1 /* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 /* define it to use liveness analysis (better code) */ 26 #define USE_TCG_OPTIMIZATIONS 27 28 #include "qemu/osdep.h" 29 30 /* Define to jump the ELF file used to communicate with GDB. */ 31 #undef DEBUG_JIT 32 33 #include "qemu/error-report.h" 34 #include "qemu/cutils.h" 35 #include "qemu/host-utils.h" 36 #include "qemu/timer.h" 37 38 /* Note: the long term plan is to reduce the dependencies on the QEMU 39 CPU definitions. Currently they are used for qemu_ld/st 40 instructions */ 41 #define NO_CPU_IO_DEFS 42 #include "cpu.h" 43 44 #include "exec/cpu-common.h" 45 #include "exec/exec-all.h" 46 47 #include "tcg-op.h" 48 49 #if UINTPTR_MAX == UINT32_MAX 50 # define ELF_CLASS ELFCLASS32 51 #else 52 # define ELF_CLASS ELFCLASS64 53 #endif 54 #ifdef HOST_WORDS_BIGENDIAN 55 # define ELF_DATA ELFDATA2MSB 56 #else 57 # define ELF_DATA ELFDATA2LSB 58 #endif 59 60 #include "elf.h" 61 #include "exec/log.h" 62 #include "sysemu/sysemu.h" 63 64 /* Forward declarations for functions declared in tcg-target.inc.c and 65 used here. */ 66 static void tcg_target_init(TCGContext *s); 67 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode); 68 static void tcg_target_qemu_prologue(TCGContext *s); 69 static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 70 intptr_t value, intptr_t addend); 71 72 /* The CIE and FDE header definitions will be common to all hosts. */ 73 typedef struct { 74 uint32_t len __attribute__((aligned((sizeof(void *))))); 75 uint32_t id; 76 uint8_t version; 77 char augmentation[1]; 78 uint8_t code_align; 79 uint8_t data_align; 80 uint8_t return_column; 81 } DebugFrameCIE; 82 83 typedef struct QEMU_PACKED { 84 uint32_t len __attribute__((aligned((sizeof(void *))))); 85 uint32_t cie_offset; 86 uintptr_t func_start; 87 uintptr_t func_len; 88 } DebugFrameFDEHeader; 89 90 typedef struct QEMU_PACKED { 91 DebugFrameCIE cie; 92 DebugFrameFDEHeader fde; 93 } DebugFrameHeader; 94 95 static void tcg_register_jit_int(void *buf, size_t size, 96 const void *debug_frame, 97 size_t debug_frame_size) 98 __attribute__((unused)); 99 100 /* Forward declarations for functions declared and used in tcg-target.inc.c. */ 101 static const char *target_parse_constraint(TCGArgConstraint *ct, 102 const char *ct_str, TCGType type); 103 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, 104 intptr_t arg2); 105 static void tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg); 106 static void tcg_out_movi(TCGContext *s, TCGType type, 107 TCGReg ret, tcg_target_long arg); 108 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, 109 const int *const_args); 110 #if TCG_TARGET_MAYBE_vec 111 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 112 unsigned vece, const TCGArg *args, 113 const int *const_args); 114 #else 115 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 116 unsigned vece, const TCGArg *args, 117 const int *const_args) 118 { 119 g_assert_not_reached(); 120 } 121 #endif 122 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, 123 intptr_t arg2); 124 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 125 TCGReg base, intptr_t ofs); 126 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target); 127 static int tcg_target_const_match(tcg_target_long val, TCGType type, 128 const TCGArgConstraint *arg_ct); 129 #ifdef TCG_TARGET_NEED_LDST_LABELS 130 static bool tcg_out_ldst_finalize(TCGContext *s); 131 #endif 132 133 #define TCG_HIGHWATER 1024 134 135 static TCGContext **tcg_ctxs; 136 static unsigned int n_tcg_ctxs; 137 TCGv_env cpu_env = 0; 138 139 struct tcg_region_tree { 140 QemuMutex lock; 141 GTree *tree; 142 /* padding to avoid false sharing is computed at run-time */ 143 }; 144 145 /* 146 * We divide code_gen_buffer into equally-sized "regions" that TCG threads 147 * dynamically allocate from as demand dictates. Given appropriate region 148 * sizing, this minimizes flushes even when some TCG threads generate a lot 149 * more code than others. 150 */ 151 struct tcg_region_state { 152 QemuMutex lock; 153 154 /* fields set at init time */ 155 void *start; 156 void *start_aligned; 157 void *end; 158 size_t n; 159 size_t size; /* size of one region */ 160 size_t stride; /* .size + guard size */ 161 162 /* fields protected by the lock */ 163 size_t current; /* current region index */ 164 size_t agg_size_full; /* aggregate size of full regions */ 165 }; 166 167 static struct tcg_region_state region; 168 /* 169 * This is an array of struct tcg_region_tree's, with padding. 170 * We use void * to simplify the computation of region_trees[i]; each 171 * struct is found every tree_size bytes. 172 */ 173 static void *region_trees; 174 static size_t tree_size; 175 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT]; 176 static TCGRegSet tcg_target_call_clobber_regs; 177 178 #if TCG_TARGET_INSN_UNIT_SIZE == 1 179 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v) 180 { 181 *s->code_ptr++ = v; 182 } 183 184 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p, 185 uint8_t v) 186 { 187 *p = v; 188 } 189 #endif 190 191 #if TCG_TARGET_INSN_UNIT_SIZE <= 2 192 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v) 193 { 194 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 195 *s->code_ptr++ = v; 196 } else { 197 tcg_insn_unit *p = s->code_ptr; 198 memcpy(p, &v, sizeof(v)); 199 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE); 200 } 201 } 202 203 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p, 204 uint16_t v) 205 { 206 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 207 *p = v; 208 } else { 209 memcpy(p, &v, sizeof(v)); 210 } 211 } 212 #endif 213 214 #if TCG_TARGET_INSN_UNIT_SIZE <= 4 215 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v) 216 { 217 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 218 *s->code_ptr++ = v; 219 } else { 220 tcg_insn_unit *p = s->code_ptr; 221 memcpy(p, &v, sizeof(v)); 222 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE); 223 } 224 } 225 226 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p, 227 uint32_t v) 228 { 229 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 230 *p = v; 231 } else { 232 memcpy(p, &v, sizeof(v)); 233 } 234 } 235 #endif 236 237 #if TCG_TARGET_INSN_UNIT_SIZE <= 8 238 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v) 239 { 240 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 241 *s->code_ptr++ = v; 242 } else { 243 tcg_insn_unit *p = s->code_ptr; 244 memcpy(p, &v, sizeof(v)); 245 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE); 246 } 247 } 248 249 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p, 250 uint64_t v) 251 { 252 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 253 *p = v; 254 } else { 255 memcpy(p, &v, sizeof(v)); 256 } 257 } 258 #endif 259 260 /* label relocation processing */ 261 262 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type, 263 TCGLabel *l, intptr_t addend) 264 { 265 TCGRelocation *r; 266 267 if (l->has_value) { 268 /* FIXME: This may break relocations on RISC targets that 269 modify instruction fields in place. The caller may not have 270 written the initial value. */ 271 bool ok = patch_reloc(code_ptr, type, l->u.value, addend); 272 tcg_debug_assert(ok); 273 } else { 274 /* add a new relocation entry */ 275 r = tcg_malloc(sizeof(TCGRelocation)); 276 r->type = type; 277 r->ptr = code_ptr; 278 r->addend = addend; 279 r->next = l->u.first_reloc; 280 l->u.first_reloc = r; 281 } 282 } 283 284 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr) 285 { 286 intptr_t value = (intptr_t)ptr; 287 TCGRelocation *r; 288 289 tcg_debug_assert(!l->has_value); 290 291 for (r = l->u.first_reloc; r != NULL; r = r->next) { 292 bool ok = patch_reloc(r->ptr, r->type, value, r->addend); 293 tcg_debug_assert(ok); 294 } 295 296 l->has_value = 1; 297 l->u.value_ptr = ptr; 298 } 299 300 TCGLabel *gen_new_label(void) 301 { 302 TCGContext *s = tcg_ctx; 303 TCGLabel *l = tcg_malloc(sizeof(TCGLabel)); 304 305 *l = (TCGLabel){ 306 .id = s->nb_labels++ 307 }; 308 309 return l; 310 } 311 312 static void set_jmp_reset_offset(TCGContext *s, int which) 313 { 314 size_t off = tcg_current_code_size(s); 315 s->tb_jmp_reset_offset[which] = off; 316 /* Make sure that we didn't overflow the stored offset. */ 317 assert(s->tb_jmp_reset_offset[which] == off); 318 } 319 320 #include "tcg-target.inc.c" 321 322 /* compare a pointer @ptr and a tb_tc @s */ 323 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) 324 { 325 if (ptr >= s->ptr + s->size) { 326 return 1; 327 } else if (ptr < s->ptr) { 328 return -1; 329 } 330 return 0; 331 } 332 333 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp) 334 { 335 const struct tb_tc *a = ap; 336 const struct tb_tc *b = bp; 337 338 /* 339 * When both sizes are set, we know this isn't a lookup. 340 * This is the most likely case: every TB must be inserted; lookups 341 * are a lot less frequent. 342 */ 343 if (likely(a->size && b->size)) { 344 if (a->ptr > b->ptr) { 345 return 1; 346 } else if (a->ptr < b->ptr) { 347 return -1; 348 } 349 /* a->ptr == b->ptr should happen only on deletions */ 350 g_assert(a->size == b->size); 351 return 0; 352 } 353 /* 354 * All lookups have either .size field set to 0. 355 * From the glib sources we see that @ap is always the lookup key. However 356 * the docs provide no guarantee, so we just mark this case as likely. 357 */ 358 if (likely(a->size == 0)) { 359 return ptr_cmp_tb_tc(a->ptr, b); 360 } 361 return ptr_cmp_tb_tc(b->ptr, a); 362 } 363 364 static void tcg_region_trees_init(void) 365 { 366 size_t i; 367 368 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); 369 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); 370 for (i = 0; i < region.n; i++) { 371 struct tcg_region_tree *rt = region_trees + i * tree_size; 372 373 qemu_mutex_init(&rt->lock); 374 rt->tree = g_tree_new(tb_tc_cmp); 375 } 376 } 377 378 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p) 379 { 380 size_t region_idx; 381 382 if (p < region.start_aligned) { 383 region_idx = 0; 384 } else { 385 ptrdiff_t offset = p - region.start_aligned; 386 387 if (offset > region.stride * (region.n - 1)) { 388 region_idx = region.n - 1; 389 } else { 390 region_idx = offset / region.stride; 391 } 392 } 393 return region_trees + region_idx * tree_size; 394 } 395 396 void tcg_tb_insert(TranslationBlock *tb) 397 { 398 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 399 400 qemu_mutex_lock(&rt->lock); 401 g_tree_insert(rt->tree, &tb->tc, tb); 402 qemu_mutex_unlock(&rt->lock); 403 } 404 405 void tcg_tb_remove(TranslationBlock *tb) 406 { 407 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 408 409 qemu_mutex_lock(&rt->lock); 410 g_tree_remove(rt->tree, &tb->tc); 411 qemu_mutex_unlock(&rt->lock); 412 } 413 414 /* 415 * Find the TB 'tb' such that 416 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size 417 * Return NULL if not found. 418 */ 419 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) 420 { 421 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); 422 TranslationBlock *tb; 423 struct tb_tc s = { .ptr = (void *)tc_ptr }; 424 425 qemu_mutex_lock(&rt->lock); 426 tb = g_tree_lookup(rt->tree, &s); 427 qemu_mutex_unlock(&rt->lock); 428 return tb; 429 } 430 431 static void tcg_region_tree_lock_all(void) 432 { 433 size_t i; 434 435 for (i = 0; i < region.n; i++) { 436 struct tcg_region_tree *rt = region_trees + i * tree_size; 437 438 qemu_mutex_lock(&rt->lock); 439 } 440 } 441 442 static void tcg_region_tree_unlock_all(void) 443 { 444 size_t i; 445 446 for (i = 0; i < region.n; i++) { 447 struct tcg_region_tree *rt = region_trees + i * tree_size; 448 449 qemu_mutex_unlock(&rt->lock); 450 } 451 } 452 453 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) 454 { 455 size_t i; 456 457 tcg_region_tree_lock_all(); 458 for (i = 0; i < region.n; i++) { 459 struct tcg_region_tree *rt = region_trees + i * tree_size; 460 461 g_tree_foreach(rt->tree, func, user_data); 462 } 463 tcg_region_tree_unlock_all(); 464 } 465 466 size_t tcg_nb_tbs(void) 467 { 468 size_t nb_tbs = 0; 469 size_t i; 470 471 tcg_region_tree_lock_all(); 472 for (i = 0; i < region.n; i++) { 473 struct tcg_region_tree *rt = region_trees + i * tree_size; 474 475 nb_tbs += g_tree_nnodes(rt->tree); 476 } 477 tcg_region_tree_unlock_all(); 478 return nb_tbs; 479 } 480 481 static void tcg_region_tree_reset_all(void) 482 { 483 size_t i; 484 485 tcg_region_tree_lock_all(); 486 for (i = 0; i < region.n; i++) { 487 struct tcg_region_tree *rt = region_trees + i * tree_size; 488 489 /* Increment the refcount first so that destroy acts as a reset */ 490 g_tree_ref(rt->tree); 491 g_tree_destroy(rt->tree); 492 } 493 tcg_region_tree_unlock_all(); 494 } 495 496 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) 497 { 498 void *start, *end; 499 500 start = region.start_aligned + curr_region * region.stride; 501 end = start + region.size; 502 503 if (curr_region == 0) { 504 start = region.start; 505 } 506 if (curr_region == region.n - 1) { 507 end = region.end; 508 } 509 510 *pstart = start; 511 *pend = end; 512 } 513 514 static void tcg_region_assign(TCGContext *s, size_t curr_region) 515 { 516 void *start, *end; 517 518 tcg_region_bounds(curr_region, &start, &end); 519 520 s->code_gen_buffer = start; 521 s->code_gen_ptr = start; 522 s->code_gen_buffer_size = end - start; 523 s->code_gen_highwater = end - TCG_HIGHWATER; 524 } 525 526 static bool tcg_region_alloc__locked(TCGContext *s) 527 { 528 if (region.current == region.n) { 529 return true; 530 } 531 tcg_region_assign(s, region.current); 532 region.current++; 533 return false; 534 } 535 536 /* 537 * Request a new region once the one in use has filled up. 538 * Returns true on error. 539 */ 540 static bool tcg_region_alloc(TCGContext *s) 541 { 542 bool err; 543 /* read the region size now; alloc__locked will overwrite it on success */ 544 size_t size_full = s->code_gen_buffer_size; 545 546 qemu_mutex_lock(®ion.lock); 547 err = tcg_region_alloc__locked(s); 548 if (!err) { 549 region.agg_size_full += size_full - TCG_HIGHWATER; 550 } 551 qemu_mutex_unlock(®ion.lock); 552 return err; 553 } 554 555 /* 556 * Perform a context's first region allocation. 557 * This function does _not_ increment region.agg_size_full. 558 */ 559 static inline bool tcg_region_initial_alloc__locked(TCGContext *s) 560 { 561 return tcg_region_alloc__locked(s); 562 } 563 564 /* Call from a safe-work context */ 565 void tcg_region_reset_all(void) 566 { 567 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 568 unsigned int i; 569 570 qemu_mutex_lock(®ion.lock); 571 region.current = 0; 572 region.agg_size_full = 0; 573 574 for (i = 0; i < n_ctxs; i++) { 575 TCGContext *s = atomic_read(&tcg_ctxs[i]); 576 bool err = tcg_region_initial_alloc__locked(s); 577 578 g_assert(!err); 579 } 580 qemu_mutex_unlock(®ion.lock); 581 582 tcg_region_tree_reset_all(); 583 } 584 585 #ifdef CONFIG_USER_ONLY 586 static size_t tcg_n_regions(void) 587 { 588 return 1; 589 } 590 #else 591 /* 592 * It is likely that some vCPUs will translate more code than others, so we 593 * first try to set more regions than max_cpus, with those regions being of 594 * reasonable size. If that's not possible we make do by evenly dividing 595 * the code_gen_buffer among the vCPUs. 