1 /* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 /* define it to use liveness analysis (better code) */ 26 #define USE_TCG_OPTIMIZATIONS 27 28 #include "qemu/osdep.h" 29 30 /* Define to jump the ELF file used to communicate with GDB. */ 31 #undef DEBUG_JIT 32 33 #include "qemu/error-report.h" 34 #include "qemu/cutils.h" 35 #include "qemu/host-utils.h" 36 #include "qemu/qemu-print.h" 37 #include "qemu/timer.h" 38 39 /* Note: the long term plan is to reduce the dependencies on the QEMU 40 CPU definitions. Currently they are used for qemu_ld/st 41 instructions */ 42 #define NO_CPU_IO_DEFS 43 #include "cpu.h" 44 45 #include "exec/exec-all.h" 46 47 #if !defined(CONFIG_USER_ONLY) 48 #include "hw/boards.h" 49 #endif 50 51 #include "tcg/tcg-op.h" 52 53 #if UINTPTR_MAX == UINT32_MAX 54 # define ELF_CLASS ELFCLASS32 55 #else 56 # define ELF_CLASS ELFCLASS64 57 #endif 58 #ifdef HOST_WORDS_BIGENDIAN 59 # define ELF_DATA ELFDATA2MSB 60 #else 61 # define ELF_DATA ELFDATA2LSB 62 #endif 63 64 #include "elf.h" 65 #include "exec/log.h" 66 #include "sysemu/sysemu.h" 67 68 /* Forward declarations for functions declared in tcg-target.inc.c and 69 used here. */ 70 static void tcg_target_init(TCGContext *s); 71 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode); 72 static void tcg_target_qemu_prologue(TCGContext *s); 73 static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 74 intptr_t value, intptr_t addend); 75 76 /* The CIE and FDE header definitions will be common to all hosts. */ 77 typedef struct { 78 uint32_t len __attribute__((aligned((sizeof(void *))))); 79 uint32_t id; 80 uint8_t version; 81 char augmentation[1]; 82 uint8_t code_align; 83 uint8_t data_align; 84 uint8_t return_column; 85 } DebugFrameCIE; 86 87 typedef struct QEMU_PACKED { 88 uint32_t len __attribute__((aligned((sizeof(void *))))); 89 uint32_t cie_offset; 90 uintptr_t func_start; 91 uintptr_t func_len; 92 } DebugFrameFDEHeader; 93 94 typedef struct QEMU_PACKED { 95 DebugFrameCIE cie; 96 DebugFrameFDEHeader fde; 97 } DebugFrameHeader; 98 99 static void tcg_register_jit_int(void *buf, size_t size, 100 const void *debug_frame, 101 size_t debug_frame_size) 102 __attribute__((unused)); 103 104 /* Forward declarations for functions declared and used in tcg-target.inc.c. */ 105 static const char *target_parse_constraint(TCGArgConstraint *ct, 106 const char *ct_str, TCGType type); 107 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, 108 intptr_t arg2); 109 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg); 110 static void tcg_out_movi(TCGContext *s, TCGType type, 111 TCGReg ret, tcg_target_long arg); 112 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, 113 const int *const_args); 114 #if TCG_TARGET_MAYBE_vec 115 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 116 TCGReg dst, TCGReg src); 117 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 118 TCGReg dst, TCGReg base, intptr_t offset); 119 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, 120 TCGReg dst, tcg_target_long arg); 121 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 122 unsigned vece, const TCGArg *args, 123 const int *const_args); 124 #else 125 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 126 TCGReg dst, TCGReg src) 127 { 128 g_assert_not_reached(); 129 } 130 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 131 TCGReg dst, TCGReg base, intptr_t offset) 132 { 133 g_assert_not_reached(); 134 } 135 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type, 136 TCGReg dst, tcg_target_long arg) 137 { 138 g_assert_not_reached(); 139 } 140 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 141 unsigned vece, const TCGArg *args, 142 const int *const_args) 143 { 144 g_assert_not_reached(); 145 } 146 #endif 147 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, 148 intptr_t arg2); 149 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 150 TCGReg base, intptr_t ofs); 151 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target); 152 static int tcg_target_const_match(tcg_target_long val, TCGType type, 153 const TCGArgConstraint *arg_ct); 154 #ifdef TCG_TARGET_NEED_LDST_LABELS 155 static int tcg_out_ldst_finalize(TCGContext *s); 156 #endif 157 158 #define TCG_HIGHWATER 1024 159 160 static TCGContext **tcg_ctxs; 161 static unsigned int n_tcg_ctxs; 162 TCGv_env cpu_env = 0; 163 164 struct tcg_region_tree { 165 QemuMutex lock; 166 GTree *tree; 167 /* padding to avoid false sharing is computed at run-time */ 168 }; 169 170 /* 171 * We divide code_gen_buffer into equally-sized "regions" that TCG threads 172 * dynamically allocate from as demand dictates. Given appropriate region 173 * sizing, this minimizes flushes even when some TCG threads generate a lot 174 * more code than others. 175 */ 176 struct tcg_region_state { 177 QemuMutex lock; 178 179 /* fields set at init time */ 180 void *start; 181 void *start_aligned; 182 void *end; 183 size_t n; 184 size_t size; /* size of one region */ 185 size_t stride; /* .size + guard size */ 186 187 /* fields protected by the lock */ 188 size_t current; /* current region index */ 189 size_t agg_size_full; /* aggregate size of full regions */ 190 }; 191 192 static struct tcg_region_state region; 193 /* 194 * This is an array of struct tcg_region_tree's, with padding. 195 * We use void * to simplify the computation of region_trees[i]; each 196 * struct is found every tree_size bytes. 197 */ 198 static void *region_trees; 199 static size_t tree_size; 200 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT]; 201 static TCGRegSet tcg_target_call_clobber_regs; 202 203 #if TCG_TARGET_INSN_UNIT_SIZE == 1 204 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v) 205 { 206 *s->code_ptr++ = v; 207 } 208 209 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p, 210 uint8_t v) 211 { 212 *p = v; 213 } 214 #endif 215 216 #if TCG_TARGET_INSN_UNIT_SIZE <= 2 217 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v) 218 { 219 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 220 *s->code_ptr++ = v; 221 } else { 222 tcg_insn_unit *p = s->code_ptr; 223 memcpy(p, &v, sizeof(v)); 224 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE); 225 } 226 } 227 228 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p, 229 uint16_t v) 230 { 231 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 232 *p = v; 233 } else { 234 memcpy(p, &v, sizeof(v)); 235 } 236 } 237 #endif 238 239 #if TCG_TARGET_INSN_UNIT_SIZE <= 4 240 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v) 241 { 242 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 243 *s->code_ptr++ = v; 244 } else { 245 tcg_insn_unit *p = s->code_ptr; 246 memcpy(p, &v, sizeof(v)); 247 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE); 248 } 249 } 250 251 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p, 252 uint32_t v) 253 { 254 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 255 *p = v; 256 } else { 257 memcpy(p, &v, sizeof(v)); 258 } 259 } 260 #endif 261 262 #if TCG_TARGET_INSN_UNIT_SIZE <= 8 263 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v) 264 { 265 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 266 *s->code_ptr++ = v; 267 } else { 268 tcg_insn_unit *p = s->code_ptr; 269 memcpy(p, &v, sizeof(v)); 270 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE); 271 } 272 } 273 274 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p, 275 uint64_t v) 276 { 277 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 278 *p = v; 279 } else { 280 memcpy(p, &v, sizeof(v)); 281 } 282 } 283 #endif 284 285 /* label relocation processing */ 286 287 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type, 288 TCGLabel *l, intptr_t addend) 289 { 290 TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation)); 291 292 r->type = type; 293 r->ptr = code_ptr; 294 r->addend = addend; 295 QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next); 296 } 297 298 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr) 299 { 300 tcg_debug_assert(!l->has_value); 301 l->has_value = 1; 302 l->u.value_ptr = ptr; 303 } 304 305 TCGLabel *gen_new_label(void) 306 { 307 TCGContext *s = tcg_ctx; 308 TCGLabel *l = tcg_malloc(sizeof(TCGLabel)); 309 310 memset(l, 0, sizeof(TCGLabel)); 311 l->id = s->nb_labels++; 312 QSIMPLEQ_INIT(&l->relocs); 313 314 QSIMPLEQ_INSERT_TAIL(&s->labels, l, next); 315 316 return l; 317 } 318 319 static bool tcg_resolve_relocs(TCGContext *s) 320 { 321 TCGLabel *l; 322 323 QSIMPLEQ_FOREACH(l, &s->labels, next) { 324 TCGRelocation *r; 325 uintptr_t value = l->u.value; 326 327 QSIMPLEQ_FOREACH(r, &l->relocs, next) { 328 if (!patch_reloc(r->ptr, r->type, value, r->addend)) { 329 return false; 330 } 331 } 332 } 333 return true; 334 } 335 336 static void set_jmp_reset_offset(TCGContext *s, int which) 337 { 338 size_t off = tcg_current_code_size(s); 339 s->tb_jmp_reset_offset[which] = off; 340 /* Make sure that we didn't overflow the stored offset. */ 341 assert(s->tb_jmp_reset_offset[which] == off); 342 } 343 344 #include "tcg-target.inc.c" 345 346 /* compare a pointer @ptr and a tb_tc @s */ 347 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) 348 { 349 if (ptr >= s->ptr + s->size) { 350 return 1; 351 } else if (ptr < s->ptr) { 352 return -1; 353 } 354 return 0; 355 } 356 357 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp) 358 { 359 const struct tb_tc *a = ap; 360 const struct tb_tc *b = bp; 361 362 /* 363 * When both sizes are set, we know this isn't a lookup. 364 * This is the most likely case: every TB must be inserted; lookups 365 * are a lot less frequent. 366 */ 367 if (likely(a->size && b->size)) { 368 if (a->ptr > b->ptr) { 369 return 1; 370 } else if (a->ptr < b->ptr) { 371 return -1; 372 } 373 /* a->ptr == b->ptr should happen only on deletions */ 374 g_assert(a->size == b->size); 375 return 0; 376 } 377 /* 378 * All lookups have either .size field set to 0. 379 * From the glib sources we see that @ap is always the lookup key. However 380 * the docs provide no guarantee, so we just mark this case as likely. 381 */ 382 if (likely(a->size == 0)) { 383 return ptr_cmp_tb_tc(a->ptr, b); 384 } 385 return ptr_cmp_tb_tc(b->ptr, a); 386 } 387 388 static void tcg_region_trees_init(void) 389 { 390 size_t i; 391 392 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); 393 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); 394 for (i = 0; i < region.n; i++) { 395 struct tcg_region_tree *rt = region_trees + i * tree_size; 396 397 qemu_mutex_init(&rt->lock); 398 rt->tree = g_tree_new(tb_tc_cmp); 399 } 400 } 401 402 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p) 403 { 404 size_t region_idx; 405 406 if (p < region.start_aligned) { 407 region_idx = 0; 408 } else { 409 ptrdiff_t offset = p - region.start_aligned; 410 411 if (offset > region.stride * (region.n - 1)) { 412 region_idx = region.n - 1; 413 } else { 414 region_idx = offset / region.stride; 415 } 416 } 417 return region_trees + region_idx * tree_size; 418 } 419 420 void tcg_tb_insert(TranslationBlock *tb) 421 { 422 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 423 424 qemu_mutex_lock(&rt->lock); 425 g_tree_insert(rt->tree, &tb->tc, tb); 426 qemu_mutex_unlock(&rt->lock); 427 } 428 429 void tcg_tb_remove(TranslationBlock *tb) 430 { 431 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 432 433 qemu_mutex_lock(&rt->lock); 434 g_tree_remove(rt->tree, &tb->tc); 435 qemu_mutex_unlock(&rt->lock); 436 } 437 438 /* 439 * Find the TB 'tb' such that 440 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size 441 * Return NULL if not found. 442 */ 443 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) 444 { 445 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); 446 TranslationBlock *tb; 447 struct tb_tc s = { .ptr = (void *)tc_ptr }; 448 449 qemu_mutex_lock(&rt->lock); 450 tb = g_tree_lookup(rt->tree, &s); 451 qemu_mutex_unlock(&rt->lock); 452 return tb; 453 } 454 455 static void tcg_region_tree_lock_all(void) 456 { 457 size_t i; 458 459 for (i = 0; i < region.n; i++) { 460 struct tcg_region_tree *rt = region_trees + i * tree_size; 461 462 qemu_mutex_lock(&rt->lock); 463 } 464 } 465 466 static void tcg_region_tree_unlock_all(void) 467 { 468 size_t i; 469 470 for (i = 0; i < region.n; i++) { 471 struct tcg_region_tree *rt = region_trees + i * tree_size; 472 473 qemu_mutex_unlock(&rt->lock); 474 } 475 } 476 477 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) 478 { 479 size_t i; 480 481 tcg_region_tree_lock_all(); 482 for (i = 0; i < region.n; i++) { 483 struct tcg_region_tree *rt = region_trees + i * tree_size; 484 485 g_tree_foreach(rt->tree, func, user_data); 486 } 487 tcg_region_tree_unlock_all(); 488 } 489 490 size_t tcg_nb_tbs(void) 491 { 492 size_t nb_tbs = 0; 493 size_t i; 494 495 tcg_region_tree_lock_all(); 496 for (i = 0; i < region.n; i++) { 497 struct tcg_region_tree *rt = region_trees + i * tree_size; 498 499 nb_tbs += g_tree_nnodes(rt->tree); 500 } 501 tcg_region_tree_unlock_all(); 502 return nb_tbs; 503 } 504 505 static void tcg_region_tree_reset_all(void) 506 { 507 size_t i; 508 509 tcg_region_tree_lock_all(); 510 for (i = 0; i < region.n; i++) { 511 struct tcg_region_tree *rt = region_trees + i * tree_size; 512 513 /* Increment the refcount first so that destroy acts as a reset */ 514 g_tree_ref(rt->tree); 515 g_tree_destroy(rt->tree); 516 } 517 tcg_region_tree_unlock_all(); 518 } 519 520 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) 521 { 522 void *start, *end; 523 524 start = region.start_aligned + curr_region * region.stride; 525 end = start + region.size; 526 527 if (curr_region == 0) { 528 start = region.start; 529 } 530 if (curr_region == region.n - 1) { 531 end = region.end; 532 } 533 534 *pstart = start; 535 *pend = end; 536 } 537 538 static void tcg_region_assign(TCGContext *s, size_t curr_region) 539 { 540 void *start, *end; 541 542 tcg_region_bounds(curr_region, &start, &end); 543 544 s->code_gen_buffer = start; 545 s->code_gen_ptr = start; 546 s->code_gen_buffer_size = end - start; 547 s->code_gen_highwater = end - TCG_HIGHWATER; 548 } 549 550 static bool tcg_region_alloc__locked(TCGContext *s) 551 { 552 if (region.current == region.n) { 553 return true; 554 } 555 tcg_region_assign(s, region.current); 556 region.current++; 557 return false; 558 } 559 560 /* 561 * Request a new region once the one in use has filled up. 562 * Returns true on error. 563 */ 564 static bool tcg_region_alloc(TCGContext *s) 565 { 566 bool err; 567 /* read the region size now; alloc__locked will overwrite it on success */ 568 size_t size_full = s->code_gen_buffer_size; 569 570 qemu_mutex_lock(®ion.lock); 571 err = tcg_region_alloc__locked(s); 572 if (!err) { 573 region.agg_size_full += size_full - TCG_HIGHWATER; 574 } 575 qemu_mutex_unlock(®ion.lock); 576 return err; 577 } 578 579 /* 580 * Perform a context's first region allocation. 581 * This function does _not_ increment region.agg_size_full. 582 */ 583 static inline bool tcg_region_initial_alloc__locked(TCGContext *s) 584 { 585 return tcg_region_alloc__locked(s); 586 } 587 588 /* Call from a safe-work context */ 589 void tcg_region_reset_all(void) 590 { 591 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 592 unsigned int i; 593 594 qemu_mutex_lock(®ion.lock); 595 region.current = 0; 596 region.agg_size_full = 0; 597 598 for (i = 0; i < n_ctxs; i++) { 599 TCGContext *s = atomic_read(&tcg_ctxs[i]); 600 bool err = tcg_region_initial_alloc__locked(s); 601 602 g_assert(!err); 603 } 604 qemu_mutex_unlock(®ion.lock); 605 606 tcg_region_tree_reset_all(); 607 } 608 609 #ifdef CONFIG_USER_ONLY 610 static size_t tcg_n_regions(void) 611 { 612 return 1; 613 } 614 #else 615 /* 616 * It is likely that some vCPUs will translate more code than others, so we 617 * first try to set more regions than max_cpus, with those regions being of 618 * reasonable size. If that's not possible we make do by evenly dividing 619 * the code_gen_buffer among the vCPUs. 620 */ 621 static size_t tcg_n_regions(void) 622 { 623 size_t i; 624 625 /* Use a single region if all we have is one vCPU thread */ 626 #if !defined(CONFIG_USER_ONLY) 627 MachineState *ms = MACHINE(qdev_get_machine()); 628 unsigned int max_cpus = ms->smp.max_cpus; 629 #endif 630 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { 631 return 1; 632 } 633 634 /* Try to have more regions than max_cpus, with each region being >= 2 MB */ 635 for (i = 8; i > 0; i--) { 636 size_t regions_per_thread = i; 637 size_t region_size; 638 639 region_size = tcg_init_ctx.code_gen_buffer_size; 640 region_size /= max_cpus * regions_per_thread; 641 642 if (region_size >= 2 * 1024u * 1024) { 643 return max_cpus * regions_per_thread; 644 } 645 } 646 /* If we can't, then just allocate one region per vCPU thread */ 647 return max_cpus; 648 } 649 #endif 650 651 /* 652 * Initializes region partitioning. 