1 /* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 /* define it to use liveness analysis (better code) */ 26 #define USE_TCG_OPTIMIZATIONS 27 28 #include "qemu/osdep.h" 29 30 /* Define to jump the ELF file used to communicate with GDB. */ 31 #undef DEBUG_JIT 32 33 #include "qemu/error-report.h" 34 #include "qemu/cutils.h" 35 #include "qemu/host-utils.h" 36 #include "qemu/qemu-print.h" 37 #include "qemu/timer.h" 38 #include "qemu/cacheflush.h" 39 40 /* Note: the long term plan is to reduce the dependencies on the QEMU 41 CPU definitions. Currently they are used for qemu_ld/st 42 instructions */ 43 #define NO_CPU_IO_DEFS 44 45 #include "exec/exec-all.h" 46 #include "tcg/tcg-op.h" 47 48 #if UINTPTR_MAX == UINT32_MAX 49 # define ELF_CLASS ELFCLASS32 50 #else 51 # define ELF_CLASS ELFCLASS64 52 #endif 53 #ifdef HOST_WORDS_BIGENDIAN 54 # define ELF_DATA ELFDATA2MSB 55 #else 56 # define ELF_DATA ELFDATA2LSB 57 #endif 58 59 #include "elf.h" 60 #include "exec/log.h" 61 #include "tcg/tcg-ldst.h" 62 #include "tcg-internal.h" 63 64 #ifdef CONFIG_TCG_INTERPRETER 65 #include <ffi.h> 66 #endif 67 68 /* Forward declarations for functions declared in tcg-target.c.inc and 69 used here. */ 70 static void tcg_target_init(TCGContext *s); 71 static void tcg_target_qemu_prologue(TCGContext *s); 72 static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 73 intptr_t value, intptr_t addend); 74 75 /* The CIE and FDE header definitions will be common to all hosts. */ 76 typedef struct { 77 uint32_t len __attribute__((aligned((sizeof(void *))))); 78 uint32_t id; 79 uint8_t version; 80 char augmentation[1]; 81 uint8_t code_align; 82 uint8_t data_align; 83 uint8_t return_column; 84 } DebugFrameCIE; 85 86 typedef struct QEMU_PACKED { 87 uint32_t len __attribute__((aligned((sizeof(void *))))); 88 uint32_t cie_offset; 89 uintptr_t func_start; 90 uintptr_t func_len; 91 } DebugFrameFDEHeader; 92 93 typedef struct QEMU_PACKED { 94 DebugFrameCIE cie; 95 DebugFrameFDEHeader fde; 96 } DebugFrameHeader; 97 98 static void tcg_register_jit_int(const void *buf, size_t size, 99 const void *debug_frame, 100 size_t debug_frame_size) 101 __attribute__((unused)); 102 103 /* Forward declarations for functions declared and used in tcg-target.c.inc. */ 104 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, 105 intptr_t arg2); 106 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg); 107 static void tcg_out_movi(TCGContext *s, TCGType type, 108 TCGReg ret, tcg_target_long arg); 109 static void tcg_out_op(TCGContext *s, TCGOpcode opc, 110 const TCGArg args[TCG_MAX_OP_ARGS], 111 const int const_args[TCG_MAX_OP_ARGS]); 112 #if TCG_TARGET_MAYBE_vec 113 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 114 TCGReg dst, TCGReg src); 115 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 116 TCGReg dst, TCGReg base, intptr_t offset); 117 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 118 TCGReg dst, int64_t arg); 119 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 120 unsigned vecl, unsigned vece, 121 const TCGArg args[TCG_MAX_OP_ARGS], 122 const int const_args[TCG_MAX_OP_ARGS]); 123 #else 124 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 125 TCGReg dst, TCGReg src) 126 { 127 g_assert_not_reached(); 128 } 129 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 130 TCGReg dst, TCGReg base, intptr_t offset) 131 { 132 g_assert_not_reached(); 133 } 134 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 135 TCGReg dst, int64_t arg) 136 { 137 g_assert_not_reached(); 138 } 139 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 140 unsigned vecl, unsigned vece, 141 const TCGArg args[TCG_MAX_OP_ARGS], 142 const int const_args[TCG_MAX_OP_ARGS]) 143 { 144 g_assert_not_reached(); 145 } 146 #endif 147 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, 148 intptr_t arg2); 149 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 150 TCGReg base, intptr_t ofs); 151 #ifdef CONFIG_TCG_INTERPRETER 152 static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target, 153 ffi_cif *cif); 154 #else 155 static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target); 156 #endif 157 static bool tcg_target_const_match(int64_t val, TCGType type, int ct); 158 #ifdef TCG_TARGET_NEED_LDST_LABELS 159 static int tcg_out_ldst_finalize(TCGContext *s); 160 #endif 161 162 TCGContext tcg_init_ctx; 163 __thread TCGContext *tcg_ctx; 164 165 TCGContext **tcg_ctxs; 166 unsigned int tcg_cur_ctxs; 167 unsigned int tcg_max_ctxs; 168 TCGv_env cpu_env = 0; 169 const void *tcg_code_gen_epilogue; 170 uintptr_t tcg_splitwx_diff; 171 172 #ifndef CONFIG_TCG_INTERPRETER 173 tcg_prologue_fn *tcg_qemu_tb_exec; 174 #endif 175 176 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT]; 177 static TCGRegSet tcg_target_call_clobber_regs; 178 179 #if TCG_TARGET_INSN_UNIT_SIZE == 1 180 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v) 181 { 182 *s->code_ptr++ = v; 183 } 184 185 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p, 186 uint8_t v) 187 { 188 *p = v; 189 } 190 #endif 191 192 #if TCG_TARGET_INSN_UNIT_SIZE <= 2 193 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v) 194 { 195 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 196 *s->code_ptr++ = v; 197 } else { 198 tcg_insn_unit *p = s->code_ptr; 199 memcpy(p, &v, sizeof(v)); 200 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE); 201 } 202 } 203 204 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p, 205 uint16_t v) 206 { 207 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 208 *p = v; 209 } else { 210 memcpy(p, &v, sizeof(v)); 211 } 212 } 213 #endif 214 215 #if TCG_TARGET_INSN_UNIT_SIZE <= 4 216 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v) 217 { 218 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 219 *s->code_ptr++ = v; 220 } else { 221 tcg_insn_unit *p = s->code_ptr; 222 memcpy(p, &v, sizeof(v)); 223 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE); 224 } 225 } 226 227 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p, 228 uint32_t v) 229 { 230 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 231 *p = v; 232 } else { 233 memcpy(p, &v, sizeof(v)); 234 } 235 } 236 #endif 237 238 #if TCG_TARGET_INSN_UNIT_SIZE <= 8 239 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v) 240 { 241 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 242 *s->code_ptr++ = v; 243 } else { 244 tcg_insn_unit *p = s->code_ptr; 245 memcpy(p, &v, sizeof(v)); 246 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE); 247 } 248 } 249 250 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p, 251 uint64_t v) 252 { 253 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 254 *p = v; 255 } else { 256 memcpy(p, &v, sizeof(v)); 257 } 258 } 259 #endif 260 261 /* label relocation processing */ 262 263 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type, 264 TCGLabel *l, intptr_t addend) 265 { 266 TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation)); 267 268 r->type = type; 269 r->ptr = code_ptr; 270 r->addend = addend; 271 QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next); 272 } 273 274 static void tcg_out_label(TCGContext *s, TCGLabel *l) 275 { 276 tcg_debug_assert(!l->has_value); 277 l->has_value = 1; 278 l->u.value_ptr = tcg_splitwx_to_rx(s->code_ptr); 279 } 280 281 TCGLabel *gen_new_label(void) 282 { 283 TCGContext *s = tcg_ctx; 284 TCGLabel *l = tcg_malloc(sizeof(TCGLabel)); 285 286 memset(l, 0, sizeof(TCGLabel)); 287 l->id = s->nb_labels++; 288 QSIMPLEQ_INIT(&l->relocs); 289 290 QSIMPLEQ_INSERT_TAIL(&s->labels, l, next); 291 292 return l; 293 } 294 295 static bool tcg_resolve_relocs(TCGContext *s) 296 { 297 TCGLabel *l; 298 299 QSIMPLEQ_FOREACH(l, &s->labels, next) { 300 TCGRelocation *r; 301 uintptr_t value = l->u.value; 302 303 QSIMPLEQ_FOREACH(r, &l->relocs, next) { 304 if (!patch_reloc(r->ptr, r->type, value, r->addend)) { 305 return false; 306 } 307 } 308 } 309 return true; 310 } 311 312 static void set_jmp_reset_offset(TCGContext *s, int which) 313 { 314 /* 315 * We will check for overflow at the end of the opcode loop in 316 * tcg_gen_code, where we bound tcg_current_code_size to UINT16_MAX. 317 */ 318 s->tb_jmp_reset_offset[which] = tcg_current_code_size(s); 319 } 320 321 /* Signal overflow, starting over with fewer guest insns. */ 322 static void QEMU_NORETURN tcg_raise_tb_overflow(TCGContext *s) 323 { 324 siglongjmp(s->jmp_trans, -2); 325 } 326 327 #define C_PFX1(P, A) P##A 328 #define C_PFX2(P, A, B) P##A##_##B 329 #define C_PFX3(P, A, B, C) P##A##_##B##_##C 330 #define C_PFX4(P, A, B, C, D) P##A##_##B##_##C##_##D 331 #define C_PFX5(P, A, B, C, D, E) P##A##_##B##_##C##_##D##_##E 332 #define C_PFX6(P, A, B, C, D, E, F) P##A##_##B##_##C##_##D##_##E##_##F 333 334 /* Define an enumeration for the various combinations. */ 335 336 #define C_O0_I1(I1) C_PFX1(c_o0_i1_, I1), 337 #define C_O0_I2(I1, I2) C_PFX2(c_o0_i2_, I1, I2), 338 #define C_O0_I3(I1, I2, I3) C_PFX3(c_o0_i3_, I1, I2, I3), 339 #define C_O0_I4(I1, I2, I3, I4) C_PFX4(c_o0_i4_, I1, I2, I3, I4), 340 341 #define C_O1_I1(O1, I1) C_PFX2(c_o1_i1_, O1, I1), 342 #define C_O1_I2(O1, I1, I2) C_PFX3(c_o1_i2_, O1, I1, I2), 343 #define C_O1_I3(O1, I1, I2, I3) C_PFX4(c_o1_i3_, O1, I1, I2, I3), 344 #define C_O1_I4(O1, I1, I2, I3, I4) C_PFX5(c_o1_i4_, O1, I1, I2, I3, I4), 345 346 #define C_N1_I2(O1, I1, I2) C_PFX3(c_n1_i2_, O1, I1, I2), 347 348 #define C_O2_I1(O1, O2, I1) C_PFX3(c_o2_i1_, O1, O2, I1), 349 #define C_O2_I2(O1, O2, I1, I2) C_PFX4(c_o2_i2_, O1, O2, I1, I2), 350 #define C_O2_I3(O1, O2, I1, I2, I3) C_PFX5(c_o2_i3_, O1, O2, I1, I2, I3), 351 #define C_O2_I4(O1, O2, I1, I2, I3, I4) C_PFX6(c_o2_i4_, O1, O2, I1, I2, I3, I4), 352 353 typedef enum { 354 #include "tcg-target-con-set.h" 355 } TCGConstraintSetIndex; 356 357 static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode); 358 359 #undef C_O0_I1 360 #undef C_O0_I2 361 #undef C_O0_I3 362 #undef C_O0_I4 363 #undef C_O1_I1 364 #undef C_O1_I2 365 #undef C_O1_I3 366 #undef C_O1_I4 367 #undef C_N1_I2 368 #undef C_O2_I1 369 #undef C_O2_I2 370 #undef C_O2_I3 371 #undef C_O2_I4 372 373 /* Put all of the constraint sets into an array, indexed by the enum. */ 374 375 #define C_O0_I1(I1) { .args_ct_str = { #I1 } }, 376 #define C_O0_I2(I1, I2) { .args_ct_str = { #I1, #I2 } }, 377 #define C_O0_I3(I1, I2, I3) { .args_ct_str = { #I1, #I2, #I3 } }, 378 #define C_O0_I4(I1, I2, I3, I4) { .args_ct_str = { #I1, #I2, #I3, #I4 } }, 379 380 #define C_O1_I1(O1, I1) { .args_ct_str = { #O1, #I1 } }, 381 #define C_O1_I2(O1, I1, I2) { .args_ct_str = { #O1, #I1, #I2 } }, 382 #define C_O1_I3(O1, I1, I2, I3) { .args_ct_str = { #O1, #I1, #I2, #I3 } }, 383 #define C_O1_I4(O1, I1, I2, I3, I4) { .args_ct_str = { #O1, #I1, #I2, #I3, #I4 } }, 384 385 #define C_N1_I2(O1, I1, I2) { .args_ct_str = { "&" #O1, #I1, #I2 } }, 386 387 #define C_O2_I1(O1, O2, I1) { .args_ct_str = { #O1, #O2, #I1 } }, 388 #define C_O2_I2(O1, O2, I1, I2) { .args_ct_str = { #O1, #O2, #I1, #I2 } }, 389 #define C_O2_I3(O1, O2, I1, I2, I3) { .args_ct_str = { #O1, #O2, #I1, #I2, #I3 } }, 390 #define C_O2_I4(O1, O2, I1, I2, I3, I4) { .args_ct_str = { #O1, #O2, #I1, #I2, #I3, #I4 } }, 391 392 static const TCGTargetOpDef constraint_sets[] = { 393 #include "tcg-target-con-set.h" 394 }; 395 396 397 #undef C_O0_I1 398 #undef C_O0_I2 399 #undef C_O0_I3 400 #undef C_O0_I4 401 #undef C_O1_I1 402 #undef C_O1_I2 403 #undef C_O1_I3 404 #undef C_O1_I4 405 #undef C_N1_I2 406 #undef C_O2_I1 407 #undef C_O2_I2 408 #undef C_O2_I3 409 #undef C_O2_I4 410 411 /* Expand the enumerator to be returned from tcg_target_op_def(). */ 412 413 #define C_O0_I1(I1) C_PFX1(c_o0_i1_, I1) 414 #define C_O0_I2(I1, I2) C_PFX2(c_o0_i2_, I1, I2) 415 #define C_O0_I3(I1, I2, I3) C_PFX3(c_o0_i3_, I1, I2, I3) 416 #define C_O0_I4(I1, I2, I3, I4) C_PFX4(c_o0_i4_, I1, I2, I3, I4) 417 418 #define C_O1_I1(O1, I1) C_PFX2(c_o1_i1_, O1, I1) 419 #define C_O1_I2(O1, I1, I2) C_PFX3(c_o1_i2_, O1, I1, I2) 420 #define C_O1_I3(O1, I1, I2, I3) C_PFX4(c_o1_i3_, O1, I1, I2, I3) 421 #define C_O1_I4(O1, I1, I2, I3, I4) C_PFX5(c_o1_i4_, O1, I1, I2, I3, I4) 422 423 #define C_N1_I2(O1, I1, I2) C_PFX3(c_n1_i2_, O1, I1, I2) 424 425 #define C_O2_I1(O1, O2, I1) C_PFX3(c_o2_i1_, O1, O2, I1) 426 #define C_O2_I2(O1, O2, I1, I2) C_PFX4(c_o2_i2_, O1, O2, I1, I2) 427 #define C_O2_I3(O1, O2, I1, I2, I3) C_PFX5(c_o2_i3_, O1, O2, I1, I2, I3) 428 #define C_O2_I4(O1, O2, I1, I2, I3, I4) C_PFX6(c_o2_i4_, O1, O2, I1, I2, I3, I4) 429 430 #include "tcg-target.c.inc" 431 432 static void alloc_tcg_plugin_context(TCGContext *s) 433 { 434 #ifdef CONFIG_PLUGIN 435 s->plugin_tb = g_new0(struct qemu_plugin_tb, 1); 436 s->plugin_tb->insns = 437 g_ptr_array_new_with_free_func(qemu_plugin_insn_cleanup_fn); 438 #endif 439 } 440 441 /* 442 * All TCG threads except the parent (i.e. the one that called tcg_context_init 443 * and registered the target's TCG globals) must register with this function 444 * before initiating translation. 445 * 446 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation 447 * of tcg_region_init() for the reasoning behind this. 448 * 449 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in 450 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context 451 * is not used anymore for translation once this function is called. 452 * 453 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates 454 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode. 455 */ 456 #ifdef CONFIG_USER_ONLY 457 void tcg_register_thread(void) 458 { 459 tcg_ctx = &tcg_init_ctx; 460 } 461 #else 462 void tcg_register_thread(void) 463 { 464 TCGContext *s = g_malloc(sizeof(*s)); 465 unsigned int i, n; 466 467 *s = tcg_init_ctx; 468 469 /* Relink mem_base. */ 470 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) { 471 if (tcg_init_ctx.temps[i].mem_base) { 472 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps; 473 tcg_debug_assert(b >= 0 && b < n); 474 s->temps[i].mem_base = &s->temps[b]; 475 } 476 } 477 478 /* Claim an entry in tcg_ctxs */ 479 n = qatomic_fetch_inc(&tcg_cur_ctxs); 480 g_assert(n < tcg_max_ctxs); 481 qatomic_set(&tcg_ctxs[n], s); 482 483 if (n > 0) { 484 alloc_tcg_plugin_context(s); 485 tcg_region_initial_alloc(s); 486 } 487 488 tcg_ctx = s; 489 } 490 #endif /* !CONFIG_USER_ONLY */ 491 492 /* pool based memory allocation */ 493 void *tcg_malloc_internal(TCGContext *s, int size) 494 { 495 TCGPool *p; 496 int pool_size; 497 498 if (size > TCG_POOL_CHUNK_SIZE) { 499 /* big malloc: insert a new pool (XXX: could optimize) */ 500 p = g_malloc(sizeof(TCGPool) + size); 501 p->size = size; 502 p->next = s->pool_first_large; 503 s->pool_first_large = p; 504 return p->data; 505 } else { 506 p = s->pool_current; 507 if (!p) { 508 p = s->pool_first; 509 if (!p) 510 goto new_pool; 511 } else { 512 if (!p->next) { 513 new_pool: 514 pool_size = TCG_POOL_CHUNK_SIZE; 515 p = g_malloc(sizeof(TCGPool) + pool_size); 516 p->size = pool_size; 517 p->next = NULL; 518 if (s->pool_current) 519 s->pool_current->next = p; 520 else 521 s->pool_first = p; 522 } else { 523 p = p->next; 524 } 525 } 526 } 527 s->pool_current = p; 528 s->pool_cur = p->data + size; 529 s->pool_end = p->data + p->size; 530 return p->data; 531 } 532 533 void tcg_pool_reset(TCGContext *s) 534 { 535 TCGPool *p, *t; 536 for (p = s->pool_first_large; p; p = t) { 537 t = p->next; 538 g_free(p); 539 } 540 s->pool_first_large = NULL; 541 s->pool_cur = s->pool_end = NULL; 542 s->pool_current = NULL; 543 } 544 545 #include "exec/helper-proto.h" 546 547 static const TCGHelperInfo all_helpers[] = { 548 #include "exec/helper-tcg.h" 549 }; 550 static GHashTable *helper_table; 551 552 #ifdef CONFIG_TCG_INTERPRETER 553 static GHashTable *ffi_table; 554 555 static ffi_type * const typecode_to_ffi[8] = { 556 [dh_typecode_void] = &ffi_type_void, 557 [dh_typecode_i32] = &ffi_type_uint32, 558 [dh_typecode_s32] = &ffi_type_sint32, 559 [dh_typecode_i64] = &ffi_type_uint64, 560 [dh_typecode_s64] = &ffi_type_sint64, 561 [dh_typecode_ptr] = &ffi_type_pointer, 562 }; 563 #endif 564 565 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)]; 566 static void process_op_defs(TCGContext *s); 567 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 568 TCGReg reg, const char *name); 569 570 static void tcg_context_init(unsigned max_cpus) 571 { 572 TCGContext *s = &tcg_init_ctx; 573 int op, total_args, n, i; 574 TCGOpDef *def; 575 TCGArgConstraint *args_ct; 576 TCGTemp *ts; 577 578 memset(s, 0, sizeof(*s)); 579 s->nb_globals = 0; 580 581 /* Count total number of arguments and allocate the corresponding 582 space */ 583 total_args = 0; 584 for(op = 0; op < NB_OPS; op++) { 585 def = &tcg_op_defs[op]; 586 n = def->nb_iargs + def->nb_oargs; 587 total_args += n; 588 } 589 590 args_ct = g_new0(TCGArgConstraint, total_args); 591 592 for(op = 0; op < NB_OPS; op++) { 593 def = &tcg_op_defs[op]; 594 def->args_ct = args_ct; 595 n = def->nb_iargs + def->nb_oargs; 596 args_ct += n; 597 } 598 599 /* Register helpers. */ 600 /* Use g_direct_hash/equal for direct pointer comparisons on func. */ 601 helper_table = g_hash_table_new(NULL, NULL); 602 603 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) { 604 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func, 605 (gpointer)&all_helpers[i]); 606 } 607 608 #ifdef CONFIG_TCG_INTERPRETER 609 /* g_direct_hash/equal for direct comparisons on uint32_t. */ 610 ffi_table = g_hash_table_new(NULL, NULL); 611 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) { 612 struct { 613 ffi_cif cif; 614 ffi_type *args[]; 615 } *ca; 616 uint32_t typemask = all_helpers[i].typemask; 617 gpointer hash = (gpointer)(uintptr_t)typemask; 618 ffi_status status; 619 int nargs; 620 621 if (g_hash_table_lookup(ffi_table, hash)) { 622 continue; 623 } 624 625 /* Ignoring the return type, find the last non-zero field. */ 626 nargs = 32 - clz32(typemask >> 3); 627 nargs = DIV_ROUND_UP(nargs, 3); 628 629 ca = g_malloc0(sizeof(*ca) + nargs * sizeof(ffi_type *)); 630 ca->cif.rtype = typecode_to_ffi[typemask & 7]; 631 ca->cif.nargs = nargs; 632 633 if (nargs != 0) { 634 ca->cif.arg_types = ca->args; 635 for (i = 0; i < nargs; ++i) { 636 int typecode = extract32(typemask, (i + 1) * 3, 3); 637 ca->args[i] = typecode_to_ffi[typecode]; 638 } 639 } 640 641 status = ffi_prep_cif(&ca->cif, FFI_DEFAULT_ABI, nargs, 642 ca->cif.rtype, ca->cif.arg_types); 643 assert(status == FFI_OK); 644 645 g_hash_table_insert(ffi_table, hash, (gpointer)&ca->cif); 646 } 647 #endif 648 649 tcg_target_init(s); 650 process_op_defs(s); 651 652 /* Reverse the order of the saved registers, assuming they're all at 653 the start of tcg_target_reg_alloc_order. */ 654 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) { 655 int r = tcg_target_reg_alloc_order[n]; 656 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) { 657 break; 658 } 659 } 660 for (i = 0; i < n; ++i) { 661 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i]; 662 } 663 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) { 664 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i]; 665 } 666 667 alloc_tcg_plugin_context(s); 668 669 tcg_ctx = s; 670 /* 671 * In user-mode we simply share the init context among threads, since we 672 * use a single region. See the documentation tcg_region_init() for the 673 * reasoning behind this. 674 * In softmmu we will have at most max_cpus TCG threads. 