596 */ 597 static size_t tcg_n_regions(void) 598 { 599 size_t i; 600 601 /* Use a single region if all we have is one vCPU thread */ 602 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { 603 return 1; 604 } 605 606 /* Try to have more regions than max_cpus, with each region being >= 2 MB */ 607 for (i = 8; i > 0; i--) { 608 size_t regions_per_thread = i; 609 size_t region_size; 610 611 region_size = tcg_init_ctx.code_gen_buffer_size; 612 region_size /= max_cpus * regions_per_thread; 613 614 if (region_size >= 2 * 1024u * 1024) { 615 return max_cpus * regions_per_thread; 616 } 617 } 618 /* If we can't, then just allocate one region per vCPU thread */ 619 return max_cpus; 620 } 621 #endif 622 623 /* 624 * Initializes region partitioning. 625 * 626 * Called at init time from the parent thread (i.e. the one calling 627 * tcg_context_init), after the target's TCG globals have been set. 628 * 629 * Region partitioning works by splitting code_gen_buffer into separate regions, 630 * and then assigning regions to TCG threads so that the threads can translate 631 * code in parallel without synchronization. 632 * 633 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at 634 * least max_cpus regions in MTTCG. In !MTTCG we use a single region. 635 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) 636 * must have been parsed before calling this function, since it calls 637 * qemu_tcg_mttcg_enabled(). 638 * 639 * In user-mode we use a single region. Having multiple regions in user-mode 640 * is not supported, because the number of vCPU threads (recall that each thread 641 * spawned by the guest corresponds to a vCPU thread) is only bounded by the 642 * OS, and usually this number is huge (tens of thousands is not uncommon). 643 * Thus, given this large bound on the number of vCPU threads and the fact 644 * that code_gen_buffer is allocated at compile-time, we cannot guarantee 645 * that the availability of at least one region per vCPU thread. 646 * 647 * However, this user-mode limitation is unlikely to be a significant problem 648 * in practice. Multi-threaded guests share most if not all of their translated 649 * code, which makes parallel code generation less appealing than in softmmu. 650 */ 651 void tcg_region_init(void) 652 { 653 void *buf = tcg_init_ctx.code_gen_buffer; 654 void *aligned; 655 size_t size = tcg_init_ctx.code_gen_buffer_size; 656 size_t page_size = qemu_real_host_page_size; 657 size_t region_size; 658 size_t n_regions; 659 size_t i; 660 661 n_regions = tcg_n_regions(); 662 663 /* The first region will be 'aligned - buf' bytes larger than the others */ 664 aligned = QEMU_ALIGN_PTR_UP(buf, page_size); 665 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size); 666 /* 667 * Make region_size a multiple of page_size, using aligned as the start. 668 * As a result of this we might end up with a few extra pages at the end of 669 * the buffer; we will assign those to the last region. 670 */ 671 region_size = (size - (aligned - buf)) / n_regions; 672 region_size = QEMU_ALIGN_DOWN(region_size, page_size); 673 674 /* A region must have at least 2 pages; one code, one guard */ 675 g_assert(region_size >= 2 * page_size); 676 677 /* init the region struct */ 678 qemu_mutex_init(®ion.lock); 679 region.n = n_regions; 680 region.size = region_size - page_size; 681 region.stride = region_size; 682 region.start = buf; 683 region.start_aligned = aligned; 684 /* page-align the end, since its last page will be a guard page */ 685 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size); 686 /* account for that last guard page */ 687 region.end -= page_size; 688 689 /* set guard pages */ 690 for (i = 0; i < region.n; i++) { 691 void *start, *end; 692 int rc; 693 694 tcg_region_bounds(i, &start, &end); 695 rc = qemu_mprotect_none(end, page_size); 696 g_assert(!rc); 697 } 698 699 tcg_region_trees_init(); 700 701 /* In user-mode we support only one ctx, so do the initial allocation now */ 702 #ifdef CONFIG_USER_ONLY 703 { 704 bool err = tcg_region_initial_alloc__locked(tcg_ctx); 705 706 g_assert(!err); 707 } 708 #endif 709 } 710 711 /* 712 * All TCG threads except the parent (i.e. the one that called tcg_context_init 713 * and registered the target's TCG globals) must register with this function 714 * before initiating translation. 715 * 716 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation 717 * of tcg_region_init() for the reasoning behind this. 718 * 719 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in 720 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context 721 * is not used anymore for translation once this function is called. 722 * 723 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates 724 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode. 725 */ 726 #ifdef CONFIG_USER_ONLY 727 void tcg_register_thread(void) 728 { 729 tcg_ctx = &tcg_init_ctx; 730 } 731 #else 732 void tcg_register_thread(void) 733 { 734 TCGContext *s = g_malloc(sizeof(*s)); 735 unsigned int i, n; 736 bool err; 737 738 *s = tcg_init_ctx; 739 740 /* Relink mem_base. */ 741 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) { 742 if (tcg_init_ctx.temps[i].mem_base) { 743 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps; 744 tcg_debug_assert(b >= 0 && b < n); 745 s->temps[i].mem_base = &s->temps[b]; 746 } 747 } 748 749 /* Claim an entry in tcg_ctxs */ 750 n = atomic_fetch_inc(&n_tcg_ctxs); 751 g_assert(n < max_cpus); 752 atomic_set(&tcg_ctxs[n], s); 753 754 tcg_ctx = s; 755 qemu_mutex_lock(®ion.lock); 756 err = tcg_region_initial_alloc__locked(tcg_ctx); 757 g_assert(!err); 758 qemu_mutex_unlock(®ion.lock); 759 } 760 #endif /* !CONFIG_USER_ONLY */ 761 762 /* 763 * Returns the size (in bytes) of all translated code (i.e. from all regions) 764 * currently in the cache. 765 * See also: tcg_code_capacity() 766 * Do not confuse with tcg_current_code_size(); that one applies to a single 767 * TCG context. 768 */ 769 size_t tcg_code_size(void) 770 { 771 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 772 unsigned int i; 773 size_t total; 774 775 qemu_mutex_lock(®ion.lock); 776 total = region.agg_size_full; 777 for (i = 0; i < n_ctxs; i++) { 778 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 779 size_t size; 780 781 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer; 782 g_assert(size <= s->code_gen_buffer_size); 783 total += size; 784 } 785 qemu_mutex_unlock(®ion.lock); 786 return total; 787 } 788 789 /* 790 * Returns the code capacity (in bytes) of the entire cache, i.e. including all 791 * regions. 792 * See also: tcg_code_size() 793 */ 794 size_t tcg_code_capacity(void) 795 { 796 size_t guard_size, capacity; 797 798 /* no need for synchronization; these variables are set at init time */ 799 guard_size = region.stride - region.size; 800 capacity = region.end + guard_size - region.start; 801 capacity -= region.n * (guard_size + TCG_HIGHWATER); 802 return capacity; 803 } 804 805 size_t tcg_tb_phys_invalidate_count(void) 806 { 807 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 808 unsigned int i; 809 size_t total = 0; 810 811 for (i = 0; i < n_ctxs; i++) { 812 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 813 814 total += atomic_read(&s->tb_phys_invalidate_count); 815 } 816 return total; 817 } 818 819 /* pool based memory allocation */ 820 void *tcg_malloc_internal(TCGContext *s, int size) 821 { 822 TCGPool *p; 823 int pool_size; 824 825 if (size > TCG_POOL_CHUNK_SIZE) { 826 /* big malloc: insert a new pool (XXX: could optimize) */ 827 p = g_malloc(sizeof(TCGPool) + size); 828 p->size = size; 829 p->next = s->pool_first_large; 830 s->pool_first_large = p; 831 return p->data; 832 } else { 833 p = s->pool_current; 834 if (!p) { 835 p = s->pool_first; 836 if (!p) 837 goto new_pool; 838 } else { 839 if (!p->next) { 840 new_pool: 841 pool_size = TCG_POOL_CHUNK_SIZE; 842 p = g_malloc(sizeof(TCGPool) + pool_size); 843 p->size = pool_size; 844 p->next = NULL; 845 if (s->pool_current) 846 s->pool_current->next = p; 847 else 848 s->pool_first = p; 849 } else { 850 p = p->next; 851 } 852 } 853 } 854 s->pool_current = p; 855 s->pool_cur = p->data + size; 856 s->pool_end = p->data + p->size; 857 return p->data; 858 } 859 860 void tcg_pool_reset(TCGContext *s) 861 { 862 TCGPool *p, *t; 863 for (p = s->pool_first_large; p; p = t) { 864 t = p->next; 865 g_free(p); 866 } 867 s->pool_first_large = NULL; 868 s->pool_cur = s->pool_end = NULL; 869 s->pool_current = NULL; 870 } 871 872 typedef struct TCGHelperInfo { 873 void *func; 874 const char *name; 875 unsigned flags; 876 unsigned sizemask; 877 } TCGHelperInfo; 878 879 #include "exec/helper-proto.h" 880 881 static const TCGHelperInfo all_helpers[] = { 882 #include "exec/helper-tcg.h" 883 }; 884 static GHashTable *helper_table; 885 886 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)]; 887 static void process_op_defs(TCGContext *s); 888 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 889 TCGReg reg, const char *name); 890 891 void tcg_context_init(TCGContext *s) 892 { 893 int op, total_args, n, i; 894 TCGOpDef *def; 895 TCGArgConstraint *args_ct; 896 int *sorted_args; 897 TCGTemp *ts; 898 899 memset(s, 0, sizeof(*s)); 900 s->nb_globals = 0; 901 902 /* Count total number of arguments and allocate the corresponding 903 space */ 904 total_args = 0; 905 for(op = 0; op < NB_OPS; op++) { 906 def = &tcg_op_defs[op]; 907 n = def->nb_iargs + def->nb_oargs; 908 total_args += n; 909 } 910 911 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args); 912 sorted_args = g_malloc(sizeof(int) * total_args); 913 914 for(op = 0; op < NB_OPS; op++) { 915 def = &tcg_op_defs[op]; 916 def->args_ct = args_ct; 917 def->sorted_args = sorted_args; 918 n = def->nb_iargs + def->nb_oargs; 919 sorted_args += n; 920 args_ct += n; 921 } 922 923 /* Register helpers. */ 924 /* Use g_direct_hash/equal for direct pointer comparisons on func. */ 925 helper_table = g_hash_table_new(NULL, NULL); 926 927 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) { 928 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func, 929 (gpointer)&all_helpers[i]); 930 } 931 932 tcg_target_init(s); 933 process_op_defs(s); 934 935 /* Reverse the order of the saved registers, assuming they're all at 936 the start of tcg_target_reg_alloc_order. */ 937 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) { 938 int r = tcg_target_reg_alloc_order[n]; 939 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) { 940 break; 941 } 942 } 943 for (i = 0; i < n; ++i) { 944 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i]; 945 } 946 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) { 947 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i]; 948 } 949 950 tcg_ctx = s; 951 /* 952 * In user-mode we simply share the init context among threads, since we 953 * use a single region. See the documentation tcg_region_init() for the 954 * reasoning behind this. 955 * In softmmu we will have at most max_cpus TCG threads. 956 */ 957 #ifdef CONFIG_USER_ONLY 958 tcg_ctxs = &tcg_ctx; 959 n_tcg_ctxs = 1; 960 #else 961 tcg_ctxs = g_new(TCGContext *, max_cpus); 962 #endif 963 964 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0)); 965 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env"); 966 cpu_env = temp_tcgv_ptr(ts); 967 } 968 969 /* 970 * Allocate TBs right before their corresponding translated code, making 971 * sure that TBs and code are on different cache lines. 972 */ 973 TranslationBlock *tcg_tb_alloc(TCGContext *s) 974 { 975 uintptr_t align = qemu_icache_linesize; 976 TranslationBlock *tb; 977 void *next; 978 979 retry: 980 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align); 981 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align); 982 983 if (unlikely(next > s->code_gen_highwater)) { 984 if (tcg_region_alloc(s)) { 985 return NULL; 986 } 987 goto retry; 988 } 989 atomic_set(&s->code_gen_ptr, next); 990 s->data_gen_ptr = NULL; 991 return tb; 992 } 993 994 void tcg_prologue_init(TCGContext *s) 995 { 996 size_t prologue_size, total_size; 997 void *buf0, *buf1; 998 999 /* Put the prologue at the beginning of code_gen_buffer. */ 1000 buf0 = s->code_gen_buffer; 1001 total_size = s->code_gen_buffer_size; 1002 s->code_ptr = buf0; 1003 s->code_buf = buf0; 1004 s->data_gen_ptr = NULL; 1005 s->code_gen_prologue = buf0; 1006 1007 /* Compute a high-water mark, at which we voluntarily flush the buffer 1008 and start over. The size here is arbitrary, significantly larger 1009 than we expect the code generation for any one opcode to require. */ 1010 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER); 1011 1012 #ifdef TCG_TARGET_NEED_POOL_LABELS 1013 s->pool_labels = NULL; 1014 #endif 1015 1016 /* Generate the prologue. */ 1017 tcg_target_qemu_prologue(s); 1018 1019 #ifdef TCG_TARGET_NEED_POOL_LABELS 1020 /* Allow the prologue to put e.g. guest_base into a pool entry. */ 1021 { 1022 bool ok = tcg_out_pool_finalize(s); 1023 tcg_debug_assert(ok); 1024 } 1025 #endif 1026 1027 buf1 = s->code_ptr; 1028 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1); 1029 1030 /* Deduct the prologue from the buffer. */ 1031 prologue_size = tcg_current_code_size(s); 1032 s->code_gen_ptr = buf1; 1033 s->code_gen_buffer = buf1; 1034 s->code_buf = buf1; 1035 total_size -= prologue_size; 1036 s->code_gen_buffer_size = total_size; 1037 1038 tcg_register_jit(s->code_gen_buffer, total_size); 1039 1040 #ifdef DEBUG_DISAS 1041 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { 1042 qemu_log_lock(); 1043 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size); 1044 if (s->data_gen_ptr) { 1045 size_t code_size = s->data_gen_ptr - buf0; 1046 size_t data_size = prologue_size - code_size; 1047 size_t i; 1048 1049 log_disas(buf0, code_size); 1050 1051 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1052 if (sizeof(tcg_target_ulong) == 8) { 1053 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1054 (uintptr_t)s->data_gen_ptr + i, 1055 *(uint64_t *)(s->data_gen_ptr + i)); 1056 } else { 1057 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1058 (uintptr_t)s->data_gen_ptr + i, 1059 *(uint32_t *)(s->data_gen_ptr + i)); 1060 } 1061 } 1062 } else { 1063 log_disas(buf0, prologue_size); 1064 } 1065 qemu_log("\n"); 1066 qemu_log_flush(); 1067 qemu_log_unlock(); 1068 } 1069 #endif 1070 1071 /* Assert that goto_ptr is implemented completely. */ 1072 if (TCG_TARGET_HAS_goto_ptr) { 1073 tcg_debug_assert(s->code_gen_epilogue != NULL); 1074 } 1075 } 1076 1077 void tcg_func_start(TCGContext *s) 1078 { 1079 tcg_pool_reset(s); 1080 s->nb_temps = s->nb_globals; 1081 1082 /* No temps have been previously allocated for size or locality. */ 1083 memset(s->free_temps, 0, sizeof(s->free_temps)); 1084 1085 s->nb_ops = 0; 1086 s->nb_labels = 0; 1087 s->current_frame_offset = s->frame_start; 1088 1089 #ifdef CONFIG_DEBUG_TCG 1090 s->goto_tb_issue_mask = 0; 1091 #endif 1092 1093 QTAILQ_INIT(&s->ops); 1094 QTAILQ_INIT(&s->free_ops); 1095 } 1096 1097 static inline TCGTemp *tcg_temp_alloc(TCGContext *s) 1098 { 1099 int n = s->nb_temps++; 1100 tcg_debug_assert(n < TCG_MAX_TEMPS); 1101 return memset(&s->temps[n], 0, sizeof(TCGTemp)); 1102 } 1103 1104 static inline TCGTemp *tcg_global_alloc(TCGContext *s) 1105 { 1106 TCGTemp *ts; 1107 1108 tcg_debug_assert(s->nb_globals == s->nb_temps); 1109 s->nb_globals++; 1110 ts = tcg_temp_alloc(s); 1111 ts->temp_global = 1; 1112 1113 return ts; 1114 } 1115 1116 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 1117 TCGReg reg, const char *name) 1118 { 1119 TCGTemp *ts; 1120 1121 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) { 1122 tcg_abort(); 1123 } 1124 1125 ts = tcg_global_alloc(s); 1126 ts->base_type = type; 1127 ts->type = type; 1128 ts->fixed_reg = 1; 1129 ts->reg = reg; 1130 ts->name = name; 1131 tcg_regset_set_reg(s->reserved_regs, reg); 1132 1133 return ts; 1134 } 1135 1136 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size) 1137 { 1138 s->frame_start = start; 1139 s->frame_end = start + size; 1140 s->frame_temp 1141 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame"); 1142 } 1143 1144 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base, 1145 intptr_t offset, const char *name) 1146 { 1147 TCGContext *s = tcg_ctx; 1148 TCGTemp *base_ts = tcgv_ptr_temp(base); 1149 TCGTemp *ts = tcg_global_alloc(s); 1150 int indirect_reg = 0, bigendian = 0; 1151 #ifdef HOST_WORDS_BIGENDIAN 1152 bigendian = 1; 1153 #endif 1154 1155 if (!base_ts->fixed_reg) { 1156 /* We do not support double-indirect registers. */ 1157 tcg_debug_assert(!base_ts->indirect_reg); 1158 base_ts->indirect_base = 1; 1159 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64 1160 ? 