1 /* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 /* define it to use liveness analysis (better code) */ 26 #define USE_TCG_OPTIMIZATIONS 27 28 #include "qemu/osdep.h" 29 30 /* Define to jump the ELF file used to communicate with GDB. */ 31 #undef DEBUG_JIT 32 33 #include "qemu/error-report.h" 34 #include "qemu/cutils.h" 35 #include "qemu/host-utils.h" 36 #include "qemu/qemu-print.h" 37 #include "qemu/timer.h" 38 39 /* Note: the long term plan is to reduce the dependencies on the QEMU 40 CPU definitions. Currently they are used for qemu_ld/st 41 instructions */ 42 #define NO_CPU_IO_DEFS 43 #include "cpu.h" 44 45 #include "exec/exec-all.h" 46 47 #if !defined(CONFIG_USER_ONLY) 48 #include "hw/boards.h" 49 #endif 50 51 #include "tcg/tcg-op.h" 52 53 #if UINTPTR_MAX == UINT32_MAX 54 # define ELF_CLASS ELFCLASS32 55 #else 56 # define ELF_CLASS ELFCLASS64 57 #endif 58 #ifdef HOST_WORDS_BIGENDIAN 59 # define ELF_DATA ELFDATA2MSB 60 #else 61 # define ELF_DATA ELFDATA2LSB 62 #endif 63 64 #include "elf.h" 65 #include "exec/log.h" 66 #include "sysemu/sysemu.h" 67 68 /* Forward declarations for functions declared in tcg-target.c.inc and 69 used here. */ 70 static void tcg_target_init(TCGContext *s); 71 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode); 72 static void tcg_target_qemu_prologue(TCGContext *s); 73 static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 74 intptr_t value, intptr_t addend); 75 76 /* The CIE and FDE header definitions will be common to all hosts. */ 77 typedef struct { 78 uint32_t len __attribute__((aligned((sizeof(void *))))); 79 uint32_t id; 80 uint8_t version; 81 char augmentation[1]; 82 uint8_t code_align; 83 uint8_t data_align; 84 uint8_t return_column; 85 } DebugFrameCIE; 86 87 typedef struct QEMU_PACKED { 88 uint32_t len __attribute__((aligned((sizeof(void *))))); 89 uint32_t cie_offset; 90 uintptr_t func_start; 91 uintptr_t func_len; 92 } DebugFrameFDEHeader; 93 94 typedef struct QEMU_PACKED { 95 DebugFrameCIE cie; 96 DebugFrameFDEHeader fde; 97 } DebugFrameHeader; 98 99 static void tcg_register_jit_int(void *buf, size_t size, 100 const void *debug_frame, 101 size_t debug_frame_size) 102 __attribute__((unused)); 103 104 /* Forward declarations for functions declared and used in tcg-target.c.inc. */ 105 static const char *target_parse_constraint(TCGArgConstraint *ct, 106 const char *ct_str, TCGType type); 107 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, 108 intptr_t arg2); 109 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg); 110 static void tcg_out_movi(TCGContext *s, TCGType type, 111 TCGReg ret, tcg_target_long arg); 112 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, 113 const int *const_args); 114 #if TCG_TARGET_MAYBE_vec 115 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 116 TCGReg dst, TCGReg src); 117 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 118 TCGReg dst, TCGReg base, intptr_t offset); 119 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, 120 TCGReg dst, tcg_target_long arg); 121 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 122 unsigned vece, const TCGArg *args, 123 const int *const_args); 124 #else 125 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 126 TCGReg dst, TCGReg src) 127 { 128 g_assert_not_reached(); 129 } 130 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 131 TCGReg dst, TCGReg base, intptr_t offset) 132 { 133 g_assert_not_reached(); 134 } 135 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type, 136 TCGReg dst, tcg_target_long arg) 137 { 138 g_assert_not_reached(); 139 } 140 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 141 unsigned vece, const TCGArg *args, 142 const int *const_args) 143 { 144 g_assert_not_reached(); 145 } 146 #endif 147 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, 148 intptr_t arg2); 149 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 150 TCGReg base, intptr_t ofs); 151 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target); 152 static int tcg_target_const_match(tcg_target_long val, TCGType type, 153 const TCGArgConstraint *arg_ct); 154 #ifdef TCG_TARGET_NEED_LDST_LABELS 155 static int tcg_out_ldst_finalize(TCGContext *s); 156 #endif 157 158 #define TCG_HIGHWATER 1024 159 160 static TCGContext **tcg_ctxs; 161 static unsigned int n_tcg_ctxs; 162 TCGv_env cpu_env = 0; 163 164 struct tcg_region_tree { 165 QemuMutex lock; 166 GTree *tree; 167 /* padding to avoid false sharing is computed at run-time */ 168 }; 169 170 /* 171 * We divide code_gen_buffer into equally-sized "regions" that TCG threads 172 * dynamically allocate from as demand dictates. Given appropriate region 173 * sizing, this minimizes flushes even when some TCG threads generate a lot 174 * more code than others. 175 */ 176 struct tcg_region_state { 177 QemuMutex lock; 178 179 /* fields set at init time */ 180 void *start; 181 void *start_aligned; 182 void *end; 183 size_t n; 184 size_t size; /* size of one region */ 185 size_t stride; /* .size + guard size */ 186 187 /* fields protected by the lock */ 188 size_t current; /* current region index */ 189 size_t agg_size_full; /* aggregate size of full regions */ 190 }; 191 192 static struct tcg_region_state region; 193 /* 194 * This is an array of struct tcg_region_tree's, with padding. 195 * We use void * to simplify the computation of region_trees[i]; each 196 * struct is found every tree_size bytes. 197 */ 198 static void *region_trees; 199 static size_t tree_size; 200 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT]; 201 static TCGRegSet tcg_target_call_clobber_regs; 202 203 #if TCG_TARGET_INSN_UNIT_SIZE == 1 204 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v) 205 { 206 *s->code_ptr++ = v; 207 } 208 209 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p, 210 uint8_t v) 211 { 212 *p = v; 213 } 214 #endif 215 216 #if TCG_TARGET_INSN_UNIT_SIZE <= 2 217 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v) 218 { 219 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 220 *s->code_ptr++ = v; 221 } else { 222 tcg_insn_unit *p = s->code_ptr; 223 memcpy(p, &v, sizeof(v)); 224 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE); 225 } 226 } 227 228 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p, 229 uint16_t v) 230 { 231 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 232 *p = v; 233 } else { 234 memcpy(p, &v, sizeof(v)); 235 } 236 } 237 #endif 238 239 #if TCG_TARGET_INSN_UNIT_SIZE <= 4 240 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v) 241 { 242 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 243 *s->code_ptr++ = v; 244 } else { 245 tcg_insn_unit *p = s->code_ptr; 246 memcpy(p, &v, sizeof(v)); 247 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE); 248 } 249 } 250 251 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p, 252 uint32_t v) 253 { 254 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 255 *p = v; 256 } else { 257 memcpy(p, &v, sizeof(v)); 258 } 259 } 260 #endif 261 262 #if TCG_TARGET_INSN_UNIT_SIZE <= 8 263 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v) 264 { 265 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 266 *s->code_ptr++ = v; 267 } else { 268 tcg_insn_unit *p = s->code_ptr; 269 memcpy(p, &v, sizeof(v)); 270 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE); 271 } 272 } 273 274 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p, 275 uint64_t v) 276 { 277 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 278 *p = v; 279 } else { 280 memcpy(p, &v, sizeof(v)); 281 } 282 } 283 #endif 284 285 /* label relocation processing */ 286 287 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type, 288 TCGLabel *l, intptr_t addend) 289 { 290 TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation)); 291 292 r->type = type; 293 r->ptr = code_ptr; 294 r->addend = addend; 295 QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next); 296 } 297 298 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr) 299 { 300 tcg_debug_assert(!l->has_value); 301 l->has_value = 1; 302 l->u.value_ptr = ptr; 303 } 304 305 TCGLabel *gen_new_label(void) 306 { 307 TCGContext *s = tcg_ctx; 308 TCGLabel *l = tcg_malloc(sizeof(TCGLabel)); 309 310 memset(l, 