653 * 654 * Called at init time from the parent thread (i.e. the one calling 655 * tcg_context_init), after the target's TCG globals have been set. 656 * 657 * Region partitioning works by splitting code_gen_buffer into separate regions, 658 * and then assigning regions to TCG threads so that the threads can translate 659 * code in parallel without synchronization. 660 * 661 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at 662 * least max_cpus regions in MTTCG. In !MTTCG we use a single region. 663 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) 664 * must have been parsed before calling this function, since it calls 665 * qemu_tcg_mttcg_enabled(). 666 * 667 * In user-mode we use a single region. Having multiple regions in user-mode 668 * is not supported, because the number of vCPU threads (recall that each thread 669 * spawned by the guest corresponds to a vCPU thread) is only bounded by the 670 * OS, and usually this number is huge (tens of thousands is not uncommon). 671 * Thus, given this large bound on the number of vCPU threads and the fact 672 * that code_gen_buffer is allocated at compile-time, we cannot guarantee 673 * that the availability of at least one region per vCPU thread. 674 * 675 * However, this user-mode limitation is unlikely to be a significant problem 676 * in practice. Multi-threaded guests share most if not all of their translated 677 * code, which makes parallel code generation less appealing than in softmmu. 678 */ 679 void tcg_region_init(void) 680 { 681 void *buf = tcg_init_ctx.code_gen_buffer; 682 void *aligned; 683 size_t size = tcg_init_ctx.code_gen_buffer_size; 684 size_t page_size = qemu_real_host_page_size; 685 size_t region_size; 686 size_t n_regions; 687 size_t i; 688 689 n_regions = tcg_n_regions(); 690 691 /* The first region will be 'aligned - buf' bytes larger than the others */ 692 aligned = QEMU_ALIGN_PTR_UP(buf, page_size); 693 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size); 694 /* 695 * Make region_size a multiple of page_size, using aligned as the start. 696 * As a result of this we might end up with a few extra pages at the end of 697 * the buffer; we will assign those to the last region. 698 */ 699 region_size = (size - (aligned - buf)) / n_regions; 700 region_size = QEMU_ALIGN_DOWN(region_size, page_size); 701 702 /* A region must have at least 2 pages; one code, one guard */ 703 g_assert(region_size >= 2 * page_size); 704 705 /* init the region struct */ 706 qemu_mutex_init(®ion.lock); 707 region.n = n_regions; 708 region.size = region_size - page_size; 709 region.stride = region_size; 710 region.start = buf; 711 region.start_aligned = aligned; 712 /* page-align the end, since its last page will be a guard page */ 713 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size); 714 /* account for that last guard page */ 715 region.end -= page_size; 716 717 /* set guard pages */ 718 for (i = 0; i < region.n; i++) { 719 void *start, *end; 720 int rc; 721 722 tcg_region_bounds(i, &start, &end); 723 rc = qemu_mprotect_none(end, page_size); 724 g_assert(!rc); 725 } 726 727 tcg_region_trees_init(); 728 729 /* In user-mode we support only one ctx, so do the initial allocation now */ 730 #ifdef CONFIG_USER_ONLY 731 { 732 bool err = tcg_region_initial_alloc__locked(tcg_ctx); 733 734 g_assert(!err); 735 } 736 #endif 737 } 738 739 static void alloc_tcg_plugin_context(TCGContext *s) 740 { 741 #ifdef CONFIG_PLUGIN 742 s->plugin_tb = g_new0(struct qemu_plugin_tb, 1); 743 s->plugin_tb->insns = 744 g_ptr_array_new_with_free_func(qemu_plugin_insn_cleanup_fn); 745 #endif 746 } 747 748 /* 749 * All TCG threads except the parent (i.e. the one that called tcg_context_init 750 * and registered the target's TCG globals) must register with this function 751 * before initiating translation. 752 * 753 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation 754 * of tcg_region_init() for the reasoning behind this. 755 * 756 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in 757 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context 758 * is not used anymore for translation once this function is called. 759 * 760 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates 761 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode. 762 */ 763 #ifdef CONFIG_USER_ONLY 764 void tcg_register_thread(void) 765 { 766 tcg_ctx = &tcg_init_ctx; 767 } 768 #else 769 void tcg_register_thread(void) 770 { 771 MachineState *ms = MACHINE(qdev_get_machine()); 772 TCGContext *s = g_malloc(sizeof(*s)); 773 unsigned int i, n; 774 bool err; 775 776 *s = tcg_init_ctx; 777 778 /* Relink mem_base. */ 779 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) { 780 if (tcg_init_ctx.temps[i].mem_base) { 781 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps; 782 tcg_debug_assert(b >= 0 && b < n); 783 s->temps[i].mem_base = &s->temps[b]; 784 } 785 } 786 787 /* Claim an entry in tcg_ctxs */ 788 n = atomic_fetch_inc(&n_tcg_ctxs); 789 g_assert(n < ms->smp.max_cpus); 790 atomic_set(&tcg_ctxs[n], s); 791 792 if (n > 0) { 793 alloc_tcg_plugin_context(s); 794 } 795 796 tcg_ctx = s; 797 qemu_mutex_lock(®ion.lock); 798 err = tcg_region_initial_alloc__locked(tcg_ctx); 799 g_assert(!err); 800 qemu_mutex_unlock(®ion.lock); 801 } 802 #endif /* !CONFIG_USER_ONLY */ 803 804 /* 805 * Returns the size (in bytes) of all translated code (i.e. from all regions) 806 * currently in the cache. 807 * See also: tcg_code_capacity() 808 * Do not confuse with tcg_current_code_size(); that one applies to a single 809 * TCG context. 810 */ 811 size_t tcg_code_size(void) 812 { 813 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 814 unsigned int i; 815 size_t total; 816 817 qemu_mutex_lock(®ion.lock); 818 total = region.agg_size_full; 819 for (i = 0; i < n_ctxs; i++) { 820 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 821 size_t size; 822 823 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer; 824 g_assert(size <= s->code_gen_buffer_size); 825 total += size; 826 } 827 qemu_mutex_unlock(®ion.lock); 828 return total; 829 } 830 831 /* 832 * Returns the code capacity (in bytes) of the entire cache, i.e. including all 833 * regions. 834 * See also: tcg_code_size() 835 */ 836 size_t tcg_code_capacity(void) 837 { 838 size_t guard_size, capacity; 839 840 /* no need for synchronization; these variables are set at init time */ 841 guard_size = region.stride - region.size; 842 capacity = region.end + guard_size - region.start; 843 capacity -= region.n * (guard_size + TCG_HIGHWATER); 844 return capacity; 845 } 846 847 size_t tcg_tb_phys_invalidate_count(void) 848 { 849 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 850 unsigned int i; 851 size_t total = 0; 852 853 for (i = 0; i < n_ctxs; i++) { 854 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 855 856 total += atomic_read(&s->tb_phys_invalidate_count); 857 } 858 return total; 859 } 860 861 /* pool based memory allocation */ 862 void *tcg_malloc_internal(TCGContext *s, int size) 863 { 864 TCGPool *p; 865 int pool_size; 866 867 if (size > TCG_POOL_CHUNK_SIZE) { 868 /* big malloc: insert a new pool (XXX: could optimize) */ 869 p = g_malloc(sizeof(TCGPool) + size); 870 p->size = size; 871 p->next = s->pool_first_large; 872 s->pool_first_large = p; 873 return p->data; 874 } else { 875 p = s->pool_current; 876 if (!p) { 877 p = s->pool_first; 878 if (!p) 879 goto new_pool; 880 } else { 881 if (!p->next) { 882 new_pool: 883 pool_size = TCG_POOL_CHUNK_SIZE; 884 p = g_malloc(sizeof(TCGPool) + pool_size); 885 p->size = pool_size; 886 p->next = NULL; 887 if (s->pool_current) 888 s->pool_current->next = p; 889 else 890 s->pool_first = p; 891 } else { 892 p = p->next; 893 } 894 } 895 } 896 s->pool_current = p; 897 s->pool_cur = p->data + size; 898 s->pool_end = p->data + p->size; 899 return p->data; 900 } 901 902 void tcg_pool_reset(TCGContext *s) 903 { 904 TCGPool *p, *t; 905 for (p = s->pool_first_large; p; p = t) { 906 t = p->next; 907 g_free(p); 908 } 909 s->pool_first_large = NULL; 910 s->pool_cur = s->pool_end = NULL; 911 s->pool_current = NULL; 912 } 913 914 typedef struct TCGHelperInfo { 915 void *func; 916 const char *name; 917 unsigned flags; 918 unsigned sizemask; 919 } TCGHelperInfo; 920 921 #include "exec/helper-proto.h" 922 923 static const TCGHelperInfo all_helpers[] = { 924 #include "exec/helper-tcg.h" 925 }; 926 static GHashTable *helper_table; 927 928 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)]; 929 static void process_op_defs(TCGContext *s); 930 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 931 TCGReg reg, const char *name); 932 933 void tcg_context_init(TCGContext *s) 934 { 935 int op, total_args, n, i; 936 TCGOpDef *def; 937 TCGArgConstraint *args_ct; 938 int *sorted_args; 939 TCGTemp *ts; 940 941 memset(s, 0, sizeof(*s)); 942 s->nb_globals = 0; 943 944 /* Count total number of arguments and allocate the corresponding 945 space */ 946 total_args = 0; 947 for(op = 0; op < NB_OPS; op++) { 948 def = &tcg_op_defs[op]; 949 n = def->nb_iargs + def->nb_oargs; 950 total_args += n; 951 } 952 953 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args); 954 sorted_args = g_malloc(sizeof(int) * total_args); 955 956 for(op = 0; op < NB_OPS; op++) { 957 def = &tcg_op_defs[op]; 958 def->args_ct = args_ct; 959 def->sorted_args = sorted_args; 960 n = def->nb_iargs + def->nb_oargs; 961 sorted_args += n; 962 args_ct += n; 963 } 964 965 /* Register helpers. */ 966 /* Use g_direct_hash/equal for direct pointer comparisons on func. */ 967 helper_table = g_hash_table_new(NULL, NULL); 968 969 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) { 970 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func, 971 (gpointer)&all_helpers[i]); 972 } 973 974 tcg_target_init(s); 975 process_op_defs(s); 976 977 /* Reverse the order of the saved registers, assuming they're all at 978 the start of tcg_target_reg_alloc_order. */ 979 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) { 980 int r = tcg_target_reg_alloc_order[n]; 981 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) { 982 break; 983 } 984 } 985 for (i = 0; i < n; ++i) { 986 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i]; 987 } 988 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) { 989 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i]; 990 } 991 992 alloc_tcg_plugin_context(s); 993 994 tcg_ctx = s; 995 /* 996 * In user-mode we simply share the init context among threads, since we 997 * use a single region. See the documentation tcg_region_init() for the 998 * reasoning behind this. 999 * In softmmu we will have at most max_cpus TCG threads. 1000 */ 1001 #ifdef CONFIG_USER_ONLY 1002 tcg_ctxs = &tcg_ctx; 1003 n_tcg_ctxs = 1; 1004 #else 1005 MachineState *ms = MACHINE(qdev_get_machine()); 1006 unsigned int max_cpus = ms->smp.max_cpus; 1007 tcg_ctxs = g_new(TCGContext *, max_cpus); 1008 #endif 1009 1010 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0)); 1011 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env"); 1012 cpu_env = temp_tcgv_ptr(ts); 1013 } 1014 1015 /* 1016 * Allocate TBs right before their corresponding translated code, making 1017 * sure that TBs and code are on different cache lines. 1018 */ 1019 TranslationBlock *tcg_tb_alloc(TCGContext *s) 1020 { 1021 uintptr_t align = qemu_icache_linesize; 1022 TranslationBlock *tb; 1023 void *next; 1024 1025 retry: 1026 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align); 1027 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align); 1028 1029 if (unlikely(next > s->code_gen_highwater)) { 1030 if (tcg_region_alloc(s)) { 1031 return NULL; 1032 } 1033 goto retry; 1034 } 1035 atomic_set(&s->code_gen_ptr, next); 1036 s->data_gen_ptr = NULL; 1037 return tb; 1038 } 1039 1040 void tcg_prologue_init(TCGContext *s) 1041 { 1042 size_t prologue_size, total_size; 1043 void *buf0, *buf1; 1044 1045 /* Put the prologue at the beginning of code_gen_buffer. */ 1046 buf0 = s->code_gen_buffer; 1047 total_size = s->code_gen_buffer_size; 1048 s->code_ptr = buf0; 1049 s->code_buf = buf0; 1050 s->data_gen_ptr = NULL; 1051 s->code_gen_prologue = buf0; 1052 1053 /* Compute a high-water mark, at which we voluntarily flush the buffer 1054 and start over. The size here is arbitrary, significantly larger 1055 than we expect the code generation for any one opcode to require. */ 1056 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER); 1057 1058 #ifdef TCG_TARGET_NEED_POOL_LABELS 1059 s->pool_labels = NULL; 1060 #endif 1061 1062 /* Generate the prologue. */ 1063 tcg_target_qemu_prologue(s); 1064 1065 #ifdef TCG_TARGET_NEED_POOL_LABELS 1066 /* Allow the prologue to put e.g. guest_base into a pool entry. */ 1067 { 1068 int result = tcg_out_pool_finalize(s); 1069 tcg_debug_assert(result == 0); 1070 } 1071 #endif 1072 1073 buf1 = s->code_ptr; 1074 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1); 1075 1076 /* Deduct the prologue from the buffer. */ 1077 prologue_size = tcg_current_code_size(s); 1078 s->code_gen_ptr = buf1; 1079 s->code_gen_buffer = buf1; 1080 s->code_buf = buf1; 1081 total_size -= prologue_size; 1082 s->code_gen_buffer_size = total_size; 1083 1084 tcg_register_jit(s->code_gen_buffer, total_size); 1085 1086 #ifdef DEBUG_DISAS 1087 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { 1088 FILE *logfile = qemu_log_lock(); 1089 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size); 1090 if (s->data_gen_ptr) { 1091 size_t code_size = s->data_gen_ptr - buf0; 1092 size_t data_size = prologue_size - code_size; 1093 size_t i; 1094 1095 log_disas(buf0, code_size, NULL); 1096 1097 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1098 if (sizeof(tcg_target_ulong) == 8) { 1099 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1100 (uintptr_t)s->data_gen_ptr + i, 1101 *(uint64_t *)(s->data_gen_ptr + i)); 1102 } else { 1103 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1104 (uintptr_t)s->data_gen_ptr + i, 1105 *(uint32_t *)(s->data_gen_ptr + i)); 1106 } 1107 } 1108 } else { 1109 log_disas(buf0, prologue_size, NULL); 1110 } 1111 qemu_log("\n"); 1112 qemu_log_flush(); 1113 qemu_log_unlock(logfile); 1114 } 1115 #endif 1116 1117 /* Assert that goto_ptr is implemented completely. */ 1118 if (TCG_TARGET_HAS_goto_ptr) { 1119 tcg_debug_assert(s->code_gen_epilogue != NULL); 1120 } 1121 } 1122 1123 void tcg_func_start(TCGContext *s) 1124 { 1125 tcg_pool_reset(s); 1126 s->nb_temps = s->nb_globals; 1127 1128 /* No temps have been previously allocated for size or locality. */ 1129 memset(s->free_temps, 0, sizeof(s->free_temps)); 1130 1131 s->nb_ops = 0; 1132 s->nb_labels = 0; 1133 s->current_frame_offset = s->frame_start; 1134 1135 #ifdef CONFIG_DEBUG_TCG 1136 s->goto_tb_issue_mask = 0; 1137 #endif 1138 1139 QTAILQ_INIT(&s->ops); 1140 QTAILQ_INIT(&s->free_ops); 1141 QSIMPLEQ_INIT(&s->labels); 1142 } 1143 1144 static inline TCGTemp *tcg_temp_alloc(TCGContext *s) 1145 { 1146 int n = s->nb_temps++; 1147 tcg_debug_assert(n < TCG_MAX_TEMPS); 1148 return memset(&s->temps[n], 0, sizeof(TCGTemp)); 1149 } 1150 1151 static inline TCGTemp *tcg_global_alloc(TCGContext *s) 1152 { 1153 TCGTemp *ts; 1154 1155 tcg_debug_assert(s->nb_globals == s->nb_temps); 1156 s->nb_globals++; 1157 ts = tcg_temp_alloc(s); 1158 ts->temp_global = 1; 1159 1160 return ts; 1161 } 1162 1163 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 1164 TCGReg reg, const char *name) 1165 { 1166 TCGTemp *ts; 1167 1168 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) { 1169 tcg_abort(); 1170 } 1171 1172 ts = tcg_global_alloc(s); 1173 ts->base_type = type; 1174 ts->type = type; 1175 ts->fixed_reg = 1; 1176 ts->reg = reg; 1177 ts->name = name; 1178 tcg_regset_set_reg(s->reserved_regs, reg); 1179 1180 return ts; 1181 } 1182 1183 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size) 1184 { 1185 s->frame_start = start; 1186 s->frame_end = start + size; 1187 s->frame_temp 1188 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame"); 1189 } 1190 1191 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base, 1192 intptr_t offset, const char *name) 1193 { 1194 TCGContext *s = tcg_ctx; 1195 TCGTemp *base_ts = tcgv_ptr_temp(base); 1196 TCGTemp *ts = tcg_global_alloc(s); 1197 int indirect_reg = 0, bigendian = 0; 1198 #ifdef HOST_WORDS_BIGENDIAN 1199 bigendian = 1; 1200 #endif 1201 1202 if (!base_ts->fixed_reg) { 1203 /* We do not support double-indirect registers. */ 1204 tcg_debug_assert(!base_ts->indirect_reg); 1205 base_ts->indirect_base = 1; 1206 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64 1207 ? 