2 : 1); 1161 indirect_reg = 1; 1162 } 1163 1164 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1165 TCGTemp *ts2 = tcg_global_alloc(s); 1166 char buf[64]; 1167 1168 ts->base_type = TCG_TYPE_I64; 1169 ts->type = TCG_TYPE_I32; 1170 ts->indirect_reg = indirect_reg; 1171 ts->mem_allocated = 1; 1172 ts->mem_base = base_ts; 1173 ts->mem_offset = offset + bigendian * 4; 1174 pstrcpy(buf, sizeof(buf), name); 1175 pstrcat(buf, sizeof(buf), "_0"); 1176 ts->name = strdup(buf); 1177 1178 tcg_debug_assert(ts2 == ts + 1); 1179 ts2->base_type = TCG_TYPE_I64; 1180 ts2->type = TCG_TYPE_I32; 1181 ts2->indirect_reg = indirect_reg; 1182 ts2->mem_allocated = 1; 1183 ts2->mem_base = base_ts; 1184 ts2->mem_offset = offset + (1 - bigendian) * 4; 1185 pstrcpy(buf, sizeof(buf), name); 1186 pstrcat(buf, sizeof(buf), "_1"); 1187 ts2->name = strdup(buf); 1188 } else { 1189 ts->base_type = type; 1190 ts->type = type; 1191 ts->indirect_reg = indirect_reg; 1192 ts->mem_allocated = 1; 1193 ts->mem_base = base_ts; 1194 ts->mem_offset = offset; 1195 ts->name = name; 1196 } 1197 return ts; 1198 } 1199 1200 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local) 1201 { 1202 TCGContext *s = tcg_ctx; 1203 TCGTemp *ts; 1204 int idx, k; 1205 1206 k = type + (temp_local ? TCG_TYPE_COUNT : 0); 1207 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS); 1208 if (idx < TCG_MAX_TEMPS) { 1209 /* There is already an available temp with the right type. */ 1210 clear_bit(idx, s->free_temps[k].l); 1211 1212 ts = &s->temps[idx]; 1213 ts->temp_allocated = 1; 1214 tcg_debug_assert(ts->base_type == type); 1215 tcg_debug_assert(ts->temp_local == temp_local); 1216 } else { 1217 ts = tcg_temp_alloc(s); 1218 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1219 TCGTemp *ts2 = tcg_temp_alloc(s); 1220 1221 ts->base_type = type; 1222 ts->type = TCG_TYPE_I32; 1223 ts->temp_allocated = 1; 1224 ts->temp_local = temp_local; 1225 1226 tcg_debug_assert(ts2 == ts + 1); 1227 ts2->base_type = TCG_TYPE_I64; 1228 ts2->type = TCG_TYPE_I32; 1229 ts2->temp_allocated = 1; 1230 ts2->temp_local = temp_local; 1231 } else { 1232 ts->base_type = type; 1233 ts->type = type; 1234 ts->temp_allocated = 1; 1235 ts->temp_local = temp_local; 1236 } 1237 } 1238 1239 #if defined(CONFIG_DEBUG_TCG) 1240 s->temps_in_use++; 1241 #endif 1242 return ts; 1243 } 1244 1245 TCGv_vec tcg_temp_new_vec(TCGType type) 1246 { 1247 TCGTemp *t; 1248 1249 #ifdef CONFIG_DEBUG_TCG 1250 switch (type) { 1251 case TCG_TYPE_V64: 1252 assert(TCG_TARGET_HAS_v64); 1253 break; 1254 case TCG_TYPE_V128: 1255 assert(TCG_TARGET_HAS_v128); 1256 break; 1257 case TCG_TYPE_V256: 1258 assert(TCG_TARGET_HAS_v256); 1259 break; 1260 default: 1261 g_assert_not_reached(); 1262 } 1263 #endif 1264 1265 t = tcg_temp_new_internal(type, 0); 1266 return temp_tcgv_vec(t); 1267 } 1268 1269 /* Create a new temp of the same type as an existing temp. */ 1270 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match) 1271 { 1272 TCGTemp *t = tcgv_vec_temp(match); 1273 1274 tcg_debug_assert(t->temp_allocated != 0); 1275 1276 t = tcg_temp_new_internal(t->base_type, 0); 1277 return temp_tcgv_vec(t); 1278 } 1279 1280 void tcg_temp_free_internal(TCGTemp *ts) 1281 { 1282 TCGContext *s = tcg_ctx; 1283 int k, idx; 1284 1285 #if defined(CONFIG_DEBUG_TCG) 1286 s->temps_in_use--; 1287 if (s->temps_in_use < 0) { 1288 fprintf(stderr, "More temporaries freed than allocated!\n"); 1289 } 1290 #endif 1291 1292 tcg_debug_assert(ts->temp_global == 0); 1293 tcg_debug_assert(ts->temp_allocated != 0); 1294 ts->temp_allocated = 0; 1295 1296 idx = temp_idx(ts); 1297 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0); 1298 set_bit(idx, s->free_temps[k].l); 1299 } 1300 1301 TCGv_i32 tcg_const_i32(int32_t val) 1302 { 1303 TCGv_i32 t0; 1304 t0 = tcg_temp_new_i32(); 1305 tcg_gen_movi_i32(t0, val); 1306 return t0; 1307 } 1308 1309 TCGv_i64 tcg_const_i64(int64_t val) 1310 { 1311 TCGv_i64 t0; 1312 t0 = tcg_temp_new_i64(); 1313 tcg_gen_movi_i64(t0, val); 1314 return t0; 1315 } 1316 1317 TCGv_i32 tcg_const_local_i32(int32_t val) 1318 { 1319 TCGv_i32 t0; 1320 t0 = tcg_temp_local_new_i32(); 1321 tcg_gen_movi_i32(t0, val); 1322 return t0; 1323 } 1324 1325 TCGv_i64 tcg_const_local_i64(int64_t val) 1326 { 1327 TCGv_i64 t0; 1328 t0 = tcg_temp_local_new_i64(); 1329 tcg_gen_movi_i64(t0, val); 1330 return t0; 1331 } 1332 1333 #if defined(CONFIG_DEBUG_TCG) 1334 void tcg_clear_temp_count(void) 1335 { 1336 TCGContext *s = tcg_ctx; 1337 s->temps_in_use = 0; 1338 } 1339 1340 int tcg_check_temp_count(void) 1341 { 1342 TCGContext *s = tcg_ctx; 1343 if (s->temps_in_use) { 1344 /* Clear the count so that we don't give another 1345 * warning immediately next time around. 1346 */ 1347 s->temps_in_use = 0; 1348 return 1; 1349 } 1350 return 0; 1351 } 1352 #endif 1353 1354 /* Return true if OP may appear in the opcode stream. 1355 Test the runtime variable that controls each opcode. */ 1356 bool tcg_op_supported(TCGOpcode op) 1357 { 1358 const bool have_vec 1359 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256; 1360 1361 switch (op) { 1362 case INDEX_op_discard: 1363 case INDEX_op_set_label: 1364 case INDEX_op_call: 1365 case INDEX_op_br: 1366 case INDEX_op_mb: 1367 case INDEX_op_insn_start: 1368 case INDEX_op_exit_tb: 1369 case INDEX_op_goto_tb: 1370 case INDEX_op_qemu_ld_i32: 1371 case INDEX_op_qemu_st_i32: 1372 case INDEX_op_qemu_ld_i64: 1373 case INDEX_op_qemu_st_i64: 1374 return true; 1375 1376 case INDEX_op_goto_ptr: 1377 return TCG_TARGET_HAS_goto_ptr; 1378 1379 case INDEX_op_mov_i32: 1380 case INDEX_op_movi_i32: 1381 case INDEX_op_setcond_i32: 1382 case INDEX_op_brcond_i32: 1383 case INDEX_op_ld8u_i32: 1384 case INDEX_op_ld8s_i32: 1385 case INDEX_op_ld16u_i32: 1386 case INDEX_op_ld16s_i32: 1387 case INDEX_op_ld_i32: 1388 case INDEX_op_st8_i32: 1389 case INDEX_op_st16_i32: 1390 case INDEX_op_st_i32: 1391 case INDEX_op_add_i32: 1392 case INDEX_op_sub_i32: 1393 case INDEX_op_mul_i32: 1394 case INDEX_op_and_i32: 1395 case INDEX_op_or_i32: 1396 case INDEX_op_xor_i32: 1397 case INDEX_op_shl_i32: 1398 case INDEX_op_shr_i32: 1399 case INDEX_op_sar_i32: 1400 return true; 1401 1402 case INDEX_op_movcond_i32: 1403 return TCG_TARGET_HAS_movcond_i32; 1404 case INDEX_op_div_i32: 1405 case INDEX_op_divu_i32: 1406 return TCG_TARGET_HAS_div_i32; 1407 case INDEX_op_rem_i32: 1408 case INDEX_op_remu_i32: 1409 return TCG_TARGET_HAS_rem_i32; 1410 case INDEX_op_div2_i32: 1411 case INDEX_op_divu2_i32: 1412 return TCG_TARGET_HAS_div2_i32; 1413 case INDEX_op_rotl_i32: 1414 case INDEX_op_rotr_i32: 1415 return TCG_TARGET_HAS_rot_i32; 1416 case INDEX_op_deposit_i32: 1417 return TCG_TARGET_HAS_deposit_i32; 1418 case INDEX_op_extract_i32: 1419 return TCG_TARGET_HAS_extract_i32; 1420 case INDEX_op_sextract_i32: 1421 return TCG_TARGET_HAS_sextract_i32; 1422 case INDEX_op_add2_i32: 1423 return TCG_TARGET_HAS_add2_i32; 1424 case INDEX_op_sub2_i32: 1425 return TCG_TARGET_HAS_sub2_i32; 1426 case INDEX_op_mulu2_i32: 1427 return TCG_TARGET_HAS_mulu2_i32; 1428 case INDEX_op_muls2_i32: 1429 return TCG_TARGET_HAS_muls2_i32; 1430 case INDEX_op_muluh_i32: 1431 return TCG_TARGET_HAS_muluh_i32; 1432 case INDEX_op_mulsh_i32: 1433 return TCG_TARGET_HAS_mulsh_i32; 1434 case INDEX_op_ext8s_i32: 1435 return TCG_TARGET_HAS_ext8s_i32; 1436 case INDEX_op_ext16s_i32: 1437 return TCG_TARGET_HAS_ext16s_i32; 1438 case INDEX_op_ext8u_i32: 1439 return TCG_TARGET_HAS_ext8u_i32; 1440 case INDEX_op_ext16u_i32: 1441 return TCG_TARGET_HAS_ext16u_i32; 1442 case INDEX_op_bswap16_i32: 1443 return TCG_TARGET_HAS_bswap16_i32; 1444 case INDEX_op_bswap32_i32: 1445 return TCG_TARGET_HAS_bswap32_i32; 1446 case INDEX_op_not_i32: 1447 return TCG_TARGET_HAS_not_i32; 1448 case INDEX_op_neg_i32: 1449 return TCG_TARGET_HAS_neg_i32; 1450 case INDEX_op_andc_i32: 1451 return TCG_TARGET_HAS_andc_i32; 1452 case INDEX_op_orc_i32: 1453 return TCG_TARGET_HAS_orc_i32; 1454 case INDEX_op_eqv_i32: 1455 return TCG_TARGET_HAS_eqv_i32; 1456 case INDEX_op_nand_i32: 1457 return TCG_TARGET_HAS_nand_i32; 1458 case INDEX_op_nor_i32: 1459 return TCG_TARGET_HAS_nor_i32; 1460 case INDEX_op_clz_i32: 1461 return TCG_TARGET_HAS_clz_i32; 1462 case INDEX_op_ctz_i32: 1463 return TCG_TARGET_HAS_ctz_i32; 1464 case INDEX_op_ctpop_i32: 1465 return TCG_TARGET_HAS_ctpop_i32; 1466 1467 case INDEX_op_brcond2_i32: 1468 case INDEX_op_setcond2_i32: 1469 return TCG_TARGET_REG_BITS == 32; 1470 1471 case INDEX_op_mov_i64: 1472 case INDEX_op_movi_i64: 1473 case INDEX_op_setcond_i64: 1474 case INDEX_op_brcond_i64: 1475 case INDEX_op_ld8u_i64: 1476 case INDEX_op_ld8s_i64: 1477 case INDEX_op_ld16u_i64: 1478 case INDEX_op_ld16s_i64: 1479 case INDEX_op_ld32u_i64: 1480 case INDEX_op_ld32s_i64: 1481 case INDEX_op_ld_i64: 1482 case INDEX_op_st8_i64: 1483 case INDEX_op_st16_i64: 1484 case INDEX_op_st32_i64: 1485 case INDEX_op_st_i64: 1486 case INDEX_op_add_i64: 1487 case INDEX_op_sub_i64: 1488 case INDEX_op_mul_i64: 1489 case INDEX_op_and_i64: 1490 case INDEX_op_or_i64: 1491 case INDEX_op_xor_i64: 1492 case INDEX_op_shl_i64: 1493 case INDEX_op_shr_i64: 1494 case INDEX_op_sar_i64: 1495 case INDEX_op_ext_i32_i64: 1496 case INDEX_op_extu_i32_i64: 1497 return TCG_TARGET_REG_BITS == 64; 1498 1499 case INDEX_op_movcond_i64: 1500 return TCG_TARGET_HAS_movcond_i64; 1501 case INDEX_op_div_i64: 1502 case INDEX_op_divu_i64: 1503 return TCG_TARGET_HAS_div_i64; 1504 case INDEX_op_rem_i64: 1505 case INDEX_op_remu_i64: 1506 return TCG_TARGET_HAS_rem_i64; 1507 case INDEX_op_div2_i64: 1508 case INDEX_op_divu2_i64: 1509 return TCG_TARGET_HAS_div2_i64; 1510 case INDEX_op_rotl_i64: 1511 case INDEX_op_rotr_i64: 1512 return TCG_TARGET_HAS_rot_i64; 1513 case INDEX_op_deposit_i64: 1514 return TCG_TARGET_HAS_deposit_i64; 1515 case INDEX_op_extract_i64: 1516 return TCG_TARGET_HAS_extract_i64; 1517 case INDEX_op_sextract_i64: 1518 return TCG_TARGET_HAS_sextract_i64; 1519 case INDEX_op_extrl_i64_i32: 1520 return TCG_TARGET_HAS_extrl_i64_i32; 1521 case INDEX_op_extrh_i64_i32: 1522 return TCG_TARGET_HAS_extrh_i64_i32; 1523 case INDEX_op_ext8s_i64: 1524 return TCG_TARGET_HAS_ext8s_i64; 1525 case INDEX_op_ext16s_i64: 1526 return TCG_TARGET_HAS_ext16s_i64; 1527 case INDEX_op_ext32s_i64: 1528 return TCG_TARGET_HAS_ext32s_i64; 1529 case INDEX_op_ext8u_i64: 1530 return TCG_TARGET_HAS_ext8u_i64; 1531 case INDEX_op_ext16u_i64: 1532 return TCG_TARGET_HAS_ext16u_i64; 1533 case INDEX_op_ext32u_i64: 1534 return TCG_TARGET_HAS_ext32u_i64; 1535 case INDEX_op_bswap16_i64: 1536 return TCG_TARGET_HAS_bswap16_i64; 1537 case INDEX_op_bswap32_i64: 1538 return TCG_TARGET_HAS_bswap32_i64; 1539 case INDEX_op_bswap64_i64: 1540 return TCG_TARGET_HAS_bswap64_i64; 1541 case INDEX_op_not_i64: 1542 return TCG_TARGET_HAS_not_i64; 1543 case INDEX_op_neg_i64: 1544 return TCG_TARGET_HAS_neg_i64; 1545 case INDEX_op_andc_i64: 1546 return TCG_TARGET_HAS_andc_i64; 1547 case INDEX_op_orc_i64: 1548 return TCG_TARGET_HAS_orc_i64; 1549 case INDEX_op_eqv_i64: 1550 return TCG_TARGET_HAS_eqv_i64; 1551 case INDEX_op_nand_i64: 1552 return TCG_TARGET_HAS_nand_i64; 1553 case INDEX_op_nor_i64: 1554 return TCG_TARGET_HAS_nor_i64; 1555 case INDEX_op_clz_i64: 1556 return TCG_TARGET_HAS_clz_i64; 1557 case INDEX_op_ctz_i64: 1558 return TCG_TARGET_HAS_ctz_i64; 1559 case INDEX_op_ctpop_i64: 1560 return TCG_TARGET_HAS_ctpop_i64; 1561 case INDEX_op_add2_i64: 1562 return TCG_TARGET_HAS_add2_i64; 1563 case INDEX_op_sub2_i64: 1564 return TCG_TARGET_HAS_sub2_i64; 1565 case INDEX_op_mulu2_i64: 1566 return TCG_TARGET_HAS_mulu2_i64; 1567 case INDEX_op_muls2_i64: 1568 return TCG_TARGET_HAS_muls2_i64; 1569 case INDEX_op_muluh_i64: 1570 return TCG_TARGET_HAS_muluh_i64; 1571 case INDEX_op_mulsh_i64: 1572 return TCG_TARGET_HAS_mulsh_i64; 1573 1574 case INDEX_op_mov_vec: 1575 case INDEX_op_dup_vec: 1576 case INDEX_op_dupi_vec: 1577 case INDEX_op_ld_vec: 1578 case INDEX_op_st_vec: 1579 case INDEX_op_add_vec: 1580 case INDEX_op_sub_vec: 1581 case INDEX_op_and_vec: 1582 case INDEX_op_or_vec: 1583 case INDEX_op_xor_vec: 1584 case INDEX_op_cmp_vec: 1585 return have_vec; 1586 case INDEX_op_dup2_vec: 1587 return have_vec && TCG_TARGET_REG_BITS == 32; 1588 case INDEX_op_not_vec: 1589 return have_vec && TCG_TARGET_HAS_not_vec; 1590 case INDEX_op_neg_vec: 1591 return have_vec && TCG_TARGET_HAS_neg_vec; 1592 case INDEX_op_andc_vec: 1593 return have_vec && TCG_TARGET_HAS_andc_vec; 1594 case INDEX_op_orc_vec: 1595 return have_vec && TCG_TARGET_HAS_orc_vec; 1596 case INDEX_op_mul_vec: 1597 return have_vec && TCG_TARGET_HAS_mul_vec; 1598 case INDEX_op_shli_vec: 1599 case INDEX_op_shri_vec: 1600 case INDEX_op_sari_vec: 1601 return have_vec && TCG_TARGET_HAS_shi_vec; 1602 case INDEX_op_shls_vec: 1603 case INDEX_op_shrs_vec: 1604 case INDEX_op_sars_vec: 1605 return have_vec && TCG_TARGET_HAS_shs_vec; 1606 case INDEX_op_shlv_vec: 1607 case INDEX_op_shrv_vec: 1608 case INDEX_op_sarv_vec: 1609 return have_vec && TCG_TARGET_HAS_shv_vec; 1610 1611 default: 1612 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS); 1613 return true; 1614 } 1615 } 1616 1617 /* Note: we convert the 64 bit args to 32 bit and do some alignment 1618 and endian swap. Maybe it would be better to do the alignment 1619 and endian swap in tcg_reg_alloc_call(). */ 1620 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args) 1621 { 1622 int i, real_args, nb_rets, pi; 1623 unsigned sizemask, flags; 1624 TCGHelperInfo *info; 1625 TCGOp *op; 1626 1627 info = g_hash_table_lookup(helper_table, (gpointer)func); 1628 flags = info->flags; 1629 sizemask = info->sizemask; 1630 1631 #if defined(__sparc__) && !defined(__arch64__) \ 1632 && !defined(CONFIG_TCG_INTERPRETER) 1633 /* We have 64-bit values in one register, but need to pass as two 1634 separate parameters. Split them. */ 1635 int orig_sizemask = sizemask; 1636 int orig_nargs = nargs; 1637 TCGv_i64 retl, reth; 1638 TCGTemp *split_args[MAX_OPC_PARAM]; 1639 1640 retl = NULL; 1641 reth = NULL; 1642 if (sizemask != 0) { 1643 for (i = real_args = 0; i < nargs; ++i) { 1644 int is_64bit = sizemask & (1 << (i+1)*2); 1645 if (is_64bit) { 1646 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1647 TCGv_i32 h = tcg_temp_new_i32(); 1648 TCGv_i32 l = tcg_temp_new_i32(); 1649 tcg_gen_extr_i64_i32(l, h, orig); 1650 split_args[real_args++] = tcgv_i32_temp(h); 1651 split_args[real_args++] = tcgv_i32_temp(l); 1652 } else { 1653 split_args[real_args++] = args[i]; 1654 } 1655 } 1656 nargs = real_args; 1657 args = split_args; 1658 sizemask = 0; 1659 } 1660 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1661 for (i = 0; i < nargs; ++i) { 1662 int is_64bit = sizemask & (1 << (i+1)*2); 1663 int is_signed = sizemask & (2 << (i+1)*2); 1664 if (!is_64bit) { 1665 TCGv_i64 temp = tcg_temp_new_i64(); 1666 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1667 if (is_signed) { 1668 tcg_gen_ext32s_i64(temp, orig); 1669 } else { 1670 tcg_gen_ext32u_i64(temp, orig); 1671 } 1672 args[i] = tcgv_i64_temp(temp); 1673 } 1674 } 1675 #endif /* TCG_TARGET_EXTEND_ARGS */ 1676 1677 op = tcg_emit_op(INDEX_op_call); 1678 1679 pi = 0; 1680 if (ret != NULL) { 1681 #if defined(__sparc__) && !defined(__arch64__) \ 1682 && !defined(CONFIG_TCG_INTERPRETER) 1683 if (orig_sizemask & 1) { 1684 /* The 32-bit ABI is going to return the 64-bit value in 1685 the %o0/%o1 register pair. Prepare for this by using 1686 two return temporaries, and reassemble below. */ 1687 retl = tcg_temp_new_i64(); 1688 reth = tcg_temp_new_i64(); 1689 op->args[pi++] = tcgv_i64_arg(reth); 1690 op->args[pi++] = tcgv_i64_arg(retl); 1691 nb_rets = 2; 1692 } else { 1693 op->args[pi++] = temp_arg(ret); 1694 nb_rets = 1; 1695 } 1696 #else 1697 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) { 1698 #ifdef HOST_WORDS_BIGENDIAN 1699 op->args[pi++] = temp_arg(ret + 1); 1700 op->args[pi++] = temp_arg(ret); 1701 #else 1702 op->args[pi++] = temp_arg(ret); 1703 op->args[pi++] = temp_arg(ret + 1); 1704 #endif 1705 nb_rets = 2; 1706 } else { 1707 op->args[pi++] = temp_arg(ret); 1708 nb_rets = 1; 1709 } 1710 #endif 1711 } else { 1712 nb_rets = 0; 1713 } 1714 TCGOP_CALLO(op) = nb_rets; 1715 1716 real_args = 0; 1717 for (i = 0; i < nargs; i++) { 1718 int is_64bit = sizemask & (1 << (i+1)*2); 1719 if (TCG_TARGET_REG_BITS < 64 && is_64bit) { 1720 #ifdef TCG_TARGET_CALL_ALIGN_ARGS 1721 /* some targets want aligned 64 bit args */ 1722 if (real_args & 1) { 1723 op->args[pi++] = TCG_CALL_DUMMY_ARG; 1724 real_args++; 1725 } 1726 #endif 1727 /* If stack grows up, then we will be placing successive 1728 arguments at lower addresses, which means we need to 1729 reverse the order compared to how we would normally 1730 treat either big or little-endian. For those arguments 1731 that will wind up in registers, this still works for 1732 HPPA (the only current STACK_GROWSUP target) since the 1733 argument registers are *also* allocated in decreasing 1734 order. If another such target is added, this logic may 1735 have to get more complicated to differentiate between 1736 stack arguments and register arguments. */ 1737 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP) 1738 op->args[pi++] = temp_arg(args[i] + 1); 1739 op->args[pi++] = temp_arg(args[i]); 1740 #else 1741 op->args[pi++] = temp_arg(args[i]); 1742 op->args[pi++] = temp_arg(args[i] + 1); 1743 #endif 1744 real_args += 2; 1745 continue; 1746 } 1747 1748 op->args[pi++] = temp_arg(args[i]); 1749 real_args++; 1750 } 1751 op->args[pi++] = (uintptr_t)func; 1752 op->args[pi++] = flags; 1753 TCGOP_CALLI(op) = real_args; 1754 1755 /* Make sure the fields didn't overflow. */ 1756 tcg_debug_assert(TCGOP_CALLI(op) == real_args); 1757 tcg_debug_assert(pi <= ARRAY_SIZE(op->args)); 1758 1759 #if defined(__sparc__) && !defined(__arch64__) \ 1760 && !defined(CONFIG_TCG_INTERPRETER) 1761 /* Free all of the parts we allocated above. */ 1762 for (i = real_args = 0; i < orig_nargs; ++i) { 1763 int is_64bit = orig_sizemask & (1 << (i+1)*2); 1764 if (is_64bit) { 1765 tcg_temp_free_internal(args[real_args++]); 1766 tcg_temp_free_internal(args[real_args++]); 1767 } else { 1768 real_args++; 1769 } 1770 } 1771 if (orig_sizemask & 1) { 1772 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them. 1773 Note that describing these as TCGv_i64 eliminates an unnecessary 1774 zero-extension that tcg_gen_concat_i32_i64 would create. */ 1775 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth); 1776 tcg_temp_free_i64(retl); 1777 tcg_temp_free_i64(reth); 1778 } 1779 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1780 for (i = 0; i < nargs; ++i) { 1781 int is_64bit = sizemask & (1 << (i+1)*2); 1782 if (!is_64bit) { 1783 tcg_temp_free_internal(args[i]); 1784 } 1785 } 1786 #endif /* TCG_TARGET_EXTEND_ARGS */ 1787 } 1788 1789 static void tcg_reg_alloc_start(TCGContext *s) 1790 { 1791 int i, n; 1792 TCGTemp *ts; 1793 1794 for (i = 0, n = s->nb_globals; i < n; i++) { 1795 ts = &s->temps[i]; 1796 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM); 1797 } 1798 for (n = s->nb_temps; i < n; i++) { 1799 ts = &s->temps[i]; 1800 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 1801 ts->mem_allocated = 0; 1802 ts->fixed_reg = 0; 1803 } 1804 1805 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp)); 1806 } 1807 1808 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size, 1809 TCGTemp *ts) 1810 { 1811 int idx = temp_idx(ts); 1812 1813 if (ts->temp_global) { 1814 pstrcpy(buf, buf_size, ts->name); 1815 } else if (ts->temp_local) { 1816 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals); 1817 } else { 1818 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals); 1819 } 1820 return buf; 1821 } 1822 1823 static char *tcg_get_arg_str(TCGContext *s, char *buf, 1824 int buf_size, TCGArg arg) 1825 { 1826 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg)); 1827 } 1828 1829 /* Find helper name. */ 1830 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val) 1831 { 1832 const char *ret = NULL; 1833 if (helper_table) { 1834 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val); 1835 if (info) { 1836 ret = info->name; 1837 } 1838 } 1839 return ret; 1840 } 1841 1842 static const char * const cond_name[] = 1843 { 1844 [TCG_COND_NEVER] = "never", 1845 [TCG_COND_ALWAYS] = "always", 1846 [TCG_COND_EQ] = "eq", 1847 [TCG_COND_NE] = "ne", 1848 [TCG_COND_LT] = "lt", 1849 [TCG_COND_GE] = "ge", 1850 [TCG_COND_LE] = "le", 1851 [TCG_COND_GT] = "gt", 1852 [TCG_COND_LTU] = "ltu", 1853 [TCG_COND_GEU] = "geu", 1854 [TCG_COND_LEU] = "leu", 1855 [TCG_COND_GTU] = "gtu" 1856 }; 1857 1858 static const char * const ldst_name[] = 1859 { 1860 [MO_UB] = "ub", 1861 [MO_SB] = "sb", 1862 [MO_LEUW] = "leuw", 1863 [MO_LESW] = "lesw", 1864 [MO_LEUL] = "leul", 1865 [MO_LESL] = "lesl", 1866 [MO_LEQ] = "leq", 1867 [MO_BEUW] = "beuw", 1868 [MO_BESW] = "besw", 1869 [MO_BEUL] = "beul", 1870 [MO_BESL] = "besl", 1871 [MO_BEQ] = "beq", 1872 }; 1873 1874 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = { 1875 #ifdef ALIGNED_ONLY 1876 [MO_UNALN >> MO_ASHIFT] = "un+", 1877 [MO_ALIGN >> MO_ASHIFT] = "", 1878 #else 1879 [MO_UNALN >> MO_ASHIFT] = "", 1880 [MO_ALIGN >> MO_ASHIFT] = "al+", 1881 #endif 1882 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+", 1883 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+", 1884 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+", 1885 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+", 1886 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+", 1887 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+", 1888 }; 1889 1890 static inline bool tcg_regset_single(TCGRegSet d) 1891 { 1892 return (d & (d - 1)) == 0; 1893 } 1894 1895 static inline TCGReg tcg_regset_first(TCGRegSet d) 1896 { 1897 if (TCG_TARGET_NB_REGS <= 32) { 1898 return ctz32(d); 1899 } else { 1900 return ctz64(d); 1901 } 1902 } 1903 1904 static void tcg_dump_ops(TCGContext *s, bool have_prefs) 1905 { 1906 char buf[128]; 1907 TCGOp *op; 1908 1909 QTAILQ_FOREACH(op, &s->ops, link) { 1910 int i, k, nb_oargs, nb_iargs, nb_cargs; 1911 const TCGOpDef *def; 1912 TCGOpcode c; 1913 int col = 0; 1914 1915 c = op->opc; 1916 def = &tcg_op_defs[c]; 1917 1918 if (c == INDEX_op_insn_start) { 1919 nb_oargs = 0; 1920 col += qemu_log("\n ----"); 1921 1922 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 1923 target_ulong a; 1924 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 1925 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 1926 #else 1927 a = op->args[i]; 1928 #endif 1929 col += qemu_log(" " TARGET_FMT_lx, a); 1930 } 1931 } else if (c == INDEX_op_call) { 1932 /* variable number of arguments */ 1933 nb_oargs = TCGOP_CALLO(op); 1934 nb_iargs = TCGOP_CALLI(op); 1935 nb_cargs = def->nb_cargs; 1936 1937 /* function name, flags, out args */ 1938 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name, 1939 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]), 1940 op->args[nb_oargs + nb_iargs + 1], nb_oargs); 1941 for (i = 0; i < nb_oargs; i++) { 1942 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf), 1943 op->args[i])); 1944 } 1945 for (i = 0; i < nb_iargs; i++) { 1946 TCGArg arg = op->args[nb_oargs + i]; 1947 const char *t = "<dummy>"; 1948 if (arg != TCG_CALL_DUMMY_ARG) { 1949 t = tcg_get_arg_str(s, buf, sizeof(buf), arg); 1950 } 1951 col += qemu_log(",%s", t); 1952 } 1953 } else { 1954 col += qemu_log(" %s ", def->name); 1955 1956 nb_oargs = def->nb_oargs; 1957 nb_iargs = def->nb_iargs; 1958 nb_cargs = def->nb_cargs; 1959 1960 if (def->flags & TCG_OPF_VECTOR) { 1961 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op), 1962 8 << TCGOP_VECE(op)); 1963 } 1964 1965 k = 0; 1966 for (i = 0; i < nb_oargs; i++) { 1967 if (k != 0) { 1968 col += qemu_log(","); 1969 } 1970 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 1971 op->args[k++])); 1972 } 1973 for (i = 0; i < nb_iargs; i++) { 1974 if (k != 0) { 1975 col += qemu_log(","); 1976 } 1977 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 1978 op->args[k++])); 1979 } 1980 switch (c) { 1981 case INDEX_op_brcond_i32: 1982 case INDEX_op_setcond_i32: 1983 case INDEX_op_movcond_i32: 1984 case INDEX_op_brcond2_i32: 1985 case INDEX_op_setcond2_i32: 1986 case INDEX_op_brcond_i64: 1987 case INDEX_op_setcond_i64: 1988 case INDEX_op_movcond_i64: 1989 case INDEX_op_cmp_vec: 1990 if (op->args[k] < ARRAY_SIZE(cond_name) 1991 && cond_name[op->args[k]]) { 1992 col += qemu_log(",%s", cond_name[op->args[k++]]); 1993 } else { 1994 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]); 1995 } 1996 i = 1; 1997 break; 1998 case INDEX_op_qemu_ld_i32: 1999 case INDEX_op_qemu_st_i32: 2000 case INDEX_op_qemu_ld_i64: 2001 case INDEX_op_qemu_st_i64: 2002 { 2003 TCGMemOpIdx oi = op->args[k++]; 2004 TCGMemOp op = get_memop(oi); 2005 unsigned ix = get_mmuidx(oi); 2006 2007 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) { 2008 col += qemu_log(",$0x%x,%u", op, ix); 2009 } else { 2010 const char *s_al, *s_op; 2011 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT]; 2012 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)]; 2013 col += qemu_log(",%s%s,%u", s_al, s_op, ix); 2014 } 2015 i = 1; 2016 } 2017 break; 2018 default: 2019 i = 0; 2020 break; 2021 } 2022 switch (c) { 2023 case INDEX_op_set_label: 2024 case INDEX_op_br: 2025 case INDEX_op_brcond_i32: 2026 case INDEX_op_brcond_i64: 2027 case INDEX_op_brcond2_i32: 2028 col += qemu_log("%s$L%d", k ? "," : "", 2029 arg_label(op->args[k])->id); 2030 i++, k++; 2031 break; 2032 default: 2033 break; 2034 } 2035 for (; i < nb_cargs; i++, k++) { 2036 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]); 2037 } 2038 } 2039 2040 if (have_prefs || op->life) { 2041 for (; col < 40; ++col) { 2042 putc(' ', qemu_logfile); 2043 } 2044 } 2045 2046 if (op->life) { 2047 unsigned life = op->life; 2048 2049 if (life & (SYNC_ARG * 3)) { 2050 qemu_log(" sync:"); 2051 for (i = 0; i < 2; ++i) { 2052 if (life & (SYNC_ARG << i)) { 2053 qemu_log(" %d", i); 2054 } 2055 } 2056 } 2057 life /= DEAD_ARG; 2058 if (life) { 2059 qemu_log(" dead:"); 2060 for (i = 0; life; ++i, life >>= 1) { 2061 if (life & 1) { 2062 qemu_log(" %d", i); 2063 } 2064 } 2065 } 2066 } 2067 2068 if (have_prefs) { 2069 for (i = 0; i < nb_oargs; ++i) { 2070 TCGRegSet set = op->output_pref[i]; 2071 2072 if (i == 0) { 2073 qemu_log(" pref="); 2074 } else { 2075 qemu_log(","); 2076 } 2077 if (set == 0) { 2078 qemu_log("none"); 2079 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) { 2080 qemu_log("all"); 2081 #ifdef CONFIG_DEBUG_TCG 2082 } else if (tcg_regset_single(set)) { 2083 TCGReg reg = tcg_regset_first(set); 2084 qemu_log("%s", tcg_target_reg_names[reg]); 2085 #endif 2086 } else if (TCG_TARGET_NB_REGS <= 32) { 2087 qemu_log("%#x", (uint32_t)set); 2088 } else { 2089 qemu_log("%#" PRIx64, (uint64_t)set); 2090 } 2091 } 2092 } 2093 2094 qemu_log("\n"); 2095 } 2096 } 2097 2098 /* we give more priority to constraints with less registers */ 2099 static int get_constraint_priority(const TCGOpDef *def, int k) 2100 { 2101 const TCGArgConstraint *arg_ct; 2102 2103 int i, n; 2104 arg_ct = &def->args_ct[k]; 2105 if (arg_ct->ct & TCG_CT_ALIAS) { 2106 /* an alias is equivalent to a single register */ 2107 n = 1; 2108 } else { 2109 if (!(arg_ct->ct & TCG_CT_REG)) 2110 return 0; 2111 n = 0; 2112 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 2113 if (tcg_regset_test_reg(arg_ct->u.regs, i)) 2114 n++; 2115 } 2116 } 2117 return TCG_TARGET_NB_REGS - n + 1; 2118 } 2119 2120 /* sort from highest priority to lowest */ 2121 static void sort_constraints(TCGOpDef *def, int start, int n) 2122 { 2123 int i, j, p1, p2, tmp; 2124 2125 for(i = 0; i < n; i++) 2126 def->sorted_args[start + i] = start + i; 2127 if (n <= 1) 2128 return; 2129 for(i = 0; i < n - 1; i++) { 2130 for(j = i + 1; j < n; j++) { 2131 p1 = get_constraint_priority(def, def->sorted_args[start + i]); 2132 p2 = get_constraint_priority(def, def->sorted_args[start + j]); 2133 if (p1 < p2) { 2134 tmp = def->sorted_args[start + i]; 2135 def->sorted_args[start + i] = def->sorted_args[start + j]; 2136 def->sorted_args[start + j] = tmp; 2137 } 2138 } 2139 } 2140 } 2141 2142 static void process_op_defs(TCGContext *s) 2143 { 2144 TCGOpcode op; 2145 2146 for (op = 0; op < NB_OPS; op++) { 2147 TCGOpDef *def = &tcg_op_defs[op]; 2148 const TCGTargetOpDef *tdefs; 2149 TCGType type; 2150 int i, nb_args; 2151 2152 if (def->flags & TCG_OPF_NOT_PRESENT) { 2153 continue; 2154 } 2155 2156 nb_args = def->nb_iargs + def->nb_oargs; 2157 if (nb_args == 0) { 2158 continue; 2159 } 2160 2161 tdefs = tcg_target_op_def(op); 2162 /* Missing TCGTargetOpDef entry. */ 2163 tcg_debug_assert(tdefs != NULL); 2164 2165 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32); 2166 for (i = 0; i < nb_args; i++) { 2167 const char *ct_str = tdefs->args_ct_str[i]; 2168 /* Incomplete TCGTargetOpDef entry. */ 2169 tcg_debug_assert(ct_str != NULL); 2170 2171 def->args_ct[i].u.regs = 0; 2172 def->args_ct[i].ct = 0; 2173 while (*ct_str != '\0') { 2174 switch(*ct_str) { 2175 case '0' ... '9': 2176 { 2177 int oarg = *ct_str - '0'; 2178 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]); 2179 tcg_debug_assert(oarg < def->nb_oargs); 2180 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG); 2181 /* TCG_CT_ALIAS is for the output arguments. 