1 /* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 /* define it to use liveness analysis (better code) */ 26 #define USE_TCG_OPTIMIZATIONS 27 28 #include "qemu/osdep.h" 29 30 /* Define to jump the ELF file used to communicate with GDB. */ 31 #undef DEBUG_JIT 32 33 #include "qemu/error-report.h" 34 #include "qemu/cutils.h" 35 #include "qemu/host-utils.h" 36 #include "qemu/qemu-print.h" 37 #include "qemu/timer.h" 38 39 /* Note: the long term plan is to reduce the dependencies on the QEMU 40 CPU definitions. Currently they are used for qemu_ld/st 41 instructions */ 42 #define NO_CPU_IO_DEFS 43 #include "cpu.h" 44 45 #include "exec/cpu-common.h" 46 #include "exec/exec-all.h" 47 48 #include "tcg-op.h" 49 50 #if UINTPTR_MAX == UINT32_MAX 51 # define ELF_CLASS ELFCLASS32 52 #else 53 # define ELF_CLASS ELFCLASS64 54 #endif 55 #ifdef HOST_WORDS_BIGENDIAN 56 # define ELF_DATA ELFDATA2MSB 57 #else 58 # define ELF_DATA ELFDATA2LSB 59 #endif 60 61 #include "elf.h" 62 #include "exec/log.h" 63 #include "sysemu/sysemu.h" 64 65 /* Forward declarations for functions declared in tcg-target.inc.c and 66 used here. */ 67 static void tcg_target_init(TCGContext *s); 68 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode); 69 static void tcg_target_qemu_prologue(TCGContext *s); 70 static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 71 intptr_t value, intptr_t addend); 72 73 /* The CIE and FDE header definitions will be common to all hosts. */ 74 typedef struct { 75 uint32_t len __attribute__((aligned((sizeof(void *))))); 76 uint32_t id; 77 uint8_t version; 78 char augmentation[1]; 79 uint8_t code_align; 80 uint8_t data_align; 81 uint8_t return_column; 82 } DebugFrameCIE; 83 84 typedef struct QEMU_PACKED { 85 uint32_t len __attribute__((aligned((sizeof(void *))))); 86 uint32_t cie_offset; 87 uintptr_t func_start; 88 uintptr_t func_len; 89 } DebugFrameFDEHeader; 90 91 typedef struct QEMU_PACKED { 92 DebugFrameCIE cie; 93 DebugFrameFDEHeader fde; 94 } DebugFrameHeader; 95 96 static void tcg_register_jit_int(void *buf, size_t size, 97 const void *debug_frame, 98 size_t debug_frame_size) 99 __attribute__((unused)); 100 101 /* Forward declarations for functions declared and used in tcg-target.inc.c. */ 102 static const char *target_parse_constraint(TCGArgConstraint *ct, 103 const char *ct_str, TCGType type); 104 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, 105 intptr_t arg2); 106 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg); 107 static void tcg_out_movi(TCGContext *s, TCGType type, 108 TCGReg ret, tcg_target_long arg); 109 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, 110 const int *const_args); 111 #if TCG_TARGET_MAYBE_vec 112 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 113 TCGReg dst, TCGReg src); 114 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 115 TCGReg dst, TCGReg base, intptr_t offset); 116 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, 117 TCGReg dst, tcg_target_long arg); 118 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 119 unsigned vece, const TCGArg *args, 120 const int *const_args); 121 #else 122 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 123 TCGReg dst, TCGReg src) 124 { 125 g_assert_not_reached(); 126 } 127 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 128 TCGReg dst, TCGReg base, intptr_t offset) 129 { 130 g_assert_not_reached(); 131 } 132 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type, 133 TCGReg dst, tcg_target_long arg) 134 { 135 g_assert_not_reached(); 136 } 137 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 138 unsigned vece, const TCGArg *args, 139 const int *const_args) 140 { 141 g_assert_not_reached(); 142 } 143 #endif 144 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, 145 intptr_t arg2); 146 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 147 TCGReg base, intptr_t ofs); 148 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target); 149 static int tcg_target_const_match(tcg_target_long val, TCGType type, 150 const TCGArgConstraint *arg_ct); 151 #ifdef TCG_TARGET_NEED_LDST_LABELS 152 static int tcg_out_ldst_finalize(TCGContext *s); 153 #endif 154 155 #define TCG_HIGHWATER 1024 156 157 static TCGContext **tcg_ctxs; 158 static unsigned int n_tcg_ctxs; 159 TCGv_env cpu_env = 0; 160 161 struct tcg_region_tree { 162 QemuMutex lock; 163 GTree *tree; 164 /* padding to avoid false sharing is computed at run-time */ 165 }; 166 167 /* 168 * We divide code_gen_buffer into equally-sized "regions" that TCG threads 169 * dynamically allocate from as demand dictates. Given appropriate region 170 * sizing, this minimizes flushes even when some TCG threads generate a lot 171 * more code than others. 172 */ 173 struct tcg_region_state { 174 QemuMutex lock; 175 176 /* fields set at init time */ 177 void *start; 178 void *start_aligned; 179 void *end; 180 size_t n; 181 size_t size; /* size of one region */ 182 size_t stride; /* .size + guard size */ 183 184 /* fields protected by the lock */ 185 size_t current; /* current region index */ 186 size_t agg_size_full; /* aggregate size of full regions */ 187 }; 188 189 static struct tcg_region_state region; 190 /* 191 * This is an array of struct tcg_region_tree's, with padding. 192 * We use void * to simplify the computation of region_trees[i]; each 193 * struct is found every tree_size bytes. 194 */ 195 static void *region_trees; 196 static size_t tree_size; 197 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT]; 198 static TCGRegSet tcg_target_call_clobber_regs; 199 200 #if TCG_TARGET_INSN_UNIT_SIZE == 1 201 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v) 202 { 203 *s->code_ptr++ = v; 204 } 205 206 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p, 207 uint8_t v) 208 { 209 *p = v; 210 } 211 #endif 212 213 #if TCG_TARGET_INSN_UNIT_SIZE <= 2 214 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v) 215 { 216 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 217 *s->code_ptr++ = v; 218 } else { 219 tcg_insn_unit *p = s->code_ptr; 220 memcpy(p, &v, sizeof(v)); 221 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE); 222 } 223 } 224 225 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p, 226 uint16_t v) 227 { 228 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 229 *p = v; 230 } else { 231 memcpy(p, &v, sizeof(v)); 232 } 233 } 234 #endif 235 236 #if TCG_TARGET_INSN_UNIT_SIZE <= 4 237 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v) 238 { 239 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 240 *s->code_ptr++ = v; 241 } else { 242 tcg_insn_unit *p = s->code_ptr; 243 memcpy(p, &v, sizeof(v)); 244 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE); 245 } 246 } 247 248 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p, 249 uint32_t v) 250 { 251 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 252 *p = v; 253 } else { 254 memcpy(p, &v, sizeof(v)); 255 } 256 } 257 #endif 258 259 #if TCG_TARGET_INSN_UNIT_SIZE <= 8 260 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v) 261 { 262 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 263 *s->code_ptr++ = v; 264 } else { 265 tcg_insn_unit *p = s->code_ptr; 266 memcpy(p, &v, sizeof(v)); 267 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE); 268 } 269 } 270 271 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p, 272 uint64_t v) 273 { 274 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 275 *p = v; 276 } else { 277 memcpy(p, &v, sizeof(v)); 278 } 279 } 280 #endif 281 282 /* label relocation processing */ 283 284 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type, 285 TCGLabel *l, intptr_t addend) 286 { 287 TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation)); 288 289 r->type = type; 290 r->ptr = code_ptr; 291 r->addend = addend; 292 QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next); 293 } 294 295 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr) 296 { 297 tcg_debug_assert(!l->has_value); 298 l->has_value = 1; 299 l->u.value_ptr = ptr; 300 } 301 302 TCGLabel *gen_new_label(void) 303 { 304 TCGContext *s = tcg_ctx; 305 TCGLabel *l = tcg_malloc(sizeof(TCGLabel)); 306 307 memset(l, 0, sizeof(TCGLabel)); 308 l->id = s->nb_labels++; 309 QSIMPLEQ_INIT(&l->relocs); 310 311 QSIMPLEQ_INSERT_TAIL(&s->labels, l, next); 312 313 return l; 314 } 315 316 static bool tcg_resolve_relocs(TCGContext *s) 317 { 318 TCGLabel *l; 319 320 QSIMPLEQ_FOREACH(l, &s->labels, next) { 321 TCGRelocation *r; 322 uintptr_t value = l->u.value; 323 324 QSIMPLEQ_FOREACH(r, &l->relocs, next) { 325 if (!patch_reloc(r->ptr, r->type, value, r->addend)) { 326 return false; 327 } 328 } 329 } 330 return true; 331 } 332 333 static void set_jmp_reset_offset(TCGContext *s, int which) 334 { 335 size_t off = tcg_current_code_size(s); 336 s->tb_jmp_reset_offset[which] = off; 337 /* Make sure that we didn't overflow the stored offset. */ 338 assert(s->tb_jmp_reset_offset[which] == off); 339 } 340 341 #include "tcg-target.inc.c" 342 343 /* compare a pointer @ptr and a tb_tc @s */ 344 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) 345 { 346 if (ptr >= s->ptr + s->size) { 347 return 1; 348 } else if (ptr < s->ptr) { 349 return -1; 350 } 351 return 0; 352 } 353 354 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp) 355 { 356 const struct tb_tc *a = ap; 357 const struct tb_tc *b = bp; 358 359 /* 360 * When both sizes are set, we know this isn't a lookup. 361 * This is the most likely case: every TB must be inserted; lookups 362 * are a lot less frequent. 363 */ 364 if (likely(a->size && b->size)) { 365 if (a->ptr > b->ptr) { 366 return 1; 367 } else if (a->ptr < b->ptr) { 368 return -1; 369 } 370 /* a->ptr == b->ptr should happen only on deletions */ 371 g_assert(a->size == b->size); 372 return 0; 373 } 374 /* 375 * All lookups have either .size field set to 0. 376 * From the glib sources we see that @ap is always the lookup key. However 377 * the docs provide no guarantee, so we just mark this case as likely. 378 */ 379 if (likely(a->size == 0)) { 380 return ptr_cmp_tb_tc(a->ptr, b); 381 } 382 return ptr_cmp_tb_tc(b->ptr, a); 383 } 384 385 static void tcg_region_trees_init(void) 386 { 387 size_t i; 388 389 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); 390 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); 391 for (i = 0; i < region.n; i++) { 392 struct tcg_region_tree *rt = region_trees + i * tree_size; 393 394 qemu_mutex_init(&rt->lock); 395 rt->tree = g_tree_new(tb_tc_cmp); 396 } 397 } 398 399 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p) 400 { 401 size_t region_idx; 402 403 if (p < region.start_aligned) { 404 region_idx = 0; 405 } else { 406 ptrdiff_t offset = p - region.start_aligned; 407 408 if (offset > region.stride * (region.n - 1)) { 409 region_idx = region.n - 1; 410 } else { 411 region_idx = offset / region.stride; 412 } 413 } 414 return region_trees + region_idx * tree_size; 415 } 416 417 void tcg_tb_insert(TranslationBlock *tb) 418 { 419 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 420 421 qemu_mutex_lock(&rt->lock); 422 g_tree_insert(rt->tree, &tb->tc, tb); 423 qemu_mutex_unlock(&rt->lock); 424 } 425 426 void tcg_tb_remove(TranslationBlock *tb) 427 { 428 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 429 430 qemu_mutex_lock(&rt->lock); 431 g_tree_remove(rt->tree, &tb->tc); 432 qemu_mutex_unlock(&rt->lock); 433 } 434 435 /* 436 * Find the TB 'tb' such that 437 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size 438 * Return NULL if not found. 439 */ 440 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) 441 { 442 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); 443 TranslationBlock *tb; 444 struct tb_tc s = { .ptr = (void *)tc_ptr }; 445 446 qemu_mutex_lock(&rt->lock); 447 tb = g_tree_lookup(rt->tree, &s); 448 qemu_mutex_unlock(&rt->lock); 449 return tb; 450 } 451 452 static void tcg_region_tree_lock_all(void) 453 { 454 size_t i; 455 456 for (i = 0; i < region.n; i++) { 457 struct tcg_region_tree *rt = region_trees + i * tree_size; 458 459 qemu_mutex_lock(&rt->lock); 460 } 461 } 462 463 static void tcg_region_tree_unlock_all(void) 464 { 465 size_t i; 466 467 for (i = 0; i < region.n; i++) { 468 struct tcg_region_tree *rt = region_trees + i * tree_size; 469 470 qemu_mutex_unlock(&rt->lock); 471 } 472 } 473 474 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) 475 { 476 size_t i; 477 478 tcg_region_tree_lock_all(); 479 for (i = 0; i < region.n; i++) { 480 struct tcg_region_tree *rt = region_trees + i * tree_size; 481 482 g_tree_foreach(rt->tree, func, user_data); 483 } 484 tcg_region_tree_unlock_all(); 485 } 486 487 size_t tcg_nb_tbs(void) 488 { 489 size_t nb_tbs = 0; 490 size_t i; 491 492 tcg_region_tree_lock_all(); 493 for (i = 0; i < region.n; i++) { 494 struct tcg_region_tree *rt = region_trees + i * tree_size; 495 496 nb_tbs += g_tree_nnodes(rt->tree); 497 } 498 tcg_region_tree_unlock_all(); 499 return nb_tbs; 500 } 501 502 static void tcg_region_tree_reset_all(void) 503 { 504 size_t i; 505 506 tcg_region_tree_lock_all(); 507 for (i = 0; i < region.n; i++) { 508 struct tcg_region_tree *rt = region_trees + i * tree_size; 509 510 /* Increment the refcount first so that destroy acts as a reset */ 511 g_tree_ref(rt->tree); 512 g_tree_destroy(rt->tree); 513 } 514 tcg_region_tree_unlock_all(); 515 } 516 517 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) 518 { 519 void *start, *end; 520 521 start = region.start_aligned + curr_region * region.stride; 522 end = start + region.size; 523 524 if (curr_region == 0) { 525 start = region.start; 526 } 527 if (curr_region == region.n - 1) { 528 end = region.end; 529 } 530 531 *pstart = start; 532 *pend = end; 533 } 534 535 static void tcg_region_assign(TCGContext *s, size_t curr_region) 536 { 537 void *start, *end; 538 539 tcg_region_bounds(curr_region, &start, &end); 540 541 s->code_gen_buffer = start; 542 s->code_gen_ptr = start; 543 s->code_gen_buffer_size = end - start; 544 s->code_gen_highwater = end - TCG_HIGHWATER; 545 } 546 547 static bool tcg_region_alloc__locked(TCGContext *s) 548 { 549 if (region.current == region.n) { 550 return true; 551 } 552 tcg_region_assign(s, region.current); 553 region.current++; 554 return false; 555 } 556 557 /* 558 * Request a new region once the one in use has filled up. 559 * Returns true on error. 560 */ 561 static bool tcg_region_alloc(TCGContext *s) 562 { 563 bool err; 564 /* read the region size now; alloc__locked will overwrite it on success */ 565 size_t size_full = s->code_gen_buffer_size; 566 567 qemu_mutex_lock(®ion.lock); 568 err = tcg_region_alloc__locked(s); 569 if (!err) { 570 region.agg_size_full += size_full - TCG_HIGHWATER; 571 } 572 qemu_mutex_unlock(®ion.lock); 573 return err; 574 } 575 576 /* 577 * Perform a context's first region allocation. 578 * This function does _not_ increment region.agg_size_full. 579 */ 580 static inline bool tcg_region_initial_alloc__locked(TCGContext *s) 581 { 582 return tcg_region_alloc__locked(s); 583 } 584 585 /* Call from a safe-work context */ 586 void tcg_region_reset_all(void) 587 { 588 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 589 unsigned int i; 590 591 qemu_mutex_lock(®ion.lock); 592 region.current = 0; 593 region.agg_size_full = 0; 594 595 for (i = 0; i < n_ctxs; i++) { 596 TCGContext *s = atomic_read(&tcg_ctxs[i]); 597 bool err = tcg_region_initial_alloc__locked(s); 598 599 g_assert(!err); 600 } 601 qemu_mutex_unlock(®ion.lock); 602 603 tcg_region_tree_reset_all(); 604 } 605 606 #ifdef CONFIG_USER_ONLY 607 static size_t tcg_n_regions(void) 608 { 609 return 1; 610 } 611 #else 612 /* 613 * It is likely that some vCPUs will translate more code than others, so we 614 * first try to set more regions than max_cpus, with those regions being of 615 * reasonable size. If that's not possible we make do by evenly dividing 616 * the code_gen_buffer among the vCPUs. 617 */ 618 static size_t tcg_n_regions(void) 619 { 620 size_t i; 621 622 /* Use a single region if all we have is one vCPU thread */ 623 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { 624 return 1; 625 } 626 627 /* Try to have more regions than max_cpus, with each region being >= 2 MB */ 628 for (i = 8; i > 0; i--) { 629 size_t regions_per_thread = i; 630 size_t region_size; 631 632 region_size = tcg_init_ctx.code_gen_buffer_size; 633 region_size /= max_cpus * regions_per_thread; 634 635 if (region_size >= 2 * 1024u * 1024) { 636 return max_cpus * regions_per_thread; 637 } 638 } 639 /* If we can't, then just allocate one region per vCPU thread */ 640 return max_cpus; 641 } 642 #endif 643 644 /* 645 * Initializes region partitioning. 