2 : 1); 1208 indirect_reg = 1; 1209 } 1210 1211 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1212 TCGTemp *ts2 = tcg_global_alloc(s); 1213 char buf[64]; 1214 1215 ts->base_type = TCG_TYPE_I64; 1216 ts->type = TCG_TYPE_I32; 1217 ts->indirect_reg = indirect_reg; 1218 ts->mem_allocated = 1; 1219 ts->mem_base = base_ts; 1220 ts->mem_offset = offset + bigendian * 4; 1221 pstrcpy(buf, sizeof(buf), name); 1222 pstrcat(buf, sizeof(buf), "_0"); 1223 ts->name = strdup(buf); 1224 1225 tcg_debug_assert(ts2 == ts + 1); 1226 ts2->base_type = TCG_TYPE_I64; 1227 ts2->type = TCG_TYPE_I32; 1228 ts2->indirect_reg = indirect_reg; 1229 ts2->mem_allocated = 1; 1230 ts2->mem_base = base_ts; 1231 ts2->mem_offset = offset + (1 - bigendian) * 4; 1232 pstrcpy(buf, sizeof(buf), name); 1233 pstrcat(buf, sizeof(buf), "_1"); 1234 ts2->name = strdup(buf); 1235 } else { 1236 ts->base_type = type; 1237 ts->type = type; 1238 ts->indirect_reg = indirect_reg; 1239 ts->mem_allocated = 1; 1240 ts->mem_base = base_ts; 1241 ts->mem_offset = offset; 1242 ts->name = name; 1243 } 1244 return ts; 1245 } 1246 1247 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local) 1248 { 1249 TCGContext *s = tcg_ctx; 1250 TCGTemp *ts; 1251 int idx, k; 1252 1253 k = type + (temp_local ? TCG_TYPE_COUNT : 0); 1254 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS); 1255 if (idx < TCG_MAX_TEMPS) { 1256 /* There is already an available temp with the right type. */ 1257 clear_bit(idx, s->free_temps[k].l); 1258 1259 ts = &s->temps[idx]; 1260 ts->temp_allocated = 1; 1261 tcg_debug_assert(ts->base_type == type); 1262 tcg_debug_assert(ts->temp_local == temp_local); 1263 } else { 1264 ts = tcg_temp_alloc(s); 1265 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1266 TCGTemp *ts2 = tcg_temp_alloc(s); 1267 1268 ts->base_type = type; 1269 ts->type = TCG_TYPE_I32; 1270 ts->temp_allocated = 1; 1271 ts->temp_local = temp_local; 1272 1273 tcg_debug_assert(ts2 == ts + 1); 1274 ts2->base_type = TCG_TYPE_I64; 1275 ts2->type = TCG_TYPE_I32; 1276 ts2->temp_allocated = 1; 1277 ts2->temp_local = temp_local; 1278 } else { 1279 ts->base_type = type; 1280 ts->type = type; 1281 ts->temp_allocated = 1; 1282 ts->temp_local = temp_local; 1283 } 1284 } 1285 1286 #if defined(CONFIG_DEBUG_TCG) 1287 s->temps_in_use++; 1288 #endif 1289 return ts; 1290 } 1291 1292 TCGv_vec tcg_temp_new_vec(TCGType type) 1293 { 1294 TCGTemp *t; 1295 1296 #ifdef CONFIG_DEBUG_TCG 1297 switch (type) { 1298 case TCG_TYPE_V64: 1299 assert(TCG_TARGET_HAS_v64); 1300 break; 1301 case TCG_TYPE_V128: 1302 assert(TCG_TARGET_HAS_v128); 1303 break; 1304 case TCG_TYPE_V256: 1305 assert(TCG_TARGET_HAS_v256); 1306 break; 1307 default: 1308 g_assert_not_reached(); 1309 } 1310 #endif 1311 1312 t = tcg_temp_new_internal(type, 0); 1313 return temp_tcgv_vec(t); 1314 } 1315 1316 /* Create a new temp of the same type as an existing temp. */ 1317 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match) 1318 { 1319 TCGTemp *t = tcgv_vec_temp(match); 1320 1321 tcg_debug_assert(t->temp_allocated != 0); 1322 1323 t = tcg_temp_new_internal(t->base_type, 0); 1324 return temp_tcgv_vec(t); 1325 } 1326 1327 void tcg_temp_free_internal(TCGTemp *ts) 1328 { 1329 TCGContext *s = tcg_ctx; 1330 int k, idx; 1331 1332 #if defined(CONFIG_DEBUG_TCG) 1333 s->temps_in_use--; 1334 if (s->temps_in_use < 0) { 1335 fprintf(stderr, "More temporaries freed than allocated!\n"); 1336 } 1337 #endif 1338 1339 tcg_debug_assert(ts->temp_global == 0); 1340 tcg_debug_assert(ts->temp_allocated != 0); 1341 ts->temp_allocated = 0; 1342 1343 idx = temp_idx(ts); 1344 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0); 1345 set_bit(idx, s->free_temps[k].l); 1346 } 1347 1348 TCGv_i32 tcg_const_i32(int32_t val) 1349 { 1350 TCGv_i32 t0; 1351 t0 = tcg_temp_new_i32(); 1352 tcg_gen_movi_i32(t0, val); 1353 return t0; 1354 } 1355 1356 TCGv_i64 tcg_const_i64(int64_t val) 1357 { 1358 TCGv_i64 t0; 1359 t0 = tcg_temp_new_i64(); 1360 tcg_gen_movi_i64(t0, val); 1361 return t0; 1362 } 1363 1364 TCGv_i32 tcg_const_local_i32(int32_t val) 1365 { 1366 TCGv_i32 t0; 1367 t0 = tcg_temp_local_new_i32(); 1368 tcg_gen_movi_i32(t0, val); 1369 return t0; 1370 } 1371 1372 TCGv_i64 tcg_const_local_i64(int64_t val) 1373 { 1374 TCGv_i64 t0; 1375 t0 = tcg_temp_local_new_i64(); 1376 tcg_gen_movi_i64(t0, val); 1377 return t0; 1378 } 1379 1380 #if defined(CONFIG_DEBUG_TCG) 1381 void tcg_clear_temp_count(void) 1382 { 1383 TCGContext *s = tcg_ctx; 1384 s->temps_in_use = 0; 1385 } 1386 1387 int tcg_check_temp_count(void) 1388 { 1389 TCGContext *s = tcg_ctx; 1390 if (s->temps_in_use) { 1391 /* Clear the count so that we don't give another 1392 * warning immediately next time around. 1393 */ 1394 s->temps_in_use = 0; 1395 return 1; 1396 } 1397 return 0; 1398 } 1399 #endif 1400 1401 /* Return true if OP may appear in the opcode stream. 1402 Test the runtime variable that controls each opcode. */ 1403 bool tcg_op_supported(TCGOpcode op) 1404 { 1405 const bool have_vec 1406 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256; 1407 1408 switch (op) { 1409 case INDEX_op_discard: 1410 case INDEX_op_set_label: 1411 case INDEX_op_call: 1412 case INDEX_op_br: 1413 case INDEX_op_mb: 1414 case INDEX_op_insn_start: 1415 case INDEX_op_exit_tb: 1416 case INDEX_op_goto_tb: 1417 case INDEX_op_qemu_ld_i32: 1418 case INDEX_op_qemu_st_i32: 1419 case INDEX_op_qemu_ld_i64: 1420 case INDEX_op_qemu_st_i64: 1421 return true; 1422 1423 case INDEX_op_goto_ptr: 1424 return TCG_TARGET_HAS_goto_ptr; 1425 1426 case INDEX_op_mov_i32: 1427 case INDEX_op_movi_i32: 1428 case INDEX_op_setcond_i32: 1429 case INDEX_op_brcond_i32: 1430 case INDEX_op_ld8u_i32: 1431 case INDEX_op_ld8s_i32: 1432 case INDEX_op_ld16u_i32: 1433 case INDEX_op_ld16s_i32: 1434 case INDEX_op_ld_i32: 1435 case INDEX_op_st8_i32: 1436 case INDEX_op_st16_i32: 1437 case INDEX_op_st_i32: 1438 case INDEX_op_add_i32: 1439 case INDEX_op_sub_i32: 1440 case INDEX_op_mul_i32: 1441 case INDEX_op_and_i32: 1442 case INDEX_op_or_i32: 1443 case INDEX_op_xor_i32: 1444 case INDEX_op_shl_i32: 1445 case INDEX_op_shr_i32: 1446 case INDEX_op_sar_i32: 1447 return true; 1448 1449 case INDEX_op_movcond_i32: 1450 return TCG_TARGET_HAS_movcond_i32; 1451 case INDEX_op_div_i32: 1452 case INDEX_op_divu_i32: 1453 return TCG_TARGET_HAS_div_i32; 1454 case INDEX_op_rem_i32: 1455 case INDEX_op_remu_i32: 1456 return TCG_TARGET_HAS_rem_i32; 1457 case INDEX_op_div2_i32: 1458 case INDEX_op_divu2_i32: 1459 return TCG_TARGET_HAS_div2_i32; 1460 case INDEX_op_rotl_i32: 1461 case INDEX_op_rotr_i32: 1462 return TCG_TARGET_HAS_rot_i32; 1463 case INDEX_op_deposit_i32: 1464 return TCG_TARGET_HAS_deposit_i32; 1465 case INDEX_op_extract_i32: 1466 return TCG_TARGET_HAS_extract_i32; 1467 case INDEX_op_sextract_i32: 1468 return TCG_TARGET_HAS_sextract_i32; 1469 case INDEX_op_extract2_i32: 1470 return TCG_TARGET_HAS_extract2_i32; 1471 case INDEX_op_add2_i32: 1472 return TCG_TARGET_HAS_add2_i32; 1473 case INDEX_op_sub2_i32: 1474 return TCG_TARGET_HAS_sub2_i32; 1475 case INDEX_op_mulu2_i32: 1476 return TCG_TARGET_HAS_mulu2_i32; 1477 case INDEX_op_muls2_i32: 1478 return TCG_TARGET_HAS_muls2_i32; 1479 case INDEX_op_muluh_i32: 1480 return TCG_TARGET_HAS_muluh_i32; 1481 case INDEX_op_mulsh_i32: 1482 return TCG_TARGET_HAS_mulsh_i32; 1483 case INDEX_op_ext8s_i32: 1484 return TCG_TARGET_HAS_ext8s_i32; 1485 case INDEX_op_ext16s_i32: 1486 return TCG_TARGET_HAS_ext16s_i32; 1487 case INDEX_op_ext8u_i32: 1488 return TCG_TARGET_HAS_ext8u_i32; 1489 case INDEX_op_ext16u_i32: 1490 return TCG_TARGET_HAS_ext16u_i32; 1491 case INDEX_op_bswap16_i32: 1492 return TCG_TARGET_HAS_bswap16_i32; 1493 case INDEX_op_bswap32_i32: 1494 return TCG_TARGET_HAS_bswap32_i32; 1495 case INDEX_op_not_i32: 1496 return TCG_TARGET_HAS_not_i32; 1497 case INDEX_op_neg_i32: 1498 return TCG_TARGET_HAS_neg_i32; 1499 case INDEX_op_andc_i32: 1500 return TCG_TARGET_HAS_andc_i32; 1501 case INDEX_op_orc_i32: 1502 return TCG_TARGET_HAS_orc_i32; 1503 case INDEX_op_eqv_i32: 1504 return TCG_TARGET_HAS_eqv_i32; 1505 case INDEX_op_nand_i32: 1506 return TCG_TARGET_HAS_nand_i32; 1507 case INDEX_op_nor_i32: 1508 return TCG_TARGET_HAS_nor_i32; 1509 case INDEX_op_clz_i32: 1510 return TCG_TARGET_HAS_clz_i32; 1511 case INDEX_op_ctz_i32: 1512 return TCG_TARGET_HAS_ctz_i32; 1513 case INDEX_op_ctpop_i32: 1514 return TCG_TARGET_HAS_ctpop_i32; 1515 1516 case INDEX_op_brcond2_i32: 1517 case INDEX_op_setcond2_i32: 1518 return TCG_TARGET_REG_BITS == 32; 1519 1520 case INDEX_op_mov_i64: 1521 case INDEX_op_movi_i64: 1522 case INDEX_op_setcond_i64: 1523 case INDEX_op_brcond_i64: 1524 case INDEX_op_ld8u_i64: 1525 case INDEX_op_ld8s_i64: 1526 case INDEX_op_ld16u_i64: 1527 case INDEX_op_ld16s_i64: 1528 case INDEX_op_ld32u_i64: 1529 case INDEX_op_ld32s_i64: 1530 case INDEX_op_ld_i64: 1531 case INDEX_op_st8_i64: 1532 case INDEX_op_st16_i64: 1533 case INDEX_op_st32_i64: 1534 case INDEX_op_st_i64: 1535 case INDEX_op_add_i64: 1536 case INDEX_op_sub_i64: 1537 case INDEX_op_mul_i64: 1538 case INDEX_op_and_i64: 1539 case INDEX_op_or_i64: 1540 case INDEX_op_xor_i64: 1541 case INDEX_op_shl_i64: 1542 case INDEX_op_shr_i64: 1543 case INDEX_op_sar_i64: 1544 case INDEX_op_ext_i32_i64: 1545 case INDEX_op_extu_i32_i64: 1546 return TCG_TARGET_REG_BITS == 64; 1547 1548 case INDEX_op_movcond_i64: 1549 return TCG_TARGET_HAS_movcond_i64; 1550 case INDEX_op_div_i64: 1551 case INDEX_op_divu_i64: 1552 return TCG_TARGET_HAS_div_i64; 1553 case INDEX_op_rem_i64: 1554 case INDEX_op_remu_i64: 1555 return TCG_TARGET_HAS_rem_i64; 1556 case INDEX_op_div2_i64: 1557 case INDEX_op_divu2_i64: 1558 return TCG_TARGET_HAS_div2_i64; 1559 case INDEX_op_rotl_i64: 1560 case INDEX_op_rotr_i64: 1561 return TCG_TARGET_HAS_rot_i64; 1562 case INDEX_op_deposit_i64: 1563 return TCG_TARGET_HAS_deposit_i64; 1564 case INDEX_op_extract_i64: 1565 return TCG_TARGET_HAS_extract_i64; 1566 case INDEX_op_sextract_i64: 1567 return TCG_TARGET_HAS_sextract_i64; 1568 case INDEX_op_extract2_i64: 1569 return TCG_TARGET_HAS_extract2_i64; 1570 case INDEX_op_extrl_i64_i32: 1571 return TCG_TARGET_HAS_extrl_i64_i32; 1572 case INDEX_op_extrh_i64_i32: 1573 return TCG_TARGET_HAS_extrh_i64_i32; 1574 case INDEX_op_ext8s_i64: 1575 return TCG_TARGET_HAS_ext8s_i64; 1576 case INDEX_op_ext16s_i64: 1577 return TCG_TARGET_HAS_ext16s_i64; 1578 case INDEX_op_ext32s_i64: 1579 return TCG_TARGET_HAS_ext32s_i64; 1580 case INDEX_op_ext8u_i64: 1581 return TCG_TARGET_HAS_ext8u_i64; 1582 case INDEX_op_ext16u_i64: 1583 return TCG_TARGET_HAS_ext16u_i64; 1584 case INDEX_op_ext32u_i64: 1585 return TCG_TARGET_HAS_ext32u_i64; 1586 case INDEX_op_bswap16_i64: 1587 return TCG_TARGET_HAS_bswap16_i64; 1588 case INDEX_op_bswap32_i64: 1589 return TCG_TARGET_HAS_bswap32_i64; 1590 case INDEX_op_bswap64_i64: 1591 return TCG_TARGET_HAS_bswap64_i64; 1592 case INDEX_op_not_i64: 1593 return TCG_TARGET_HAS_not_i64; 1594 case INDEX_op_neg_i64: 1595 return TCG_TARGET_HAS_neg_i64; 1596 case INDEX_op_andc_i64: 1597 return TCG_TARGET_HAS_andc_i64; 1598 case INDEX_op_orc_i64: 1599 return TCG_TARGET_HAS_orc_i64; 1600 case INDEX_op_eqv_i64: 1601 return TCG_TARGET_HAS_eqv_i64; 1602 case INDEX_op_nand_i64: 1603 return TCG_TARGET_HAS_nand_i64; 1604 case INDEX_op_nor_i64: 1605 return TCG_TARGET_HAS_nor_i64; 1606 case INDEX_op_clz_i64: 1607 return TCG_TARGET_HAS_clz_i64; 1608 case INDEX_op_ctz_i64: 1609 return TCG_TARGET_HAS_ctz_i64; 1610 case INDEX_op_ctpop_i64: 1611 return TCG_TARGET_HAS_ctpop_i64; 1612 case INDEX_op_add2_i64: 1613 return TCG_TARGET_HAS_add2_i64; 1614 case INDEX_op_sub2_i64: 1615 return TCG_TARGET_HAS_sub2_i64; 1616 case INDEX_op_mulu2_i64: 1617 return TCG_TARGET_HAS_mulu2_i64; 1618 case INDEX_op_muls2_i64: 1619 return TCG_TARGET_HAS_muls2_i64; 1620 case INDEX_op_muluh_i64: 1621 return TCG_TARGET_HAS_muluh_i64; 1622 case INDEX_op_mulsh_i64: 1623 return TCG_TARGET_HAS_mulsh_i64; 1624 1625 case INDEX_op_mov_vec: 1626 case INDEX_op_dup_vec: 1627 case INDEX_op_dupi_vec: 1628 case INDEX_op_dupm_vec: 1629 case INDEX_op_ld_vec: 1630 case INDEX_op_st_vec: 1631 case INDEX_op_add_vec: 1632 case INDEX_op_sub_vec: 1633 case INDEX_op_and_vec: 1634 case INDEX_op_or_vec: 1635 case INDEX_op_xor_vec: 1636 case INDEX_op_cmp_vec: 1637 return have_vec; 1638 case INDEX_op_dup2_vec: 1639 return have_vec && TCG_TARGET_REG_BITS == 32; 1640 case INDEX_op_not_vec: 1641 return have_vec && TCG_TARGET_HAS_not_vec; 1642 case INDEX_op_neg_vec: 1643 return have_vec && TCG_TARGET_HAS_neg_vec; 1644 case INDEX_op_abs_vec: 1645 return have_vec && TCG_TARGET_HAS_abs_vec; 1646 case INDEX_op_andc_vec: 1647 return have_vec && TCG_TARGET_HAS_andc_vec; 1648 case INDEX_op_orc_vec: 1649 return have_vec && TCG_TARGET_HAS_orc_vec; 1650 case INDEX_op_mul_vec: 1651 return have_vec && TCG_TARGET_HAS_mul_vec; 1652 case INDEX_op_shli_vec: 1653 case INDEX_op_shri_vec: 1654 case INDEX_op_sari_vec: 1655 return have_vec && TCG_TARGET_HAS_shi_vec; 1656 case INDEX_op_shls_vec: 1657 case INDEX_op_shrs_vec: 1658 case INDEX_op_sars_vec: 1659 return have_vec && TCG_TARGET_HAS_shs_vec; 1660 case INDEX_op_shlv_vec: 1661 case INDEX_op_shrv_vec: 1662 case INDEX_op_sarv_vec: 1663 return have_vec && TCG_TARGET_HAS_shv_vec; 1664 case INDEX_op_rotli_vec: 1665 return have_vec && TCG_TARGET_HAS_roti_vec; 1666 case INDEX_op_rotls_vec: 1667 return have_vec && TCG_TARGET_HAS_rots_vec; 1668 case INDEX_op_rotlv_vec: 1669 case INDEX_op_rotrv_vec: 1670 return have_vec && TCG_TARGET_HAS_rotv_vec; 1671 case INDEX_op_ssadd_vec: 1672 case INDEX_op_usadd_vec: 1673 case INDEX_op_sssub_vec: 1674 case INDEX_op_ussub_vec: 1675 return have_vec && TCG_TARGET_HAS_sat_vec; 1676 case INDEX_op_smin_vec: 1677 case INDEX_op_umin_vec: 1678 case INDEX_op_smax_vec: 1679 case INDEX_op_umax_vec: 1680 return have_vec && TCG_TARGET_HAS_minmax_vec; 1681 case INDEX_op_bitsel_vec: 1682 return have_vec && TCG_TARGET_HAS_bitsel_vec; 1683 case INDEX_op_cmpsel_vec: 1684 return have_vec && TCG_TARGET_HAS_cmpsel_vec; 1685 1686 default: 1687 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS); 1688 return true; 1689 } 1690 } 1691 1692 /* Note: we convert the 64 bit args to 32 bit and do some alignment 1693 and endian swap. Maybe it would be better to do the alignment 1694 and endian swap in tcg_reg_alloc_call(). */ 1695 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args) 1696 { 1697 int i, real_args, nb_rets, pi; 1698 unsigned sizemask, flags; 1699 TCGHelperInfo *info; 1700 TCGOp *op; 1701 1702 info = g_hash_table_lookup(helper_table, (gpointer)func); 1703 flags = info->flags; 1704 sizemask = info->sizemask; 1705 1706 #ifdef CONFIG_PLUGIN 1707 /* detect non-plugin helpers */ 1708 if (tcg_ctx->plugin_insn && unlikely(strncmp(info->name, "plugin_", 7))) { 1709 tcg_ctx->plugin_insn->calls_helpers = true; 1710 } 1711 #endif 1712 1713 #if defined(__sparc__) && !defined(__arch64__) \ 1714 && !defined(CONFIG_TCG_INTERPRETER) 1715 /* We have 64-bit values in one register, but need to pass as two 1716 separate parameters. Split them. */ 1717 int orig_sizemask = sizemask; 1718 int orig_nargs = nargs; 1719 TCGv_i64 retl, reth; 1720 TCGTemp *split_args[MAX_OPC_PARAM]; 1721 1722 retl = NULL; 1723 reth = NULL; 1724 if (sizemask != 0) { 1725 for (i = real_args = 0; i < nargs; ++i) { 1726 int is_64bit = sizemask & (1 << (i+1)*2); 1727 if (is_64bit) { 1728 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1729 TCGv_i32 h = tcg_temp_new_i32(); 1730 TCGv_i32 l = tcg_temp_new_i32(); 1731 tcg_gen_extr_i64_i32(l, h, orig); 1732 split_args[real_args++] = tcgv_i32_temp(h); 1733 split_args[real_args++] = tcgv_i32_temp(l); 1734 } else { 1735 split_args[real_args++] = args[i]; 1736 } 1737 } 1738 nargs = real_args; 1739 args = split_args; 1740 sizemask = 0; 1741 } 1742 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1743 for (i = 0; i < nargs; ++i) { 1744 int is_64bit = sizemask & (1 << (i+1)*2); 1745 int is_signed = sizemask & (2 << (i+1)*2); 1746 if (!is_64bit) { 1747 TCGv_i64 temp = tcg_temp_new_i64(); 1748 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1749 if (is_signed) { 1750 tcg_gen_ext32s_i64(temp, orig); 1751 } else { 1752 tcg_gen_ext32u_i64(temp, orig); 1753 } 1754 args[i] = tcgv_i64_temp(temp); 1755 } 1756 } 1757 #endif /* TCG_TARGET_EXTEND_ARGS */ 1758 1759 op = tcg_emit_op(INDEX_op_call); 1760 1761 pi = 0; 1762 if (ret != NULL) { 1763 #if defined(__sparc__) && !defined(__arch64__) \ 1764 && !defined(CONFIG_TCG_INTERPRETER) 1765 if (orig_sizemask & 1) { 1766 /* The 32-bit ABI is going to return the 