0, sizeof(TCGLabel)); 311 l->id = s->nb_labels++; 312 QSIMPLEQ_INIT(&l->relocs); 313 314 QSIMPLEQ_INSERT_TAIL(&s->labels, l, next); 315 316 return l; 317 } 318 319 static bool tcg_resolve_relocs(TCGContext *s) 320 { 321 TCGLabel *l; 322 323 QSIMPLEQ_FOREACH(l, &s->labels, next) { 324 TCGRelocation *r; 325 uintptr_t value = l->u.value; 326 327 QSIMPLEQ_FOREACH(r, &l->relocs, next) { 328 if (!patch_reloc(r->ptr, r->type, value, r->addend)) { 329 return false; 330 } 331 } 332 } 333 return true; 334 } 335 336 static void set_jmp_reset_offset(TCGContext *s, int which) 337 { 338 /* 339 * We will check for overflow at the end of the opcode loop in 340 * tcg_gen_code, where we bound tcg_current_code_size to UINT16_MAX. 341 */ 342 s->tb_jmp_reset_offset[which] = tcg_current_code_size(s); 343 } 344 345 #include "tcg-target.c.inc" 346 347 /* compare a pointer @ptr and a tb_tc @s */ 348 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) 349 { 350 if (ptr >= s->ptr + s->size) { 351 return 1; 352 } else if (ptr < s->ptr) { 353 return -1; 354 } 355 return 0; 356 } 357 358 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp) 359 { 360 const struct tb_tc *a = ap; 361 const struct tb_tc *b = bp; 362 363 /* 364 * When both sizes are set, we know this isn't a lookup. 365 * This is the most likely case: every TB must be inserted; lookups 366 * are a lot less frequent. 367 */ 368 if (likely(a->size && b->size)) { 369 if (a->ptr > b->ptr) { 370 return 1; 371 } else if (a->ptr < b->ptr) { 372 return -1; 373 } 374 /* a->ptr == b->ptr should happen only on deletions */ 375 g_assert(a->size == b->size); 376 return 0; 377 } 378 /* 379 * All lookups have either .size field set to 0. 380 * From the glib sources we see that @ap is always the lookup key. However 381 * the docs provide no guarantee, so we just mark this case as likely. 382 */ 383 if (likely(a->size == 0)) { 384 return ptr_cmp_tb_tc(a->ptr, b); 385 } 386 return ptr_cmp_tb_tc(b->ptr, a); 387 } 388 389 static void tcg_region_trees_init(void) 390 { 391 size_t i; 392 393 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); 394 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); 395 for (i = 0; i < region.n; i++) { 396 struct tcg_region_tree *rt = region_trees + i * tree_size; 397 398 qemu_mutex_init(&rt->lock); 399 rt->tree = g_tree_new(tb_tc_cmp); 400 } 401 } 402 403 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p) 404 { 405 size_t region_idx; 406 407 if (p < region.start_aligned) { 408 region_idx = 0; 409 } else { 410 ptrdiff_t offset = p - region.start_aligned; 411 412 if (offset > region.stride * (region.n - 1)) { 413 region_idx = region.n - 1; 414 } else { 415 region_idx = offset / region.stride; 416 } 417 } 418 return region_trees + region_idx * tree_size; 419 } 420 421 void tcg_tb_insert(TranslationBlock *tb) 422 { 423 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 424 425 qemu_mutex_lock(&rt->lock); 426 g_tree_insert(rt->tree, &tb->tc, tb); 427 qemu_mutex_unlock(&rt->lock); 428 } 429 430 void tcg_tb_remove(TranslationBlock *tb) 431 { 432 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 433 434 qemu_mutex_lock(&rt->lock); 435 g_tree_remove(rt->tree, &tb->tc); 436 qemu_mutex_unlock(&rt->lock); 437 } 438 439 /* 440 * Find the TB 'tb' such that 441 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size 442 * Return NULL if not found. 443 */ 444 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) 445 { 446 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); 447 TranslationBlock *tb; 448 struct tb_tc s = { .ptr = (void *)tc_ptr }; 449 450 qemu_mutex_lock(&rt->lock); 451 tb = g_tree_lookup(rt->tree, &s); 452 qemu_mutex_unlock(&rt->lock); 453 return tb; 454 } 455 456 static void tcg_region_tree_lock_all(void) 457 { 458 size_t i; 459 460 for (i = 0; i < region.n; i++) { 461 struct tcg_region_tree *rt = region_trees + i * tree_size; 462 463 qemu_mutex_lock(&rt->lock); 464 } 465 } 466 467 static void tcg_region_tree_unlock_all(void) 468 { 469 size_t i; 470 471 for (i = 0; i < region.n; i++) { 472 struct tcg_region_tree *rt = region_trees + i * tree_size; 473 474 qemu_mutex_unlock(&rt->lock); 475 } 476 } 477 478 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) 479 { 480 size_t i; 481 482 tcg_region_tree_lock_all(); 483 for (i = 0; i < region.n; i++) { 484 struct tcg_region_tree *rt = region_trees + i * tree_size; 485 486 g_tree_foreach(rt->tree, func, user_data); 487 } 488 tcg_region_tree_unlock_all(); 489 } 490 491 size_t tcg_nb_tbs(void) 492 { 493 size_t nb_tbs = 0; 494 size_t i; 495 496 tcg_region_tree_lock_all(); 497 for (i = 0; i < region.n; i++) { 498 struct tcg_region_tree *rt = region_trees + i * tree_size; 499 500 nb_tbs += g_tree_nnodes(rt->tree); 501 } 502 tcg_region_tree_unlock_all(); 503 return nb_tbs; 504 } 505 506 static gboolean tcg_region_tree_traverse(gpointer k, gpointer v, gpointer data) 507 { 508 TranslationBlock *tb = v; 509 510 tb_destroy(tb); 511 return FALSE; 512 } 513 514 static void tcg_region_tree_reset_all(void) 515 { 516 size_t i; 517 518 tcg_region_tree_lock_all(); 519 for (i = 0; i < region.n; i++) { 520 struct tcg_region_tree *rt = region_trees + i * tree_size; 521 522 g_tree_foreach(rt->tree, tcg_region_tree_traverse, NULL); 523 /* Increment the refcount first so that destroy acts as a reset */ 524 g_tree_ref(rt->tree); 525 g_tree_destroy(rt->tree); 526 } 527 tcg_region_tree_unlock_all(); 528 } 529 530 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) 531 { 532 void *start, *end; 533 534 start = region.start_aligned + curr_region * region.stride; 535 end = start + region.size; 536 537 if (curr_region == 0) { 538 start = region.start; 539 } 540 if (curr_region == region.n - 1) { 541 end = region.end; 542 } 543 544 *pstart = start; 545 *pend = end; 546 } 547 548 static void tcg_region_assign(TCGContext *s, size_t curr_region) 549 { 550 void *start, *end; 551 552 tcg_region_bounds(curr_region, &start, &end); 553 554 s->code_gen_buffer = start; 555 s->code_gen_ptr = start; 556 s->code_gen_buffer_size = end - start; 557 s->code_gen_highwater = end - TCG_HIGHWATER; 558 } 559 560 static bool tcg_region_alloc__locked(TCGContext *s) 561 { 562 if (region.current == region.n) { 563 return true; 564 } 565 tcg_region_assign(s, region.current); 566 region.current++; 567 return false; 568 } 569 570 /* 571 * Request a new region once the one in use has filled up. 572 * Returns true on error. 573 */ 574 static bool tcg_region_alloc(TCGContext *s) 575 { 576 bool err; 577 /* read the region size now; alloc__locked will overwrite it on success */ 578 size_t size_full = s->code_gen_buffer_size; 579 580 qemu_mutex_lock(®ion.lock); 581 err = tcg_region_alloc__locked(s); 582 if (!err) { 583 region.agg_size_full += size_full - TCG_HIGHWATER; 584 } 585 qemu_mutex_unlock(®ion.lock); 586 return err; 587 } 588 589 /* 590 * Perform a context's first region allocation. 591 * This function does _not_ increment region.agg_size_full. 592 */ 593 static inline bool tcg_region_initial_alloc__locked(TCGContext *s) 594 { 595 return tcg_region_alloc__locked(s); 596 } 597 598 /* Call from a safe-work context */ 599 void tcg_region_reset_all(void) 600 { 601 unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); 602 unsigned int i; 603 604 qemu_mutex_lock(®ion.lock); 605 region.current = 0; 606 region.agg_size_full = 0; 607 608 for (i = 0; i < n_ctxs; i++) { 609 TCGContext *s = qatomic_read(&tcg_ctxs[i]); 610 bool err = tcg_region_initial_alloc__locked(s); 611 612 g_assert(!err); 613 } 614 qemu_mutex_unlock(®ion.lock); 615 616 tcg_region_tree_reset_all(); 617 } 618 619 #ifdef CONFIG_USER_ONLY 620 static size_t tcg_n_regions(void) 621 { 622 return 1; 623 } 624 #else 625 /* 626 * It is likely that some vCPUs will translate more code than others, so we 627 * first try to set more regions than max_cpus, with those regions being of 628 * reasonable size. If that's not possible we make do by evenly dividing 629 * the code_gen_buffer among the vCPUs. 