646 * 647 * Called at init time from the parent thread (i.e. the one calling 648 * tcg_context_init), after the target's TCG globals have been set. 649 * 650 * Region partitioning works by splitting code_gen_buffer into separate regions, 651 * and then assigning regions to TCG threads so that the threads can translate 652 * code in parallel without synchronization. 653 * 654 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at 655 * least max_cpus regions in MTTCG. In !MTTCG we use a single region. 656 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) 657 * must have been parsed before calling this function, since it calls 658 * qemu_tcg_mttcg_enabled(). 659 * 660 * In user-mode we use a single region. Having multiple regions in user-mode 661 * is not supported, because the number of vCPU threads (recall that each thread 662 * spawned by the guest corresponds to a vCPU thread) is only bounded by the 663 * OS, and usually this number is huge (tens of thousands is not uncommon). 664 * Thus, given this large bound on the number of vCPU threads and the fact 665 * that code_gen_buffer is allocated at compile-time, we cannot guarantee 666 * that the availability of at least one region per vCPU thread. 667 * 668 * However, this user-mode limitation is unlikely to be a significant problem 669 * in practice. Multi-threaded guests share most if not all of their translated 670 * code, which makes parallel code generation less appealing than in softmmu. 671 */ 672 void tcg_region_init(void) 673 { 674 void *buf = tcg_init_ctx.code_gen_buffer; 675 void *aligned; 676 size_t size = tcg_init_ctx.code_gen_buffer_size; 677 size_t page_size = qemu_real_host_page_size; 678 size_t region_size; 679 size_t n_regions; 680 size_t i; 681 682 n_regions = tcg_n_regions(); 683 684 /* The first region will be 'aligned - buf' bytes larger than the others */ 685 aligned = QEMU_ALIGN_PTR_UP(buf, page_size); 686 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size); 687 /* 688 * Make region_size a multiple of page_size, using aligned as the start. 689 * As a result of this we might end up with a few extra pages at the end of 690 * the buffer; we will assign those to the last region. 691 */ 692 region_size = (size - (aligned - buf)) / n_regions; 693 region_size = QEMU_ALIGN_DOWN(region_size, page_size); 694 695 /* A region must have at least 2 pages; one code, one guard */ 696 g_assert(region_size >= 2 * page_size); 697 698 /* init the region struct */ 699 qemu_mutex_init(®ion.lock); 700 region.n = n_regions; 701 region.size = region_size - page_size; 702 region.stride = region_size; 703 region.start = buf; 704 region.start_aligned = aligned; 705 /* page-align the end, since its last page will be a guard page */ 706 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size); 707 /* account for that last guard page */ 708 region.end -= page_size; 709 710 /* set guard pages */ 711 for (i = 0; i < region.n; i++) { 712 void *start, *end; 713 int rc; 714 715 tcg_region_bounds(i, &start, &end); 716 rc = qemu_mprotect_none(end, page_size); 717 g_assert(!rc); 718 } 719 720 tcg_region_trees_init(); 721 722 /* In user-mode we support only one ctx, so do the initial allocation now */ 723 #ifdef CONFIG_USER_ONLY 724 { 725 bool err = tcg_region_initial_alloc__locked(tcg_ctx); 726 727 g_assert(!err); 728 } 729 #endif 730 } 731 732 /* 733 * All TCG threads except the parent (i.e. the one that called tcg_context_init 734 * and registered the target's TCG globals) must register with this function 735 * before initiating translation. 736 * 737 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation 738 * of tcg_region_init() for the reasoning behind this. 739 * 740 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in 741 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context 742 * is not used anymore for translation once this function is called. 743 * 744 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates 745 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode. 746 */ 747 #ifdef CONFIG_USER_ONLY 748 void tcg_register_thread(void) 749 { 750 tcg_ctx = &tcg_init_ctx; 751 } 752 #else 753 void tcg_register_thread(void) 754 { 755 TCGContext *s = g_malloc(sizeof(*s)); 756 unsigned int i, n; 757 bool err; 758 759 *s = tcg_init_ctx; 760 761 /* Relink mem_base. */ 762 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) { 763 if (tcg_init_ctx.temps[i].mem_base) { 764 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps; 765 tcg_debug_assert(b >= 0 && b < n); 766 s->temps[i].mem_base = &s->temps[b]; 767 } 768 } 769 770 /* Claim an entry in tcg_ctxs */ 771 n = atomic_fetch_inc(&n_tcg_ctxs); 772 g_assert(n < max_cpus); 773 atomic_set(&tcg_ctxs[n], s); 774 775 tcg_ctx = s; 776 qemu_mutex_lock(®ion.lock); 777 err = tcg_region_initial_alloc__locked(tcg_ctx); 778 g_assert(!err); 779 qemu_mutex_unlock(®ion.lock); 780 } 781 #endif /* !CONFIG_USER_ONLY */ 782 783 /* 784 * Returns the size (in bytes) of all translated code (i.e. from all regions) 785 * currently in the cache. 786 * See also: tcg_code_capacity() 787 * Do not confuse with tcg_current_code_size(); that one applies to a single 788 * TCG context. 789 */ 790 size_t tcg_code_size(void) 791 { 792 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 793 unsigned int i; 794 size_t total; 795 796 qemu_mutex_lock(®ion.lock); 797 total = region.agg_size_full; 798 for (i = 0; i < n_ctxs; i++) { 799 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 800 size_t size; 801 802 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer; 803 g_assert(size <= s->code_gen_buffer_size); 804 total += size; 805 } 806 qemu_mutex_unlock(®ion.lock); 807 return total; 808 } 809 810 /* 811 * Returns the code capacity (in bytes) of the entire cache, i.e. including all 812 * regions. 813 * See also: tcg_code_size() 814 */ 815 size_t tcg_code_capacity(void) 816 { 817 size_t guard_size, capacity; 818 819 /* no need for synchronization; these variables are set at init time */ 820 guard_size = region.stride - region.size; 821 capacity = region.end + guard_size - region.start; 822 capacity -= region.n * (guard_size + TCG_HIGHWATER); 823 return capacity; 824 } 825 826 size_t tcg_tb_phys_invalidate_count(void) 827 { 828 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 829 unsigned int i; 830 size_t total = 0; 831 832 for (i = 0; i < n_ctxs; i++) { 833 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 834 835 total += atomic_read(&s->tb_phys_invalidate_count); 836 } 837 return total; 838 } 839 840 /* pool based memory allocation */ 841 void *tcg_malloc_internal(TCGContext *s, int size) 842 { 843 TCGPool *p; 844 int pool_size; 845 846 if (size > TCG_POOL_CHUNK_SIZE) { 847 /* big malloc: insert a new pool (XXX: could optimize) */ 848 p = g_malloc(sizeof(TCGPool) + size); 849 p->size = size; 850 p->next = s->pool_first_large; 851 s->pool_first_large = p; 852 return p->data; 853 } else { 854 p = s->pool_current; 855 if (!p) { 856 p = s->pool_first; 857 if (!p) 858 goto new_pool; 859 } else { 860 if (!p->next) { 861 new_pool: 862 pool_size = TCG_POOL_CHUNK_SIZE; 863 p = g_malloc(sizeof(TCGPool) + pool_size); 864 p->size = pool_size; 865 p->next = NULL; 866 if (s->pool_current) 867 s->pool_current->next = p; 868 else 869 s->pool_first = p; 870 } else { 871 p = p->next; 872 } 873 } 874 } 875 s->pool_current = p; 876 s->pool_cur = p->data + size; 877 s->pool_end = p->data + p->size; 878 return p->data; 879 } 880 881 void tcg_pool_reset(TCGContext *s) 882 { 883 TCGPool *p, *t; 884 for (p = s->pool_first_large; p; p = t) { 885 t = p->next; 886 g_free(p); 887 } 888 s->pool_first_large = NULL; 889 s->pool_cur = s->pool_end = NULL; 890 s->pool_current = NULL; 891 } 892 893 typedef struct TCGHelperInfo { 894 void *func; 895 const char *name; 896 unsigned flags; 897 unsigned sizemask; 898 } TCGHelperInfo; 899 900 #include "exec/helper-proto.h" 901 902 static const TCGHelperInfo all_helpers[] = { 903 #include "exec/helper-tcg.h" 904 }; 905 static GHashTable *helper_table; 906 907 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)]; 908 static void process_op_defs(TCGContext *s); 909 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 910 TCGReg reg, const char *name); 911 912 void tcg_context_init(TCGContext *s) 913 { 914 int op, total_args, n, i; 915 TCGOpDef *def; 916 TCGArgConstraint *args_ct; 917 int *sorted_args; 918 TCGTemp *ts; 919 920 memset(s, 0, sizeof(*s)); 921 s->nb_globals = 0; 922 923 /* Count total number of arguments and allocate the corresponding 924 space */ 925 total_args = 0; 926 for(op = 0; op < NB_OPS; op++) { 927 def = &tcg_op_defs[op]; 928 n = def->nb_iargs + def->nb_oargs; 929 total_args += n; 930 } 931 932 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args); 933 sorted_args = g_malloc(sizeof(int) * total_args); 934 935 for(op = 0; op < NB_OPS; op++) { 936 def = &tcg_op_defs[op]; 937 def->args_ct = args_ct; 938 def->sorted_args = sorted_args; 939 n = def->nb_iargs + def->nb_oargs; 940 sorted_args += n; 941 args_ct += n; 942 } 943 944 /* Register helpers. */ 945 /* Use g_direct_hash/equal for direct pointer comparisons on func. */ 946 helper_table = g_hash_table_new(NULL, NULL); 947 948 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) { 949 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func, 950 (gpointer)&all_helpers[i]); 951 } 952 953 tcg_target_init(s); 954 process_op_defs(s); 955 956 /* Reverse the order of the saved registers, assuming they're all at 957 the start of tcg_target_reg_alloc_order. */ 958 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) { 959 int r = tcg_target_reg_alloc_order[n]; 960 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) { 961 break; 962 } 963 } 964 for (i = 0; i < n; ++i) { 965 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i]; 966 } 967 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) { 968 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i]; 969 } 970 971 tcg_ctx = s; 972 /* 973 * In user-mode we simply share the init context among threads, since we 974 * use a single region. See the documentation tcg_region_init() for the 975 * reasoning behind this. 976 * In softmmu we will have at most max_cpus TCG threads. 977 */ 978 #ifdef CONFIG_USER_ONLY 979 tcg_ctxs = &tcg_ctx; 980 n_tcg_ctxs = 1; 981 #else 982 tcg_ctxs = g_new(TCGContext *, max_cpus); 983 #endif 984 985 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0)); 986 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env"); 987 cpu_env = temp_tcgv_ptr(ts); 988 } 989 990 /* 991 * Allocate TBs right before their corresponding translated code, making 992 * sure that TBs and code are on different cache lines. 993 */ 994 TranslationBlock *tcg_tb_alloc(TCGContext *s) 995 { 996 uintptr_t align = qemu_icache_linesize; 997 TranslationBlock *tb; 998 void *next; 999 1000 retry: 1001 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align); 1002 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align); 1003 1004 if (unlikely(next > s->code_gen_highwater)) { 1005 if (tcg_region_alloc(s)) { 1006 return NULL; 1007 } 1008 goto retry; 1009 } 1010 atomic_set(&s->code_gen_ptr, next); 1011 s->data_gen_ptr = NULL; 1012 return tb; 1013 } 1014 1015 void tcg_prologue_init(TCGContext *s) 1016 { 1017 size_t prologue_size, total_size; 1018 void *buf0, *buf1; 1019 1020 /* Put the prologue at the beginning of code_gen_buffer. */ 1021 buf0 = s->code_gen_buffer; 1022 total_size = s->code_gen_buffer_size; 1023 s->code_ptr = buf0; 1024 s->code_buf = buf0; 1025 s->data_gen_ptr = NULL; 1026 s->code_gen_prologue = buf0; 1027 1028 /* Compute a high-water mark, at which we voluntarily flush the buffer 1029 and start over. The size here is arbitrary, significantly larger 1030 than we expect the code generation for any one opcode to require. */ 1031 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER); 1032 1033 #ifdef TCG_TARGET_NEED_POOL_LABELS 1034 s->pool_labels = NULL; 1035 #endif 1036 1037 /* Generate the prologue. */ 1038 tcg_target_qemu_prologue(s); 1039 1040 #ifdef TCG_TARGET_NEED_POOL_LABELS 1041 /* Allow the prologue to put e.g. guest_base into a pool entry. */ 1042 { 1043 int result = tcg_out_pool_finalize(s); 1044 tcg_debug_assert(result == 0); 1045 } 1046 #endif 1047 1048 buf1 = s->code_ptr; 1049 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1); 1050 1051 /* Deduct the prologue from the buffer. */ 1052 prologue_size = tcg_current_code_size(s); 1053 s->code_gen_ptr = buf1; 1054 s->code_gen_buffer = buf1; 1055 s->code_buf = buf1; 1056 total_size -= prologue_size; 1057 s->code_gen_buffer_size = total_size; 1058 1059 tcg_register_jit(s->code_gen_buffer, total_size); 1060 1061 #ifdef DEBUG_DISAS 1062 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { 1063 qemu_log_lock(); 1064 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size); 1065 if (s->data_gen_ptr) { 1066 size_t code_size = s->data_gen_ptr - buf0; 1067 size_t data_size = prologue_size - code_size; 1068 size_t i; 1069 1070 log_disas(buf0, code_size); 1071 1072 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1073 if (sizeof(tcg_target_ulong) == 8) { 1074 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1075 (uintptr_t)s->data_gen_ptr + i, 1076 *(uint64_t *)(s->data_gen_ptr + i)); 1077 } else { 1078 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1079 (uintptr_t)s->data_gen_ptr + i, 1080 *(uint32_t *)(s->data_gen_ptr + i)); 1081 } 1082 } 1083 } else { 1084 log_disas(buf0, prologue_size); 1085 } 1086 qemu_log("\n"); 1087 qemu_log_flush(); 1088 qemu_log_unlock(); 1089 } 1090 #endif 1091 1092 /* Assert that goto_ptr is implemented completely. */ 1093 if (TCG_TARGET_HAS_goto_ptr) { 1094 tcg_debug_assert(s->code_gen_epilogue != NULL); 1095 } 1096 } 1097 1098 void tcg_func_start(TCGContext *s) 1099 { 1100 tcg_pool_reset(s); 1101 s->nb_temps = s->nb_globals; 1102 1103 /* No temps have been previously allocated for size or locality. */ 1104 memset(s->free_temps, 0, sizeof(s->free_temps)); 1105 1106 s->nb_ops = 0; 1107 s->nb_labels = 0; 1108 s->current_frame_offset = s->frame_start; 1109 1110 #ifdef CONFIG_DEBUG_TCG 1111 s->goto_tb_issue_mask = 0; 1112 #endif 1113 1114 QTAILQ_INIT(&s->ops); 1115 QTAILQ_INIT(&s->free_ops); 1116 QSIMPLEQ_INIT(&s->labels); 1117 } 1118 1119 static inline TCGTemp *tcg_temp_alloc(TCGContext *s) 1120 { 1121 int n = s->nb_temps++; 1122 tcg_debug_assert(n < TCG_MAX_TEMPS); 1123 return memset(&s->temps[n], 0, sizeof(TCGTemp)); 1124 } 1125 1126 static inline TCGTemp *tcg_global_alloc(TCGContext *s) 1127 { 1128 TCGTemp *ts; 1129 1130 tcg_debug_assert(s->nb_globals == s->nb_temps); 1131 s->nb_globals++; 1132 ts = tcg_temp_alloc(s); 1133 ts->temp_global = 1; 1134 1135 return ts; 1136 } 1137 1138 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 1139 TCGReg reg, const char *name) 1140 { 1141 TCGTemp *ts; 1142 1143 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) { 1144 tcg_abort(); 1145 } 1146 1147 ts = tcg_global_alloc(s); 1148 ts->base_type = type; 1149 ts->type = type; 1150 ts->fixed_reg = 1; 1151 ts->reg = reg; 1152 ts->name = name; 1153 tcg_regset_set_reg(s->reserved_regs, reg); 1154 1155 return ts; 1156 } 1157 1158 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size) 1159 { 1160 s->frame_start = start; 1161 s->frame_end = start + size; 1162 s->frame_temp 1163 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame"); 1164 } 1165 1166 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base, 1167 intptr_t offset, const char *name) 1168 { 1169 TCGContext *s = tcg_ctx; 1170 TCGTemp *base_ts = tcgv_ptr_temp(base); 1171 TCGTemp *ts = tcg_global_alloc(s); 1172 int indirect_reg = 0, bigendian = 0; 1173 #ifdef HOST_WORDS_BIGENDIAN 1174 bigendian = 1; 1175 #endif 1176 1177 if (!base_ts->fixed_reg) { 1178 /* We do not support double-indirect registers. */ 1179 tcg_debug_assert(!base_ts->indirect_reg); 1180 base_ts->indirect_base = 1; 1181 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64 1182 ? 