675 */ 676 #ifdef CONFIG_USER_ONLY 677 tcg_ctxs = &tcg_ctx; 678 tcg_cur_ctxs = 1; 679 tcg_max_ctxs = 1; 680 #else 681 tcg_max_ctxs = max_cpus; 682 tcg_ctxs = g_new0(TCGContext *, max_cpus); 683 #endif 684 685 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0)); 686 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env"); 687 cpu_env = temp_tcgv_ptr(ts); 688 } 689 690 void tcg_init(size_t tb_size, int splitwx, unsigned max_cpus) 691 { 692 tcg_context_init(max_cpus); 693 tcg_region_init(tb_size, splitwx, max_cpus); 694 } 695 696 /* 697 * Allocate TBs right before their corresponding translated code, making 698 * sure that TBs and code are on different cache lines. 699 */ 700 TranslationBlock *tcg_tb_alloc(TCGContext *s) 701 { 702 uintptr_t align = qemu_icache_linesize; 703 TranslationBlock *tb; 704 void *next; 705 706 retry: 707 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align); 708 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align); 709 710 if (unlikely(next > s->code_gen_highwater)) { 711 if (tcg_region_alloc(s)) { 712 return NULL; 713 } 714 goto retry; 715 } 716 qatomic_set(&s->code_gen_ptr, next); 717 s->data_gen_ptr = NULL; 718 return tb; 719 } 720 721 void tcg_prologue_init(TCGContext *s) 722 { 723 size_t prologue_size; 724 725 s->code_ptr = s->code_gen_ptr; 726 s->code_buf = s->code_gen_ptr; 727 s->data_gen_ptr = NULL; 728 729 #ifndef CONFIG_TCG_INTERPRETER 730 tcg_qemu_tb_exec = (tcg_prologue_fn *)tcg_splitwx_to_rx(s->code_ptr); 731 #endif 732 733 #ifdef TCG_TARGET_NEED_POOL_LABELS 734 s->pool_labels = NULL; 735 #endif 736 737 qemu_thread_jit_write(); 738 /* Generate the prologue. */ 739 tcg_target_qemu_prologue(s); 740 741 #ifdef TCG_TARGET_NEED_POOL_LABELS 742 /* Allow the prologue to put e.g. guest_base into a pool entry. */ 743 { 744 int result = tcg_out_pool_finalize(s); 745 tcg_debug_assert(result == 0); 746 } 747 #endif 748 749 prologue_size = tcg_current_code_size(s); 750 751 #ifndef CONFIG_TCG_INTERPRETER 752 flush_idcache_range((uintptr_t)tcg_splitwx_to_rx(s->code_buf), 753 (uintptr_t)s->code_buf, prologue_size); 754 #endif 755 756 #ifdef DEBUG_DISAS 757 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { 758 FILE *logfile = qemu_log_lock(); 759 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size); 760 if (s->data_gen_ptr) { 761 size_t code_size = s->data_gen_ptr - s->code_gen_ptr; 762 size_t data_size = prologue_size - code_size; 763 size_t i; 764 765 log_disas(s->code_gen_ptr, code_size); 766 767 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 768 if (sizeof(tcg_target_ulong) == 8) { 769 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 770 (uintptr_t)s->data_gen_ptr + i, 771 *(uint64_t *)(s->data_gen_ptr + i)); 772 } else { 773 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 774 (uintptr_t)s->data_gen_ptr + i, 775 *(uint32_t *)(s->data_gen_ptr + i)); 776 } 777 } 778 } else { 779 log_disas(s->code_gen_ptr, prologue_size); 780 } 781 qemu_log("\n"); 782 qemu_log_flush(); 783 qemu_log_unlock(logfile); 784 } 785 #endif 786 787 #ifndef CONFIG_TCG_INTERPRETER 788 /* 789 * Assert that goto_ptr is implemented completely, setting an epilogue. 790 * For tci, we use NULL as the signal to return from the interpreter, 791 * so skip this check. 792 */ 793 tcg_debug_assert(tcg_code_gen_epilogue != NULL); 794 #endif 795 796 tcg_region_prologue_set(s); 797 } 798 799 void tcg_func_start(TCGContext *s) 800 { 801 tcg_pool_reset(s); 802 s->nb_temps = s->nb_globals; 803 804 /* No temps have been previously allocated for size or locality. */ 805 memset(s->free_temps, 0, sizeof(s->free_temps)); 806 807 /* No constant temps have been previously allocated. */ 808 for (int i = 0; i < TCG_TYPE_COUNT; ++i) { 809 if (s->const_table[i]) { 810 g_hash_table_remove_all(s->const_table[i]); 811 } 812 } 813 814 s->nb_ops = 0; 815 s->nb_labels = 0; 816 s->current_frame_offset = s->frame_start; 817 818 #ifdef CONFIG_DEBUG_TCG 819 s->goto_tb_issue_mask = 0; 820 #endif 821 822 QTAILQ_INIT(&s->ops); 823 QTAILQ_INIT(&s->free_ops); 824 QSIMPLEQ_INIT(&s->labels); 825 } 826 827 static TCGTemp *tcg_temp_alloc(TCGContext *s) 828 { 829 int n = s->nb_temps++; 830 831 if (n >= TCG_MAX_TEMPS) { 832 tcg_raise_tb_overflow(s); 833 } 834 return memset(&s->temps[n], 0, sizeof(TCGTemp)); 835 } 836 837 static TCGTemp *tcg_global_alloc(TCGContext *s) 838 { 839 TCGTemp *ts; 840 841 tcg_debug_assert(s->nb_globals == s->nb_temps); 842 tcg_debug_assert(s->nb_globals < TCG_MAX_TEMPS); 843 s->nb_globals++; 844 ts = tcg_temp_alloc(s); 845 ts->kind = TEMP_GLOBAL; 846 847 return ts; 848 } 849 850 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 851 TCGReg reg, const char *name) 852 { 853 TCGTemp *ts; 854 855 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) { 856 tcg_abort(); 857 } 858 859 ts = tcg_global_alloc(s); 860 ts->base_type = type; 861 ts->type = type; 862 ts->kind = TEMP_FIXED; 863 ts->reg = reg; 864 ts->name = name; 865 tcg_regset_set_reg(s->reserved_regs, reg); 866 867 return ts; 868 } 869 870 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size) 871 { 872 s->frame_start = start; 873 s->frame_end = start + size; 874 s->frame_temp 875 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame"); 876 } 877 878 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base, 879 intptr_t offset, const char *name) 880 { 881 TCGContext *s = tcg_ctx; 882 TCGTemp *base_ts = tcgv_ptr_temp(base); 883 TCGTemp *ts = tcg_global_alloc(s); 884 int indirect_reg = 0, bigendian = 0; 885 #ifdef HOST_WORDS_BIGENDIAN 886 bigendian = 1; 887 #endif 888 889 switch (base_ts->kind) { 890 case TEMP_FIXED: 891 break; 892 case TEMP_GLOBAL: 893 /* We do not support double-indirect registers. */ 894 tcg_debug_assert(!base_ts->indirect_reg); 895 base_ts->indirect_base = 1; 896 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64 897 ? 2 : 1); 898 indirect_reg = 1; 899 break; 900 default: 901 g_assert_not_reached(); 902 } 903 904 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 905 TCGTemp *ts2 = tcg_global_alloc(s); 906 char buf[64]; 907 908 ts->base_type = TCG_TYPE_I64; 909 ts->type = TCG_TYPE_I32; 910 ts->indirect_reg = indirect_reg; 911 ts->mem_allocated = 1; 912 ts->mem_base = base_ts; 913 ts->mem_offset = offset + bigendian * 4; 914 pstrcpy(buf, sizeof(buf), name); 915 pstrcat(buf, sizeof(buf), "_0"); 916 ts->name = strdup(buf); 917 918 tcg_debug_assert(ts2 == ts + 1); 919 ts2->base_type = TCG_TYPE_I64; 920 ts2->type = TCG_TYPE_I32; 921 ts2->indirect_reg = indirect_reg; 922 ts2->mem_allocated = 1; 923 ts2->mem_base = base_ts; 924 ts2->mem_offset = offset + (1 - bigendian) * 4; 925 pstrcpy(buf, sizeof(buf), name); 926 pstrcat(buf, sizeof(buf), "_1"); 927 ts2->name = strdup(buf); 928 } else { 929 ts->base_type = type; 930 ts->type = type; 931 ts->indirect_reg = indirect_reg; 932 ts->mem_allocated = 1; 933 ts->mem_base = base_ts; 934 ts->mem_offset = offset; 935 ts->name = name; 936 } 937 return ts; 938 } 939 940 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local) 941 { 942 TCGContext *s = tcg_ctx; 943 TCGTempKind kind = temp_local ? TEMP_LOCAL : TEMP_NORMAL; 944 TCGTemp *ts; 945 int idx, k; 946 947 k = type + (temp_local ? TCG_TYPE_COUNT : 0); 948 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS); 949 if (idx < TCG_MAX_TEMPS) { 950 /* There is already an available temp with the right type. */ 951 clear_bit(idx, s->free_temps[k].l); 952 953 ts = &s->temps[idx]; 954 ts->temp_allocated = 1; 955 tcg_debug_assert(ts->base_type == type); 956 tcg_debug_assert(ts->kind == kind); 957 } else { 958 ts = tcg_temp_alloc(s); 959 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 960 TCGTemp *ts2 = tcg_temp_alloc(s); 961 962 ts->base_type = type; 963 ts->type = TCG_TYPE_I32; 964 ts->temp_allocated = 1; 965 ts->kind = kind; 966 967 tcg_debug_assert(ts2 == ts + 1); 968 ts2->base_type = TCG_TYPE_I64; 969 ts2->type = TCG_TYPE_I32; 970 ts2->temp_allocated = 1; 971 ts2->kind = kind; 972 } else { 973 ts->base_type = type; 974 ts->type = type; 975 ts->temp_allocated = 1; 976 ts->kind = kind; 977 } 978 } 979 980 #if defined(CONFIG_DEBUG_TCG) 981 s->temps_in_use++; 982 #endif 983 return ts; 984 } 985 986 TCGv_vec tcg_temp_new_vec(TCGType type) 987 { 988 TCGTemp *t; 989 990 #ifdef CONFIG_DEBUG_TCG 991 switch (type) { 992 case TCG_TYPE_V64: 993 assert(TCG_TARGET_HAS_v64); 994 break; 995 case TCG_TYPE_V128: 996 assert(TCG_TARGET_HAS_v128); 997 break; 998 case TCG_TYPE_V256: 999 assert(TCG_TARGET_HAS_v256); 1000 break; 1001 default: 1002 g_assert_not_reached(); 1003 } 1004 #endif 1005 1006 t = tcg_temp_new_internal(type, 0); 1007 return temp_tcgv_vec(t); 1008 } 1009 1010 /* Create a new temp of the same type as an existing temp. */ 1011 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match) 1012 { 1013 TCGTemp *t = tcgv_vec_temp(match); 1014 1015 tcg_debug_assert(t->temp_allocated != 0); 1016 1017 t = tcg_temp_new_internal(t->base_type, 0); 1018 return temp_tcgv_vec(t); 1019 } 1020 1021 void tcg_temp_free_internal(TCGTemp *ts) 1022 { 1023 TCGContext *s = tcg_ctx; 1024 int k, idx; 1025 1026 /* In order to simplify users of tcg_constant_*, silently ignore free. */ 1027 if (ts->kind == TEMP_CONST) { 1028 return; 1029 } 1030 1031 #if defined(CONFIG_DEBUG_TCG) 1032 s->temps_in_use--; 1033 if (s->temps_in_use < 0) { 1034 fprintf(stderr, "More temporaries freed than allocated!\n"); 1035 } 1036 #endif 1037 1038 tcg_debug_assert(ts->kind < TEMP_GLOBAL); 1039 tcg_debug_assert(ts->temp_allocated != 0); 1040 ts->temp_allocated = 0; 1041 1042 idx = temp_idx(ts); 1043 k = ts->base_type + (ts->kind == TEMP_NORMAL ? 0 : TCG_TYPE_COUNT); 1044 set_bit(idx, s->free_temps[k].l); 1045 } 1046 1047 TCGTemp *tcg_constant_internal(TCGType type, int64_t val) 1048 { 1049 TCGContext *s = tcg_ctx; 1050 GHashTable *h = s->const_table[type]; 1051 TCGTemp *ts; 1052 1053 if (h == NULL) { 1054 h = g_hash_table_new(g_int64_hash, g_int64_equal); 1055 s->const_table[type] = h; 1056 } 1057 1058 ts = g_hash_table_lookup(h, &val); 1059 if (ts == NULL) { 1060 ts = tcg_temp_alloc(s); 1061 1062 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1063 TCGTemp *ts2 = tcg_temp_alloc(s); 1064 1065 ts->base_type = TCG_TYPE_I64; 1066 ts->type = TCG_TYPE_I32; 1067 ts->kind = TEMP_CONST; 1068 ts->temp_allocated = 1; 1069 /* 1070 * Retain the full value of the 64-bit constant in the low 1071 * part, so that the hash table works. Actual uses will 1072 * truncate the value to the low part. 1073 */ 1074 ts->val = val; 1075 1076 tcg_debug_assert(ts2 == ts + 1); 1077 ts2->base_type = TCG_TYPE_I64; 1078 ts2->type = TCG_TYPE_I32; 1079 ts2->kind = TEMP_CONST; 1080 ts2->temp_allocated = 1; 1081 ts2->val = val >> 32; 1082 } else { 1083 ts->base_type = type; 1084 ts->type = type; 1085 ts->kind = TEMP_CONST; 1086 ts->temp_allocated = 1; 1087 ts->val = val; 1088 } 1089 g_hash_table_insert(h, &ts->val, ts); 1090 } 1091 1092 return ts; 1093 } 1094 1095 TCGv_vec tcg_constant_vec(TCGType type, unsigned vece, int64_t val) 1096 { 1097 val = dup_const(vece, val); 1098 return temp_tcgv_vec(tcg_constant_internal(type, val)); 1099 } 1100 1101 TCGv_vec tcg_constant_vec_matching(TCGv_vec match, unsigned vece, int64_t val) 1102 { 1103 TCGTemp *t = tcgv_vec_temp(match); 1104 1105 tcg_debug_assert(t->temp_allocated != 0); 1106 return tcg_constant_vec(t->base_type, vece, val); 1107 } 1108 1109 TCGv_i32 tcg_const_i32(int32_t val) 1110 { 1111 TCGv_i32 t0; 1112 t0 = tcg_temp_new_i32(); 1113 tcg_gen_movi_i32(t0, val); 1114 return t0; 1115 } 1116 1117 TCGv_i64 tcg_const_i64(int64_t val) 1118 { 1119 TCGv_i64 t0; 1120 t0 = tcg_temp_new_i64(); 1121 tcg_gen_movi_i64(t0, val); 1122 return t0; 1123 } 1124 1125 TCGv_i32 tcg_const_local_i32(int32_t val) 1126 { 1127 TCGv_i32 t0; 1128 t0 = tcg_temp_local_new_i32(); 1129 tcg_gen_movi_i32(t0, val); 1130 return t0; 1131 } 1132 1133 TCGv_i64 tcg_const_local_i64(int64_t val) 1134 { 1135 TCGv_i64 t0; 1136 t0 = tcg_temp_local_new_i64(); 1137 tcg_gen_movi_i64(t0, val); 1138 return t0; 1139 } 1140 1141 #if defined(CONFIG_DEBUG_TCG) 1142 void tcg_clear_temp_count(void) 1143 { 1144 TCGContext *s = tcg_ctx; 1145 s->temps_in_use = 0; 1146 } 1147 1148 int tcg_check_temp_count(void) 1149 { 1150 TCGContext *s = tcg_ctx; 1151 if (s->temps_in_use) { 1152 /* Clear the count so that we don't give another 1153 * warning immediately next time around. 1154 */ 1155 s->temps_in_use = 0; 1156 return 1; 1157 } 1158 return 0; 1159 } 1160 #endif 1161 1162 /* Return true if OP may appear in the opcode stream. 