64-bit value in 1767 the %o0/%o1 register pair. Prepare for this by using 1768 two return temporaries, and reassemble below. */ 1769 retl = tcg_temp_new_i64(); 1770 reth = tcg_temp_new_i64(); 1771 op->args[pi++] = tcgv_i64_arg(reth); 1772 op->args[pi++] = tcgv_i64_arg(retl); 1773 nb_rets = 2; 1774 } else { 1775 op->args[pi++] = temp_arg(ret); 1776 nb_rets = 1; 1777 } 1778 #else 1779 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) { 1780 #ifdef HOST_WORDS_BIGENDIAN 1781 op->args[pi++] = temp_arg(ret + 1); 1782 op->args[pi++] = temp_arg(ret); 1783 #else 1784 op->args[pi++] = temp_arg(ret); 1785 op->args[pi++] = temp_arg(ret + 1); 1786 #endif 1787 nb_rets = 2; 1788 } else { 1789 op->args[pi++] = temp_arg(ret); 1790 nb_rets = 1; 1791 } 1792 #endif 1793 } else { 1794 nb_rets = 0; 1795 } 1796 TCGOP_CALLO(op) = nb_rets; 1797 1798 real_args = 0; 1799 for (i = 0; i < nargs; i++) { 1800 int is_64bit = sizemask & (1 << (i+1)*2); 1801 if (TCG_TARGET_REG_BITS < 64 && is_64bit) { 1802 #ifdef TCG_TARGET_CALL_ALIGN_ARGS 1803 /* some targets want aligned 64 bit args */ 1804 if (real_args & 1) { 1805 op->args[pi++] = TCG_CALL_DUMMY_ARG; 1806 real_args++; 1807 } 1808 #endif 1809 /* If stack grows up, then we will be placing successive 1810 arguments at lower addresses, which means we need to 1811 reverse the order compared to how we would normally 1812 treat either big or little-endian. For those arguments 1813 that will wind up in registers, this still works for 1814 HPPA (the only current STACK_GROWSUP target) since the 1815 argument registers are *also* allocated in decreasing 1816 order. If another such target is added, this logic may 1817 have to get more complicated to differentiate between 1818 stack arguments and register arguments. */ 1819 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP) 1820 op->args[pi++] = temp_arg(args[i] + 1); 1821 op->args[pi++] = temp_arg(args[i]); 1822 #else 1823 op->args[pi++] = temp_arg(args[i]); 1824 op->args[pi++] = temp_arg(args[i] + 1); 1825 #endif 1826 real_args += 2; 1827 continue; 1828 } 1829 1830 op->args[pi++] = temp_arg(args[i]); 1831 real_args++; 1832 } 1833 op->args[pi++] = (uintptr_t)func; 1834 op->args[pi++] = flags; 1835 TCGOP_CALLI(op) = real_args; 1836 1837 /* Make sure the fields didn't overflow. */ 1838 tcg_debug_assert(TCGOP_CALLI(op) == real_args); 1839 tcg_debug_assert(pi <= ARRAY_SIZE(op->args)); 1840 1841 #if defined(__sparc__) && !defined(__arch64__) \ 1842 && !defined(CONFIG_TCG_INTERPRETER) 1843 /* Free all of the parts we allocated above. */ 1844 for (i = real_args = 0; i < orig_nargs; ++i) { 1845 int is_64bit = orig_sizemask & (1 << (i+1)*2); 1846 if (is_64bit) { 1847 tcg_temp_free_internal(args[real_args++]); 1848 tcg_temp_free_internal(args[real_args++]); 1849 } else { 1850 real_args++; 1851 } 1852 } 1853 if (orig_sizemask & 1) { 1854 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them. 1855 Note that describing these as TCGv_i64 eliminates an unnecessary 1856 zero-extension that tcg_gen_concat_i32_i64 would create. */ 1857 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth); 1858 tcg_temp_free_i64(retl); 1859 tcg_temp_free_i64(reth); 1860 } 1861 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1862 for (i = 0; i < nargs; ++i) { 1863 int is_64bit = sizemask & (1 << (i+1)*2); 1864 if (!is_64bit) { 1865 tcg_temp_free_internal(args[i]); 1866 } 1867 } 1868 #endif /* TCG_TARGET_EXTEND_ARGS */ 1869 } 1870 1871 static void tcg_reg_alloc_start(TCGContext *s) 1872 { 1873 int i, n; 1874 TCGTemp *ts; 1875 1876 for (i = 0, n = s->nb_globals; i < n; i++) { 1877 ts = &s->temps[i]; 1878 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM); 1879 } 1880 for (n = s->nb_temps; i < n; i++) { 1881 ts = &s->temps[i]; 1882 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 1883 ts->mem_allocated = 0; 1884 ts->fixed_reg = 0; 1885 } 1886 1887 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp)); 1888 } 1889 1890 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size, 1891 TCGTemp *ts) 1892 { 1893 int idx = temp_idx(ts); 1894 1895 if (ts->temp_global) { 1896 pstrcpy(buf, buf_size, ts->name); 1897 } else if (ts->temp_local) { 1898 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals); 1899 } else { 1900 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals); 1901 } 1902 return buf; 1903 } 1904 1905 static char *tcg_get_arg_str(TCGContext *s, char *buf, 1906 int buf_size, TCGArg arg) 1907 { 1908 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg)); 1909 } 1910 1911 /* Find helper name. */ 1912 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val) 1913 { 1914 const char *ret = NULL; 1915 if (helper_table) { 1916 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val); 1917 if (info) { 1918 ret = info->name; 1919 } 1920 } 1921 return ret; 1922 } 1923 1924 static const char * const cond_name[] = 1925 { 1926 [TCG_COND_NEVER] = "never", 1927 [TCG_COND_ALWAYS] = "always", 1928 [TCG_COND_EQ] = "eq", 1929 [TCG_COND_NE] = "ne", 1930 [TCG_COND_LT] = "lt", 1931 [TCG_COND_GE] = "ge", 1932 [TCG_COND_LE] = "le", 1933 [TCG_COND_GT] = "gt", 1934 [TCG_COND_LTU] = "ltu", 1935 [TCG_COND_GEU] = "geu", 1936 [TCG_COND_LEU] = "leu", 1937 [TCG_COND_GTU] = "gtu" 1938 }; 1939 1940 static const char * const ldst_name[] = 1941 { 1942 [MO_UB] = "ub", 1943 [MO_SB] = "sb", 1944 [MO_LEUW] = "leuw", 1945 [MO_LESW] = "lesw", 1946 [MO_LEUL] = "leul", 1947 [MO_LESL] = "lesl", 1948 [MO_LEQ] = "leq", 1949 [MO_BEUW] = "beuw", 1950 [MO_BESW] = "besw", 1951 [MO_BEUL] = "beul", 1952 [MO_BESL] = "besl", 1953 [MO_BEQ] = "beq", 1954 }; 1955 1956 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = { 1957 #ifdef TARGET_ALIGNED_ONLY 1958 [MO_UNALN >> MO_ASHIFT] = "un+", 1959 [MO_ALIGN >> MO_ASHIFT] = "", 1960 #else 1961 [MO_UNALN >> MO_ASHIFT] = "", 1962 [MO_ALIGN >> MO_ASHIFT] = "al+", 1963 #endif 1964 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+", 1965 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+", 1966 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+", 1967 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+", 1968 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+", 1969 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+", 1970 }; 1971 1972 static inline bool tcg_regset_single(TCGRegSet d) 1973 { 1974 return (d & (d - 1)) == 0; 1975 } 1976 1977 static inline TCGReg tcg_regset_first(TCGRegSet d) 1978 { 1979 if (TCG_TARGET_NB_REGS <= 32) { 1980 return ctz32(d); 1981 } else { 1982 return ctz64(d); 1983 } 1984 } 1985 1986 static void tcg_dump_ops(TCGContext *s, bool have_prefs) 1987 { 1988 char buf[128]; 1989 TCGOp *op; 1990 1991 QTAILQ_FOREACH(op, &s->ops, link) { 1992 int i, k, nb_oargs, nb_iargs, nb_cargs; 1993 const TCGOpDef *def; 1994 TCGOpcode c; 1995 int col = 0; 1996 1997 c = op->opc; 1998 def = &tcg_op_defs[c]; 1999 2000 if (c == INDEX_op_insn_start) { 2001 nb_oargs = 0; 2002 col += qemu_log("\n ----"); 2003 2004 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 2005 target_ulong a; 2006 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 2007 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 2008 #else 2009 a = op->args[i]; 2010 #endif 2011 col += qemu_log(" " TARGET_FMT_lx, a); 2012 } 2013 } else if (c == INDEX_op_call) { 2014 /* variable number of arguments */ 2015 nb_oargs = TCGOP_CALLO(op); 2016 nb_iargs = TCGOP_CALLI(op); 2017 nb_cargs = def->nb_cargs; 2018 2019 /* function name, flags, out args */ 2020 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name, 2021 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]), 2022 op->args[nb_oargs + nb_iargs + 1], nb_oargs); 2023 for (i = 0; i < nb_oargs; i++) { 2024 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf), 2025 op->args[i])); 2026 } 2027 for (i = 0; i < nb_iargs; i++) { 2028 TCGArg arg = op->args[nb_oargs + i]; 2029 const char *t = "<dummy>"; 2030 if (arg != TCG_CALL_DUMMY_ARG) { 2031 t = tcg_get_arg_str(s, buf, sizeof(buf), arg); 2032 } 2033 col += qemu_log(",%s", t); 2034 } 2035 } else { 2036 col += qemu_log(" %s ", def->name); 2037 2038 nb_oargs = def->nb_oargs; 2039 nb_iargs = def->nb_iargs; 2040 nb_cargs = def->nb_cargs; 2041 2042 if (def->flags & TCG_OPF_VECTOR) { 2043 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op), 2044 8 << TCGOP_VECE(op)); 2045 } 2046 2047 k = 0; 2048 for (i = 0; i < nb_oargs; i++) { 2049 if (k != 0) { 2050 col += qemu_log(","); 2051 } 2052 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2053 op->args[k++])); 2054 } 2055 for (i = 0; i < nb_iargs; i++) { 2056 if (k != 0) { 2057 col += qemu_log(","); 2058 } 2059 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2060 op->args[k++])); 2061 } 2062 switch (c) { 2063 case INDEX_op_brcond_i32: 2064 case INDEX_op_setcond_i32: 2065 case INDEX_op_movcond_i32: 2066 case INDEX_op_brcond2_i32: 2067 case INDEX_op_setcond2_i32: 2068 case INDEX_op_brcond_i64: 2069 case INDEX_op_setcond_i64: 2070 case INDEX_op_movcond_i64: 2071 case INDEX_op_cmp_vec: 2072 case INDEX_op_cmpsel_vec: 2073 if (op->args[k] < ARRAY_SIZE(cond_name) 2074 && cond_name[op->args[k]]) { 2075 col += qemu_log(",%s", cond_name[op->args[k++]]); 2076 } else { 2077 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]); 2078 } 2079 i = 1; 2080 break; 2081 case INDEX_op_qemu_ld_i32: 2082 case INDEX_op_qemu_st_i32: 2083 case INDEX_op_qemu_ld_i64: 2084 case INDEX_op_qemu_st_i64: 2085 { 2086 TCGMemOpIdx oi = op->args[k++]; 2087 MemOp op = get_memop(oi); 2088 unsigned ix = get_mmuidx(oi); 2089 2090 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) { 2091 col += qemu_log(",$0x%x,%u", op, ix); 2092 } else { 2093 const char *s_al, *s_op; 2094 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT]; 2095 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)]; 2096 col += qemu_log(",%s%s,%u", s_al, s_op, ix); 2097 } 2098 i = 1; 2099 } 2100 break; 2101 default: 2102 i = 0; 2103 break; 2104 } 2105 switch (c) { 2106 case INDEX_op_set_label: 2107 case INDEX_op_br: 2108 case INDEX_op_brcond_i32: 2109 case INDEX_op_brcond_i64: 2110 case INDEX_op_brcond2_i32: 2111 col += qemu_log("%s$L%d", k ? "," : "", 2112 arg_label(op->args[k])->id); 2113 i++, k++; 2114 break; 2115 default: 2116 break; 2117 } 2118 for (; i < nb_cargs; i++, k++) { 2119 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]); 2120 } 2121 } 2122 2123 if (have_prefs || op->life) { 2124 2125 QemuLogFile *logfile; 2126 2127 rcu_read_lock(); 2128 logfile = atomic_rcu_read(&qemu_logfile); 2129 if (logfile) { 2130 for (; col < 40; ++col) { 2131 putc(' ', logfile->fd); 2132 } 2133 } 2134 rcu_read_unlock(); 2135 } 2136 2137 if (op->life) { 2138 unsigned life = op->life; 2139 2140 if (life & (SYNC_ARG * 3)) { 2141 qemu_log(" sync:"); 2142 for (i = 0; i < 2; ++i) { 2143 if (life & (SYNC_ARG << i)) { 2144 qemu_log(" %d", i); 2145 } 2146 } 2147 } 2148 life /= DEAD_ARG; 2149 if (life) { 2150 qemu_log(" dead:"); 2151 for (i = 0; life; ++i, life >>= 1) { 2152 if (life & 1) { 2153 qemu_log(" %d", i); 2154 } 2155 } 2156 } 2157 } 2158 2159 if (have_prefs) { 2160 for (i = 0; i < nb_oargs; ++i) { 2161 TCGRegSet set = op->output_pref[i]; 2162 2163 if (i == 0) { 2164 qemu_log(" pref="); 2165 } else { 2166 qemu_log(","); 2167 } 2168 if (set == 0) { 2169 qemu_log("none"); 2170 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) { 2171 qemu_log("all"); 2172 #ifdef CONFIG_DEBUG_TCG 2173 } else if (tcg_regset_single(set)) { 2174 TCGReg reg = tcg_regset_first(set); 2175 qemu_log("%s", tcg_target_reg_names[reg]); 2176 #endif 2177 } else if (TCG_TARGET_NB_REGS <= 32) { 2178 qemu_log("%#x", (uint32_t)set); 2179 } else { 2180 qemu_log("%#" PRIx64, (uint64_t)set); 2181 } 2182 } 2183 } 2184 2185 qemu_log("\n"); 2186 } 2187 } 2188 2189 /* we give more priority to constraints with less registers */ 2190 static int get_constraint_priority(const TCGOpDef *def, int k) 2191 { 2192 const TCGArgConstraint *arg_ct; 2193 2194 int i, n; 2195 arg_ct = &def->args_ct[k]; 2196 if (arg_ct->ct & TCG_CT_ALIAS) { 2197 /* an alias is equivalent to a single register */ 2198 n = 1; 2199 } else { 2200 if (!(arg_ct->ct & TCG_CT_REG)) 2201 return 0; 2202 n = 0; 2203 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 2204 if (tcg_regset_test_reg(arg_ct->u.regs, i)) 2205 n++; 2206 } 2207 } 2208 return TCG_TARGET_NB_REGS - n + 1; 2209 } 2210 2211 /* sort from highest priority to lowest */ 2212 static void sort_constraints(TCGOpDef *def, int start, int n) 2213 { 2214 int i, j, p1, p2, tmp; 2215 2216 for(i = 0; i < n; i++) 2217 def->sorted_args[start + i] = start + i; 2218 if (n <= 1) 2219 return; 2220 for(i = 0; i < n - 1; i++) { 2221 for(j = i + 1; j < n; j++) { 2222 p1 = get_constraint_priority(def, def->sorted_args[start + i]); 2223 p2 = get_constraint_priority(def, def->sorted_args[start + j]); 2224 if (p1 < p2) { 2225 tmp = def->sorted_args[start + i]; 2226 def->sorted_args[start + i] = def->sorted_args[start + j]; 2227 def->sorted_args[start + j] = tmp; 2228 } 2229 } 2230 } 2231 } 2232 2233 static void process_op_defs(TCGContext *s) 2234 { 2235 TCGOpcode op; 2236 2237 for (op = 0; op < NB_OPS; op++) { 2238 TCGOpDef *def = &tcg_op_defs[op]; 2239 const TCGTargetOpDef *tdefs; 2240 TCGType type; 2241 int i, nb_args; 2242 2243 if (def->flags & TCG_OPF_NOT_PRESENT) { 2244 continue; 2245 } 2246 2247 nb_args = def->nb_iargs + def->nb_oargs; 2248 if (nb_args == 0) { 2249 continue; 2250 } 2251 2252 tdefs = tcg_target_op_def(op); 2253 /* Missing TCGTargetOpDef entry. */ 2254 tcg_debug_assert(tdefs != NULL); 2255 2256 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32); 2257 for (i = 0; i < nb_args; i++) { 2258 const char *ct_str = tdefs->args_ct_str[i]; 2259 /* Incomplete TCGTargetOpDef entry. */ 2260 tcg_debug_assert(ct_str != NULL); 2261 2262 def->args_ct[i].u.regs = 0; 2263 def->args_ct[i].ct = 0; 2264 while (*ct_str != '\0') { 2265 switch(*ct_str) { 2266 case '0' ... '9': 2267 { 2268 int oarg = *ct_str - '0'; 2269 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]); 2270 tcg_debug_assert(oarg < def->nb_oargs); 2271 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG); 2272 /* TCG_CT_ALIAS is for the output arguments. 2273 The input is tagged with TCG_CT_IALIAS. */ 2274 def->args_ct[i] = def->args_ct[oarg]; 2275 def->args_ct[oarg].ct |= TCG_CT_ALIAS; 2276 def->args_ct[oarg].alias_index = i; 2277 def->args_ct[i].ct |= TCG_CT_IALIAS; 2278 def->args_ct[i].alias_index = oarg; 2279 } 2280 ct_str++; 2281 break; 2282 case '&': 2283 def->args_ct[i].ct |= TCG_CT_NEWREG; 2284 ct_str++; 2285 break; 2286 case 'i': 2287 def->args_ct[i].ct |= TCG_CT_CONST; 2288 ct_str++; 2289 break; 2290 default: 2291 ct_str = target_parse_constraint(&def->args_ct[i], 2292 ct_str, type); 2293 /* Typo in TCGTargetOpDef constraint. */ 2294 tcg_debug_assert(ct_str != NULL); 2295 } 2296 } 2297 } 2298 2299 /* TCGTargetOpDef entry with too much information? */ 2300 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL); 2301 2302 /* sort the constraints (XXX: this is just an heuristic) */ 2303 sort_constraints(def, 0, def->nb_oargs); 2304 sort_constraints(def, def->nb_oargs, def->nb_iargs); 2305 } 2306 } 2307 2308 void tcg_op_remove(TCGContext *s, TCGOp *op) 2309 { 2310 TCGLabel *label; 2311 2312 switch (op->opc) { 2313 case INDEX_op_br: 2314 label = arg_label(op->args[0]); 2315 label->refs--; 2316 break; 2317 case INDEX_op_brcond_i32: 2318 case INDEX_op_brcond_i64: 2319 label = arg_label(op->args[3]); 2320 label->refs--; 2321 break; 2322 case INDEX_op_brcond2_i32: 2323 label = arg_label(op->args[5]); 2324 label->refs--; 2325 break; 2326 default: 2327 break; 2328 } 2329 2330 QTAILQ_REMOVE(&s->ops, op, link); 2331 QTAILQ_INSERT_TAIL(&s->free_ops, op, link); 2332 s->nb_ops--; 2333 2334 #ifdef CONFIG_PROFILER 2335 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1); 2336 #endif 2337 } 2338 2339 static TCGOp *tcg_op_alloc(TCGOpcode opc) 2340 { 2341 TCGContext *s = tcg_ctx; 2342 TCGOp *op; 2343 2344 if (likely(QTAILQ_EMPTY(&s->free_ops))) { 2345 op = tcg_malloc(sizeof(TCGOp)); 2346 } else { 2347 op = QTAILQ_FIRST(&s->free_ops); 2348 QTAILQ_REMOVE(&s->free_ops, op, link); 2349 } 2350 memset(op, 0, offsetof(TCGOp, link)); 2351 op->opc = opc; 2352 s->nb_ops++; 2353 2354 return op; 2355 } 2356 2357 TCGOp *tcg_emit_op(TCGOpcode opc) 2358 { 2359 TCGOp *op = tcg_op_alloc(opc); 2360 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link); 2361 return op; 2362 } 2363 2364 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2365 { 2366 TCGOp *new_op = tcg_op_alloc(opc); 2367 QTAILQ_INSERT_BEFORE(old_op, new_op, link); 2368 return new_op; 2369 } 2370 2371 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2372 { 2373 TCGOp *new_op = tcg_op_alloc(opc); 2374 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link); 2375 return new_op; 2376 } 2377 2378 /* Reachable analysis : remove unreachable code. */ 2379 static void reachable_code_pass(TCGContext *s) 2380 { 2381 TCGOp *op, *op_next; 2382 bool dead = false; 2383 2384 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2385 bool remove = dead; 2386 TCGLabel *label; 2387 int call_flags; 2388 2389 switch (op->opc) { 2390 case INDEX_op_set_label: 2391 label = arg_label(op->args[0]); 2392 if (label->refs == 0) { 2393 /* 2394 * While there is an occasional backward branch, virtually 2395 * all branches generated by the translators are forward. 