2 : 1); 1183 indirect_reg = 1; 1184 } 1185 1186 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1187 TCGTemp *ts2 = tcg_global_alloc(s); 1188 char buf[64]; 1189 1190 ts->base_type = TCG_TYPE_I64; 1191 ts->type = TCG_TYPE_I32; 1192 ts->indirect_reg = indirect_reg; 1193 ts->mem_allocated = 1; 1194 ts->mem_base = base_ts; 1195 ts->mem_offset = offset + bigendian * 4; 1196 pstrcpy(buf, sizeof(buf), name); 1197 pstrcat(buf, sizeof(buf), "_0"); 1198 ts->name = strdup(buf); 1199 1200 tcg_debug_assert(ts2 == ts + 1); 1201 ts2->base_type = TCG_TYPE_I64; 1202 ts2->type = TCG_TYPE_I32; 1203 ts2->indirect_reg = indirect_reg; 1204 ts2->mem_allocated = 1; 1205 ts2->mem_base = base_ts; 1206 ts2->mem_offset = offset + (1 - bigendian) * 4; 1207 pstrcpy(buf, sizeof(buf), name); 1208 pstrcat(buf, sizeof(buf), "_1"); 1209 ts2->name = strdup(buf); 1210 } else { 1211 ts->base_type = type; 1212 ts->type = type; 1213 ts->indirect_reg = indirect_reg; 1214 ts->mem_allocated = 1; 1215 ts->mem_base = base_ts; 1216 ts->mem_offset = offset; 1217 ts->name = name; 1218 } 1219 return ts; 1220 } 1221 1222 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local) 1223 { 1224 TCGContext *s = tcg_ctx; 1225 TCGTemp *ts; 1226 int idx, k; 1227 1228 k = type + (temp_local ? TCG_TYPE_COUNT : 0); 1229 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS); 1230 if (idx < TCG_MAX_TEMPS) { 1231 /* There is already an available temp with the right type. */ 1232 clear_bit(idx, s->free_temps[k].l); 1233 1234 ts = &s->temps[idx]; 1235 ts->temp_allocated = 1; 1236 tcg_debug_assert(ts->base_type == type); 1237 tcg_debug_assert(ts->temp_local == temp_local); 1238 } else { 1239 ts = tcg_temp_alloc(s); 1240 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1241 TCGTemp *ts2 = tcg_temp_alloc(s); 1242 1243 ts->base_type = type; 1244 ts->type = TCG_TYPE_I32; 1245 ts->temp_allocated = 1; 1246 ts->temp_local = temp_local; 1247 1248 tcg_debug_assert(ts2 == ts + 1); 1249 ts2->base_type = TCG_TYPE_I64; 1250 ts2->type = TCG_TYPE_I32; 1251 ts2->temp_allocated = 1; 1252 ts2->temp_local = temp_local; 1253 } else { 1254 ts->base_type = type; 1255 ts->type = type; 1256 ts->temp_allocated = 1; 1257 ts->temp_local = temp_local; 1258 } 1259 } 1260 1261 #if defined(CONFIG_DEBUG_TCG) 1262 s->temps_in_use++; 1263 #endif 1264 return ts; 1265 } 1266 1267 TCGv_vec tcg_temp_new_vec(TCGType type) 1268 { 1269 TCGTemp *t; 1270 1271 #ifdef CONFIG_DEBUG_TCG 1272 switch (type) { 1273 case TCG_TYPE_V64: 1274 assert(TCG_TARGET_HAS_v64); 1275 break; 1276 case TCG_TYPE_V128: 1277 assert(TCG_TARGET_HAS_v128); 1278 break; 1279 case TCG_TYPE_V256: 1280 assert(TCG_TARGET_HAS_v256); 1281 break; 1282 default: 1283 g_assert_not_reached(); 1284 } 1285 #endif 1286 1287 t = tcg_temp_new_internal(type, 0); 1288 return temp_tcgv_vec(t); 1289 } 1290 1291 /* Create a new temp of the same type as an existing temp. */ 1292 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match) 1293 { 1294 TCGTemp *t = tcgv_vec_temp(match); 1295 1296 tcg_debug_assert(t->temp_allocated != 0); 1297 1298 t = tcg_temp_new_internal(t->base_type, 0); 1299 return temp_tcgv_vec(t); 1300 } 1301 1302 void tcg_temp_free_internal(TCGTemp *ts) 1303 { 1304 TCGContext *s = tcg_ctx; 1305 int k, idx; 1306 1307 #if defined(CONFIG_DEBUG_TCG) 1308 s->temps_in_use--; 1309 if (s->temps_in_use < 0) { 1310 fprintf(stderr, "More temporaries freed than allocated!\n"); 1311 } 1312 #endif 1313 1314 tcg_debug_assert(ts->temp_global == 0); 1315 tcg_debug_assert(ts->temp_allocated != 0); 1316 ts->temp_allocated = 0; 1317 1318 idx = temp_idx(ts); 1319 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0); 1320 set_bit(idx, s->free_temps[k].l); 1321 } 1322 1323 TCGv_i32 tcg_const_i32(int32_t val) 1324 { 1325 TCGv_i32 t0; 1326 t0 = tcg_temp_new_i32(); 1327 tcg_gen_movi_i32(t0, val); 1328 return t0; 1329 } 1330 1331 TCGv_i64 tcg_const_i64(int64_t val) 1332 { 1333 TCGv_i64 t0; 1334 t0 = tcg_temp_new_i64(); 1335 tcg_gen_movi_i64(t0, val); 1336 return t0; 1337 } 1338 1339 TCGv_i32 tcg_const_local_i32(int32_t val) 1340 { 1341 TCGv_i32 t0; 1342 t0 = tcg_temp_local_new_i32(); 1343 tcg_gen_movi_i32(t0, val); 1344 return t0; 1345 } 1346 1347 TCGv_i64 tcg_const_local_i64(int64_t val) 1348 { 1349 TCGv_i64 t0; 1350 t0 = tcg_temp_local_new_i64(); 1351 tcg_gen_movi_i64(t0, val); 1352 return t0; 1353 } 1354 1355 #if defined(CONFIG_DEBUG_TCG) 1356 void tcg_clear_temp_count(void) 1357 { 1358 TCGContext *s = tcg_ctx; 1359 s->temps_in_use = 0; 1360 } 1361 1362 int tcg_check_temp_count(void) 1363 { 1364 TCGContext *s = tcg_ctx; 1365 if (s->temps_in_use) { 1366 /* Clear the count so that we don't give another 1367 * warning immediately next time around. 1368 */ 1369 s->temps_in_use = 0; 1370 return 1; 1371 } 1372 return 0; 1373 } 1374 #endif 1375 1376 /* Return true if OP may appear in the opcode stream. 1377 Test the runtime variable that controls each opcode. */ 1378 bool tcg_op_supported(TCGOpcode op) 1379 { 1380 const bool have_vec 1381 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256; 1382 1383 switch (op) { 1384 case INDEX_op_discard: 1385 case INDEX_op_set_label: 1386 case INDEX_op_call: 1387 case INDEX_op_br: 1388 case INDEX_op_mb: 1389 case INDEX_op_insn_start: 1390 case INDEX_op_exit_tb: 1391 case INDEX_op_goto_tb: 1392 case INDEX_op_qemu_ld_i32: 1393 case INDEX_op_qemu_st_i32: 1394 case INDEX_op_qemu_ld_i64: 1395 case INDEX_op_qemu_st_i64: 1396 return true; 1397 1398 case INDEX_op_goto_ptr: 1399 return TCG_TARGET_HAS_goto_ptr; 1400 1401 case INDEX_op_mov_i32: 1402 case INDEX_op_movi_i32: 1403 case INDEX_op_setcond_i32: 1404 case INDEX_op_brcond_i32: 1405 case INDEX_op_ld8u_i32: 1406 case INDEX_op_ld8s_i32: 1407 case INDEX_op_ld16u_i32: 1408 case INDEX_op_ld16s_i32: 1409 case INDEX_op_ld_i32: 1410 case INDEX_op_st8_i32: 1411 case INDEX_op_st16_i32: 1412 case INDEX_op_st_i32: 1413 case INDEX_op_add_i32: 1414 case INDEX_op_sub_i32: 1415 case INDEX_op_mul_i32: 1416 case INDEX_op_and_i32: 1417 case INDEX_op_or_i32: 1418 case INDEX_op_xor_i32: 1419 case INDEX_op_shl_i32: 1420 case INDEX_op_shr_i32: 1421 case INDEX_op_sar_i32: 1422 return true; 1423 1424 case INDEX_op_movcond_i32: 1425 return TCG_TARGET_HAS_movcond_i32; 1426 case INDEX_op_div_i32: 1427 case INDEX_op_divu_i32: 1428 return TCG_TARGET_HAS_div_i32; 1429 case INDEX_op_rem_i32: 1430 case INDEX_op_remu_i32: 1431 return TCG_TARGET_HAS_rem_i32; 1432 case INDEX_op_div2_i32: 1433 case INDEX_op_divu2_i32: 1434 return TCG_TARGET_HAS_div2_i32; 1435 case INDEX_op_rotl_i32: 1436 case INDEX_op_rotr_i32: 1437 return TCG_TARGET_HAS_rot_i32; 1438 case INDEX_op_deposit_i32: 1439 return TCG_TARGET_HAS_deposit_i32; 1440 case INDEX_op_extract_i32: 1441 return TCG_TARGET_HAS_extract_i32; 1442 case INDEX_op_sextract_i32: 1443 return TCG_TARGET_HAS_sextract_i32; 1444 case INDEX_op_extract2_i32: 1445 return TCG_TARGET_HAS_extract2_i32; 1446 case INDEX_op_add2_i32: 1447 return TCG_TARGET_HAS_add2_i32; 1448 case INDEX_op_sub2_i32: 1449 return TCG_TARGET_HAS_sub2_i32; 1450 case INDEX_op_mulu2_i32: 1451 return TCG_TARGET_HAS_mulu2_i32; 1452 case INDEX_op_muls2_i32: 1453 return TCG_TARGET_HAS_muls2_i32; 1454 case INDEX_op_muluh_i32: 1455 return TCG_TARGET_HAS_muluh_i32; 1456 case INDEX_op_mulsh_i32: 1457 return TCG_TARGET_HAS_mulsh_i32; 1458 case INDEX_op_ext8s_i32: 1459 return TCG_TARGET_HAS_ext8s_i32; 1460 case INDEX_op_ext16s_i32: 1461 return TCG_TARGET_HAS_ext16s_i32; 1462 case INDEX_op_ext8u_i32: 1463 return TCG_TARGET_HAS_ext8u_i32; 1464 case INDEX_op_ext16u_i32: 1465 return TCG_TARGET_HAS_ext16u_i32; 1466 case INDEX_op_bswap16_i32: 1467 return TCG_TARGET_HAS_bswap16_i32; 1468 case INDEX_op_bswap32_i32: 1469 return TCG_TARGET_HAS_bswap32_i32; 1470 case INDEX_op_not_i32: 1471 return TCG_TARGET_HAS_not_i32; 1472 case INDEX_op_neg_i32: 1473 return TCG_TARGET_HAS_neg_i32; 1474 case INDEX_op_andc_i32: 1475 return TCG_TARGET_HAS_andc_i32; 1476 case INDEX_op_orc_i32: 1477 return TCG_TARGET_HAS_orc_i32; 1478 case INDEX_op_eqv_i32: 1479 return TCG_TARGET_HAS_eqv_i32; 1480 case INDEX_op_nand_i32: 1481 return TCG_TARGET_HAS_nand_i32; 1482 case INDEX_op_nor_i32: 1483 return TCG_TARGET_HAS_nor_i32; 1484 case INDEX_op_clz_i32: 1485 return TCG_TARGET_HAS_clz_i32; 1486 case INDEX_op_ctz_i32: 1487 return TCG_TARGET_HAS_ctz_i32; 1488 case INDEX_op_ctpop_i32: 1489 return TCG_TARGET_HAS_ctpop_i32; 1490 1491 case INDEX_op_brcond2_i32: 1492 case INDEX_op_setcond2_i32: 1493 return TCG_TARGET_REG_BITS == 32; 1494 1495 case INDEX_op_mov_i64: 1496 case INDEX_op_movi_i64: 1497 case INDEX_op_setcond_i64: 1498 case INDEX_op_brcond_i64: 1499 case INDEX_op_ld8u_i64: 1500 case INDEX_op_ld8s_i64: 1501 case INDEX_op_ld16u_i64: 1502 case INDEX_op_ld16s_i64: 1503 case INDEX_op_ld32u_i64: 1504 case INDEX_op_ld32s_i64: 1505 case INDEX_op_ld_i64: 1506 case INDEX_op_st8_i64: 1507 case INDEX_op_st16_i64: 1508 case INDEX_op_st32_i64: 1509 case INDEX_op_st_i64: 1510 case INDEX_op_add_i64: 1511 case INDEX_op_sub_i64: 1512 case INDEX_op_mul_i64: 1513 case INDEX_op_and_i64: 1514 case INDEX_op_or_i64: 1515 case INDEX_op_xor_i64: 1516 case INDEX_op_shl_i64: 1517 case INDEX_op_shr_i64: 1518 case INDEX_op_sar_i64: 1519 case INDEX_op_ext_i32_i64: 1520 case INDEX_op_extu_i32_i64: 1521 return TCG_TARGET_REG_BITS == 64; 1522 1523 case INDEX_op_movcond_i64: 1524 return TCG_TARGET_HAS_movcond_i64; 1525 case INDEX_op_div_i64: 1526 case INDEX_op_divu_i64: 1527 return TCG_TARGET_HAS_div_i64; 1528 case INDEX_op_rem_i64: 1529 case INDEX_op_remu_i64: 1530 return TCG_TARGET_HAS_rem_i64; 1531 case INDEX_op_div2_i64: 1532 case INDEX_op_divu2_i64: 1533 return TCG_TARGET_HAS_div2_i64; 1534 case INDEX_op_rotl_i64: 1535 case INDEX_op_rotr_i64: 1536 return TCG_TARGET_HAS_rot_i64; 1537 case INDEX_op_deposit_i64: 1538 return TCG_TARGET_HAS_deposit_i64; 1539 case INDEX_op_extract_i64: 1540 return TCG_TARGET_HAS_extract_i64; 1541 case INDEX_op_sextract_i64: 1542 return TCG_TARGET_HAS_sextract_i64; 1543 case INDEX_op_extract2_i64: 1544 return TCG_TARGET_HAS_extract2_i64; 1545 case INDEX_op_extrl_i64_i32: 1546 return TCG_TARGET_HAS_extrl_i64_i32; 1547 case INDEX_op_extrh_i64_i32: 1548 return TCG_TARGET_HAS_extrh_i64_i32; 1549 case INDEX_op_ext8s_i64: 1550 return TCG_TARGET_HAS_ext8s_i64; 1551 case INDEX_op_ext16s_i64: 1552 return TCG_TARGET_HAS_ext16s_i64; 1553 case INDEX_op_ext32s_i64: 1554 return TCG_TARGET_HAS_ext32s_i64; 1555 case INDEX_op_ext8u_i64: 1556 return TCG_TARGET_HAS_ext8u_i64; 1557 case INDEX_op_ext16u_i64: 1558 return TCG_TARGET_HAS_ext16u_i64; 1559 case INDEX_op_ext32u_i64: 1560 return TCG_TARGET_HAS_ext32u_i64; 1561 case INDEX_op_bswap16_i64: 1562 return TCG_TARGET_HAS_bswap16_i64; 1563 case INDEX_op_bswap32_i64: 1564 return TCG_TARGET_HAS_bswap32_i64; 1565 case INDEX_op_bswap64_i64: 1566 return TCG_TARGET_HAS_bswap64_i64; 1567 case INDEX_op_not_i64: 1568 return TCG_TARGET_HAS_not_i64; 1569 case INDEX_op_neg_i64: 1570 return TCG_TARGET_HAS_neg_i64; 1571 case INDEX_op_andc_i64: 1572 return TCG_TARGET_HAS_andc_i64; 1573 case INDEX_op_orc_i64: 1574 return TCG_TARGET_HAS_orc_i64; 1575 case INDEX_op_eqv_i64: 1576 return TCG_TARGET_HAS_eqv_i64; 1577 case INDEX_op_nand_i64: 1578 return TCG_TARGET_HAS_nand_i64; 1579 case INDEX_op_nor_i64: 1580 return TCG_TARGET_HAS_nor_i64; 1581 case INDEX_op_clz_i64: 1582 return TCG_TARGET_HAS_clz_i64; 1583 case INDEX_op_ctz_i64: 1584 return TCG_TARGET_HAS_ctz_i64; 1585 case INDEX_op_ctpop_i64: 1586 return TCG_TARGET_HAS_ctpop_i64; 1587 case INDEX_op_add2_i64: 1588 return TCG_TARGET_HAS_add2_i64; 1589 case INDEX_op_sub2_i64: 1590 return TCG_TARGET_HAS_sub2_i64; 1591 case INDEX_op_mulu2_i64: 1592 return TCG_TARGET_HAS_mulu2_i64; 1593 case INDEX_op_muls2_i64: 1594 return TCG_TARGET_HAS_muls2_i64; 1595 case INDEX_op_muluh_i64: 1596 return TCG_TARGET_HAS_muluh_i64; 1597 case INDEX_op_mulsh_i64: 1598 return TCG_TARGET_HAS_mulsh_i64; 1599 1600 case INDEX_op_mov_vec: 1601 case INDEX_op_dup_vec: 1602 case INDEX_op_dupi_vec: 1603 case INDEX_op_dupm_vec: 1604 case INDEX_op_ld_vec: 1605 case INDEX_op_st_vec: 1606 case INDEX_op_add_vec: 1607 case INDEX_op_sub_vec: 1608 case INDEX_op_and_vec: 1609 case INDEX_op_or_vec: 1610 case INDEX_op_xor_vec: 1611 case INDEX_op_cmp_vec: 1612 return have_vec; 1613 case INDEX_op_dup2_vec: 1614 return have_vec && TCG_TARGET_REG_BITS == 32; 1615 case INDEX_op_not_vec: 1616 return have_vec && TCG_TARGET_HAS_not_vec; 1617 case INDEX_op_neg_vec: 1618 return have_vec && TCG_TARGET_HAS_neg_vec; 1619 case INDEX_op_abs_vec: 1620 return have_vec && TCG_TARGET_HAS_abs_vec; 1621 case INDEX_op_andc_vec: 1622 return have_vec && TCG_TARGET_HAS_andc_vec; 1623 case INDEX_op_orc_vec: 1624 return have_vec && TCG_TARGET_HAS_orc_vec; 1625 case INDEX_op_mul_vec: 1626 return have_vec && TCG_TARGET_HAS_mul_vec; 1627 case INDEX_op_shli_vec: 1628 case INDEX_op_shri_vec: 1629 case INDEX_op_sari_vec: 1630 return have_vec && TCG_TARGET_HAS_shi_vec; 1631 case INDEX_op_shls_vec: 1632 case INDEX_op_shrs_vec: 1633 case INDEX_op_sars_vec: 1634 return have_vec && TCG_TARGET_HAS_shs_vec; 1635 case INDEX_op_shlv_vec: 1636 case INDEX_op_shrv_vec: 1637 case INDEX_op_sarv_vec: 1638 return have_vec && TCG_TARGET_HAS_shv_vec; 1639 case INDEX_op_ssadd_vec: 1640 case INDEX_op_usadd_vec: 1641 case INDEX_op_sssub_vec: 1642 case INDEX_op_ussub_vec: 1643 return have_vec && TCG_TARGET_HAS_sat_vec; 1644 case INDEX_op_smin_vec: 1645 case INDEX_op_umin_vec: 1646 case INDEX_op_smax_vec: 1647 case INDEX_op_umax_vec: 1648 return have_vec && TCG_TARGET_HAS_minmax_vec; 1649 1650 default: 1651 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS); 1652 return true; 1653 } 1654 } 1655 1656 /* Note: we convert the 64 bit args to 32 bit and do some alignment 1657 and endian swap. Maybe it would be better to do the alignment 1658 and endian swap in tcg_reg_alloc_call(). */ 1659 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args) 1660 { 1661 int i, real_args, nb_rets, pi; 1662 unsigned sizemask, flags; 1663 TCGHelperInfo *info; 1664 TCGOp *op; 1665 1666 info = g_hash_table_lookup(helper_table, (gpointer)func); 1667 flags = info->flags; 1668 sizemask = info->sizemask; 1669 1670 #if defined(__sparc__) && !defined(__arch64__) \ 1671 && !defined(CONFIG_TCG_INTERPRETER) 1672 /* We have 64-bit values in one register, but need to pass as two 1673 separate parameters. Split them. */ 1674 int orig_sizemask = sizemask; 1675 int orig_nargs = nargs; 1676 TCGv_i64 retl, reth; 1677 TCGTemp *split_args[MAX_OPC_PARAM]; 1678 1679 retl = NULL; 1680 reth = NULL; 1681 if (sizemask != 0) { 1682 for (i = real_args = 0; i < nargs; ++i) { 1683 int is_64bit = sizemask & (1 << (i+1)*2); 1684 if (is_64bit) { 1685 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1686 TCGv_i32 h = tcg_temp_new_i32(); 1687 TCGv_i32 l = tcg_temp_new_i32(); 1688 tcg_gen_extr_i64_i32(l, h, orig); 1689 split_args[real_args++] = tcgv_i32_temp(h); 1690 split_args[real_args++] = tcgv_i32_temp(l); 1691 } else { 1692 split_args[real_args++] = args[i]; 1693 } 1694 } 1695 nargs = real_args; 1696 args = split_args; 1697 sizemask = 0; 1698 } 1699 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1700 for (i = 0; i < nargs; ++i) { 1701 int is_64bit = sizemask & (1 << (i+1)*2); 1702 int is_signed = sizemask & (2 << (i+1)*2); 1703 if (!is_64bit) { 1704 TCGv_i64 temp = tcg_temp_new_i64(); 1705 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1706 if (is_signed) { 1707 tcg_gen_ext32s_i64(temp, orig); 1708 } else { 1709 tcg_gen_ext32u_i64(temp, orig); 1710 } 1711 args[i] = tcgv_i64_temp(temp); 1712 } 1713 } 1714 #endif /* TCG_TARGET_EXTEND_ARGS */ 1715 1716 op = tcg_emit_op(INDEX_op_call); 1717 1718 pi = 0; 1719 if (ret != NULL) { 1720 #if defined(__sparc__) && !defined(__arch64__) \ 1721 && !defined(CONFIG_TCG_INTERPRETER) 1722 if (orig_sizemask & 1) { 1723 /* The 32-bit ABI is going to return the 64-bit value in 1724 the %o0/%o1 register pair. Prepare for this by using 1725 two return temporaries, and reassemble below. */ 1726 retl = tcg_temp_new_i64(); 1727 reth = tcg_temp_new_i64(); 1728 op->args[pi++] = tcgv_i64_arg(reth); 1729 op->args[pi++] = tcgv_i64_arg(retl); 1730 nb_rets = 2; 1731 } else { 1732 op->args[pi++] = temp_arg(ret); 1733 nb_rets = 1; 1734 } 1735 #else 1736 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) { 