2182 The input is tagged with TCG_CT_IALIAS. */ 2183 def->args_ct[i] = def->args_ct[oarg]; 2184 def->args_ct[oarg].ct |= TCG_CT_ALIAS; 2185 def->args_ct[oarg].alias_index = i; 2186 def->args_ct[i].ct |= TCG_CT_IALIAS; 2187 def->args_ct[i].alias_index = oarg; 2188 } 2189 ct_str++; 2190 break; 2191 case '&': 2192 def->args_ct[i].ct |= TCG_CT_NEWREG; 2193 ct_str++; 2194 break; 2195 case 'i': 2196 def->args_ct[i].ct |= TCG_CT_CONST; 2197 ct_str++; 2198 break; 2199 default: 2200 ct_str = target_parse_constraint(&def->args_ct[i], 2201 ct_str, type); 2202 /* Typo in TCGTargetOpDef constraint. */ 2203 tcg_debug_assert(ct_str != NULL); 2204 } 2205 } 2206 } 2207 2208 /* TCGTargetOpDef entry with too much information? */ 2209 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL); 2210 2211 /* sort the constraints (XXX: this is just an heuristic) */ 2212 sort_constraints(def, 0, def->nb_oargs); 2213 sort_constraints(def, def->nb_oargs, def->nb_iargs); 2214 } 2215 } 2216 2217 void tcg_op_remove(TCGContext *s, TCGOp *op) 2218 { 2219 TCGLabel *label; 2220 2221 switch (op->opc) { 2222 case INDEX_op_br: 2223 label = arg_label(op->args[0]); 2224 label->refs--; 2225 break; 2226 case INDEX_op_brcond_i32: 2227 case INDEX_op_brcond_i64: 2228 label = arg_label(op->args[3]); 2229 label->refs--; 2230 break; 2231 case INDEX_op_brcond2_i32: 2232 label = arg_label(op->args[5]); 2233 label->refs--; 2234 break; 2235 default: 2236 break; 2237 } 2238 2239 QTAILQ_REMOVE(&s->ops, op, link); 2240 QTAILQ_INSERT_TAIL(&s->free_ops, op, link); 2241 s->nb_ops--; 2242 2243 #ifdef CONFIG_PROFILER 2244 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1); 2245 #endif 2246 } 2247 2248 static TCGOp *tcg_op_alloc(TCGOpcode opc) 2249 { 2250 TCGContext *s = tcg_ctx; 2251 TCGOp *op; 2252 2253 if (likely(QTAILQ_EMPTY(&s->free_ops))) { 2254 op = tcg_malloc(sizeof(TCGOp)); 2255 } else { 2256 op = QTAILQ_FIRST(&s->free_ops); 2257 QTAILQ_REMOVE(&s->free_ops, op, link); 2258 } 2259 memset(op, 0, offsetof(TCGOp, link)); 2260 op->opc = opc; 2261 s->nb_ops++; 2262 2263 return op; 2264 } 2265 2266 TCGOp *tcg_emit_op(TCGOpcode opc) 2267 { 2268 TCGOp *op = tcg_op_alloc(opc); 2269 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link); 2270 return op; 2271 } 2272 2273 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2274 { 2275 TCGOp *new_op = tcg_op_alloc(opc); 2276 QTAILQ_INSERT_BEFORE(old_op, new_op, link); 2277 return new_op; 2278 } 2279 2280 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2281 { 2282 TCGOp *new_op = tcg_op_alloc(opc); 2283 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link); 2284 return new_op; 2285 } 2286 2287 /* Reachable analysis : remove unreachable code. */ 2288 static void reachable_code_pass(TCGContext *s) 2289 { 2290 TCGOp *op, *op_next; 2291 bool dead = false; 2292 2293 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2294 bool remove = dead; 2295 TCGLabel *label; 2296 int call_flags; 2297 2298 switch (op->opc) { 2299 case INDEX_op_set_label: 2300 label = arg_label(op->args[0]); 2301 if (label->refs == 0) { 2302 /* 2303 * While there is an occasional backward branch, virtually 2304 * all branches generated by the translators are forward. 2305 * Which means that generally we will have already removed 2306 * all references to the label that will be, and there is 2307 * little to be gained by iterating. 2308 */ 2309 remove = true; 2310 } else { 2311 /* Once we see a label, insns become live again. */ 2312 dead = false; 2313 remove = false; 2314 2315 /* 2316 * Optimization can fold conditional branches to unconditional. 2317 * If we find a label with one reference which is preceded by 2318 * an unconditional branch to it, remove both. This needed to 2319 * wait until the dead code in between them was removed. 2320 */ 2321 if (label->refs == 1) { 2322 TCGOp *op_prev = QTAILQ_PREV(op, link); 2323 if (op_prev->opc == INDEX_op_br && 2324 label == arg_label(op_prev->args[0])) { 2325 tcg_op_remove(s, op_prev); 2326 remove = true; 2327 } 2328 } 2329 } 2330 break; 2331 2332 case INDEX_op_br: 2333 case INDEX_op_exit_tb: 2334 case INDEX_op_goto_ptr: 2335 /* Unconditional branches; everything following is dead. */ 2336 dead = true; 2337 break; 2338 2339 case INDEX_op_call: 2340 /* Notice noreturn helper calls, raising exceptions. */ 2341 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1]; 2342 if (call_flags & TCG_CALL_NO_RETURN) { 2343 dead = true; 2344 } 2345 break; 2346 2347 case INDEX_op_insn_start: 2348 /* Never remove -- we need to keep these for unwind. */ 2349 remove = false; 2350 break; 2351 2352 default: 2353 break; 2354 } 2355 2356 if (remove) { 2357 tcg_op_remove(s, op); 2358 } 2359 } 2360 } 2361 2362 #define TS_DEAD 1 2363 #define TS_MEM 2 2364 2365 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n))) 2366 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n))) 2367 2368 /* For liveness_pass_1, the register preferences for a given temp. */ 2369 static inline TCGRegSet *la_temp_pref(TCGTemp *ts) 2370 { 2371 return ts->state_ptr; 2372 } 2373 2374 /* For liveness_pass_1, reset the preferences for a given temp to the 2375 * maximal regset for its type. 2376 */ 2377 static inline void la_reset_pref(TCGTemp *ts) 2378 { 2379 *la_temp_pref(ts) 2380 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]); 2381 } 2382 2383 /* liveness analysis: end of function: all temps are dead, and globals 2384 should be in memory. */ 2385 static void la_func_end(TCGContext *s, int ng, int nt) 2386 { 2387 int i; 2388 2389 for (i = 0; i < ng; ++i) { 2390 s->temps[i].state = TS_DEAD | TS_MEM; 2391 la_reset_pref(&s->temps[i]); 2392 } 2393 for (i = ng; i < nt; ++i) { 2394 s->temps[i].state = TS_DEAD; 2395 la_reset_pref(&s->temps[i]); 2396 } 2397 } 2398 2399 /* liveness analysis: end of basic block: all temps are dead, globals 2400 and local temps should be in memory. */ 2401 static void la_bb_end(TCGContext *s, int ng, int nt) 2402 { 2403 int i; 2404 2405 for (i = 0; i < ng; ++i) { 2406 s->temps[i].state = TS_DEAD | TS_MEM; 2407 la_reset_pref(&s->temps[i]); 2408 } 2409 for (i = ng; i < nt; ++i) { 2410 s->temps[i].state = (s->temps[i].temp_local 2411 ? TS_DEAD | TS_MEM 2412 : TS_DEAD); 2413 la_reset_pref(&s->temps[i]); 2414 } 2415 } 2416 2417 /* liveness analysis: sync globals back to memory. */ 2418 static void la_global_sync(TCGContext *s, int ng) 2419 { 2420 int i; 2421 2422 for (i = 0; i < ng; ++i) { 2423 int state = s->temps[i].state; 2424 s->temps[i].state = state | TS_MEM; 2425 if (state == TS_DEAD) { 2426 /* If the global was previously dead, reset prefs. */ 2427 la_reset_pref(&s->temps[i]); 2428 } 2429 } 2430 } 2431 2432 /* liveness analysis: sync globals back to memory and kill. */ 2433 static void la_global_kill(TCGContext *s, int ng) 2434 { 2435 int i; 2436 2437 for (i = 0; i < ng; i++) { 2438 s->temps[i].state = TS_DEAD | TS_MEM; 2439 la_reset_pref(&s->temps[i]); 2440 } 2441 } 2442 2443 /* liveness analysis: note live globals crossing calls. */ 2444 static void la_cross_call(TCGContext *s, int nt) 2445 { 2446 TCGRegSet mask = ~tcg_target_call_clobber_regs; 2447 int i; 2448 2449 for (i = 0; i < nt; i++) { 2450 TCGTemp *ts = &s->temps[i]; 2451 if (!(ts->state & TS_DEAD)) { 2452 TCGRegSet *pset = la_temp_pref(ts); 2453 TCGRegSet set = *pset; 2454 2455 set &= mask; 2456 /* If the combination is not possible, restart. */ 2457 if (set == 0) { 2458 set = tcg_target_available_regs[ts->type] & mask; 2459 } 2460 *pset = set; 2461 } 2462 } 2463 } 2464 2465 /* Liveness analysis : update the opc_arg_life array to tell if a 2466 given input arguments is dead. Instructions updating dead 2467 temporaries are removed. */ 2468 static void liveness_pass_1(TCGContext *s) 2469 { 2470 int nb_globals = s->nb_globals; 2471 int nb_temps = s->nb_temps; 2472 TCGOp *op, *op_prev; 2473 TCGRegSet *prefs; 2474 int i; 2475 2476 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps); 2477 for (i = 0; i < nb_temps; ++i) { 2478 s->temps[i].state_ptr = prefs + i; 2479 } 2480 2481 /* ??? Should be redundant with the exit_tb that ends the TB. */ 2482 la_func_end(s, nb_globals, nb_temps); 2483 2484 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) { 2485 int nb_iargs, nb_oargs; 2486 TCGOpcode opc_new, opc_new2; 2487 bool have_opc_new2; 2488 TCGLifeData arg_life = 0; 2489 TCGTemp *ts; 2490 TCGOpcode opc = op->opc; 2491 const TCGOpDef *def = &tcg_op_defs[opc]; 2492 2493 switch (opc) { 2494 case INDEX_op_call: 2495 { 2496 int call_flags; 2497 int nb_call_regs; 2498 2499 nb_oargs = TCGOP_CALLO(op); 2500 nb_iargs = TCGOP_CALLI(op); 2501 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2502 2503 /* pure functions can be removed if their result is unused */ 2504 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) { 2505 for (i = 0; i < nb_oargs; i++) { 2506 ts = arg_temp(op->args[i]); 2507 if (ts->state != TS_DEAD) { 2508 goto do_not_remove_call; 2509 } 2510 } 2511 goto do_remove; 2512 } 2513 do_not_remove_call: 2514 2515 /* Output args are dead. */ 2516 for (i = 0; i < nb_oargs; i++) { 2517 ts = arg_temp(op->args[i]); 2518 if (ts->state & TS_DEAD) { 2519 arg_life |= DEAD_ARG << i; 2520 } 2521 if (ts->state & TS_MEM) { 2522 arg_life |= SYNC_ARG << i; 2523 } 2524 ts->state = TS_DEAD; 2525 la_reset_pref(ts); 2526 2527 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */ 2528 op->output_pref[i] = 0; 2529 } 2530 2531 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS | 2532 TCG_CALL_NO_READ_GLOBALS))) { 2533 la_global_kill(s, nb_globals); 2534 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) { 2535 la_global_sync(s, nb_globals); 2536 } 2537 2538 /* Record arguments that die in this helper. */ 2539 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2540 ts = arg_temp(op->args[i]); 2541 if (ts && ts->state & TS_DEAD) { 2542 arg_life |= DEAD_ARG << i; 2543 } 2544 } 2545 2546 /* For all live registers, remove call-clobbered prefs. */ 2547 la_cross_call(s, nb_temps); 2548 2549 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 2550 2551 /* Input arguments are live for preceding opcodes. */ 2552 for (i = 0; i < nb_iargs; i++) { 2553 ts = arg_temp(op->args[i + nb_oargs]); 2554 if (ts && ts->state & TS_DEAD) { 2555 /* For those arguments that die, and will be allocated 2556 * in registers, clear the register set for that arg, 2557 * to be filled in below. For args that will be on 2558 * the stack, reset to any available reg. 2559 */ 2560 *la_temp_pref(ts) 2561 = (i < nb_call_regs ? 0 : 2562 tcg_target_available_regs[ts->type]); 2563 ts->state &= ~TS_DEAD; 2564 } 2565 } 2566 2567 /* For each input argument, add its input register to prefs. 2568 If a temp is used once, this produces a single set bit. */ 2569 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) { 2570 ts = arg_temp(op->args[i + nb_oargs]); 2571 if (ts) { 2572 tcg_regset_set_reg(*la_temp_pref(ts), 2573 tcg_target_call_iarg_regs[i]); 2574 } 2575 } 2576 } 2577 break; 2578 case INDEX_op_insn_start: 2579 break; 2580 case INDEX_op_discard: 2581 /* mark the temporary as dead */ 2582 ts = arg_temp(op->args[0]); 2583 ts->state = TS_DEAD; 2584 la_reset_pref(ts); 2585 break; 2586 2587 case INDEX_op_add2_i32: 2588 opc_new = INDEX_op_add_i32; 2589 goto do_addsub2; 2590 case INDEX_op_sub2_i32: 2591 opc_new = INDEX_op_sub_i32; 2592 goto do_addsub2; 2593 case INDEX_op_add2_i64: 2594 opc_new = INDEX_op_add_i64; 2595 goto do_addsub2; 2596 case INDEX_op_sub2_i64: 2597 opc_new = INDEX_op_sub_i64; 2598 do_addsub2: 2599 nb_iargs = 4; 2600 nb_oargs = 2; 2601 /* Test if the high part of the operation is dead, but not 2602 the low part. The result can be optimized to a simple 2603 add or sub. This happens often for x86_64 guest when the 2604 cpu mode is set to 32 bit. */ 2605 if (arg_temp(op->args[1])->state == TS_DEAD) { 2606 if (arg_temp(op->args[0])->state == TS_DEAD) { 2607 goto do_remove; 2608 } 2609 /* Replace the opcode and adjust the args in place, 2610 leaving 3 unused args at the end. */ 2611 op->opc = opc = opc_new; 2612 op->args[1] = op->args[2]; 2613 op->args[2] = op->args[4]; 2614 /* Fall through and mark the single-word operation live. */ 2615 nb_iargs = 2; 2616 nb_oargs = 1; 2617 } 2618 goto do_not_remove; 2619 2620 case INDEX_op_mulu2_i32: 2621 opc_new = INDEX_op_mul_i32; 2622 opc_new2 = INDEX_op_muluh_i32; 2623 have_opc_new2 = TCG_TARGET_HAS_muluh_i32; 2624 goto do_mul2; 2625 case INDEX_op_muls2_i32: 2626 opc_new = INDEX_op_mul_i32; 2627 opc_new2 = INDEX_op_mulsh_i32; 2628 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32; 2629 goto do_mul2; 2630 case INDEX_op_mulu2_i64: 2631 opc_new = INDEX_op_mul_i64; 2632 opc_new2 = INDEX_op_muluh_i64; 2633 have_opc_new2 = TCG_TARGET_HAS_muluh_i64; 2634 goto do_mul2; 2635 case INDEX_op_muls2_i64: 2636 opc_new = INDEX_op_mul_i64; 2637 opc_new2 = INDEX_op_mulsh_i64; 2638 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64; 2639 goto do_mul2; 2640 do_mul2: 2641 nb_iargs = 2; 2642 nb_oargs = 2; 2643 if (arg_temp(op->args[1])->state == TS_DEAD) { 2644 if (arg_temp(op->args[0])->state == TS_DEAD) { 2645 /* Both parts of the operation are dead. */ 2646 goto do_remove; 2647 } 2648 /* The high part of the operation is dead; generate the low. */ 2649 op->opc = opc = opc_new; 2650 op->args[1] = op->args[2]; 2651 op->args[2] = op->args[3]; 2652 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) { 2653 /* The low part of the operation is dead; generate the high. */ 2654 op->opc = opc = opc_new2; 2655 op->args[0] = op->args[1]; 2656 op->args[1] = op->args[2]; 2657 op->args[2] = op->args[3]; 2658 } else { 2659 goto do_not_remove; 2660 } 2661 /* Mark the single-word operation live. */ 2662 nb_oargs = 1; 2663 goto do_not_remove; 2664 2665 default: 2666 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */ 2667 nb_iargs = def->nb_iargs; 2668 nb_oargs = def->nb_oargs; 2669 2670 /* Test if the operation can be removed because all 2671 its outputs are dead. We assume that nb_oargs == 0 2672 implies side effects */ 2673 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) { 2674 for (i = 0; i < nb_oargs; i++) { 2675 if (arg_temp(op->args[i])->state != TS_DEAD) { 2676 goto do_not_remove; 2677 } 2678 } 2679 goto do_remove; 2680 } 2681 goto do_not_remove; 2682 2683 do_remove: 2684 tcg_op_remove(s, op); 2685 break; 2686 2687 do_not_remove: 2688 for (i = 0; i < nb_oargs; i++) { 2689 ts = arg_temp(op->args[i]); 2690 2691 /* Remember the preference of the uses that followed. */ 2692 op->output_pref[i] = *la_temp_pref(ts); 2693 2694 /* Output args are dead. */ 2695 if (ts->state & TS_DEAD) { 2696 arg_life |= DEAD_ARG << i; 2697 } 2698 if (ts->state & TS_MEM) { 2699 arg_life |= SYNC_ARG << i; 2700 } 2701 ts->state = TS_DEAD; 2702 la_reset_pref(ts); 2703 } 2704 2705 /* If end of basic block, update. */ 2706 if (def->flags & TCG_OPF_BB_EXIT) { 2707 la_func_end(s, nb_globals, nb_temps); 2708 } else if (def->flags & TCG_OPF_BB_END) { 2709 la_bb_end(s, nb_globals, nb_temps); 2710 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2711 la_global_sync(s, nb_globals); 2712 if (def->flags & TCG_OPF_CALL_CLOBBER) { 2713 la_cross_call(s, nb_temps); 2714 } 2715 } 2716 2717 /* Record arguments that die in this opcode. */ 2718 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2719 ts = arg_temp(op->args[i]); 2720 if (ts->state & TS_DEAD) { 2721 arg_life |= DEAD_ARG << i; 2722 } 2723 } 2724 2725 /* Input arguments are live for preceding opcodes. */ 2726 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2727 ts = arg_temp(op->args[i]); 2728 if (ts->state & TS_DEAD) { 2729 /* For operands that were dead, initially allow 2730 all regs for the type. */ 2731 *la_temp_pref(ts) = tcg_target_available_regs[ts->type]; 2732 ts->state &= ~TS_DEAD; 2733 } 2734 } 2735 2736 /* Incorporate constraints for this operand. */ 2737 switch (opc) { 2738 case INDEX_op_mov_i32: 2739 case INDEX_op_mov_i64: 2740 /* Note that these are TCG_OPF_NOT_PRESENT and do not 2741 have proper constraints. That said, special case 2742 moves to propagate preferences backward. */ 2743 if (IS_DEAD_ARG(1)) { 2744 *la_temp_pref(arg_temp(op->args[0])) 2745 = *la_temp_pref(arg_temp(op->args[1])); 2746 } 2747 break; 2748 2749 default: 2750 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2751 const TCGArgConstraint *ct = &def->args_ct[i]; 2752 TCGRegSet set, *pset; 2753 2754 ts = arg_temp(op->args[i]); 2755 pset = la_temp_pref(ts); 2756 set = *pset; 2757 2758 set &= ct->u.regs; 2759 if (ct->ct & TCG_CT_IALIAS) { 2760 set &= op->output_pref[ct->alias_index]; 2761 } 2762 /* If the combination is not possible, restart. */ 2763 if (set == 0) { 2764 set = ct->u.regs; 2765 } 2766 *pset = set; 2767 } 2768 break; 2769 } 2770 break; 2771 } 2772 op->life = arg_life; 2773 } 2774 } 2775 2776 /* Liveness analysis: Convert indirect regs to direct temporaries. */ 2777 static bool liveness_pass_2(TCGContext *s) 2778 { 2779 int nb_globals = s->nb_globals; 2780 int nb_temps, i; 2781 bool changes = false; 2782 TCGOp *op, *op_next; 2783 2784 /* Create a temporary for each indirect global. */ 2785 for (i = 0; i < nb_globals; ++i) { 2786 TCGTemp *its = &s->temps[i]; 2787 if (its->indirect_reg) { 2788 TCGTemp *dts = tcg_temp_alloc(s); 2789 dts->type = its->type; 2790 dts->base_type = its->base_type; 2791 its->state_ptr = dts; 2792 } else { 2793 its->state_ptr = NULL; 2794 } 2795 /* All globals begin dead. */ 2796 its->state = TS_DEAD; 2797 } 2798 for (nb_temps = s->nb_temps; i < nb_temps; ++i) { 2799 TCGTemp *its = &s->temps[i]; 2800 its->state_ptr = NULL; 2801 its->state = TS_DEAD; 2802 } 2803 2804 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2805 TCGOpcode opc = op->opc; 2806 const TCGOpDef *def = &tcg_op_defs[opc]; 2807 TCGLifeData arg_life = op->life; 2808 int nb_iargs, nb_oargs, call_flags; 2809 TCGTemp *arg_ts, *dir_ts; 2810 2811 if (opc == INDEX_op_call) { 2812 nb_oargs = TCGOP_CALLO(op); 2813 nb_iargs = TCGOP_CALLI(op); 2814 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2815 } else { 2816 nb_iargs = def->nb_iargs; 2817 nb_oargs = def->nb_oargs; 2818 2819 /* Set flags similar to how calls require. */ 2820 if (def->flags & TCG_OPF_BB_END) { 2821 /* Like writing globals: save_globals */ 2822 call_flags = 0; 2823 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2824 /* Like reading globals: sync_globals */ 2825 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 2826 } else { 2827 /* No effect on globals. */ 2828 call_flags = (TCG_CALL_NO_READ_GLOBALS | 2829 TCG_CALL_NO_WRITE_GLOBALS); 2830 } 2831 } 2832 2833 /* Make sure that input arguments are available. */ 2834 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2835 arg_ts = arg_temp(op->args[i]); 2836 if (arg_ts) { 2837 dir_ts = arg_ts->state_ptr; 2838 if (dir_ts && arg_ts->state == TS_DEAD) { 2839 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32 2840 ? INDEX_op_ld_i32 2841 : INDEX_op_ld_i64); 2842 TCGOp *lop = tcg_op_insert_before(s, op, lopc); 2843 2844 lop->args[0] = temp_arg(dir_ts); 2845 lop->args[1] = temp_arg(arg_ts->mem_base); 2846 lop->args[2] = arg_ts->mem_offset; 2847 2848 /* Loaded, but synced with memory. */ 2849 arg_ts->state = TS_MEM; 2850 } 2851 } 2852 } 2853 2854 /* Perform input replacement, and mark inputs that became dead. 2855 No action is required except keeping temp_state up to date 2856 so that we reload when needed. */ 2857 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2858 arg_ts = arg_temp(op->args[i]); 2859 if (arg_ts) { 2860 dir_ts = arg_ts->state_ptr; 2861 if (dir_ts) { 2862 op->args[i] = temp_arg(dir_ts); 2863 changes = true; 2864 if (IS_DEAD_ARG(i)) { 2865 arg_ts->state = TS_DEAD; 2866 } 2867 } 2868 } 2869 } 2870 2871 /* Liveness analysis should ensure that the following are 2872 all correct, for call sites and basic block end points. */ 2873 if (call_flags & TCG_CALL_NO_READ_GLOBALS) { 2874 /* Nothing to do */ 2875 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) { 2876 for (i = 0; i < nb_globals; ++i) { 2877 /* Liveness should see that globals are synced back, 2878 that is, either TS_DEAD or TS_MEM. */ 2879 arg_ts = &s->temps[i]; 2880 tcg_debug_assert(arg_ts->state_ptr == 0 2881 || arg_ts->state != 0); 2882 } 2883 } else { 2884 for (i = 0; i < nb_globals; ++i) { 2885 /* Liveness should see that globals are saved back, 2886 that is, TS_DEAD, waiting to be reloaded. */ 2887 arg_ts = &s->temps[i]; 2888 tcg_debug_assert(arg_ts->state_ptr == 0 2889 || arg_ts->state == TS_DEAD); 2890 } 2891 } 2892 2893 /* Outputs become available. */ 2894 for (i = 0; i < nb_oargs; i++) { 2895 arg_ts = arg_temp(op->args[i]); 2896 dir_ts = arg_ts->state_ptr; 2897 if (!dir_ts) { 2898 continue; 2899 } 2900 op->args[i] = temp_arg(dir_ts); 2901 changes = true; 2902 2903 /* The output is now live and modified. */ 2904 arg_ts->state = 0; 2905 2906 /* Sync outputs upon their last write. */ 2907 if (NEED_SYNC_ARG(i)) { 2908 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 2909 ? INDEX_op_st_i32 2910 : INDEX_op_st_i64); 2911 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 2912 2913 sop->args[0] = temp_arg(dir_ts); 2914 sop->args[1] = temp_arg(arg_ts->mem_base); 2915 sop->args[2] = arg_ts->mem_offset; 2916 2917 arg_ts->state = TS_MEM; 2918 } 2919 /* Drop outputs that are dead. */ 2920 if (IS_DEAD_ARG(i)) { 2921 arg_ts->state = TS_DEAD; 2922 } 2923 } 2924 } 2925 2926 return changes; 2927 } 2928 2929 #ifdef CONFIG_DEBUG_TCG 2930 static void dump_regs(TCGContext *s) 2931 { 2932 TCGTemp *ts; 2933 int i; 2934 char buf[64]; 2935 2936 for(i = 0; i < s->nb_temps; i++) { 2937 ts = &s->temps[i]; 2938 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 2939 switch(ts->val_type) { 2940 case TEMP_VAL_REG: 2941 printf("%s", tcg_target_reg_names[ts->reg]); 2942 break; 2943 case TEMP_VAL_MEM: 2944 printf("%d(%s)", (int)ts->mem_offset, 2945 tcg_target_reg_names[ts->mem_base->reg]); 2946 break; 2947 case TEMP_VAL_CONST: 2948 printf("$0x%" TCG_PRIlx, ts->val); 2949 break; 2950 case TEMP_VAL_DEAD: 2951 printf("D"); 2952 break; 2953 default: 2954 printf("???"); 2955 break; 2956 } 2957 printf("\n"); 2958 } 2959 2960 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 2961 if (s->reg_to_temp[i] != NULL) { 2962 printf("%s: %s\n", 2963 tcg_target_reg_names[i], 2964 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i])); 2965 } 2966 } 2967 } 2968 2969 static void check_regs(TCGContext *s) 2970 { 2971 int reg; 2972 int k; 2973 TCGTemp *ts; 2974 char buf[64]; 2975 2976 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) { 2977 ts = s->reg_to_temp[reg]; 2978 if (ts != NULL) { 2979 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) { 2980 printf("Inconsistency for register %s:\n", 2981 tcg_target_reg_names[reg]); 2982 goto fail; 2983 } 2984 } 2985 } 2986 for (k = 0; k < s->nb_temps; k++) { 2987 ts = &s->temps[k]; 2988 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg 2989 && s->reg_to_temp[ts->reg] != ts) { 2990 printf("Inconsistency for temp %s:\n", 2991 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 2992 fail: 2993 printf("reg state:\n"); 2994 dump_regs(s); 2995 tcg_abort(); 2996 } 2997 } 2998 } 2999 #endif 3000 3001 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts) 3002 { 3003 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64) 3004 /* Sparc64 stack is accessed with offset of 2047 */ 3005 s->current_frame_offset = (s->current_frame_offset + 3006 (tcg_target_long)sizeof(tcg_target_long) - 1) & 3007 ~(sizeof(tcg_target_long) - 1); 3008 #endif 3009 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) > 3010 s->frame_end) { 3011 tcg_abort(); 3012 } 3013 ts->mem_offset = s->current_frame_offset; 3014 ts->mem_base = s->frame_temp; 3015 ts->mem_allocated = 1; 3016 s->current_frame_offset += sizeof(tcg_target_long); 3017 } 3018 3019 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet); 3020 3021 /* Mark a temporary as free or dead. If 'free_or_dead' is negative, 3022 mark it free; otherwise mark it dead. */ 3023 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead) 3024 { 3025 if (ts->fixed_reg) { 3026 return; 3027 } 3028 if (ts->val_type == TEMP_VAL_REG) { 3029 s->reg_to_temp[ts->reg] = NULL; 3030 } 3031 ts->val_type = (free_or_dead < 0 3032 || ts->temp_local 3033 || ts->temp_global 3034 ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 3035 } 3036 3037 /* Mark a temporary as dead. */ 3038 static inline void temp_dead(TCGContext *s, TCGTemp *ts) 3039 { 3040 temp_free_or_dead(s, ts, 1); 3041 } 3042 3043 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary 3044 registers needs to be allocated to store a constant. If 'free_or_dead' 3045 is non-zero, subsequently release the temporary; if it is positive, the 3046 temp is dead; if it is negative, the temp is free. */ 3047 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs, 3048 TCGRegSet preferred_regs, int free_or_dead) 3049 { 3050 if (ts->fixed_reg) { 3051 return; 3052 } 3053 if (!ts->mem_coherent) { 3054 if (!ts->mem_allocated) { 3055 temp_allocate_frame(s, ts); 3056 } 3057 switch (ts->val_type) { 3058 case TEMP_VAL_CONST: 3059 /* If we're going to free the temp immediately, then we won't 3060 require it later in a register, so attempt to store the 3061 constant to memory directly. */ 3062 if (free_or_dead 3063 && tcg_out_sti(s, ts->type, ts->val, 3064 ts->mem_base->reg, ts->mem_offset)) { 3065 break; 3066 } 3067 temp_load(s, ts, tcg_target_available_regs[ts->type], 3068 allocated_regs, preferred_regs); 3069 /* fallthrough */ 3070 3071 case TEMP_VAL_REG: 3072 tcg_out_st(s, ts->type, ts->reg, 3073 ts->mem_base->reg, ts->mem_offset); 3074 break; 3075 3076 case TEMP_VAL_MEM: 3077 break; 3078 3079 case TEMP_VAL_DEAD: 3080 default: 3081 tcg_abort(); 3082 } 3083 ts->mem_coherent = 1; 3084 } 3085 if (free_or_dead) { 3086 temp_free_or_dead(s, ts, free_or_dead); 3087 } 3088 } 3089 3090 /* free register 'reg' by spilling the corresponding temporary if necessary */ 3091 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs) 3092 { 3093 TCGTemp *ts = s->reg_to_temp[reg]; 3094 if (ts != NULL) { 3095 temp_sync(s, ts, allocated_regs, 0, -1); 3096 } 3097 } 3098 3099 /** 3100 * tcg_reg_alloc: 3101 * @required_regs: Set of registers in which we must allocate. 3102 * @allocated_regs: Set of registers which must be avoided. 3103 * @preferred_regs: Set of registers we should prefer. 3104 * @rev: True if we search the registers in "indirect" order. 3105 * 3106 * The allocated register must be in @required_regs & ~@allocated_regs, 3107 * but if we can put it in @preferred_regs we may save a move later. 3108 */ 3109 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs, 3110 TCGRegSet allocated_regs, 3111 TCGRegSet preferred_regs, bool rev) 3112 { 3113 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order); 3114 TCGRegSet reg_ct[2]; 3115 const int *order; 3116 3117 reg_ct[1] = required_regs & ~allocated_regs; 3118 tcg_debug_assert(reg_ct[1] != 0); 3119 reg_ct[0] = reg_ct[1] & preferred_regs; 3120 3121 /* Skip the preferred_regs option if it cannot be satisfied, 3122 or if the preference made no difference. */ 3123 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1]; 3124 3125 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order; 3126 3127 /* Try free registers, preferences first. */ 3128 for (j = f; j < 2; j++) { 3129 TCGRegSet set = reg_ct[j]; 3130 3131 if (tcg_regset_single(set)) { 3132 /* One register in the set. */ 3133 TCGReg reg = tcg_regset_first(set); 3134 if (s->reg_to_temp[reg] == NULL) { 3135 return reg; 3136 } 3137 } else { 3138 for (i = 0; i < n; i++) { 3139 TCGReg reg = order[i]; 3140 if (s->reg_to_temp[reg] == NULL && 3141 tcg_regset_test_reg(set, reg)) { 3142 return reg; 3143 } 3144 } 3145 } 3146 } 3147 3148 /* We must spill something. */ 3149 for (j = f; j < 2; j++) { 3150 TCGRegSet set = reg_ct[j]; 3151 3152 if (tcg_regset_single(set)) { 3153 /* One register in the set. */ 3154 TCGReg reg = tcg_regset_first(set); 3155 tcg_reg_free(s, reg, allocated_regs); 3156 return reg; 3157 } else { 3158 for (i = 0; i < n; i++) { 3159 TCGReg reg = order[i]; 3160 if (tcg_regset_test_reg(set, reg)) { 3161 tcg_reg_free(s, reg, allocated_regs); 3162 return reg; 3163 } 3164 } 3165 } 3166 } 3167 3168 tcg_abort(); 3169 } 3170 3171 /* Make sure the temporary is in a register. If needed, allocate the register 3172 from DESIRED while avoiding ALLOCATED. */ 3173 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs, 3174 TCGRegSet allocated_regs, TCGRegSet preferred_regs) 3175 { 3176 TCGReg reg; 3177 3178 switch (ts->val_type) { 3179 case TEMP_VAL_REG: 3180 return; 3181 case TEMP_VAL_CONST: 3182 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3183 preferred_regs, ts->indirect_base); 3184 tcg_out_movi(s, ts->type, reg, ts->val); 3185 ts->mem_coherent = 0; 3186 break; 3187 case TEMP_VAL_MEM: 3188 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3189 preferred_regs, ts->indirect_base); 3190 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset); 3191 ts->mem_coherent = 1; 3192 break; 3193 case TEMP_VAL_DEAD: 3194 default: 3195 tcg_abort(); 3196 } 3197 ts->reg = reg; 3198 ts->val_type = TEMP_VAL_REG; 3199 s->reg_to_temp[reg] = ts; 3200 } 3201 3202 /* Save a temporary to memory. 'allocated_regs' is used in case a 3203 temporary registers needs to be allocated to store a constant. */ 3204 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs) 3205 { 3206 /* The liveness analysis already ensures that globals are back 3207 in memory. Keep an tcg_debug_assert for safety. */ 3208 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg); 3209 } 3210 3211 /* save globals to their canonical location and assume they can be 3212 modified be the following code. 'allocated_regs' is used in case a 3213 temporary registers needs to be allocated to store a constant. */ 3214 static void save_globals(TCGContext *s, TCGRegSet allocated_regs) 3215 { 3216 int i, n; 3217 3218 for (i = 0, n = s->nb_globals; i < n; i++) { 3219 temp_save(s, &s->temps[i], allocated_regs); 3220 } 3221 } 3222 3223 /* sync globals to their canonical location and assume they can be 3224 read by the following code. 