2396 * Which means that generally we will have already removed 2397 * all references to the label that will be, and there is 2398 * little to be gained by iterating. 2399 */ 2400 remove = true; 2401 } else { 2402 /* Once we see a label, insns become live again. */ 2403 dead = false; 2404 remove = false; 2405 2406 /* 2407 * Optimization can fold conditional branches to unconditional. 2408 * If we find a label with one reference which is preceded by 2409 * an unconditional branch to it, remove both. This needed to 2410 * wait until the dead code in between them was removed. 2411 */ 2412 if (label->refs == 1) { 2413 TCGOp *op_prev = QTAILQ_PREV(op, link); 2414 if (op_prev->opc == INDEX_op_br && 2415 label == arg_label(op_prev->args[0])) { 2416 tcg_op_remove(s, op_prev); 2417 remove = true; 2418 } 2419 } 2420 } 2421 break; 2422 2423 case INDEX_op_br: 2424 case INDEX_op_exit_tb: 2425 case INDEX_op_goto_ptr: 2426 /* Unconditional branches; everything following is dead. */ 2427 dead = true; 2428 break; 2429 2430 case INDEX_op_call: 2431 /* Notice noreturn helper calls, raising exceptions. */ 2432 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1]; 2433 if (call_flags & TCG_CALL_NO_RETURN) { 2434 dead = true; 2435 } 2436 break; 2437 2438 case INDEX_op_insn_start: 2439 /* Never remove -- we need to keep these for unwind. */ 2440 remove = false; 2441 break; 2442 2443 default: 2444 break; 2445 } 2446 2447 if (remove) { 2448 tcg_op_remove(s, op); 2449 } 2450 } 2451 } 2452 2453 #define TS_DEAD 1 2454 #define TS_MEM 2 2455 2456 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n))) 2457 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n))) 2458 2459 /* For liveness_pass_1, the register preferences for a given temp. */ 2460 static inline TCGRegSet *la_temp_pref(TCGTemp *ts) 2461 { 2462 return ts->state_ptr; 2463 } 2464 2465 /* For liveness_pass_1, reset the preferences for a given temp to the 2466 * maximal regset for its type. 2467 */ 2468 static inline void la_reset_pref(TCGTemp *ts) 2469 { 2470 *la_temp_pref(ts) 2471 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]); 2472 } 2473 2474 /* liveness analysis: end of function: all temps are dead, and globals 2475 should be in memory. */ 2476 static void la_func_end(TCGContext *s, int ng, int nt) 2477 { 2478 int i; 2479 2480 for (i = 0; i < ng; ++i) { 2481 s->temps[i].state = TS_DEAD | TS_MEM; 2482 la_reset_pref(&s->temps[i]); 2483 } 2484 for (i = ng; i < nt; ++i) { 2485 s->temps[i].state = TS_DEAD; 2486 la_reset_pref(&s->temps[i]); 2487 } 2488 } 2489 2490 /* liveness analysis: end of basic block: all temps are dead, globals 2491 and local temps should be in memory. */ 2492 static void la_bb_end(TCGContext *s, int ng, int nt) 2493 { 2494 int i; 2495 2496 for (i = 0; i < ng; ++i) { 2497 s->temps[i].state = TS_DEAD | TS_MEM; 2498 la_reset_pref(&s->temps[i]); 2499 } 2500 for (i = ng; i < nt; ++i) { 2501 s->temps[i].state = (s->temps[i].temp_local 2502 ? TS_DEAD | TS_MEM 2503 : TS_DEAD); 2504 la_reset_pref(&s->temps[i]); 2505 } 2506 } 2507 2508 /* liveness analysis: sync globals back to memory. */ 2509 static void la_global_sync(TCGContext *s, int ng) 2510 { 2511 int i; 2512 2513 for (i = 0; i < ng; ++i) { 2514 int state = s->temps[i].state; 2515 s->temps[i].state = state | TS_MEM; 2516 if (state == TS_DEAD) { 2517 /* If the global was previously dead, reset prefs. */ 2518 la_reset_pref(&s->temps[i]); 2519 } 2520 } 2521 } 2522 2523 /* liveness analysis: sync globals back to memory and kill. */ 2524 static void la_global_kill(TCGContext *s, int ng) 2525 { 2526 int i; 2527 2528 for (i = 0; i < ng; i++) { 2529 s->temps[i].state = TS_DEAD | TS_MEM; 2530 la_reset_pref(&s->temps[i]); 2531 } 2532 } 2533 2534 /* liveness analysis: note live globals crossing calls. */ 2535 static void la_cross_call(TCGContext *s, int nt) 2536 { 2537 TCGRegSet mask = ~tcg_target_call_clobber_regs; 2538 int i; 2539 2540 for (i = 0; i < nt; i++) { 2541 TCGTemp *ts = &s->temps[i]; 2542 if (!(ts->state & TS_DEAD)) { 2543 TCGRegSet *pset = la_temp_pref(ts); 2544 TCGRegSet set = *pset; 2545 2546 set &= mask; 2547 /* If the combination is not possible, restart. */ 2548 if (set == 0) { 2549 set = tcg_target_available_regs[ts->type] & mask; 2550 } 2551 *pset = set; 2552 } 2553 } 2554 } 2555 2556 /* Liveness analysis : update the opc_arg_life array to tell if a 2557 given input arguments is dead. Instructions updating dead 2558 temporaries are removed. */ 2559 static void liveness_pass_1(TCGContext *s) 2560 { 2561 int nb_globals = s->nb_globals; 2562 int nb_temps = s->nb_temps; 2563 TCGOp *op, *op_prev; 2564 TCGRegSet *prefs; 2565 int i; 2566 2567 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps); 2568 for (i = 0; i < nb_temps; ++i) { 2569 s->temps[i].state_ptr = prefs + i; 2570 } 2571 2572 /* ??? Should be redundant with the exit_tb that ends the TB. */ 2573 la_func_end(s, nb_globals, nb_temps); 2574 2575 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) { 2576 int nb_iargs, nb_oargs; 2577 TCGOpcode opc_new, opc_new2; 2578 bool have_opc_new2; 2579 TCGLifeData arg_life = 0; 2580 TCGTemp *ts; 2581 TCGOpcode opc = op->opc; 2582 const TCGOpDef *def = &tcg_op_defs[opc]; 2583 2584 switch (opc) { 2585 case INDEX_op_call: 2586 { 2587 int call_flags; 2588 int nb_call_regs; 2589 2590 nb_oargs = TCGOP_CALLO(op); 2591 nb_iargs = TCGOP_CALLI(op); 2592 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2593 2594 /* pure functions can be removed if their result is unused */ 2595 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) { 2596 for (i = 0; i < nb_oargs; i++) { 2597 ts = arg_temp(op->args[i]); 2598 if (ts->state != TS_DEAD) { 2599 goto do_not_remove_call; 2600 } 2601 } 2602 goto do_remove; 2603 } 2604 do_not_remove_call: 2605 2606 /* Output args are dead. */ 2607 for (i = 0; i < nb_oargs; i++) { 2608 ts = arg_temp(op->args[i]); 2609 if (ts->state & TS_DEAD) { 2610 arg_life |= DEAD_ARG << i; 2611 } 2612 if (ts->state & TS_MEM) { 2613 arg_life |= SYNC_ARG << i; 2614 } 2615 ts->state = TS_DEAD; 2616 la_reset_pref(ts); 2617 2618 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */ 2619 op->output_pref[i] = 0; 2620 } 2621 2622 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS | 2623 TCG_CALL_NO_READ_GLOBALS))) { 2624 la_global_kill(s, nb_globals); 2625 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) { 2626 la_global_sync(s, nb_globals); 2627 } 2628 2629 /* Record arguments that die in this helper. */ 2630 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2631 ts = arg_temp(op->args[i]); 2632 if (ts && ts->state & TS_DEAD) { 2633 arg_life |= DEAD_ARG << i; 2634 } 2635 } 2636 2637 /* For all live registers, remove call-clobbered prefs. */ 2638 la_cross_call(s, nb_temps); 2639 2640 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 2641 2642 /* Input arguments are live for preceding opcodes. */ 2643 for (i = 0; i < nb_iargs; i++) { 2644 ts = arg_temp(op->args[i + nb_oargs]); 2645 if (ts && ts->state & TS_DEAD) { 2646 /* For those arguments that die, and will be allocated 2647 * in registers, clear the register set for that arg, 2648 * to be filled in below. For args that will be on 2649 * the stack, reset to any available reg. 2650 */ 2651 *la_temp_pref(ts) 2652 = (i < nb_call_regs ? 0 : 2653 tcg_target_available_regs[ts->type]); 2654 ts->state &= ~TS_DEAD; 2655 } 2656 } 2657 2658 /* For each input argument, add its input register to prefs. 2659 If a temp is used once, this produces a single set bit. */ 2660 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) { 2661 ts = arg_temp(op->args[i + nb_oargs]); 2662 if (ts) { 2663 tcg_regset_set_reg(*la_temp_pref(ts), 2664 tcg_target_call_iarg_regs[i]); 2665 } 2666 } 2667 } 2668 break; 2669 case INDEX_op_insn_start: 2670 break; 2671 case INDEX_op_discard: 2672 /* mark the temporary as dead */ 2673 ts = arg_temp(op->args[0]); 2674 ts->state = TS_DEAD; 2675 la_reset_pref(ts); 2676 break; 2677 2678 case INDEX_op_add2_i32: 2679 opc_new = INDEX_op_add_i32; 2680 goto do_addsub2; 2681 case INDEX_op_sub2_i32: 2682 opc_new = INDEX_op_sub_i32; 2683 goto do_addsub2; 2684 case INDEX_op_add2_i64: 2685 opc_new = INDEX_op_add_i64; 2686 goto do_addsub2; 2687 case INDEX_op_sub2_i64: 2688 opc_new = INDEX_op_sub_i64; 2689 do_addsub2: 2690 nb_iargs = 4; 2691 nb_oargs = 2; 2692 /* Test if the high part of the operation is dead, but not 2693 the low part. The result can be optimized to a simple 2694 add or sub. This happens often for x86_64 guest when the 2695 cpu mode is set to 32 bit. */ 2696 if (arg_temp(op->args[1])->state == TS_DEAD) { 2697 if (arg_temp(op->args[0])->state == TS_DEAD) { 2698 goto do_remove; 2699 } 2700 /* Replace the opcode and adjust the args in place, 2701 leaving 3 unused args at the end. */ 2702 op->opc = opc = opc_new; 2703 op->args[1] = op->args[2]; 2704 op->args[2] = op->args[4]; 2705 /* Fall through and mark the single-word operation live. */ 2706 nb_iargs = 2; 2707 nb_oargs = 1; 2708 } 2709 goto do_not_remove; 2710 2711 case INDEX_op_mulu2_i32: 2712 opc_new = INDEX_op_mul_i32; 2713 opc_new2 = INDEX_op_muluh_i32; 2714 have_opc_new2 = TCG_TARGET_HAS_muluh_i32; 2715 goto do_mul2; 2716 case INDEX_op_muls2_i32: 2717 opc_new = INDEX_op_mul_i32; 2718 opc_new2 = INDEX_op_mulsh_i32; 2719 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32; 2720 goto do_mul2; 2721 case INDEX_op_mulu2_i64: 2722 opc_new = INDEX_op_mul_i64; 2723 opc_new2 = INDEX_op_muluh_i64; 2724 have_opc_new2 = TCG_TARGET_HAS_muluh_i64; 2725 goto do_mul2; 2726 case INDEX_op_muls2_i64: 2727 opc_new = INDEX_op_mul_i64; 2728 opc_new2 = INDEX_op_mulsh_i64; 2729 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64; 2730 goto do_mul2; 2731 do_mul2: 2732 nb_iargs = 2; 2733 nb_oargs = 2; 2734 if (arg_temp(op->args[1])->state == TS_DEAD) { 2735 if (arg_temp(op->args[0])->state == TS_DEAD) { 2736 /* Both parts of the operation are dead. */ 2737 goto do_remove; 2738 } 2739 /* The high part of the operation is dead; generate the low. */ 2740 op->opc = opc = opc_new; 2741 op->args[1] = op->args[2]; 2742 op->args[2] = op->args[3]; 2743 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) { 2744 /* The low part of the operation is dead; generate the high. */ 2745 op->opc = opc = opc_new2; 2746 op->args[0] = op->args[1]; 2747 op->args[1] = op->args[2]; 2748 op->args[2] = op->args[3]; 2749 } else { 2750 goto do_not_remove; 2751 } 2752 /* Mark the single-word operation live. */ 2753 nb_oargs = 1; 2754 goto do_not_remove; 2755 2756 default: 2757 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */ 2758 nb_iargs = def->nb_iargs; 2759 nb_oargs = def->nb_oargs; 2760 2761 /* Test if the operation can be removed because all 2762 its outputs are dead. We assume that nb_oargs == 0 2763 implies side effects */ 2764 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) { 2765 for (i = 0; i < nb_oargs; i++) { 2766 if (arg_temp(op->args[i])->state != TS_DEAD) { 2767 goto do_not_remove; 2768 } 2769 } 2770 goto do_remove; 2771 } 2772 goto do_not_remove; 2773 2774 do_remove: 2775 tcg_op_remove(s, op); 2776 break; 2777 2778 do_not_remove: 2779 for (i = 0; i < nb_oargs; i++) { 2780 ts = arg_temp(op->args[i]); 2781 2782 /* Remember the preference of the uses that followed. */ 2783 op->output_pref[i] = *la_temp_pref(ts); 2784 2785 /* Output args are dead. */ 2786 if (ts->state & TS_DEAD) { 2787 arg_life |= DEAD_ARG << i; 2788 } 2789 if (ts->state & TS_MEM) { 2790 arg_life |= SYNC_ARG << i; 2791 } 2792 ts->state = TS_DEAD; 2793 la_reset_pref(ts); 2794 } 2795 2796 /* If end of basic block, update. */ 2797 if (def->flags & TCG_OPF_BB_EXIT) { 2798 la_func_end(s, nb_globals, nb_temps); 2799 } else if (def->flags & TCG_OPF_BB_END) { 2800 la_bb_end(s, nb_globals, nb_temps); 2801 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2802 la_global_sync(s, nb_globals); 2803 if (def->flags & TCG_OPF_CALL_CLOBBER) { 2804 la_cross_call(s, nb_temps); 2805 } 2806 } 2807 2808 /* Record arguments that die in this opcode. */ 2809 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2810 ts = arg_temp(op->args[i]); 2811 if (ts->state & TS_DEAD) { 2812 arg_life |= DEAD_ARG << i; 2813 } 2814 } 2815 2816 /* Input arguments are live for preceding opcodes. */ 2817 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2818 ts = arg_temp(op->args[i]); 2819 if (ts->state & TS_DEAD) { 2820 /* For operands that were dead, initially allow 2821 all regs for the type. */ 2822 *la_temp_pref(ts) = tcg_target_available_regs[ts->type]; 2823 ts->state &= ~TS_DEAD; 2824 } 2825 } 2826 2827 /* Incorporate constraints for this operand. */ 2828 switch (opc) { 2829 case INDEX_op_mov_i32: 2830 case INDEX_op_mov_i64: 2831 /* Note that these are TCG_OPF_NOT_PRESENT and do not 2832 have proper constraints. That said, special case 2833 moves to propagate preferences backward. */ 2834 if (IS_DEAD_ARG(1)) { 2835 *la_temp_pref(arg_temp(op->args[0])) 2836 = *la_temp_pref(arg_temp(op->args[1])); 2837 } 2838 break; 2839 2840 default: 2841 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2842 const TCGArgConstraint *ct = &def->args_ct[i]; 2843 TCGRegSet set, *pset; 2844 2845 ts = arg_temp(op->args[i]); 2846 pset = la_temp_pref(ts); 2847 set = *pset; 2848 2849 set &= ct->u.regs; 2850 if (ct->ct & TCG_CT_IALIAS) { 2851 set &= op->output_pref[ct->alias_index]; 2852 } 2853 /* If the combination is not possible, restart. */ 2854 if (set == 0) { 2855 set = ct->u.regs; 2856 } 2857 *pset = set; 2858 } 2859 break; 2860 } 2861 break; 2862 } 2863 op->life = arg_life; 2864 } 2865 } 2866 2867 /* Liveness analysis: Convert indirect regs to direct temporaries. */ 2868 static bool liveness_pass_2(TCGContext *s) 2869 { 2870 int nb_globals = s->nb_globals; 2871 int nb_temps, i; 2872 bool changes = false; 2873 TCGOp *op, *op_next; 2874 2875 /* Create a temporary for each indirect global. */ 2876 for (i = 0; i < nb_globals; ++i) { 2877 TCGTemp *its = &s->temps[i]; 2878 if (its->indirect_reg) { 2879 TCGTemp *dts = tcg_temp_alloc(s); 2880 dts->type = its->type; 2881 dts->base_type = its->base_type; 2882 its->state_ptr = dts; 2883 } else { 2884 its->state_ptr = NULL; 2885 } 2886 /* All globals begin dead. */ 2887 its->state = TS_DEAD; 2888 } 2889 for (nb_temps = s->nb_temps; i < nb_temps; ++i) { 2890 TCGTemp *its = &s->temps[i]; 2891 its->state_ptr = NULL; 2892 its->state = TS_DEAD; 2893 } 2894 2895 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2896 TCGOpcode opc = op->opc; 2897 const TCGOpDef *def = &tcg_op_defs[opc]; 2898 TCGLifeData arg_life = op->life; 2899 int nb_iargs, nb_oargs, call_flags; 2900 TCGTemp *arg_ts, *dir_ts; 2901 2902 if (opc == INDEX_op_call) { 2903 nb_oargs = TCGOP_CALLO(op); 2904 nb_iargs = TCGOP_CALLI(op); 2905 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2906 } else { 2907 nb_iargs = def->nb_iargs; 2908 nb_oargs = def->nb_oargs; 2909 2910 /* Set flags similar to how calls require. */ 2911 if (def->flags & TCG_OPF_BB_END) { 2912 /* Like writing globals: save_globals */ 2913 call_flags = 0; 2914 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2915 /* Like reading globals: sync_globals */ 2916 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 2917 } else { 2918 /* No effect on globals. */ 2919 call_flags = (TCG_CALL_NO_READ_GLOBALS | 2920 TCG_CALL_NO_WRITE_GLOBALS); 2921 } 2922 } 2923 2924 /* Make sure that input arguments are available. */ 2925 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2926 arg_ts = arg_temp(op->args[i]); 2927 if (arg_ts) { 2928 dir_ts = arg_ts->state_ptr; 2929 if (dir_ts && arg_ts->state == TS_DEAD) { 2930 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32 2931 ? INDEX_op_ld_i32 2932 : INDEX_op_ld_i64); 2933 TCGOp *lop = tcg_op_insert_before(s, op, lopc); 2934 2935 lop->args[0] = temp_arg(dir_ts); 2936 lop->args[1] = temp_arg(arg_ts->mem_base); 2937 lop->args[2] = arg_ts->mem_offset; 2938 2939 /* Loaded, but synced with memory. */ 2940 