1163 Test the runtime variable that controls each opcode. */ 1164 bool tcg_op_supported(TCGOpcode op) 1165 { 1166 const bool have_vec 1167 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256; 1168 1169 switch (op) { 1170 case INDEX_op_discard: 1171 case INDEX_op_set_label: 1172 case INDEX_op_call: 1173 case INDEX_op_br: 1174 case INDEX_op_mb: 1175 case INDEX_op_insn_start: 1176 case INDEX_op_exit_tb: 1177 case INDEX_op_goto_tb: 1178 case INDEX_op_goto_ptr: 1179 case INDEX_op_qemu_ld_i32: 1180 case INDEX_op_qemu_st_i32: 1181 case INDEX_op_qemu_ld_i64: 1182 case INDEX_op_qemu_st_i64: 1183 return true; 1184 1185 case INDEX_op_qemu_st8_i32: 1186 return TCG_TARGET_HAS_qemu_st8_i32; 1187 1188 case INDEX_op_mov_i32: 1189 case INDEX_op_setcond_i32: 1190 case INDEX_op_brcond_i32: 1191 case INDEX_op_ld8u_i32: 1192 case INDEX_op_ld8s_i32: 1193 case INDEX_op_ld16u_i32: 1194 case INDEX_op_ld16s_i32: 1195 case INDEX_op_ld_i32: 1196 case INDEX_op_st8_i32: 1197 case INDEX_op_st16_i32: 1198 case INDEX_op_st_i32: 1199 case INDEX_op_add_i32: 1200 case INDEX_op_sub_i32: 1201 case INDEX_op_mul_i32: 1202 case INDEX_op_and_i32: 1203 case INDEX_op_or_i32: 1204 case INDEX_op_xor_i32: 1205 case INDEX_op_shl_i32: 1206 case INDEX_op_shr_i32: 1207 case INDEX_op_sar_i32: 1208 return true; 1209 1210 case INDEX_op_movcond_i32: 1211 return TCG_TARGET_HAS_movcond_i32; 1212 case INDEX_op_div_i32: 1213 case INDEX_op_divu_i32: 1214 return TCG_TARGET_HAS_div_i32; 1215 case INDEX_op_rem_i32: 1216 case INDEX_op_remu_i32: 1217 return TCG_TARGET_HAS_rem_i32; 1218 case INDEX_op_div2_i32: 1219 case INDEX_op_divu2_i32: 1220 return TCG_TARGET_HAS_div2_i32; 1221 case INDEX_op_rotl_i32: 1222 case INDEX_op_rotr_i32: 1223 return TCG_TARGET_HAS_rot_i32; 1224 case INDEX_op_deposit_i32: 1225 return TCG_TARGET_HAS_deposit_i32; 1226 case INDEX_op_extract_i32: 1227 return TCG_TARGET_HAS_extract_i32; 1228 case INDEX_op_sextract_i32: 1229 return TCG_TARGET_HAS_sextract_i32; 1230 case INDEX_op_extract2_i32: 1231 return TCG_TARGET_HAS_extract2_i32; 1232 case INDEX_op_add2_i32: 1233 return TCG_TARGET_HAS_add2_i32; 1234 case INDEX_op_sub2_i32: 1235 return TCG_TARGET_HAS_sub2_i32; 1236 case INDEX_op_mulu2_i32: 1237 return TCG_TARGET_HAS_mulu2_i32; 1238 case INDEX_op_muls2_i32: 1239 return TCG_TARGET_HAS_muls2_i32; 1240 case INDEX_op_muluh_i32: 1241 return TCG_TARGET_HAS_muluh_i32; 1242 case INDEX_op_mulsh_i32: 1243 return TCG_TARGET_HAS_mulsh_i32; 1244 case INDEX_op_ext8s_i32: 1245 return TCG_TARGET_HAS_ext8s_i32; 1246 case INDEX_op_ext16s_i32: 1247 return TCG_TARGET_HAS_ext16s_i32; 1248 case INDEX_op_ext8u_i32: 1249 return TCG_TARGET_HAS_ext8u_i32; 1250 case INDEX_op_ext16u_i32: 1251 return TCG_TARGET_HAS_ext16u_i32; 1252 case INDEX_op_bswap16_i32: 1253 return TCG_TARGET_HAS_bswap16_i32; 1254 case INDEX_op_bswap32_i32: 1255 return TCG_TARGET_HAS_bswap32_i32; 1256 case INDEX_op_not_i32: 1257 return TCG_TARGET_HAS_not_i32; 1258 case INDEX_op_neg_i32: 1259 return TCG_TARGET_HAS_neg_i32; 1260 case INDEX_op_andc_i32: 1261 return TCG_TARGET_HAS_andc_i32; 1262 case INDEX_op_orc_i32: 1263 return TCG_TARGET_HAS_orc_i32; 1264 case INDEX_op_eqv_i32: 1265 return TCG_TARGET_HAS_eqv_i32; 1266 case INDEX_op_nand_i32: 1267 return TCG_TARGET_HAS_nand_i32; 1268 case INDEX_op_nor_i32: 1269 return TCG_TARGET_HAS_nor_i32; 1270 case INDEX_op_clz_i32: 1271 return TCG_TARGET_HAS_clz_i32; 1272 case INDEX_op_ctz_i32: 1273 return TCG_TARGET_HAS_ctz_i32; 1274 case INDEX_op_ctpop_i32: 1275 return TCG_TARGET_HAS_ctpop_i32; 1276 1277 case INDEX_op_brcond2_i32: 1278 case INDEX_op_setcond2_i32: 1279 return TCG_TARGET_REG_BITS == 32; 1280 1281 case INDEX_op_mov_i64: 1282 case INDEX_op_setcond_i64: 1283 case INDEX_op_brcond_i64: 1284 case INDEX_op_ld8u_i64: 1285 case INDEX_op_ld8s_i64: 1286 case INDEX_op_ld16u_i64: 1287 case INDEX_op_ld16s_i64: 1288 case INDEX_op_ld32u_i64: 1289 case INDEX_op_ld32s_i64: 1290 case INDEX_op_ld_i64: 1291 case INDEX_op_st8_i64: 1292 case INDEX_op_st16_i64: 1293 case INDEX_op_st32_i64: 1294 case INDEX_op_st_i64: 1295 case INDEX_op_add_i64: 1296 case INDEX_op_sub_i64: 1297 case INDEX_op_mul_i64: 1298 case INDEX_op_and_i64: 1299 case INDEX_op_or_i64: 1300 case INDEX_op_xor_i64: 1301 case INDEX_op_shl_i64: 1302 case INDEX_op_shr_i64: 1303 case INDEX_op_sar_i64: 1304 case INDEX_op_ext_i32_i64: 1305 case INDEX_op_extu_i32_i64: 1306 return TCG_TARGET_REG_BITS == 64; 1307 1308 case INDEX_op_movcond_i64: 1309 return TCG_TARGET_HAS_movcond_i64; 1310 case INDEX_op_div_i64: 1311 case INDEX_op_divu_i64: 1312 return TCG_TARGET_HAS_div_i64; 1313 case INDEX_op_rem_i64: 1314 case INDEX_op_remu_i64: 1315 return TCG_TARGET_HAS_rem_i64; 1316 case INDEX_op_div2_i64: 1317 case INDEX_op_divu2_i64: 1318 return TCG_TARGET_HAS_div2_i64; 1319 case INDEX_op_rotl_i64: 1320 case INDEX_op_rotr_i64: 1321 return TCG_TARGET_HAS_rot_i64; 1322 case INDEX_op_deposit_i64: 1323 return TCG_TARGET_HAS_deposit_i64; 1324 case INDEX_op_extract_i64: 1325 return TCG_TARGET_HAS_extract_i64; 1326 case INDEX_op_sextract_i64: 1327 return TCG_TARGET_HAS_sextract_i64; 1328 case INDEX_op_extract2_i64: 1329 return TCG_TARGET_HAS_extract2_i64; 1330 case INDEX_op_extrl_i64_i32: 1331 return TCG_TARGET_HAS_extrl_i64_i32; 1332 case INDEX_op_extrh_i64_i32: 1333 return TCG_TARGET_HAS_extrh_i64_i32; 1334 case INDEX_op_ext8s_i64: 1335 return TCG_TARGET_HAS_ext8s_i64; 1336 case INDEX_op_ext16s_i64: 1337 return TCG_TARGET_HAS_ext16s_i64; 1338 case INDEX_op_ext32s_i64: 1339 return TCG_TARGET_HAS_ext32s_i64; 1340 case INDEX_op_ext8u_i64: 1341 return TCG_TARGET_HAS_ext8u_i64; 1342 case INDEX_op_ext16u_i64: 1343 return TCG_TARGET_HAS_ext16u_i64; 1344 case INDEX_op_ext32u_i64: 1345 return TCG_TARGET_HAS_ext32u_i64; 1346 case INDEX_op_bswap16_i64: 1347 return TCG_TARGET_HAS_bswap16_i64; 1348 case INDEX_op_bswap32_i64: 1349 return TCG_TARGET_HAS_bswap32_i64; 1350 case INDEX_op_bswap64_i64: 1351 return TCG_TARGET_HAS_bswap64_i64; 1352 case INDEX_op_not_i64: 1353 return TCG_TARGET_HAS_not_i64; 1354 case INDEX_op_neg_i64: 1355 return TCG_TARGET_HAS_neg_i64; 1356 case INDEX_op_andc_i64: 1357 return TCG_TARGET_HAS_andc_i64; 1358 case INDEX_op_orc_i64: 1359 return TCG_TARGET_HAS_orc_i64; 1360 case INDEX_op_eqv_i64: 1361 return TCG_TARGET_HAS_eqv_i64; 1362 case INDEX_op_nand_i64: 1363 return TCG_TARGET_HAS_nand_i64; 1364 case INDEX_op_nor_i64: 1365 return TCG_TARGET_HAS_nor_i64; 1366 case INDEX_op_clz_i64: 1367 return TCG_TARGET_HAS_clz_i64; 1368 case INDEX_op_ctz_i64: 1369 return TCG_TARGET_HAS_ctz_i64; 1370 case INDEX_op_ctpop_i64: 1371 return TCG_TARGET_HAS_ctpop_i64; 1372 case INDEX_op_add2_i64: 1373 return TCG_TARGET_HAS_add2_i64; 1374 case INDEX_op_sub2_i64: 1375 return TCG_TARGET_HAS_sub2_i64; 1376 case INDEX_op_mulu2_i64: 1377 return TCG_TARGET_HAS_mulu2_i64; 1378 case INDEX_op_muls2_i64: 1379 return TCG_TARGET_HAS_muls2_i64; 1380 case INDEX_op_muluh_i64: 1381 return TCG_TARGET_HAS_muluh_i64; 1382 case INDEX_op_mulsh_i64: 1383 return TCG_TARGET_HAS_mulsh_i64; 1384 1385 case INDEX_op_mov_vec: 1386 case INDEX_op_dup_vec: 1387 case INDEX_op_dupm_vec: 1388 case INDEX_op_ld_vec: 1389 case INDEX_op_st_vec: 1390 case INDEX_op_add_vec: 1391 case INDEX_op_sub_vec: 1392 case INDEX_op_and_vec: 1393 case INDEX_op_or_vec: 1394 case INDEX_op_xor_vec: 1395 case INDEX_op_cmp_vec: 1396 return have_vec; 1397 case INDEX_op_dup2_vec: 1398 return have_vec && TCG_TARGET_REG_BITS == 32; 1399 case INDEX_op_not_vec: 1400 return have_vec && TCG_TARGET_HAS_not_vec; 1401 case INDEX_op_neg_vec: 1402 return have_vec && TCG_TARGET_HAS_neg_vec; 1403 case INDEX_op_abs_vec: 1404 return have_vec && TCG_TARGET_HAS_abs_vec; 1405 case INDEX_op_andc_vec: 1406 return have_vec && TCG_TARGET_HAS_andc_vec; 1407 case INDEX_op_orc_vec: 1408 return have_vec && TCG_TARGET_HAS_orc_vec; 1409 case INDEX_op_mul_vec: 1410 return have_vec && TCG_TARGET_HAS_mul_vec; 1411 case INDEX_op_shli_vec: 1412 case INDEX_op_shri_vec: 1413 case INDEX_op_sari_vec: 1414 return have_vec && TCG_TARGET_HAS_shi_vec; 1415 case INDEX_op_shls_vec: 1416 case INDEX_op_shrs_vec: 1417 case INDEX_op_sars_vec: 1418 return have_vec && TCG_TARGET_HAS_shs_vec; 1419 case INDEX_op_shlv_vec: 1420 case INDEX_op_shrv_vec: 1421 case INDEX_op_sarv_vec: 1422 return have_vec && TCG_TARGET_HAS_shv_vec; 1423 case INDEX_op_rotli_vec: 1424 return have_vec && TCG_TARGET_HAS_roti_vec; 1425 case INDEX_op_rotls_vec: 1426 return have_vec && TCG_TARGET_HAS_rots_vec; 1427 case INDEX_op_rotlv_vec: 1428 case INDEX_op_rotrv_vec: 1429 return have_vec && TCG_TARGET_HAS_rotv_vec; 1430 case INDEX_op_ssadd_vec: 1431 case INDEX_op_usadd_vec: 1432 case INDEX_op_sssub_vec: 1433 case INDEX_op_ussub_vec: 1434 return have_vec && TCG_TARGET_HAS_sat_vec; 1435 case INDEX_op_smin_vec: 1436 case INDEX_op_umin_vec: 1437 case INDEX_op_smax_vec: 1438 case INDEX_op_umax_vec: 1439 return have_vec && TCG_TARGET_HAS_minmax_vec; 1440 case INDEX_op_bitsel_vec: 1441 return have_vec && TCG_TARGET_HAS_bitsel_vec; 1442 case INDEX_op_cmpsel_vec: 1443 return have_vec && TCG_TARGET_HAS_cmpsel_vec; 1444 1445 default: 1446 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS); 1447 return true; 1448 } 1449 } 1450 1451 /* Note: we convert the 64 bit args to 32 bit and do some alignment 1452 and endian swap. Maybe it would be better to do the alignment 1453 and endian swap in tcg_reg_alloc_call(). */ 1454 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args) 1455 { 1456 int i, real_args, nb_rets, pi; 1457 unsigned typemask; 1458 const TCGHelperInfo *info; 1459 TCGOp *op; 1460 1461 info = g_hash_table_lookup(helper_table, (gpointer)func); 1462 typemask = info->typemask; 1463 1464 #ifdef CONFIG_PLUGIN 1465 /* detect non-plugin helpers */ 1466 if (tcg_ctx->plugin_insn && unlikely(strncmp(info->name, "plugin_", 7))) { 1467 tcg_ctx->plugin_insn->calls_helpers = true; 1468 } 1469 #endif 1470 1471 #if defined(__sparc__) && !defined(__arch64__) \ 1472 && !defined(CONFIG_TCG_INTERPRETER) 1473 /* We have 64-bit values in one register, but need to pass as two 1474 separate parameters. Split them. */ 1475 int orig_typemask = typemask; 1476 int orig_nargs = nargs; 1477 TCGv_i64 retl, reth; 1478 TCGTemp *split_args[MAX_OPC_PARAM]; 1479 1480 retl = NULL; 1481 reth = NULL; 1482 typemask = 0; 1483 for (i = real_args = 0; i < nargs; ++i) { 1484 int argtype = extract32(orig_typemask, (i + 1) * 3, 3); 1485 bool is_64bit = (argtype & ~1) == dh_typecode_i64; 1486 1487 if (is_64bit) { 1488 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1489 TCGv_i32 h = tcg_temp_new_i32(); 1490 TCGv_i32 l = tcg_temp_new_i32(); 1491 tcg_gen_extr_i64_i32(l, h, orig); 1492 split_args[real_args++] = tcgv_i32_temp(h); 1493 typemask |= dh_typecode_i32 << (real_args * 3); 1494 split_args[real_args++] = tcgv_i32_temp(l); 1495 typemask |= dh_typecode_i32 << (real_args * 3); 1496 } else { 1497 split_args[real_args++] = args[i]; 1498 typemask |= argtype << (real_args * 3); 1499 } 1500 } 1501 nargs = real_args; 1502 args = split_args; 1503 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1504 for (i = 0; i < nargs; ++i) { 1505 int argtype = extract32(typemask, (i + 1) * 3, 3); 1506 bool is_32bit = (argtype & ~1) == dh_typecode_i32; 1507 bool is_signed = argtype & 1; 1508 1509 if (is_32bit) { 1510 TCGv_i64 temp = tcg_temp_new_i64(); 1511 TCGv_i32 orig = temp_tcgv_i32(args[i]); 1512 if (is_signed) { 1513 tcg_gen_ext_i32_i64(temp, orig); 1514 } else { 1515 tcg_gen_extu_i32_i64(temp, orig); 1516 } 1517 args[i] = tcgv_i64_temp(temp); 1518 } 1519 } 1520 #endif /* TCG_TARGET_EXTEND_ARGS */ 1521 1522 op = tcg_emit_op(INDEX_op_call); 1523 1524 pi = 0; 1525 if (ret != NULL) { 1526 #if defined(__sparc__) && !defined(__arch64__) \ 1527 && !defined(CONFIG_TCG_INTERPRETER) 1528 if ((typemask & 6) == dh_typecode_i64) { 1529 /* The 32-bit ABI is going to return the 64-bit value in 1530 the %o0/%o1 register pair. Prepare for this by using 1531 two return temporaries, and reassemble below. */ 1532 retl = tcg_temp_new_i64(); 1533 reth = tcg_temp_new_i64(); 1534 op->args[pi++] = tcgv_i64_arg(reth); 1535 op->args[pi++] = tcgv_i64_arg(retl); 1536 nb_rets = 2; 1537 } else { 1538 op->args[pi++] = temp_arg(ret); 1539 nb_rets = 1; 1540 } 1541 #else 1542 if (TCG_TARGET_REG_BITS < 64 && (typemask & 6) == dh_typecode_i64) { 1543 #ifdef HOST_WORDS_BIGENDIAN 1544 op->args[pi++] = temp_arg(ret + 1); 1545 op->args[pi++] = temp_arg(ret); 1546 #else 1547 op->args[pi++] = temp_arg(ret); 1548 op->args[pi++] = temp_arg(ret + 1); 1549 #endif 1550 nb_rets = 2; 1551 } else { 1552 op->args[pi++] = temp_arg(ret); 1553 nb_rets = 1; 1554 } 1555 #endif 1556 } else { 1557 nb_rets = 0; 1558 } 1559 TCGOP_CALLO(op) = nb_rets; 1560 1561 real_args = 0; 1562 for (i = 0; i < nargs; i++) { 1563 int argtype = extract32(typemask, (i + 1) * 3, 3); 1564 bool is_64bit = (argtype & ~1) == dh_typecode_i64; 1565 bool want_align = false; 1566 1567 #if defined(CONFIG_TCG_INTERPRETER) 1568 /* 1569 * Align all arguments, so that they land in predictable places 1570 * for passing off to ffi_call. 1571 */ 1572 want_align = true; 1573 #elif defined(TCG_TARGET_CALL_ALIGN_ARGS) 1574 /* Some targets want aligned 64 bit args */ 1575 want_align = is_64bit; 1576 #endif 1577 1578 if (TCG_TARGET_REG_BITS < 64 && want_align && (real_args & 1)) { 1579 op->args[pi++] = TCG_CALL_DUMMY_ARG; 1580 real_args++; 1581 } 1582 1583 if (TCG_TARGET_REG_BITS < 64 && is_64bit) { 1584 /* 1585 * If stack grows up, then we will be placing successive 1586 * arguments at lower addresses, which means we need to 1587 * reverse the order compared to how we would normally 1588 * treat either big or little-endian. For those arguments 1589 * that will wind up in registers, this still works for 1590 * HPPA (the only current STACK_GROWSUP target) since the 1591 * argument registers are *also* allocated in decreasing 1592 * order. If another such target is added, this logic may 1593 * have to get more complicated to differentiate between 1594 * stack arguments and register arguments. 1595 */ 1596 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP) 1597 op->args[pi++] = temp_arg(args[i] + 1); 1598 op->args[pi++] = temp_arg(args[i]); 1599 #else 1600 op->args[pi++] = temp_arg(args[i]); 1601 op->args[pi++] = temp_arg(args[i] + 1); 1602 #endif 1603 real_args += 2; 1604 continue; 1605 } 1606 1607 op->args[pi++] = temp_arg(args[i]); 1608 real_args++; 1609 } 1610 op->args[pi++] = (uintptr_t)func; 1611 op->args[pi++] = (uintptr_t)info; 1612 TCGOP_CALLI(op) = real_args; 1613 1614 /* Make sure the fields didn't overflow. */ 1615 tcg_debug_assert(TCGOP_CALLI(op) == real_args); 1616 tcg_debug_assert(pi <= ARRAY_SIZE(op->args)); 1617 1618 #if defined(__sparc__) && !defined(__arch64__) \ 1619 && !defined(CONFIG_TCG_INTERPRETER) 1620 /* Free all of the parts we allocated above. */ 1621 for (i = real_args = 0; i < orig_nargs; ++i) { 1622 int argtype = extract32(orig_typemask, (i + 1) * 3, 3); 1623 bool is_64bit = (argtype & ~1) == dh_typecode_i64; 1624 1625 if (is_64bit) { 1626 tcg_temp_free_internal(args[real_args++]); 1627 tcg_temp_free_internal(args[real_args++]); 1628 } else { 1629 real_args++; 1630 } 1631 } 1632 if ((orig_typemask & 6) == dh_typecode_i64) { 1633 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them. 1634 Note that describing these as TCGv_i64 eliminates an unnecessary 1635 zero-extension that tcg_gen_concat_i32_i64 would create. */ 1636 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth); 1637 tcg_temp_free_i64(retl); 1638 tcg_temp_free_i64(reth); 1639 } 1640 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1641 for (i = 0; i < nargs; ++i) { 1642 int argtype = extract32(typemask, (i + 1) * 3, 3); 1643 bool is_32bit = (argtype & ~1) == dh_typecode_i32; 1644 1645 if (is_32bit) { 1646 tcg_temp_free_internal(args[i]); 1647 } 1648 } 1649 #endif /* TCG_TARGET_EXTEND_ARGS */ 1650 } 1651 1652 static void tcg_reg_alloc_start(TCGContext *s) 1653 { 1654 int i, n; 1655 1656 for (i = 0, n = s->nb_temps; i < n; i++) { 1657 TCGTemp *ts = &s->temps[i]; 1658 TCGTempVal val = TEMP_VAL_MEM; 1659 1660 switch (ts->kind) { 1661 case TEMP_CONST: 1662 val = TEMP_VAL_CONST; 1663 break; 1664 case TEMP_FIXED: 1665 val = TEMP_VAL_REG; 1666 break; 1667 case TEMP_GLOBAL: 1668 break; 1669 case TEMP_NORMAL: 1670 val = TEMP_VAL_DEAD; 1671 /* fall through */ 1672 case TEMP_LOCAL: 1673 ts->mem_allocated = 0; 1674 break; 1675 default: 1676 g_assert_not_reached(); 1677 } 1678 ts->val_type = val; 1679 } 1680 1681 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp)); 1682 } 1683 1684 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size, 1685 TCGTemp *ts) 1686 { 1687 int idx = temp_idx(ts); 1688 1689 switch (ts->kind) { 1690 case TEMP_FIXED: 1691 case TEMP_GLOBAL: 1692 pstrcpy(buf, buf_size, ts->name); 1693 break; 1694 case TEMP_LOCAL: 1695 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals); 1696 break; 1697 case TEMP_NORMAL: 1698 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals); 1699 break; 1700 case TEMP_CONST: 1701 switch (ts->type) { 1702 case TCG_TYPE_I32: 1703 snprintf(buf, buf_size, "$0x%x", (int32_t)ts->val); 1704 break; 1705 #if TCG_TARGET_REG_BITS > 32 1706 case TCG_TYPE_I64: 1707 snprintf(buf, buf_size, "$0x%" PRIx64, ts->val); 1708 break; 1709 #endif 1710 case TCG_TYPE_V64: 1711 case TCG_TYPE_V128: 1712 case TCG_TYPE_V256: 1713 snprintf(buf, buf_size, "v%d$0x%" PRIx64, 1714 64 << (ts->type - TCG_TYPE_V64), ts->val); 1715 break; 1716 default: 1717 g_assert_not_reached(); 1718 } 1719 break; 1720 } 1721 return buf; 1722 } 1723 1724 static char *tcg_get_arg_str(TCGContext *s, char *buf, 1725 int buf_size, TCGArg arg) 1726 { 1727 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg)); 1728 } 1729 1730 static const char * const cond_name[] = 1731 { 1732 [TCG_COND_NEVER] = "never", 1733 [TCG_COND_ALWAYS] = "always", 1734 [TCG_COND_EQ] = "eq", 1735 [TCG_COND_NE] = "ne", 1736 [TCG_COND_LT] = "lt", 1737 [TCG_COND_GE] = "ge", 1738 [TCG_COND_LE] = "le", 1739 [TCG_COND_GT] = "gt", 1740 [TCG_COND_LTU] = "ltu", 1741 [TCG_COND_GEU] = "geu", 1742 [TCG_COND_LEU] = "leu", 1743 [TCG_COND_GTU] = "gtu" 1744 }; 1745 1746 static const char * const ldst_name[] = 1747 { 1748 [MO_UB] = "ub", 1749 [MO_SB] = "sb", 1750 [MO_LEUW] = "leuw", 1751 [MO_LESW] = "lesw", 1752 [MO_LEUL] = "leul", 1753 [MO_LESL] = "lesl", 1754 [MO_LEQ] = "leq", 1755 [MO_BEUW] = "beuw", 1756 [MO_BESW] = "besw", 1757 [MO_BEUL] = "beul", 1758 [MO_BESL] = "besl", 1759 [MO_BEQ] = "beq", 1760 }; 1761 1762 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = { 1763 #ifdef TARGET_ALIGNED_ONLY 1764 [MO_UNALN >> MO_ASHIFT] = "un+", 1765 [MO_ALIGN >> MO_ASHIFT] = "", 1766 #else 1767 [MO_UNALN >> MO_ASHIFT] = "", 1768 [MO_ALIGN >> MO_ASHIFT] = "al+", 1769 #endif 1770 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+", 1771 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+", 1772 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+", 1773 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+", 1774 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+", 1775 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+", 1776 }; 1777 1778 static const char bswap_flag_name[][6] = { 1779 [TCG_BSWAP_IZ] = "iz", 1780 [TCG_BSWAP_OZ] = "oz", 1781 [TCG_BSWAP_OS] = "os", 1782 [TCG_BSWAP_IZ | TCG_BSWAP_OZ] = "iz,oz", 1783 [TCG_BSWAP_IZ | TCG_BSWAP_OS] = "iz,os", 1784 }; 1785 1786 static inline bool tcg_regset_single(TCGRegSet d) 1787 { 1788 return (d & (d - 1)) == 0; 1789 } 1790 1791 static inline TCGReg tcg_regset_first(TCGRegSet d) 1792 { 1793 if (TCG_TARGET_NB_REGS <= 32) { 1794 return ctz32(d); 1795 } else { 1796 return ctz64(d); 1797 } 1798 } 1799 1800 static void tcg_dump_ops(TCGContext *s, bool have_prefs) 1801 { 1802 char buf[128]; 1803 TCGOp *op; 1804 1805 QTAILQ_FOREACH(op, &s->ops, link) { 1806 int i, k, nb_oargs, nb_iargs, nb_cargs; 1807 const TCGOpDef *def; 1808 TCGOpcode c; 1809 int col = 0; 1810 1811 c = op->opc; 1812 def = &tcg_op_defs[c]; 1813 1814 if (c == INDEX_op_insn_start) { 1815 nb_oargs = 0; 1816 col += qemu_log("\n ----"); 1817 1818 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 1819 target_ulong a; 1820 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 1821 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 1822 #else 1823 a = op->args[i]; 1824 #endif 1825 col += qemu_log(" " TARGET_FMT_lx, a); 1826 } 1827 } else if (c == INDEX_op_call) { 1828 const TCGHelperInfo *info = tcg_call_info(op); 1829 void *func = tcg_call_func(op); 1830 1831 /* variable number of arguments */ 1832 nb_oargs = TCGOP_CALLO(op); 1833 nb_iargs = TCGOP_CALLI(op); 1834 nb_cargs = def->nb_cargs; 1835 1836 col += qemu_log(" %s ", def->name); 1837 1838 /* 1839 * Print the function name from TCGHelperInfo, if available. 