1737 #ifdef HOST_WORDS_BIGENDIAN 1738 op->args[pi++] = temp_arg(ret + 1); 1739 op->args[pi++] = temp_arg(ret); 1740 #else 1741 op->args[pi++] = temp_arg(ret); 1742 op->args[pi++] = temp_arg(ret + 1); 1743 #endif 1744 nb_rets = 2; 1745 } else { 1746 op->args[pi++] = temp_arg(ret); 1747 nb_rets = 1; 1748 } 1749 #endif 1750 } else { 1751 nb_rets = 0; 1752 } 1753 TCGOP_CALLO(op) = nb_rets; 1754 1755 real_args = 0; 1756 for (i = 0; i < nargs; i++) { 1757 int is_64bit = sizemask & (1 << (i+1)*2); 1758 if (TCG_TARGET_REG_BITS < 64 && is_64bit) { 1759 #ifdef TCG_TARGET_CALL_ALIGN_ARGS 1760 /* some targets want aligned 64 bit args */ 1761 if (real_args & 1) { 1762 op->args[pi++] = TCG_CALL_DUMMY_ARG; 1763 real_args++; 1764 } 1765 #endif 1766 /* If stack grows up, then we will be placing successive 1767 arguments at lower addresses, which means we need to 1768 reverse the order compared to how we would normally 1769 treat either big or little-endian. For those arguments 1770 that will wind up in registers, this still works for 1771 HPPA (the only current STACK_GROWSUP target) since the 1772 argument registers are *also* allocated in decreasing 1773 order. If another such target is added, this logic may 1774 have to get more complicated to differentiate between 1775 stack arguments and register arguments. */ 1776 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP) 1777 op->args[pi++] = temp_arg(args[i] + 1); 1778 op->args[pi++] = temp_arg(args[i]); 1779 #else 1780 op->args[pi++] = temp_arg(args[i]); 1781 op->args[pi++] = temp_arg(args[i] + 1); 1782 #endif 1783 real_args += 2; 1784 continue; 1785 } 1786 1787 op->args[pi++] = temp_arg(args[i]); 1788 real_args++; 1789 } 1790 op->args[pi++] = (uintptr_t)func; 1791 op->args[pi++] = flags; 1792 TCGOP_CALLI(op) = real_args; 1793 1794 /* Make sure the fields didn't overflow. */ 1795 tcg_debug_assert(TCGOP_CALLI(op) == real_args); 1796 tcg_debug_assert(pi <= ARRAY_SIZE(op->args)); 1797 1798 #if defined(__sparc__) && !defined(__arch64__) \ 1799 && !defined(CONFIG_TCG_INTERPRETER) 1800 /* Free all of the parts we allocated above. */ 1801 for (i = real_args = 0; i < orig_nargs; ++i) { 1802 int is_64bit = orig_sizemask & (1 << (i+1)*2); 1803 if (is_64bit) { 1804 tcg_temp_free_internal(args[real_args++]); 1805 tcg_temp_free_internal(args[real_args++]); 1806 } else { 1807 real_args++; 1808 } 1809 } 1810 if (orig_sizemask & 1) { 1811 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them. 1812 Note that describing these as TCGv_i64 eliminates an unnecessary 1813 zero-extension that tcg_gen_concat_i32_i64 would create. */ 1814 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth); 1815 tcg_temp_free_i64(retl); 1816 tcg_temp_free_i64(reth); 1817 } 1818 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1819 for (i = 0; i < nargs; ++i) { 1820 int is_64bit = sizemask & (1 << (i+1)*2); 1821 if (!is_64bit) { 1822 tcg_temp_free_internal(args[i]); 1823 } 1824 } 1825 #endif /* TCG_TARGET_EXTEND_ARGS */ 1826 } 1827 1828 static void tcg_reg_alloc_start(TCGContext *s) 1829 { 1830 int i, n; 1831 TCGTemp *ts; 1832 1833 for (i = 0, n = s->nb_globals; i < n; i++) { 1834 ts = &s->temps[i]; 1835 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM); 1836 } 1837 for (n = s->nb_temps; i < n; i++) { 1838 ts = &s->temps[i]; 1839 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 1840 ts->mem_allocated = 0; 1841 ts->fixed_reg = 0; 1842 } 1843 1844 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp)); 1845 } 1846 1847 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size, 1848 TCGTemp *ts) 1849 { 1850 int idx = temp_idx(ts); 1851 1852 if (ts->temp_global) { 1853 pstrcpy(buf, buf_size, ts->name); 1854 } else if (ts->temp_local) { 1855 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals); 1856 } else { 1857 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals); 1858 } 1859 return buf; 1860 } 1861 1862 static char *tcg_get_arg_str(TCGContext *s, char *buf, 1863 int buf_size, TCGArg arg) 1864 { 1865 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg)); 1866 } 1867 1868 /* Find helper name. */ 1869 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val) 1870 { 1871 const char *ret = NULL; 1872 if (helper_table) { 1873 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val); 1874 if (info) { 1875 ret = info->name; 1876 } 1877 } 1878 return ret; 1879 } 1880 1881 static const char * const cond_name[] = 1882 { 1883 [TCG_COND_NEVER] = "never", 1884 [TCG_COND_ALWAYS] = "always", 1885 [TCG_COND_EQ] = "eq", 1886 [TCG_COND_NE] = "ne", 1887 [TCG_COND_LT] = "lt", 1888 [TCG_COND_GE] = "ge", 1889 [TCG_COND_LE] = "le", 1890 [TCG_COND_GT] = "gt", 1891 [TCG_COND_LTU] = "ltu", 1892 [TCG_COND_GEU] = "geu", 1893 [TCG_COND_LEU] = "leu", 1894 [TCG_COND_GTU] = "gtu" 1895 }; 1896 1897 static const char * const ldst_name[] = 1898 { 1899 [MO_UB] = "ub", 1900 [MO_SB] = "sb", 1901 [MO_LEUW] = "leuw", 1902 [MO_LESW] = "lesw", 1903 [MO_LEUL] = "leul", 1904 [MO_LESL] = "lesl", 1905 [MO_LEQ] = "leq", 1906 [MO_BEUW] = "beuw", 1907 [MO_BESW] = "besw", 1908 [MO_BEUL] = "beul", 1909 [MO_BESL] = "besl", 1910 [MO_BEQ] = "beq", 1911 }; 1912 1913 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = { 1914 #ifdef ALIGNED_ONLY 1915 [MO_UNALN >> MO_ASHIFT] = "un+", 1916 [MO_ALIGN >> MO_ASHIFT] = "", 1917 #else 1918 [MO_UNALN >> MO_ASHIFT] = "", 1919 [MO_ALIGN >> MO_ASHIFT] = "al+", 1920 #endif 1921 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+", 1922 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+", 1923 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+", 1924 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+", 1925 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+", 1926 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+", 1927 }; 1928 1929 static inline bool tcg_regset_single(TCGRegSet d) 1930 { 1931 return (d & (d - 1)) == 0; 1932 } 1933 1934 static inline TCGReg tcg_regset_first(TCGRegSet d) 1935 { 1936 if (TCG_TARGET_NB_REGS <= 32) { 1937 return ctz32(d); 1938 } else { 1939 return ctz64(d); 1940 } 1941 } 1942 1943 static void tcg_dump_ops(TCGContext *s, bool have_prefs) 1944 { 1945 char buf[128]; 1946 TCGOp *op; 1947 1948 QTAILQ_FOREACH(op, &s->ops, link) { 1949 int i, k, nb_oargs, nb_iargs, nb_cargs; 1950 const TCGOpDef *def; 1951 TCGOpcode c; 1952 int col = 0; 1953 1954 c = op->opc; 1955 def = &tcg_op_defs[c]; 1956 1957 if (c == INDEX_op_insn_start) { 1958 nb_oargs = 0; 1959 col += qemu_log("\n ----"); 1960 1961 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 1962 target_ulong a; 1963 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 1964 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 1965 #else 1966 a = op->args[i]; 1967 #endif 1968 col += qemu_log(" " TARGET_FMT_lx, a); 1969 } 1970 } else if (c == INDEX_op_call) { 1971 /* variable number of arguments */ 1972 nb_oargs = TCGOP_CALLO(op); 1973 nb_iargs = TCGOP_CALLI(op); 1974 nb_cargs = def->nb_cargs; 1975 1976 /* function name, flags, out args */ 1977 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name, 1978 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]), 1979 op->args[nb_oargs + nb_iargs + 1], nb_oargs); 1980 for (i = 0; i < nb_oargs; i++) { 1981 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf), 1982 op->args[i])); 1983 } 1984 for (i = 0; i < nb_iargs; i++) { 1985 TCGArg arg = op->args[nb_oargs + i]; 1986 const char *t = "<dummy>"; 1987 if (arg != TCG_CALL_DUMMY_ARG) { 1988 t = tcg_get_arg_str(s, buf, sizeof(buf), arg); 1989 } 1990 col += qemu_log(",%s", t); 1991 } 1992 } else { 1993 col += qemu_log(" %s ", def->name); 1994 1995 nb_oargs = def->nb_oargs; 1996 nb_iargs = def->nb_iargs; 1997 nb_cargs = def->nb_cargs; 1998 1999 if (def->flags & TCG_OPF_VECTOR) { 2000 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op), 2001 8 << TCGOP_VECE(op)); 2002 } 2003 2004 k = 0; 2005 for (i = 0; i < nb_oargs; i++) { 2006 if (k != 0) { 2007 col += qemu_log(","); 2008 } 2009 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2010 op->args[k++])); 2011 } 2012 for (i = 0; i < nb_iargs; i++) { 2013 if (k != 0) { 2014 col += qemu_log(","); 2015 } 2016 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2017 op->args[k++])); 2018 } 2019 switch (c) { 2020 case INDEX_op_brcond_i32: 2021 case INDEX_op_setcond_i32: 2022 case INDEX_op_movcond_i32: 2023 case INDEX_op_brcond2_i32: 2024 case INDEX_op_setcond2_i32: 2025 case INDEX_op_brcond_i64: 2026 case INDEX_op_setcond_i64: 2027 case INDEX_op_movcond_i64: 2028 case INDEX_op_cmp_vec: 2029 if (op->args[k] < ARRAY_SIZE(cond_name) 2030 && cond_name[op->args[k]]) { 2031 col += qemu_log(",%s", cond_name[op->args[k++]]); 2032 } else { 2033 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]); 2034 } 2035 i = 1; 2036 break; 2037 case INDEX_op_qemu_ld_i32: 2038 case INDEX_op_qemu_st_i32: 2039 case INDEX_op_qemu_ld_i64: 2040 case INDEX_op_qemu_st_i64: 2041 { 2042 TCGMemOpIdx oi = op->args[k++]; 2043 TCGMemOp op = get_memop(oi); 2044 unsigned ix = get_mmuidx(oi); 2045 2046 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) { 2047 col += qemu_log(",$0x%x,%u", op, ix); 2048 } else { 2049 const char *s_al, *s_op; 2050 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT]; 2051 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)]; 2052 col += qemu_log(",%s%s,%u", s_al, s_op, ix); 2053 } 2054 i = 1; 2055 } 2056 break; 2057 default: 2058 i = 0; 2059 break; 2060 } 2061 switch (c) { 2062 case INDEX_op_set_label: 2063 case INDEX_op_br: 2064 case INDEX_op_brcond_i32: 2065 case INDEX_op_brcond_i64: 2066 case INDEX_op_brcond2_i32: 2067 col += qemu_log("%s$L%d", k ? "," : "", 2068 arg_label(op->args[k])->id); 2069 i++, k++; 2070 break; 2071 default: 2072 break; 2073 } 2074 for (; i < nb_cargs; i++, k++) { 2075 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]); 2076 } 2077 } 2078 2079 if (have_prefs || op->life) { 2080 for (; col < 40; ++col) { 2081 putc(' ', qemu_logfile); 2082 } 2083 } 2084 2085 if (op->life) { 2086 unsigned life = op->life; 2087 2088 if (life & (SYNC_ARG * 3)) { 2089 qemu_log(" sync:"); 2090 for (i = 0; i < 2; ++i) { 2091 if (life & (SYNC_ARG << i)) { 2092 qemu_log(" %d", i); 2093 } 2094 } 2095 } 2096 life /= DEAD_ARG; 2097 if (life) { 2098 qemu_log(" dead:"); 2099 for (i = 0; life; ++i, life >>= 1) { 2100 if (life & 1) { 2101 qemu_log(" %d", i); 2102 } 2103 } 2104 } 2105 } 2106 2107 if (have_prefs) { 2108 for (i = 0; i < nb_oargs; ++i) { 2109 TCGRegSet set = op->output_pref[i]; 2110 2111 if (i == 0) { 2112 qemu_log(" pref="); 2113 } else { 2114 qemu_log(","); 2115 } 2116 if (set == 0) { 2117 qemu_log("none"); 2118 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) { 2119 qemu_log("all"); 2120 #ifdef CONFIG_DEBUG_TCG 2121 } else if (tcg_regset_single(set)) { 2122 TCGReg reg = tcg_regset_first(set); 2123 qemu_log("%s", tcg_target_reg_names[reg]); 2124 #endif 2125 } else if (TCG_TARGET_NB_REGS <= 32) { 2126 qemu_log("%#x", (uint32_t)set); 2127 } else { 2128 qemu_log("%#" PRIx64, (uint64_t)set); 2129 } 2130 } 2131 } 2132 2133 qemu_log("\n"); 2134 } 2135 } 2136 2137 /* we give more priority to constraints with less registers */ 2138 static int get_constraint_priority(const TCGOpDef *def, int k) 2139 { 2140 const TCGArgConstraint *arg_ct; 2141 2142 int i, n; 2143 arg_ct = &def->args_ct[k]; 2144 if (arg_ct->ct & TCG_CT_ALIAS) { 2145 /* an alias is equivalent to a single register */ 2146 n = 1; 2147 } else { 2148 if (!(arg_ct->ct & TCG_CT_REG)) 2149 return 0; 2150 n = 0; 2151 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 2152 if (tcg_regset_test_reg(arg_ct->u.regs, i)) 2153 n++; 2154 } 2155 } 2156 return TCG_TARGET_NB_REGS - n + 1; 2157 } 2158 2159 /* sort from highest priority to lowest */ 2160 static void sort_constraints(TCGOpDef *def, int start, int n) 2161 { 2162 int i, j, p1, p2, tmp; 2163 2164 for(i = 0; i < n; i++) 2165 def->sorted_args[start + i] = start + i; 2166 if (n <= 1) 2167 return; 2168 for(i = 0; i < n - 1; i++) { 2169 for(j = i + 1; j < n; j++) { 2170 p1 = get_constraint_priority(def, def->sorted_args[start + i]); 2171 p2 = get_constraint_priority(def, def->sorted_args[start + j]); 2172 if (p1 < p2) { 2173 tmp = def->sorted_args[start + i]; 2174 def->sorted_args[start + i] = def->sorted_args[start + j]; 2175 def->sorted_args[start + j] = tmp; 2176 } 2177 } 2178 } 2179 } 2180 2181 static void process_op_defs(TCGContext *s) 2182 { 2183 TCGOpcode op; 2184 2185 for (op = 0; op < NB_OPS; op++) { 2186 TCGOpDef *def = &tcg_op_defs[op]; 2187 const TCGTargetOpDef *tdefs; 2188 TCGType type; 2189 int i, nb_args; 2190 2191 if (def->flags & TCG_OPF_NOT_PRESENT) { 2192 continue; 2193 } 2194 2195 nb_args = def->nb_iargs + def->nb_oargs; 2196 if (nb_args == 0) { 2197 continue; 2198 } 2199 2200 tdefs = tcg_target_op_def(op); 2201 /* Missing TCGTargetOpDef entry. */ 2202 tcg_debug_assert(tdefs != NULL); 2203 2204 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32); 2205 for (i = 0; i < nb_args; i++) { 2206 const char *ct_str = tdefs->args_ct_str[i]; 2207 /* Incomplete TCGTargetOpDef entry. */ 2208 tcg_debug_assert(ct_str != NULL); 2209 2210 def->args_ct[i].u.regs = 0; 2211 def->args_ct[i].ct = 0; 2212 while (*ct_str != '\0') { 2213 switch(*ct_str) { 2214 case '0' ... '9': 2215 { 2216 int oarg = *ct_str - '0'; 2217 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]); 2218 tcg_debug_assert(oarg < def->nb_oargs); 2219 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG); 2220 /* TCG_CT_ALIAS is for the output arguments. 2221 The input is tagged with TCG_CT_IALIAS. */ 2222 def->args_ct[i] = def->args_ct[oarg]; 2223 def->args_ct[oarg].ct |= TCG_CT_ALIAS; 2224 def->args_ct[oarg].alias_index = i; 2225 def->args_ct[i].ct |= TCG_CT_IALIAS; 2226 def->args_ct[i].alias_index = oarg; 2227 } 2228 ct_str++; 2229 break; 2230 case '&': 2231 def->args_ct[i].ct |= TCG_CT_NEWREG; 2232 ct_str++; 2233 break; 2234 case 'i': 2235 def->args_ct[i].ct |= TCG_CT_CONST; 2236 ct_str++; 2237 break; 2238 default: 2239 ct_str = target_parse_constraint(&def->args_ct[i], 2240 ct_str, type); 2241 /* Typo in TCGTargetOpDef constraint. */ 2242 tcg_debug_assert(ct_str != NULL); 2243 } 2244 } 2245 } 2246 2247 /* TCGTargetOpDef entry with too much information? */ 2248 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL); 2249 2250 /* sort the constraints (XXX: this is just an heuristic) */ 2251 sort_constraints(def, 0, def->nb_oargs); 2252 sort_constraints(def, def->nb_oargs, def->nb_iargs); 2253 } 2254 } 2255 2256 void tcg_op_remove(TCGContext *s, TCGOp *op) 2257 { 2258 TCGLabel *label; 2259 2260 switch (op->opc) { 2261 case INDEX_op_br: 2262 label = arg_label(op->args[0]); 2263 label->refs--; 2264 break; 2265 case INDEX_op_brcond_i32: 2266 case INDEX_op_brcond_i64: 2267 label = arg_label(op->args[3]); 2268 label->refs--; 2269 break; 2270 case INDEX_op_brcond2_i32: 2271 label = arg_label(op->args[5]); 2272 label->refs--; 2273 break; 2274 default: 2275 break; 2276 } 2277 2278 QTAILQ_REMOVE(&s->ops, op, link); 2279 QTAILQ_INSERT_TAIL(&s->free_ops, op, link); 2280 s->nb_ops--; 2281 2282 #ifdef CONFIG_PROFILER 2283 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1); 2284 #endif 2285 } 2286 2287 static TCGOp *tcg_op_alloc(TCGOpcode opc) 2288 { 2289 TCGContext *s = tcg_ctx; 2290 TCGOp *op; 2291 2292 if (likely(QTAILQ_EMPTY(&s->free_ops))) { 2293 op = tcg_malloc(sizeof(TCGOp)); 2294 } else { 2295 op = QTAILQ_FIRST(&s->free_ops); 2296 QTAILQ_REMOVE(&s->free_ops, op, link); 2297 } 2298 memset(op, 0, offsetof(TCGOp, link)); 2299 op->opc = opc; 2300 s->nb_ops++; 2301 2302 return op; 2303 } 2304 2305 TCGOp *tcg_emit_op(TCGOpcode opc) 2306 { 2307 TCGOp *op = tcg_op_alloc(opc); 2308 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link); 2309 return op; 2310 } 2311 2312 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2313 { 2314 TCGOp *new_op = tcg_op_alloc(opc); 2315 QTAILQ_INSERT_BEFORE(old_op, new_op, link); 2316 return new_op; 2317 } 2318 2319 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2320 { 2321 TCGOp *new_op = tcg_op_alloc(opc); 2322 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link); 2323 return new_op; 2324 } 2325 2326 /* Reachable analysis : remove unreachable code. */ 2327 static void reachable_code_pass(TCGContext *s) 2328 { 2329 TCGOp *op, *op_next; 2330 bool dead = false; 2331 2332 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2333 bool remove = dead; 2334 TCGLabel *label; 2335 int call_flags; 2336 2337 switch (op->opc) { 2338 case INDEX_op_set_label: 2339 label = arg_label(op->args[0]); 2340 if (label->refs == 0) { 2341 /* 2342 * While there is an occasional backward branch, virtually 2343 * all branches generated by the translators are forward. 