arg_ts->state = TS_MEM; 2941 } 2942 } 2943 } 2944 2945 /* Perform input replacement, and mark inputs that became dead. 2946 No action is required except keeping temp_state up to date 2947 so that we reload when needed. */ 2948 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2949 arg_ts = arg_temp(op->args[i]); 2950 if (arg_ts) { 2951 dir_ts = arg_ts->state_ptr; 2952 if (dir_ts) { 2953 op->args[i] = temp_arg(dir_ts); 2954 changes = true; 2955 if (IS_DEAD_ARG(i)) { 2956 arg_ts->state = TS_DEAD; 2957 } 2958 } 2959 } 2960 } 2961 2962 /* Liveness analysis should ensure that the following are 2963 all correct, for call sites and basic block end points. */ 2964 if (call_flags & TCG_CALL_NO_READ_GLOBALS) { 2965 /* Nothing to do */ 2966 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) { 2967 for (i = 0; i < nb_globals; ++i) { 2968 /* Liveness should see that globals are synced back, 2969 that is, either TS_DEAD or TS_MEM. */ 2970 arg_ts = &s->temps[i]; 2971 tcg_debug_assert(arg_ts->state_ptr == 0 2972 || arg_ts->state != 0); 2973 } 2974 } else { 2975 for (i = 0; i < nb_globals; ++i) { 2976 /* Liveness should see that globals are saved back, 2977 that is, TS_DEAD, waiting to be reloaded. */ 2978 arg_ts = &s->temps[i]; 2979 tcg_debug_assert(arg_ts->state_ptr == 0 2980 || arg_ts->state == TS_DEAD); 2981 } 2982 } 2983 2984 /* Outputs become available. */ 2985 if (opc == INDEX_op_mov_i32 || opc == INDEX_op_mov_i64) { 2986 arg_ts = arg_temp(op->args[0]); 2987 dir_ts = arg_ts->state_ptr; 2988 if (dir_ts) { 2989 op->args[0] = temp_arg(dir_ts); 2990 changes = true; 2991 2992 /* The output is now live and modified. */ 2993 arg_ts->state = 0; 2994 2995 if (NEED_SYNC_ARG(0)) { 2996 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 2997 ? INDEX_op_st_i32 2998 : INDEX_op_st_i64); 2999 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 3000 TCGTemp *out_ts = dir_ts; 3001 3002 if (IS_DEAD_ARG(0)) { 3003 out_ts = arg_temp(op->args[1]); 3004 arg_ts->state = TS_DEAD; 3005 tcg_op_remove(s, op); 3006 } else { 3007 arg_ts->state = TS_MEM; 3008 } 3009 3010 sop->args[0] = temp_arg(out_ts); 3011 sop->args[1] = temp_arg(arg_ts->mem_base); 3012 sop->args[2] = arg_ts->mem_offset; 3013 } else { 3014 tcg_debug_assert(!IS_DEAD_ARG(0)); 3015 } 3016 } 3017 } else { 3018 for (i = 0; i < nb_oargs; i++) { 3019 arg_ts = arg_temp(op->args[i]); 3020 dir_ts = arg_ts->state_ptr; 3021 if (!dir_ts) { 3022 continue; 3023 } 3024 op->args[i] = temp_arg(dir_ts); 3025 changes = true; 3026 3027 /* The output is now live and modified. */ 3028 arg_ts->state = 0; 3029 3030 /* Sync outputs upon their last write. */ 3031 if (NEED_SYNC_ARG(i)) { 3032 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 3033 ? INDEX_op_st_i32 3034 : INDEX_op_st_i64); 3035 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 3036 3037 sop->args[0] = temp_arg(dir_ts); 3038 sop->args[1] = temp_arg(arg_ts->mem_base); 3039 sop->args[2] = arg_ts->mem_offset; 3040 3041 arg_ts->state = TS_MEM; 3042 } 3043 /* Drop outputs that are dead. */ 3044 if (IS_DEAD_ARG(i)) { 3045 arg_ts->state = TS_DEAD; 3046 } 3047 } 3048 } 3049 } 3050 3051 return changes; 3052 } 3053 3054 #ifdef CONFIG_DEBUG_TCG 3055 static void dump_regs(TCGContext *s) 3056 { 3057 TCGTemp *ts; 3058 int i; 3059 char buf[64]; 3060 3061 for(i = 0; i < s->nb_temps; i++) { 3062 ts = &s->temps[i]; 3063 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3064 switch(ts->val_type) { 3065 case TEMP_VAL_REG: 3066 printf("%s", tcg_target_reg_names[ts->reg]); 3067 break; 3068 case TEMP_VAL_MEM: 3069 printf("%d(%s)", (int)ts->mem_offset, 3070 tcg_target_reg_names[ts->mem_base->reg]); 3071 break; 3072 case TEMP_VAL_CONST: 3073 printf("$0x%" TCG_PRIlx, ts->val); 3074 break; 3075 case TEMP_VAL_DEAD: 3076 printf("D"); 3077 break; 3078 default: 3079 printf("???"); 3080 break; 3081 } 3082 printf("\n"); 3083 } 3084 3085 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 3086 if (s->reg_to_temp[i] != NULL) { 3087 printf("%s: %s\n", 3088 tcg_target_reg_names[i], 3089 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i])); 3090 } 3091 } 3092 } 3093 3094 static void check_regs(TCGContext *s) 3095 { 3096 int reg; 3097 int k; 3098 TCGTemp *ts; 3099 char buf[64]; 3100 3101 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) { 3102 ts = s->reg_to_temp[reg]; 3103 if (ts != NULL) { 3104 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) { 3105 printf("Inconsistency for register %s:\n", 3106 tcg_target_reg_names[reg]); 3107 goto fail; 3108 } 3109 } 3110 } 3111 for (k = 0; k < s->nb_temps; k++) { 3112 ts = &s->temps[k]; 3113 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg 3114 && s->reg_to_temp[ts->reg] != ts) { 3115 printf("Inconsistency for temp %s:\n", 3116 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3117 fail: 3118 printf("reg state:\n"); 3119 dump_regs(s); 3120 tcg_abort(); 3121 } 3122 } 3123 } 3124 #endif 3125 3126 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts) 3127 { 3128 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64) 3129 /* Sparc64 stack is accessed with offset of 2047 */ 3130 s->current_frame_offset = (s->current_frame_offset + 3131 (tcg_target_long)sizeof(tcg_target_long) - 1) & 3132 ~(sizeof(tcg_target_long) - 1); 3133 #endif 3134 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) > 3135 s->frame_end) { 3136 tcg_abort(); 3137 } 3138 ts->mem_offset = s->current_frame_offset; 3139 ts->mem_base = s->frame_temp; 3140 ts->mem_allocated = 1; 3141 s->current_frame_offset += sizeof(tcg_target_long); 3142 } 3143 3144 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet); 3145 3146 /* Mark a temporary as free or dead. If 'free_or_dead' is negative, 3147 mark it free; otherwise mark it dead. */ 3148 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead) 3149 { 3150 if (ts->fixed_reg) { 3151 return; 3152 } 3153 if (ts->val_type == TEMP_VAL_REG) { 3154 s->reg_to_temp[ts->reg] = NULL; 3155 } 3156 ts->val_type = (free_or_dead < 0 3157 || ts->temp_local 3158 || ts->temp_global 3159 ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 3160 } 3161 3162 /* Mark a temporary as dead. */ 3163 static inline void temp_dead(TCGContext *s, TCGTemp *ts) 3164 { 3165 temp_free_or_dead(s, ts, 1); 3166 } 3167 3168 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary 3169 registers needs to be allocated to store a constant. If 'free_or_dead' 3170 is non-zero, subsequently release the temporary; if it is positive, the 3171 temp is dead; if it is negative, the temp is free. */ 3172 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs, 3173 TCGRegSet preferred_regs, int free_or_dead) 3174 { 3175 if (ts->fixed_reg) { 3176 return; 3177 } 3178 if (!ts->mem_coherent) { 3179 if (!ts->mem_allocated) { 3180 temp_allocate_frame(s, ts); 3181 } 3182 switch (ts->val_type) { 3183 case TEMP_VAL_CONST: 3184 /* If we're going to free the temp immediately, then we won't 3185 require it later in a register, so attempt to store the 3186 constant to memory directly. */ 3187 if (free_or_dead 3188 && tcg_out_sti(s, ts->type, ts->val, 3189 ts->mem_base->reg, ts->mem_offset)) { 3190 break; 3191 } 3192 temp_load(s, ts, tcg_target_available_regs[ts->type], 3193 allocated_regs, preferred_regs); 3194 /* fallthrough */ 3195 3196 case TEMP_VAL_REG: 3197 tcg_out_st(s, ts->type, ts->reg, 3198 ts->mem_base->reg, ts->mem_offset); 3199 break; 3200 3201 case TEMP_VAL_MEM: 3202 break; 3203 3204 case TEMP_VAL_DEAD: 3205 default: 3206 tcg_abort(); 3207 } 3208 ts->mem_coherent = 1; 3209 } 3210 if (free_or_dead) { 3211 temp_free_or_dead(s, ts, free_or_dead); 3212 } 3213 } 3214 3215 /* free register 'reg' by spilling the corresponding temporary if necessary */ 3216 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs) 3217 { 3218 TCGTemp *ts = s->reg_to_temp[reg]; 3219 if (ts != NULL) { 3220 temp_sync(s, ts, allocated_regs, 0, -1); 3221 } 3222 } 3223 3224 /** 3225 * tcg_reg_alloc: 3226 * @required_regs: Set of registers in which we must allocate. 3227 * @allocated_regs: Set of registers which must be avoided. 3228 * @preferred_regs: Set of registers we should prefer. 3229 * @rev: True if we search the registers in "indirect" order. 3230 * 3231 * The allocated register must be in @required_regs & ~@allocated_regs, 3232 * but if we can put it in @preferred_regs we may save a move later. 3233 */ 3234 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs, 3235 TCGRegSet allocated_regs, 3236 TCGRegSet preferred_regs, bool rev) 3237 { 3238 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order); 3239 TCGRegSet reg_ct[2]; 3240 const int *order; 3241 3242 reg_ct[1] = required_regs & ~allocated_regs; 3243 tcg_debug_assert(reg_ct[1] != 0); 3244 reg_ct[0] = reg_ct[1] & preferred_regs; 3245 3246 /* Skip the preferred_regs option if it cannot be satisfied, 3247 or if the preference made no difference. */ 3248 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1]; 3249 3250 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order; 3251 3252 /* Try free registers, preferences first. */ 3253 for (j = f; j < 2; j++) { 3254 TCGRegSet set = reg_ct[j]; 3255 3256 if (tcg_regset_single(set)) { 3257 /* One register in the set. */ 3258 TCGReg reg = tcg_regset_first(set); 3259 if (s->reg_to_temp[reg] == NULL) { 3260 return reg; 3261 } 3262 } else { 3263 for (i = 0; i < n; i++) { 3264 TCGReg reg = order[i]; 3265 if (s->reg_to_temp[reg] == NULL && 3266 tcg_regset_test_reg(set, reg)) { 3267 return reg; 3268 } 3269 } 3270 } 3271 } 3272 3273 /* We must spill something. */ 3274 for (j = f; j < 2; j++) { 3275 TCGRegSet set = reg_ct[j]; 3276 3277 if (tcg_regset_single(set)) { 3278 /* One register in the set. */ 3279 TCGReg reg = tcg_regset_first(set); 3280 tcg_reg_free(s, reg, allocated_regs); 3281 return reg; 3282 } else { 3283 for (i = 0; i < n; i++) { 3284 TCGReg reg = order[i]; 3285 if (tcg_regset_test_reg(set, reg)) { 3286 tcg_reg_free(s, reg, allocated_regs); 3287 return reg; 3288 } 3289 } 3290 } 3291 } 3292 3293 tcg_abort(); 3294 } 3295 3296 /* Make sure the temporary is in a register. If needed, allocate the register 3297 from DESIRED while avoiding ALLOCATED. */ 3298 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs, 3299 TCGRegSet allocated_regs, TCGRegSet preferred_regs) 3300 { 3301 TCGReg reg; 3302 3303 switch (ts->val_type) { 3304 case TEMP_VAL_REG: 3305 return; 3306 case TEMP_VAL_CONST: 3307 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3308 preferred_regs, ts->indirect_base); 3309 tcg_out_movi(s, ts->type, reg, ts->val); 3310 ts->mem_coherent = 0; 3311 break; 3312 case TEMP_VAL_MEM: 3313 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3314 preferred_regs, ts->indirect_base); 3315 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset); 3316 ts->mem_coherent = 1; 3317 break; 3318 case TEMP_VAL_DEAD: 3319 default: 3320 tcg_abort(); 3321 } 3322 ts->reg = reg; 3323 ts->val_type = TEMP_VAL_REG; 3324 s->reg_to_temp[reg] = ts; 3325 } 3326 3327 /* Save a temporary to memory. 'allocated_regs' is used in case a 3328 temporary registers needs to be allocated to store a constant. */ 3329 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs) 3330 { 3331 /* The liveness analysis already ensures that globals are back 3332 in memory. Keep an tcg_debug_assert for safety. */ 3333 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg); 3334 } 3335 3336 /* save globals to their canonical location and assume they can be 3337 modified be the following code. 'allocated_regs' is used in case a 3338 temporary registers needs to be allocated to store a constant. */ 3339 static void save_globals(TCGContext *s, TCGRegSet allocated_regs) 3340 { 3341 int i, n; 3342 3343 for (i = 0, n = s->nb_globals; i < n; i++) { 3344 temp_save(s, &s->temps[i], allocated_regs); 3345 } 3346 } 3347 3348 /* sync globals to their canonical location and assume they can be 3349 read by the following code. 'allocated_regs' is used in case a 3350 temporary registers needs to be allocated to store a constant. */ 3351 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs) 3352 { 3353 int i, n; 3354 3355 for (i = 0, n = s->nb_globals; i < n; i++) { 3356 TCGTemp *ts = &s->temps[i]; 3357 tcg_debug_assert(ts->val_type != TEMP_VAL_REG 3358 || ts->fixed_reg 3359 || ts->mem_coherent); 3360 } 3361 } 3362 3363 /* at the end of a basic block, we assume all temporaries are dead and 3364 all globals are stored at their canonical location. */ 3365 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs) 3366 { 3367 int i; 3368 3369 for (i = s->nb_globals; i < s->nb_temps; i++) { 3370 TCGTemp *ts = &s->temps[i]; 3371 if (ts->temp_local) { 3372 temp_save(s, ts, allocated_regs); 3373 } else { 3374 /* The liveness analysis already ensures that temps are dead. 3375 Keep an tcg_debug_assert for safety. */ 3376 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3377 } 3378 } 3379 3380 save_globals(s, allocated_regs); 3381 } 3382 3383 /* 3384 * Specialized code generation for INDEX_op_movi_*. 3385 */ 3386 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots, 3387 tcg_target_ulong val, TCGLifeData arg_life, 3388 TCGRegSet preferred_regs) 3389 { 3390 /* ENV should not be modified. */ 3391 tcg_debug_assert(!ots->fixed_reg); 3392 3393 /* The movi is not explicitly generated here. */ 3394 if (ots->val_type == TEMP_VAL_REG) { 3395 s->reg_to_temp[ots->reg] = NULL; 3396 } 3397 ots->val_type = TEMP_VAL_CONST; 3398 ots->val = val; 3399 ots->mem_coherent = 0; 3400 if (NEED_SYNC_ARG(0)) { 3401 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0)); 3402 } else if (IS_DEAD_ARG(0)) { 3403 temp_dead(s, ots); 3404 } 3405 } 3406 3407 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op) 3408 { 3409 TCGTemp *ots = arg_temp(op->args[0]); 3410 tcg_target_ulong val = op->args[1]; 3411 3412 tcg_reg_alloc_do_movi(s, ots, val, op->life, op->output_pref[0]); 3413 } 3414 3415 /* 3416 * Specialized code generation for INDEX_op_mov_*. 3417 */ 3418 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op) 3419 { 3420 const TCGLifeData arg_life = op->life; 3421 TCGRegSet allocated_regs, preferred_regs; 3422 TCGTemp *ts, *ots; 3423 TCGType otype, itype; 3424 3425 allocated_regs = s->reserved_regs; 3426 preferred_regs = op->output_pref[0]; 3427 ots = arg_temp(op->args[0]); 3428 ts = arg_temp(op->args[1]); 3429 3430 /* ENV should not be modified. */ 3431 tcg_debug_assert(!ots->fixed_reg); 3432 3433 /* Note that otype != itype for no-op truncation. */ 3434 otype = ots->type; 3435 itype = ts->type; 3436 3437 if (ts->val_type == TEMP_VAL_CONST) { 3438 /* propagate constant or generate sti */ 3439 tcg_target_ulong val = ts->val; 3440 if (IS_DEAD_ARG(1)) { 3441 temp_dead(s, ts); 3442 } 3443 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs); 3444 return; 3445 } 3446 3447 /* If the source value is in memory we're going to be forced 3448 to have it in a register in order to perform the copy. Copy 3449 the SOURCE value into its own register first, that way we 3450 don't have to reload SOURCE the next time it is used. */ 3451 if (ts->val_type == TEMP_VAL_MEM) { 3452 temp_load(s, ts, tcg_target_available_regs[itype], 3453 allocated_regs, preferred_regs); 3454 } 3455 3456 tcg_debug_assert(ts->val_type == TEMP_VAL_REG); 3457 if (IS_DEAD_ARG(0)) { 3458 /* mov to a non-saved dead register makes no sense (even with 3459 liveness analysis disabled). */ 3460 tcg_debug_assert(NEED_SYNC_ARG(0)); 3461 if (!ots->mem_allocated) { 3462 temp_allocate_frame(s, ots); 3463 } 3464 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset); 3465 if (IS_DEAD_ARG(1)) { 3466 temp_dead(s, ts); 3467 } 3468 temp_dead(s, ots); 3469 } else { 3470 if (IS_DEAD_ARG(1) && !ts->fixed_reg) { 3471 /* the mov can be suppressed */ 3472 if (ots->val_type == TEMP_VAL_REG) { 3473 s->reg_to_temp[ots->reg] = NULL; 3474 } 3475 ots->reg = ts->reg; 3476 temp_dead(s, ts); 3477 } else { 3478 if (ots->val_type != TEMP_VAL_REG) { 3479 /* When allocating a new register, make sure to not spill the 3480 input one. */ 3481 tcg_regset_set_reg(allocated_regs, ts->reg); 3482 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype], 3483 allocated_regs, preferred_regs, 3484 ots->indirect_base); 3485 } 3486 if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) { 3487 /* 3488 * Cross register class move not supported. 