1840 * Note that plugins have a template function for the info, 1841 * but the actual function pointer comes from the plugin. 1842 */ 1843 if (func == info->func) { 1844 col += qemu_log("%s", info->name); 1845 } else { 1846 col += qemu_log("plugin(%p)", func); 1847 } 1848 1849 col += qemu_log(",$0x%x,$%d", info->flags, nb_oargs); 1850 for (i = 0; i < nb_oargs; i++) { 1851 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf), 1852 op->args[i])); 1853 } 1854 for (i = 0; i < nb_iargs; i++) { 1855 TCGArg arg = op->args[nb_oargs + i]; 1856 const char *t = "<dummy>"; 1857 if (arg != TCG_CALL_DUMMY_ARG) { 1858 t = tcg_get_arg_str(s, buf, sizeof(buf), arg); 1859 } 1860 col += qemu_log(",%s", t); 1861 } 1862 } else { 1863 col += qemu_log(" %s ", def->name); 1864 1865 nb_oargs = def->nb_oargs; 1866 nb_iargs = def->nb_iargs; 1867 nb_cargs = def->nb_cargs; 1868 1869 if (def->flags & TCG_OPF_VECTOR) { 1870 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op), 1871 8 << TCGOP_VECE(op)); 1872 } 1873 1874 k = 0; 1875 for (i = 0; i < nb_oargs; i++) { 1876 if (k != 0) { 1877 col += qemu_log(","); 1878 } 1879 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 1880 op->args[k++])); 1881 } 1882 for (i = 0; i < nb_iargs; i++) { 1883 if (k != 0) { 1884 col += qemu_log(","); 1885 } 1886 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 1887 op->args[k++])); 1888 } 1889 switch (c) { 1890 case INDEX_op_brcond_i32: 1891 case INDEX_op_setcond_i32: 1892 case INDEX_op_movcond_i32: 1893 case INDEX_op_brcond2_i32: 1894 case INDEX_op_setcond2_i32: 1895 case INDEX_op_brcond_i64: 1896 case INDEX_op_setcond_i64: 1897 case INDEX_op_movcond_i64: 1898 case INDEX_op_cmp_vec: 1899 case INDEX_op_cmpsel_vec: 1900 if (op->args[k] < ARRAY_SIZE(cond_name) 1901 && cond_name[op->args[k]]) { 1902 col += qemu_log(",%s", cond_name[op->args[k++]]); 1903 } else { 1904 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]); 1905 } 1906 i = 1; 1907 break; 1908 case INDEX_op_qemu_ld_i32: 1909 case INDEX_op_qemu_st_i32: 1910 case INDEX_op_qemu_st8_i32: 1911 case INDEX_op_qemu_ld_i64: 1912 case INDEX_op_qemu_st_i64: 1913 { 1914 MemOpIdx oi = op->args[k++]; 1915 MemOp op = get_memop(oi); 1916 unsigned ix = get_mmuidx(oi); 1917 1918 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) { 1919 col += qemu_log(",$0x%x,%u", op, ix); 1920 } else { 1921 const char *s_al, *s_op; 1922 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT]; 1923 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)]; 1924 col += qemu_log(",%s%s,%u", s_al, s_op, ix); 1925 } 1926 i = 1; 1927 } 1928 break; 1929 case INDEX_op_bswap16_i32: 1930 case INDEX_op_bswap16_i64: 1931 case INDEX_op_bswap32_i32: 1932 case INDEX_op_bswap32_i64: 1933 case INDEX_op_bswap64_i64: 1934 { 1935 TCGArg flags = op->args[k]; 1936 const char *name = NULL; 1937 1938 if (flags < ARRAY_SIZE(bswap_flag_name)) { 1939 name = bswap_flag_name[flags]; 1940 } 1941 if (name) { 1942 col += qemu_log(",%s", name); 1943 } else { 1944 col += qemu_log(",$0x%" TCG_PRIlx, flags); 1945 } 1946 i = k = 1; 1947 } 1948 break; 1949 default: 1950 i = 0; 1951 break; 1952 } 1953 switch (c) { 1954 case INDEX_op_set_label: 1955 case INDEX_op_br: 1956 case INDEX_op_brcond_i32: 1957 case INDEX_op_brcond_i64: 1958 case INDEX_op_brcond2_i32: 1959 col += qemu_log("%s$L%d", k ? "," : "", 1960 arg_label(op->args[k])->id); 1961 i++, k++; 1962 break; 1963 default: 1964 break; 1965 } 1966 for (; i < nb_cargs; i++, k++) { 1967 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]); 1968 } 1969 } 1970 1971 if (have_prefs || op->life) { 1972 1973 QemuLogFile *logfile; 1974 1975 rcu_read_lock(); 1976 logfile = qatomic_rcu_read(&qemu_logfile); 1977 if (logfile) { 1978 for (; col < 40; ++col) { 1979 putc(' ', logfile->fd); 1980 } 1981 } 1982 rcu_read_unlock(); 1983 } 1984 1985 if (op->life) { 1986 unsigned life = op->life; 1987 1988 if (life & (SYNC_ARG * 3)) { 1989 qemu_log(" sync:"); 1990 for (i = 0; i < 2; ++i) { 1991 if (life & (SYNC_ARG << i)) { 1992 qemu_log(" %d", i); 1993 } 1994 } 1995 } 1996 life /= DEAD_ARG; 1997 if (life) { 1998 qemu_log(" dead:"); 1999 for (i = 0; life; ++i, life >>= 1) { 2000 if (life & 1) { 2001 qemu_log(" %d", i); 2002 } 2003 } 2004 } 2005 } 2006 2007 if (have_prefs) { 2008 for (i = 0; i < nb_oargs; ++i) { 2009 TCGRegSet set = op->output_pref[i]; 2010 2011 if (i == 0) { 2012 qemu_log(" pref="); 2013 } else { 2014 qemu_log(","); 2015 } 2016 if (set == 0) { 2017 qemu_log("none"); 2018 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) { 2019 qemu_log("all"); 2020 #ifdef CONFIG_DEBUG_TCG 2021 } else if (tcg_regset_single(set)) { 2022 TCGReg reg = tcg_regset_first(set); 2023 qemu_log("%s", tcg_target_reg_names[reg]); 2024 #endif 2025 } else if (TCG_TARGET_NB_REGS <= 32) { 2026 qemu_log("%#x", (uint32_t)set); 2027 } else { 2028 qemu_log("%#" PRIx64, (uint64_t)set); 2029 } 2030 } 2031 } 2032 2033 qemu_log("\n"); 2034 } 2035 } 2036 2037 /* we give more priority to constraints with less registers */ 2038 static int get_constraint_priority(const TCGOpDef *def, int k) 2039 { 2040 const TCGArgConstraint *arg_ct = &def->args_ct[k]; 2041 int n; 2042 2043 if (arg_ct->oalias) { 2044 /* an alias is equivalent to a single register */ 2045 n = 1; 2046 } else { 2047 n = ctpop64(arg_ct->regs); 2048 } 2049 return TCG_TARGET_NB_REGS - n + 1; 2050 } 2051 2052 /* sort from highest priority to lowest */ 2053 static void sort_constraints(TCGOpDef *def, int start, int n) 2054 { 2055 int i, j; 2056 TCGArgConstraint *a = def->args_ct; 2057 2058 for (i = 0; i < n; i++) { 2059 a[start + i].sort_index = start + i; 2060 } 2061 if (n <= 1) { 2062 return; 2063 } 2064 for (i = 0; i < n - 1; i++) { 2065 for (j = i + 1; j < n; j++) { 2066 int p1 = get_constraint_priority(def, a[start + i].sort_index); 2067 int p2 = get_constraint_priority(def, a[start + j].sort_index); 2068 if (p1 < p2) { 2069 int tmp = a[start + i].sort_index; 2070 a[start + i].sort_index = a[start + j].sort_index; 2071 a[start + j].sort_index = tmp; 2072 } 2073 } 2074 } 2075 } 2076 2077 static void process_op_defs(TCGContext *s) 2078 { 2079 TCGOpcode op; 2080 2081 for (op = 0; op < NB_OPS; op++) { 2082 TCGOpDef *def = &tcg_op_defs[op]; 2083 const TCGTargetOpDef *tdefs; 2084 int i, nb_args; 2085 2086 if (def->flags & TCG_OPF_NOT_PRESENT) { 2087 continue; 2088 } 2089 2090 nb_args = def->nb_iargs + def->nb_oargs; 2091 if (nb_args == 0) { 2092 continue; 2093 } 2094 2095 /* 2096 * Macro magic should make it impossible, but double-check that 2097 * the array index is in range. Since the signness of an enum 2098 * is implementation defined, force the result to unsigned. 2099 */ 2100 unsigned con_set = tcg_target_op_def(op); 2101 tcg_debug_assert(con_set < ARRAY_SIZE(constraint_sets)); 2102 tdefs = &constraint_sets[con_set]; 2103 2104 for (i = 0; i < nb_args; i++) { 2105 const char *ct_str = tdefs->args_ct_str[i]; 2106 /* Incomplete TCGTargetOpDef entry. */ 2107 tcg_debug_assert(ct_str != NULL); 2108 2109 while (*ct_str != '\0') { 2110 switch(*ct_str) { 2111 case '0' ... '9': 2112 { 2113 int oarg = *ct_str - '0'; 2114 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]); 2115 tcg_debug_assert(oarg < def->nb_oargs); 2116 tcg_debug_assert(def->args_ct[oarg].regs != 0); 2117 def->args_ct[i] = def->args_ct[oarg]; 2118 /* The output sets oalias. */ 2119 def->args_ct[oarg].oalias = true; 2120 def->args_ct[oarg].alias_index = i; 2121 /* The input sets ialias. */ 2122 def->args_ct[i].ialias = true; 2123 def->args_ct[i].alias_index = oarg; 2124 } 2125 ct_str++; 2126 break; 2127 case '&': 2128 def->args_ct[i].newreg = true; 2129 ct_str++; 2130 break; 2131 case 'i': 2132 def->args_ct[i].ct |= TCG_CT_CONST; 2133 ct_str++; 2134 break; 2135 2136 /* Include all of the target-specific constraints. */ 2137 2138 #undef CONST 2139 #define CONST(CASE, MASK) \ 2140 case CASE: def->args_ct[i].ct |= MASK; ct_str++; break; 2141 #define REGS(CASE, MASK) \ 2142 case CASE: def->args_ct[i].regs |= MASK; ct_str++; break; 2143 2144 #include "tcg-target-con-str.h" 2145 2146 #undef REGS 2147 #undef CONST 2148 default: 2149 /* Typo in TCGTargetOpDef constraint. */ 2150 g_assert_not_reached(); 2151 } 2152 } 2153 } 2154 2155 /* TCGTargetOpDef entry with too much information? */ 2156 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL); 2157 2158 /* sort the constraints (XXX: this is just an heuristic) */ 2159 sort_constraints(def, 0, def->nb_oargs); 2160 sort_constraints(def, def->nb_oargs, def->nb_iargs); 2161 } 2162 } 2163 2164 void tcg_op_remove(TCGContext *s, TCGOp *op) 2165 { 2166 TCGLabel *label; 2167 2168 switch (op->opc) { 2169 case INDEX_op_br: 2170 label = arg_label(op->args[0]); 2171 label->refs--; 2172 break; 2173 case INDEX_op_brcond_i32: 2174 case INDEX_op_brcond_i64: 2175 label = arg_label(op->args[3]); 2176 label->refs--; 2177 break; 2178 case INDEX_op_brcond2_i32: 2179 label = arg_label(op->args[5]); 2180 label->refs--; 2181 break; 2182 default: 2183 break; 2184 } 2185 2186 QTAILQ_REMOVE(&s->ops, op, link); 2187 QTAILQ_INSERT_TAIL(&s->free_ops, op, link); 2188 s->nb_ops--; 2189 2190 #ifdef CONFIG_PROFILER 2191 qatomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1); 2192 #endif 2193 } 2194 2195 void tcg_remove_ops_after(TCGOp *op) 2196 { 2197 TCGContext *s = tcg_ctx; 2198 2199 while (true) { 2200 TCGOp *last = tcg_last_op(); 2201 if (last == op) { 2202 return; 2203 } 2204 tcg_op_remove(s, last); 2205 } 2206 } 2207 2208 static TCGOp *tcg_op_alloc(TCGOpcode opc) 2209 { 2210 TCGContext *s = tcg_ctx; 2211 TCGOp *op; 2212 2213 if (likely(QTAILQ_EMPTY(&s->free_ops))) { 2214 op = tcg_malloc(sizeof(TCGOp)); 2215 } else { 2216 op = QTAILQ_FIRST(&s->free_ops); 2217 QTAILQ_REMOVE(&s->free_ops, op, link); 2218 } 2219 memset(op, 0, offsetof(TCGOp, link)); 2220 op->opc = opc; 2221 s->nb_ops++; 2222 2223 return op; 2224 } 2225 2226 TCGOp *tcg_emit_op(TCGOpcode opc) 2227 { 2228 TCGOp *op = tcg_op_alloc(opc); 2229 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link); 2230 return op; 2231 } 2232 2233 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2234 { 2235 TCGOp *new_op = tcg_op_alloc(opc); 2236 QTAILQ_INSERT_BEFORE(old_op, new_op, link); 2237 return new_op; 2238 } 2239 2240 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2241 { 2242 TCGOp *new_op = tcg_op_alloc(opc); 2243 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link); 2244 return new_op; 2245 } 2246 2247 /* Reachable analysis : remove unreachable code. */ 2248 static void reachable_code_pass(TCGContext *s) 2249 { 2250 TCGOp *op, *op_next; 2251 bool dead = false; 2252 2253 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2254 bool remove = dead; 2255 TCGLabel *label; 2256 2257 switch (op->opc) { 2258 case INDEX_op_set_label: 2259 label = arg_label(op->args[0]); 2260 if (label->refs == 0) { 2261 /* 2262 * While there is an occasional backward branch, virtually 2263 * all branches generated by the translators are forward. 2264 * Which means that generally we will have already removed 2265 * all references to the label that will be, and there is 2266 * little to be gained by iterating. 2267 */ 2268 remove = true; 2269 } else { 2270 /* Once we see a label, insns become live again. */ 2271 dead = false; 2272 remove = false; 2273 2274 /* 2275 * Optimization can fold conditional branches to unconditional. 2276 * If we find a label with one reference which is preceded by 2277 * an unconditional branch to it, remove both. This needed to 2278 * wait until the dead code in between them was removed. 2279 */ 2280 if (label->refs == 1) { 2281 TCGOp *op_prev = QTAILQ_PREV(op, link); 2282 if (op_prev->opc == INDEX_op_br && 2283 label == arg_label(op_prev->args[0])) { 2284 tcg_op_remove(s, op_prev); 2285 remove = true; 2286 } 2287 } 2288 } 2289 break; 2290 2291 case INDEX_op_br: 2292 case INDEX_op_exit_tb: 2293 case INDEX_op_goto_ptr: 2294 /* Unconditional branches; everything following is dead. */ 2295 dead = true; 2296 break; 2297 2298 case INDEX_op_call: 2299 /* Notice noreturn helper calls, raising exceptions. */ 2300 if (tcg_call_flags(op) & TCG_CALL_NO_RETURN) { 2301 dead = true; 2302 } 2303 break; 2304 2305 case INDEX_op_insn_start: 2306 /* Never remove -- we need to keep these for unwind. */ 2307 remove = false; 2308 break; 2309 2310 default: 2311 break; 2312 } 2313 2314 if (remove) { 2315 tcg_op_remove(s, op); 2316 } 2317 } 2318 } 2319 2320 #define TS_DEAD 1 2321 #define TS_MEM 2 2322 2323 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n))) 2324 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n))) 2325 2326 /* For liveness_pass_1, the register preferences for a given temp. */ 2327 static inline TCGRegSet *la_temp_pref(TCGTemp *ts) 2328 { 2329 return ts->state_ptr; 2330 } 2331 2332 /* For liveness_pass_1, reset the preferences for a given temp to the 2333 * maximal regset for its type. 2334 */ 2335 static inline void la_reset_pref(TCGTemp *ts) 2336 { 2337 *la_temp_pref(ts) 2338 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]); 2339 } 2340 2341 /* liveness analysis: end of function: all temps are dead, and globals 2342 should be in memory. */ 2343 static void la_func_end(TCGContext *s, int ng, int nt) 2344 { 2345 int i; 2346 2347 for (i = 0; i < ng; ++i) { 2348 s->temps[i].state = TS_DEAD | TS_MEM; 2349 la_reset_pref(&s->temps[i]); 2350 } 2351 for (i = ng; i < nt; ++i) { 2352 s->temps[i].state = TS_DEAD; 2353 la_reset_pref(&s->temps[i]); 2354 } 2355 } 2356 2357 /* liveness analysis: end of basic block: all temps are dead, globals 2358 and local temps should be in memory. */ 2359 static void la_bb_end(TCGContext *s, int ng, int nt) 2360 { 2361 int i; 2362 2363 for (i = 0; i < nt; ++i) { 2364 TCGTemp *ts = &s->temps[i]; 2365 int state; 2366 2367 switch (ts->kind) { 2368 case TEMP_FIXED: 2369 case TEMP_GLOBAL: 2370 case TEMP_LOCAL: 2371 state = TS_DEAD | TS_MEM; 2372 break; 2373 case TEMP_NORMAL: 2374 case TEMP_CONST: 2375 state = TS_DEAD; 2376 break; 2377 default: 2378 g_assert_not_reached(); 2379 } 2380 ts->state = state; 2381 la_reset_pref(ts); 2382 } 2383 } 2384 2385 /* liveness analysis: sync globals back to memory. */ 2386 static void la_global_sync(TCGContext *s, int ng) 2387 { 2388 int i; 2389 2390 for (i = 0; i < ng; ++i) { 2391 int state = s->temps[i].state; 2392 s->temps[i].state = state | TS_MEM; 2393 if (state == TS_DEAD) { 2394 /* If the global was previously dead, reset prefs. */ 2395 la_reset_pref(&s->temps[i]); 2396 } 2397 } 2398 } 2399 2400 /* 2401 * liveness analysis: conditional branch: all temps are dead, 2402 * globals and local temps should be synced. 2403 */ 2404 static void la_bb_sync(TCGContext *s, int ng, int nt) 2405 { 2406 la_global_sync(s, ng); 2407 2408 for (int i = ng; i < nt; ++i) { 2409 TCGTemp *ts = &s->temps[i]; 2410 int state; 2411 2412 switch (ts->kind) { 2413 case TEMP_LOCAL: 2414 state = ts->state; 2415 ts->state = state | TS_MEM; 2416 if (state != TS_DEAD) { 2417 continue; 2418 } 2419 break; 2420 case TEMP_NORMAL: 2421 s->temps[i].state = TS_DEAD; 2422 break; 2423 case TEMP_CONST: 2424 continue; 2425 default: 2426 g_assert_not_reached(); 2427 } 2428 la_reset_pref(&s->temps[i]); 2429 } 2430 } 2431 2432 /* liveness analysis: sync globals back to memory and kill. */ 2433 static void la_global_kill(TCGContext *s, int ng) 2434 { 2435 int i; 2436 2437 for (i = 0; i < ng; i++) { 2438 s->temps[i].state = TS_DEAD | TS_MEM; 2439 la_reset_pref(&s->temps[i]); 2440 } 2441 } 2442 2443 /* liveness analysis: note live globals crossing calls. */ 2444 static void la_cross_call(TCGContext *s, int nt) 2445 { 2446 TCGRegSet mask = ~tcg_target_call_clobber_regs; 2447 int i; 2448 2449 for (i = 0; i < nt; i++) { 2450 TCGTemp *ts = &s->temps[i]; 2451 if (!