; 2924 tcg_debug_assert(arg_ts->state_ptr == 0 2925 || arg_ts->state != 0); 2926 } 2927 } else { 2928 for (i = 0; i < nb_globals; ++i) { 2929 /* Liveness should see that globals are saved back, 2930 that is, TS_DEAD, waiting to be reloaded. */ 2931 arg_ts = &s->temps[i]; 2932 tcg_debug_assert(arg_ts->state_ptr == 0 2933 || arg_ts->state == TS_DEAD); 2934 } 2935 } 2936 2937 /* Outputs become available. */ 2938 for (i = 0; i < nb_oargs; i++) { 2939 arg_ts = arg_temp(op->args[i]); 2940 dir_ts = arg_ts->state_ptr; 2941 if (!dir_ts) { 2942 continue; 2943 } 2944 op->args[i] = temp_arg(dir_ts); 2945 changes = true; 2946 2947 /* The output is now live and modified. */ 2948 arg_ts->state = 0; 2949 2950 /* Sync outputs upon their last write. */ 2951 if (NEED_SYNC_ARG(i)) { 2952 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 2953 ? INDEX_op_st_i32 2954 : INDEX_op_st_i64); 2955 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 2956 2957 sop->args[0] = temp_arg(dir_ts); 2958 sop->args[1] = temp_arg(arg_ts->mem_base); 2959 sop->args[2] = arg_ts->mem_offset; 2960 2961 arg_ts->state = TS_MEM; 2962 } 2963 /* Drop outputs that are dead. */ 2964 if (IS_DEAD_ARG(i)) { 2965 arg_ts->state = TS_DEAD; 2966 } 2967 } 2968 } 2969 2970 return changes; 2971 } 2972 2973 #ifdef CONFIG_DEBUG_TCG 2974 static void dump_regs(TCGContext *s) 2975 { 2976 TCGTemp *ts; 2977 int i; 2978 char buf[64]; 2979 2980 for(i = 0; i < s->nb_temps; i++) { 2981 ts = &s->temps[i]; 2982 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 2983 switch(ts->val_type) { 2984 case TEMP_VAL_REG: 2985 printf("%s", tcg_target_reg_names[ts->reg]); 2986 break; 2987 case TEMP_VAL_MEM: 2988 printf("%d(%s)", (int)ts->mem_offset, 2989 tcg_target_reg_names[ts->mem_base->reg]); 2990 break; 2991 case TEMP_VAL_CONST: 2992 printf("$0x%" TCG_PRIlx, ts->val); 2993 break; 2994 case TEMP_VAL_DEAD: 2995 printf("D"); 2996 break; 2997 default: 2998 printf("???"); 2999 break; 3000 } 3001 printf("\n"); 3002 } 3003 3004 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 3005 if (s->reg_to_temp[i] != NULL) { 3006 printf("%s: %s\n", 3007 tcg_target_reg_names[i], 3008 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i])); 3009 } 3010 } 3011 } 3012 3013 static void check_regs(TCGContext *s) 3014 { 3015 int reg; 3016 int k; 3017 TCGTemp *ts; 3018 char buf[64]; 3019 3020 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) { 3021 ts = s->reg_to_temp[reg]; 3022 if (ts != NULL) { 3023 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) { 3024 printf("Inconsistency for register %s:\n", 3025 tcg_target_reg_names[reg]); 3026 goto fail; 3027 } 3028 } 3029 } 3030 for (k = 0; k < s->nb_temps; k++) { 3031 ts = &s->temps[k]; 3032 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg 3033 && s->reg_to_temp[ts->reg] != ts) { 3034 printf("Inconsistency for temp %s:\n", 3035 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3036 fail: 3037 printf("reg state:\n"); 3038 dump_regs(s); 3039 tcg_abort(); 3040 } 3041 } 3042 } 3043 #endif 3044 3045 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts) 3046 { 3047 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64) 3048 /* Sparc64 stack is accessed with offset of 2047 */ 3049 s->current_frame_offset = (s->current_frame_offset + 3050 (tcg_target_long)sizeof(tcg_target_long) - 1) & 3051 ~(sizeof(tcg_target_long) - 1); 3052 #endif 3053 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) > 3054 s->frame_end) { 3055 tcg_abort(); 3056 } 3057 ts->mem_offset = s->current_frame_offset; 3058 ts->mem_base = s->frame_temp; 3059 ts->mem_allocated = 1; 3060 s->current_frame_offset += sizeof(tcg_target_long); 3061 } 3062 3063 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet); 3064 3065 /* Mark a temporary as free or dead. If 'free_or_dead' is negative, 3066 mark it free; otherwise mark it dead. */ 3067 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead) 3068 { 3069 if (ts->fixed_reg) { 3070 return; 3071 } 3072 if (ts->val_type == TEMP_VAL_REG) { 3073 s->reg_to_temp[ts->reg] = NULL; 3074 } 3075 ts->val_type = (free_or_dead < 0 3076 || ts->temp_local 3077 || ts->temp_global 3078 ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 3079 } 3080 3081 /* Mark a temporary as dead. */ 3082 static inline void temp_dead(TCGContext *s, TCGTemp *ts) 3083 { 3084 temp_free_or_dead(s, ts, 1); 3085 } 3086 3087 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary 3088 registers needs to be allocated to store a constant. If 'free_or_dead' 3089 is non-zero, subsequently release the temporary; if it is positive, the 3090 temp is dead; if it is negative, the temp is free. */ 3091 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs, 3092 TCGRegSet preferred_regs, int free_or_dead) 3093 { 3094 if (ts->fixed_reg) { 3095 return; 3096 } 3097 if (!ts->mem_coherent) { 3098 if (!ts->mem_allocated) { 3099 temp_allocate_frame(s, ts); 3100 } 3101 switch (ts->val_type) { 3102 case TEMP_VAL_CONST: 3103 /* If we're going to free the temp immediately, then we won't 3104 require it later in a register, so attempt to store the 3105 constant to memory directly. */ 3106 if (free_or_dead 3107 && tcg_out_sti(s, ts->type, ts->val, 3108 ts->mem_base->reg, ts->mem_offset)) { 3109 break; 3110 } 3111 temp_load(s, ts, tcg_target_available_regs[ts->type], 3112 allocated_regs, preferred_regs); 3113 /* fallthrough */ 3114 3115 case TEMP_VAL_REG: 3116 tcg_out_st(s, ts->type, ts->reg, 3117 ts->mem_base->reg, ts->mem_offset); 3118 break; 3119 3120 case TEMP_VAL_MEM: 3121 break; 3122 3123 case TEMP_VAL_DEAD: 3124 default: 3125 tcg_abort(); 3126 } 3127 ts->mem_coherent = 1; 3128 } 3129 if (free_or_dead) { 3130 temp_free_or_dead(s, ts, free_or_dead); 3131 } 3132 } 3133 3134 /* free register 'reg' by spilling the corresponding temporary if necessary */ 3135 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs) 3136 { 3137 TCGTemp *ts = s->reg_to_temp[reg]; 3138 if (ts != NULL) { 3139 temp_sync(s, ts, allocated_regs, 0, -1); 3140 } 3141 } 3142 3143 /** 3144 * tcg_reg_alloc: 3145 * @required_regs: Set of registers in which we must allocate. 