630 */ 631 static size_t tcg_n_regions(void) 632 { 633 size_t i; 634 635 /* Use a single region if all we have is one vCPU thread */ 636 #if !defined(CONFIG_USER_ONLY) 637 MachineState *ms = MACHINE(qdev_get_machine()); 638 unsigned int max_cpus = ms->smp.max_cpus; 639 #endif 640 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { 641 return 1; 642 } 643 644 /* Try to have more regions than max_cpus, with each region being >= 2 MB */ 645 for (i = 8; i > 0; i--) { 646 size_t regions_per_thread = i; 647 size_t region_size; 648 649 region_size = tcg_init_ctx.code_gen_buffer_size; 650 region_size /= max_cpus * regions_per_thread; 651 652 if (region_size >= 2 * 1024u * 1024) { 653 return max_cpus * regions_per_thread; 654 } 655 } 656 /* If we can't, then just allocate one region per vCPU thread */ 657 return max_cpus; 658 } 659 #endif 660 661 /* 662 * Initializes region partitioning. 663 * 664 * Called at init time from the parent thread (i.e. the one calling 665 * tcg_context_init), after the target's TCG globals have been set. 666 * 667 * Region partitioning works by splitting code_gen_buffer into separate regions, 668 * and then assigning regions to TCG threads so that the threads can translate 669 * code in parallel without synchronization. 670 * 671 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at 672 * least max_cpus regions in MTTCG. In !MTTCG we use a single region. 673 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) 674 * must have been parsed before calling this function, since it calls 675 * qemu_tcg_mttcg_enabled(). 676 * 677 * In user-mode we use a single region. Having multiple regions in user-mode 678 * is not supported, because the number of vCPU threads (recall that each thread 679 * spawned by the guest corresponds to a vCPU thread) is only bounded by the 680 * OS, and usually this number is huge (tens of thousands is not uncommon). 681 * Thus, given this large bound on the number of vCPU threads and the fact 682 * that code_gen_buffer is allocated at compile-time, we cannot guarantee 683 * that the availability of at least one region per vCPU thread. 684 * 685 * However, this user-mode limitation is unlikely to be a significant problem 686 * in practice. Multi-threaded guests share most if not all of their translated 687 * code, which makes parallel code generation less appealing than in softmmu. 688 */ 689 void tcg_region_init(void) 690 { 691 void *buf = tcg_init_ctx.code_gen_buffer; 692 void *aligned; 693 size_t size = tcg_init_ctx.code_gen_buffer_size; 694 size_t page_size = qemu_real_host_page_size; 695 size_t region_size; 696 size_t n_regions; 697 size_t i; 698 699 n_regions = tcg_n_regions(); 700 701 /* The first region will be 'aligned - buf' bytes larger than the others */ 702 aligned = QEMU_ALIGN_PTR_UP(buf, page_size); 703 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size); 704 /* 705 * Make region_size a multiple of page_size, using aligned as the start. 706 * As a result of this we might end up with a few extra pages at the end of 707 * the buffer; we will assign those to the last region. 708 */ 709 region_size = (size - (aligned - buf)) / n_regions; 710 region_size = QEMU_ALIGN_DOWN(region_size, page_size); 711 712 /* A region must have at least 2 pages; one code, one guard */ 713 g_assert(region_size >= 2 * page_size); 714 715 /* init the region struct */ 716 qemu_mutex_init(®ion.lock); 717 region.n = n_regions; 718 region.size = region_size - page_size; 719 region.stride = region_size; 720 region.start = buf; 721 region.start_aligned = aligned; 722 /* page-align the end, since its last page will be a guard page */ 723 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size); 724 /* account for that last guard page */ 725 region.end -= page_size; 726 727 /* set guard pages */ 728 for (i = 0; i < region.n; i++) { 729 void *start, *end; 730 int rc; 731 732 tcg_region_bounds(i, &start, &end); 733 rc = qemu_mprotect_none(end, page_size); 734 g_assert(!rc); 735 } 736 737 tcg_region_trees_init(); 738 739 /* In user-mode we support only one ctx, so do the initial allocation now */ 740 #ifdef CONFIG_USER_ONLY 741 { 742 bool err = tcg_region_initial_alloc__locked(tcg_ctx); 743 744 g_assert(!err); 745 } 746 #endif 747 } 748 749 static void alloc_tcg_plugin_context(TCGContext *s) 750 { 751 #ifdef CONFIG_PLUGIN 752 s->plugin_tb = g_new0(struct qemu_plugin_tb, 1); 753 s->plugin_tb->insns = 754 g_ptr_array_new_with_free_func(qemu_plugin_insn_cleanup_fn); 755 #endif 756 } 757 758 /* 759 * All TCG threads except the parent (i.e. the one that called tcg_context_init 760 * and registered the target's TCG globals) must register with this function 761 * before initiating translation. 762 * 763 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation 764 * of tcg_region_init() for the reasoning behind this. 765 * 766 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in 767 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context 768 * is not used anymore for translation once this function is called. 769 * 770 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates 771 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode. 772 */ 773 #ifdef CONFIG_USER_ONLY 774 void tcg_register_thread(void) 775 { 776 tcg_ctx = &tcg_init_ctx; 777 } 778 #else 779 void tcg_register_thread(void) 780 { 781 MachineState *ms = MACHINE(qdev_get_machine()); 782 TCGContext *s = g_malloc(sizeof(*s)); 783 unsigned int i, n; 784 bool err; 785 786 *s = tcg_init_ctx; 787 788 /* Relink mem_base. */ 789 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) { 790 if (tcg_init_ctx.temps[i].mem_base) { 791 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps; 792 tcg_debug_assert(b >= 0 && b < n); 793 s->temps[i].mem_base = &s->temps[b]; 794 } 795 } 796 797 /* Claim an entry in tcg_ctxs */ 798 n = qatomic_fetch_inc(&n_tcg_ctxs); 799 g_assert(n < ms->smp.max_cpus); 800 qatomic_set(&tcg_ctxs[n], s); 801 802 if (n > 0) { 803 alloc_tcg_plugin_context(s); 804 } 805 806 tcg_ctx = s; 807 qemu_mutex_lock(®ion.lock); 808 err = tcg_region_initial_alloc__locked(tcg_ctx); 809 g_assert(!err); 810 qemu_mutex_unlock(®ion.lock); 811 } 812 #endif /* !CONFIG_USER_ONLY */ 813 814 /* 815 * Returns the size (in bytes) of all translated code (i.e. from all regions) 816 * currently in the cache. 817 * See also: tcg_code_capacity() 818 * Do not confuse with tcg_current_code_size(); that one applies to a single 819 * TCG context. 820 */ 821 size_t tcg_code_size(void) 822 { 823 unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); 824 unsigned int i; 825 size_t total; 826 827 qemu_mutex_lock(®ion.lock); 828 total = region.agg_size_full; 829 for (i = 0; i < n_ctxs; i++) { 830 const TCGContext *s = qatomic_read(&tcg_ctxs[i]); 831 size_t size; 832 833 size = qatomic_read(&s->code_gen_ptr) - s->code_gen_buffer; 834 g_assert(size <= s->code_gen_buffer_size); 835 total += size; 836 } 837 qemu_mutex_unlock(®ion.lock); 838 return total; 839 } 840 841 /* 842 * Returns the code capacity (in bytes) of the entire cache, i.e. including all 843 * regions. 844 * See also: tcg_code_size() 845 */ 846 size_t tcg_code_capacity(void) 847 { 848 size_t guard_size, capacity; 849 850 /* no need for synchronization; these variables are set at init time */ 851 guard_size = region.stride - region.size; 852 capacity = region.end + guard_size - region.start; 853 capacity -= region.n * (guard_size + TCG_HIGHWATER); 854 return capacity; 855 } 856 857 size_t tcg_tb_phys_invalidate_count(void) 858 { 859 unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); 860 unsigned int i; 861 size_t total = 0; 862 863 for (i = 0; i < n_ctxs; i++) { 864 const TCGContext *s = qatomic_read(&tcg_ctxs[i]); 865 866 total += qatomic_read(&s->tb_phys_invalidate_count); 867 } 868 return total; 869 } 870 871 /* pool based memory allocation */ 872 void *tcg_malloc_internal(TCGContext *s, int size) 873 { 874 TCGPool *p; 875 int pool_size; 876 877 if (size > TCG_POOL_CHUNK_SIZE) { 878 /* big malloc: insert a new pool (XXX: could optimize) */ 879 p = g_malloc(sizeof(TCGPool) + size); 880 p->size = size; 881 p->next = s->pool_first_large; 882 s->pool_first_large = p; 883 return p->data; 884 } else { 885 p = s->pool_current; 886 if (!p) { 887 p = s->pool_first; 888 if (!p) 889 goto new_pool; 890 } else { 891 if (!p->next) { 892 new_pool: 893 pool_size = TCG_POOL_CHUNK_SIZE; 894 p = g_malloc(sizeof(TCGPool) + pool_size); 895 p->size = pool_size; 896 p->next = NULL; 897 if (s->pool_current) 898 s->pool_current->next = p; 899 else 900 s->pool_first = p; 901 } else { 902 p = p->next; 903 } 904 } 905 } 906 s->pool_current = p; 907 s->pool_cur = p->data + size; 908 s->pool_end = p->data + p->size; 909 return p->data; 910 } 911 912 void tcg_pool_reset(TCGContext *s) 913 { 914 TCGPool *p, *t; 915 for (p = s->pool_first_large; p; p = t) { 916 t = p->next; 917 g_free(p); 918 } 919 s->pool_first_large = NULL; 920 s->pool_cur = s->pool_end = NULL; 921 s->pool_current = NULL; 922 } 923 924 typedef struct TCGHelperInfo { 925 void *func; 926 const char *name; 927 unsigned flags; 928 unsigned sizemask; 929 } TCGHelperInfo; 930 931 #include "exec/helper-proto.h" 932 933 static const TCGHelperInfo all_helpers[] = { 934 #include "exec/helper-tcg.h" 935 }; 936 static GHashTable *helper_table; 937 938 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)]; 939 static void process_op_defs(TCGContext *s); 940 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 941 TCGReg reg, const char *name); 942 943 void tcg_context_init(TCGContext *s) 944 { 945 int op, total_args, n, i; 946 TCGOpDef *def; 947 TCGArgConstraint *args_ct; 948 TCGTemp *ts; 949 950 memset(s, 0, sizeof(*s)); 951 s->nb_globals = 0; 952 953 /* Count total number of arguments and allocate the corresponding 954 space */ 955 total_args = 0; 956 for(op = 0; op < NB_OPS; op++) { 957 def = &tcg_op_defs[op]; 958 n = def->nb_iargs + def->nb_oargs; 959 total_args += n; 960 } 961 962 args_ct = g_new0(TCGArgConstraint, total_args); 963 964 for(op = 0; op < NB_OPS; op++) { 965 def = &tcg_op_defs[op]; 966 def->args_ct = args_ct; 967 n = def->nb_iargs + def->nb_oargs; 968 args_ct += n; 969 } 970 971 /* Register helpers. */ 972 /* Use g_direct_hash/equal for direct pointer comparisons on func. */ 973 helper_table = g_hash_table_new(NULL, NULL); 974 975 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) { 976 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func, 977 (gpointer)&all_helpers[i]); 978 } 979 980 tcg_target_init(s); 981 process_op_defs(s); 982 983 /* Reverse the order of the saved registers, assuming they're all at 984 the start of tcg_target_reg_alloc_order. */ 985 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) { 986 int r = tcg_target_reg_alloc_order[n]; 987 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) { 988 break; 989 } 990 } 991 for (i = 0; i < n; ++i) { 992 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i]; 993 } 994 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) { 995 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i]; 996 } 997 998 alloc_tcg_plugin_context(s); 999 1000 tcg_ctx = s; 1001 /* 1002 * In user-mode we simply share the init context among threads, since we 1003 * use a single region. See the documentation tcg_region_init() for the 1004 * reasoning behind this. 1005 * In softmmu we will have at most max_cpus TCG threads. 1006 */ 1007 #ifdef CONFIG_USER_ONLY 1008 tcg_ctxs = &tcg_ctx; 1009 n_tcg_ctxs = 1; 1010 #else 1011 MachineState *ms = MACHINE(qdev_get_machine()); 1012 unsigned int max_cpus = ms->smp.max_cpus; 1013 tcg_ctxs = g_new(TCGContext *, max_cpus); 1014 #endif 1015 1016 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0)); 1017 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env"); 1018 cpu_env = temp_tcgv_ptr(ts); 1019 } 1020 1021 /* 1022 * Allocate TBs right before their corresponding translated code, making 1023 * sure that TBs and code are on different cache lines. 1024 */ 1025 TranslationBlock *tcg_tb_alloc(TCGContext *s) 1026 { 1027 uintptr_t align = qemu_icache_linesize; 1028 TranslationBlock *tb; 1029 void *next; 1030 1031 retry: 1032 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align); 1033 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align); 1034 1035 if (unlikely(next > s->code_gen_highwater)) { 1036 if (tcg_region_alloc(s)) { 1037 return NULL; 1038 } 1039 goto retry; 1040 } 1041 qatomic_set(&s->code_gen_ptr, next); 1042 s->data_gen_ptr = NULL; 1043 return tb; 1044 } 1045 1046 void tcg_prologue_init(TCGContext *s) 1047 { 1048 size_t prologue_size, total_size; 1049 void *buf0, *buf1; 1050 1051 /* Put the prologue at the beginning of code_gen_buffer. */ 1052 buf0 = s->code_gen_buffer; 1053 total_size = s->code_gen_buffer_size; 1054 s->code_ptr = buf0; 1055 s->code_buf = buf0; 1056 s->data_gen_ptr = NULL; 1057 s->code_gen_prologue = buf0; 1058 1059 /* Compute a high-water mark, at which we voluntarily flush the buffer 1060 and start over. The size here is arbitrary, significantly larger 1061 than we expect the code generation for any one opcode to require. */ 1062 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER); 1063 1064 #ifdef TCG_TARGET_NEED_POOL_LABELS 1065 s->pool_labels = NULL; 1066 #endif 1067 1068 /* Generate the prologue. */ 1069 tcg_target_qemu_prologue(s); 1070 1071 #ifdef TCG_TARGET_NEED_POOL_LABELS 1072 /* Allow the prologue to put e.g. guest_base into a pool entry. */ 1073 { 1074 int result = tcg_out_pool_finalize(s); 1075 tcg_debug_assert(result == 0); 1076 } 1077 #endif 1078 1079 buf1 = s->code_ptr; 1080 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1); 1081 1082 /* Deduct the prologue from the buffer. */ 1083 prologue_size = tcg_current_code_size(s); 1084 s->code_gen_ptr = buf1; 1085 s->code_gen_buffer = buf1; 1086 s->code_buf = buf1; 1087 total_size -= prologue_size; 1088 s->code_gen_buffer_size = total_size; 1089 1090 tcg_register_jit(s->code_gen_buffer, total_size); 1091 1092 #ifdef DEBUG_DISAS 1093 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { 1094 FILE *logfile = qemu_log_lock(); 1095 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size); 1096 if (s->data_gen_ptr) { 1097 size_t code_size = s->data_gen_ptr - buf0; 1098 size_t data_size = prologue_size - code_size; 1099 size_t i; 1100 1101 log_disas(buf0, code_size); 1102 1103 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1104 if (sizeof(tcg_target_ulong) == 8) { 1105 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1106 (uintptr_t)s->data_gen_ptr + i, 1107 *(uint64_t *)(s->data_gen_ptr + i)); 1108 } else { 1109 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1110 (uintptr_t)s->data_gen_ptr + i, 1111 *(uint32_t *)(s->data_gen_ptr + i)); 1112 } 1113 } 1114 } else { 1115 log_disas(buf0, prologue_size); 1116 } 1117 qemu_log("\n"); 1118 qemu_log_flush(); 1119 qemu_log_unlock(logfile); 1120 } 1121 #endif 1122 1123 /* Assert that goto_ptr is implemented completely. */ 1124 if (TCG_TARGET_HAS_goto_ptr) { 1125 tcg_debug_assert(s->code_gen_epilogue != NULL); 1126 } 1127 } 1128 1129 void tcg_func_start(TCGContext *s) 1130 { 1131 tcg_pool_reset(s); 1132 s->nb_temps = s->nb_globals; 1133 1134 /* No temps have been previously allocated for size or locality. */ 1135 memset(s->free_temps, 0, sizeof(s->free_temps)); 1136 1137 s->nb_ops = 0; 1138 s->nb_labels = 0; 1139 s->current_frame_offset = s->frame_start; 1140 1141 #ifdef CONFIG_DEBUG_TCG 1142 s->goto_tb_issue_mask = 0; 1143 #endif 1144 1145 QTAILQ_INIT(&s->ops); 1146 QTAILQ_INIT(&s->free_ops); 1147 QSIMPLEQ_INIT(&s->labels); 1148 } 1149 1150 static inline TCGTemp *tcg_temp_alloc(TCGContext *s) 1151 { 1152 int n = s->nb_temps++; 1153 tcg_debug_assert(n < TCG_MAX_TEMPS); 1154 return memset(&s->temps[n], 0, sizeof(TCGTemp)); 1155 } 1156 1157 static inline TCGTemp *tcg_global_alloc(TCGContext *s) 1158 { 1159 TCGTemp *ts; 1160 1161 tcg_debug_assert(s->nb_globals == s->nb_temps); 1162 s->nb_globals++; 1163 ts = tcg_temp_alloc(s); 1164 ts->temp_global = 1; 1165 1166 return ts; 1167 } 1168 1169 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 1170 TCGReg reg, const char *name) 1171 { 1172 TCGTemp *ts; 1173 1174 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) { 1175 tcg_abort(); 1176 } 1177 1178 ts = tcg_global_alloc(s); 1179 ts->base_type = type; 1180 ts->type = type; 1181 ts->fixed_reg = 1; 1182 ts->reg = reg; 1183 ts->name = name; 1184 tcg_regset_set_reg(s->reserved_regs, reg); 1185 1186 return ts; 1187 } 1188 1189 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size) 1190 { 1191 s->frame_start = start; 1192 s->frame_end = start + size; 1193 s->frame_temp 1194 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame"); 1195 } 1196 1197 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base, 1198 intptr_t offset, const char *name) 1199 { 1200 TCGContext *s = tcg_ctx; 1201 TCGTemp *base_ts = tcgv_ptr_temp(base); 1202 TCGTemp *ts = tcg_global_alloc(s); 1203 int indirect_reg = 0, bigendian = 0; 1204 #ifdef HOST_WORDS_BIGENDIAN 1205 bigendian = 1; 1206 #endif 1207 1208 if (!base_ts->fixed_reg) { 1209 /* We do not support double-indirect registers. */ 1210 tcg_debug_assert(!base_ts->indirect_reg); 1211 base_ts->indirect_base = 1; 1212 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64 1213 ? 