2344 * Which means that generally we will have already removed 2345 * all references to the label that will be, and there is 2346 * little to be gained by iterating. 2347 */ 2348 remove = true; 2349 } else { 2350 /* Once we see a label, insns become live again. */ 2351 dead = false; 2352 remove = false; 2353 2354 /* 2355 * Optimization can fold conditional branches to unconditional. 2356 * If we find a label with one reference which is preceded by 2357 * an unconditional branch to it, remove both. This needed to 2358 * wait until the dead code in between them was removed. 2359 */ 2360 if (label->refs == 1) { 2361 TCGOp *op_prev = QTAILQ_PREV(op, link); 2362 if (op_prev->opc == INDEX_op_br && 2363 label == arg_label(op_prev->args[0])) { 2364 tcg_op_remove(s, op_prev); 2365 remove = true; 2366 } 2367 } 2368 } 2369 break; 2370 2371 case INDEX_op_br: 2372 case INDEX_op_exit_tb: 2373 case INDEX_op_goto_ptr: 2374 /* Unconditional branches; everything following is dead. */ 2375 dead = true; 2376 break; 2377 2378 case INDEX_op_call: 2379 /* Notice noreturn helper calls, raising exceptions. */ 2380 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1]; 2381 if (call_flags & TCG_CALL_NO_RETURN) { 2382 dead = true; 2383 } 2384 break; 2385 2386 case INDEX_op_insn_start: 2387 /* Never remove -- we need to keep these for unwind. */ 2388 remove = false; 2389 break; 2390 2391 default: 2392 break; 2393 } 2394 2395 if (remove) { 2396 tcg_op_remove(s, op); 2397 } 2398 } 2399 } 2400 2401 #define TS_DEAD 1 2402 #define TS_MEM 2 2403 2404 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n))) 2405 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n))) 2406 2407 /* For liveness_pass_1, the register preferences for a given temp. */ 2408 static inline TCGRegSet *la_temp_pref(TCGTemp *ts) 2409 { 2410 return ts->state_ptr; 2411 } 2412 2413 /* For liveness_pass_1, reset the preferences for a given temp to the 2414 * maximal regset for its type. 2415 */ 2416 static inline void la_reset_pref(TCGTemp *ts) 2417 { 2418 *la_temp_pref(ts) 2419 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]); 2420 } 2421 2422 /* liveness analysis: end of function: all temps are dead, and globals 2423 should be in memory. */ 2424 static void la_func_end(TCGContext *s, int ng, int nt) 2425 { 2426 int i; 2427 2428 for (i = 0; i < ng; ++i) { 2429 s->temps[i].state = TS_DEAD | TS_MEM; 2430 la_reset_pref(&s->temps[i]); 2431 } 2432 for (i = ng; i < nt; ++i) { 2433 s->temps[i].state = TS_DEAD; 2434 la_reset_pref(&s->temps[i]); 2435 } 2436 } 2437 2438 /* liveness analysis: end of basic block: all temps are dead, globals 2439 and local temps should be in memory. */ 2440 static void la_bb_end(TCGContext *s, int ng, int nt) 2441 { 2442 int i; 2443 2444 for (i = 0; i < ng; ++i) { 2445 s->temps[i].state = TS_DEAD | TS_MEM; 2446 la_reset_pref(&s->temps[i]); 2447 } 2448 for (i = ng; i < nt; ++i) { 2449 s->temps[i].state = (s->temps[i].temp_local 2450 ? TS_DEAD | TS_MEM 2451 : TS_DEAD); 2452 la_reset_pref(&s->temps[i]); 2453 } 2454 } 2455 2456 /* liveness analysis: sync globals back to memory. */ 2457 static void la_global_sync(TCGContext *s, int ng) 2458 { 2459 int i; 2460 2461 for (i = 0; i < ng; ++i) { 2462 int state = s->temps[i].state; 2463 s->temps[i].state = state | TS_MEM; 2464 if (state == TS_DEAD) { 2465 /* If the global was previously dead, reset prefs. */ 2466 la_reset_pref(&s->temps[i]); 2467 } 2468 } 2469 } 2470 2471 /* liveness analysis: sync globals back to memory and kill. */ 2472 static void la_global_kill(TCGContext *s, int ng) 2473 { 2474 int i; 2475 2476 for (i = 0; i < ng; i++) { 2477 s->temps[i].state = TS_DEAD | TS_MEM; 2478 la_reset_pref(&s->temps[i]); 2479 } 2480 } 2481 2482 /* liveness analysis: note live globals crossing calls. */ 2483 static void la_cross_call(TCGContext *s, int nt) 2484 { 2485 TCGRegSet mask = ~tcg_target_call_clobber_regs; 2486 int i; 2487 2488 for (i = 0; i < nt; i++) { 2489 TCGTemp *ts = &s->temps[i]; 2490 if (!(ts->state & TS_DEAD)) { 2491 TCGRegSet *pset = la_temp_pref(ts); 2492 TCGRegSet set = *pset; 2493 2494 set &= mask; 2495 /* If the combination is not possible, restart. */ 2496 if (set == 0) { 2497 set = tcg_target_available_regs[ts->type] & mask; 2498 } 2499 *pset = set; 2500 } 2501 } 2502 } 2503 2504 /* Liveness analysis : update the opc_arg_life array to tell if a 2505 given input arguments is dead. Instructions updating dead 2506 temporaries are removed. */ 2507 static void liveness_pass_1(TCGContext *s) 2508 { 2509 int nb_globals = s->nb_globals; 2510 int nb_temps = s->nb_temps; 2511 TCGOp *op, *op_prev; 2512 TCGRegSet *prefs; 2513 int i; 2514 2515 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps); 2516 for (i = 0; i < nb_temps; ++i) { 2517 s->temps[i].state_ptr = prefs + i; 2518 } 2519 2520 /* ??? Should be redundant with the exit_tb that ends the TB. */ 2521 la_func_end(s, nb_globals, nb_temps); 2522 2523 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) { 2524 int nb_iargs, nb_oargs; 2525 TCGOpcode opc_new, opc_new2; 2526 bool have_opc_new2; 2527 TCGLifeData arg_life = 0; 2528 TCGTemp *ts; 2529 TCGOpcode opc = op->opc; 2530 const TCGOpDef *def = &tcg_op_defs[opc]; 2531 2532 switch (opc) { 2533 case INDEX_op_call: 2534 { 2535 int call_flags; 2536 int nb_call_regs; 2537 2538 nb_oargs = TCGOP_CALLO(op); 2539 nb_iargs = TCGOP_CALLI(op); 2540 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2541 2542 /* pure functions can be removed if their result is unused */ 2543 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) { 2544 for (i = 0; i < nb_oargs; i++) { 2545 ts = arg_temp(op->args[i]); 2546 if (ts->state != TS_DEAD) { 2547 goto do_not_remove_call; 2548 } 2549 } 2550 goto do_remove; 2551 } 2552 do_not_remove_call: 2553 2554 /* Output args are dead. */ 2555 for (i = 0; i < nb_oargs; i++) { 2556 ts = arg_temp(op->args[i]); 2557 if (ts->state & TS_DEAD) { 2558 arg_life |= DEAD_ARG << i; 2559 } 2560 if (ts->state & TS_MEM) { 2561 arg_life |= SYNC_ARG << i; 2562 } 2563 ts->state = TS_DEAD; 2564 la_reset_pref(ts); 2565 2566 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */ 2567 op->output_pref[i] = 0; 2568 } 2569 2570 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS | 2571 TCG_CALL_NO_READ_GLOBALS))) { 2572 la_global_kill(s, nb_globals); 2573 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) { 2574 la_global_sync(s, nb_globals); 2575 } 2576 2577 /* Record arguments that die in this helper. */ 2578 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2579 ts = arg_temp(op->args[i]); 2580 if (ts && ts->state & TS_DEAD) { 2581 arg_life |= DEAD_ARG << i; 2582 } 2583 } 2584 2585 /* For all live registers, remove call-clobbered prefs. */ 2586 la_cross_call(s, nb_temps); 2587 2588 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 2589 2590 /* Input arguments are live for preceding opcodes. */ 2591 for (i = 0; i < nb_iargs; i++) { 2592 ts = arg_temp(op->args[i + nb_oargs]); 2593 if (ts && ts->state & TS_DEAD) { 2594 /* For those arguments that die, and will be allocated 2595 * in registers, clear the register set for that arg, 2596 * to be filled in below. For args that will be on 2597 * the stack, reset to any available reg. 2598 */ 2599 *la_temp_pref(ts) 2600 = (i < nb_call_regs ? 0 : 2601 tcg_target_available_regs[ts->type]); 2602 ts->state &= ~TS_DEAD; 2603 } 2604 } 2605 2606 /* For each input argument, add its input register to prefs. 2607 If a temp is used once, this produces a single set bit. */ 2608 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) { 2609 ts = arg_temp(op->args[i + nb_oargs]); 2610 if (ts) { 2611 tcg_regset_set_reg(*la_temp_pref(ts), 2612 tcg_target_call_iarg_regs[i]); 2613 } 2614 } 2615 } 2616 break; 2617 case INDEX_op_insn_start: 2618 break; 2619 case INDEX_op_discard: 2620 /* mark the temporary as dead */ 2621 ts = arg_temp(op->args[0]); 2622 ts->state = TS_DEAD; 2623 la_reset_pref(ts); 2624 break; 2625 2626 case INDEX_op_add2_i32: 2627 opc_new = INDEX_op_add_i32; 2628 goto do_addsub2; 2629 case INDEX_op_sub2_i32: 2630 opc_new = INDEX_op_sub_i32; 2631 goto do_addsub2; 2632 case INDEX_op_add2_i64: 2633 opc_new = INDEX_op_add_i64; 2634 goto do_addsub2; 2635 case INDEX_op_sub2_i64: 2636 opc_new = INDEX_op_sub_i64; 2637 do_addsub2: 2638 nb_iargs = 4; 2639 nb_oargs = 2; 2640 /* Test if the high part of the operation is dead, but not 2641 the low part. The result can be optimized to a simple 2642 add or sub. This happens often for x86_64 guest when the 2643 cpu mode is set to 32 bit. */ 2644 if (arg_temp(op->args[1])->state == TS_DEAD) { 2645 if (arg_temp(op->args[0])->state == TS_DEAD) { 2646 goto do_remove; 2647 } 2648 /* Replace the opcode and adjust the args in place, 2649 leaving 3 unused args at the end. */ 2650 op->opc = opc = opc_new; 2651 op->args[1] = op->args[2]; 2652 op->args[2] = op->args[4]; 2653 /* Fall through and mark the single-word operation live. */ 2654 nb_iargs = 2; 2655 nb_oargs = 1; 2656 } 2657 goto do_not_remove; 2658 2659 case INDEX_op_mulu2_i32: 2660 opc_new = INDEX_op_mul_i32; 2661 opc_new2 = INDEX_op_muluh_i32; 2662 have_opc_new2 = TCG_TARGET_HAS_muluh_i32; 2663 goto do_mul2; 2664 case INDEX_op_muls2_i32: 2665 opc_new = INDEX_op_mul_i32; 2666 opc_new2 = INDEX_op_mulsh_i32; 2667 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32; 2668 goto do_mul2; 2669 case INDEX_op_mulu2_i64: 2670 opc_new = INDEX_op_mul_i64; 2671 opc_new2 = INDEX_op_muluh_i64; 2672 have_opc_new2 = TCG_TARGET_HAS_muluh_i64; 2673 goto do_mul2; 2674 case INDEX_op_muls2_i64: 2675 opc_new = INDEX_op_mul_i64; 2676 opc_new2 = INDEX_op_mulsh_i64; 2677 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64; 2678 goto do_mul2; 2679 do_mul2: 2680 nb_iargs = 2; 2681 nb_oargs = 2; 2682 if (arg_temp(op->args[1])->state == TS_DEAD) { 2683 if (arg_temp(op->args[0])->state == TS_DEAD) { 2684 /* Both parts of the operation are dead. */ 2685 goto do_remove; 2686 } 2687 /* The high part of the operation is dead; generate the low. */ 2688 op->opc = opc = opc_new; 2689 op->args[1] = op->args[2]; 2690 op->args[2] = op->args[3]; 2691 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) { 2692 /* The low part of the operation is dead; generate the high. */ 2693 op->opc = opc = opc_new2; 2694 op->args[0] = op->args[1]; 2695 op->args[1] = op->args[2]; 2696 op->args[2] = op->args[3]; 2697 } else { 2698 goto do_not_remove; 2699 } 2700 /* Mark the single-word operation live. */ 2701 nb_oargs = 1; 2702 goto do_not_remove; 2703 2704 default: 2705 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */ 2706 nb_iargs = def->nb_iargs; 2707 nb_oargs = def->nb_oargs; 2708 2709 /* Test if the operation can be removed because all 2710 its outputs are dead. We assume that nb_oargs == 0 2711 implies side effects */ 2712 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) { 2713 for (i = 0; i < nb_oargs; i++) { 2714 if (arg_temp(op->args[i])->state != TS_DEAD) { 2715 goto do_not_remove; 2716 } 2717 } 2718 goto do_remove; 2719 } 2720 goto do_not_remove; 2721 2722 do_remove: 2723 tcg_op_remove(s, op); 2724 break; 2725 2726 do_not_remove: 2727 for (i = 0; i < nb_oargs; i++) { 2728 ts = arg_temp(op->args[i]); 2729 2730 /* Remember the preference of the uses that followed. */ 2731 op->output_pref[i] = *la_temp_pref(ts); 2732 2733 /* Output args are dead. */ 2734 if (ts->state & TS_DEAD) { 2735 arg_life |= DEAD_ARG << i; 2736 } 2737 if (ts->state & TS_MEM) { 2738 arg_life |= SYNC_ARG << i; 2739 } 2740 ts->state = TS_DEAD; 2741 la_reset_pref(ts); 2742 } 2743 2744 /* If end of basic block, update. */ 2745 if (def->flags & TCG_OPF_BB_EXIT) { 2746 la_func_end(s, nb_globals, nb_temps); 2747 } else if (def->flags & TCG_OPF_BB_END) { 2748 la_bb_end(s, nb_globals, nb_temps); 2749 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2750 la_global_sync(s, nb_globals); 2751 if (def->flags & TCG_OPF_CALL_CLOBBER) { 2752 la_cross_call(s, nb_temps); 2753 } 2754 } 2755 2756 /* Record arguments that die in this opcode. */ 2757 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2758 ts = arg_temp(op->args[i]); 2759 if (ts->state & TS_DEAD) { 2760 arg_life |= DEAD_ARG << i; 2761 } 2762 } 2763 2764 /* Input arguments are live for preceding opcodes. */ 2765 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2766 ts = arg_temp(op->args[i]); 2767 if (ts->state & TS_DEAD) { 2768 /* For operands that were dead, initially allow 2769 all regs for the type. */ 2770 *la_temp_pref(ts) = tcg_target_available_regs[ts->type]; 2771 ts->state &= ~TS_DEAD; 2772 } 2773 } 2774 2775 /* Incorporate constraints for this operand. */ 2776 switch (opc) { 2777 case INDEX_op_mov_i32: 2778 case INDEX_op_mov_i64: 2779 /* Note that these are TCG_OPF_NOT_PRESENT and do not 2780 have proper constraints. That said, special case 2781 moves to propagate preferences backward. */ 2782 if (IS_DEAD_ARG(1)) { 2783 *la_temp_pref(arg_temp(op->args[0])) 2784 = *la_temp_pref(arg_temp(op->args[1])); 2785 } 2786 break; 2787 2788 default: 2789 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2790 const TCGArgConstraint *ct = &def->args_ct[i]; 2791 TCGRegSet set, *pset; 2792 2793 ts = arg_temp(op->args[i]); 2794 pset = la_temp_pref(ts); 2795 set = *pset; 2796 2797 set &= ct->u.regs; 2798 if (ct->ct & TCG_CT_IALIAS) { 2799 set &= op->output_pref[ct->alias_index]; 2800 } 2801 /* If the combination is not possible, restart. */ 2802 if (set == 0) { 2803 set = ct->u.regs; 2804 } 2805 *pset = set; 2806 } 2807 break; 2808 } 2809 break; 2810 } 2811 op->life = arg_life; 2812 } 2813 } 2814 2815 /* Liveness analysis: Convert indirect regs to direct temporaries. */ 2816 static bool liveness_pass_2(TCGContext *s) 2817 { 2818 int nb_globals = s->nb_globals; 2819 int nb_temps, i; 2820 bool changes = false; 2821 TCGOp *op, *op_next; 2822 2823 /* Create a temporary for each indirect global. */ 2824 for (i = 0; i < nb_globals; ++i) { 2825 TCGTemp *its = &s->temps[i]; 2826 if (its->indirect_reg) { 2827 TCGTemp *dts = tcg_temp_alloc(s); 2828 dts->type = its->type; 2829 dts->base_type = its->base_type; 2830 its->state_ptr = dts; 2831 } else { 2832 its->state_ptr = NULL; 2833 } 2834 /* All globals begin dead. */ 2835 its->state = TS_DEAD; 2836 } 2837 for (nb_temps = s->nb_temps; i < nb_temps; ++i) { 2838 TCGTemp *its = &s->temps[i]; 2839 its->state_ptr = NULL; 2840 its->state = TS_DEAD; 2841 } 2842 2843 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2844 TCGOpcode opc = op->opc; 2845 const TCGOpDef *def = &tcg_op_defs[opc]; 2846 TCGLifeData arg_life = op->life; 2847 int nb_iargs, nb_oargs, call_flags; 2848 TCGTemp *arg_ts, *dir_ts; 2849 2850 if (opc == INDEX_op_call) { 2851 nb_oargs = TCGOP_CALLO(op); 2852 nb_iargs = TCGOP_CALLI(op); 2853 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2854 } else { 2855 nb_iargs = def->nb_iargs; 2856 nb_oargs = def->nb_oargs; 2857 2858 /* Set flags similar to how calls require. */ 2859 if (def->flags & TCG_OPF_BB_END) { 2860 /* Like writing globals: save_globals */ 2861 call_flags = 0; 2862 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2863 /* Like reading globals: sync_globals */ 2864 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 2865 } else { 2866 /* No effect on globals. */ 2867 call_flags = (TCG_CALL_NO_READ_GLOBALS | 2868 TCG_CALL_NO_WRITE_GLOBALS); 2869 } 2870 } 2871 2872 /* Make sure that input arguments are available. */ 2873 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2874 arg_ts = arg_temp(op->args[i]); 2875 if (arg_ts) { 2876 dir_ts = arg_ts->state_ptr; 2877 if (dir_ts && arg_ts->state == TS_DEAD) { 2878 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32 2879 ? INDEX_op_ld_i32 2880 : INDEX_op_ld_i64); 2881 TCGOp *lop = tcg_op_insert_before(s, op, lopc); 2882 2883 lop->args[0] = temp_arg(dir_ts); 2884 lop->args[1] = temp_arg(arg_ts->mem_base); 2885 lop->args[2] = arg_ts->mem_offset; 2886 2887 /* Loaded, but synced with