3146 * @allocated_regs: Set of registers which must be avoided. 3147 * @preferred_regs: Set of registers we should prefer. 3148 * @rev: True if we search the registers in "indirect" order. 3149 * 3150 * The allocated register must be in @required_regs & ~@allocated_regs, 3151 * but if we can put it in @preferred_regs we may save a move later. 3152 */ 3153 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs, 3154 TCGRegSet allocated_regs, 3155 TCGRegSet preferred_regs, bool rev) 3156 { 3157 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order); 3158 TCGRegSet reg_ct[2]; 3159 const int *order; 3160 3161 reg_ct[1] = required_regs & ~allocated_regs; 3162 tcg_debug_assert(reg_ct[1] != 0); 3163 reg_ct[0] = reg_ct[1] & preferred_regs; 3164 3165 /* Skip the preferred_regs option if it cannot be satisfied, 3166 or if the preference made no difference. */ 3167 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1]; 3168 3169 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order; 3170 3171 /* Try free registers, preferences first. */ 3172 for (j = f; j < 2; j++) { 3173 TCGRegSet set = reg_ct[j]; 3174 3175 if (tcg_regset_single(set)) { 3176 /* One register in the set. */ 3177 TCGReg reg = tcg_regset_first(set); 3178 if (s->reg_to_temp[reg] == NULL) { 3179 return reg; 3180 } 3181 } else { 3182 for (i = 0; i < n; i++) { 3183 TCGReg reg = order[i]; 3184 if (s->reg_to_temp[reg] == NULL && 3185 tcg_regset_test_reg(set, reg)) { 3186 return reg; 3187 } 3188 } 3189 } 3190 } 3191 3192 /* We must spill something. */ 3193 for (j = f; j < 2; j++) { 3194 TCGRegSet set = reg_ct[j]; 3195 3196 if (tcg_regset_single(set)) { 3197 /* One register in the set. */ 3198 TCGReg reg = tcg_regset_first(set); 3199 tcg_reg_free(s, reg, allocated_regs); 3200 return reg; 3201 } else { 3202 for (i = 0; i < n; i++) { 3203 TCGReg reg = order[i]; 3204 if (tcg_regset_test_reg(set, reg)) { 3205 tcg_reg_free(s, reg, allocated_regs); 3206 return reg; 3207 } 3208 } 3209 } 3210 } 3211 3212 tcg_abort(); 3213 } 3214 3215 /* Make sure the temporary is in a register. If needed, allocate the register 3216 from DESIRED while avoiding ALLOCATED. */ 3217 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs, 3218 TCGRegSet allocated_regs, TCGRegSet preferred_regs) 3219 { 3220 TCGReg reg; 3221 3222 switch (ts->val_type) { 3223 case TEMP_VAL_REG: 3224 return; 3225 case TEMP_VAL_CONST: 3226 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3227 preferred_regs, ts->indirect_base); 3228 tcg_out_movi(s, ts->type, reg, ts->val); 3229 ts->mem_coherent = 0; 3230 break; 3231 case TEMP_VAL_MEM: 3232 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3233 preferred_regs, ts->indirect_base); 3234 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset); 3235 ts->mem_coherent = 1; 3236 break; 3237 case TEMP_VAL_DEAD: 3238 default: 3239 tcg_abort(); 3240 } 3241 ts->reg = reg; 3242 ts->val_type = TEMP_VAL_REG; 3243 s->reg_to_temp[reg] = ts; 3244 } 3245 3246 /* Save a temporary to memory. 'allocated_regs' is used in case a 3247 temporary registers needs to be allocated to store a constant. */ 3248 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs) 3249 { 3250 /* The liveness analysis already ensures that globals are back 3251 in memory. Keep an tcg_debug_assert for safety. */ 3252 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg); 3253 } 3254 3255 /* save globals to their canonical location and assume they can be 3256 modified be the following code. 'allocated_regs' is used in case a 3257 temporary registers needs to be allocated to store a constant. */ 3258 static void save_globals(TCGContext *s, TCGRegSet allocated_regs) 3259 { 3260 int i, n; 3261 3262 for (i = 0, n = s->nb_globals; i < n; i++) { 3263 temp_save(s, &s->temps[i], allocated_regs); 3264 } 3265 } 3266 3267 /* sync globals to their canonical location and assume they can be 3268 read by the following code. 'allocated_regs' is used in case a 3269 temporary registers needs to be allocated to store a constant. */ 3270 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs) 3271 { 3272 int i, n; 3273 3274 for (i = 0, n = s->nb_globals; i < n; i++) { 3275 TCGTemp *ts = &s->temps[i]; 3276 tcg_debug_assert(ts->val_type != TEMP_VAL_REG 3277 || ts->fixed_reg 3278 || ts->mem_coherent); 3279 } 3280 } 3281 3282 /* at the end of a basic block, we assume all temporaries are dead and 3283 all globals are stored at their canonical location. */ 3284 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs) 3285 { 3286 int i; 3287 3288 for (i = s->nb_globals; i < s->nb_temps; i++) { 3289 TCGTemp *ts = &s->temps[i]; 3290 if (ts->temp_local) { 3291 temp_save(s, ts, allocated_regs); 3292 } else { 3293 /* The liveness analysis already ensures that temps are dead. 3294 Keep an tcg_debug_assert for safety. */ 3295 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3296 } 3297 } 3298 3299 save_globals(s, allocated_regs); 3300 } 3301 3302 /* 3303 * Specialized code generation for INDEX_op_movi_*. 3304 */ 3305 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots, 3306 tcg_target_ulong val, TCGLifeData arg_life, 3307 TCGRegSet preferred_regs) 3308 { 3309 /* ENV should not be modified. */ 3310 tcg_debug_assert(!ots->fixed_reg); 3311 3312 /* The movi is not explicitly generated here. */ 3313 if (ots->val_type == TEMP_VAL_REG) { 3314 s->reg_to_temp[ots->reg] = NULL; 3315 } 3316 ots->val_type = TEMP_VAL_CONST; 3317 ots->val = val; 3318 ots->mem_coherent = 0; 3319 if (NEED_SYNC_ARG(0)) { 3320 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0)); 3321 } else if (IS_DEAD_ARG(0)) { 3322 temp_dead(s, ots); 3323 } 3324 } 3325 3326 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op) 3327 { 3328 TCGTemp *ots = arg_temp(op->args[0]); 3329 tcg_target_ulong val = op->args[1]; 3330 3331 tcg_reg_alloc_do_movi(s, ots, val, op->life, op->output_pref[0]); 3332 } 3333 3334 /* 3335 * Specialized code generation for INDEX_op_mov_*. 