2 : 1); 1214 indirect_reg = 1; 1215 } 1216 1217 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1218 TCGTemp *ts2 = tcg_global_alloc(s); 1219 char buf[64]; 1220 1221 ts->base_type = TCG_TYPE_I64; 1222 ts->type = TCG_TYPE_I32; 1223 ts->indirect_reg = indirect_reg; 1224 ts->mem_allocated = 1; 1225 ts->mem_base = base_ts; 1226 ts->mem_offset = offset + bigendian * 4; 1227 pstrcpy(buf, sizeof(buf), name); 1228 pstrcat(buf, sizeof(buf), "_0"); 1229 ts->name = strdup(buf); 1230 1231 tcg_debug_assert(ts2 == ts + 1); 1232 ts2->base_type = TCG_TYPE_I64; 1233 ts2->type = TCG_TYPE_I32; 1234 ts2->indirect_reg = indirect_reg; 1235 ts2->mem_allocated = 1; 1236 ts2->mem_base = base_ts; 1237 ts2->mem_offset = offset + (1 - bigendian) * 4; 1238 pstrcpy(buf, sizeof(buf), name); 1239 pstrcat(buf, sizeof(buf), "_1"); 1240 ts2->name = strdup(buf); 1241 } else { 1242 ts->base_type = type; 1243 ts->type = type; 1244 ts->indirect_reg = indirect_reg; 1245 ts->mem_allocated = 1; 1246 ts->mem_base = base_ts; 1247 ts->mem_offset = offset; 1248 ts->name = name; 1249 } 1250 return ts; 1251 } 1252 1253 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local) 1254 { 1255 TCGContext *s = tcg_ctx; 1256 TCGTemp *ts; 1257 int idx, k; 1258 1259 k = type + (temp_local ? TCG_TYPE_COUNT : 0); 1260 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS); 1261 if (idx < TCG_MAX_TEMPS) { 1262 /* There is already an available temp with the right type. */ 1263 clear_bit(idx, s->free_temps[k].l); 1264 1265 ts = &s->temps[idx]; 1266 ts->temp_allocated = 1; 1267 tcg_debug_assert(ts->base_type == type); 1268 tcg_debug_assert(ts->temp_local == temp_local); 1269 } else { 1270 ts = tcg_temp_alloc(s); 1271 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1272 TCGTemp *ts2 = tcg_temp_alloc(s); 1273 1274 ts->base_type = type; 1275 ts->type = TCG_TYPE_I32; 1276 ts->temp_allocated = 1; 1277 ts->temp_local = temp_local; 1278 1279 tcg_debug_assert(ts2 == ts + 1); 1280 ts2->base_type = TCG_TYPE_I64; 1281 ts2->type = TCG_TYPE_I32; 1282 ts2->temp_allocated = 1; 1283 ts2->temp_local = temp_local; 1284 } else { 1285 ts->base_type = type; 1286 ts->type = type; 1287 ts->temp_allocated = 1; 1288 ts->temp_local = temp_local; 1289 } 1290 } 1291 1292 #if defined(CONFIG_DEBUG_TCG) 1293 s->temps_in_use++; 1294 #endif 1295 return ts; 1296 } 1297 1298 TCGv_vec tcg_temp_new_vec(TCGType type) 1299 { 1300 TCGTemp *t; 1301 1302 #ifdef CONFIG_DEBUG_TCG 1303 switch (type) { 1304 case TCG_TYPE_V64: 1305 assert(TCG_TARGET_HAS_v64); 1306 break; 1307 case TCG_TYPE_V128: 1308 assert(TCG_TARGET_HAS_v128); 1309 break; 1310 case TCG_TYPE_V256: 1311 assert(TCG_TARGET_HAS_v256); 1312 break; 1313 default: 1314 g_assert_not_reached(); 1315 } 1316 #endif 1317 1318 t = tcg_temp_new_internal(type, 0); 1319 return temp_tcgv_vec(t); 1320 } 1321 1322 /* Create a new temp of the same type as an existing temp. */ 1323 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match) 1324 { 1325 TCGTemp *t = tcgv_vec_temp(match); 1326 1327 tcg_debug_assert(t->temp_allocated != 0); 1328 1329 t = tcg_temp_new_internal(t->base_type, 0); 1330 return temp_tcgv_vec(t); 1331 } 1332 1333 void tcg_temp_free_internal(TCGTemp *ts) 1334 { 1335 TCGContext *s = tcg_ctx; 1336 int k, idx; 1337 1338 #if defined(CONFIG_DEBUG_TCG) 1339 s->temps_in_use--; 1340 if (s->temps_in_use < 0) { 1341 fprintf(stderr, "More temporaries freed than allocated!\n"); 1342 } 1343 #endif 1344 1345 tcg_debug_assert(ts->temp_global == 0); 1346 tcg_debug_assert(ts->temp_allocated != 0); 1347 ts->temp_allocated = 0; 1348 1349 idx = temp_idx(ts); 1350 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0); 1351 set_bit(idx, s->free_temps[k].l); 1352 } 1353 1354 TCGv_i32 tcg_const_i32(int32_t val) 1355 { 1356 TCGv_i32 t0; 1357 t0 = tcg_temp_new_i32(); 1358 tcg_gen_movi_i32(t0, val); 1359 return t0; 1360 } 1361 1362 TCGv_i64 tcg_const_i64(int64_t val) 1363 { 1364 TCGv_i64 t0; 1365 t0 = tcg_temp_new_i64(); 1366 tcg_gen_movi_i64(t0, val); 1367 return t0; 1368 } 1369 1370 TCGv_i32 tcg_const_local_i32(int32_t val) 1371 { 1372 TCGv_i32 t0; 1373 t0 = tcg_temp_local_new_i32(); 1374 tcg_gen_movi_i32(t0, val); 1375 return t0; 1376 } 1377 1378 TCGv_i64 tcg_const_local_i64(int64_t val) 1379 { 1380 TCGv_i64 t0; 1381 t0 = tcg_temp_local_new_i64(); 1382 tcg_gen_movi_i64(t0, val); 1383 return t0; 1384 } 1385 1386 #if defined(CONFIG_DEBUG_TCG) 1387 void tcg_clear_temp_count(void) 1388 { 1389 TCGContext *s = tcg_ctx; 1390 s->temps_in_use = 0; 1391 } 1392 1393 int tcg_check_temp_count(void) 1394 { 1395 TCGContext *s = tcg_ctx; 1396 if (s->temps_in_use) { 1397 /* Clear the count so that we don't give another 1398 * warning immediately next time around. 1399 */ 1400 s->temps_in_use = 0; 1401 return 1; 1402 } 1403 return 0; 1404 } 1405 #endif 1406 1407 /* Return true if OP may appear in the opcode stream. 1408 Test the runtime variable that controls each opcode. */ 1409 bool tcg_op_supported(TCGOpcode op) 1410 { 1411 const bool have_vec 1412 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256; 1413 1414 switch (op) { 1415 case INDEX_op_discard: 1416 case INDEX_op_set_label: 1417 case INDEX_op_call: 1418 case INDEX_op_br: 1419 case INDEX_op_mb: 1420 case INDEX_op_insn_start: 1421 case INDEX_op_exit_tb: 1422 case INDEX_op_goto_tb: 1423 case INDEX_op_qemu_ld_i32: 1424 case INDEX_op_qemu_st_i32: 1425 case INDEX_op_qemu_ld_i64: 1426 case INDEX_op_qemu_st_i64: 1427 return true; 1428 1429 case INDEX_op_goto_ptr: 1430 return TCG_TARGET_HAS_goto_ptr; 1431 1432 case INDEX_op_mov_i32: 1433 case INDEX_op_movi_i32: 1434 case INDEX_op_setcond_i32: 1435 case INDEX_op_brcond_i32: 1436 case INDEX_op_ld8u_i32: 1437 case INDEX_op_ld8s_i32: 1438 case INDEX_op_ld16u_i32: 1439 case INDEX_op_ld16s_i32: 1440 case INDEX_op_ld_i32: 1441 case INDEX_op_st8_i32: 1442 case INDEX_op_st16_i32: 1443 case INDEX_op_st_i32: 1444 case INDEX_op_add_i32: 1445 case INDEX_op_sub_i32: 1446 case INDEX_op_mul_i32: 1447 case INDEX_op_and_i32: 1448 case INDEX_op_or_i32: 1449 case INDEX_op_xor_i32: 1450 case INDEX_op_shl_i32: 1451 case INDEX_op_shr_i32: 1452 case INDEX_op_sar_i32: 1453 return true; 1454 1455 case INDEX_op_movcond_i32: 1456 return TCG_TARGET_HAS_movcond_i32; 1457 case INDEX_op_div_i32: 1458 case INDEX_op_divu_i32: 1459 return TCG_TARGET_HAS_div_i32; 1460 case INDEX_op_rem_i32: 1461 case INDEX_op_remu_i32: 1462 return TCG_TARGET_HAS_rem_i32; 1463 case INDEX_op_div2_i32: 1464 case INDEX_op_divu2_i32: 1465 return TCG_TARGET_HAS_div2_i32; 1466 case INDEX_op_rotl_i32: 1467 case INDEX_op_rotr_i32: 1468 return TCG_TARGET_HAS_rot_i32; 1469 case INDEX_op_deposit_i32: 1470 return TCG_TARGET_HAS_deposit_i32; 1471 case INDEX_op_extract_i32: 1472 return TCG_TARGET_HAS_extract_i32; 1473 case INDEX_op_sextract_i32: 1474 return TCG_TARGET_HAS_sextract_i32; 1475 case INDEX_op_extract2_i32: 1476 return TCG_TARGET_HAS_extract2_i32; 1477 case INDEX_op_add2_i32: 1478 return TCG_TARGET_HAS_add2_i32; 1479 case INDEX_op_sub2_i32: 1480 return TCG_TARGET_HAS_sub2_i32; 1481 case INDEX_op_mulu2_i32: 1482 return TCG_TARGET_HAS_mulu2_i32; 1483 case INDEX_op_muls2_i32: 1484 return TCG_TARGET_HAS_muls2_i32; 1485 case INDEX_op_muluh_i32: 1486 return TCG_TARGET_HAS_muluh_i32; 1487 case INDEX_op_mulsh_i32: 1488 return TCG_TARGET_HAS_mulsh_i32; 1489 case INDEX_op_ext8s_i32: 1490 return TCG_TARGET_HAS_ext8s_i32; 1491 case INDEX_op_ext16s_i32: 1492 return TCG_TARGET_HAS_ext16s_i32; 1493 case INDEX_op_ext8u_i32: 1494 return TCG_TARGET_HAS_ext8u_i32; 