memory. */ 2888 arg_ts->state = TS_MEM; 2889 } 2890 } 2891 } 2892 2893 /* Perform input replacement, and mark inputs that became dead. 2894 No action is required except keeping temp_state up to date 2895 so that we reload when needed. */ 2896 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2897 arg_ts = arg_temp(op->args[i]); 2898 if (arg_ts) { 2899 dir_ts = arg_ts->state_ptr; 2900 if (dir_ts) { 2901 op->args[i] = temp_arg(dir_ts); 2902 changes = true; 2903 if (IS_DEAD_ARG(i)) { 2904 arg_ts->state = TS_DEAD; 2905 } 2906 } 2907 } 2908 } 2909 2910 /* Liveness analysis should ensure that the following are 2911 all correct, for call sites and basic block end points. */ 2912 if (call_flags & TCG_CALL_NO_READ_GLOBALS) { 2913 /* Nothing to do */ 2914 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) { 2915 for (i = 0; i < nb_globals; ++i) { 2916 /* Liveness should see that globals are synced back, 2917 that is, either TS_DEAD or TS_MEM. */ 2918 arg_ts = &s->temps[i]; 2919 tcg_debug_assert(arg_ts->state_ptr == 0 2920 || arg_ts->state != 0); 2921 } 2922 } else { 2923 for (i = 0; i < nb_globals; ++i) { 2924 /* Liveness should see that globals are saved back, 2925 that is, TS_DEAD, waiting to be reloaded. */ 2926 arg_ts = &s->temps[i]; 2927 tcg_debug_assert(arg_ts->state_ptr == 0 2928 || arg_ts->state == TS_DEAD); 2929 } 2930 } 2931 2932 /* Outputs become available. */ 2933 for (i = 0; i < nb_oargs; i++) { 2934 arg_ts = arg_temp(op->args[i]); 2935 dir_ts = arg_ts->state_ptr; 2936 if (!dir_ts) { 2937 continue; 2938 } 2939 op->args[i] = temp_arg(dir_ts); 2940 changes = true; 2941 2942 /* The output is now live and modified. */ 2943 arg_ts->state = 0; 2944 2945 /* Sync outputs upon their last write. */ 2946 if (NEED_SYNC_ARG(i)) { 2947 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 2948 ? INDEX_op_st_i32 2949 : INDEX_op_st_i64); 2950 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 2951 2952 sop->args[0] = temp_arg(dir_ts); 2953 sop->args[1] = temp_arg(arg_ts->mem_base); 2954 sop->args[2] = arg_ts->mem_offset; 2955 2956 arg_ts->state = TS_MEM; 2957 } 2958 /* Drop outputs that are dead. */ 2959 if (IS_DEAD_ARG(i)) { 2960 arg_ts->state = TS_DEAD; 2961 } 2962 } 2963 } 2964 2965 return changes; 2966 } 2967 2968 #ifdef CONFIG_DEBUG_TCG 2969 static void dump_regs(TCGContext *s) 2970 { 2971 TCGTemp *ts; 2972 int i; 2973 char buf[64]; 2974 2975 for(i = 0; i < s->nb_temps; i++) { 2976 ts = &s->temps[i]; 2977 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 2978 switch(ts->val_type) { 2979 case TEMP_VAL_REG: 2980 printf("%s", tcg_target_reg_names[ts->reg]); 2981 break; 2982 case TEMP_VAL_MEM: 2983 printf("%d(%s)", (int)ts->mem_offset, 2984 tcg_target_reg_names[ts->mem_base->reg]); 2985 break; 2986 case TEMP_VAL_CONST: 2987 printf("$0x%" TCG_PRIlx, ts->val); 2988 break; 2989 case TEMP_VAL_DEAD: 2990 printf("D"); 2991 break; 2992 default: 2993 printf("???"); 2994 break; 2995 } 2996 printf("\n"); 2997 } 2998 2999 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 3000 if (s->reg_to_temp[i] != NULL) { 3001 printf("%s: %s\n", 3002 tcg_target_reg_names[i], 3003 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i])); 3004 } 3005 } 3006 } 3007 3008 static void check_regs(TCGContext *s) 3009 { 3010 int reg; 3011 int k; 3012 TCGTemp *ts; 3013 char buf[64]; 3014 3015 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) { 3016 ts = s->reg_to_temp[reg]; 3017 if (ts != NULL) { 3018 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) { 3019 printf("Inconsistency for register %s:\n", 3020 tcg_target_reg_names[reg]); 3021 goto fail; 3022 } 3023 } 3024 } 3025 for (k = 0; k < s->nb_temps; k++) { 3026 ts = &s->temps[k]; 3027 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg 3028 && s->reg_to_temp[ts->reg] != ts) { 3029 printf("Inconsistency for temp %s:\n", 3030 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3031 fail: 3032 printf("reg state:\n"); 3033 dump_regs(s); 3034 tcg_abort(); 3035 } 3036 } 3037 } 3038 #endif 3039 3040 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts) 3041 { 3042 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64) 3043 /* Sparc64 stack is accessed with offset of 2047 */ 3044 s->current_frame_offset = (s->current_frame_offset + 3045 (tcg_target_long)sizeof(tcg_target_long) - 1) & 3046 ~(sizeof(tcg_target_long) - 1); 3047 #endif 3048 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) > 3049 s->frame_end) { 3050 tcg_abort(); 3051 } 3052 ts->mem_offset = s->current_frame_offset; 3053 ts->mem_base = s->frame_temp; 3054 ts->mem_allocated = 1; 3055 s->current_frame_offset += sizeof(tcg_target_long); 3056 } 3057 3058 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet); 3059 3060 /* Mark a temporary as free or dead. If 'free_or_dead' is negative, 3061 mark it free; otherwise mark it dead. */ 3062 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead) 3063 { 3064 if (ts->fixed_reg) { 3065 return; 3066 } 3067 if (ts->val_type == TEMP_VAL_REG) { 3068 s->reg_to_temp[ts->reg] = NULL; 3069 } 3070 ts->val_type = (free_or_dead < 0 3071 || ts->temp_local 3072 || ts->temp_global 3073 ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 3074 } 3075 3076 /* Mark a temporary as dead. */ 3077 static inline void temp_dead(TCGContext *s, TCGTemp *ts) 3078 { 3079 temp_free_or_dead(s, ts, 1); 3080 } 3081 3082 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary 3083 registers needs to be allocated to store a constant. If 'free_or_dead' 3084 is non-zero, subsequently release the temporary; if it is positive, the 3085 temp is dead; if it is negative, the temp is free. */ 3086 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs, 3087 TCGRegSet preferred_regs, int free_or_dead) 3088 { 3089 if (ts->fixed_reg) { 3090 return; 3091 } 3092 if (!ts->mem_coherent) { 3093 if (!ts->mem_allocated) { 3094 temp_allocate_frame(s, ts); 3095 } 3096 switch (ts->val_type) { 3097 case TEMP_VAL_CONST: 3098 /* If we're going to free the temp immediately, then we won't 3099 require it later in a register, so attempt to store the 3100 constant to memory directly. */ 3101 if (free_or_dead 3102 && tcg_out_sti(s, ts->type, ts->val, 3103 ts->mem_base->reg, ts->mem_offset)) { 3104 break; 3105 } 3106 temp_load(s, ts, tcg_target_available_regs[ts->type], 3107 allocated_regs, preferred_regs); 3108 /* fallthrough */ 3109 3110 case TEMP_VAL_REG: 3111 tcg_out_st(s, ts->type, ts->reg, 3112 ts->mem_base->reg, ts->mem_offset); 3113 break; 3114 3115 case TEMP_VAL_MEM: 3116 break; 3117 3118 case TEMP_VAL_DEAD: 3119 default: 3120 tcg_abort(); 3121 } 3122 ts->mem_coherent = 1; 3123 } 3124 if (free_or_dead) { 3125 temp_free_or_dead(s, ts, free_or_dead); 3126 } 3127 } 3128 3129 /* free register 'reg' by spilling the corresponding temporary if necessary */ 3130 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs) 3131 { 3132 TCGTemp *ts = s->reg_to_temp[reg]; 3133 if (ts != NULL) { 3134 temp_sync(s, ts, allocated_regs, 0, -1); 3135 } 3136 } 3137 3138 /** 3139 * tcg_reg_alloc: 3140 * @required_regs: Set of registers in which we must allocate. 3141 * @allocated_regs: Set of registers which must be avoided. 3142 * @preferred_regs: Set of registers we should prefer. 3143 * @rev: True if we search the registers in "indirect" order. 3144 * 3145 * The allocated register must be in @required_regs & ~@allocated_regs, 3146 * but if we can put it in @preferred_regs we may save a move later. 3147 */ 3148 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs, 3149 TCGRegSet allocated_regs, 3150 TCGRegSet preferred_regs, bool rev) 3151 { 3152 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order); 3153 TCGRegSet reg_ct[2]; 3154 const int *order; 3155 3156 reg_ct[1] = required_regs & ~allocated_regs; 3157 tcg_debug_assert(reg_ct[1] != 0); 3158 reg_ct[0] = reg_ct[1] & preferred_regs; 3159 3160 /* Skip the preferred_regs option if it cannot be satisfied, 3161 or if the preference made no difference. */ 3162 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1]; 3163 3164 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order; 3165 3166 /* Try free registers, preferences first. */ 3167 for (j = f; j < 2; j++) { 3168 TCGRegSet set = reg_ct[j]; 3169 3170 if (tcg_regset_single(set)) { 3171 /* One register in the set. */ 3172 TCGReg reg = tcg_regset_first(set); 3173 if (s->reg_to_temp[reg] == NULL) { 3174 return reg; 3175 } 3176 } else { 3177 for (i = 0; i < n; i++) { 3178 TCGReg reg = order[i]; 3179 if (s->reg_to_temp[reg] == NULL && 3180 tcg_regset_test_reg(set, reg)) { 3181 return reg; 3182 } 3183 } 3184 } 3185 } 3186 3187 /* We must spill something. */ 3188 for (j = f; j < 2; j++) { 3189 TCGRegSet set = reg_ct[j]; 3190 3191 if (tcg_regset_single(set)) { 3192 /* One register in the set. */ 3193 TCGReg reg = tcg_regset_first(set); 3194 tcg_reg_free(s, reg, allocated_regs); 3195 return reg; 3196 } else { 3197 for (i = 0; i < n; i++) { 3198 TCGReg reg = order[i]; 3199 if (tcg_regset_test_reg(set, reg)) { 3200 tcg_reg_free(s, reg, allocated_regs); 3201 return reg; 3202 } 3203 } 3204 } 3205 } 3206 3207 tcg_abort(); 3208 } 3209 3210 /* Make sure the temporary is in a register. If needed, allocate the register 3211 from DESIRED while avoiding ALLOCATED. */ 3212 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs, 3213 TCGRegSet allocated_regs, TCGRegSet preferred_regs) 3214 { 3215 TCGReg reg; 3216 3217 switch (ts->val_type) { 3218 case TEMP_VAL_REG: 3219 return; 3220 case TEMP_VAL_CONST: 3221 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3222 preferred_regs, ts->indirect_base); 3223 tcg_out_movi(s, ts->type, reg, ts->val); 3224 ts->mem_coherent = 0; 3225 break; 3226 case TEMP_VAL_MEM: 3227 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3228 preferred_regs, ts->indirect_base); 3229 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset); 3230 ts->mem_coherent = 1; 3231 break; 3232 case TEMP_VAL_DEAD: 3233 default: 3234 tcg_abort(); 3235 } 3236 ts->reg = reg; 3237 ts->val_type = TEMP_VAL_REG; 3238 s->reg_to_temp[reg] = ts; 3239 } 3240 3241 /* Save a temporary to memory. 'allocated_regs' is used in case a 3242 temporary registers needs to be allocated to store a constant. */ 3243 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs) 3244 { 3245 /* The liveness analysis already ensures that globals are back 3246 in memory. Keep an tcg_debug_assert for safety. */ 3247 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg); 3248 } 3249 3250 /* save globals to their canonical location and assume they can be 3251 modified be the following code. 'allocated_regs' is used in case a 3252 temporary registers needs to be allocated to store a constant. */ 3253 static void save_globals(TCGContext *s, TCGRegSet allocated_regs) 3254 { 3255 int i, n; 3256 3257 for (i = 0, n = s->nb_globals; i < n; i++) { 3258 temp_save(s, &s->temps[i], allocated_regs); 3259 } 3260 } 3261 3262 /* sync globals to their canonical location and assume they can be 3263 read by the following code. 'allocated_regs' is used in case a 3264 temporary registers needs to be allocated to store a constant. */ 3265 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs) 3266 { 3267 int i, n; 3268 3269 for (i = 0, n = s->nb_globals; i < n; i++) { 3270 TCGTemp *ts = &s->temps[i]; 3271 tcg_debug_assert(ts->val_type != TEMP_VAL_REG 3272 || ts->fixed_reg 3273 || ts->mem_coherent); 3274 } 3275 } 3276 3277 /* at the end of a basic block, we assume all temporaries are dead and 3278 all globals are stored at their canonical location. */ 3279 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs) 3280 { 3281 int i; 3282 3283 for (i = s->nb_globals; i < s->nb_temps; i++) { 3284 TCGTemp *ts = &s->temps[i]; 3285 if (ts->temp_local) { 3286 temp_save(s, ts, allocated_regs); 3287 } else { 3288 /* The liveness analysis already ensures that temps are dead. 3289 Keep an tcg_debug_assert for safety. */ 3290 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3291 } 3292 } 3293 3294 save_globals(s, allocated_regs); 3295 } 3296 3297 /* 3298 * Specialized code generation for INDEX_op_movi_*. 3299 */ 3300 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots, 3301 tcg_target_ulong val, TCGLifeData arg_life, 3302 TCGRegSet preferred_regs) 3303 { 3304 /* ENV should not be modified. */ 3305 tcg_debug_assert(!ots->fixed_reg); 3306 3307 /* The movi is not explicitly generated here. */ 3308 if (ots->val_type == TEMP_VAL_REG) { 3309 s->reg_to_temp[ots->reg] = NULL; 3310 } 3311 ots->val_type = TEMP_VAL_CONST; 3312 ots->val = val; 3313 ots->mem_coherent = 0; 3314 if (NEED_SYNC_ARG(0)) { 3315 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0)); 3316 } else if (IS_DEAD_ARG(0)) { 3317 temp_dead(s, ots); 3318 } 3319 } 3320 3321 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op) 3322 { 3323 TCGTemp *ots = arg_temp(op->args[0]); 3324 tcg_target_ulong val = op->args[1]; 3325 3326 tcg_reg_alloc_do_movi(s, ots, val, op->life, op->output_pref[0]); 3327 } 3328 3329 /* 3330 * Specialized code generation for INDEX_op_mov_*. 3331 */ 3332 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op) 3333 { 3334 const TCGLifeData arg_life = op->life; 3335 TCGRegSet allocated_regs, preferred_regs; 3336 TCGTemp *ts, *ots; 3337 TCGType otype, itype; 3338 3339 allocated_regs = s->reserved_regs; 3340 preferred_regs = op->output_pref[0]; 3341 ots = arg_temp(op->args[0]); 3342 ts = arg_temp(op->args[1]); 3343 3344 /* ENV should not be modified. */ 3345 tcg_debug_assert(!ots->fixed_reg); 3346 3347 /* Note that otype != itype for no-op truncation. */ 3348 otype = ots->type; 3349 itype = ts->type; 3350 3351 if (ts->val_type == TEMP_VAL_CONST) { 3352 /* propagate constant or generate sti */ 3353 tcg_target_ulong val = ts->val; 3354 if (IS_DEAD_ARG(1)) { 3355 temp_dead(s, ts); 3356 } 3357 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs); 3358 return; 3359 } 3360 3361 /* If the source value is in memory we're going to be forced 3362 to have it in a register in order to perform the copy. Copy 3363 the SOURCE value into its own register first, that way we 3364 don't have to reload SOURCE the next time it is used. */ 3365 if (ts->val_type == TEMP_VAL_MEM) { 3366 temp_load(s, ts, tcg_target_available_regs[itype], 3367 allocated_regs, preferred_regs); 3368 } 3369 3370 tcg_debug_assert(ts->val_type == TEMP_VAL_REG); 3371 if (IS_DEAD_ARG(0)) { 3372 /* mov to a non-saved dead register makes no sense (even with 3373 liveness analysis disabled). */ 3374 tcg_debug_assert(NEED_SYNC_ARG(0)); 3375 if (!ots->mem_allocated) { 3376 temp_allocate_frame(s, ots); 3377 } 3378 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset); 3379 if (IS_DEAD_ARG(1)) { 3380 temp_dead(s, ts); 3381 } 3382 temp_dead(s, ots); 3383 } else { 3384 if (IS_DEAD_ARG(1) && !ts->fixed_reg) { 3385 /* the mov can be suppressed */ 3386 if (ots->val_type == TEMP_VAL_REG) { 3387 s->reg_to_temp[ots->reg] = NULL; 3388 } 3389 ots->reg = ts->reg; 3390 temp_dead(s, ts); 3391 } else { 3392 if (ots->val_type != TEMP_VAL_REG) { 3393 /* When allocating a new register, make sure to not spill the 3394 input one. */ 3395 tcg_regset_set_reg(allocated_regs, ts->reg); 3396 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype], 3397 allocated_regs, preferred_regs, 3398 ots->indirect_base); 3399 } 3400 if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) { 3401 /* 3402 * Cross register class move not supported. 