3336 */ 3337 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op) 3338 { 3339 const TCGLifeData arg_life = op->life; 3340 TCGRegSet allocated_regs, preferred_regs; 3341 TCGTemp *ts, *ots; 3342 TCGType otype, itype; 3343 3344 allocated_regs = s->reserved_regs; 3345 preferred_regs = op->output_pref[0]; 3346 ots = arg_temp(op->args[0]); 3347 ts = arg_temp(op->args[1]); 3348 3349 /* ENV should not be modified. */ 3350 tcg_debug_assert(!ots->fixed_reg); 3351 3352 /* Note that otype != itype for no-op truncation. */ 3353 otype = ots->type; 3354 itype = ts->type; 3355 3356 if (ts->val_type == TEMP_VAL_CONST) { 3357 /* propagate constant or generate sti */ 3358 tcg_target_ulong val = ts->val; 3359 if (IS_DEAD_ARG(1)) { 3360 temp_dead(s, ts); 3361 } 3362 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs); 3363 return; 3364 } 3365 3366 /* If the source value is in memory we're going to be forced 3367 to have it in a register in order to perform the copy. Copy 3368 the SOURCE value into its own register first, that way we 3369 don't have to reload SOURCE the next time it is used. */ 3370 if (ts->val_type == TEMP_VAL_MEM) { 3371 temp_load(s, ts, tcg_target_available_regs[itype], 3372 allocated_regs, preferred_regs); 3373 } 3374 3375 tcg_debug_assert(ts->val_type == TEMP_VAL_REG); 3376 if (IS_DEAD_ARG(0)) { 3377 /* mov to a non-saved dead register makes no sense (even with 3378 liveness analysis disabled). */ 3379 tcg_debug_assert(NEED_SYNC_ARG(0)); 3380 if (!ots->mem_allocated) { 3381 temp_allocate_frame(s, ots); 3382 } 3383 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset); 3384 if (IS_DEAD_ARG(1)) { 3385 temp_dead(s, ts); 3386 } 3387 temp_dead(s, ots); 3388 } else { 3389 if (IS_DEAD_ARG(1) && !ts->fixed_reg) { 3390 /* the mov can be suppressed */ 3391 if (ots->val_type == TEMP_VAL_REG) { 3392 s->reg_to_temp[ots->reg] = NULL; 3393 } 3394 ots->reg = ts->reg; 3395 temp_dead(s, ts); 3396 } else { 3397 if (ots->val_type != TEMP_VAL_REG) { 3398 /* When allocating a new register, make sure to not spill the 3399 input one. */ 3400 tcg_regset_set_reg(allocated_regs, ts->reg); 3401 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype], 3402 allocated_regs, preferred_regs, 3403 ots->indirect_base); 3404 } 3405 if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) { 3406 /* 3407 * Cross register class move not supported. 3408 * Store the source register into the destination slot 3409 * and leave the destination temp as TEMP_VAL_MEM. 3410 */ 3411 assert(!ots->fixed_reg); 3412 if (!ts->mem_allocated) { 3413 temp_allocate_frame(s, ots); 3414 } 3415 tcg_out_st(s, ts->type, ts->reg, 3416 ots->mem_base->reg, ots->mem_offset); 3417 ots->mem_coherent = 1; 3418 temp_free_or_dead(s, ots, -1); 3419 return; 3420 } 3421 } 3422 ots->val_type = TEMP_VAL_REG; 3423 ots->mem_coherent = 0; 3424 s->reg_to_temp[ots->reg] = ots; 3425 if (NEED_SYNC_ARG(0)) { 3426 temp_sync(s, ots, allocated_regs, 0, 0); 3427 } 3428 } 3429 } 3430 3431 /* 3432 * Specialized code generation for INDEX_op_dup_vec. 3433 */ 3434 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op) 3435 { 3436 const TCGLifeData arg_life = op->life; 3437 TCGRegSet dup_out_regs, dup_in_regs; 3438 TCGTemp *its, *ots; 3439 TCGType itype, vtype; 3440 intptr_t endian_fixup; 3441 unsigned vece; 3442 bool ok; 3443 3444 ots = arg_temp(op->args[0]); 3445 its = arg_temp(op->args[1]); 3446 3447 /* ENV should not be modified. */ 3448 tcg_debug_assert(!ots->fixed_reg); 3449 3450 itype = its->type; 3451 vece = TCGOP_VECE(op); 3452 vtype = TCGOP_VECL(op) + TCG_TYPE_V64; 3453 3454 if (its->val_type == TEMP_VAL_CONST) { 3455 /* Propagate constant via movi -> dupi. */ 3456 tcg_target_ulong val = its->val; 3457 if (IS_DEAD_ARG(1)) { 3458 temp_dead(s, its); 3459 } 3460 tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]); 3461 return; 3462 } 3463 3464 dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].u.regs; 3465 dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].u.regs; 3466 3467 /* Allocate the output register now. */ 3468 if (ots->val_type != TEMP_VAL_REG) { 3469 TCGRegSet allocated_regs = s->reserved_regs; 3470 3471 if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) { 3472 /* Make sure to not spill the input register. */ 3473 tcg_regset_set_reg(allocated_regs, its->reg); 3474 } 3475 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs, 3476 op->output_pref[0], ots->indirect_base); 3477 ots->val_type = TEMP_VAL_REG; 3478 ots->mem_coherent = 0; 3479 s->reg_to_temp[ots->reg] = ots; 3480 } 3481 3482 switch (its->val_type) { 3483 case TEMP_VAL_REG: 3484 /* 3485 * The dup constriaints must be broad, covering all possible VECE. 3486 * However, tcg_op_dup_vec() gets to see the VECE and we allow it 3487 * to fail, indicating that extra moves are required for that case. 3488 */ 3489 if (tcg_regset_test_reg(dup_in_regs, its->reg)) { 3490 if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) { 3491 goto done; 3492 } 3493 /* Try again from memory or a vector input register. */ 3494 } 3495 if (!its->mem_coherent) { 3496 /* 3497 * The input register is not synced, and so an extra store 3498 * would be required to use memory. Attempt an integer-vector 3499 * register move first. We do not have a TCGRegSet for this. 3500 */ 3501 if (tcg_out_mov(s, itype, ots->reg, its->reg)) { 3502 break; 3503 } 3504 /* Sync the temp back to its slot and load from there. */ 3505 temp_sync(s, its, s->reserved_regs, 0, 0); 3506 } 3507 /* fall through */ 3508 3509 case TEMP_VAL_MEM: 3510 #ifdef HOST_WORDS_BIGENDIAN 3511 endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8; 3512 endian_fixup -= 1 << vece; 3513 #else 3514 endian_fixup = 0; 3515 #endif 3516 if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg, 3517 its->mem_offset + endian_fixup)) { 3518 goto done; 3519 } 3520 tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset); 3521 break; 3522 3523 default: 3524 g_assert_not_reached(); 