(ts->state & TS_DEAD)) { 2452 TCGRegSet *pset = la_temp_pref(ts); 2453 TCGRegSet set = *pset; 2454 2455 set &= mask; 2456 /* If the combination is not possible, restart. */ 2457 if (set == 0) { 2458 set = tcg_target_available_regs[ts->type] & mask; 2459 } 2460 *pset = set; 2461 } 2462 } 2463 } 2464 2465 /* Liveness analysis : update the opc_arg_life array to tell if a 2466 given input arguments is dead. Instructions updating dead 2467 temporaries are removed. */ 2468 static void liveness_pass_1(TCGContext *s) 2469 { 2470 int nb_globals = s->nb_globals; 2471 int nb_temps = s->nb_temps; 2472 TCGOp *op, *op_prev; 2473 TCGRegSet *prefs; 2474 int i; 2475 2476 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps); 2477 for (i = 0; i < nb_temps; ++i) { 2478 s->temps[i].state_ptr = prefs + i; 2479 } 2480 2481 /* ??? Should be redundant with the exit_tb that ends the TB. */ 2482 la_func_end(s, nb_globals, nb_temps); 2483 2484 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) { 2485 int nb_iargs, nb_oargs; 2486 TCGOpcode opc_new, opc_new2; 2487 bool have_opc_new2; 2488 TCGLifeData arg_life = 0; 2489 TCGTemp *ts; 2490 TCGOpcode opc = op->opc; 2491 const TCGOpDef *def = &tcg_op_defs[opc]; 2492 2493 switch (opc) { 2494 case INDEX_op_call: 2495 { 2496 int call_flags; 2497 int nb_call_regs; 2498 2499 nb_oargs = TCGOP_CALLO(op); 2500 nb_iargs = TCGOP_CALLI(op); 2501 call_flags = tcg_call_flags(op); 2502 2503 /* pure functions can be removed if their result is unused */ 2504 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) { 2505 for (i = 0; i < nb_oargs; i++) { 2506 ts = arg_temp(op->args[i]); 2507 if (ts->state != TS_DEAD) { 2508 goto do_not_remove_call; 2509 } 2510 } 2511 goto do_remove; 2512 } 2513 do_not_remove_call: 2514 2515 /* Output args are dead. */ 2516 for (i = 0; i < nb_oargs; i++) { 2517 ts = arg_temp(op->args[i]); 2518 if (ts->state & TS_DEAD) { 2519 arg_life |= DEAD_ARG << i; 2520 } 2521 if (ts->state & TS_MEM) { 2522 arg_life |= SYNC_ARG << i; 2523 } 2524 ts->state = TS_DEAD; 2525 la_reset_pref(ts); 2526 2527 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */ 2528 op->output_pref[i] = 0; 2529 } 2530 2531 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS | 2532 TCG_CALL_NO_READ_GLOBALS))) { 2533 la_global_kill(s, nb_globals); 2534 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) { 2535 la_global_sync(s, nb_globals); 2536 } 2537 2538 /* Record arguments that die in this helper. */ 2539 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2540 ts = arg_temp(op->args[i]); 2541 if (ts && ts->state & TS_DEAD) { 2542 arg_life |= DEAD_ARG << i; 2543 } 2544 } 2545 2546 /* For all live registers, remove call-clobbered prefs. */ 2547 la_cross_call(s, nb_temps); 2548 2549 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 2550 2551 /* Input arguments are live for preceding opcodes. */ 2552 for (i = 0; i < nb_iargs; i++) { 2553 ts = arg_temp(op->args[i + nb_oargs]); 2554 if (ts && ts->state & TS_DEAD) { 2555 /* For those arguments that die, and will be allocated 2556 * in registers, clear the register set for that arg, 2557 * to be filled in below. For args that will be on 2558 * the stack, reset to any available reg. 2559 */ 2560 *la_temp_pref(ts) 2561 = (i < nb_call_regs ? 0 : 2562 tcg_target_available_regs[ts->type]); 2563 ts->state &= ~TS_DEAD; 2564 } 2565 } 2566 2567 /* For each input argument, add its input register to prefs. 2568 If a temp is used once, this produces a single set bit. */ 2569 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) { 2570 ts = arg_temp(op->args[i + nb_oargs]); 2571 if (ts) { 2572 tcg_regset_set_reg(*la_temp_pref(ts), 2573 tcg_target_call_iarg_regs[i]); 2574 } 2575 } 2576 } 2577 break; 2578 case INDEX_op_insn_start: 2579 break; 2580 case INDEX_op_discard: 2581 /* mark the temporary as dead */ 2582 ts = arg_temp(op->args[0]); 2583 ts->state = TS_DEAD; 2584 la_reset_pref(ts); 2585 break; 2586 2587 case INDEX_op_add2_i32: 2588 opc_new = INDEX_op_add_i32; 2589 goto do_addsub2; 2590 case INDEX_op_sub2_i32: 2591 opc_new = INDEX_op_sub_i32; 2592 goto do_addsub2; 2593 case INDEX_op_add2_i64: 2594 opc_new = INDEX_op_add_i64; 2595 goto do_addsub2; 2596 case INDEX_op_sub2_i64: 2597 opc_new = INDEX_op_sub_i64; 2598 do_addsub2: 2599 nb_iargs = 4; 2600 nb_oargs = 2; 2601 /* Test if the high part of the operation is dead, but not 2602 the low part. The result can be optimized to a simple 2603 add or sub. This happens often for x86_64 guest when the 2604 cpu mode is set to 32 bit. */ 2605 if (arg_temp(op->args[1])->state == TS_DEAD) { 2606 if (arg_temp(op->args[0])->state == TS_DEAD) { 2607 goto do_remove; 2608 } 2609 /* Replace the opcode and adjust the args in place, 2610 leaving 3 unused args at the end. */ 2611 op->opc = opc = opc_new; 2612 op->args[1] = op->args[2]; 2613 op->args[2] = op->args[4]; 2614 /* Fall through and mark the single-word operation live. */ 2615 nb_iargs = 2; 2616 nb_oargs = 1; 2617 } 2618 goto do_not_remove; 2619 2620 case INDEX_op_mulu2_i32: 2621 opc_new = INDEX_op_mul_i32; 2622 opc_new2 = INDEX_op_muluh_i32; 2623 have_opc_new2 = TCG_TARGET_HAS_muluh_i32; 2624 goto do_mul2; 2625 case INDEX_op_muls2_i32: 2626 opc_new = INDEX_op_mul_i32; 2627 opc_new2 = INDEX_op_mulsh_i32; 2628 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32; 2629 goto do_mul2; 2630 case INDEX_op_mulu2_i64: 2631 opc_new = INDEX_op_mul_i64; 2632 opc_new2 = INDEX_op_muluh_i64; 2633 have_opc_new2 = TCG_TARGET_HAS_muluh_i64; 2634 goto do_mul2; 2635 case INDEX_op_muls2_i64: 2636 opc_new = INDEX_op_mul_i64; 2637 opc_new2 = INDEX_op_mulsh_i64; 2638 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64; 2639 goto do_mul2; 2640 do_mul2: 2641 nb_iargs = 2; 2642 nb_oargs = 2; 2643 if (arg_temp(op->args[1])->state == TS_DEAD) { 2644 if (arg_temp(op->args[0])->state == TS_DEAD) { 2645 /* Both parts of the operation are dead. */ 2646 goto do_remove; 2647 } 2648 /* The high part of the operation is dead; generate the low. */ 2649 op->opc = opc = opc_new; 2650 op->args[1] = op->args[2]; 2651 op->args[2] = op->args[3]; 2652 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) { 2653 /* The low part of the operation is dead; generate the high. */ 2654 op->opc = opc = opc_new2; 2655 op->args[0] = op->args[1]; 2656 op->args[1] = op->args[2]; 2657 op->args[2] = op->args[3]; 2658 } else { 2659 goto do_not_remove; 2660 } 2661 /* Mark the single-word operation live. */ 2662 nb_oargs = 1; 2663 goto do_not_remove; 2664 2665 default: 2666 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */ 2667 nb_iargs = def->nb_iargs; 2668 nb_oargs = def->nb_oargs; 2669 2670 /* Test if the operation can be removed because all 2671 its outputs are dead. We assume that nb_oargs == 0 2672 implies side effects */ 2673 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) { 2674 for (i = 0; i < nb_oargs; i++) { 2675 if (arg_temp(op->args[i])->state != TS_DEAD) { 2676 goto do_not_remove; 2677 } 2678 } 2679 goto do_remove; 2680 } 2681 goto do_not_remove; 2682 2683 do_remove: 2684 tcg_op_remove(s, op); 2685 break; 2686 2687 do_not_remove: 2688 for (i = 0; i < nb_oargs; i++) { 2689 ts = arg_temp(op->args[i]); 2690 2691 /* Remember the preference of the uses that followed. */ 2692 op->output_pref[i] = *la_temp_pref(ts); 2693 2694 /* Output args are dead. */ 2695 if (ts->state & TS_DEAD) { 2696 arg_life |= DEAD_ARG << i; 2697 } 2698 if (ts->state & TS_MEM) { 2699 arg_life |= SYNC_ARG << i; 2700 } 2701 ts->state = TS_DEAD; 2702 la_reset_pref(ts); 2703 } 2704 2705 /* If end of basic block, update. */ 2706 if (def->flags & TCG_OPF_BB_EXIT) { 2707 la_func_end(s, nb_globals, nb_temps); 2708 } else if (def->flags & TCG_OPF_COND_BRANCH) { 2709 la_bb_sync(s, nb_globals, nb_temps); 2710 } else if (def->flags & TCG_OPF_BB_END) { 2711 la_bb_end(s, nb_globals, nb_temps); 2712 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2713 la_global_sync(s, nb_globals); 2714 if (def->flags & TCG_OPF_CALL_CLOBBER) { 2715 la_cross_call(s, nb_temps); 2716 } 2717 } 2718 2719 /* Record arguments that die in this opcode. */ 2720 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2721 ts = arg_temp(op->args[i]); 2722 if (ts->state & TS_DEAD) { 2723 arg_life |= DEAD_ARG << i; 2724 } 2725 } 2726 2727 /* Input arguments are live for preceding opcodes. */ 2728 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2729 ts = arg_temp(op->args[i]); 2730 if (ts->state & TS_DEAD) { 2731 /* For operands that were dead, initially allow 2732 all regs for the type. */ 2733 *la_temp_pref(ts) = tcg_target_available_regs[ts->type]; 2734 ts->state &= ~TS_DEAD; 2735 } 2736 } 2737 2738 /* Incorporate constraints for this operand. */ 2739 switch (opc) { 2740 case INDEX_op_mov_i32: 2741 case INDEX_op_mov_i64: 2742 /* Note that these are TCG_OPF_NOT_PRESENT and do not 2743 have proper constraints. That said, special case 2744 moves to propagate preferences backward. */ 2745 if (IS_DEAD_ARG(1)) { 2746 *la_temp_pref(arg_temp(op->args[0])) 2747 = *la_temp_pref(arg_temp(op->args[1])); 2748 } 2749 break; 2750 2751 default: 2752 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2753 const TCGArgConstraint *ct = &def->args_ct[i]; 2754 TCGRegSet set, *pset; 2755 2756 ts = arg_temp(op->args[i]); 2757 pset = la_temp_pref(ts); 2758 set = *pset; 2759 2760 set &= ct->regs; 2761 if (ct->ialias) { 2762 set &= op->output_pref[ct->alias_index]; 2763 } 2764 /* If the combination is not possible, restart. */ 2765 if (set == 0) { 2766 set = ct->regs; 2767 } 2768 *pset = set; 2769 } 2770 break; 2771 } 2772 break; 2773 } 2774 op->life = arg_life; 2775 } 2776 } 2777 2778 /* Liveness analysis: Convert indirect regs to direct temporaries. */ 2779 static bool liveness_pass_2(TCGContext *s) 2780 { 2781 int nb_globals = s->nb_globals; 2782 int nb_temps, i; 2783 bool changes = false; 2784 TCGOp *op, *op_next; 2785 2786 /* Create a temporary for each indirect global. */ 2787 for (i = 0; i < nb_globals; ++i) { 2788 TCGTemp *its = &s->temps[i]; 2789 if (its->indirect_reg) { 2790 TCGTemp *dts = tcg_temp_alloc(s); 2791 dts->type = its->type; 2792 dts->base_type = its->base_type; 2793 its->state_ptr = dts; 2794 } else { 2795 its->state_ptr = NULL; 2796 } 2797 /* All globals begin dead. */ 2798 its->state = TS_DEAD; 2799 } 2800 for (nb_temps = s->nb_temps; i < nb_temps; ++i) { 2801 TCGTemp *its = &s->temps[i]; 2802 its->state_ptr = NULL; 2803 its->state = TS_DEAD; 2804 } 2805 2806 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2807 TCGOpcode opc = op->opc; 2808 const TCGOpDef *def = &tcg_op_defs[opc]; 2809 TCGLifeData arg_life = op->life; 2810 int nb_iargs, nb_oargs, call_flags; 2811 TCGTemp *arg_ts, *dir_ts; 2812 2813 if (opc == INDEX_op_call) { 2814 nb_oargs = TCGOP_CALLO(op); 2815 nb_iargs = TCGOP_CALLI(op); 2816 call_flags = tcg_call_flags(op); 2817 } else { 2818 nb_iargs = def->nb_iargs; 2819 nb_oargs = def->nb_oargs; 2820 2821 /* Set flags similar to how calls require. */ 2822 if (def->flags & TCG_OPF_COND_BRANCH) { 2823 /* Like reading globals: sync_globals */ 2824 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 2825 } else if (def->flags & TCG_OPF_BB_END) { 2826 /* Like writing globals: save_globals */ 2827 call_flags = 0; 2828 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2829 /* Like reading globals: sync_globals */ 2830 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 2831 } else { 2832 /* No effect on globals. */ 2833 call_flags = (TCG_CALL_NO_READ_GLOBALS | 2834 TCG_CALL_NO_WRITE_GLOBALS); 2835 } 2836 } 2837 2838 /* Make sure that input arguments are available. */ 2839 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2840 arg_ts = arg_temp(op->args[i]); 2841 if (arg_ts) { 2842 dir_ts = arg_ts->state_ptr; 2843 if (dir_ts && arg_ts->state == TS_DEAD) { 2844 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32 2845 ? INDEX_op_ld_i32 2846 : INDEX_op_ld_i64); 2847 TCGOp *lop = tcg_op_insert_before(s, op, lopc); 2848 2849 lop->args[0] = temp_arg(dir_ts); 2850 lop->args[1] = temp_arg(arg_ts->mem_base); 2851 lop->args[2] = arg_ts->mem_offset; 2852 2853 /* Loaded, but synced with memory. */ 2854 arg_ts->state = TS_MEM; 2855 } 2856 } 2857 } 2858 2859 /* Perform input replacement, and mark inputs that became dead. 2860 No action is required except keeping temp_state up to date 2861 so that we reload when needed. */ 2862 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2863 arg_ts = arg_temp(op->args[i]); 2864 if (arg_ts) { 2865 dir_ts = arg_ts->state_ptr; 2866 if (dir_ts) { 2867 op->args[i] = temp_arg(dir_ts); 2868 changes = true; 2869 if (IS_DEAD_ARG(i)) { 2870 arg_ts->state = TS_DEAD; 2871 } 2872 } 2873 } 2874 } 2875 2876 /* Liveness analysis should ensure that the following are 2877 all correct, for call sites and basic block end points. */ 2878 if (call_flags & TCG_CALL_NO_READ_GLOBALS) { 2879 /* Nothing to do */ 2880 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) { 2881 for (i = 0; i < nb_globals; ++i) { 2882 /* Liveness should see that globals are synced back, 2883 that is, either TS_DEAD or TS_MEM. */ 2884 arg_ts = &s->temps[i]; 2885 tcg_debug_assert(arg_ts->state_ptr == 0 2886 || arg_ts->state != 0); 2887 } 2888 } else { 2889 for (i = 0; i < nb_globals; ++i) { 2890 /* Liveness should see that globals are saved back, 2891 that is, TS_DEAD, waiting to be reloaded. */ 2892 arg_ts = &s->temps[i]; 2893 tcg_debug_assert(arg_ts->state_ptr == 0 2894 || arg_ts->state == TS_DEAD); 2895 } 2896 } 2897 2898 /* Outputs become available. */ 2899 if (opc == INDEX_op_mov_i32 || opc == INDEX_op_mov_i64) { 2900 arg_ts = arg_temp(op->args[0]); 2901 dir_ts = arg_ts->state_ptr; 2902 if (dir_ts) { 2903 op->args[0] = temp_arg(dir_ts); 2904 changes = true; 2905 2906 /* The output is now live and modified. */ 2907 arg_ts->state = 0; 2908 2909 if (NEED_SYNC_ARG(0)) { 2910 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 2911 ? INDEX_op_st_i32 2912 : INDEX_op_st_i64); 2913 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 2914 TCGTemp *out_ts = dir_ts; 2915 2916 if (IS_DEAD_ARG(0)) { 2917 out_ts = arg_temp(op->args[1]); 2918 arg_ts->state = TS_DEAD; 2919 tcg_op_remove(s, op); 2920 } else { 2921 arg_ts->state = TS_MEM; 2922 } 2923 2924 sop->args[0] = temp_arg(out_ts); 2925 sop->args[1] = temp_arg(arg_ts->mem_base); 2926 sop->args[2] = arg_ts->mem_offset; 2927 } else { 2928 tcg_debug_assert(!IS_DEAD_ARG(0)); 2929 } 2930 } 2931 } else { 2932 for (i = 0; i < nb_oargs; i++) { 2933 arg_ts = arg_temp(op->args[i]); 2934 dir_ts = arg_ts->state_ptr; 2935 if (!dir_ts) { 2936 continue; 2937 } 2938 op->args[i] = temp_arg(dir_ts); 2939 changes = true; 2940 2941 /* The output is now live and modified. */ 2942 arg_ts->state = 0; 2943 2944 /* Sync outputs upon their last write. */ 2945 if (NEED_SYNC_ARG(i)) { 2946 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 2947 ? INDEX_op_st_i32 2948 : INDEX_op_st_i64); 2949 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 2950 2951 sop->args[0] = temp_arg(dir_ts); 2952 sop->args[1] = temp_arg(arg_ts->mem_base); 2953 sop->args[2] = arg_ts->mem_offset; 2954 2955 arg_ts->state = TS_MEM; 2956 } 2957 /* Drop outputs that are dead. */ 2958 if (IS_DEAD_ARG(i)) { 2959 arg_ts->state = TS_DEAD; 2960 } 2961 } 2962 } 2963 } 2964 2965 return changes; 2966 } 2967 2968 #ifdef CONFIG_DEBUG_TCG 2969 static void dump_regs(TCGContext *s) 2970 { 2971 TCGTemp *ts; 2972 int i; 2973 char buf[64]; 2974 2975 for(i = 0; i < s->nb_temps; i++) { 2976 ts = &s->temps[i]; 2977 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 2978 switch(ts->val_type) { 2979 case TEMP_VAL_REG: 2980 printf("%s", tcg_target_reg_names[ts->reg]); 2981 break; 2982 case TEMP_VAL_MEM: 2983 printf("%d(%s)", (int)ts->mem_offset, 2984 tcg_target_reg_names[ts->mem_base->reg]); 2985 break; 2986 case TEMP_VAL_CONST: 2987 printf("$0x%" PRIx64, ts->val); 2988 break; 2989 case TEMP_VAL_DEAD: 2990 printf("D"); 2991 break; 2992 default: 2993 printf("???"); 2994 break; 2995 } 2996 printf("\n"); 2997 } 2998 2999 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 3000 if (s->reg_to_temp[i] != NULL) { 3001 printf("%s: %s\n", 3002 tcg_target_reg_names[i], 3003 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i])); 3004 } 3005 } 3006 } 3007 3008 static void check_regs(TCGContext *s) 3009 { 3010 int reg; 3011 int k; 3012 TCGTemp *ts; 3013 char buf[64]; 3014 3015 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) { 3016 ts = s->reg_to_temp[reg]; 3017 if (ts != NULL) { 3018 