3403 * Store the source register into the destination slot 3404 * and leave the destination temp as TEMP_VAL_MEM. 3405 */ 3406 assert(!ots->fixed_reg); 3407 if (!ts->mem_allocated) { 3408 temp_allocate_frame(s, ots); 3409 } 3410 tcg_out_st(s, ts->type, ts->reg, 3411 ots->mem_base->reg, ots->mem_offset); 3412 ots->mem_coherent = 1; 3413 temp_free_or_dead(s, ots, -1); 3414 return; 3415 } 3416 } 3417 ots->val_type = TEMP_VAL_REG; 3418 ots->mem_coherent = 0; 3419 s->reg_to_temp[ots->reg] = ots; 3420 if (NEED_SYNC_ARG(0)) { 3421 temp_sync(s, ots, allocated_regs, 0, 0); 3422 } 3423 } 3424 } 3425 3426 /* 3427 * Specialized code generation for INDEX_op_dup_vec. 3428 */ 3429 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op) 3430 { 3431 const TCGLifeData arg_life = op->life; 3432 TCGRegSet dup_out_regs, dup_in_regs; 3433 TCGTemp *its, *ots; 3434 TCGType itype, vtype; 3435 intptr_t endian_fixup; 3436 unsigned vece; 3437 bool ok; 3438 3439 ots = arg_temp(op->args[0]); 3440 its = arg_temp(op->args[1]); 3441 3442 /* ENV should not be modified. */ 3443 tcg_debug_assert(!ots->fixed_reg); 3444 3445 itype = its->type; 3446 vece = TCGOP_VECE(op); 3447 vtype = TCGOP_VECL(op) + TCG_TYPE_V64; 3448 3449 if (its->val_type == TEMP_VAL_CONST) { 3450 /* Propagate constant via movi -> dupi. */ 3451 tcg_target_ulong val = its->val; 3452 if (IS_DEAD_ARG(1)) { 3453 temp_dead(s, its); 3454 } 3455 tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]); 3456 return; 3457 } 3458 3459 dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].u.regs; 3460 dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].u.regs; 3461 3462 /* Allocate the output register now. */ 3463 if (ots->val_type != TEMP_VAL_REG) { 3464 TCGRegSet allocated_regs = s->reserved_regs; 3465 3466 if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) { 3467 /* Make sure to not spill the input register. */ 3468 tcg_regset_set_reg(allocated_regs, its->reg); 3469 } 3470 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs, 3471 op->output_pref[0], ots->indirect_base); 3472 ots->val_type = TEMP_VAL_REG; 3473 ots->mem_coherent = 0; 3474 s->reg_to_temp[ots->reg] = ots; 3475 } 3476 3477 switch (its->val_type) { 3478 case TEMP_VAL_REG: 3479 /* 3480 * The dup constriaints must be broad, covering all possible VECE. 3481 * However, tcg_op_dup_vec() gets to see the VECE and we allow it 3482 * to fail, indicating that extra moves are required for that case. 3483 */ 3484 if (tcg_regset_test_reg(dup_in_regs, its->reg)) { 3485 if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) { 3486 goto done; 3487 } 3488 /* Try again from memory or a vector input register. */ 3489 } 3490 if (!its->mem_coherent) { 3491 /* 3492 * The input register is not synced, and so an extra store 3493 * would be required to use memory. Attempt an integer-vector 3494 * register move first. We do not have a TCGRegSet for this. 3495 */ 3496 if (tcg_out_mov(s, itype, ots->reg, its->reg)) { 3497 break; 3498 } 3499 /* Sync the temp back to its slot and load from there. */ 3500 temp_sync(s, its, s->reserved_regs, 0, 0); 3501 } 3502 /* fall through */ 3503 3504 case TEMP_VAL_MEM: 3505 #ifdef HOST_WORDS_BIGENDIAN 3506 endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8; 3507 endian_fixup -= 1 << vece; 3508 #else 3509 endian_fixup = 0; 3510 #endif 3511 if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg, 3512 its->mem_offset + endian_fixup)) { 3513 goto done; 3514 } 3515 tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset); 3516 break; 3517 3518 default: 3519 g_assert_not_reached(); 3520 } 3521 3522 /* We now have a vector input register, so dup must succeed. */ 3523 ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg); 3524 tcg_debug_assert(ok); 3525 3526 done: 3527 if (IS_DEAD_ARG(1)) { 3528 temp_dead(s, its); 3529 } 3530 if (NEED_SYNC_ARG(0)) { 3531 temp_sync(s, ots, s->reserved_regs, 0, 0); 3532 } 3533 if (IS_DEAD_ARG(0)) { 3534 temp_dead(s, ots); 3535 } 3536 } 3537 3538 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op) 3539 { 3540 const TCGLifeData arg_life = op->life; 3541 const TCGOpDef * const def = &tcg_op_defs[op->opc]; 3542 TCGRegSet i_allocated_regs; 3543 TCGRegSet o_allocated_regs; 3544 int i, k, nb_iargs, nb_oargs; 3545 TCGReg reg; 3546 TCGArg arg; 3547 const TCGArgConstraint *arg_ct; 3548 TCGTemp *ts; 3549 TCGArg new_args[TCG_MAX_OP_ARGS]; 3550 int const_args[TCG_MAX_OP_ARGS]; 3551 3552 nb_oargs = def->nb_oargs; 3553 nb_iargs = def->nb_iargs; 3554 3555 /* copy constants */ 3556 memcpy(new_args + nb_oargs + nb_iargs, 3557 op->args + nb_oargs + nb_iargs, 3558 sizeof(TCGArg) * def->nb_cargs); 3559 3560 i_allocated_regs = s->reserved_regs; 3561 o_allocated_regs = s->reserved_regs; 3562 3563 /* satisfy input constraints */ 3564 for (k = 0; k < nb_iargs; k++) { 3565 TCGRegSet i_preferred_regs, o_preferred_regs; 3566 3567 i = def->sorted_args[nb_oargs + k]; 3568 arg = op->args[i]; 3569 arg_ct = &def->args_ct[i]; 3570 ts = arg_temp(arg); 3571 3572 if (ts->val_type == TEMP_VAL_CONST 3573 && tcg_target_const_match(ts->val, ts->type, arg_ct)) { 3574 /* constant is OK for instruction */ 3575 const_args[i] = 1; 3576 new_args[i] = ts->val; 3577 continue; 3578 } 3579 3580 i_preferred_regs = o_preferred_regs = 0; 3581 if (arg_ct->ct & TCG_CT_IALIAS) { 3582 o_preferred_regs = op->output_pref[arg_ct->alias_index]; 3583 if (ts->fixed_reg) { 3584 /* if fixed register, we must allocate a new register 3585 if the alias is not the same register */ 3586 if (arg != op->args[arg_ct->alias_index]) { 3587 goto allocate_in_reg; 3588 } 3589 } else { 3590 /* if the input is aliased to an output and if it is 3591 not dead after the instruction, we must allocate 3592 a new register and move it */ 3593 if (!IS_DEAD_ARG(i)) { 3594 goto allocate_in_reg; 3595 } 3596 3597 /* check if the current register has already been allocated 3598 for another input aliased to an output */ 3599 if (ts->val_type == TEMP_VAL_REG) { 3600 int k2, i2; 3601 reg = ts->reg; 3602 for (k2 = 0 ; k2 < k ; k2++) { 3603 i2 = def->sorted_args[nb_oargs + k2]; 3604 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) && 3605 reg == new_args[i2]) { 3606 goto allocate_in_reg; 3607 } 3608 } 3609 } 3610 i_preferred_regs = o_preferred_regs; 3611 } 3612 } 3613 3614 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs, i_preferred_regs); 3615 reg = ts->reg; 3616 3617 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) { 3618 /* nothing to do : the constraint is satisfied */ 3619 } else { 3620 allocate_in_reg: 3621 /* allocate a new register matching the constraint 3622 and move the temporary register into it */ 3623 temp_load(s, ts, tcg_target_available_regs[ts->type], 3624 i_allocated_regs, 0); 3625 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs, 3626 o_preferred_regs, ts->indirect_base); 3627 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3628 /* 3629 * Cross register class move not supported. Sync the 3630 * temp back to its slot and load from there. 3631 */ 3632 temp_sync(s, ts, i_allocated_regs, 0, 0); 3633 tcg_out_ld(s, ts->type, reg, 3634 ts->mem_base->reg, ts->mem_offset); 3635 } 3636 } 3637 new_args[i] = reg; 3638 const_args[i] = 0; 3639 tcg_regset_set_reg(i_allocated_regs, reg); 3640 } 3641 3642 /* mark dead temporaries and free the associated registers */ 3643 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3644 if (IS_DEAD_ARG(i)) { 3645 temp_dead(s, arg_temp(op->args[i])); 3646 } 3647 } 3648 3649 if (def->flags & TCG_OPF_BB_END) { 3650 tcg_reg_alloc_bb_end(s, i_allocated_regs); 3651 } else { 3652 if (def->flags & TCG_OPF_CALL_CLOBBER) { 3653 /* XXX: permit generic clobber register list ? */ 3654 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3655 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3656 tcg_reg_free(s, i, i_allocated_regs); 3657 } 3658 } 3659 } 3660 if (def->flags & TCG_OPF_SIDE_EFFECTS) { 3661 /* sync globals if the op has side effects and might trigger 3662 an exception. */ 3663 sync_globals(s, i_allocated_regs); 3664 } 3665 3666 /* satisfy the output constraints */ 3667 for(k = 0; k < nb_oargs; k++) { 3668 i = def->sorted_args[k]; 3669 arg = op->args[i]; 3670 arg_ct = &def->args_ct[i]; 3671 ts = arg_temp(arg); 3672 3673 /* ENV should not be modified. */ 3674 tcg_debug_assert(!ts->fixed_reg); 3675 3676 if ((arg_ct->ct & TCG_CT_ALIAS) 3677 && !const_args[arg_ct->alias_index]) { 3678 reg = new_args[arg_ct->alias_index]; 3679 } else if (arg_ct->ct & TCG_CT_NEWREG) { 3680 reg = tcg_reg_alloc(s, arg_ct->u.regs, 3681 i_allocated_regs | o_allocated_regs, 3682 op->output_pref[k], ts->indirect_base); 3683 } else { 3684 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs, 3685 op->output_pref[k], ts->indirect_base); 3686 } 3687 tcg_regset_set_reg(o_allocated_regs, reg); 3688 if (ts->val_type == TEMP_VAL_REG) { 3689 s->reg_to_temp[ts->reg] = NULL; 3690 } 3691 ts->val_type = TEMP_VAL_REG; 3692 ts->reg = reg; 3693 /* 3694 * Temp value is modified, so the value kept in memory is 3695 * potentially not the same. 3696 */ 3697 ts->mem_coherent = 0; 3698 s->reg_to_temp[reg] = ts; 3699 new_args[i] = reg; 3700 } 3701 } 3702 3703 /* emit instruction */ 3704 if (def->flags & TCG_OPF_VECTOR) { 3705 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op), 3706 new_args, const_args); 3707 } else { 3708 tcg_out_op(s, op->opc, new_args, const_args); 3709 } 3710 3711 /* move the outputs in the correct register if needed */ 3712 for(i = 0; i < nb_oargs; i++) { 3713 ts = arg_temp(op->args[i]); 3714 3715 /* ENV should not be modified. */ 3716 tcg_debug_assert(!ts->fixed_reg); 3717 3718 if (NEED_SYNC_ARG(i)) { 3719 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i)); 3720 } else if (IS_DEAD_ARG(i)) { 3721 temp_dead(s, ts); 3722 } 3723 } 3724 } 3725 3726 #ifdef TCG_TARGET_STACK_GROWSUP 3727 #define STACK_DIR(x) (-(x)) 3728 #else 3729 #define STACK_DIR(x) (x) 3730 #endif 3731 3732 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op) 3733 { 3734 const int nb_oargs = TCGOP_CALLO(op); 3735 const int nb_iargs = TCGOP_CALLI(op); 3736 const TCGLifeData arg_life = op->life; 3737 int flags, nb_regs, i; 3738 TCGReg reg; 3739 TCGArg arg; 3740 TCGTemp *ts; 3741 intptr_t stack_offset; 3742 size_t call_stack_size; 3743 tcg_insn_unit *func_addr; 3744 int allocate_args; 3745 TCGRegSet allocated_regs; 3746 3747 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs]; 3748 flags = op->args[nb_oargs + nb_iargs + 1]; 3749 3750 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 3751 if (nb_regs > nb_iargs) { 3752 nb_regs = nb_iargs; 3753 } 3754 3755 /* assign stack slots first */ 3756 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long); 3757 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) & 3758 ~(TCG_TARGET_STACK_ALIGN - 1); 3759 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE); 3760 if (allocate_args) { 3761 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed, 3762 preallocate call stack */ 3763 tcg_abort(); 3764 } 3765 3766 stack_offset = TCG_TARGET_CALL_STACK_OFFSET; 3767 for (i = nb_regs; i < nb_iargs; i++) { 3768 arg = op->args[nb_oargs + i]; 3769 #ifdef TCG_TARGET_STACK_GROWSUP 3770 stack_offset -= sizeof(tcg_target_long); 3771 #endif 3772 if (arg != TCG_CALL_DUMMY_ARG) { 3773 ts = arg_temp(arg); 3774 temp_load(s, ts, tcg_target_available_regs[ts->type], 3775 s->reserved_regs, 0); 3776 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset); 3777 } 3778 #ifndef TCG_TARGET_STACK_GROWSUP 3779 stack_offset += sizeof(tcg_target_long); 3780 #endif 3781 } 3782 3783 /* assign input registers */ 3784 allocated_regs = s->reserved_regs; 3785 for (i = 0; i < nb_regs; i++) { 3786 arg = op->args[nb_oargs + i]; 3787 if (arg != TCG_CALL_DUMMY_ARG) { 3788 ts = arg_temp(arg); 3789 reg = tcg_target_call_iarg_regs[i]; 3790 3791 if (ts->val_type == TEMP_VAL_REG) { 3792 if (ts->reg != reg) { 3793 tcg_reg_free(s, reg, allocated_regs); 3794 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3795 /* 3796 * Cross register class move not supported. Sync the 3797 * temp back to its slot and load from there. 3798 */ 3799 temp_sync(s, ts, allocated_regs, 0, 0); 3800 tcg_out_ld(s, ts->type, reg, 3801 ts->mem_base->reg, ts->mem_offset); 3802 } 3803 } 3804 } else { 3805 TCGRegSet arg_set = 0; 3806 3807 tcg_reg_free(s, reg, allocated_regs); 3808 tcg_regset_set_reg(arg_set, reg); 3809 temp_load(s, ts, arg_set, allocated_regs, 0); 3810 } 3811 3812 tcg_regset_set_reg(allocated_regs, reg); 3813 } 3814 } 3815 3816 /* mark dead temporaries and free the associated registers */ 3817 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 3818 if (IS_DEAD_ARG(i)) { 3819 temp_dead(s, arg_temp(op->args[i])); 3820 } 3821 } 3822 3823 /* clobber call registers */ 3824 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3825 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3826 tcg_reg_free(s, i, allocated_regs); 3827 } 3828 } 3829 3830 /* Save globals if they might be written by the helper, sync them if 3831 they might be read. */ 3832 if (flags & TCG_CALL_NO_READ_GLOBALS) { 3833 /* Nothing to do */ 3834 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) { 3835 sync_globals(s, allocated_regs); 3836 } else { 3837 save_globals(s, allocated_regs); 3838 } 3839 3840 tcg_out_call(s, func_addr); 3841 3842 /* assign output registers and emit moves if needed */ 3843 for(i = 0; i < nb_oargs; i++) { 3844 arg = op->args[i]; 3845 ts = arg_temp(arg); 3846 3847 /* ENV should not be modified. */ 3848 tcg_debug_assert(!ts->fixed_reg); 3849 3850 reg = tcg_target_call_oarg_regs[i]; 3851 tcg_debug_assert(s->reg_to_temp[reg] == NULL); 3852 if (ts->val_type == TEMP_VAL_REG) { 3853 s->reg_to_temp[ts->reg] = NULL; 3854 } 3855 ts->val_type = TEMP_VAL_REG; 3856 ts->reg = reg; 3857 ts->mem_coherent = 0; 3858 s->reg_to_temp[reg] = ts; 3859 if (NEED_SYNC_ARG(i)) { 3860 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i)); 3861 } else if (IS_DEAD_ARG(i)) { 3862 temp_dead(s, ts); 3863 } 3864 } 3865 } 3866 3867 #ifdef CONFIG_PROFILER 3868 3869 /* avoid copy/paste errors */ 3870 #define PROF_ADD(to, from, field) \ 3871 do { \ 3872 (to)->field += atomic_read(&((from)->field)); \ 3873 } while (0) 3874 3875 #define PROF_MAX(to, from, field) \ 3876 do { \ 3877 typeof((from)->field) val__ = atomic_read(&((from)->field)); \ 3878 if (val__ > (to)->field) { \ 3879 (to)->field = val__; \ 3880 } \ 3881 } while (0) 3882 3883 /* Pass in a zero'ed @prof */ 3884 static inline 3885 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table) 3886 { 3887 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3888 unsigned int i; 3889 3890 for (i = 0; i < n_ctxs; i++) { 3891 TCGContext *s = atomic_read(&tcg_ctxs[i]); 3892 const TCGProfile *orig = &s->prof; 3893 3894 if (counters) { 3895 PROF_ADD(prof, orig, cpu_exec_time); 3896 PROF_ADD(prof, orig, tb_count1); 3897 PROF_ADD(prof, orig, tb_count); 3898 PROF_ADD(prof, orig, op_count); 3899 PROF_MAX(prof, orig, op_count_max); 3900 PROF_ADD(prof, orig, temp_count); 3901 PROF_MAX(prof, orig, temp_count_max); 3902 PROF_ADD(prof, orig, del_op_count); 3903 PROF_ADD(prof, orig, code_in_len); 3904 PROF_ADD(prof, orig, code_out_len); 3905 PROF_ADD(prof, orig, search_out_len); 3906 PROF_ADD(prof, orig, interm_time); 3907 PROF_ADD(prof, orig, code_time); 3908 PROF_ADD(prof, orig, la_time); 3909 PROF_ADD(prof, orig, opt_time); 3910 PROF_ADD(prof, orig, restore_count); 3911 PROF_ADD(prof, orig, restore_time); 3912 } 3913 if (table) { 3914 int i; 3915 3916 for (i = 0; i < NB_OPS; i++) { 3917 PROF_ADD(prof, orig, table_op_count[i]); 3918 } 3919 } 3920 } 3921 } 3922 3923 #undef PROF_ADD 3924 #undef PROF_MAX 3925 3926 static void tcg_profile_snapshot_counters(TCGProfile *prof) 3927 { 3928 tcg_profile_snapshot(prof, true, false); 3929 } 3930 3931 static void tcg_profile_snapshot_table(TCGProfile *prof) 3932 { 3933 tcg_profile_snapshot(prof, false, true); 3934 } 3935 3936 void tcg_dump_op_count(void) 3937 { 3938 TCGProfile prof = {}; 3939 int i; 3940 3941 tcg_profile_snapshot_table(&prof); 3942 for (i = 0; i < NB_OPS; i++) { 3943 qemu_printf("%s %" PRId64 "\n", tcg_op_defs[i].name, 3944 prof.table_op_count[i]); 3945 } 3946 } 3947 3948 int64_t tcg_cpu_exec_time(void) 3949 { 3950 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3951 unsigned int i; 3952 int64_t ret = 0; 3953 3954 for (i = 0; i < n_ctxs; i++) { 3955 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 3956 const TCGProfile *prof = &s->prof; 3957 3958 ret += atomic_read(&prof->cpu_exec_time); 3959 } 3960 return ret; 3961 } 3962 #else 3963 void tcg_dump_op_count(void) 3964 { 3965 qemu_printf("[TCG profiler not compiled]\n"); 3966 } 3967 3968 int64_t tcg_cpu_exec_time(void) 3969 { 3970 error_report("%s: TCG profiler not compiled", __func__); 3971 exit(EXIT_FAILURE); 3972 } 3973 #endif 3974 3975 3976 int tcg_gen_code(TCGContext *s, TranslationBlock *tb) 3977 { 3978 #ifdef CONFIG_PROFILER 3979 TCGProfile *prof = &s->prof; 3980 #endif 3981 int i, num_insns; 3982 TCGOp *op; 3983 3984 #ifdef CONFIG_PROFILER 3985 { 3986 int n = 0; 3987 3988 QTAILQ_FOREACH(op, &s->ops, link) { 3989 n++; 3990 } 3991 atomic_set(&prof->op_count, prof->op_count + n); 3992 if (n > prof->op_count_max) { 3993 atomic_set(&prof->op_count_max, n); 3994 } 3995 3996 n = s->nb_temps; 3997 atomic_set(&prof->temp_count, prof->temp_count + n); 3998 if (n > prof->temp_count_max) { 3999 atomic_set(&prof->temp_count_max, n); 4000 } 4001 } 4002 #endif 4003 4004 #ifdef DEBUG_DISAS 4005 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP) 4006 && qemu_log_in_addr_range(tb->pc))) { 4007 qemu_log_lock(); 4008 qemu_log("OP:\n"); 4009 tcg_dump_ops(s, false); 4010 qemu_log("\n"); 4011 qemu_log_unlock(); 4012 } 4013 #endif 4014 4015 #ifdef CONFIG_DEBUG_TCG 4016 /* Ensure all labels referenced have been emitted. */ 4017 { 4018 TCGLabel *l; 4019 bool error = false; 4020 4021 QSIMPLEQ_FOREACH(l, &s->labels, next) { 4022 if (unlikely(!l->present) && l->refs) { 4023 qemu_log_mask(CPU_LOG_TB_OP, 4024 "$L%d referenced but not present.