3525 } 3526 3527 /* We now have a vector input register, so dup must succeed. */ 3528 ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg); 3529 tcg_debug_assert(ok); 3530 3531 done: 3532 if (IS_DEAD_ARG(1)) { 3533 temp_dead(s, its); 3534 } 3535 if (NEED_SYNC_ARG(0)) { 3536 temp_sync(s, ots, s->reserved_regs, 0, 0); 3537 } 3538 if (IS_DEAD_ARG(0)) { 3539 temp_dead(s, ots); 3540 } 3541 } 3542 3543 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op) 3544 { 3545 const TCGLifeData arg_life = op->life; 3546 const TCGOpDef * const def = &tcg_op_defs[op->opc]; 3547 TCGRegSet i_allocated_regs; 3548 TCGRegSet o_allocated_regs; 3549 int i, k, nb_iargs, nb_oargs; 3550 TCGReg reg; 3551 TCGArg arg; 3552 const TCGArgConstraint *arg_ct; 3553 TCGTemp *ts; 3554 TCGArg new_args[TCG_MAX_OP_ARGS]; 3555 int const_args[TCG_MAX_OP_ARGS]; 3556 3557 nb_oargs = def->nb_oargs; 3558 nb_iargs = def->nb_iargs; 3559 3560 /* copy constants */ 3561 memcpy(new_args + nb_oargs + nb_iargs, 3562 op->args + nb_oargs + nb_iargs, 3563 sizeof(TCGArg) * def->nb_cargs); 3564 3565 i_allocated_regs = s->reserved_regs; 3566 o_allocated_regs = s->reserved_regs; 3567 3568 /* satisfy input constraints */ 3569 for (k = 0; k < nb_iargs; k++) { 3570 TCGRegSet i_preferred_regs, o_preferred_regs; 3571 3572 i = def->sorted_args[nb_oargs + k]; 3573 arg = op->args[i]; 3574 arg_ct = &def->args_ct[i]; 3575 ts = arg_temp(arg); 3576 3577 if (ts->val_type == TEMP_VAL_CONST 3578 && tcg_target_const_match(ts->val, ts->type, arg_ct)) { 3579 /* constant is OK for instruction */ 3580 const_args[i] = 1; 3581 new_args[i] = ts->val; 3582 continue; 3583 } 3584 3585 i_preferred_regs = o_preferred_regs = 0; 3586 if (arg_ct->ct & TCG_CT_IALIAS) { 3587 o_preferred_regs = op->output_pref[arg_ct->alias_index]; 3588 if (ts->fixed_reg) { 3589 /* if fixed register, we must allocate a new register 3590 if the alias is not the same register */ 3591 if (arg != op->args[arg_ct->alias_index]) { 3592 goto allocate_in_reg; 3593 } 3594 } else { 3595 /* if the input is aliased to an output and if it is 3596 not dead after the instruction, we must allocate 3597 a new register and move it */ 3598 if (!IS_DEAD_ARG(i)) { 3599 goto allocate_in_reg; 3600 } 3601 3602 /* check if the current register has already been allocated 3603 for another input aliased to an output */ 3604 if (ts->val_type == TEMP_VAL_REG) { 3605 int k2, i2; 3606 reg = ts->reg; 3607 for (k2 = 0 ; k2 < k ; k2++) { 3608 i2 = def->sorted_args[nb_oargs + k2]; 3609 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) && 3610 reg == new_args[i2]) { 3611 goto allocate_in_reg; 3612 } 3613 } 3614 } 3615 i_preferred_regs = o_preferred_regs; 3616 } 3617 } 3618 3619 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs, i_preferred_regs); 3620 reg = ts->reg; 3621 3622 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) { 3623 /* nothing to do : the constraint is satisfied */ 3624 } else { 3625 allocate_in_reg: 3626 /* allocate a new register matching the constraint 3627 and move the temporary register into it */ 3628 temp_load(s, ts, tcg_target_available_regs[ts->type], 3629 i_allocated_regs, 0); 3630 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs, 3631 o_preferred_regs, ts->indirect_base); 3632 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3633 /* 3634 * Cross register class move not supported. Sync the 3635 * temp back to its slot and load from there. 3636 */ 3637 temp_sync(s, ts, i_allocated_regs, 0, 0); 3638 tcg_out_ld(s, ts->type, reg, 3639 ts->mem_base->reg, ts->mem_offset); 3640 } 3641 } 3642 new_args[i] = reg; 3643 const_args[i] = 0; 3644 tcg_regset_set_reg(i_allocated_regs, reg); 3645 } 3646 3647 /* mark dead temporaries and free the associated registers */ 3648 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3649 if (IS_DEAD_ARG(i)) { 3650 temp_dead(s, arg_temp(op->args[i])); 3651 } 3652 } 3653 3654 if (def->flags & TCG_OPF_BB_END) { 3655 tcg_reg_alloc_bb_end(s, i_allocated_regs); 3656 } else { 3657 if (def->flags & TCG_OPF_CALL_CLOBBER) { 3658 /* XXX: permit generic clobber register list ? */ 3659 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3660 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3661 tcg_reg_free(s, i, i_allocated_regs); 3662 } 3663 } 3664 } 3665 if (def->flags & TCG_OPF_SIDE_EFFECTS) { 3666 /* sync globals if the op has side effects and might trigger 3667 an exception. */ 3668 sync_globals(s, i_allocated_regs); 3669 } 3670 3671 /* satisfy the output constraints */ 3672 for(k = 0; k < nb_oargs; k++) { 3673 i = def->sorted_args[k]; 3674 arg = op->args[i]; 3675 arg_ct = &def->args_ct[i]; 3676 ts = arg_temp(arg); 3677 3678 /* ENV should not be modified. */ 3679 tcg_debug_assert(!ts->fixed_reg); 3680 3681 if ((arg_ct->ct & TCG_CT_ALIAS) 3682 && !const_args[arg_ct->alias_index]) { 3683 reg = new_args[arg_ct->alias_index]; 3684 } else if (arg_ct->ct & TCG_CT_NEWREG) { 3685 reg = tcg_reg_alloc(s, arg_ct->u.regs, 3686 i_allocated_regs | o_allocated_regs, 3687 op->output_pref[k], ts->indirect_base); 3688 } else { 3689 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs, 3690 op->output_pref[k], ts->indirect_base); 3691 } 3692 tcg_regset_set_reg(o_allocated_regs, reg); 3693 if (ts->val_type == TEMP_VAL_REG) { 3694 s->reg_to_temp[ts->reg] = NULL; 3695 } 3696 ts->val_type = TEMP_VAL_REG; 3697 ts->reg = reg; 3698 /* 3699 * Temp value is modified, so the value kept in memory is 3700 * potentially not the same. 3701 */ 3702 ts->mem_coherent = 0; 3703 s->reg_to_temp[reg] = ts; 3704 new_args[i] = reg; 3705 } 3706 } 3707 3708 /* emit instruction */ 3709 if (def->flags & TCG_OPF_VECTOR) { 3710 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op), 3711 new_args, const_args); 3712 } else { 3713 tcg_out_op(s, op->opc, new_args, const_args); 3714 } 3715 3716 /* move the outputs in the correct register if needed */ 3717 for(i = 0; i < nb_oargs; i++) { 3718 ts = arg_temp(op->args[i]); 3719 3720 /* ENV should not be modified. */ 3721 