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) { 3019 printf("Inconsistency for register %s:\n", 3020 tcg_target_reg_names[reg]); 3021 goto fail; 3022 } 3023 } 3024 } 3025 for (k = 0; k < s->nb_temps; k++) { 3026 ts = &s->temps[k]; 3027 if (ts->val_type == TEMP_VAL_REG 3028 && ts->kind != TEMP_FIXED 3029 && s->reg_to_temp[ts->reg] != ts) { 3030 printf("Inconsistency for temp %s:\n", 3031 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3032 fail: 3033 printf("reg state:\n"); 3034 dump_regs(s); 3035 tcg_abort(); 3036 } 3037 } 3038 } 3039 #endif 3040 3041 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts) 3042 { 3043 intptr_t off, size, align; 3044 3045 switch (ts->type) { 3046 case TCG_TYPE_I32: 3047 size = align = 4; 3048 break; 3049 case TCG_TYPE_I64: 3050 case TCG_TYPE_V64: 3051 size = align = 8; 3052 break; 3053 case TCG_TYPE_V128: 3054 size = align = 16; 3055 break; 3056 case TCG_TYPE_V256: 3057 /* Note that we do not require aligned storage for V256. */ 3058 size = 32, align = 16; 3059 break; 3060 default: 3061 g_assert_not_reached(); 3062 } 3063 3064 assert(align <= TCG_TARGET_STACK_ALIGN); 3065 off = ROUND_UP(s->current_frame_offset, align); 3066 3067 /* If we've exhausted the stack frame, restart with a smaller TB. */ 3068 if (off + size > s->frame_end) { 3069 tcg_raise_tb_overflow(s); 3070 } 3071 s->current_frame_offset = off + size; 3072 3073 ts->mem_offset = off; 3074 #if defined(__sparc__) 3075 ts->mem_offset += TCG_TARGET_STACK_BIAS; 3076 #endif 3077 ts->mem_base = s->frame_temp; 3078 ts->mem_allocated = 1; 3079 } 3080 3081 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet); 3082 3083 /* Mark a temporary as free or dead. If 'free_or_dead' is negative, 3084 mark it free; otherwise mark it dead. */ 3085 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead) 3086 { 3087 TCGTempVal new_type; 3088 3089 switch (ts->kind) { 3090 case TEMP_FIXED: 3091 return; 3092 case TEMP_GLOBAL: 3093 case TEMP_LOCAL: 3094 new_type = TEMP_VAL_MEM; 3095 break; 3096 case TEMP_NORMAL: 3097 new_type = free_or_dead < 0 ? TEMP_VAL_MEM : TEMP_VAL_DEAD; 3098 break; 3099 case TEMP_CONST: 3100 new_type = TEMP_VAL_CONST; 3101 break; 3102 default: 3103 g_assert_not_reached(); 3104 } 3105 if (ts->val_type == TEMP_VAL_REG) { 3106 s->reg_to_temp[ts->reg] = NULL; 3107 } 3108 ts->val_type = new_type; 3109 } 3110 3111 /* Mark a temporary as dead. */ 3112 static inline void temp_dead(TCGContext *s, TCGTemp *ts) 3113 { 3114 temp_free_or_dead(s, ts, 1); 3115 } 3116 3117 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary 3118 registers needs to be allocated to store a constant. If 'free_or_dead' 3119 is non-zero, subsequently release the temporary; if it is positive, the 3120 temp is dead; if it is negative, the temp is free. */ 3121 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs, 3122 TCGRegSet preferred_regs, int free_or_dead) 3123 { 3124 if (!temp_readonly(ts) && !ts->mem_coherent) { 3125 if (!ts->mem_allocated) { 3126 temp_allocate_frame(s, ts); 3127 } 3128 switch (ts->val_type) { 3129 case TEMP_VAL_CONST: 3130 /* If we're going to free the temp immediately, then we won't 3131 require it later in a register, so attempt to store the 3132 constant to memory directly. */ 3133 if (free_or_dead 3134 && tcg_out_sti(s, ts->type, ts->val, 3135 ts->mem_base->reg, ts->mem_offset)) { 3136 break; 3137 } 3138 temp_load(s, ts, tcg_target_available_regs[ts->type], 3139 allocated_regs, preferred_regs); 3140 /* fallthrough */ 3141 3142 case TEMP_VAL_REG: 3143 tcg_out_st(s, ts->type, ts->reg, 3144 ts->mem_base->reg, ts->mem_offset); 3145 break; 3146 3147 case TEMP_VAL_MEM: 3148 break; 3149 3150 case TEMP_VAL_DEAD: 3151 default: 3152 tcg_abort(); 3153 } 3154 ts->mem_coherent = 1; 3155 } 3156 if (free_or_dead) { 3157 temp_free_or_dead(s, ts, free_or_dead); 3158 } 3159 } 3160 3161 /* free register 'reg' by spilling the corresponding temporary if necessary */ 3162 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs) 3163 { 3164 TCGTemp *ts = s->reg_to_temp[reg]; 3165 if (ts != NULL) { 3166 temp_sync(s, ts, allocated_regs, 0, -1); 3167 } 3168 } 3169 3170 /** 3171 * tcg_reg_alloc: 3172 * @required_regs: Set of registers in which we must allocate. 3173 * @allocated_regs: Set of registers which must be avoided. 3174 * @preferred_regs: Set of registers we should prefer. 3175 * @rev: True if we search the registers in "indirect" order. 3176 * 3177 * The allocated register must be in @required_regs & ~@allocated_regs, 3178 * but if we can put it in @preferred_regs we may save a move later. 3179 */ 3180 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs, 3181 TCGRegSet allocated_regs, 3182 TCGRegSet preferred_regs, bool rev) 3183 { 3184 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order); 3185 TCGRegSet reg_ct[2]; 3186 const int *order; 3187 3188 reg_ct[1] = required_regs & ~allocated_regs; 3189 tcg_debug_assert(reg_ct[1] != 0); 3190 reg_ct[0] = reg_ct[1] & preferred_regs; 3191 3192 /* Skip the preferred_regs option if it cannot be satisfied, 3193 or if the preference made no difference. */ 3194 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1]; 3195 3196 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order; 3197 3198 /* Try free registers, preferences first. */ 3199 for (j = f; j < 2; j++) { 3200 TCGRegSet set = reg_ct[j]; 3201 3202 if (tcg_regset_single(set)) { 3203 /* One register in the set. */ 3204 TCGReg reg = tcg_regset_first(set); 3205 if (s->reg_to_temp[reg] == NULL) { 3206 return reg; 3207 } 3208 } else { 3209 for (i = 0; i < n; i++) { 3210 TCGReg reg = order[i]; 3211 if (s->reg_to_temp[reg] == NULL && 3212 tcg_regset_test_reg(set, reg)) { 3213 return reg; 3214 } 3215 } 3216 } 3217 } 3218 3219 /* We must spill something. */ 3220 for (j = f; j < 2; j++) { 3221 TCGRegSet set = reg_ct[j]; 3222 3223 if (tcg_regset_single(set)) { 3224 /* One register in the set. */ 3225 TCGReg reg = tcg_regset_first(set); 3226 tcg_reg_free(s, reg, allocated_regs); 3227 return reg; 3228 } else { 3229 for (i = 0; i < n; i++) { 3230 TCGReg reg = order[i]; 3231 if (tcg_regset_test_reg(set, reg)) { 3232 tcg_reg_free(s, reg, allocated_regs); 3233 return reg; 3234 } 3235 } 3236 } 3237 } 3238 3239 tcg_abort(); 3240 } 3241 3242 /* Make sure the temporary is in a register. If needed, allocate the register 3243 from DESIRED while avoiding ALLOCATED. */ 3244 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs, 3245 TCGRegSet allocated_regs, TCGRegSet preferred_regs) 3246 { 3247 TCGReg reg; 3248 3249 switch (ts->val_type) { 3250 case TEMP_VAL_REG: 3251 return; 3252 case TEMP_VAL_CONST: 3253 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3254 preferred_regs, ts->indirect_base); 3255 if (ts->type <= TCG_TYPE_I64) { 3256 tcg_out_movi(s, ts->type, reg, ts->val); 3257 } else { 3258 uint64_t val = ts->val; 3259 MemOp vece = MO_64; 3260 3261 /* 3262 * Find the minimal vector element that matches the constant. 3263 * The targets will, in general, have to do this search anyway, 3264 * do this generically. 3265 */ 3266 if (val == dup_const(MO_8, val)) { 3267 vece = MO_8; 3268 } else if (val == dup_const(MO_16, val)) { 3269 vece = MO_16; 3270 } else if (val == dup_const(MO_32, val)) { 3271 vece = MO_32; 3272 } 3273 3274 tcg_out_dupi_vec(s, ts->type, vece, reg, ts->val); 3275 } 3276 ts->mem_coherent = 0; 3277 break; 3278 case TEMP_VAL_MEM: 3279 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3280 preferred_regs, ts->indirect_base); 3281 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset); 3282 ts->mem_coherent = 1; 3283 break; 3284 case TEMP_VAL_DEAD: 3285 default: 3286 tcg_abort(); 3287 } 3288 ts->reg = reg; 3289 ts->val_type = TEMP_VAL_REG; 3290 s->reg_to_temp[reg] = ts; 3291 } 3292 3293 /* Save a temporary to memory. 'allocated_regs' is used in case a 3294 temporary registers needs to be allocated to store a constant. */ 3295 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs) 3296 { 3297 /* The liveness analysis already ensures that globals are back 3298 in memory. Keep an tcg_debug_assert for safety. */ 3299 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || temp_readonly(ts)); 3300 } 3301 3302 /* save globals to their canonical location and assume they can be 3303 modified be the following code. 'allocated_regs' is used in case a 3304 temporary registers needs to be allocated to store a constant. */ 3305 static void save_globals(TCGContext *s, TCGRegSet allocated_regs) 3306 { 3307 int i, n; 3308 3309 for (i = 0, n = s->nb_globals; i < n; i++) { 3310 temp_save(s, &s->temps[i], allocated_regs); 3311 } 3312 } 3313 3314 /* sync globals to their canonical location and assume they can be 3315 read by the following code. 'allocated_regs' is used in case a 3316 temporary registers needs to be allocated to store a constant. */ 3317 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs) 3318 { 3319 int i, n; 3320 3321 for (i = 0, n = s->nb_globals; i < n; i++) { 3322 TCGTemp *ts = &s->temps[i]; 3323 tcg_debug_assert(ts->val_type != TEMP_VAL_REG 3324 || ts->kind == TEMP_FIXED 3325 || ts->mem_coherent); 3326 } 3327 } 3328 3329 /* at the end of a basic block, we assume all temporaries are dead and 3330 all globals are stored at their canonical location. */ 3331 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs) 3332 { 3333 int i; 3334 3335 for (i = s->nb_globals; i < s->nb_temps; i++) { 3336 TCGTemp *ts = &s->temps[i]; 3337 3338 switch (ts->kind) { 3339 case TEMP_LOCAL: 3340 temp_save(s, ts, allocated_regs); 3341 break; 3342 case TEMP_NORMAL: 3343 /* The liveness analysis already ensures that temps are dead. 3344 Keep an tcg_debug_assert for safety. */ 3345 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3346 break; 3347 case TEMP_CONST: 3348 /* Similarly, we should have freed any allocated register. */ 3349 tcg_debug_assert(ts->val_type == TEMP_VAL_CONST); 3350 break; 3351 default: 3352 g_assert_not_reached(); 3353 } 3354 } 3355 3356 save_globals(s, allocated_regs); 3357 } 3358 3359 /* 3360 * At a conditional branch, we assume all temporaries are dead and 3361 * all globals and local temps are synced to their location. 3362 */ 3363 static void tcg_reg_alloc_cbranch(TCGContext *s, TCGRegSet allocated_regs) 3364 { 3365 sync_globals(s, allocated_regs); 3366 3367 for (int i = s->nb_globals; i < s->nb_temps; i++) { 3368 TCGTemp *ts = &s->temps[i]; 3369 /* 3370 * The liveness analysis already ensures that temps are dead. 3371 * Keep tcg_debug_asserts for safety. 3372 */ 3373 switch (ts->kind) { 3374 case TEMP_LOCAL: 3375 tcg_debug_assert(ts->val_type != TEMP_VAL_REG || ts->mem_coherent); 3376 break; 3377 case TEMP_NORMAL: 3378 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3379 break; 3380 case TEMP_CONST: 3381 break; 3382 default: 3383 g_assert_not_reached(); 3384 } 3385 } 3386 } 3387 3388 /* 3389 * Specialized code generation for INDEX_op_mov_* with a constant. 3390 */ 3391 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots, 3392 tcg_target_ulong val, TCGLifeData arg_life, 3393 TCGRegSet preferred_regs) 3394 { 3395 /* ENV should not be modified. */ 3396 tcg_debug_assert(!temp_readonly(ots)); 3397 3398 /* The movi is not explicitly generated here. */ 3399 if (ots->val_type == TEMP_VAL_REG) { 3400 s->reg_to_temp[ots->reg] = NULL; 3401 } 3402 ots->val_type = TEMP_VAL_CONST; 3403 ots->val = val; 3404 ots->mem_coherent = 0; 3405 if (NEED_SYNC_ARG(0)) { 3406 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0)); 3407 } else if (IS_DEAD_ARG(0)) { 3408 temp_dead(s, ots); 3409 } 3410 } 3411 3412 /* 3413 * Specialized code generation for INDEX_op_mov_*. 3414 */ 3415 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op) 3416 { 3417 const TCGLifeData arg_life = op->life; 3418 TCGRegSet allocated_regs, preferred_regs; 3419 TCGTemp *ts, *ots; 3420 TCGType otype, itype; 3421 3422 allocated_regs = s->reserved_regs; 3423 preferred_regs = op->output_pref[0]; 3424 ots = arg_temp(op->args[0]); 3425 ts = arg_temp(op->args[1]); 3426 3427 /* ENV should not be modified. */ 3428 tcg_debug_assert(!temp_readonly(ots)); 3429 3430 /* Note that otype != itype for no-op truncation. */ 3431 otype = ots->type; 3432 itype = ts->type; 3433 3434 if (ts->val_type == TEMP_VAL_CONST) { 3435 /* propagate constant or generate sti */ 3436 tcg_target_ulong val = ts->val; 3437 if (IS_DEAD_ARG(1)) { 3438 temp_dead(s, ts); 3439 } 3440 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs); 3441 return; 3442 } 3443 3444 /* If the source value is in memory we're going to be forced 3445 to have it in a register in order to perform the copy. Copy 3446 the SOURCE value into its own register first, that way we 3447 don't have to reload SOURCE the next time it is used. */ 3448 if (ts->val_type == TEMP_VAL_MEM) { 3449 temp_load(s, ts, tcg_target_available_regs[itype], 3450 allocated_regs, preferred_regs); 3451 } 3452 3453 tcg_debug_assert(ts->val_type == TEMP_VAL_REG); 3454 if (IS_DEAD_ARG(0)) { 3455 /* mov to a non-saved dead register makes no sense (even with 3456 liveness analysis disabled). */ 3457 tcg_debug_assert(NEED_SYNC_ARG(0)); 3458 if (!ots->mem_allocated) { 3459 temp_allocate_frame(s, ots); 3460 } 3461 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset); 3462 if (IS_DEAD_ARG(1)) { 3463 temp_dead(s, ts); 3464 } 3465 temp_dead(s, ots); 3466 } else { 3467 if (IS_DEAD_ARG(1) && ts->kind != TEMP_FIXED) { 3468 /* the mov can be suppressed */ 3469 if (ots->val_type == TEMP_VAL_REG) { 3470 s->reg_to_temp[ots->reg] = NULL; 3471 } 3472 ots->reg = ts->reg; 3473 temp_dead(s, ts); 3474 } else { 3475 if (ots->val_type != TEMP_VAL_REG) { 3476 /* When allocating a new register, make sure to not spill the 3477 input one. */ 3478 tcg_regset_set_reg(allocated_regs, ts->reg); 3479 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype], 3480 allocated_regs, preferred_regs, 3481 ots->indirect_base); 3482 } 3483 if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) { 3484 /* 3485 * Cross register class move not supported. 3486 * Store the source register into the destination slot 3487 * and leave the destination temp as TEMP_VAL_MEM. 3488 */ 3489 assert(!temp_readonly(ots)); 3490 if (!ts->mem_allocated) { 3491 temp_allocate_frame(s, ots); 3492 } 3493 tcg_out_st(s, ts->type, ts->reg, 3494 ots->mem_base->reg, ots->mem_offset); 3495 ots->mem_coherent = 1; 3496 temp_free_or_dead(s, ots, -1); 3497 return; 3498 } 3499 } 3500 ots->val_type = TEMP_VAL_REG; 3501 ots->mem_coherent = 0; 3502 s->reg_to_temp[ots->reg] = ots; 3503 if (NEED_SYNC_ARG(0)) { 3504 temp_sync(s, ots, allocated_regs, 0, 0); 3505 } 3506 } 3507 } 3508 3509 /* 3510 * Specialized code generation for INDEX_op_dup_vec. 3511 */ 3512 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op) 3513 { 3514 const TCGLifeData arg_life = op->life; 3515 TCGRegSet dup_out_regs, dup_in_regs; 3516 TCGTemp *its, *ots; 3517 TCGType itype, vtype; 3518 intptr_t endian_fixup; 3519 unsigned vece; 3520 bool ok; 3521 3522 ots = arg_temp(op->args[0]); 3523 its = arg_temp(op->args[1]); 3524 3525 /* ENV should not be modified. */ 3526 tcg_debug_assert(!temp_readonly(ots)); 3527 3528 itype = its->type; 3529 vece = TCGOP_VECE(op); 3530 vtype = TCGOP_VECL(op) + TCG_TYPE_V64; 3531 3532 if (its->val_type == TEMP_VAL_CONST) { 3533 /* Propagate constant via movi -> dupi. */ 3534 tcg_target_ulong val = its->val; 3535 if (IS_DEAD_ARG(1)) { 3536 temp_dead(s, its); 3537 } 3538 tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]); 3539 return; 3540 } 3541 3542 dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].regs; 3543 dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].regs; 3544 3545 /* Allocate the output register now. */ 3546 if (ots->val_type != TEMP_VAL_REG) { 3547 TCGRegSet allocated_regs = s->reserved_regs; 3548 3549 if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) { 3550 /* Make sure to not spill the input register. */ 3551 tcg_regset_set_reg(allocated_regs, its->reg); 3552 } 3553 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs, 3554 op->output_pref[0], ots->indirect_base); 3555 ots->val_type = TEMP_VAL_REG; 3556 ots->mem_coherent = 0; 3557 s->reg_to_temp[ots->reg] = ots; 3558 } 3559 3560 switch (its->val_type) { 3561 case TEMP_VAL_REG: 3562 /* 3563 * The dup constriaints must be broad, covering all possible VECE. 3564 * However, tcg_op_dup_vec() gets to see the VECE and we allow it 3565 * to fail, indicating that extra moves are required for that case. 3566 */ 3567 if (tcg_regset_test_reg(dup_in_regs, its->reg)) { 3568 if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) { 3569 goto done; 3570 } 3571 /* Try again from memory or a vector input register. */ 3572 } 3573 if (!its->mem_coherent) { 3574 /* 3575 * The input register is not synced, and so an extra store 3576 * would be required to use memory. Attempt an integer-vector 3577 * register move first. We do not have a TCGRegSet for this. 3578 */ 3579 if (tcg_out_mov(s, itype, ots->reg, its->reg)) { 3580 break; 3581 } 3582 /* Sync the temp back to its slot and load from there. */ 3583 temp_sync(s, its, s->reserved_regs, 0, 0); 3584 } 3585 /* fall through */ 3586 3587 case TEMP_VAL_MEM: 3588 #ifdef HOST_WORDS_BIGENDIAN 3589 endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8; 3590 endian_fixup -= 1 << vece; 3591 #else 3592 endian_fixup = 0; 3593 #endif 3594 if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg, 3595 its->mem_offset + endian_fixup)) { 3596 goto done; 3597 } 3598 tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset); 3599 break; 3600 3601 default: 3602 g_assert_not_reached(); 3603 } 3604 3605 /* We now have a vector input register, so dup must succeed. */ 3606 ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg); 3607 tcg_debug_assert(ok); 3608 3609 done: 3610 if (IS_DEAD_ARG(1)) { 3611 temp_dead(s, its); 3612 } 3613 if (NEED_SYNC_ARG(0)) { 3614 temp_sync(s, ots, s->reserved_regs, 0, 0); 3615 } 3616 if (IS_DEAD_ARG(0)) { 3617 temp_dead(s, ots); 3618 } 3619 } 3620 3621 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op) 3622 { 3623 const TCGLifeData arg_life = op->life; 3624 const TCGOpDef * const def = &tcg_op_defs[op->opc]; 3625 TCGRegSet i_allocated_regs; 3626 TCGRegSet o_allocated_regs; 3627 int i, k, nb_iargs, nb_oargs; 3628 TCGReg reg; 3629 TCGArg arg; 3630 const TCGArgConstraint *arg_ct; 3631 TCGTemp *ts; 3632 TCGArg new_args[TCG_MAX_OP_ARGS]; 3633 int const_args[TCG_MAX_OP_ARGS]; 3634 3635 nb_oargs = def->nb_oargs; 3636 nb_iargs = def->nb_iargs; 3637 3638 /* copy constants */ 3639 memcpy(new_args + nb_oargs + nb_iargs, 3640 op->args + nb_oargs + nb_iargs, 3641 sizeof(TCGArg) * def->nb_cargs); 3642 3643 i_allocated_regs = s->reserved_regs; 3644 o_allocated_regs = s->reserved_regs; 3645 3646 /* satisfy input constraints */ 3647 for (k = 0; k < nb_iargs; k++) { 3648 TCGRegSet i_preferred_regs, o_preferred_regs; 3649 3650 i = def->args_ct[nb_oargs + k].sort_index; 3651 arg = op->args[i]; 3652 arg_ct = &def->args_ct[i]; 3653 ts = arg_temp(arg); 3654 3655 if (ts->val_type == TEMP_VAL_CONST 3656 && tcg_target_const_match(ts->val, ts->type, arg_ct->ct)) { 3657 /* constant is OK for instruction */ 3658 const_args[i] = 1; 3659 new_args[i] = ts->val; 3660 continue; 3661 } 3662 3663 i_preferred_regs = o_preferred_regs = 0; 3664 if (arg_ct->ialias) { 3665 o_preferred_regs = op->output_pref[arg_ct->alias_index]; 3666 3667 /* 3668 * If the input is readonly, then it cannot also be an 3669 * output and aliased to itself. If the input is not 3670 * dead after the instruction, we must allocate a new 3671 * register and move it. 3672 */ 3673 if (temp_readonly(ts) || !IS_DEAD_ARG(i)) { 3674 goto allocate_in_reg; 3675 } 3676 3677 /* 3678 * Check if the current register has already been allocated 3679 * for another input aliased to an output. 3680 */ 3681 if (ts->val_type == TEMP_VAL_REG) { 3682 reg = ts->reg; 3683 for (int k2 = 0; k2 < k; k2++) { 3684 int i2 = def->args_ct[nb_oargs + k2].sort_index; 3685 if (def->args_ct[i2].ialias && reg == new_args[i2]) { 3686 goto allocate_in_reg; 3687 } 3688 } 3689 } 3690 i_preferred_regs = o_preferred_regs; 3691 } 3692 3693 temp_load(s, ts, arg_ct->regs, i_allocated_regs, i_preferred_regs); 3694 reg = ts->reg; 3695 3696 if (!tcg_regset_test_reg(arg_ct->regs, reg)) { 3697 allocate_in_reg: 3698 /* 3699 * Allocate a new register matching the constraint 3700 * and move the temporary register into it. 3701 */ 3702 temp_load(s, ts, tcg_target_available_regs[ts->type], 3703 i_allocated_regs, 0); 3704 reg = tcg_reg_alloc(s, arg_ct->regs, i_allocated_regs, 3705 o_preferred_regs, ts->indirect_base); 3706 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3707 /* 3708 * Cross register class move not supported. Sync the 3709 * temp back to its slot and load from there. 3710 */ 3711 temp_sync(s, ts, i_allocated_regs, 0, 0); 3712 tcg_out_ld(s, ts->type, reg, 3713 ts->mem_base->reg, ts->mem_offset); 3714 } 3715 } 3716 new_args[i] = reg; 3717 const_args[i] = 0; 3718 tcg_regset_set_reg(i_allocated_regs, reg); 3719 } 3720 3721 /* mark dead temporaries and free the associated registers */ 3722 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3723 if (IS_DEAD_ARG(i)) { 3724 temp_dead(s, arg_temp(op->args[i])); 3725 } 3726 } 3727 3728 if (def->flags & TCG_OPF_COND_BRANCH) { 3729 tcg_reg_alloc_cbranch(s, i_allocated_regs); 3730 } else if (def->flags & TCG_OPF_BB_END) { 3731 tcg_reg_alloc_bb_end(s, i_allocated_regs); 3732 } else { 3733 if (def->flags & TCG_OPF_CALL_CLOBBER) { 3734 /* XXX: permit generic clobber register list ? */ 3735 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3736 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3737 tcg_reg_free(s, i, i_allocated_regs); 3738 } 3739 } 3740 } 3741 if (def->flags & TCG_OPF_SIDE_EFFECTS) { 3742 /* sync globals if the op has side effects and might trigger 3743 an exception. */ 3744 sync_globals(s, i_allocated_regs); 3745 } 3746 3747 /* satisfy the output constraints */ 3748 for(k = 0; k < nb_oargs; k++) { 3749 i = def->args_ct[k].sort_index; 3750 arg = op->args[i]; 3751 arg_ct = &def->args_ct[i]; 3752 ts = arg_temp(arg); 3753 3754 /* ENV should not be modified. */ 3755 tcg_debug_assert(!temp_readonly(ts)); 3756 3757 if (arg_ct->oalias && !const_args[arg_ct->alias_index]) { 3758 reg = new_args[arg_ct->alias_index]; 3759 } else if (arg_ct->newreg) { 3760 reg = tcg_reg_alloc(s, arg_ct->regs, 3761 i_allocated_regs | o_allocated_regs, 3762 op->output_pref[k], ts->indirect_base); 3763 } else { 3764 reg = tcg_reg_alloc(s, arg_ct->regs, o_allocated_regs, 3765 op->output_pref[k], ts->indirect_base); 3766 } 3767 tcg_regset_set_reg(o_allocated_regs, reg); 3768 if (ts->val_type == TEMP_VAL_REG) { 3769 s->reg_to_temp[ts->reg] = NULL; 3770 } 3771 ts->val_type = TEMP_VAL_REG; 3772 ts->reg = reg; 3773 /* 3774 * Temp value is modified, so the value kept in memory is 3775 * potentially not the same. 3776 */ 3777 ts->mem_coherent = 0; 3778 s->reg_to_temp[reg] = ts; 3779 new_args[i] = reg; 3780 } 3781 } 3782 3783 /* emit instruction */ 3784 if (def->flags & TCG_OPF_VECTOR) { 3785 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op), 3786 new_args, const_args); 3787 } else { 3788 tcg_out_op(s, op->opc, new_args, const_args); 3789 } 3790 3791 /* move the outputs in the correct register if needed */ 3792 for(i = 0; i < nb_oargs; i++) { 3793 ts = arg_temp(op->args[i]); 3794 3795 /* ENV should not be modified. */ 3796 tcg_debug_assert(!temp_readonly(ts)); 3797 3798 if (NEED_SYNC_ARG(i)) { 3799 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i)); 3800 } else if (IS_DEAD_ARG(i)) { 3801 temp_dead(s, ts); 3802 } 3803 } 3804 } 3805 3806 static bool tcg_reg_alloc_dup2(TCGContext *s, const TCGOp *op) 3807 { 3808 const TCGLifeData arg_life = op->life; 3809 TCGTemp *ots, *itsl, *itsh; 3810 TCGType vtype = TCGOP_VECL(op) + TCG_TYPE_V64; 3811 3812 /* This opcode is only valid for 32-bit hosts, for 64-bit elements. */ 3813 tcg_debug_assert(TCG_TARGET_REG_BITS == 32); 3814 tcg_debug_assert(TCGOP_VECE(op) == MO_64); 3815 3816 ots = arg_temp(op->args[0]); 3817 itsl = arg_temp(op->args[1]); 3818 itsh = arg_temp(op->args[2]); 3819 3820 /* ENV should not be modified. */ 3821 tcg_debug_assert(!temp_readonly(ots)); 3822 3823 /* Allocate the output register now. */ 3824 if (ots->val_type != TEMP_VAL_REG) { 3825 TCGRegSet allocated_regs = s->reserved_regs; 3826 TCGRegSet dup_out_regs = 3827 tcg_op_defs[INDEX_op_dup_vec].args_ct[0].regs; 3828 3829 /* Make sure to not spill the input registers. */ 3830 if (!IS_DEAD_ARG(1) && itsl->val_type == TEMP_VAL_REG) { 3831 tcg_regset_set_reg(allocated_regs, itsl->reg); 3832 } 3833 if (!IS_DEAD_ARG(2) && itsh->val_type == TEMP_VAL_REG) { 3834 tcg_regset_set_reg(allocated_regs, itsh->reg); 3835 } 3836 3837 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs, 3838 op->output_pref[0], ots->indirect_base); 3839 ots->val_type = TEMP_VAL_REG; 3840 ots->mem_coherent = 0; 3841 s->reg_to_temp[ots->reg] = ots; 3842 } 3843 3844 /* Promote dup2 of immediates to dupi_vec. */ 3845 if (itsl->val_type == TEMP_VAL_CONST && itsh->val_type == TEMP_VAL_CONST) { 3846 uint64_t val = deposit64(itsl->val, 32, 32, itsh->val); 3847 MemOp vece = MO_64; 3848 3849 if (val == dup_const(MO_8, val)) { 3850 vece = MO_8; 3851 } else if (val == dup_const(MO_16, val)) { 3852 vece = MO_16; 3853 } else if (val == dup_const(MO_32, val)) { 3854 vece = MO_32; 3855 } 3856 3857 tcg_out_dupi_vec(s, vtype, vece, ots->reg, val); 3858 goto done; 3859 } 3860 3861 /* If the two inputs form one 64-bit value, try dupm_vec. */ 3862 if (itsl + 1 == itsh && itsl->base_type == TCG_TYPE_I64) { 3863 if (!itsl->mem_coherent) { 3864 temp_sync(s, itsl, s->reserved_regs, 0, 0); 3865 } 3866 if (!itsh->mem_coherent) { 3867 temp_sync(s, itsh, s->reserved_regs, 0, 0); 3868 } 3869 #ifdef HOST_WORDS_BIGENDIAN 3870 TCGTemp *its = itsh; 3871 #else 3872 TCGTemp *its = itsl; 3873 #endif 3874 if (tcg_out_dupm_vec(s, vtype, MO_64, ots->reg, 3875 its->mem_base->reg, its->mem_offset)) { 3876 goto done; 3877 } 3878 } 3879 3880 /* Fall back to generic expansion. */ 3881 return false; 3882 3883 done: 3884 if (IS_DEAD_ARG(1)) { 3885 temp_dead(s, itsl); 3886 } 3887 if (IS_DEAD_ARG(2)) { 3888 temp_dead(s, itsh); 3889 } 3890 if (NEED_SYNC_ARG(0)) { 3891 temp_sync(s, ots, s->reserved_regs, 0, IS_DEAD_ARG(0)); 3892 } else if (IS_DEAD_ARG(0)) { 3893 temp_dead(s, ots); 3894 } 3895 return true; 3896 } 3897 3898 #ifdef TCG_TARGET_STACK_GROWSUP 3899 #define STACK_DIR(x) (-(x)) 3900 #else 3901 #define STACK_DIR(x) (x) 3902 #endif 3903 3904 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op) 3905 { 3906 const int nb_oargs = TCGOP_CALLO(op); 3907 const int nb_iargs = TCGOP_CALLI(op); 3908 const TCGLifeData arg_life = op->life; 3909 const TCGHelperInfo *info; 3910 int flags, nb_regs, i; 3911 TCGReg reg; 3912 TCGArg arg; 3913 TCGTemp *ts; 3914 intptr_t stack_offset; 3915 size_t call_stack_size; 3916 tcg_insn_unit *func_addr; 3917 int allocate_args; 3918 TCGRegSet allocated_regs; 3919 3920 func_addr = tcg_call_func(op); 3921 info = tcg_call_info(op); 3922 flags = info->flags; 3923 3924 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 3925 if (nb_regs > nb_iargs) { 3926 nb_regs = nb_iargs; 3927 } 3928 3929 /* assign stack slots first */ 3930 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long); 3931 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) & 3932 ~(TCG_TARGET_STACK_ALIGN - 1); 3933 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE); 3934 if (allocate_args) { 3935 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed, 3936 preallocate call stack */ 3937 tcg_abort(); 3938 } 3939 3940 stack_offset = TCG_TARGET_CALL_STACK_OFFSET; 3941 for (i = nb_regs; i < nb_iargs; i++) { 3942 arg = op->args[nb_oargs + i]; 3943 #ifdef TCG_TARGET_STACK_GROWSUP 3944 stack_offset -= sizeof(tcg_target_long); 3945 #endif 3946 if (arg != TCG_CALL_DUMMY_ARG) { 3947 ts = arg_temp(arg); 3948 temp_load(s, ts, tcg_target_available_regs[ts->type], 3949 s->reserved_regs, 0); 3950 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset); 3951 } 3952 #ifndef TCG_TARGET_STACK_GROWSUP 3953 stack_offset += sizeof(tcg_target_long); 3954 #endif 3955 } 3956 3957 /* assign input registers */ 3958 allocated_regs = s->reserved_regs; 3959 for (i = 0; i < nb_regs; i++) { 3960 arg = op->args[nb_oargs + i]; 3961 if (arg != TCG_CALL_DUMMY_ARG) { 3962 ts = arg_temp(arg); 3963 reg = tcg_target_call_iarg_regs[i]; 3964 3965 if (ts->val_type == TEMP_VAL_REG) { 3966 if (ts->reg != reg) { 3967 tcg_reg_free(s, reg, allocated_regs); 3968 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3969 /* 3970 * Cross register class move not supported. Sync the 3971 * temp back to its slot and load from there. 3972 */ 3973 temp_sync(s, ts, allocated_regs, 0, 0); 3974 tcg_out_ld(s, ts->type, reg, 3975 ts->mem_base->reg, ts->mem_offset); 3976 } 3977 } 3978 } else { 3979 TCGRegSet arg_set = 0; 3980 3981 tcg_reg_free(s, reg, allocated_regs); 3982 tcg_regset_set_reg(arg_set, reg); 3983 temp_load(s, ts, arg_set, allocated_regs, 0); 3984 } 3985 3986 tcg_regset_set_reg(allocated_regs, reg); 3987 } 3988 } 3989 3990 /* mark dead temporaries and free the associated registers */ 3991 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 3992 if (IS_DEAD_ARG(i)) { 3993 temp_dead(s, arg_temp(op->args[i])); 3994 } 3995 } 3996 3997 /* clobber call registers */ 3998 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3999 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 4000 tcg_reg_free(s, i, allocated_regs); 4001 } 4002 } 4003 4004 /* Save globals if they might be written by the helper, sync them if 4005 they might be read. */ 4006 if (flags & TCG_CALL_NO_READ_GLOBALS) { 4007 /* Nothing to do */ 4008 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) { 4009 sync_globals(s, allocated_regs); 4010 } else { 4011 save_globals(s, allocated_regs); 4012 } 4013 4014 #ifdef CONFIG_TCG_INTERPRETER 4015 { 4016 gpointer hash = (gpointer)(uintptr_t)info->typemask; 4017 ffi_cif *cif = g_hash_table_lookup(ffi_table, hash); 4018 assert(cif != NULL); 4019 tcg_out_call(s, func_addr, cif); 4020 } 4021 #else 4022 tcg_out_call(s, func_addr); 4023 #endif 4024 4025 /* assign output registers and emit moves if needed */ 4026 for(i = 0; i < nb_oargs; i++) { 4027 arg = op->args[i]; 4028 ts = arg_temp(arg); 4029 4030 /* ENV should not be modified. */ 4031 tcg_debug_assert(!temp_readonly(ts)); 4032 4033 reg = tcg_target_call_oarg_regs[i]; 4034 tcg_debug_assert(s->reg_to_temp[reg] == NULL); 4035 if (ts->val_type == TEMP_VAL_REG) { 4036 s->reg_to_temp[ts->reg] = NULL; 4037 } 4038 ts->val_type = TEMP_VAL_REG; 4039 ts->reg = reg; 4040 ts->mem_coherent = 0; 4041 s->reg_to_temp[reg] = ts; 4042 if (NEED_SYNC_ARG(i)) { 4043 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i)); 4044 } else if (IS_DEAD_ARG(i)) { 4045 temp_dead(s, ts); 4046 } 4047 } 4048 } 4049 4050 #ifdef CONFIG_PROFILER 4051 4052 /* avoid copy/paste errors */ 4053 #define PROF_ADD(to, from, field) \ 4054 do { \ 4055 (to)->field += qatomic_read(&((from)->field)); \ 4056 } while (0) 4057 4058 #define PROF_MAX(to, from, field) \ 4059 do { \ 4060 typeof((from)->field) val__ = qatomic_read(&((from)->field)); \ 4061 if (val__ > (to)->field) { \ 4062 (to)->field = val__; \ 4063 } \ 4064 } while (0) 4065 4066 /* Pass in a zero'ed @prof */ 4067 static inline 4068 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table) 4069 { 4070 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs); 4071 unsigned int i; 4072 4073 for (i = 0; i < n_ctxs; i++) { 4074 TCGContext *s = qatomic_read(&tcg_ctxs[i]); 4075 const TCGProfile *orig = &s->prof; 4076 4077 if (counters) { 4078 PROF_ADD(prof, orig, cpu_exec_time); 4079 PROF_ADD(prof, orig, tb_count1); 4080 PROF_ADD(prof, orig, tb_count); 4081 PROF_ADD(prof, orig, op_count); 4082 PROF_MAX(prof, orig, op_count_max); 4083 PROF_ADD(prof, orig, temp_count); 4084 PROF_MAX(prof, orig, temp_count_max); 4085 PROF_ADD(prof, orig, del_op_count); 4086 PROF_ADD(prof, orig, code_in_len); 4087 PROF_ADD(prof, orig, code_out_len); 4088 PROF_ADD(prof, orig, search_out_len); 4089 PROF_ADD(prof, orig, interm_time); 4090 PROF_ADD(prof, orig, code_time); 4091 PROF_ADD(prof, orig, la_time); 4092 PROF_ADD(prof, orig, opt_time); 4093 PROF_ADD(prof, orig, restore_count); 4094 PROF_ADD(prof, orig, restore_time); 4095 } 4096 if (table) { 4097 int i; 4098 4099 for (i = 0; i < NB_OPS; i++) { 4100 PROF_ADD(prof, orig, table_op_count[i]); 4101 } 4102 } 4103 } 4104 } 4105 4106 #undef PROF_ADD 4107 #undef PROF_MAX 4108 4109 static void tcg_profile_snapshot_counters(TCGProfile *prof) 4110 { 4111 tcg_profile_snapshot(prof, true, false); 4112 } 4113 4114 static void tcg_profile_snapshot_table(TCGProfile *prof) 4115 { 4116 tcg_profile_snapshot(prof, false, true); 4117 } 4118 4119 void tcg_dump_op_count(void) 4120 { 4121 TCGProfile prof = {}; 4122 int i; 4123 4124 tcg_profile_snapshot_table(&prof); 4125 for (i = 0; i < NB_OPS; i++) { 4126 qemu_printf("%s %" PRId64 "\n", tcg_op_defs[i].name, 4127 prof.table_op_count[i]); 4128 } 4129 } 4130 4131 int64_t tcg_cpu_exec_time(void) 4132 { 4133 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs); 4134 unsigned int i; 4135 int64_t ret = 0; 4136 4137 for (i = 0; i < n_ctxs; i++) { 4138 const TCGContext *s = qatomic_read(&tcg_ctxs[i]); 4139 const TCGProfile *prof = &s->prof; 4140 4141 ret += qatomic_read(&prof->cpu_exec_time); 4142 } 4143 return ret; 4144 } 4145 #else 4146 void tcg_dump_op_count(void) 4147 { 4148 qemu_printf("[TCG profiler not compiled]\n"); 4149 } 4150 4151 int64_t tcg_cpu_exec_time(void) 4152 { 4153 error_report("%s: TCG profiler not compiled", __func__); 4154 exit(EXIT_FAILURE); 4155 } 4156 #endif 4157 4158 4159 int tcg_gen_code(TCGContext *s, TranslationBlock *tb) 4160 { 4161 #ifdef CONFIG_PROFILER 4162 TCGProfile *prof = &s->prof; 4163 #endif 4164 int i, num_insns; 4165 TCGOp *op; 4166 4167 #ifdef CONFIG_PROFILER 4168 { 4169 int n = 0; 4170 4171 QTAILQ_FOREACH(op, &s->ops, link) { 4172 n++; 4173 } 4174 qatomic_set(&prof->op_count, prof->op_count + n); 4175 if (n > prof->op_count_max) { 4176 qatomic_set(&prof->op_count_max, n); 4177 } 4178 4179 n = s->nb_temps; 4180 qatomic_set(&prof->temp_count, prof->temp_count + n); 4181 if (n > prof->temp_count_max) { 4182 qatomic_set(&prof->temp_count_max, n); 4183 } 4184 } 4185 #endif 4186 4187 #ifdef DEBUG_DISAS 4188 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP) 4189 && qemu_log_in_addr_range(tb->pc))) { 4190 FILE *logfile = qemu_log_lock(); 4191 qemu_log("OP:\n"); 4192 tcg_dump_ops(s, false); 4193 qemu_log("\n"); 4194 qemu_log_unlock(logfile); 4195 } 4196 #endif 4197 4198 #ifdef CONFIG_DEBUG_TCG 4199 /* Ensure all labels referenced have been emitted. */ 4200 { 4201 TCGLabel *l; 4202 bool error = false; 4203 4204 QSIMPLEQ_FOREACH(l, &s->labels, next) { 4205 if (unlikely(!l->present) && l->refs) { 4206 qemu_log_mask(CPU_LOG_TB_OP, 4207 "$L%d referenced but not present.