'allocated_regs' is used in case a 3225 temporary registers needs to be allocated to store a constant. */ 3226 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs) 3227 { 3228 int i, n; 3229 3230 for (i = 0, n = s->nb_globals; i < n; i++) { 3231 TCGTemp *ts = &s->temps[i]; 3232 tcg_debug_assert(ts->val_type != TEMP_VAL_REG 3233 || ts->fixed_reg 3234 || ts->mem_coherent); 3235 } 3236 } 3237 3238 /* at the end of a basic block, we assume all temporaries are dead and 3239 all globals are stored at their canonical location. */ 3240 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs) 3241 { 3242 int i; 3243 3244 for (i = s->nb_globals; i < s->nb_temps; i++) { 3245 TCGTemp *ts = &s->temps[i]; 3246 if (ts->temp_local) { 3247 temp_save(s, ts, allocated_regs); 3248 } else { 3249 /* The liveness analysis already ensures that temps are dead. 3250 Keep an tcg_debug_assert for safety. */ 3251 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3252 } 3253 } 3254 3255 save_globals(s, allocated_regs); 3256 } 3257 3258 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots, 3259 tcg_target_ulong val, TCGLifeData arg_life, 3260 TCGRegSet preferred_regs) 3261 { 3262 if (ots->fixed_reg) { 3263 /* For fixed registers, we do not do any constant propagation. */ 3264 tcg_out_movi(s, ots->type, ots->reg, val); 3265 return; 3266 } 3267 3268 /* The movi is not explicitly generated here. */ 3269 if (ots->val_type == TEMP_VAL_REG) { 3270 s->reg_to_temp[ots->reg] = NULL; 3271 } 3272 ots->val_type = TEMP_VAL_CONST; 3273 ots->val = val; 3274 ots->mem_coherent = 0; 3275 if (NEED_SYNC_ARG(0)) { 3276 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0)); 3277 } else if (IS_DEAD_ARG(0)) { 3278 temp_dead(s, ots); 3279 } 3280 } 3281 3282 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op) 3283 { 3284 TCGTemp *ots = arg_temp(op->args[0]); 3285 tcg_target_ulong val = op->args[1]; 3286 3287 tcg_reg_alloc_do_movi(s, ots, val, op->life, op->output_pref[0]); 3288 } 3289 3290 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op) 3291 { 3292 const TCGLifeData arg_life = op->life; 3293 TCGRegSet allocated_regs, preferred_regs; 3294 TCGTemp *ts, *ots; 3295 TCGType otype, itype; 3296 3297 allocated_regs = s->reserved_regs; 3298 preferred_regs = op->output_pref[0]; 3299 ots = arg_temp(op->args[0]); 3300 ts = arg_temp(op->args[1]); 3301 3302 /* Note that otype != itype for no-op truncation. */ 3303 otype = ots->type; 3304 itype = ts->type; 3305 3306 if (ts->val_type == TEMP_VAL_CONST) { 3307 /* propagate constant or generate sti */ 3308 tcg_target_ulong val = ts->val; 3309 if (IS_DEAD_ARG(1)) { 3310 temp_dead(s, ts); 3311 } 3312 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs); 3313 return; 3314 } 3315 3316 /* If the source value is in memory we're going to be forced 3317 to have it in a register in order to perform the copy. Copy 3318 the SOURCE value into its own register first, that way we 3319 don't have to reload SOURCE the next time it is used. */ 3320 if (ts->val_type == TEMP_VAL_MEM) { 3321 temp_load(s, ts, tcg_target_available_regs[itype], 3322 allocated_regs, preferred_regs); 3323 } 3324 3325 tcg_debug_assert(ts->val_type == TEMP_VAL_REG); 3326 if (IS_DEAD_ARG(0) && !ots->fixed_reg) { 3327 /* mov to a non-saved dead register makes no sense (even with 3328 liveness analysis disabled). */ 3329 tcg_debug_assert(NEED_SYNC_ARG(0)); 3330 if (!ots->mem_allocated) { 3331 temp_allocate_frame(s, ots); 3332 } 3333 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset); 3334 if (IS_DEAD_ARG(1)) { 3335 temp_dead(s, ts); 3336 } 3337 temp_dead(s, ots); 3338 } else { 3339 if (IS_DEAD_ARG(1) && !ts->fixed_reg && !ots->fixed_reg) { 3340 /* the mov can be suppressed */ 3341 if (ots->val_type == TEMP_VAL_REG) { 3342 s->reg_to_temp[ots->reg] = NULL; 3343 } 3344 ots->reg = ts->reg; 3345 temp_dead(s, ts); 3346 } else { 3347 if (ots->val_type != TEMP_VAL_REG) { 3348 /* When allocating a new register, make sure to not spill the 3349 input one. */ 3350 tcg_regset_set_reg(allocated_regs, ts->reg); 3351 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype], 3352 allocated_regs, preferred_regs, 3353 ots->indirect_base); 3354 } 3355 tcg_out_mov(s, otype, ots->reg, ts->reg); 3356 } 3357 ots->val_type = TEMP_VAL_REG; 3358 ots->mem_coherent = 0; 3359 s->reg_to_temp[ots->reg] = ots; 3360 if (NEED_SYNC_ARG(0)) { 3361 temp_sync(s, ots, allocated_regs, 0, 0); 3362 } 3363 } 3364 } 3365 3366 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op) 3367 { 3368 const TCGLifeData arg_life = op->life; 3369 const TCGOpDef * const def = &tcg_op_defs[op->opc]; 3370 TCGRegSet i_allocated_regs; 3371 TCGRegSet o_allocated_regs; 3372 int i, k, nb_iargs, nb_oargs; 3373 TCGReg reg; 3374 TCGArg arg; 3375 const TCGArgConstraint *arg_ct; 3376 TCGTemp *ts; 3377 TCGArg new_args[TCG_MAX_OP_ARGS]; 3378 int const_args[TCG_MAX_OP_ARGS]; 3379 3380 nb_oargs = def->nb_oargs; 3381 nb_iargs = def->nb_iargs; 3382 3383 /* copy constants */ 3384 memcpy(new_args + nb_oargs + nb_iargs, 3385 op->args + nb_oargs + nb_iargs, 3386 sizeof(TCGArg) * def->nb_cargs); 3387 3388 i_allocated_regs = s->reserved_regs; 3389 o_allocated_regs = s->reserved_regs; 3390 3391 /* satisfy input constraints */ 3392 for (k = 0; k < nb_iargs; k++) { 3393 TCGRegSet i_preferred_regs, o_preferred_regs; 3394 3395 i = def->sorted_args[nb_oargs + k]; 3396 arg = op->args[i]; 3397 arg_ct = &def->args_ct[i]; 3398 ts = arg_temp(arg); 3399 3400 if (ts->val_type == TEMP_VAL_CONST 3401 && tcg_target_const_match(ts->val, ts->type, arg_ct)) { 3402 /* constant is OK for instruction */ 3403 const_args[i] = 1; 3404 new_args[i] = ts->val; 3405 continue; 3406 } 3407 3408 i_preferred_regs = o_preferred_regs = 0; 3409 if (arg_ct->ct & TCG_CT_IALIAS) { 3410 o_preferred_regs = op->output_pref[arg_ct->alias_index]; 3411 if (ts->fixed_reg) { 3412 /* if fixed register, we must allocate a new register 3413 if the alias is not the same register */ 3414 if (arg != op->args[arg_ct->alias_index]) { 3415 goto allocate_in_reg; 3416 } 3417 } else { 3418 /* if the input is aliased to an output and if it is 3419 not dead after the instruction, we must allocate 3420 a new register and move it */ 3421 if (!IS_DEAD_ARG(i)) { 3422 goto allocate_in_reg; 3423 } 3424 3425 /* check if the current register has already been allocated 3426 for another input aliased to an output */ 3427 if (ts->val_type == TEMP_VAL_REG) { 3428 int k2, i2; 3429 reg = ts->reg; 3430 for (k2 = 0 ; k2 < k ; k2++) { 3431 i2 = def->sorted_args[nb_oargs + k2]; 3432 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) && 3433 reg == new_args[i2]) { 3434 goto allocate_in_reg; 3435 } 3436 } 3437 } 3438 i_preferred_regs = o_preferred_regs; 3439 } 3440 } 3441 3442 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs, i_preferred_regs); 3443 reg = ts->reg; 3444 3445 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) { 3446 /* nothing to do : the constraint is satisfied */ 3447 } else { 3448 allocate_in_reg: 3449 /* allocate a new register matching the constraint 3450 and move the temporary register into it */ 3451 temp_load(s, ts, tcg_target_available_regs[ts->type], 3452 i_allocated_regs, 0); 3453 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs, 3454 o_preferred_regs, ts->indirect_base); 3455 tcg_out_mov(s, ts->type, reg, ts->reg); 3456 } 3457 new_args[i] = reg; 3458 const_args[i] = 0; 3459 tcg_regset_set_reg(i_allocated_regs, reg); 3460 } 3461 3462 /* mark dead temporaries and free the associated registers */ 3463 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3464 if (IS_DEAD_ARG(i)) { 3465 temp_dead(s, arg_temp(op->args[i])); 3466 } 3467 } 3468 3469 if (def->flags & TCG_OPF_BB_END) { 3470 tcg_reg_alloc_bb_end(s, i_allocated_regs); 3471 } else { 3472 if (def->flags & TCG_OPF_CALL_CLOBBER) { 3473 /* XXX: permit generic clobber register list ? */ 3474 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3475 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3476 tcg_reg_free(s, i, i_allocated_regs); 3477 } 3478 } 3479 } 3480 if (def->flags & TCG_OPF_SIDE_EFFECTS) { 3481 /* sync globals if the op has side effects and might trigger 3482 an exception. */ 3483 sync_globals(s, i_allocated_regs); 3484 } 3485 3486 /* satisfy the output constraints */ 3487 for(k = 0; k < nb_oargs; k++) { 3488 i = def->sorted_args[k]; 3489 arg = op->args[i]; 3490 arg_ct = &def->args_ct[i]; 3491 ts = arg_temp(arg); 3492 if ((arg_ct->ct & TCG_CT_ALIAS) 3493 && !const_args[arg_ct->alias_index]) { 3494 reg = new_args[arg_ct->alias_index]; 3495 } else if (arg_ct->ct & TCG_CT_NEWREG) { 3496 reg = tcg_reg_alloc(s, arg_ct->u.regs, 3497 i_allocated_regs | o_allocated_regs, 3498 op->output_pref[k], ts->indirect_base); 3499 } else { 3500 /* if fixed register, we try to use it */ 3501 reg = ts->reg; 3502 if (ts->fixed_reg && 3503 tcg_regset_test_reg(arg_ct->u.regs, reg)) { 3504 goto oarg_end; 3505 } 3506 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs, 3507 op->output_pref[k], ts->indirect_base); 3508 } 3509 tcg_regset_set_reg(o_allocated_regs, reg); 3510 /* if a fixed register is used, then a move will be done afterwards */ 3511 if (!ts->fixed_reg) { 3512 if (ts->val_type == TEMP_VAL_REG) { 3513 s->reg_to_temp[ts->reg] = NULL; 3514 } 3515 ts->val_type = TEMP_VAL_REG; 3516 ts->reg = reg; 3517 /* temp value is modified, so the value kept in memory is 3518 potentially not the same */ 3519 ts->mem_coherent = 0; 3520 s->reg_to_temp[reg] = ts; 3521 } 3522 oarg_end: 3523 new_args[i] = reg; 3524 } 3525 } 3526 3527 /* emit instruction */ 3528 if (def->flags & TCG_OPF_VECTOR) { 3529 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op), 3530 new_args, const_args); 3531 } else { 3532 tcg_out_op(s, op->opc, new_args, const_args); 3533 } 3534 3535 /* move the outputs in the correct register if needed */ 3536 for(i = 0; i < nb_oargs; i++) { 3537 ts = arg_temp(op->args[i]); 3538 reg = new_args[i]; 3539 if (ts->fixed_reg && ts->reg != reg) { 3540 tcg_out_mov(s, ts->type, ts->reg, reg); 3541 } 3542 if (NEED_SYNC_ARG(i)) { 3543 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i)); 3544 } else if (IS_DEAD_ARG(i)) { 3545 temp_dead(s, ts); 3546 } 3547 } 3548 } 3549 3550 #ifdef TCG_TARGET_STACK_GROWSUP 3551 #define STACK_DIR(x) (-(x)) 3552 #else 3553 #define STACK_DIR(x) (x) 3554 #endif 3555 3556 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op) 3557 { 3558 const int nb_oargs = TCGOP_CALLO(op); 3559 const int nb_iargs = TCGOP_CALLI(op); 3560 const TCGLifeData arg_life = op->life; 3561 int flags, nb_regs, i; 3562 TCGReg reg; 3563 TCGArg arg; 3564 TCGTemp *ts; 3565 intptr_t stack_offset; 3566 size_t call_stack_size; 3567 tcg_insn_unit *func_addr; 3568 int allocate_args; 3569 TCGRegSet allocated_regs; 3570 3571 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs]; 3572 flags = op->args[nb_oargs + nb_iargs + 1]; 3573 3574 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 3575 if (nb_regs > nb_iargs) { 3576 nb_regs = nb_iargs; 3577 } 3578 3579 /* assign stack slots first */ 3580 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long); 3581 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) & 3582 ~(TCG_TARGET_STACK_ALIGN - 1); 3583 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE); 3584 if (allocate_args) { 3585 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed, 3586 preallocate call stack */ 3587 tcg_abort(); 3588 } 3589 3590 stack_offset = TCG_TARGET_CALL_STACK_OFFSET; 3591 for (i = nb_regs; i < nb_iargs; i++) { 3592 arg = op->args[nb_oargs + i]; 3593 #ifdef TCG_TARGET_STACK_GROWSUP 3594 stack_offset -= sizeof(tcg_target_long); 3595 #endif 3596 if (arg != TCG_CALL_DUMMY_ARG) { 3597 ts = arg_temp(arg); 3598 temp_load(s, ts, tcg_target_available_regs[ts->type], 3599 s->reserved_regs, 0); 3600 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset); 3601 } 3602 #ifndef TCG_TARGET_STACK_GROWSUP 3603 stack_offset += sizeof(tcg_target_long); 3604 #endif 3605 } 3606 3607 /* assign input registers */ 3608 allocated_regs = s->reserved_regs; 3609 for (i = 0; i < nb_regs; i++) { 3610 arg = op->args[nb_oargs + i]; 3611 if (arg != TCG_CALL_DUMMY_ARG) { 3612 ts = arg_temp(arg); 3613 reg = tcg_target_call_iarg_regs[i]; 3614 3615 if (ts->val_type == TEMP_VAL_REG) { 3616 if (ts->reg != reg) { 3617 tcg_reg_free(s, reg, allocated_regs); 3618 tcg_out_mov(s, ts->type, reg, ts->reg); 3619 } 3620 } else { 3621 TCGRegSet arg_set = 0; 3622 3623 tcg_reg_free(s, reg, allocated_regs); 3624 tcg_regset_set_reg(arg_set, reg); 3625 temp_load(s, ts, arg_set, allocated_regs, 0); 3626 } 3627 3628 tcg_regset_set_reg(allocated_regs, reg); 3629 } 3630 } 3631 3632 /* mark dead temporaries and free the associated registers */ 3633 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 3634 if (IS_DEAD_ARG(i)) { 3635 temp_dead(s, arg_temp(op->args[i])); 3636 } 3637 } 3638 3639 /* clobber call registers */ 3640 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3641 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3642 tcg_reg_free(s, i, allocated_regs); 3643 } 3644 } 3645 3646 /* Save globals if they might be written by the helper, sync them if 3647 they might be read. */ 3648 if (flags & TCG_CALL_NO_READ_GLOBALS) { 3649 /* Nothing to do */ 3650 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) { 3651 sync_globals(s, allocated_regs); 3652 } else { 3653 save_globals(s, allocated_regs); 3654 } 3655 3656 tcg_out_call(s, func_addr); 3657 3658 /* assign output registers and emit moves if needed */ 3659 for(i = 0; i < nb_oargs; i++) { 3660 arg = op->args[i]; 3661 ts = arg_temp(arg); 3662 reg = tcg_target_call_oarg_regs[i]; 3663 tcg_debug_assert(s->reg_to_temp[reg] == NULL); 3664 3665 if (ts->fixed_reg) { 3666 if (ts->reg != reg) { 3667 tcg_out_mov(s, ts->type, ts->reg, reg); 3668 } 3669 } else { 3670 if (ts->val_type == TEMP_VAL_REG) { 3671 s->reg_to_temp[ts->reg] = NULL; 3672 } 3673 ts->val_type = TEMP_VAL_REG; 3674 ts->reg = reg; 3675 ts->mem_coherent = 0; 3676 s->reg_to_temp[reg] = ts; 3677 if (NEED_SYNC_ARG(i)) { 3678 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i)); 3679 } else if (IS_DEAD_ARG(i)) { 3680 temp_dead(s, ts); 3681 } 3682 } 3683 } 3684 } 3685 3686 #ifdef CONFIG_PROFILER 3687 3688 /* avoid copy/paste errors */ 3689 #define PROF_ADD(to, from, field) \ 3690 do { \ 3691 (to)->field += atomic_read(&((from)->field)); \ 3692 } while (0) 3693 3694 #define PROF_MAX(to, from, field) \ 3695 do { \ 3696 typeof((from)->field) val__ = atomic_read(&((from)->field)); \ 3697 if (val__ > (to)->field) { \ 3698 (to)->field = val__; \ 3699 } \ 3700 } while (0) 3701 3702 /* Pass in a zero'ed @prof */ 3703 static inline 3704 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table) 3705 { 3706 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3707 unsigned int i; 3708 3709 for (i = 0; i < n_ctxs; i++) { 3710 TCGContext *s = atomic_read(&tcg_ctxs[i]); 3711 const TCGProfile *orig = &s->prof; 3712 3713 if (counters) { 3714 PROF_ADD(prof, orig, cpu_exec_time); 3715 PROF_ADD(prof, orig, tb_count1); 3716 PROF_ADD(prof, orig, tb_count); 3717 PROF_ADD(prof, orig, op_count); 3718 PROF_MAX(prof, orig, op_count_max); 3719 PROF_ADD(prof, orig, temp_count); 3720 PROF_MAX(prof, orig, temp_count_max); 3721 PROF_ADD(prof, orig, del_op_count); 3722 PROF_ADD(prof, orig, code_in_len); 3723 PROF_ADD(prof, orig, code_out_len); 3724 PROF_ADD(prof, orig, search_out_len); 3725 PROF_ADD(prof, orig, interm_time); 3726 PROF_ADD(prof, orig, code_time); 3727 PROF_ADD(prof, orig, la_time); 3728 PROF_ADD(prof, orig, opt_time); 3729 PROF_ADD(prof, orig, restore_count); 3730 PROF_ADD(prof, orig, restore_time); 3731 } 3732 if (table) { 3733 int i; 3734 3735 for (i = 0; i < NB_OPS; i++) { 3736 PROF_ADD(prof, orig, table_op_count[i]); 3737 } 3738 } 3739 } 3740 } 3741 3742 #undef PROF_ADD 3743 #undef PROF_MAX 3744 3745 static void tcg_profile_snapshot_counters(TCGProfile *prof) 3746 { 3747 tcg_profile_snapshot(prof, true, false); 3748 } 3749 3750 static void tcg_profile_snapshot_table(TCGProfile *prof) 3751 { 3752 tcg_profile_snapshot(prof, false, true); 3753 } 3754 3755 void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf) 3756 { 3757 TCGProfile prof = {}; 3758 int i; 3759 3760 tcg_profile_snapshot_table(&prof); 3761 for (i = 0; i < NB_OPS; i++) { 3762 cpu_fprintf(f, "%s %" PRId64 "\n", tcg_op_defs[i].name, 3763 prof.table_op_count[i]); 3764 } 3765 } 3766 3767 int64_t tcg_cpu_exec_time(void) 3768 { 3769 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3770 unsigned int i; 3771 int64_t ret = 0; 3772 3773 for (i = 0; i < n_ctxs; i++) { 3774 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 3775 const TCGProfile *prof = &s->prof; 3776 3777 ret += atomic_read(&prof->cpu_exec_time); 3778 } 3779 return ret; 3780 } 3781 #else 3782 void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf) 3783 { 3784 cpu_fprintf(f, "[TCG profiler not compiled]\n"); 3785 } 3786 3787 int64_t tcg_cpu_exec_time(void) 3788 { 3789 error_report("%s: TCG profiler not compiled", __func__); 3790 exit(EXIT_FAILURE); 3791 } 3792 #endif 3793 3794 3795 int tcg_gen_code(TCGContext *s, TranslationBlock *tb) 3796 { 3797 #ifdef CONFIG_PROFILER 3798 TCGProfile *prof = &s->prof; 3799 #endif 3800 int i, num_insns; 3801 TCGOp *op; 3802 3803 #ifdef CONFIG_PROFILER 3804 { 3805 int n = 0; 3806 3807 QTAILQ_FOREACH(op, &s->ops, link) { 3808 n++; 3809 } 3810 atomic_set(&prof->op_count, prof->op_count + n); 3811 if (n > prof->op_count_max) { 3812 atomic_set(&prof->op_count_max, n); 3813 } 3814 3815 n = s->nb_temps; 3816 atomic_set(&prof->temp_count, prof->temp_count + n); 3817 if (n > prof->temp_count_max) { 