tcg_debug_assert(!ts->fixed_reg); 3722 3723 if (NEED_SYNC_ARG(i)) { 3724 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i)); 3725 } else if (IS_DEAD_ARG(i)) { 3726 temp_dead(s, ts); 3727 } 3728 } 3729 } 3730 3731 #ifdef TCG_TARGET_STACK_GROWSUP 3732 #define STACK_DIR(x) (-(x)) 3733 #else 3734 #define STACK_DIR(x) (x) 3735 #endif 3736 3737 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op) 3738 { 3739 const int nb_oargs = TCGOP_CALLO(op); 3740 const int nb_iargs = TCGOP_CALLI(op); 3741 const TCGLifeData arg_life = op->life; 3742 int flags, nb_regs, i; 3743 TCGReg reg; 3744 TCGArg arg; 3745 TCGTemp *ts; 3746 intptr_t stack_offset; 3747 size_t call_stack_size; 3748 tcg_insn_unit *func_addr; 3749 int allocate_args; 3750 TCGRegSet allocated_regs; 3751 3752 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs]; 3753 flags = op->args[nb_oargs + nb_iargs + 1]; 3754 3755 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 3756 if (nb_regs > nb_iargs) { 3757 nb_regs = nb_iargs; 3758 } 3759 3760 /* assign stack slots first */ 3761 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long); 3762 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) & 3763 ~(TCG_TARGET_STACK_ALIGN - 1); 3764 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE); 3765 if (allocate_args) { 3766 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed, 3767 preallocate call stack */ 3768 tcg_abort(); 3769 } 3770 3771 stack_offset = TCG_TARGET_CALL_STACK_OFFSET; 3772 for (i = nb_regs; i < nb_iargs; i++) { 3773 arg = op->args[nb_oargs + i]; 3774 #ifdef TCG_TARGET_STACK_GROWSUP 3775 stack_offset -= sizeof(tcg_target_long); 3776 #endif 3777 if (arg != TCG_CALL_DUMMY_ARG) { 3778 ts = arg_temp(arg); 3779 temp_load(s, ts, tcg_target_available_regs[ts->type], 3780 s->reserved_regs, 0); 3781 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset); 3782 } 3783 #ifndef TCG_TARGET_STACK_GROWSUP 3784 stack_offset += sizeof(tcg_target_long); 3785 #endif 3786 } 3787 3788 /* assign input registers */ 3789 allocated_regs = s->reserved_regs; 3790 for (i = 0; i < nb_regs; i++) { 3791 arg = op->args[nb_oargs + i]; 3792 if (arg != TCG_CALL_DUMMY_ARG) { 3793 ts = arg_temp(arg); 3794 reg = tcg_target_call_iarg_regs[i]; 3795 3796 if (ts->val_type == TEMP_VAL_REG) { 3797 if (ts->reg != reg) { 3798 tcg_reg_free(s, reg, allocated_regs); 3799 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3800 /* 3801 * Cross register class move not supported. Sync the 3802 * temp back to its slot and load from there. 3803 */ 3804 temp_sync(s, ts, allocated_regs, 0, 0); 3805 tcg_out_ld(s, ts->type, reg, 3806 ts->mem_base->reg, ts->mem_offset); 3807 } 3808 } 3809 } else { 3810 TCGRegSet arg_set = 0; 3811 3812 tcg_reg_free(s, reg, allocated_regs); 3813 tcg_regset_set_reg(arg_set, reg); 3814 temp_load(s, ts, arg_set, allocated_regs, 0); 3815 } 3816 3817 tcg_regset_set_reg(allocated_regs, reg); 3818 } 3819 } 3820 3821 /* mark dead temporaries and free the associated registers */ 3822 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 3823 if (IS_DEAD_ARG(i)) { 3824 temp_dead(s, arg_temp(op->args[i])); 3825 } 3826 } 3827 3828 /* clobber call registers */ 3829 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3830 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3831 tcg_reg_free(s, i, allocated_regs); 3832 } 3833 } 3834 3835 /* Save globals if they might be written by the helper, sync them if 3836 they might be read. */ 3837 if (flags & TCG_CALL_NO_READ_GLOBALS) { 3838 /* Nothing to do */ 3839 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) { 3840 sync_globals(s, allocated_regs); 3841 } else { 3842 save_globals(s, allocated_regs); 3843 } 3844 3845 tcg_out_call(s, func_addr); 3846 3847 /* assign output registers and emit moves if needed */ 3848 for(i = 0; i < nb_oargs; i++) { 3849 arg = op->args[i]; 3850 ts = arg_temp(arg); 3851 3852 /* ENV should not be modified. */ 3853 tcg_debug_assert(!ts->fixed_reg); 3854 3855 reg = tcg_target_call_oarg_regs[i]; 3856 tcg_debug_assert(s->reg_to_temp[reg] == NULL); 3857 if (ts->val_type == TEMP_VAL_REG) { 3858 s->reg_to_temp[ts->reg] = NULL; 3859 } 3860 ts->val_type = TEMP_VAL_REG; 3861 ts->reg = reg; 3862 ts->mem_coherent = 0; 3863 s->reg_to_temp[reg] = ts; 3864 if (NEED_SYNC_ARG(i)) { 3865 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i)); 3866 } else if (IS_DEAD_ARG(i)) { 3867 temp_dead(s, ts); 3868 } 3869 } 3870 } 3871 3872 #ifdef CONFIG_PROFILER 3873 3874 /* avoid copy/paste errors */ 3875 #define PROF_ADD(to, from, field) \ 3876 do { \ 3877 (to)->field += atomic_read(&((from)->field)); \ 3878 } while (0) 3879 3880 #define PROF_MAX(to, from, field) \ 3881 do { \ 3882 typeof((from)->field) val__ = atomic_read(&((from)->field)); \ 3883 if (val__ > (to)->field) { \ 3884 (to)->field = val__; \ 3885 } \ 3886 } while (0) 3887 3888 /* Pass in a zero'ed @prof */ 3889 static inline 3890 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table) 3891 { 3892 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3893 unsigned int i; 3894 3895 for (i = 0; i < n_ctxs; i++) { 3896 TCGContext *s = atomic_read(&tcg_ctxs[i]); 3897 const TCGProfile *orig = &s->prof; 3898 3899 if (counters) { 3900 PROF_ADD(prof, orig, cpu_exec_time); 3901 PROF_ADD(prof, orig, tb_count1); 3902 PROF_ADD(prof, orig, tb_count); 3903 PROF_ADD(prof, orig, op_count); 3904 PROF_MAX(prof, orig, op_count_max); 3905 PROF_ADD(prof, orig, temp_count); 3906 PROF_MAX(prof, orig, temp_count_max); 3907 PROF_ADD(prof, orig, del_op_count); 3908 PROF_ADD(prof, orig, code_in_len); 3909 PROF_ADD(prof, orig, code_out_len); 3910 PROF_ADD(prof, orig, search_out_len); 3911 PROF_ADD(prof, orig, interm_time); 3912 PROF_ADD(prof, orig, code_time); 3913 PROF_ADD(prof, orig, la_time); 3914 PROF_ADD(prof, orig, opt_time); 3915 PROF_ADD(prof, orig, restore_count); 3916 PROF_ADD(prof, orig, restore_time); 3917 } 3918 if (table) { 3919 int i; 3920 3921 for (i = 0; i < NB_OPS; i++) { 3922 PROF_ADD(prof, orig, table_op_count[i]); 