1495 case INDEX_op_ext16u_i32: 1496 return TCG_TARGET_HAS_ext16u_i32; 1497 case INDEX_op_bswap16_i32: 1498 return TCG_TARGET_HAS_bswap16_i32; 1499 case INDEX_op_bswap32_i32: 1500 return TCG_TARGET_HAS_bswap32_i32; 1501 case INDEX_op_not_i32: 1502 return TCG_TARGET_HAS_not_i32; 1503 case INDEX_op_neg_i32: 1504 return TCG_TARGET_HAS_neg_i32; 1505 case INDEX_op_andc_i32: 1506 return TCG_TARGET_HAS_andc_i32; 1507 case INDEX_op_orc_i32: 1508 return TCG_TARGET_HAS_orc_i32; 1509 case INDEX_op_eqv_i32: 1510 return TCG_TARGET_HAS_eqv_i32; 1511 case INDEX_op_nand_i32: 1512 return TCG_TARGET_HAS_nand_i32; 1513 case INDEX_op_nor_i32: 1514 return TCG_TARGET_HAS_nor_i32; 1515 case INDEX_op_clz_i32: 1516 return TCG_TARGET_HAS_clz_i32; 1517 case INDEX_op_ctz_i32: 1518 return TCG_TARGET_HAS_ctz_i32; 1519 case INDEX_op_ctpop_i32: 1520 return TCG_TARGET_HAS_ctpop_i32; 1521 1522 case INDEX_op_brcond2_i32: 1523 case INDEX_op_setcond2_i32: 1524 return TCG_TARGET_REG_BITS == 32; 1525 1526 case INDEX_op_mov_i64: 1527 case INDEX_op_movi_i64: 1528 case INDEX_op_setcond_i64: 1529 case INDEX_op_brcond_i64: 1530 case INDEX_op_ld8u_i64: 1531 case INDEX_op_ld8s_i64: 1532 case INDEX_op_ld16u_i64: 1533 case INDEX_op_ld16s_i64: 1534 case INDEX_op_ld32u_i64: 1535 case INDEX_op_ld32s_i64: 1536 case INDEX_op_ld_i64: 1537 case INDEX_op_st8_i64: 1538 case INDEX_op_st16_i64: 1539 case INDEX_op_st32_i64: 1540 case INDEX_op_st_i64: 1541 case INDEX_op_add_i64: 1542 case INDEX_op_sub_i64: 1543 case INDEX_op_mul_i64: 1544 case INDEX_op_and_i64: 1545 case INDEX_op_or_i64: 1546 case INDEX_op_xor_i64: 1547 case INDEX_op_shl_i64: 1548 case INDEX_op_shr_i64: 1549 case INDEX_op_sar_i64: 1550 case INDEX_op_ext_i32_i64: 1551 case INDEX_op_extu_i32_i64: 1552 return TCG_TARGET_REG_BITS == 64; 1553 1554 case INDEX_op_movcond_i64: 1555 return TCG_TARGET_HAS_movcond_i64; 1556 case INDEX_op_div_i64: 1557 case INDEX_op_divu_i64: 1558 return TCG_TARGET_HAS_div_i64; 1559 case INDEX_op_rem_i64: 1560 case INDEX_op_remu_i64: 1561 return TCG_TARGET_HAS_rem_i64; 1562 case INDEX_op_div2_i64: 1563 case INDEX_op_divu2_i64: 1564 return TCG_TARGET_HAS_div2_i64; 1565 case INDEX_op_rotl_i64: 1566 case INDEX_op_rotr_i64: 1567 return TCG_TARGET_HAS_rot_i64; 1568 case INDEX_op_deposit_i64: 1569 return TCG_TARGET_HAS_deposit_i64; 1570 case INDEX_op_extract_i64: 1571 return TCG_TARGET_HAS_extract_i64; 1572 case INDEX_op_sextract_i64: 1573 return TCG_TARGET_HAS_sextract_i64; 1574 case INDEX_op_extract2_i64: 1575 return TCG_TARGET_HAS_extract2_i64; 1576 case INDEX_op_extrl_i64_i32: 1577 return TCG_TARGET_HAS_extrl_i64_i32; 1578 case INDEX_op_extrh_i64_i32: 1579 return TCG_TARGET_HAS_extrh_i64_i32; 1580 case INDEX_op_ext8s_i64: 1581 return TCG_TARGET_HAS_ext8s_i64; 1582 case INDEX_op_ext16s_i64: 1583 return TCG_TARGET_HAS_ext16s_i64; 1584 case INDEX_op_ext32s_i64: 1585 return TCG_TARGET_HAS_ext32s_i64; 1586 case INDEX_op_ext8u_i64: 1587 return TCG_TARGET_HAS_ext8u_i64; 1588 case INDEX_op_ext16u_i64: 1589 return TCG_TARGET_HAS_ext16u_i64; 1590 case INDEX_op_ext32u_i64: 1591 return TCG_TARGET_HAS_ext32u_i64; 1592 case INDEX_op_bswap16_i64: 1593 return TCG_TARGET_HAS_bswap16_i64; 1594 case INDEX_op_bswap32_i64: 1595 return TCG_TARGET_HAS_bswap32_i64; 1596 case INDEX_op_bswap64_i64: 1597 return TCG_TARGET_HAS_bswap64_i64; 1598 case INDEX_op_not_i64: 1599 return TCG_TARGET_HAS_not_i64; 1600 case INDEX_op_neg_i64: 1601 return TCG_TARGET_HAS_neg_i64; 1602 case INDEX_op_andc_i64: 1603 return TCG_TARGET_HAS_andc_i64; 1604 case INDEX_op_orc_i64: 1605 return TCG_TARGET_HAS_orc_i64; 1606 case INDEX_op_eqv_i64: 1607 return TCG_TARGET_HAS_eqv_i64; 1608 case INDEX_op_nand_i64: 1609 return TCG_TARGET_HAS_nand_i64; 1610 case INDEX_op_nor_i64: 1611 return TCG_TARGET_HAS_nor_i64; 1612 case INDEX_op_clz_i64: 1613 return TCG_TARGET_HAS_clz_i64; 1614 case INDEX_op_ctz_i64: 1615 return TCG_TARGET_HAS_ctz_i64; 1616 case INDEX_op_ctpop_i64: 1617 return TCG_TARGET_HAS_ctpop_i64; 1618 case INDEX_op_add2_i64: 1619 return TCG_TARGET_HAS_add2_i64; 1620 case INDEX_op_sub2_i64: 1621 return TCG_TARGET_HAS_sub2_i64; 1622 case INDEX_op_mulu2_i64: 1623 return TCG_TARGET_HAS_mulu2_i64; 1624 case INDEX_op_muls2_i64: 1625 return TCG_TARGET_HAS_muls2_i64; 1626 case INDEX_op_muluh_i64: 1627 return TCG_TARGET_HAS_muluh_i64; 1628 case INDEX_op_mulsh_i64: 1629 return TCG_TARGET_HAS_mulsh_i64; 1630 1631 case INDEX_op_mov_vec: 1632 case INDEX_op_dup_vec: 1633 case INDEX_op_dupi_vec: 1634 case INDEX_op_dupm_vec: 1635 case INDEX_op_ld_vec: 1636 case INDEX_op_st_vec: 1637 case INDEX_op_add_vec: 1638 case INDEX_op_sub_vec: 1639 case INDEX_op_and_vec: 1640 case INDEX_op_or_vec: 1641 case INDEX_op_xor_vec: 1642 case INDEX_op_cmp_vec: 1643 return have_vec; 1644 case INDEX_op_dup2_vec: 1645 return have_vec && TCG_TARGET_REG_BITS == 32; 1646 case INDEX_op_not_vec: 1647 return have_vec && TCG_TARGET_HAS_not_vec; 1648 case INDEX_op_neg_vec: 1649 return have_vec && TCG_TARGET_HAS_neg_vec; 1650 case INDEX_op_abs_vec: 1651 return have_vec && TCG_TARGET_HAS_abs_vec; 1652 case INDEX_op_andc_vec: 1653 return have_vec && TCG_TARGET_HAS_andc_vec; 1654 case INDEX_op_orc_vec: 1655 return have_vec && TCG_TARGET_HAS_orc_vec; 1656 case INDEX_op_mul_vec: 1657 return have_vec && TCG_TARGET_HAS_mul_vec; 1658 case INDEX_op_shli_vec: 1659 case INDEX_op_shri_vec: 1660 case INDEX_op_sari_vec: 1661 return have_vec && TCG_TARGET_HAS_shi_vec; 1662 case INDEX_op_shls_vec: 1663 case INDEX_op_shrs_vec: 1664 case INDEX_op_sars_vec: 1665 return have_vec && TCG_TARGET_HAS_shs_vec; 1666 case INDEX_op_shlv_vec: 1667 case INDEX_op_shrv_vec: 1668 case INDEX_op_sarv_vec: 1669 return have_vec && TCG_TARGET_HAS_shv_vec; 1670 case INDEX_op_rotli_vec: 1671 return have_vec && TCG_TARGET_HAS_roti_vec; 1672 case INDEX_op_rotls_vec: 1673 return have_vec && TCG_TARGET_HAS_rots_vec; 1674 case INDEX_op_rotlv_vec: 1675 case INDEX_op_rotrv_vec: 1676 return have_vec && TCG_TARGET_HAS_rotv_vec; 1677 case INDEX_op_ssadd_vec: 1678 case INDEX_op_usadd_vec: 1679 case INDEX_op_sssub_vec: 1680 case INDEX_op_ussub_vec: 1681 return have_vec && TCG_TARGET_HAS_sat_vec; 1682 case INDEX_op_smin_vec: 1683 case INDEX_op_umin_vec: 1684 case INDEX_op_smax_vec: 1685 case INDEX_op_umax_vec: 1686 return have_vec && TCG_TARGET_HAS_minmax_vec; 1687 case INDEX_op_bitsel_vec: 1688 return have_vec && TCG_TARGET_HAS_bitsel_vec; 1689 case INDEX_op_cmpsel_vec: 1690 return have_vec && TCG_TARGET_HAS_cmpsel_vec; 1691 1692 default: 1693 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS); 1694 return true; 1695 } 1696 } 1697 1698 /* Note: we convert the 64 bit args to 32 bit and do some alignment 1699 and endian swap. Maybe it would be better to do the alignment 1700 and endian swap in tcg_reg_alloc_call(). */ 1701 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args) 1702 { 1703 int i, real_args, nb_rets, pi; 1704 unsigned sizemask, flags; 1705 TCGHelperInfo *info; 1706 TCGOp *op; 1707 1708 info = g_hash_table_lookup(helper_table, (gpointer)func); 1709 flags = info->flags; 1710 sizemask = info->sizemask; 1711 1712 #ifdef CONFIG_PLUGIN 1713 /* detect non-plugin helpers */ 1714 if (tcg_ctx->plugin_insn && unlikely(strncmp(info->name, "plugin_", 7))) { 1715 tcg_ctx->plugin_insn->calls_helpers = true; 1716 } 1717 #endif 1718 1719 #if defined(__sparc__) && !defined(__arch64__) \ 1720 && !defined(CONFIG_TCG_INTERPRETER) 1721 /* We have 64-bit values in one register, but need to pass as two 1722 separate parameters. Split them. */ 1723 int orig_sizemask = sizemask; 1724 int orig_nargs = nargs; 1725 TCGv_i64 retl, reth; 1726 TCGTemp *split_args[MAX_OPC_PARAM]; 1727 1728 retl = NULL; 1729 reth = NULL; 1730 if (sizemask != 0) { 1731 for (i = real_args = 0; i < nargs; ++i) { 1732 int is_64bit = sizemask & (1 << (i+1)*2); 1733 if (is_64bit) { 1734 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1735 TCGv_i32 h = tcg_temp_new_i32(); 1736 TCGv_i32 l = tcg_temp_new_i32(); 1737 tcg_gen_extr_i64_i32(l, h, orig); 1738 split_args[real_args++] = tcgv_i32_temp(h); 1739 split_args[real_args++] = tcgv_i32_temp(l); 1740 } else { 1741 split_args[real_args++] = args[i]; 1742 } 1743 } 1744 nargs = real_args; 1745 args = split_args; 1746 sizemask = 0; 