3489 * Store the source register into the destination slot 3490 * and leave the destination temp as TEMP_VAL_MEM. 3491 */ 3492 assert(!ots->fixed_reg); 3493 if (!ts->mem_allocated) { 3494 temp_allocate_frame(s, ots); 3495 } 3496 tcg_out_st(s, ts->type, ts->reg, 3497 ots->mem_base->reg, ots->mem_offset); 3498 ots->mem_coherent = 1; 3499 temp_free_or_dead(s, ots, -1); 3500 return; 3501 } 3502 } 3503 ots->val_type = TEMP_VAL_REG; 3504 ots->mem_coherent = 0; 3505 s->reg_to_temp[ots->reg] = ots; 3506 if (NEED_SYNC_ARG(0)) { 3507 temp_sync(s, ots, allocated_regs, 0, 0); 3508 } 3509 } 3510 } 3511 3512 /* 3513 * Specialized code generation for INDEX_op_dup_vec. 3514 */ 3515 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op) 3516 { 3517 const TCGLifeData arg_life = op->life; 3518 TCGRegSet dup_out_regs, dup_in_regs; 3519 TCGTemp *its, *ots; 3520 TCGType itype, vtype; 3521 intptr_t endian_fixup; 3522 unsigned vece; 3523 bool ok; 3524 3525 ots = arg_temp(op->args[0]); 3526 its = arg_temp(op->args[1]); 3527 3528 /* ENV should not be modified. */ 3529 tcg_debug_assert(!ots->fixed_reg); 3530 3531 itype = its->type; 3532 vece = TCGOP_VECE(op); 3533 vtype = TCGOP_VECL(op) + TCG_TYPE_V64; 3534 3535 if (its->val_type == TEMP_VAL_CONST) { 3536 /* Propagate constant via movi -> dupi. */ 3537 tcg_target_ulong val = its->val; 3538 if (IS_DEAD_ARG(1)) { 3539 temp_dead(s, its); 3540 } 3541 tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]); 3542 return; 3543 } 3544 3545 dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].u.regs; 3546 dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].u.regs; 3547 3548 /* Allocate the output register now. */ 3549 if (ots->val_type != TEMP_VAL_REG) { 3550 TCGRegSet allocated_regs = s->reserved_regs; 3551 3552 if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) { 3553 /* Make sure to not spill the input register. */ 3554 tcg_regset_set_reg(allocated_regs, its->reg); 3555 } 3556 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs, 3557 op->output_pref[0], ots->indirect_base); 3558 ots->val_type = TEMP_VAL_REG; 3559 ots->mem_coherent = 0; 3560 s->reg_to_temp[ots->reg] = ots; 3561 } 3562 3563 switch (its->val_type) { 3564 case TEMP_VAL_REG: 3565 /* 3566 * The dup constriaints must be broad, covering all possible VECE. 3567 * However, tcg_op_dup_vec() gets to see the VECE and we allow it 3568 * to fail, indicating that extra moves are required for that case. 3569 */ 3570 if (tcg_regset_test_reg(dup_in_regs, its->reg)) { 3571 if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) { 3572 goto done; 3573 } 3574 /* Try again from memory or a vector input register. */ 3575 } 3576 if (!its->mem_coherent) { 3577 /* 3578 * The input register is not synced, and so an extra store 3579 * would be required to use memory. Attempt an integer-vector 3580 * register move first. We do not have a TCGRegSet for this. 3581 */ 3582 if (tcg_out_mov(s, itype, ots->reg, its->reg)) { 3583 break; 3584 } 3585 /* Sync the temp back to its slot and load from there. */ 3586 temp_sync(s, its, s->reserved_regs, 0, 0); 3587 } 3588 /* fall through */ 3589 3590 case TEMP_VAL_MEM: 3591 #ifdef HOST_WORDS_BIGENDIAN 3592 endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8; 3593 endian_fixup -= 1 << vece; 3594 #else 3595 endian_fixup = 0; 3596 #endif 3597 if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg, 3598 its->mem_offset + endian_fixup)) { 3599 goto done; 3600 } 3601 tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset); 3602 break; 3603 3604 default: 3605 g_assert_not_reached(); 3606 } 3607 3608 /* We now have a vector input register, so dup must succeed. */ 3609 ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg); 3610 tcg_debug_assert(ok); 3611 3612 done: 3613 if (IS_DEAD_ARG(1)) { 3614 temp_dead(s, its); 3615 } 3616 if (NEED_SYNC_ARG(0)) { 3617 temp_sync(s, ots, s->reserved_regs, 0, 0); 3618 } 3619 if (IS_DEAD_ARG(0)) { 3620 temp_dead(s, ots); 3621 } 3622 } 3623 3624 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op) 3625 { 3626 const TCGLifeData arg_life = op->life; 3627 const TCGOpDef * const def = &tcg_op_defs[op->opc]; 3628 TCGRegSet i_allocated_regs; 3629 TCGRegSet o_allocated_regs; 3630 int i, k, nb_iargs, nb_oargs; 3631 TCGReg reg; 3632 TCGArg arg; 3633 const TCGArgConstraint *arg_ct; 3634 TCGTemp *ts; 3635 TCGArg new_args[TCG_MAX_OP_ARGS]; 3636 int const_args[TCG_MAX_OP_ARGS]; 3637 3638 nb_oargs = def->nb_oargs; 3639 nb_iargs = def->nb_iargs; 3640 3641 /* copy constants */ 3642 memcpy(new_args + nb_oargs + nb_iargs, 3643 op->args + nb_oargs + nb_iargs, 3644 sizeof(TCGArg) * def->nb_cargs); 3645 3646 i_allocated_regs = s->reserved_regs; 3647 o_allocated_regs = s->reserved_regs; 3648 3649 /* satisfy input constraints */ 3650 for (k = 0; k < nb_iargs; k++) { 3651 TCGRegSet i_preferred_regs, o_preferred_regs; 3652 3653 i = def->sorted_args[nb_oargs + k]; 3654 arg = op->args[i]; 3655 arg_ct = &def->args_ct[i]; 3656 ts = arg_temp(arg); 3657 3658 if (ts->val_type == TEMP_VAL_CONST 3659 && tcg_target_const_match(ts->val, ts->type, arg_ct)) { 3660 /* constant is OK for instruction */ 3661 const_args[i] = 1; 3662 new_args[i] = ts->val; 3663 continue; 3664 } 3665 3666 i_preferred_regs = o_preferred_regs = 0; 3667 if (arg_ct->ct & TCG_CT_IALIAS) { 3668 o_preferred_regs = op->output_pref[arg_ct->alias_index]; 3669 if (ts->fixed_reg) { 3670 /* if fixed register, we must allocate a new register 3671 if the alias is not the same register */ 3672 if (arg != op->args[arg_ct->alias_index]) { 3673 goto allocate_in_reg; 3674 } 3675 } else { 3676 /* if the input is aliased to an output and if it is 3677 not dead after the instruction, we must allocate 3678 a new register and move it */ 3679 if (!IS_DEAD_ARG(i)) { 3680 goto allocate_in_reg; 3681 } 3682 3683 /* check if the current register has already been allocated 3684 for another input aliased to an output */ 3685 if (ts->val_type == TEMP_VAL_REG) { 3686 int k2, i2; 3687 reg = ts->reg; 3688 for (k2 = 0 ; k2 < k ; k2++) { 3689 i2 = def->sorted_args[nb_oargs + k2]; 3690 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) && 3691 reg == new_args[i2]) { 3692 goto allocate_in_reg; 3693 } 3694 } 3695 } 3696 i_preferred_regs = o_preferred_regs; 3697 } 3698 } 3699 3700 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs, i_preferred_regs); 3701 reg = ts->reg; 3702 3703 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) { 3704 /* nothing to do : the constraint is satisfied */ 3705 } else { 3706 allocate_in_reg: 3707 /* allocate a new register matching the constraint 3708 and move the temporary register into it */ 3709 temp_load(s, ts, tcg_target_available_regs[ts->type], 3710 i_allocated_regs, 0); 3711 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs, 3712 o_preferred_regs, ts->indirect_base); 3713 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3714 /* 3715 * Cross register class move not supported. Sync the 3716 * temp back to its slot and load from there. 3717 */ 3718 temp_sync(s, ts, i_allocated_regs, 0, 0); 3719 tcg_out_ld(s, ts->type, reg, 3720 ts->mem_base->reg, ts->mem_offset); 3721 } 3722 } 3723 new_args[i] = reg; 3724 const_args[i] = 0; 3725 tcg_regset_set_reg(i_allocated_regs, reg); 3726 } 3727 3728 /* mark dead temporaries and free the associated registers */ 3729 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3730 if (IS_DEAD_ARG(i)) { 3731 temp_dead(s, arg_temp(op->args[i])); 3732 } 3733 } 3734 3735 if (def->flags & TCG_OPF_BB_END) { 3736 tcg_reg_alloc_bb_end(s, i_allocated_regs); 3737 } else { 3738 if (def->flags & TCG_OPF_CALL_CLOBBER) { 3739 /* XXX: permit generic clobber register list ? */ 3740 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3741 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3742 tcg_reg_free(s, i, i_allocated_regs); 3743 } 3744 } 3745 } 3746 if (def->flags & TCG_OPF_SIDE_EFFECTS) { 3747 /* sync globals if the op has side effects and might trigger 3748 an exception. */ 3749 sync_globals(s, i_allocated_regs); 3750 } 3751 3752 /* satisfy the output constraints */ 3753 for(k = 0; k < nb_oargs; k++) { 3754 i = def->sorted_args[k]; 3755 arg = op->args[i]; 3756 arg_ct = &def->args_ct[i]; 3757 ts = arg_temp(arg); 3758 3759 /* ENV should not be modified. */ 3760 tcg_debug_assert(!ts->fixed_reg); 3761 3762 if ((arg_ct->ct & TCG_CT_ALIAS) 3763 && !const_args[arg_ct->alias_index]) { 3764 reg = new_args[arg_ct->alias_index]; 3765 } else if (arg_ct->ct & TCG_CT_NEWREG) { 3766 reg = tcg_reg_alloc(s, arg_ct->u.regs, 3767 i_allocated_regs | o_allocated_regs, 3768 op->output_pref[k], ts->indirect_base); 3769 } else { 3770 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs, 3771 op->output_pref[k], ts->indirect_base); 3772 } 3773 tcg_regset_set_reg(o_allocated_regs, reg); 3774 if (ts->val_type == TEMP_VAL_REG) { 3775 s->reg_to_temp[ts->reg] = NULL; 3776 } 3777 ts->val_type = TEMP_VAL_REG; 3778 ts->reg = reg; 3779 /* 3780 * Temp value is modified, so the value kept in memory is 3781 * potentially not the same. 3782 */ 3783 ts->mem_coherent = 0; 3784 s->reg_to_temp[reg] = ts; 3785 new_args[i] = reg; 3786 } 3787 } 3788 3789 /* emit instruction */ 3790 if (def->flags & TCG_OPF_VECTOR) { 3791 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op), 3792 new_args, const_args); 3793 } else { 3794 tcg_out_op(s, op->opc, new_args, const_args); 3795 } 3796 3797 /* move the outputs in the correct register if needed */ 3798 for(i = 0; i < nb_oargs; i++) { 3799 ts = arg_temp(op->args[i]); 3800 3801 /* ENV should not be modified. */ 3802 tcg_debug_assert(!ts->fixed_reg); 3803 3804 if (NEED_SYNC_ARG(i)) { 3805 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i)); 3806 } else if (IS_DEAD_ARG(i)) { 3807 temp_dead(s, ts); 3808 } 3809 } 3810 } 3811 3812 #ifdef TCG_TARGET_STACK_GROWSUP 3813 #define STACK_DIR(x) (-(x)) 3814 #else 3815 #define STACK_DIR(x) (x) 3816 #endif 3817 3818 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op) 3819 { 3820 const int nb_oargs = TCGOP_CALLO(op); 3821 const int nb_iargs = TCGOP_CALLI(op); 3822 const TCGLifeData arg_life = op->life; 3823 int flags, nb_regs, i; 3824 TCGReg reg; 3825 TCGArg arg; 3826 TCGTemp *ts; 3827 intptr_t stack_offset; 3828 size_t call_stack_size; 3829 tcg_insn_unit *func_addr; 3830 int allocate_args; 3831 TCGRegSet allocated_regs; 3832 3833 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs]; 3834 flags = op->args[nb_oargs + nb_iargs + 1]; 3835 3836 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 3837 if (nb_regs > nb_iargs) { 3838 nb_regs = nb_iargs; 3839 } 3840 3841 /* assign stack slots first */ 3842 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long); 3843 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) & 3844 ~(TCG_TARGET_STACK_ALIGN - 1); 3845 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE); 3846 if (allocate_args) { 3847 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed, 3848 preallocate call stack */ 3849 tcg_abort(); 3850 } 3851 3852 stack_offset = TCG_TARGET_CALL_STACK_OFFSET; 3853 for (i = nb_regs; i < nb_iargs; i++) { 3854 arg = op->args[nb_oargs + i]; 3855 #ifdef TCG_TARGET_STACK_GROWSUP 3856 stack_offset -= sizeof(tcg_target_long); 3857 #endif 3858 if (arg != TCG_CALL_DUMMY_ARG) { 3859 ts = arg_temp(arg); 3860 temp_load(s, ts, tcg_target_available_regs[ts->type], 3861 s->reserved_regs, 0); 3862 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset); 3863 } 3864 #ifndef TCG_TARGET_STACK_GROWSUP 3865 stack_offset += sizeof(tcg_target_long); 3866 #endif 3867 } 3868 3869 /* assign input registers */ 3870 allocated_regs = s->reserved_regs; 3871 for (i = 0; i < nb_regs; i++) { 3872 arg = op->args[nb_oargs + i]; 3873 if (arg != TCG_CALL_DUMMY_ARG) { 3874 ts = arg_temp(arg); 3875 reg = tcg_target_call_iarg_regs[i]; 3876 3877 if (ts->val_type == TEMP_VAL_REG) { 3878 if (ts->reg != reg) { 3879 tcg_reg_free(s, reg, allocated_regs); 3880 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3881 /* 3882 * Cross register class move not supported. Sync the 3883 * temp back to its slot and load from there. 3884 */ 3885 temp_sync(s, ts, allocated_regs, 0, 0); 3886 tcg_out_ld(s, ts->type, reg, 3887 ts->mem_base->reg, ts->mem_offset); 3888 } 3889 } 3890 } else { 3891 TCGRegSet arg_set = 0; 3892 3893 tcg_reg_free(s, reg, allocated_regs); 3894 tcg_regset_set_reg(arg_set, reg); 3895 temp_load(s, ts, arg_set, allocated_regs, 0); 3896 } 3897 3898 tcg_regset_set_reg(allocated_regs, reg); 3899 } 3900 } 3901 3902 /* mark dead temporaries and free the associated registers */ 3903 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 3904 if (IS_DEAD_ARG(i)) { 3905 temp_dead(s, arg_temp(op->args[i])); 3906 } 3907 } 3908 3909 /* clobber call registers */ 3910 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3911 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3912 tcg_reg_free(s, i, allocated_regs); 3913 } 3914 } 3915 3916 /* Save globals if they might be written by the helper, sync them if 3917 they might be read. */ 3918 if (flags & TCG_CALL_NO_READ_GLOBALS) { 3919 /* Nothing to do */ 3920 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) { 3921 sync_globals(s, allocated_regs); 3922 } else { 3923 save_globals(s, allocated_regs); 3924 } 3925 3926 tcg_out_call(s, func_addr); 3927 3928 /* assign output registers and emit moves if needed */ 3929 for(i = 0; i < nb_oargs; i++) { 3930 arg = op->args[i]; 3931 ts = arg_temp(arg); 3932 3933 /* ENV should not be modified. */ 3934 tcg_debug_assert(!ts->fixed_reg); 3935 3936 reg = tcg_target_call_oarg_regs[i]; 3937 tcg_debug_assert(s->reg_to_temp[reg] == NULL); 3938 if (ts->val_type == TEMP_VAL_REG) { 3939 s->reg_to_temp[ts->reg] = NULL; 3940 } 3941 ts->val_type = TEMP_VAL_REG; 3942 ts->reg = reg; 3943 ts->mem_coherent = 0; 3944 s->reg_to_temp[reg] = ts; 3945 if (NEED_SYNC_ARG(i)) { 3946 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i)); 3947 } else if (IS_DEAD_ARG(i)) { 3948 temp_dead(s, ts); 3949 } 3950 } 3951 } 3952 3953 #ifdef CONFIG_PROFILER 3954 3955 /* avoid copy/paste errors */ 3956 #define PROF_ADD(to, from, field) \ 3957 do { \ 3958 (to)->field += atomic_read(&((from)->field)); \ 3959 } while (0) 3960 3961 #define PROF_MAX(to, from, field) \ 3962 do { \ 3963 typeof((from)->field) val__ = atomic_read(&((from)->field)); \ 3964 if (val__ > (to)->field) { \ 3965 (to)->field = val__; \ 3966 } \ 3967 } while (0) 3968 3969 /* Pass in a zero'ed @prof */ 3970 static inline 3971 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table) 3972 { 3973 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3974 unsigned int i; 3975 3976 for (i = 0; i < n_ctxs; i++) { 3977 TCGContext *s = atomic_read(&tcg_ctxs[i]); 3978 const TCGProfile *orig = &s->prof; 3979 3980 if (counters) { 3981 PROF_ADD(prof, orig, cpu_exec_time); 3982 PROF_ADD(prof, orig, tb_count1); 3983 PROF_ADD(prof, orig, tb_count); 3984 PROF_ADD(prof, orig, op_count); 3985 PROF_MAX(prof, orig, op_count_max); 3986 PROF_ADD(prof, orig, temp_count); 3987 PROF_MAX(prof, orig, temp_count_max); 3988 PROF_ADD(prof, orig, del_op_count); 3989 PROF_ADD(prof, orig, code_in_len); 3990 PROF_ADD(prof, orig, code_out_len); 3991 PROF_ADD(prof, orig, search_out_len); 3992 PROF_ADD(prof, orig, interm_time); 3993 PROF_ADD(prof, orig, code_time); 3994 PROF_ADD(prof, orig, la_time); 3995 PROF_ADD(prof, orig, opt_time); 3996 PROF_ADD(prof, orig, restore_count); 3997 PROF_ADD(prof, orig, restore_time); 3998 } 3999 if (table) { 4000 int i; 4001 4002 for (i = 0; i < NB_OPS; i++) { 4003 PROF_ADD(prof, orig, table_op_count[i]); 4004 } 4005 } 4006 } 4007 } 4008 4009 #undef PROF_ADD 4010 #undef PROF_MAX 4011 4012 static void tcg_profile_snapshot_counters(TCGProfile *prof) 4013 { 4014 tcg_profile_snapshot(prof, true, false); 4015 } 4016 4017 static void tcg_profile_snapshot_table(TCGProfile *prof) 4018 { 4019 tcg_profile_snapshot(prof, false, true); 4020 } 4021 4022 void tcg_dump_op_count(void) 4023 { 4024 TCGProfile prof = {}; 4025 int i; 4026 4027 tcg_profile_snapshot_table(&prof); 4028 for (i = 0; i < NB_OPS; i++) { 4029 qemu_printf("%s %" PRId64 "\n", tcg_op_defs[i].name, 4030 prof.table_op_count[i]); 4031 } 4032 } 4033 4034 int64_t tcg_cpu_exec_time(void) 4035 { 4036 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 4037 unsigned int i; 4038 int64_t ret = 0; 4039 4040 for (i = 0; i < n_ctxs; i++) { 4041 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 4042 const TCGProfile *prof = &s->prof; 4043 4044 ret += atomic_read(&prof->cpu_exec_time); 4045 } 4046 return ret; 4047 } 4048 #else 4049 void tcg_dump_op_count(void) 4050 { 4051 qemu_printf("[TCG profiler not compiled]\n"); 4052 } 4053 4054 int64_t tcg_cpu_exec_time(void) 4055 { 4056 error_report("%s: TCG profiler not compiled", __func__); 4057 exit(EXIT_FAILURE); 4058 } 4059 #endif 4060 4061 4062 int tcg_gen_code(TCGContext *s, TranslationBlock *tb) 4063 { 4064 #ifdef CONFIG_PROFILER 4065 TCGProfile *prof = &s->prof; 4066 #endif 4067 int i, num_insns; 4068 TCGOp *op; 4069 4070 #ifdef CONFIG_PROFILER 4071 { 4072 int n = 0; 4073 4074 QTAILQ_FOREACH(op, &s->ops, link) { 4075 n++; 4076 } 4077 atomic_set(&prof->op_count, prof->op_count + n); 4078 if (n > prof->op_count_max) { 4079 atomic_set(&prof->op_count_max, n); 4080 } 4081 4082 n = s->nb_temps; 4083 atomic_set(&prof->temp_count, prof->temp_count + n); 4084 if (n > prof->temp_count_max) { 4085 atomic_set(&prof->temp_count_max, n); 4086 } 4087 } 4088 #endif 4089 4090 #ifdef DEBUG_DISAS 4091 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP) 4092 && qemu_log_in_addr_range(tb->pc))) { 4093 FILE *logfile = qemu_log_lock(); 4094 qemu_log("OP:\n"); 4095 tcg_dump_ops(s, false); 4096 qemu_log("\n"); 4097 qemu_log_unlock(logfile); 4098 } 4099 #endif 4100 4101 #ifdef CONFIG_DEBUG_TCG 4102 /* Ensure all labels referenced have been emitted. */ 4103 { 4104 TCGLabel *l; 4105 bool error = false; 4106 4107 QSIMPLEQ_FOREACH(l, &s->labels, next) { 4108 if (unlikely(!l->present) && l->refs) { 4109 qemu_log_mask(CPU_LOG_TB_OP, 4110 "$L%d referenced but not present.