\n", l->id); 4025 error = true; 4026 } 4027 } 4028 assert(!error); 4029 } 4030 #endif 4031 4032 #ifdef CONFIG_PROFILER 4033 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock()); 4034 #endif 4035 4036 #ifdef USE_TCG_OPTIMIZATIONS 4037 tcg_optimize(s); 4038 #endif 4039 4040 #ifdef CONFIG_PROFILER 4041 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock()); 4042 atomic_set(&prof->la_time, prof->la_time - profile_getclock()); 4043 #endif 4044 4045 reachable_code_pass(s); 4046 liveness_pass_1(s); 4047 4048 if (s->nb_indirects > 0) { 4049 #ifdef DEBUG_DISAS 4050 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND) 4051 && qemu_log_in_addr_range(tb->pc))) { 4052 qemu_log_lock(); 4053 qemu_log("OP before indirect lowering:\n"); 4054 tcg_dump_ops(s, false); 4055 qemu_log("\n"); 4056 qemu_log_unlock(); 4057 } 4058 #endif 4059 /* Replace indirect temps with direct temps. */ 4060 if (liveness_pass_2(s)) { 4061 /* If changes were made, re-run liveness. */ 4062 liveness_pass_1(s); 4063 } 4064 } 4065 4066 #ifdef CONFIG_PROFILER 4067 atomic_set(&prof->la_time, prof->la_time + profile_getclock()); 4068 #endif 4069 4070 #ifdef DEBUG_DISAS 4071 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT) 4072 && qemu_log_in_addr_range(tb->pc))) { 4073 qemu_log_lock(); 4074 qemu_log("OP after optimization and liveness analysis:\n"); 4075 tcg_dump_ops(s, true); 4076 qemu_log("\n"); 4077 qemu_log_unlock(); 4078 } 4079 #endif 4080 4081 tcg_reg_alloc_start(s); 4082 4083 s->code_buf = tb->tc.ptr; 4084 s->code_ptr = tb->tc.ptr; 4085 4086 #ifdef TCG_TARGET_NEED_LDST_LABELS 4087 QSIMPLEQ_INIT(&s->ldst_labels); 4088 #endif 4089 #ifdef TCG_TARGET_NEED_POOL_LABELS 4090 s->pool_labels = NULL; 4091 #endif 4092 4093 num_insns = -1; 4094 QTAILQ_FOREACH(op, &s->ops, link) { 4095 TCGOpcode opc = op->opc; 4096 4097 #ifdef CONFIG_PROFILER 4098 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1); 4099 #endif 4100 4101 switch (opc) { 4102 case INDEX_op_mov_i32: 4103 case INDEX_op_mov_i64: 4104 case INDEX_op_mov_vec: 4105 tcg_reg_alloc_mov(s, op); 4106 break; 4107 case INDEX_op_movi_i32: 4108 case INDEX_op_movi_i64: 4109 case INDEX_op_dupi_vec: 4110 tcg_reg_alloc_movi(s, op); 4111 break; 4112 case INDEX_op_dup_vec: 4113 tcg_reg_alloc_dup(s, op); 4114 break; 4115 case INDEX_op_insn_start: 4116 if (num_insns >= 0) { 4117 size_t off = tcg_current_code_size(s); 4118 s->gen_insn_end_off[num_insns] = off; 4119 /* Assert that we do not overflow our stored offset. */ 4120 assert(s->gen_insn_end_off[num_insns] == off); 4121 } 4122 num_insns++; 4123 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 4124 target_ulong a; 4125 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 4126 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 4127 #else 4128 a = op->args[i]; 4129 #endif 4130 s->gen_insn_data[num_insns][i] = a; 4131 } 4132 break; 4133 case INDEX_op_discard: 4134 temp_dead(s, arg_temp(op->args[0])); 4135 break; 4136 case INDEX_op_set_label: 4137 tcg_reg_alloc_bb_end(s, s->reserved_regs); 4138 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr); 4139 break; 4140 case INDEX_op_call: 4141 tcg_reg_alloc_call(s, op); 4142 break; 4143 default: 4144 /* Sanity check that we've not introduced any unhandled opcodes. */ 4145 tcg_debug_assert(tcg_op_supported(opc)); 4146 /* Note: in order to speed up the code, it would be much 4147 faster to have specialized register allocator functions for 4148 some common argument patterns */ 4149 tcg_reg_alloc_op(s, op); 4150 break; 4151 } 4152 #ifdef CONFIG_DEBUG_TCG 4153 check_regs(s); 4154 #endif 4155 /* Test for (pending) buffer overflow. The assumption is that any 4156 one operation beginning below the high water mark cannot overrun 4157 the buffer completely. Thus we can test for overflow after 4158 generating code without having to check during generation. */ 4159 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) { 4160 return -1; 4161 } 4162 /* Test for TB overflow, as seen by gen_insn_end_off. */ 4163 if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) { 4164 return -2; 4165 } 4166 } 4167 tcg_debug_assert(num_insns >= 0); 4168 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); 4169 4170 /* Generate TB finalization at the end of block */ 4171 #ifdef TCG_TARGET_NEED_LDST_LABELS 4172 i = tcg_out_ldst_finalize(s); 4173 if (i < 0) { 4174 return i; 4175 } 4176 #endif 4177 #ifdef TCG_TARGET_NEED_POOL_LABELS 4178 i = tcg_out_pool_finalize(s); 4179 if (i < 0) { 4180 return i; 4181 } 4182 #endif 4183 if (!tcg_resolve_relocs(s)) { 4184 return -2; 4185 } 4186 4187 /* flush instruction cache */ 4188 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr); 4189 4190 return tcg_current_code_size(s); 4191 } 4192 4193 #ifdef CONFIG_PROFILER 4194 void tcg_dump_info(void) 4195 { 4196 TCGProfile prof = {}; 4197 const TCGProfile *s; 4198 int64_t tb_count; 4199 int64_t tb_div_count; 4200 int64_t tot; 4201 4202 tcg_profile_snapshot_counters(&prof); 4203 s = &prof; 4204 tb_count = s->tb_count; 4205 tb_div_count = tb_count ? tb_count : 1; 4206 tot = s->interm_time + s->code_time; 4207 4208 qemu_printf("JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n", 4209 tot, tot / 2.4e9); 4210 qemu_printf("translated TBs %" PRId64 " (aborted=%" PRId64 4211 " %0.1f%%)\n", 4212 tb_count, s->tb_count1 - tb_count, 4213 (double)(s->tb_count1 - s->tb_count) 4214 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0); 4215 qemu_printf("avg ops/TB %0.1f max=%d\n", 4216 (double)s->op_count / tb_div_count, s->op_count_max); 4217 qemu_printf("deleted ops/TB %0.2f\n", 4218 (double)s->del_op_count / tb_div_count); 4219 qemu_printf("avg temps/TB %0.2f max=%d\n", 4220 (double)s->temp_count / tb_div_count, s->temp_count_max); 4221 qemu_printf("avg host code/TB %0.1f\n", 4222 (double)s->code_out_len / tb_div_count); 4223 qemu_printf("avg search data/TB %0.1f\n", 4224 (double)s->search_out_len / tb_div_count); 4225 4226 qemu_printf("cycles/op %0.1f\n", 4227 s->op_count ? (double)tot / s->op_count : 0); 4228 qemu_printf("cycles/in byte %0.1f\n", 4229 s->code_in_len ? (double)tot / s->code_in_len : 0); 4230 qemu_printf("cycles/out byte %0.1f\n", 4231 s->code_out_len ? (double)tot / s->code_out_len : 0); 4232 qemu_printf("cycles/search byte %0.1f\n", 4233 s->search_out_len ? (double)tot / s->search_out_len : 0); 4234 if (tot == 0) { 4235 tot = 1; 4236 } 4237 qemu_printf(" gen_interm time %0.1f%%\n", 4238 (double)s->interm_time / tot * 100.0); 4239 qemu_printf(" gen_code time %0.1f%%\n", 4240 (double)s->code_time / tot * 100.0); 4241 qemu_printf("optim./code time %0.1f%%\n", 4242 (double)s->opt_time / (s->code_time ? s->code_time : 1) 4243 * 100.0); 4244 qemu_printf("liveness/code time %0.1f%%\n", 4245 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0); 4246 qemu_printf("cpu_restore count %" PRId64 "\n", 4247 s->restore_count); 4248 qemu_printf(" avg cycles %0.1f\n", 4249 s->restore_count ? (double)s->restore_time / s->restore_count : 0); 4250 } 4251 #else 4252 void tcg_dump_info(void) 4253 { 4254 qemu_printf("[TCG profiler not compiled]\n"); 4255 } 4256 #endif 4257 4258 #ifdef ELF_HOST_MACHINE 4259 /* In order to use this feature, the backend needs to do three things: 4260 4261 (1) Define ELF_HOST_MACHINE to indicate both what value to 4262 put into the ELF image and to indicate support for the feature. 4263 4264 (2) Define tcg_register_jit. This should create a buffer containing 4265 the contents of a .debug_frame section that describes the post- 4266 prologue unwind info for the tcg machine. 4267 4268 (3) Call tcg_register_jit_int, with the constructed .debug_frame. 4269 */ 4270 4271 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */ 4272 typedef enum { 4273 JIT_NOACTION = 0, 4274 JIT_REGISTER_FN, 4275 JIT_UNREGISTER_FN 4276 } jit_actions_t; 4277 4278 struct jit_code_entry { 4279 struct jit_code_entry *next_entry; 4280 struct jit_code_entry *prev_entry; 4281 const void *symfile_addr; 4282 uint64_t symfile_size; 4283 }; 4284 4285 struct jit_descriptor { 4286 uint32_t version; 4287 uint32_t action_flag; 4288 struct jit_code_entry *relevant_entry; 4289 struct jit_code_entry *first_entry; 4290 }; 4291 4292 void __jit_debug_register_code(void) __attribute__((noinline)); 4293 void __jit_debug_register_code(void) 4294 { 4295 asm(""); 4296 } 4297 4298 /* Must statically initialize the version, because GDB may check 4299 the version before we can set it. */ 4300 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 4301 4302 /* End GDB interface. */ 4303 4304 static int find_string(const char *strtab, const char *str) 4305 { 4306 const char *p = strtab + 1; 4307 4308 while (1) { 4309 if (strcmp(p, str) == 0) { 4310 return p - strtab; 4311 } 4312 p += strlen(p) + 1; 4313 } 4314 } 4315 4316 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size, 4317 const void *debug_frame, 4318 size_t debug_frame_size) 4319 { 4320 struct __attribute__((packed)) DebugInfo { 4321 uint32_t len; 4322 uint16_t version; 4323 uint32_t abbrev; 4324 uint8_t ptr_size; 4325 uint8_t cu_die; 4326 uint16_t cu_lang; 4327 uintptr_t cu_low_pc; 4328 uintptr_t cu_high_pc; 4329 uint8_t fn_die; 4330 char fn_name[16]; 4331 uintptr_t fn_low_pc; 4332 uintptr_t fn_high_pc; 4333 uint8_t cu_eoc; 4334 }; 4335 4336 struct ElfImage { 4337 ElfW(Ehdr) ehdr; 4338 ElfW(Phdr) phdr; 4339 ElfW(Shdr) shdr[7]; 4340 ElfW(Sym) sym[2]; 4341 struct DebugInfo di; 4342 uint8_t da[24]; 4343 char str[80]; 4344 }; 4345 4346 struct ElfImage *img; 4347 4348 static const struct ElfImage img_template = { 4349 .ehdr = { 4350 .e_ident[EI_MAG0] = ELFMAG0, 4351 .e_ident[EI_MAG1] = ELFMAG1, 4352 .e_ident[EI_MAG2] = ELFMAG2, 4353 .e_ident[EI_MAG3] = ELFMAG3, 4354 .e_ident[EI_CLASS] = ELF_CLASS, 4355 .e_ident[EI_DATA] = ELF_DATA, 4356 .e_ident[EI_VERSION] = EV_CURRENT, 4357 .e_type = ET_EXEC, 4358 .e_machine = ELF_HOST_MACHINE, 4359 .e_version = EV_CURRENT, 4360 .e_phoff = offsetof(struct ElfImage, phdr), 4361 .e_shoff = offsetof(struct ElfImage, shdr), 4362 .e_ehsize = sizeof(ElfW(Shdr)), 4363 .e_phentsize = sizeof(ElfW(Phdr)), 4364 .e_phnum = 1, 4365 .e_shentsize = sizeof(ElfW(Shdr)), 4366 .e_shnum = ARRAY_SIZE(img->shdr), 4367 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1, 4368 #ifdef ELF_HOST_FLAGS 4369 .e_flags = ELF_HOST_FLAGS, 4370 #endif 4371 #ifdef ELF_OSABI 4372 .e_ident[EI_OSABI] = ELF_OSABI, 4373 #endif 4374 }, 4375 .phdr = { 4376 .p_type = PT_LOAD, 4377 .p_flags = PF_X, 4378 }, 4379 .shdr = { 4380 [0] = { .sh_type = SHT_NULL }, 4381 /* Trick: The contents of code_gen_buffer are not present in 4382 this fake ELF file; that got allocated elsewhere. Therefore 4383 we mark .text as SHT_NOBITS (similar to .bss) so that readers 4384 will not look for contents. We can record any address. */ 4385 [1] = { /* .text */ 4386 .sh_type = SHT_NOBITS, 4387 .sh_flags = SHF_EXECINSTR | SHF_ALLOC, 4388 }, 4389 [2] = { /* .debug_info */ 4390 .sh_type = SHT_PROGBITS, 4391 .sh_offset = offsetof(struct ElfImage, di), 4392 .sh_size = sizeof(struct DebugInfo), 4393 }, 4394 [3] = { /* .debug_abbrev */ 4395 .sh_type = SHT_PROGBITS, 4396 .sh_offset = offsetof(struct ElfImage, da), 4397 .sh_size = sizeof(img->da), 4398 }, 4399 [4] = { /* .debug_frame */ 4400 .sh_type = SHT_PROGBITS, 4401 .sh_offset = sizeof(struct ElfImage), 4402 }, 4403 [5] = { /* .symtab */ 4404 .sh_type = SHT_SYMTAB, 4405 .sh_offset = offsetof(struct ElfImage, sym), 4406 .sh_size = sizeof(img->sym), 4407 .sh_info = 1, 4408 .sh_link = ARRAY_SIZE(img->shdr) - 1, 4409 .sh_entsize = sizeof(ElfW(Sym)), 4410 }, 4411 [6] = { /* .strtab */ 4412 .sh_type = SHT_STRTAB, 4413 .sh_offset = offsetof(struct ElfImage, str), 4414 .sh_size = sizeof(img->str), 4415 } 4416 }, 4417 .sym = { 4418 [1] = { /* code_gen_buffer */ 4419 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC), 4420 .st_shndx = 1, 4421 } 4422 }, 4423 .di = { 4424 .len = sizeof(struct DebugInfo) - 4, 4425 .version = 2, 4426 .ptr_size = sizeof(void *), 4427 .cu_die = 1, 4428 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */ 4429 .fn_die = 2, 4430 .fn_name = "code_gen_buffer" 4431 }, 4432 .da = { 4433 1, /* abbrev number (the cu) */ 4434 0x11, 1, /* DW_TAG_compile_unit, has children */ 4435 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */ 4436 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4437 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4438 0, 0, /* end of abbrev */ 4439 2, /* abbrev number (the fn) */ 4440 0x2e, 0, /* DW_TAG_subprogram, no children */ 4441 0x3, 0x8, /* DW_AT_name, DW_FORM_string */ 4442 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4443 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4444 0, 0, /* end of abbrev */ 4445 0 /* no more abbrev */ 4446 }, 4447 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0" 4448 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer", 4449 }; 4450 4451 /* We only need a single jit entry; statically allocate it. */ 4452 static struct jit_code_entry one_entry; 4453 4454 uintptr_t buf = (uintptr_t)buf_ptr; 4455 size_t img_size = sizeof(struct ElfImage) + debug_frame_size; 4456 DebugFrameHeader *dfh; 4457 4458 img = g_malloc(img_size); 4459 *img = img_template; 4460 4461 img->phdr.p_vaddr = buf; 4462 img->phdr.p_paddr = buf; 4463 img->phdr.p_memsz = buf_size; 4464 4465 img->shdr[1].sh_name = find_string(img->str, ".text"); 4466 img->shdr[1].sh_addr = buf; 4467 img->shdr[1].sh_size = buf_size; 4468 4469 img->shdr[2].sh_name = find_string(img->str, ".debug_info"); 4470 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev"); 4471 4472 img->shdr[4].sh_name = find_string(img->str, ".debug_frame"); 4473 img->shdr[4].sh_size = debug_frame_size; 4474 4475 img->shdr[5].sh_name = find_string(img->str, ".symtab"); 4476 img->shdr[6].sh_name = find_string(img->str, ".strtab"); 4477 4478 img->sym[1].st_name = find_string(img->str, "code_gen_buffer"); 4479 img->sym[1].st_value = buf; 4480 img->sym[1].st_size = buf_size; 4481 4482 img->di.cu_low_pc = buf; 4483 img->di.cu_high_pc = buf + buf_size; 4484 img->di.fn_low_pc = buf; 4485 img->di.fn_high_pc = buf + buf_size; 4486 4487 dfh = (DebugFrameHeader *)(img + 1); 4488 memcpy(dfh, debug_frame, debug_frame_size); 4489 dfh->fde.func_start = buf; 4490 dfh->fde.func_len = buf_size; 4491 4492 #ifdef DEBUG_JIT 4493 /* Enable this block to be able to debug the ELF image file creation. 4494 One can use readelf, objdump, or other inspection utilities. */ 4495 { 4496 FILE *f = fopen("/tmp/qemu.jit", "w+b"); 4497 if (f) { 4498 if (fwrite(img, img_size, 1, f) != img_size) { 4499 /* Avoid stupid unused return value warning for fwrite. */ 4500 } 4501 fclose(f); 4502 } 4503 } 4504 #endif 4505 4506 one_entry.symfile_addr = img; 4507 one_entry.symfile_size = img_size; 4508 4509 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; 4510 __jit_debug_descriptor.relevant_entry = &one_entry; 4511 __jit_debug_descriptor.first_entry = &one_entry; 4512 __jit_debug_register_code(); 4513 } 4514 #else 4515 /* No support for the feature. Provide the entry point expected by exec.c, 4516 and implement the internal function we declared earlier. */ 4517 4518 static void tcg_register_jit_int(void *buf, size_t size, 4519 const void *debug_frame, 4520 size_t debug_frame_size) 4521 { 4522 } 4523 4524 void tcg_register_jit(void *buf, size_t buf_size) 4525 { 4526 } 4527 #endif /* ELF_HOST_MACHINE */ 4528 4529 #if !TCG_TARGET_MAYBE_vec 4530 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...) 4531 { 4532 g_assert_not_reached(); 4533 } 4534 #endif 4535