3923 } 3924 } 3925 } 3926 } 3927 3928 #undef PROF_ADD 3929 #undef PROF_MAX 3930 3931 static void tcg_profile_snapshot_counters(TCGProfile *prof) 3932 { 3933 tcg_profile_snapshot(prof, true, false); 3934 } 3935 3936 static void tcg_profile_snapshot_table(TCGProfile *prof) 3937 { 3938 tcg_profile_snapshot(prof, false, true); 3939 } 3940 3941 void tcg_dump_op_count(void) 3942 { 3943 TCGProfile prof = {}; 3944 int i; 3945 3946 tcg_profile_snapshot_table(&prof); 3947 for (i = 0; i < NB_OPS; i++) { 3948 qemu_printf("%s %" PRId64 "\n", tcg_op_defs[i].name, 3949 prof.table_op_count[i]); 3950 } 3951 } 3952 3953 int64_t tcg_cpu_exec_time(void) 3954 { 3955 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3956 unsigned int i; 3957 int64_t ret = 0; 3958 3959 for (i = 0; i < n_ctxs; i++) { 3960 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 3961 const TCGProfile *prof = &s->prof; 3962 3963 ret += atomic_read(&prof->cpu_exec_time); 3964 } 3965 return ret; 3966 } 3967 #else 3968 void tcg_dump_op_count(void) 3969 { 3970 qemu_printf("[TCG profiler not compiled]\n"); 3971 } 3972 3973 int64_t tcg_cpu_exec_time(void) 3974 { 3975 error_report("%s: TCG profiler not compiled", __func__); 3976 exit(EXIT_FAILURE); 3977 } 3978 #endif 3979 3980 3981 int tcg_gen_code(TCGContext *s, TranslationBlock *tb) 3982 { 3983 #ifdef CONFIG_PROFILER 3984 TCGProfile *prof = &s->prof; 3985 #endif 3986 int i, num_insns; 3987 TCGOp *op; 3988 3989 #ifdef CONFIG_PROFILER 3990 { 3991 int n = 0; 3992 3993 QTAILQ_FOREACH(op, &s->ops, link) { 3994 n++; 3995 } 3996 atomic_set(&prof->op_count, prof->op_count + n); 3997 if (n > prof->op_count_max) { 3998 atomic_set(&prof->op_count_max, n); 3999 } 4000 4001 n = s->nb_temps; 4002 atomic_set(&prof->temp_count, prof->temp_count + n); 4003 if (n > prof->temp_count_max) { 4004 atomic_set(&prof->temp_count_max, n); 4005 } 4006 } 4007 #endif 4008 4009 #ifdef DEBUG_DISAS 4010 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP) 4011 && qemu_log_in_addr_range(tb->pc))) { 4012 qemu_log_lock(); 4013 qemu_log("OP:\n"); 4014 tcg_dump_ops(s, false); 4015 qemu_log("\n"); 4016 qemu_log_unlock(); 4017 } 4018 #endif 4019 4020 #ifdef CONFIG_DEBUG_TCG 4021 /* Ensure all labels referenced have been emitted. */ 4022 { 4023 TCGLabel *l; 4024 bool error = false; 4025 4026 QSIMPLEQ_FOREACH(l, &s->labels, next) { 4027 if (unlikely(!l->present) && l->refs) { 4028 qemu_log_mask(CPU_LOG_TB_OP, 4029 "$L%d referenced but not present.\n", l->id); 4030 error = true; 4031 } 4032 } 4033 assert(!error); 4034 } 4035 #endif 4036 4037 #ifdef CONFIG_PROFILER 4038 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock()); 4039 #endif 4040 4041 #ifdef USE_TCG_OPTIMIZATIONS 4042 tcg_optimize(s); 4043 #endif 4044 4045 #ifdef CONFIG_PROFILER 4046 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock()); 4047 atomic_set(&prof->la_time, prof->la_time - profile_getclock()); 4048 #endif 4049 4050 reachable_code_pass(s); 4051 liveness_pass_1(s); 4052 4053 if (s->nb_indirects > 0) { 4054 #ifdef DEBUG_DISAS 4055 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND) 4056 && qemu_log_in_addr_range(tb->pc))) { 4057 qemu_log_lock(); 4058 qemu_log("OP before indirect lowering:\n"); 4059 tcg_dump_ops(s, false); 4060 qemu_log("\n"); 4061 qemu_log_unlock(); 4062 } 4063 #endif 4064 /* Replace indirect temps with direct temps. */ 4065 if (liveness_pass_2(s)) { 4066 /* If changes were made, re-run liveness. */ 4067 liveness_pass_1(s); 4068 } 4069 } 4070 4071 #ifdef CONFIG_PROFILER 4072 atomic_set(&prof->la_time, prof->la_time + profile_getclock()); 4073 #endif 4074 4075 #ifdef DEBUG_DISAS 4076 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT) 4077 && qemu_log_in_addr_range(tb->pc))) { 4078 qemu_log_lock(); 4079 qemu_log("OP after optimization and liveness analysis:\n"); 4080 tcg_dump_ops(s, true); 4081 qemu_log("\n"); 4082 qemu_log_unlock(); 4083 } 4084 #endif 4085 4086 tcg_reg_alloc_start(s); 4087 4088 s->code_buf = tb->tc.ptr; 4089 s->code_ptr = tb->tc.ptr; 4090 4091 #ifdef TCG_TARGET_NEED_LDST_LABELS 4092 QSIMPLEQ_INIT(&s->ldst_labels); 4093 #endif 4094 #ifdef TCG_TARGET_NEED_POOL_LABELS 4095 s->pool_labels = NULL; 4096 #endif 4097 4098 num_insns = -1; 4099 QTAILQ_FOREACH(op, &s->ops, link) { 4100 TCGOpcode opc = op->opc; 4101 4102 #ifdef CONFIG_PROFILER 4103 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1); 4104 #endif 4105 4106 switch (opc) { 4107 case INDEX_op_mov_i32: 4108 case INDEX_op_mov_i64: 4109 case INDEX_op_mov_vec: 4110 tcg_reg_alloc_mov(s, op); 4111 break; 4112 case INDEX_op_movi_i32: 4113 case INDEX_op_movi_i64: 4114 case INDEX_op_dupi_vec: 4115 tcg_reg_alloc_movi(s, op); 4116 break; 4117 case INDEX_op_dup_vec: 4118 tcg_reg_alloc_dup(s, op); 4119 break; 4120 case INDEX_op_insn_start: 4121 if (num_insns >= 0) { 4122 size_t off = tcg_current_code_size(s); 4123 s->gen_insn_end_off[num_insns] = off; 4124 /* Assert that we do not overflow our stored offset. */ 4125 assert(s->gen_insn_end_off[num_insns] == off); 4126 } 4127 num_insns++; 4128 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 4129 target_ulong a; 4130 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 4131 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 4132 #else 4133 a = op->args[i]; 4134 #endif 4135 s->gen_insn_data[num_insns][i] = a; 4136 } 4137 break; 4138 case INDEX_op_discard: 4139 temp_dead(s, arg_temp(op->args[0])); 4140 break; 4141 case INDEX_op_set_label: 4142 tcg_reg_alloc_bb_end(s, s->reserved_regs); 4143 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr); 4144 break; 4145 case INDEX_op_call: 4146 tcg_reg_alloc_call(s, op); 4147 break; 4148 default: 4149 /* Sanity check that we've not introduced any unhandled opcodes. */ 4150 tcg_debug_assert(tcg_op_supported(opc)); 4151 /* Note: in order to speed up the code, it would be much 4152 faster to have specialized register allocator functions for 4153 some common argument patterns */ 4154 tcg_reg_alloc_op(s, op); 4155 break; 4156 } 4157 #ifdef CONFIG_DEBUG_TCG 4158 check_regs(s); 4159 #endif 4160 /* Test for (pending) buffer overflow. The assumption is that any 4161 one operation beginning below the high water mark cannot overrun 4162 the buffer completely. Thus we can test for overflow after 4163 generating code without having to check during generation. */ 4164 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) { 4165 return -1; 4166 } 4167 /* Test for TB overflow, as seen by gen_insn_end_off. */ 4168 if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) { 4169 return -2; 4170 } 4171 } 4172 tcg_debug_assert(num_insns >= 0); 4173 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); 4174 4175 /* Generate TB finalization at the end of block */ 4176 #ifdef TCG_TARGET_NEED_LDST_LABELS 4177 i = tcg_out_ldst_finalize(s); 4178 if (i < 0) { 4179 return i; 4180 } 4181 #endif 4182 #ifdef TCG_TARGET_NEED_POOL_LABELS 4183 i = tcg_out_pool_finalize(s); 4184 if (i < 0) { 4185 return i; 4186 } 4187 #endif 4188 if (!tcg_resolve_relocs(s)) { 4189 return -2; 4190 } 4191 4192 /* flush instruction cache */ 4193 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr); 4194 4195 return tcg_current_code_size(s); 4196 } 4197 4198 #ifdef CONFIG_PROFILER 4199 void tcg_dump_info(void) 4200 { 4201 TCGProfile prof = {}; 4202 const TCGProfile *s; 4203 int64_t tb_count; 4204 int64_t tb_div_count; 4205 int64_t tot; 4206 4207 tcg_profile_snapshot_counters(&prof); 4208 s = &prof; 4209 tb_count = s->tb_count; 4210 tb_div_count = tb_count ? tb_count : 1; 4211 tot = s->interm_time + s->code_time; 4212 4213 qemu_printf("JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n", 4214 tot, tot / 2.4e9); 4215 qemu_printf("translated TBs %" PRId64 " (aborted=%" PRId64 4216 " %0.1f%%)\n", 4217 tb_count, s->tb_count1 - tb_count, 4218 (double)(s->tb_count1 - s->tb_count) 4219 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0); 4220 qemu_printf("avg ops/TB %0.1f max=%d\n", 4221 (double)s->op_count / tb_div_count, s->op_count_max); 4222 qemu_printf("deleted ops/TB %0.2f\n", 4223 (double)s->del_op_count / tb_div_count); 4224 qemu_printf("avg temps/TB %0.2f max=%d\n", 4225 (double)s->temp_count / tb_div_count, s->temp_count_max); 4226 qemu_printf("avg host code/TB %0.1f\n", 4227 (double)s->code_out_len / tb_div_count); 4228 qemu_printf("avg search data/TB %0.1f\n", 4229 (double)s->search_out_len / tb_div_count); 4230 4231 qemu_printf("cycles/op %0.1f\n", 4232 s->op_count ? (double)tot / s->op_count : 0); 4233 qemu_printf("cycles/in byte %0.1f\n", 4234 s->code_in_len ? (double)tot / s->code_in_len : 0); 4235 qemu_printf("cycles/out byte %0.1f\n", 4236 s->code_out_len ? (double)tot / s->code_out_len : 0); 4237 qemu_printf("cycles/search byte %0.1f\n", 4238 s->search_out_len ? (double)tot / s->search_out_len : 0); 4239 if (tot == 0) { 4240 tot = 1; 4241 } 4242 qemu_printf(" gen_interm time %0.1f%%\n", 4243 (double)s->interm_time / tot * 100.0); 4244 qemu_printf(" gen_code time %0.1f%%\n", 4245 (double)s->code_time / tot * 100.0); 4246 qemu_printf("optim./code time %0.1f%%\n", 4247 (double)s->opt_time / (s->code_time ? s->code_time : 1) 4248 * 100.0); 4249 qemu_printf("liveness/code time %0.1f%%\n", 4250 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0); 4251 qemu_printf("cpu_restore count %" PRId64 "\n", 4252 s->restore_count); 4253 qemu_printf(" avg cycles %0.1f\n", 4254 s->restore_count ? (double)s->restore_time / s->restore_count : 0); 4255 } 4256 #else 4257 void tcg_dump_info(void) 4258 { 4259 qemu_printf("[TCG profiler not compiled]\n"); 4260 } 4261 #endif 4262 4263 #ifdef ELF_HOST_MACHINE 4264 /* In order to use this feature, the backend needs to do three things: 4265 4266 (1) Define ELF_HOST_MACHINE to indicate both what value to 4267 put into the ELF image and to indicate support for the feature. 4268 4269 (2) Define tcg_register_jit. This should create a buffer containing 4270 the contents of a .debug_frame section that describes the post- 4271 prologue unwind info for the tcg machine. 4272 4273 (3) Call tcg_register_jit_int, with the constructed .debug_frame. 4274 */ 4275 4276 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */ 4277 typedef enum { 4278 JIT_NOACTION = 0, 4279 JIT_REGISTER_FN, 4280 JIT_UNREGISTER_FN 4281 } jit_actions_t; 4282 4283 struct jit_code_entry { 4284 struct jit_code_entry *next_entry; 4285 struct jit_code_entry *prev_entry; 4286 const void *symfile_addr; 4287 uint64_t symfile_size; 4288 }; 4289 4290 struct jit_descriptor { 4291 uint32_t version; 4292 uint32_t action_flag; 4293 struct jit_code_entry *relevant_entry; 4294 struct jit_code_entry *first_entry; 4295 }; 4296 4297 void __jit_debug_register_code(void) __attribute__((noinline)); 4298 void __jit_debug_register_code(void) 4299 { 4300 asm(""); 4301 } 4302 4303 /* Must statically initialize the version, because GDB may check 4304 the version before we can set it. */ 4305 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 4306 4307 /* End GDB interface. */ 4308 4309 static int find_string(const char *strtab, const char *str) 4310 { 4311 const char *p = strtab + 1; 4312 4313 while (1) { 4314 if (strcmp(p, str) == 0) { 4315 return p - strtab; 4316 } 4317 p += strlen(p) + 1; 4318 } 4319 } 4320 4321 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size, 4322 const void *debug_frame, 4323 size_t debug_frame_size) 4324 { 4325 struct __attribute__((packed)) DebugInfo { 4326 uint32_t len; 4327 uint16_t version; 4328 uint32_t abbrev; 4329 uint8_t ptr_size; 4330 uint8_t cu_die; 4331 uint16_t cu_lang; 4332 uintptr_t cu_low_pc; 4333 uintptr_t cu_high_pc; 4334 uint8_t fn_die; 4335 char fn_name[16]; 4336 uintptr_t fn_low_pc; 4337 uintptr_t fn_high_pc; 4338 uint8_t cu_eoc; 4339 }; 4340 4341 struct ElfImage { 4342 ElfW(Ehdr) ehdr; 4343 ElfW(Phdr) phdr; 4344 ElfW(Shdr) shdr[7]; 4345 ElfW(Sym) sym[2]; 4346 struct DebugInfo di; 4347 uint8_t da[24]; 4348 char str[80]; 4349 }; 4350 4351 struct ElfImage *img; 4352 4353 static const struct ElfImage