\n", l->id); 4111 error = true; 4112 } 4113 } 4114 assert(!error); 4115 } 4116 #endif 4117 4118 #ifdef CONFIG_PROFILER 4119 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock()); 4120 #endif 4121 4122 #ifdef USE_TCG_OPTIMIZATIONS 4123 tcg_optimize(s); 4124 #endif 4125 4126 #ifdef CONFIG_PROFILER 4127 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock()); 4128 atomic_set(&prof->la_time, prof->la_time - profile_getclock()); 4129 #endif 4130 4131 reachable_code_pass(s); 4132 liveness_pass_1(s); 4133 4134 if (s->nb_indirects > 0) { 4135 #ifdef DEBUG_DISAS 4136 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND) 4137 && qemu_log_in_addr_range(tb->pc))) { 4138 FILE *logfile = qemu_log_lock(); 4139 qemu_log("OP before indirect lowering:\n"); 4140 tcg_dump_ops(s, false); 4141 qemu_log("\n"); 4142 qemu_log_unlock(logfile); 4143 } 4144 #endif 4145 /* Replace indirect temps with direct temps. */ 4146 if (liveness_pass_2(s)) { 4147 /* If changes were made, re-run liveness. */ 4148 liveness_pass_1(s); 4149 } 4150 } 4151 4152 #ifdef CONFIG_PROFILER 4153 atomic_set(&prof->la_time, prof->la_time + profile_getclock()); 4154 #endif 4155 4156 #ifdef DEBUG_DISAS 4157 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT) 4158 && qemu_log_in_addr_range(tb->pc))) { 4159 FILE *logfile = qemu_log_lock(); 4160 qemu_log("OP after optimization and liveness analysis:\n"); 4161 tcg_dump_ops(s, true); 4162 qemu_log("\n"); 4163 qemu_log_unlock(logfile); 4164 } 4165 #endif 4166 4167 tcg_reg_alloc_start(s); 4168 4169 s->code_buf = tb->tc.ptr; 4170 s->code_ptr = tb->tc.ptr; 4171 4172 #ifdef TCG_TARGET_NEED_LDST_LABELS 4173 QSIMPLEQ_INIT(&s->ldst_labels); 4174 #endif 4175 #ifdef TCG_TARGET_NEED_POOL_LABELS 4176 s->pool_labels = NULL; 4177 #endif 4178 4179 num_insns = -1; 4180 QTAILQ_FOREACH(op, &s->ops, link) { 4181 TCGOpcode opc = op->opc; 4182 4183 #ifdef CONFIG_PROFILER 4184 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1); 4185 #endif 4186 4187 switch (opc) { 4188 case INDEX_op_mov_i32: 4189 case INDEX_op_mov_i64: 4190 case INDEX_op_mov_vec: 4191 tcg_reg_alloc_mov(s, op); 4192 break; 4193 case INDEX_op_movi_i32: 4194 case INDEX_op_movi_i64: 4195 case INDEX_op_dupi_vec: 4196 tcg_reg_alloc_movi(s, op); 4197 break; 4198 case INDEX_op_dup_vec: 4199 tcg_reg_alloc_dup(s, op); 4200 break; 4201 case INDEX_op_insn_start: 4202 if (num_insns >= 0) { 4203 size_t off = tcg_current_code_size(s); 4204 s->gen_insn_end_off[num_insns] = off; 4205 /* Assert that we do not overflow our stored offset. */ 4206 assert(s->gen_insn_end_off[num_insns] == off); 4207 } 4208 num_insns++; 4209 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 4210 target_ulong a; 4211 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 4212 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 4213 #else 4214 a = op->args[i]; 4215 #endif 4216 s->gen_insn_data[num_insns][i] = a; 4217 } 4218 break; 4219 case INDEX_op_discard: 4220 temp_dead(s, arg_temp(op->args[0])); 4221 break; 4222 case INDEX_op_set_label: 4223 tcg_reg_alloc_bb_end(s, s->reserved_regs); 4224 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr); 4225 break; 4226 case INDEX_op_call: 4227 tcg_reg_alloc_call(s, op); 4228 break; 4229 default: 4230 /* Sanity check that we've not introduced any unhandled opcodes. */ 4231 tcg_debug_assert(tcg_op_supported(opc)); 4232 /* Note: in order to speed up the code, it would be much 4233 faster to have specialized register allocator functions for 4234 some common argument patterns */ 4235 tcg_reg_alloc_op(s, op); 4236 break; 4237 } 4238 #ifdef CONFIG_DEBUG_TCG 4239 check_regs(s); 4240 #endif 4241 /* Test for (pending) buffer overflow. The assumption is that any 4242 one operation beginning below the high water mark cannot overrun 4243 the buffer completely. Thus we can test for overflow after 4244 generating code without having to check during generation. */ 4245 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) { 4246 return -1; 4247 } 4248 /* Test for TB overflow, as seen by gen_insn_end_off. */ 4249 if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) { 4250 return -2; 4251 } 4252 } 4253 tcg_debug_assert(num_insns >= 0); 4254 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); 4255 4256 /* Generate TB finalization at the end of block */ 4257 #ifdef TCG_TARGET_NEED_LDST_LABELS 4258 i = tcg_out_ldst_finalize(s); 4259 if (i < 0) { 4260 return i; 4261 } 4262 #endif 4263 #ifdef TCG_TARGET_NEED_POOL_LABELS 4264 i = tcg_out_pool_finalize(s); 4265 if (i < 0) { 4266 return i; 4267 } 4268 #endif 4269 if (!tcg_resolve_relocs(s)) { 4270 return -2; 4271 } 4272 4273 /* flush instruction cache */ 4274 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr); 4275 4276 return tcg_current_code_size(s); 4277 } 4278 4279 #ifdef CONFIG_PROFILER 4280 void tcg_dump_info(void) 4281 { 4282 TCGProfile prof = {}; 4283 const TCGProfile *s; 4284 int64_t tb_count; 4285 int64_t tb_div_count; 4286 int64_t tot; 4287 4288 tcg_profile_snapshot_counters(&prof); 4289 s = &prof; 4290 tb_count = s->tb_count; 4291 tb_div_count = tb_count ? tb_count : 1; 4292 tot = s->interm_time + s->code_time; 4293 4294 qemu_printf("JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n", 4295 tot, tot / 2.4e9); 4296 qemu_printf("translated TBs %" PRId64 " (aborted=%" PRId64 4297 " %0.1f%%)\n", 4298 tb_count, s->tb_count1 - tb_count, 4299 (double)(s->tb_count1 - s->tb_count) 4300 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0); 4301 qemu_printf("avg ops/TB %0.1f max=%d\n", 4302 (double)s->op_count / tb_div_count, s->op_count_max); 4303 qemu_printf("deleted ops/TB %0.2f\n", 4304 (double)s->del_op_count / tb_div_count); 4305 qemu_printf("avg temps/TB %0.2f max=%d\n", 4306 (double)s->temp_count / tb_div_count, s->temp_count_max); 4307 qemu_printf("avg host code/TB %0.1f\n", 4308 (double)s->code_out_len / tb_div_count); 4309 qemu_printf("avg search data/TB %0.1f\n", 4310 (double)s->search_out_len / tb_div_count); 4311 4312 qemu_printf("cycles/op %0.1f\n", 4313 s->op_count ? (double)tot / s->op_count : 0); 4314 qemu_printf("cycles/in byte %0.1f\n", 4315 s->code_in_len ? (double)tot / s->code_in_len : 0); 4316 qemu_printf("cycles/out byte %0.1f\n", 4317 s->code_out_len ? (double)tot / s->code_out_len : 0); 4318 qemu_printf("cycles/search byte %0.1f\n", 4319 s->search_out_len ? (double)tot / s->search_out_len : 0); 4320 if (tot == 0) { 4321 tot = 1; 4322 } 4323 qemu_printf(" gen_interm time %0.1f%%\n", 4324 (double)s->interm_time / tot * 100.0); 4325 qemu_printf(" gen_code time %0.1f%%\n", 4326 (double)s->code_time / tot * 100.0); 4327 qemu_printf("optim./code time %0.1f%%\n", 4328 (double)s->opt_time / (s->code_time ? s->code_time : 1) 4329 * 100.0); 4330 qemu_printf("liveness/code time %0.1f%%\n", 4331 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0); 4332 qemu_printf("cpu_restore count %" PRId64 "\n", 4333 s->restore_count); 4334 qemu_printf(" avg cycles %0.1f\n", 4335 s->restore_count ? (double)s->restore_time / s->restore_count : 0); 4336 } 4337 #else 4338 void tcg_dump_info(void) 4339 { 4340 qemu_printf("[TCG profiler not compiled]\n"); 4341 } 4342 #endif 4343 4344 #ifdef ELF_HOST_MACHINE 4345 /* In order to use this feature, the backend needs to do three things: 4346 4347 (1) Define ELF_HOST_MACHINE to indicate both what value to 4348 put into the ELF image and to indicate support for the feature. 4349 4350 (2) Define tcg_register_jit. This should create a buffer containing 4351 the contents of a .debug_frame section that describes the post- 4352 prologue unwind info for the tcg machine. 4353 4354 (3) Call tcg_register_jit_int, with the constructed .debug_frame. 4355 */ 4356 4357 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */ 4358 typedef enum { 4359 JIT_NOACTION = 0, 4360 JIT_REGISTER_FN, 4361 JIT_UNREGISTER_FN 4362 } jit_actions_t; 4363 4364 struct jit_code_entry { 4365 struct jit_code_entry *next_entry; 4366 struct jit_code_entry *prev_entry; 4367 const void *symfile_addr; 4368 uint64_t symfile_size; 4369 }; 4370 4371 struct jit_descriptor { 4372 uint32_t version; 4373 uint32_t action_flag; 4374 struct jit_code_entry *relevant_entry; 4375 struct jit_code_entry *first_entry; 4376 }; 4377 4378 void __jit_debug_register_code(void) __attribute__((noinline)); 4379 void __jit_debug_register_code(void) 4380 { 4381 asm(""); 4382 } 4383 4384 /* Must statically initialize the version, because GDB may check 4385 the version before we can set it. */ 4386 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 4387 4388 /* End GDB interface. */ 4389 4390 static int find_string(const char *strtab, const char *str) 4391 { 4392 const char *p = strtab + 1; 4393 4394 while (1) { 4395 if (strcmp(p, str) == 0) { 4396 return p - strtab; 4397 } 4398 p += strlen(p) + 1; 4399 } 4400 } 4401 4402 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size, 4403 const void *debug_frame, 4404 size_t debug_frame_size) 4405 { 4406 struct __attribute__((packed)) DebugInfo { 4407 uint32_t len; 4408 uint16_t version; 4409 uint32_t abbrev; 4410 uint8_t ptr_size; 4411 uint8_t cu_die; 4412 uint16_t cu_lang; 4413 uintptr_t cu_low_pc; 4414 uintptr_t cu_high_pc; 4415 uint8_t fn_die; 4416 char fn_name[16]; 4417 uintptr_t fn_low_pc; 4418 uintptr_t fn_high_pc; 4419 uint8_t cu_eoc; 4420 }; 4421 4422 struct ElfImage { 4423 ElfW(Ehdr) ehdr; 4424 ElfW(Phdr) phdr; 4425 ElfW(Shdr) shdr[7]; 4426 ElfW(Sym) sym[2]; 4427 struct DebugInfo di; 4428 uint8_t da[24]; 4429 char str[80]; 4430 }; 4431 4432 struct ElfImage *img; 4433 4434 static const struct ElfImage img_template = { 4435 .ehdr = { 4436 .e_ident[EI_MAG0] = ELFMAG0, 4437 .e_ident[EI_MAG1] = ELFMAG1, 4438 .e_ident[EI_MAG2] = ELFMAG2, 4439 .e_ident[EI_MAG3] = ELFMAG3, 4440 .e_ident[EI_CLASS] = ELF_CLASS, 4441 .e_ident[EI_DATA] = ELF_DATA, 4442 .e_ident[EI_VERSION] = EV_CURRENT, 4443 .e_type = ET_EXEC, 4444 .e_machine = ELF_HOST_MACHINE, 4445 .e_version = EV_CURRENT, 4446 .e_phoff = offsetof(struct ElfImage, phdr), 4447 .e_shoff = offsetof(struct ElfImage, shdr), 4448 .e_ehsize = sizeof(ElfW(Shdr)), 4449 .e_phentsize = sizeof(ElfW(Phdr)), 4450 .e_phnum = 1, 4451 .e_shentsize = sizeof(ElfW(Shdr)), 4452 .e_shnum = ARRAY_SIZE(img->shdr), 4453 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1, 4454 #ifdef ELF_HOST_FLAGS 4455 .e_flags = ELF_HOST_FLAGS, 4456 #endif 4457 #ifdef ELF_OSABI 4458 .e_ident[EI_OSABI] = ELF_OSABI, 4459 #endif 4460 }, 4461 .phdr = { 4462 .p_type = PT_LOAD, 4463 .p_flags = PF_X, 4464 }, 4465 .shdr = { 4466 [0] = { .sh_type = SHT_NULL }, 4467 /* Trick: The contents of code_gen_buffer are not present in 4468 this fake ELF file; that got allocated elsewhere. Therefore 4469 we mark .text as SHT_NOBITS (similar to .bss) so that readers 4470 will not look for contents. We can record any address. */ 4471 [1] = { /* .text */ 4472 .sh_type = SHT_NOBITS, 4473 .sh_flags = SHF_EXECINSTR | SHF_ALLOC, 4474 }, 4475 [2] = { /* .debug_info */ 4476 .sh_type = SHT_PROGBITS, 4477 .sh_offset = offsetof(struct ElfImage, di), 4478 .sh_size = sizeof(struct DebugInfo), 4479 }, 4480 [3] = { /* .debug_abbrev */ 4481 .sh_type = SHT_PROGBITS, 4482 .sh_offset = offsetof(struct ElfImage, da), 4483 .sh_size = sizeof(img->da), 4484 }, 4485 [4] = { /* .debug_frame */ 4486 .sh_type = SHT_PROGBITS, 4487 .sh_offset = sizeof(struct ElfImage), 4488 }, 4489 [5] = { /* .symtab */ 4490 .sh_type = SHT_SYMTAB, 4491 .sh_offset = offsetof(struct ElfImage, sym), 4492 .sh_size = sizeof(img->sym), 4493 .sh_info = 1, 4494 .sh_link = ARRAY_SIZE(img->shdr) - 1, 4495 .sh_entsize = sizeof(ElfW(Sym)), 4496 }, 4497 [6] = { /* .strtab */ 4498 .sh_type = SHT_STRTAB, 4499 .sh_offset = offsetof(struct ElfImage, str), 4500 .sh_size = sizeof(img->str), 4501 } 4502 }, 4503 .sym = { 4504 [1] = { /* code_gen_buffer */ 4505 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC), 4506 .st_shndx = 1, 4507 } 4508 }, 4509 .di = { 4510 .len = sizeof(struct DebugInfo) - 4, 4511 .version = 2, 4512 .ptr_size = sizeof(void *), 4513 .cu_die = 1, 4514 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */ 4515 .fn_die = 2, 4516 .fn_name = "code_gen_buffer" 4517 }, 4518 .da = { 4519 1, /* abbrev number (the cu) */ 4520 0x11, 1, /* DW_TAG_compile_unit, has children */ 4521 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */ 4522 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4523 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4524 0, 0, /* end of abbrev */ 4525 2, /* abbrev number (the fn) */ 4526 0x2e, 0, /* DW_TAG_subprogram, no children */ 4527 0x3, 0x8, /* DW_AT_name, DW_FORM_string */ 4528 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4529 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4530 0, 0, /* end of abbrev */ 4531 0 /* no more abbrev */ 4532 }, 4533 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0" 4534 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer", 4535 }; 4536 4537 /* We only need a single jit entry; statically allocate it. */ 4538 static struct jit_code_entry one_entry; 4539 4540 uintptr_t buf = (uintptr_t)buf_ptr; 4541 size_t img_size = sizeof(struct ElfImage) + debug_frame_size; 4542 DebugFrameHeader *dfh; 4543 4544 img = g_malloc(img_size); 4545 *img = img_template; 4546 4547 img->phdr.p_vaddr = buf; 4548 img->phdr.p_paddr = buf; 4549 img->phdr.p_memsz = buf_size; 4550 4551 img->shdr[1].sh_name = find_string(img->str, ".text"); 4552 img->shdr[1].sh_addr = buf; 4553 img->shdr[1].sh_size = buf_size; 4554 4555 img->shdr[2].sh_name = find_string(img->str, ".debug_info"); 4556 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev"); 4557 4558 img->shdr[4].sh_name = find_string(img->str, ".debug_frame"); 4559 img->shdr[4].sh_size = debug_frame_size; 4560 4561 img->shdr[5].sh_name = find_string(img->str, ".symtab"); 4562 img->shdr[6].sh_name = find_string(img->str, ".strtab"); 4563 4564 img->sym[1].st_name = find_string(img->str, "code_gen_buffer"); 4565 img->sym[1].st_value = buf; 4566 img->sym[1].st_size = buf_size; 4567 4568 img->di.cu_low_pc = buf; 4569 img->di.cu_high_pc = buf + buf_size; 4570 img->di.fn_low_pc = buf; 4571 img->di.fn_high_pc = buf + buf_size; 4572 4573 dfh = (DebugFrameHeader *)(img + 1); 4574 memcpy(dfh, debug_frame, debug_frame_size); 4575 dfh->fde.func_start = buf; 4576 dfh->fde.func_len = buf_size; 4577 4578 #ifdef DEBUG_JIT 4579 /* Enable this block to be able to debug the ELF image file creation. 4580 One can use readelf, objdump, or other inspection utilities. */ 4581 { 4582 FILE *f = fopen("/tmp/qemu.jit", "w+b"); 4583 if (f) { 4584 if (fwrite(img, img_size, 1, f) != img_size) { 4585 /* Avoid stupid unused return value warning for fwrite. */ 4586 } 4587 fclose(f); 4588 } 4589 } 4590 #endif 4591 4592 one_entry.symfile_addr = img; 4593 one_entry.symfile_size = img_size; 4594 4595 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; 4596 __jit_debug_descriptor.relevant_entry = &one_entry; 4597 __jit_debug_descriptor.first_entry = &one_entry; 4598 __jit_debug_register_code(); 4599 } 4600 #else 4601 /* No support for the feature. Provide the entry point expected by exec.c, 4602 and implement the internal function we declared earlier. */ 4603 4604 static void tcg_register_jit_int(void *buf, size_t size, 4605 const void *debug_frame, 4606 size_t debug_frame_size) 4607 { 4608 } 4609 4610 void tcg_register_jit(void *buf, size_t buf_size) 4611 { 4612 } 4613 #endif /* ELF_HOST_MACHINE */ 4614 4615 #if !TCG_TARGET_MAYBE_vec 4616 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...) 4617 { 4618 g_assert_not_reached(); 4619 } 4620 #endif 4621