\n", l->id); 4208 error = true; 4209 } 4210 } 4211 assert(!error); 4212 } 4213 #endif 4214 4215 #ifdef CONFIG_PROFILER 4216 qatomic_set(&prof->opt_time, prof->opt_time - profile_getclock()); 4217 #endif 4218 4219 #ifdef USE_TCG_OPTIMIZATIONS 4220 tcg_optimize(s); 4221 #endif 4222 4223 #ifdef CONFIG_PROFILER 4224 qatomic_set(&prof->opt_time, prof->opt_time + profile_getclock()); 4225 qatomic_set(&prof->la_time, prof->la_time - profile_getclock()); 4226 #endif 4227 4228 reachable_code_pass(s); 4229 liveness_pass_1(s); 4230 4231 if (s->nb_indirects > 0) { 4232 #ifdef DEBUG_DISAS 4233 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND) 4234 && qemu_log_in_addr_range(tb->pc))) { 4235 FILE *logfile = qemu_log_lock(); 4236 qemu_log("OP before indirect lowering:\n"); 4237 tcg_dump_ops(s, false); 4238 qemu_log("\n"); 4239 qemu_log_unlock(logfile); 4240 } 4241 #endif 4242 /* Replace indirect temps with direct temps. */ 4243 if (liveness_pass_2(s)) { 4244 /* If changes were made, re-run liveness. */ 4245 liveness_pass_1(s); 4246 } 4247 } 4248 4249 #ifdef CONFIG_PROFILER 4250 qatomic_set(&prof->la_time, prof->la_time + profile_getclock()); 4251 #endif 4252 4253 #ifdef DEBUG_DISAS 4254 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT) 4255 && qemu_log_in_addr_range(tb->pc))) { 4256 FILE *logfile = qemu_log_lock(); 4257 qemu_log("OP after optimization and liveness analysis:\n"); 4258 tcg_dump_ops(s, true); 4259 qemu_log("\n"); 4260 qemu_log_unlock(logfile); 4261 } 4262 #endif 4263 4264 tcg_reg_alloc_start(s); 4265 4266 /* 4267 * Reset the buffer pointers when restarting after overflow. 4268 * TODO: Move this into translate-all.c with the rest of the 4269 * buffer management. Having only this done here is confusing. 4270 */ 4271 s->code_buf = tcg_splitwx_to_rw(tb->tc.ptr); 4272 s->code_ptr = s->code_buf; 4273 4274 #ifdef TCG_TARGET_NEED_LDST_LABELS 4275 QSIMPLEQ_INIT(&s->ldst_labels); 4276 #endif 4277 #ifdef TCG_TARGET_NEED_POOL_LABELS 4278 s->pool_labels = NULL; 4279 #endif 4280 4281 num_insns = -1; 4282 QTAILQ_FOREACH(op, &s->ops, link) { 4283 TCGOpcode opc = op->opc; 4284 4285 #ifdef CONFIG_PROFILER 4286 qatomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1); 4287 #endif 4288 4289 switch (opc) { 4290 case INDEX_op_mov_i32: 4291 case INDEX_op_mov_i64: 4292 case INDEX_op_mov_vec: 4293 tcg_reg_alloc_mov(s, op); 4294 break; 4295 case INDEX_op_dup_vec: 4296 tcg_reg_alloc_dup(s, op); 4297 break; 4298 case INDEX_op_insn_start: 4299 if (num_insns >= 0) { 4300 size_t off = tcg_current_code_size(s); 4301 s->gen_insn_end_off[num_insns] = off; 4302 /* Assert that we do not overflow our stored offset. */ 4303 assert(s->gen_insn_end_off[num_insns] == off); 4304 } 4305 num_insns++; 4306 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 4307 target_ulong a; 4308 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 4309 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 4310 #else 4311 a = op->args[i]; 4312 #endif 4313 s->gen_insn_data[num_insns][i] = a; 4314 } 4315 break; 4316 case INDEX_op_discard: 4317 temp_dead(s, arg_temp(op->args[0])); 4318 break; 4319 case INDEX_op_set_label: 4320 tcg_reg_alloc_bb_end(s, s->reserved_regs); 4321 tcg_out_label(s, arg_label(op->args[0])); 4322 break; 4323 case INDEX_op_call: 4324 tcg_reg_alloc_call(s, op); 4325 break; 4326 case INDEX_op_dup2_vec: 4327 if (tcg_reg_alloc_dup2(s, op)) { 4328 break; 4329 } 4330 /* fall through */ 4331 default: 4332 /* Sanity check that we've not introduced any unhandled opcodes. */ 4333 tcg_debug_assert(tcg_op_supported(opc)); 4334 /* Note: in order to speed up the code, it would be much 4335 faster to have specialized register allocator functions for 4336 some common argument patterns */ 4337 tcg_reg_alloc_op(s, op); 4338 break; 4339 } 4340 #ifdef CONFIG_DEBUG_TCG 4341 check_regs(s); 4342 #endif 4343 /* Test for (pending) buffer overflow. The assumption is that any 4344 one operation beginning below the high water mark cannot overrun 4345 the buffer completely. Thus we can test for overflow after 4346 generating code without having to check during generation. */ 4347 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) { 4348 return -1; 4349 } 4350 /* Test for TB overflow, as seen by gen_insn_end_off. */ 4351 if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) { 4352 return -2; 4353 } 4354 } 4355 tcg_debug_assert(num_insns >= 0); 4356 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); 4357 4358 /* Generate TB finalization at the end of block */ 4359 #ifdef TCG_TARGET_NEED_LDST_LABELS 4360 i = tcg_out_ldst_finalize(s); 4361 if (i < 0) { 4362 return i; 4363 } 4364 #endif 4365 #ifdef TCG_TARGET_NEED_POOL_LABELS 4366 i = tcg_out_pool_finalize(s); 4367 if (i < 0) { 4368 return i; 4369 } 4370 #endif 4371 if (!tcg_resolve_relocs(s)) { 4372 return -2; 4373 } 4374 4375 #ifndef CONFIG_TCG_INTERPRETER 4376 /* flush instruction cache */ 4377 flush_idcache_range((uintptr_t)tcg_splitwx_to_rx(s->code_buf), 4378 (uintptr_t)s->code_buf, 4379 tcg_ptr_byte_diff(s->code_ptr, s->code_buf)); 4380 #endif 4381 4382 return tcg_current_code_size(s); 4383 } 4384 4385 #ifdef CONFIG_PROFILER 4386 void tcg_dump_info(void) 4387 { 4388 TCGProfile prof = {}; 4389 const TCGProfile *s; 4390 int64_t tb_count; 4391 int64_t tb_div_count; 4392 int64_t tot; 4393 4394 tcg_profile_snapshot_counters(&prof); 4395 s = &prof; 4396 tb_count = s->tb_count; 4397 tb_div_count = tb_count ? tb_count : 1; 4398 tot = s->interm_time + s->code_time; 4399 4400 qemu_printf("JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n", 4401 tot, tot / 2.4e9); 4402 qemu_printf("translated TBs %" PRId64 " (aborted=%" PRId64 4403 " %0.1f%%)\n", 4404 tb_count, s->tb_count1 - tb_count, 4405 (double)(s->tb_count1 - s->tb_count) 4406 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0); 4407 qemu_printf("avg ops/TB %0.1f max=%d\n", 4408 (double)s->op_count / tb_div_count, s->op_count_max); 4409 qemu_printf("deleted ops/TB %0.2f\n", 4410 (double)s->del_op_count / tb_div_count); 4411 qemu_printf("avg temps/TB %0.2f max=%d\n", 4412 (double)s->temp_count / tb_div_count, s->temp_count_max); 4413 qemu_printf("avg host code/TB %0.1f\n", 4414 (double)s->code_out_len / tb_div_count); 4415 qemu_printf("avg search data/TB %0.1f\n", 4416 (double)s->search_out_len / tb_div_count); 4417 4418 qemu_printf("cycles/op %0.1f\n", 4419 s->op_count ? (double)tot / s->op_count : 0); 4420 qemu_printf("cycles/in byte %0.1f\n", 4421 s->code_in_len ? (double)tot / s->code_in_len : 0); 4422 qemu_printf("cycles/out byte %0.1f\n", 4423 s->code_out_len ? (double)tot / s->code_out_len : 0); 4424 qemu_printf("cycles/search byte %0.1f\n", 4425 s->search_out_len ? (double)tot / s->search_out_len : 0); 4426 if (tot == 0) { 4427 tot = 1; 4428 } 4429 qemu_printf(" gen_interm time %0.1f%%\n", 4430 (double)s->interm_time / tot * 100.0); 4431 qemu_printf(" gen_code time %0.1f%%\n", 4432 (double)s->code_time / tot * 100.0); 4433 qemu_printf("optim./code time %0.1f%%\n", 4434 (double)s->opt_time / (s->code_time ? s->code_time : 1) 4435 * 100.0); 4436 qemu_printf("liveness/code time %0.1f%%\n", 4437 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0); 4438 qemu_printf("cpu_restore count %" PRId64 "\n", 4439 s->restore_count); 4440 qemu_printf(" avg cycles %0.1f\n", 4441 s->restore_count ? (double)s->restore_time / s->restore_count : 0); 4442 } 4443 #else 4444 void tcg_dump_info(void) 4445 { 4446 qemu_printf("[TCG profiler not compiled]\n"); 4447 } 4448 #endif 4449 4450 #ifdef ELF_HOST_MACHINE 4451 /* In order to use this feature, the backend needs to do three things: 4452 4453 (1) Define ELF_HOST_MACHINE to indicate both what value to 4454 put into the ELF image and to indicate support for the feature. 4455 4456 (2) Define tcg_register_jit. This should create a buffer containing 4457 the contents of a .debug_frame section that describes the post- 4458 prologue unwind info for the tcg machine. 4459 4460 (3) Call tcg_register_jit_int, with the constructed .debug_frame. 4461 */ 4462 4463 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */ 4464 typedef enum { 4465 JIT_NOACTION = 0, 4466 JIT_REGISTER_FN, 4467 JIT_UNREGISTER_FN 4468 } jit_actions_t; 4469 4470 struct jit_code_entry { 4471 struct jit_code_entry *next_entry; 4472 struct jit_code_entry *prev_entry; 4473 const void *symfile_addr; 4474 uint64_t symfile_size; 4475 }; 4476 4477 struct jit_descriptor { 4478 uint32_t version; 4479 uint32_t action_flag; 4480 struct jit_code_entry *relevant_entry; 4481 struct jit_code_entry *first_entry; 4482 }; 4483 4484 void __jit_debug_register_code(void) __attribute__((noinline)); 4485 void __jit_debug_register_code(void) 4486 { 4487 asm(""); 4488 } 4489 4490 /* Must statically initialize the version, because GDB may check 4491 the version before we can set it. */ 4492 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 4493 4494 /* End GDB interface. */ 4495 4496 static int find_string(const char *strtab, const char *str) 4497 { 4498 const char *p = strtab + 1; 4499 4500 while (1) { 4501 if (strcmp(p, str) == 0) { 4502 return p - strtab; 4503 } 4504 p += strlen(p) + 1; 4505 } 4506 } 4507 4508 static void tcg_register_jit_int(const void *buf_ptr, size_t buf_size, 4509 const void *debug_frame, 4510 size_t debug_frame_size) 4511 { 4512 struct __attribute__((packed)) DebugInfo { 4513 uint32_t len; 4514 uint16_t version; 4515 uint32_t abbrev; 4516 uint8_t ptr_size; 4517 uint8_t cu_die; 4518 uint16_t cu_lang; 4519 uintptr_t cu_low_pc; 4520 uintptr_t cu_high_pc; 4521 uint8_t fn_die; 4522 char fn_name[16]; 4523 uintptr_t fn_low_pc; 4524 uintptr_t fn_high_pc; 4525 uint8_t cu_eoc; 4526 }; 4527 4528 struct ElfImage { 4529 ElfW(Ehdr) ehdr; 4530 ElfW(Phdr) phdr; 4531 ElfW(Shdr) shdr[7]; 4532 ElfW(Sym) sym[2]; 4533 struct DebugInfo di; 4534 uint8_t da[24]; 4535 char str[80]; 4536 }; 4537 4538 struct ElfImage *img; 4539 4540 static const struct ElfImage img_template = { 4541 .ehdr = { 4542 .e_ident[EI_MAG0] = ELFMAG0, 4543 .e_ident[EI_MAG1] = ELFMAG1, 4544 .e_ident[EI_MAG2] = ELFMAG2, 4545 .e_ident[EI_MAG3] = ELFMAG3, 4546 .e_ident[EI_CLASS] = ELF_CLASS, 4547 .e_ident[EI_DATA] = ELF_DATA, 4548 .e_ident[EI_VERSION] = EV_CURRENT, 4549 .e_type = ET_EXEC, 4550 .e_machine = ELF_HOST_MACHINE, 4551 .e_version = EV_CURRENT, 4552 .e_phoff = offsetof(struct ElfImage, phdr), 4553 .e_shoff = offsetof(struct ElfImage, shdr), 4554 .e_ehsize = sizeof(ElfW(Shdr)), 4555 .e_phentsize = sizeof(ElfW(Phdr)), 4556 .e_phnum = 1, 4557 .e_shentsize = sizeof(ElfW(Shdr)), 4558 .e_shnum = ARRAY_SIZE(img->shdr), 4559 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1, 4560 #ifdef ELF_HOST_FLAGS 4561 .e_flags = ELF_HOST_FLAGS, 4562 #endif 4563 #ifdef ELF_OSABI 4564 .e_ident[EI_OSABI] = ELF_OSABI, 4565 #endif 4566 }, 4567 .phdr = { 4568 .p_type = PT_LOAD, 4569 .p_flags = PF_X, 4570 }, 4571 .shdr = { 4572 [0] = { .sh_type = SHT_NULL }, 4573 /* Trick: The contents of code_gen_buffer are not present in 4574 this fake ELF file; that got allocated elsewhere. Therefore 4575 we mark .text as SHT_NOBITS (similar to .bss) so that readers 4576 will not look for contents. We can record any address. */ 4577 [1] = { /* .text */ 4578 .sh_type = SHT_NOBITS, 4579 .sh_flags = SHF_EXECINSTR | SHF_ALLOC, 4580 }, 4581 [2] = { /* .debug_info */ 4582 .sh_type = SHT_PROGBITS, 4583 .sh_offset = offsetof(struct ElfImage, di), 4584 .sh_size = sizeof(struct DebugInfo), 4585 }, 4586 [3] = { /* .debug_abbrev */ 4587 .sh_type = SHT_PROGBITS, 4588 .sh_offset = offsetof(struct ElfImage, da), 4589 .sh_size = sizeof(img->da), 4590 }, 4591 [4] = { /* .debug_frame */ 4592 .sh_type = SHT_PROGBITS, 4593 .sh_offset = sizeof(struct ElfImage), 4594 }, 4595 [5] = { /* .symtab */ 4596 .sh_type = SHT_SYMTAB, 4597 .sh_offset = offsetof(struct ElfImage, sym), 4598 .sh_size = sizeof(img->sym), 4599 .sh_info = 1, 4600 .sh_link = ARRAY_SIZE(img->shdr) - 1, 4601 .sh_entsize = sizeof(ElfW(Sym)), 4602 }, 4603 [6] = { /* .strtab */ 4604 .sh_type = SHT_STRTAB, 4605 .sh_offset = offsetof(struct ElfImage, str), 4606 .sh_size = sizeof(img->str), 4607 } 4608 }, 4609 .sym = { 4610 [1] = { /* code_gen_buffer */ 4611 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC), 4612 .st_shndx = 1, 4613 } 4614 }, 4615 .di = { 4616 .len = sizeof(struct DebugInfo) - 4, 4617 .version = 2, 4618 .ptr_size = sizeof(void *), 4619 .cu_die = 1, 4620 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */ 4621 .fn_die = 2, 4622 .fn_name = "code_gen_buffer" 4623 }, 4624 .da = { 4625 1, /* abbrev number (the cu) */ 4626 0x11, 1, /* DW_TAG_compile_unit, has children */ 4627 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */ 4628 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4629 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4630 0, 0, /* end of abbrev */ 4631 2, /* abbrev number (the fn) */ 4632 0x2e, 0, /* DW_TAG_subprogram, no children */ 4633 0x3, 0x8, /* DW_AT_name, DW_FORM_string */ 4634 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4635 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4636 0, 0, /* end of abbrev */ 4637 0 /* no more abbrev */ 4638 }, 4639 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0" 4640 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer", 4641 }; 4642 4643 /* We only need a single jit entry; statically allocate it. */ 4644 static struct jit_code_entry one_entry; 4645 4646 uintptr_t buf = (uintptr_t)buf_ptr; 4647 size_t img_size = sizeof(struct ElfImage) + debug_frame_size; 4648 DebugFrameHeader *dfh; 4649 4650 img = g_malloc(img_size); 4651 *img = img_template; 4652 4653 img->phdr.p_vaddr = buf; 4654 img->phdr.p_paddr = buf; 4655 img->phdr.p_memsz = buf_size; 4656 4657 img->shdr[1].sh_name = find_string(img->str, ".text"); 4658 img->shdr[1].sh_addr = buf; 4659 img->shdr[1].sh_size = buf_size; 4660 4661 img->shdr[2].sh_name = find_string(img->str, ".debug_info"); 4662 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev"); 4663 4664 img->shdr[4].sh_name = find_string(img->str, ".debug_frame"); 4665 img->shdr[4].sh_size = debug_frame_size; 4666 4667 img->shdr[5].sh_name = find_string(img->str, ".symtab"); 4668 img->shdr[6].sh_name = find_string(img->str, ".strtab"); 4669 4670 img->sym[1].st_name = find_string(img->str, "code_gen_buffer"); 4671 img->sym[1].st_value = buf; 4672 img->sym[1].st_size = buf_size; 4673 4674 img->di.cu_low_pc = buf; 4675 img->di.cu_high_pc = buf + buf_size; 4676 img->di.fn_low_pc = buf; 4677 img->di.fn_high_pc = buf + buf_size; 4678 4679 dfh = (DebugFrameHeader *)(img + 1); 4680 memcpy(dfh, debug_frame, debug_frame_size); 4681 dfh->fde.func_start = buf; 4682 dfh->fde.func_len = buf_size; 4683 4684 #ifdef DEBUG_JIT 4685 /* Enable this block to be able to debug the ELF image file creation. 4686 One can use readelf, objdump, or other inspection utilities. */ 4687 { 4688 FILE *f = fopen("/tmp/qemu.jit", "w+b"); 4689 if (f) { 4690 if (fwrite(img, img_size, 1, f) != img_size) { 4691 /* Avoid stupid unused return value warning for fwrite. */ 4692 } 4693 fclose(f); 4694 } 4695 } 4696 #endif 4697 4698 one_entry.symfile_addr = img; 4699 one_entry.symfile_size = img_size; 4700 4701 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; 4702 __jit_debug_descriptor.relevant_entry = &one_entry; 4703 __jit_debug_descriptor.first_entry = &one_entry; 4704 __jit_debug_register_code(); 4705 } 4706 #else 4707 /* No support for the feature. Provide the entry point expected by exec.c, 4708 and implement the internal function we declared earlier. */ 4709 4710 static void tcg_register_jit_int(const void *buf, size_t size, 4711 const void *debug_frame, 4712 size_t debug_frame_size) 4713 { 4714 } 4715 4716 void tcg_register_jit(const void *buf, size_t buf_size) 4717 { 4718 } 4719 #endif /* ELF_HOST_MACHINE */ 4720 4721 #if !TCG_TARGET_MAYBE_vec 4722 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...) 4723 { 4724 g_assert_not_reached(); 4725 } 4726 #endif 4727