img_template = { 4354 .ehdr = { 4355 .e_ident[EI_MAG0] = ELFMAG0, 4356 .e_ident[EI_MAG1] = ELFMAG1, 4357 .e_ident[EI_MAG2] = ELFMAG2, 4358 .e_ident[EI_MAG3] = ELFMAG3, 4359 .e_ident[EI_CLASS] = ELF_CLASS, 4360 .e_ident[EI_DATA] = ELF_DATA, 4361 .e_ident[EI_VERSION] = EV_CURRENT, 4362 .e_type = ET_EXEC, 4363 .e_machine = ELF_HOST_MACHINE, 4364 .e_version = EV_CURRENT, 4365 .e_phoff = offsetof(struct ElfImage, phdr), 4366 .e_shoff = offsetof(struct ElfImage, shdr), 4367 .e_ehsize = sizeof(ElfW(Shdr)), 4368 .e_phentsize = sizeof(ElfW(Phdr)), 4369 .e_phnum = 1, 4370 .e_shentsize = sizeof(ElfW(Shdr)), 4371 .e_shnum = ARRAY_SIZE(img->shdr), 4372 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1, 4373 #ifdef ELF_HOST_FLAGS 4374 .e_flags = ELF_HOST_FLAGS, 4375 #endif 4376 #ifdef ELF_OSABI 4377 .e_ident[EI_OSABI] = ELF_OSABI, 4378 #endif 4379 }, 4380 .phdr = { 4381 .p_type = PT_LOAD, 4382 .p_flags = PF_X, 4383 }, 4384 .shdr = { 4385 [0] = { .sh_type = SHT_NULL }, 4386 /* Trick: The contents of code_gen_buffer are not present in 4387 this fake ELF file; that got allocated elsewhere. Therefore 4388 we mark .text as SHT_NOBITS (similar to .bss) so that readers 4389 will not look for contents. We can record any address. */ 4390 [1] = { /* .text */ 4391 .sh_type = SHT_NOBITS, 4392 .sh_flags = SHF_EXECINSTR | SHF_ALLOC, 4393 }, 4394 [2] = { /* .debug_info */ 4395 .sh_type = SHT_PROGBITS, 4396 .sh_offset = offsetof(struct ElfImage, di), 4397 .sh_size = sizeof(struct DebugInfo), 4398 }, 4399 [3] = { /* .debug_abbrev */ 4400 .sh_type = SHT_PROGBITS, 4401 .sh_offset = offsetof(struct ElfImage, da), 4402 .sh_size = sizeof(img->da), 4403 }, 4404 [4] = { /* .debug_frame */ 4405 .sh_type = SHT_PROGBITS, 4406 .sh_offset = sizeof(struct ElfImage), 4407 }, 4408 [5] = { /* .symtab */ 4409 .sh_type = SHT_SYMTAB, 4410 .sh_offset = offsetof(struct ElfImage, sym), 4411 .sh_size = sizeof(img->sym), 4412 .sh_info = 1, 4413 .sh_link = ARRAY_SIZE(img->shdr) - 1, 4414 .sh_entsize = sizeof(ElfW(Sym)), 4415 }, 4416 [6] = { /* .strtab */ 4417 .sh_type = SHT_STRTAB, 4418 .sh_offset = offsetof(struct ElfImage, str), 4419 .sh_size = sizeof(img->str), 4420 } 4421 }, 4422 .sym = { 4423 [1] = { /* code_gen_buffer */ 4424 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC), 4425 .st_shndx = 1, 4426 } 4427 }, 4428 .di = { 4429 .len = sizeof(struct DebugInfo) - 4, 4430 .version = 2, 4431 .ptr_size = sizeof(void *), 4432 .cu_die = 1, 4433 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */ 4434 .fn_die = 2, 4435 .fn_name = "code_gen_buffer" 4436 }, 4437 .da = { 4438 1, /* abbrev number (the cu) */ 4439 0x11, 1, /* DW_TAG_compile_unit, has children */ 4440 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */ 4441 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4442 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4443 0, 0, /* end of abbrev */ 4444 2, /* abbrev number (the fn) */ 4445 0x2e, 0, /* DW_TAG_subprogram, no children */ 4446 0x3, 0x8, /* DW_AT_name, DW_FORM_string */ 4447 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4448 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4449 0, 0, /* end of abbrev */ 4450 0 /* no more abbrev */ 4451 }, 4452 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0" 4453 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer", 4454 }; 4455 4456 /* We only need a single jit entry; statically allocate it. */ 4457 static struct jit_code_entry one_entry; 4458 4459 uintptr_t buf = (uintptr_t)buf_ptr; 4460 size_t img_size = sizeof(struct ElfImage) + debug_frame_size; 4461 DebugFrameHeader *dfh; 4462 4463 img = g_malloc(img_size); 4464 *img = img_template; 4465 4466 img->phdr.p_vaddr = buf; 4467 img->phdr.p_paddr = buf; 4468 img->phdr.p_memsz = buf_size; 4469 4470 img->shdr[1].sh_name = find_string(img->str, ".text"); 4471 img->shdr[1].sh_addr = buf; 4472 img->shdr[1].sh_size = buf_size; 4473 4474 img->shdr[2].sh_name = find_string(img->str, ".debug_info"); 4475 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev"); 4476 4477 img->shdr[4].sh_name = find_string(img->str, ".debug_frame"); 4478 img->shdr[4].sh_size = debug_frame_size; 4479 4480 img->shdr[5].sh_name = find_string(img->str, ".symtab"); 4481 img->shdr[6].sh_name = find_string(img->str, ".strtab"); 4482 4483 img->sym[1].st_name = find_string(img->str, "code_gen_buffer"); 4484 img->sym[1].st_value = buf; 4485 img->sym[1].st_size = buf_size; 4486 4487 img->di.cu_low_pc = buf; 4488 img->di.cu_high_pc = buf + buf_size; 4489 img->di.fn_low_pc = buf; 4490 img->di.fn_high_pc = buf + buf_size; 4491 4492 dfh = (DebugFrameHeader *)(img + 1); 4493 memcpy(dfh, debug_frame, debug_frame_size); 4494 dfh->fde.func_start = buf; 4495 dfh->fde.func_len = buf_size; 4496 4497 #ifdef DEBUG_JIT 4498 /* Enable this block to be able to debug the ELF image file creation. 4499 One can use readelf, objdump, or other inspection utilities. */ 4500 { 4501 FILE *f = fopen("/tmp/qemu.jit", "w+b"); 4502 if (f) { 4503 if (fwrite(img, img_size, 1, f) != img_size) { 4504 /* Avoid stupid unused return value warning for fwrite. */ 4505 } 4506 fclose(f); 4507 } 4508 } 4509 #endif 4510 4511 one_entry.symfile_addr = img; 4512 one_entry.symfile_size = img_size; 4513 4514 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; 4515 __jit_debug_descriptor.relevant_entry = &one_entry; 4516 __jit_debug_descriptor.first_entry = &one_entry; 4517 __jit_debug_register_code(); 4518 } 4519 #else 4520 /* No support for the feature. Provide the entry point expected by exec.c, 4521 and implement the internal function we declared earlier. */ 4522 4523 static void tcg_register_jit_int(void *buf, size_t size, 4524 const void *debug_frame, 4525 size_t debug_frame_size) 4526 { 4527 } 4528 4529 void tcg_register_jit(void *buf, size_t buf_size) 4530 { 4531 } 4532 #endif /* ELF_HOST_MACHINE */ 4533 4534 #if !TCG_TARGET_MAYBE_vec 4535 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...) 4536 { 4537 g_assert_not_reached(); 4538 } 4539 #endif 4540