3818 atomic_set(&prof->temp_count_max, n); 3819 } 3820 } 3821 #endif 3822 3823 #ifdef DEBUG_DISAS 3824 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP) 3825 && qemu_log_in_addr_range(tb->pc))) { 3826 qemu_log_lock(); 3827 qemu_log("OP:\n"); 3828 tcg_dump_ops(s, false); 3829 qemu_log("\n"); 3830 qemu_log_unlock(); 3831 } 3832 #endif 3833 3834 #ifdef CONFIG_PROFILER 3835 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock()); 3836 #endif 3837 3838 #ifdef USE_TCG_OPTIMIZATIONS 3839 tcg_optimize(s); 3840 #endif 3841 3842 #ifdef CONFIG_PROFILER 3843 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock()); 3844 atomic_set(&prof->la_time, prof->la_time - profile_getclock()); 3845 #endif 3846 3847 reachable_code_pass(s); 3848 liveness_pass_1(s); 3849 3850 if (s->nb_indirects > 0) { 3851 #ifdef DEBUG_DISAS 3852 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND) 3853 && qemu_log_in_addr_range(tb->pc))) { 3854 qemu_log_lock(); 3855 qemu_log("OP before indirect lowering:\n"); 3856 tcg_dump_ops(s, false); 3857 qemu_log("\n"); 3858 qemu_log_unlock(); 3859 } 3860 #endif 3861 /* Replace indirect temps with direct temps. */ 3862 if (liveness_pass_2(s)) { 3863 /* If changes were made, re-run liveness. */ 3864 liveness_pass_1(s); 3865 } 3866 } 3867 3868 #ifdef CONFIG_PROFILER 3869 atomic_set(&prof->la_time, prof->la_time + profile_getclock()); 3870 #endif 3871 3872 #ifdef DEBUG_DISAS 3873 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT) 3874 && qemu_log_in_addr_range(tb->pc))) { 3875 qemu_log_lock(); 3876 qemu_log("OP after optimization and liveness analysis:\n"); 3877 tcg_dump_ops(s, true); 3878 qemu_log("\n"); 3879 qemu_log_unlock(); 3880 } 3881 #endif 3882 3883 tcg_reg_alloc_start(s); 3884 3885 s->code_buf = tb->tc.ptr; 3886 s->code_ptr = tb->tc.ptr; 3887 3888 #ifdef TCG_TARGET_NEED_LDST_LABELS 3889 QSIMPLEQ_INIT(&s->ldst_labels); 3890 #endif 3891 #ifdef TCG_TARGET_NEED_POOL_LABELS 3892 s->pool_labels = NULL; 3893 #endif 3894 3895 num_insns = -1; 3896 QTAILQ_FOREACH(op, &s->ops, link) { 3897 TCGOpcode opc = op->opc; 3898 3899 #ifdef CONFIG_PROFILER 3900 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1); 3901 #endif 3902 3903 switch (opc) { 3904 case INDEX_op_mov_i32: 3905 case INDEX_op_mov_i64: 3906 case INDEX_op_mov_vec: 3907 tcg_reg_alloc_mov(s, op); 3908 break; 3909 case INDEX_op_movi_i32: 3910 case INDEX_op_movi_i64: 3911 case INDEX_op_dupi_vec: 3912 tcg_reg_alloc_movi(s, op); 3913 break; 3914 case INDEX_op_insn_start: 3915 if (num_insns >= 0) { 3916 size_t off = tcg_current_code_size(s); 3917 s->gen_insn_end_off[num_insns] = off; 3918 /* Assert that we do not overflow our stored offset. */ 3919 assert(s->gen_insn_end_off[num_insns] == off); 3920 } 3921 num_insns++; 3922 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 3923 target_ulong a; 3924 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 3925 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 3926 #else 3927 a = op->args[i]; 3928 #endif 3929 s->gen_insn_data[num_insns][i] = a; 3930 } 3931 break; 3932 case INDEX_op_discard: 3933 temp_dead(s, arg_temp(op->args[0])); 3934 break; 3935 case INDEX_op_set_label: 3936 tcg_reg_alloc_bb_end(s, s->reserved_regs); 3937 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr); 3938 break; 3939 case INDEX_op_call: 3940 tcg_reg_alloc_call(s, op); 3941 break; 3942 default: 3943 /* Sanity check that we've not introduced any unhandled opcodes. */ 3944 tcg_debug_assert(tcg_op_supported(opc)); 3945 /* Note: in order to speed up the code, it would be much 3946 faster to have specialized register allocator functions for 3947 some common argument patterns */ 3948 tcg_reg_alloc_op(s, op); 3949 break; 3950 } 3951 #ifdef CONFIG_DEBUG_TCG 3952 check_regs(s); 3953 #endif 3954 /* Test for (pending) buffer overflow. The assumption is that any 3955 one operation beginning below the high water mark cannot overrun 3956 the buffer completely. Thus we can test for overflow after 3957 generating code without having to check during generation. */ 3958 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) { 3959 return -1; 3960 } 3961 } 3962 tcg_debug_assert(num_insns >= 0); 3963 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); 3964 3965 /* Generate TB finalization at the end of block */ 3966 #ifdef TCG_TARGET_NEED_LDST_LABELS 3967 if (!tcg_out_ldst_finalize(s)) { 3968 return -1; 3969 } 3970 #endif 3971 #ifdef TCG_TARGET_NEED_POOL_LABELS 3972 if (!tcg_out_pool_finalize(s)) { 3973 return -1; 3974 } 3975 #endif 3976 3977 /* flush instruction cache */ 3978 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr); 3979 3980 return tcg_current_code_size(s); 3981 } 3982 3983 #ifdef CONFIG_PROFILER 3984 void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf) 3985 { 3986 TCGProfile prof = {}; 3987 const TCGProfile *s; 3988 int64_t tb_count; 3989 int64_t tb_div_count; 3990 int64_t tot; 3991 3992 tcg_profile_snapshot_counters(&prof); 3993 s = &prof; 3994 tb_count = s->tb_count; 3995 tb_div_count = tb_count ? tb_count : 1; 3996 tot = s->interm_time + s->code_time; 3997 3998 cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n", 3999 tot, tot / 2.4e9); 4000 cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n", 4001 tb_count, s->tb_count1 - tb_count, 4002 (double)(s->tb_count1 - s->tb_count) 4003 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0); 4004 cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n", 4005 (double)s->op_count / tb_div_count, s->op_count_max); 4006 cpu_fprintf(f, "deleted ops/TB %0.2f\n", 4007 (double)s->del_op_count / tb_div_count); 4008 cpu_fprintf(f, "avg temps/TB %0.2f max=%d\n", 4009 (double)s->temp_count / tb_div_count, s->temp_count_max); 4010 cpu_fprintf(f, "avg host code/TB %0.1f\n", 4011 (double)s->code_out_len / tb_div_count); 4012 cpu_fprintf(f, "avg search data/TB %0.1f\n", 4013 (double)s->search_out_len / tb_div_count); 4014 4015 cpu_fprintf(f, "cycles/op %0.1f\n", 4016 s->op_count ? (double)tot / s->op_count : 0); 4017 cpu_fprintf(f, "cycles/in byte %0.1f\n", 4018 s->code_in_len ? (double)tot / s->code_in_len : 0); 4019 cpu_fprintf(f, "cycles/out byte %0.1f\n", 4020 s->code_out_len ? (double)tot / s->code_out_len : 0); 4021 cpu_fprintf(f, "cycles/search byte %0.1f\n", 4022 s->search_out_len ? (double)tot / s->search_out_len : 0); 4023 if (tot == 0) { 4024 tot = 1; 4025 } 4026 cpu_fprintf(f, " gen_interm time %0.1f%%\n", 4027 (double)s->interm_time / tot * 100.0); 4028 cpu_fprintf(f, " gen_code time %0.1f%%\n", 4029 (double)s->code_time / tot * 100.0); 4030 cpu_fprintf(f, "optim./code time %0.1f%%\n", 4031 (double)s->opt_time / (s->code_time ? s->code_time : 1) 4032 * 100.0); 4033 cpu_fprintf(f, "liveness/code time %0.1f%%\n", 4034 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0); 4035 cpu_fprintf(f, "cpu_restore count %" PRId64 "\n", 4036 s->restore_count); 4037 cpu_fprintf(f, " avg cycles %0.1f\n", 4038 s->restore_count ? (double)s->restore_time / s->restore_count : 0); 4039 } 4040 #else 4041 void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf) 4042 { 4043 cpu_fprintf(f, "[TCG profiler not compiled]\n"); 4044 } 4045 #endif 4046 4047 #ifdef ELF_HOST_MACHINE 4048 /* In order to use this feature, the backend needs to do three things: 4049 4050 (1) Define ELF_HOST_MACHINE to indicate both what value to 4051 put into the ELF image and to indicate support for the feature. 4052 4053 (2) Define tcg_register_jit. This should create a buffer containing 4054 the contents of a .debug_frame section that describes the post- 4055 prologue unwind info for the tcg machine. 4056 4057 (3) Call tcg_register_jit_int, with the constructed .debug_frame. 4058 */ 4059 4060 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */ 4061 typedef enum { 4062 JIT_NOACTION = 0, 4063 JIT_REGISTER_FN, 4064 JIT_UNREGISTER_FN 4065 } jit_actions_t; 4066 4067 struct jit_code_entry { 4068 struct jit_code_entry *next_entry; 4069 struct jit_code_entry *prev_entry; 4070 const void *symfile_addr; 4071 uint64_t symfile_size; 4072 }; 4073 4074 struct jit_descriptor { 4075 uint32_t version; 4076 uint32_t action_flag; 4077 struct jit_code_entry *relevant_entry; 4078 struct jit_code_entry *first_entry; 4079 }; 4080 4081 void __jit_debug_register_code(void) __attribute__((noinline)); 4082 void __jit_debug_register_code(void) 4083 { 4084 asm(""); 4085 } 4086 4087 /* Must statically initialize the version, because GDB may check 4088 the version before we can set it. */ 4089 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 4090 4091 /* End GDB interface. */ 4092 4093 static int find_string(const char *strtab, const char *str) 4094 { 4095 const char *p = strtab + 1; 4096 4097 while (1) { 4098 if (strcmp(p, str) == 0) { 4099 return p - strtab; 4100 } 4101 p += strlen(p) + 1; 4102 } 4103 } 4104 4105 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size, 4106 const void *debug_frame, 4107 size_t debug_frame_size) 4108 { 4109 struct __attribute__((packed)) DebugInfo { 4110 uint32_t len; 4111 uint16_t version; 4112 uint32_t abbrev; 4113 uint8_t ptr_size; 4114 uint8_t cu_die; 4115 uint16_t cu_lang; 4116 uintptr_t cu_low_pc; 4117 uintptr_t cu_high_pc; 4118 uint8_t fn_die; 4119 char fn_name[16]; 4120 uintptr_t fn_low_pc; 4121 uintptr_t fn_high_pc; 4122 uint8_t cu_eoc; 4123 }; 4124 4125 struct ElfImage { 4126 ElfW(Ehdr) ehdr; 4127 ElfW(Phdr) phdr; 4128 ElfW(Shdr) shdr[7]; 4129 ElfW(Sym) sym[2]; 4130 struct DebugInfo di; 4131 uint8_t da[24]; 4132 char str[80]; 4133 }; 4134 4135 struct ElfImage *img; 4136 4137 static const struct ElfImage img_template = { 4138 .ehdr = { 4139 .e_ident[EI_MAG0] = ELFMAG0, 4140 .e_ident[EI_MAG1] = ELFMAG1, 4141 .e_ident[EI_MAG2] = ELFMAG2, 4142 .e_ident[EI_MAG3] = ELFMAG3, 4143 .e_ident[EI_CLASS] = ELF_CLASS, 4144 .e_ident[EI_DATA] = ELF_DATA, 4145 .e_ident[EI_VERSION] = EV_CURRENT, 4146 .e_type = ET_EXEC, 4147 .e_machine = ELF_HOST_MACHINE, 4148 .e_version = EV_CURRENT, 4149 .e_phoff = offsetof(struct ElfImage, phdr), 4150 .e_shoff = offsetof(struct ElfImage, shdr), 4151 .e_ehsize = sizeof(ElfW(Shdr)), 4152 .e_phentsize = sizeof(ElfW(Phdr)), 4153 .e_phnum = 1, 4154 .e_shentsize = sizeof(ElfW(Shdr)), 4155 .e_shnum = ARRAY_SIZE(img->shdr), 4156 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1, 4157 #ifdef ELF_HOST_FLAGS 4158 .e_flags = ELF_HOST_FLAGS, 4159 #endif 4160 #ifdef ELF_OSABI 4161 .e_ident[EI_OSABI] = ELF_OSABI, 4162 #endif 4163 }, 4164 .phdr = { 4165 .p_type = PT_LOAD, 4166 .p_flags = PF_X, 4167 }, 4168 .shdr = { 4169 [0] = { .sh_type = SHT_NULL }, 4170 /* Trick: The contents of code_gen_buffer are not present in 4171 this fake ELF file; that got allocated elsewhere. Therefore 4172 we mark .text as SHT_NOBITS (similar to .bss) so that readers 4173 will not look for contents. We can record any address. */ 4174 [1] = { /* .text */ 4175 .sh_type = SHT_NOBITS, 4176 .sh_flags = SHF_EXECINSTR | SHF_ALLOC, 4177 }, 4178 [2] = { /* .debug_info */ 4179 .sh_type = SHT_PROGBITS, 4180 .sh_offset = offsetof(struct ElfImage, di), 4181 .sh_size = sizeof(struct DebugInfo), 4182 }, 4183 [3] = { /* .debug_abbrev */ 4184 .sh_type = SHT_PROGBITS, 4185 .sh_offset = offsetof(struct ElfImage, da), 4186 .sh_size = sizeof(img->da), 4187 }, 4188 [4] = { /* .debug_frame */ 4189 .sh_type = SHT_PROGBITS, 4190 .sh_offset = sizeof(struct ElfImage), 4191 }, 4192 [5] = { /* .symtab */ 4193 .sh_type = SHT_SYMTAB, 4194 .sh_offset = offsetof(struct ElfImage, sym), 4195 .sh_size = sizeof(img->sym), 4196 .sh_info = 1, 4197 .sh_link = ARRAY_SIZE(img->shdr) - 1, 4198 .sh_entsize = sizeof(ElfW(Sym)), 4199 }, 4200 [6] = { /* .strtab */ 4201 .sh_type = SHT_STRTAB, 4202 .sh_offset = offsetof(struct ElfImage, str), 4203 .sh_size = sizeof(img->str), 4204 } 4205 }, 4206 .sym = { 4207 [1] = { /* code_gen_buffer */ 4208 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC), 4209 .st_shndx = 1, 4210 } 4211 }, 4212 .di = { 4213 .len = sizeof(struct DebugInfo) - 4, 4214 .version = 2, 4215 .ptr_size = sizeof(void *), 4216 .cu_die = 1, 4217 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */ 4218 .fn_die = 2, 4219 .fn_name = "code_gen_buffer" 4220 }, 4221 .da = { 4222 1, /* abbrev number (the cu) */ 4223 0x11, 1, /* DW_TAG_compile_unit, has children */ 4224 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */ 4225 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4226 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4227 0, 0, /* end of abbrev */ 4228 2, /* abbrev number (the fn) */ 4229 0x2e, 0, /* DW_TAG_subprogram, no children */ 4230 0x3, 0x8, /* DW_AT_name, DW_FORM_string */ 4231 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4232 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4233 0, 0, /* end of abbrev */ 4234 0 /* no more abbrev */ 4235 }, 4236 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0" 4237 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer", 4238 }; 4239 4240 /* We only need a single jit entry; statically allocate it. */ 4241 static struct jit_code_entry one_entry; 4242 4243 uintptr_t buf = (uintptr_t)buf_ptr; 4244 size_t img_size = sizeof(struct ElfImage) + debug_frame_size; 4245 DebugFrameHeader *dfh; 4246 4247 img = g_malloc(img_size); 4248 *img = img_template; 4249 4250 img->phdr.p_vaddr = buf; 4251 img->phdr.p_paddr = buf; 4252 img->phdr.p_memsz = buf_size; 4253 4254 img->shdr[1].sh_name = find_string(img->str, ".text"); 4255 img->shdr[1].sh_addr = buf; 4256 img->shdr[1].sh_size = buf_size; 4257 4258 img->shdr[2].sh_name = find_string(img->str, ".debug_info"); 4259 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev"); 4260 4261 img->shdr[4].sh_name = find_string(img->str, ".debug_frame"); 4262 img->shdr[4].sh_size = debug_frame_size; 4263 4264 img->shdr[5].sh_name = find_string(img->str, ".symtab"); 4265 img->shdr[6].sh_name = find_string(img->str, ".strtab"); 4266 4267 img->sym[1].st_name = find_string(img->str, "code_gen_buffer"); 4268 img->sym[1].st_value = buf; 4269 img->sym[1].st_size = buf_size; 4270 4271 img->di.cu_low_pc = buf; 4272 img->di.cu_high_pc = buf + buf_size; 4273 img->di.fn_low_pc = buf; 4274 img->di.fn_high_pc = buf + buf_size; 4275 4276 dfh = (DebugFrameHeader *)(img + 1); 4277 memcpy(dfh, debug_frame, debug_frame_size); 4278 dfh->fde.func_start = buf; 4279 dfh->fde.func_len = buf_size; 4280 4281 #ifdef DEBUG_JIT 4282 /* Enable this block to be able to debug the ELF image file creation. 4283 One can use readelf, objdump, or other inspection utilities. */ 4284 { 4285 FILE *f = fopen("/tmp/qemu.jit", "w+b"); 4286 if (f) { 4287 if (fwrite(img, img_size, 1, f) != img_size) { 4288 /* Avoid stupid unused return value warning for fwrite. */ 4289 } 4290 fclose(f); 4291 } 4292 } 4293 #endif 4294 4295 one_entry.symfile_addr = img; 4296 one_entry.symfile_size = img_size; 4297 4298 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; 4299 __jit_debug_descriptor.relevant_entry = &one_entry; 4300 __jit_debug_descriptor.first_entry = &one_entry; 4301 __jit_debug_register_code(); 4302 } 4303 #else 4304 /* No support for the feature. Provide the entry point expected by exec.c, 4305 and implement the internal function we declared earlier. */ 4306 4307 static void tcg_register_jit_int(void *buf, size_t size, 4308 const void *debug_frame, 4309 size_t debug_frame_size) 4310 { 4311 } 4312 4313 void tcg_register_jit(void *buf, size_t buf_size) 4314 { 4315 } 4316 #endif /* ELF_HOST_MACHINE */ 4317 4318 #if !TCG_TARGET_MAYBE_vec 4319 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...) 4320 { 4321 g_assert_not_reached(); 4322 } 4323 #endif 4324