1747 } 1748 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1749 for (i = 0; i < nargs; ++i) { 1750 int is_64bit = sizemask & (1 << (i+1)*2); 1751 int is_signed = sizemask & (2 << (i+1)*2); 1752 if (!is_64bit) { 1753 TCGv_i64 temp = tcg_temp_new_i64(); 1754 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1755 if (is_signed) { 1756 tcg_gen_ext32s_i64(temp, orig); 1757 } else { 1758 tcg_gen_ext32u_i64(temp, orig); 1759 } 1760 args[i] = tcgv_i64_temp(temp); 1761 } 1762 } 1763 #endif /* TCG_TARGET_EXTEND_ARGS */ 1764 1765 op = tcg_emit_op(INDEX_op_call); 1766 1767 pi = 0; 1768 if (ret != NULL) { 1769 #if defined(__sparc__) && !defined(__arch64__) \ 1770 && !defined(CONFIG_TCG_INTERPRETER) 1771 if (orig_sizemask & 1) { 1772 /* The 32-bit ABI is going to return the 64-bit value in 1773 the %o0/%o1 register pair. Prepare for this by using 1774 two return temporaries, and reassemble below. */ 1775 retl = tcg_temp_new_i64(); 1776 reth = tcg_temp_new_i64(); 1777 op->args[pi++] = tcgv_i64_arg(reth); 1778 op->args[pi++] = tcgv_i64_arg(retl); 1779 nb_rets = 2; 1780 } else { 1781 op->args[pi++] = temp_arg(ret); 1782 nb_rets = 1; 1783 } 1784 #else 1785 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) { 1786 #ifdef HOST_WORDS_BIGENDIAN 1787 op->args[pi++] = temp_arg(ret + 1); 1788 op->args[pi++] = temp_arg(ret); 1789 #else 1790 op->args[pi++] = temp_arg(ret); 1791 op->args[pi++] = temp_arg(ret + 1); 1792 #endif 1793 nb_rets = 2; 1794 } else { 1795 op->args[pi++] = temp_arg(ret); 1796 nb_rets = 1; 1797 } 1798 #endif 1799 } else { 1800 nb_rets = 0; 1801 } 1802 TCGOP_CALLO(op) = nb_rets; 1803 1804 real_args = 0; 1805 for (i = 0; i < nargs; i++) { 1806 int is_64bit = sizemask & (1 << (i+1)*2); 1807 if (TCG_TARGET_REG_BITS < 64 && is_64bit) { 1808 #ifdef TCG_TARGET_CALL_ALIGN_ARGS 1809 /* some targets want aligned 64 bit args */ 1810 if (real_args & 1) { 1811 op->args[pi++] = TCG_CALL_DUMMY_ARG; 1812 real_args++; 1813 } 1814 #endif 1815 /* If stack grows up, then we will be placing successive 1816 arguments at lower addresses, which means we need to 1817 reverse the order compared to how we would normally 1818 treat either big or little-endian. For those arguments 1819 that will wind up in registers, this still works for 1820 HPPA (the only current STACK_GROWSUP target) since the 1821 argument registers are *also* allocated in decreasing 1822 order. If another such target is added, this logic may 1823 have to get more complicated to differentiate between 1824 stack arguments and register arguments. */ 1825 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP) 1826 op->args[pi++] = temp_arg(args[i] + 1); 1827 op->args[pi++] = temp_arg(args[i]); 1828 #else 1829 op->args[pi++] = temp_arg(args[i]); 1830 op->args[pi++] = temp_arg(args[i] + 1); 1831 #endif 1832 real_args += 2; 1833 continue; 1834 } 1835 1836 op->args[pi++] = temp_arg(args[i]); 1837 real_args++; 1838 } 1839 op->args[pi++] = (uintptr_t)func; 1840 op->args[pi++] = flags; 1841 TCGOP_CALLI(op) = real_args; 1842 1843 /* Make sure the fields didn't overflow. */ 1844 tcg_debug_assert(TCGOP_CALLI(op) == real_args); 1845 tcg_debug_assert(pi <= ARRAY_SIZE(op->args)); 1846 1847 #if defined(__sparc__) && !defined(__arch64__) \ 1848 && !defined(CONFIG_TCG_INTERPRETER) 1849 /* Free all of the parts we allocated above. */ 1850 for (i = real_args = 0; i < orig_nargs; ++i) { 1851 int is_64bit = orig_sizemask & (1 << (i+1)*2); 1852 if (is_64bit) { 1853 tcg_temp_free_internal(args[real_args++]); 1854 tcg_temp_free_internal(args[real_args++]); 1855 } else { 1856 real_args++; 1857 } 1858 } 1859 if (orig_sizemask & 1) { 1860 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them. 1861 Note that describing these as TCGv_i64 eliminates an unnecessary 1862 zero-extension that tcg_gen_concat_i32_i64 would create. */ 1863 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth); 1864 tcg_temp_free_i64(retl); 1865 tcg_temp_free_i64(reth); 1866 } 1867 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1868 for (i = 0; i < nargs; ++i) { 1869 int is_64bit = sizemask & (1 << (i+1)*2); 1870 if (!is_64bit) { 1871 tcg_temp_free_internal(args[i]); 1872 } 1873 } 1874 #endif /* TCG_TARGET_EXTEND_ARGS */ 1875 } 1876 1877 static void tcg_reg_alloc_start(TCGContext *s) 1878 { 1879 int i, n; 1880 TCGTemp *ts; 1881 1882 for (i = 0, n = s->nb_globals; i < n; i++) { 1883 ts = &s->temps[i]; 1884 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM); 1885 } 1886 for (n = s->nb_temps; i < n; i++) { 1887 ts = &s->temps[i]; 1888 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 1889 ts->mem_allocated = 0; 1890 ts->fixed_reg = 0; 1891 } 1892 1893 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp)); 1894 } 1895 1896 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size, 1897 TCGTemp *ts) 1898 { 1899 int idx = temp_idx(ts); 1900 1901 if (ts->temp_global) { 1902 pstrcpy(buf, buf_size, ts->name); 1903 } else if (ts->temp_local) { 1904 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals); 1905 } else { 1906 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals); 1907 } 1908 return buf; 1909 } 1910 1911 static char *tcg_get_arg_str(TCGContext *s, char *buf, 1912 int buf_size, TCGArg arg) 1913 { 1914 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg)); 1915 } 1916 1917 /* Find helper name. */ 1918 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val) 1919 { 1920 const char *ret = NULL; 1921 if (helper_table) { 1922 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val); 1923 if (info) { 1924 ret = info->name; 1925 } 1926 } 1927 return ret; 1928 } 1929 1930 static const char * const cond_name[] = 1931 { 1932 [TCG_COND_NEVER] = "never", 1933 [TCG_COND_ALWAYS] = "always", 1934 [TCG_COND_EQ] = "eq", 1935 [TCG_COND_NE] = "ne", 1936 [TCG_COND_LT] = "lt", 1937 [TCG_COND_GE] = "ge", 1938 [TCG_COND_LE] = "le", 1939 [TCG_COND_GT] = "gt", 1940 [TCG_COND_LTU] = "ltu", 1941 [TCG_COND_GEU] = "geu", 1942 [TCG_COND_LEU] = "leu", 1943 [TCG_COND_GTU] = "gtu" 1944 }; 1945 1946 static const char * const ldst_name[] = 1947 { 1948 [MO_UB] = "ub", 1949 [MO_SB] = "sb", 1950 [MO_LEUW] = "leuw", 1951 [MO_LESW] = "lesw", 1952 [MO_LEUL] = "leul", 1953 [MO_LESL] = "lesl", 1954 [MO_LEQ] = "leq", 1955 [MO_BEUW] = "beuw", 1956 [MO_BESW] = "besw", 1957 [MO_BEUL] = "beul", 1958 [MO_BESL] = "besl", 1959 [MO_BEQ] = "beq", 1960 }; 1961 1962 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = { 1963 #ifdef TARGET_ALIGNED_ONLY 1964 [MO_UNALN >> MO_ASHIFT] = "un+", 1965 [MO_ALIGN >> MO_ASHIFT] = "", 1966 #else 1967 [MO_UNALN >> MO_ASHIFT] = "", 1968 [MO_ALIGN >> MO_ASHIFT] = "al+", 1969 #endif 1970 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+", 1971 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+", 1972 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+", 1973 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+", 1974 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+", 1975 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+", 1976 }; 1977 1978 static inline bool tcg_regset_single(TCGRegSet d) 1979 { 1980 return (d & (d - 1)) == 0; 1981 } 1982 1983 static inline TCGReg tcg_regset_first(TCGRegSet d) 1984 { 1985 if (TCG_TARGET_NB_REGS <= 32) { 1986 return ctz32(d); 1987 } else { 1988 return ctz64(d); 1989 } 1990 } 1991 1992 static void tcg_dump_ops(TCGContext *s, bool have_prefs) 1993 { 1994 char buf[128]; 1995 TCGOp *op; 1996 1997 QTAILQ_FOREACH(op, &s->ops, link) { 1998 int i, k, nb_oargs, nb_iargs, nb_cargs; 1999 const TCGOpDef *def; 2000 TCGOpcode c; 2001 int col = 0; 2002 2003 c = op->opc; 2004 def = &tcg_op_defs[c]; 2005 2006 if (c == INDEX_op_insn_start) { 2007 nb_oargs = 0; 2008 col += qemu_log("\n ----"); 2009 2010 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 2011 target_ulong a; 2012 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 2013 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 2014 #else 2015 a = op->args[i]; 2016 #endif 2017 col += qemu_log(" " TARGET_FMT_lx, a); 2018 } 2019 } else if (c == INDEX_op_call) { 2020 /* variable number of arguments */ 2021 nb_oargs = TCGOP_CALLO(op); 2022 nb_iargs = TCGOP_CALLI(op); 2023 nb_cargs = def->nb_cargs; 2024 2025 /* function name, flags, out args */ 2026 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name, 2027 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]), 2028 op->args[nb_oargs + nb_iargs + 1], nb_oargs); 2029 for (i = 0; i < nb_oargs; i++) { 2030 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf), 2031 op->args[i])); 2032 } 2033 for (i = 0; i < nb_iargs; i++) { 2034 TCGArg arg = op->args[nb_oargs + i]; 2035 const char *t = "<dummy>"; 2036 if (arg != TCG_CALL_DUMMY_ARG) { 2037 t = tcg_get_arg_str(s, buf, sizeof(buf), arg); 2038 } 2039 col += qemu_log(",%s", t); 2040 } 2041 } else { 2042 col += qemu_log(" %s ", def->name); 2043 2044 nb_oargs = def->nb_oargs; 2045 nb_iargs = def->nb_iargs; 2046 nb_cargs = def->nb_cargs; 2047 2048 if (def->flags & TCG_OPF_VECTOR) { 2049 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op), 2050 8 << TCGOP_VECE(op)); 2051 } 2052 2053 k = 0; 2054 for (i = 0; i < nb_oargs; i++) { 2055 if (k != 0) { 2056 col += qemu_log(","); 2057 } 2058 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2059 op->args[k++])); 2060 } 2061 for (i = 0; i < nb_iargs; i++) { 2062 if (k != 0) { 2063 col += qemu_log(","); 2064 } 2065 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2066 op->args[k++])); 2067 } 2068 switch (c) { 2069 case INDEX_op_brcond_i32: 2070 case INDEX_op_setcond_i32: 2071 case INDEX_op_movcond_i32: 2072 case INDEX_op_brcond2_i32: 2073 case INDEX_op_setcond2_i32: 2074 case INDEX_op_brcond_i64: 2075 case INDEX_op_setcond_i64: 2076 case INDEX_op_movcond_i64: 2077 case INDEX_op_cmp_vec: 2078 case INDEX_op_cmpsel_vec: 2079 if (op->args[k] < ARRAY_SIZE(cond_name) 2080 && cond_name[op->args[k]]) { 2081 col += qemu_log(",%s", cond_name[op->args[k++]]); 2082 } else { 2083 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]); 2084 } 2085 i = 1; 2086 break; 2087 case INDEX_op_qemu_ld_i32: 2088 case INDEX_op_qemu_st_i32: 2089 case INDEX_op_qemu_ld_i64: 2090 case INDEX_op_qemu_st_i64: 2091 { 2092 TCGMemOpIdx oi = op->args[k++]; 2093 MemOp op = get_memop(oi); 2094 unsigned ix = get_mmuidx(oi); 2095 2096 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) { 2097 col += qemu_log(",$0x%x,%u", op, ix); 2098 } else { 2099 const char *s_al, *s_op; 2100 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT]; 2101 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)]; 2102 col += qemu_log(",%s%s,%u", s_al, s_op, ix); 2103 } 2104 i = 1; 2105 } 2106 break; 2107 default: 2108 i = 0; 2109 break; 2110 } 2111 switch (c) { 2112 case INDEX_op_set_label: 2113 case INDEX_op_br: 2114 case INDEX_op_brcond_i32: 2115 case INDEX_op_brcond_i64: 2116 case INDEX_op_brcond2_i32: 2117 col += qemu_log("%s$L%d", k ? "," : "", 2118 arg_label(op->args[k])->id); 2119 i++, k++; 2120 break; 2121 default: 2122 break; 2123 } 2124 for (; i < nb_cargs; i++, k++) { 2125 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]); 2126 } 2127 } 2128 2129 if (have_prefs || op->life) { 2130 2131 QemuLogFile *logfile; 2132 2133 rcu_read_lock(); 2134 logfile = qatomic_rcu_read(&qemu_logfile); 2135 if (logfile) { 2136 for (; col < 40; ++col) { 2137 putc(' ', logfile->fd); 2138 } 2139 } 2140 rcu_read_unlock(); 2141 } 2142 2143 if (op->life) { 2144 unsigned life = op->life; 2145 2146 if (life & (SYNC_ARG * 3)) { 2147 qemu_log(" sync:"); 2148 for (i = 0; i < 2; ++i) { 2149 if (life & (SYNC_ARG << i)) { 2150 qemu_log(" %d", i); 2151 } 2152 } 2153 } 2154 life /= DEAD_ARG; 2155 if (life) { 2156 qemu_log(" dead:"); 2157 for (i = 0; life; ++i, life >>= 1) { 2158 if (life & 1) { 2159 qemu_log(" %d", i); 2160 } 2161 } 2162 } 2163 } 2164 2165 if (have_prefs) { 2166 for (i = 0; i < nb_oargs; ++i) { 2167 TCGRegSet set = op->output_pref[i]; 2168 2169 if (i == 0) { 2170 qemu_log(" pref="); 2171 } else { 2172 qemu_log(","); 2173 } 2174 if (set == 0) { 2175 qemu_log("none"); 2176 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) { 2177 qemu_log("all"); 2178 #ifdef CONFIG_DEBUG_TCG 2179 } else if (tcg_regset_single(set)) { 2180 TCGReg reg = tcg_regset_first(set); 2181 qemu_log("%s", tcg_target_reg_names[reg]); 2182 #endif 2183 } else if (TCG_TARGET_NB_REGS <= 32) { 2184 qemu_log("%#x", (uint32_t)set); 2185 } else { 2186 qemu_log("%#" PRIx64, (uint64_t)set); 2187 } 2188 } 2189 } 2190 2191 qemu_log("\n"); 2192 } 2193 } 2194 2195 /* we give more priority to constraints with less registers */ 2196 static int get_constraint_priority(const TCGOpDef *def, int k) 2197 { 2198 const TCGArgConstraint *arg_ct = &def->args_ct[k]; 2199 int n; 2200 2201 if (arg_ct->oalias) { 2202 /* an alias is equivalent to a single register */ 2203 n = 1; 2204 } else { 2205 n = ctpop64(arg_ct->regs); 2206 } 2207 return TCG_TARGET_NB_REGS - n + 1; 2208 } 2209 2210 /* sort from highest priority to lowest */ 2211 static void sort_constraints(TCGOpDef *def, int start, int n) 2212 { 2213 int i, j; 2214 TCGArgConstraint *a = def->args_ct; 2215 2216 for (i = 0; i < n; i++) { 2217 a[start + i].sort_index = start + i; 2218 } 2219 if (n <= 1) { 2220 return; 2221 } 2222 for (i = 0; i < n - 1; i++) { 2223 for (j = i + 1; j < n; j++) { 2224 int p1 = get_constraint_priority(def, a[start + i].sort_index); 2225 int p2 = get_constraint_priority(def, a[start + j].sort_index); 2226 if (p1 < p2) { 2227 int tmp = a[start + i].sort_index; 2228 a[start + i].sort_index = a[start + j].sort_index; 2229 a[start + j].sort_index = tmp; 2230 } 2231 } 2232 } 2233 } 2234 2235 static void process_op_defs(TCGContext *s) 2236 { 2237 TCGOpcode op; 2238 2239 for (op = 0; op < NB_OPS; op++) { 2240 TCGOpDef *def = &tcg_op_defs[op]; 2241 const TCGTargetOpDef *tdefs; 2242 TCGType type; 2243 int i, nb_args; 2244 2245 if (def->flags & TCG_OPF_NOT_PRESENT) { 2246 continue; 2247 } 2248 2249 nb_args = def->nb_iargs + def->nb_oargs; 2250 if (nb_args == 0) { 2251 continue; 2252 } 2253 2254 tdefs = tcg_target_op_def(op); 2255 /* Missing TCGTargetOpDef entry. */ 2256 tcg_debug_assert(tdefs != NULL); 2257 2258 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32); 2259 for (i = 0; i < nb_args; i++) { 2260 const char *ct_str = tdefs->args_ct_str[i]; 2261 /* Incomplete TCGTargetOpDef entry. */ 2262 tcg_debug_assert(ct_str != NULL); 2263 2264 while (*ct_str != '\0') { 2265 switch(*ct_str) { 2266 case '0' ... '9': 2267 { 2268 int oarg = *ct_str - '0'; 2269 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]); 2270 tcg_debug_assert(oarg < def->nb_oargs); 2271 tcg_debug_assert(def->args_ct[oarg].regs != 0); 2272 def->args_ct[i] = def->args_ct[oarg]; 2273 /* The output sets oalias. */ 2274 def->args_ct[oarg].oalias = true; 2275 def->args_ct[oarg].alias_index = i; 2276 /* The input sets ialias. */ 2277 def->args_ct[i].ialias = true; 2278 def->args_ct[i].alias_index = oarg; 2279 } 2280 ct_str++; 2281 break; 2282 case '&': 2283 def->args_ct[i].newreg = true; 2284 ct_str++; 2285 break; 2286 case 'i': 2287 def->args_ct[i].ct |= TCG_CT_CONST; 2288 ct_str++; 2289 break; 2290 default: 2291 ct_str = target_parse_constraint(&def->args_ct[i], 2292 ct_str, type); 2293 /* Typo in TCGTargetOpDef constraint. */ 2294 tcg_debug_assert(ct_str != NULL); 2295 } 2296 } 2297 } 2298 2299 /* TCGTargetOpDef entry with too much information? */ 2300 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL); 2301 2302 /* sort the constraints (XXX: this is just an heuristic) */ 2303 sort_constraints(def, 0, def->nb_oargs); 2304 sort_constraints(def, def->nb_oargs, def->nb_iargs); 2305 } 2306 } 2307 2308 void tcg_op_remove(TCGContext *s, TCGOp *op) 2309 { 2310 TCGLabel *label; 2311 2312 switch (op->opc) { 2313 case INDEX_op_br: 2314 label = arg_label(op->args[0]); 2315 label->refs--; 2316 break; 2317 case INDEX_op_brcond_i32: 2318 case INDEX_op_brcond_i64: 2319 label = arg_label(op->args[3]); 2320 label->refs--; 2321 break; 2322 case INDEX_op_brcond2_i32: 2323 label = arg_label(op->args[5]); 2324 label->refs--; 2325 break; 2326 default: 2327 break; 2328 } 2329 2330 QTAILQ_REMOVE(&s->ops, op, link); 2331 QTAILQ_INSERT_TAIL(&s->free_ops, op, link); 2332 s->nb_ops--; 2333 2334 #ifdef CONFIG_PROFILER 2335 qatomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1); 2336 #endif 2337 } 2338 2339 static TCGOp *tcg_op_alloc(TCGOpcode opc) 2340 { 2341 TCGContext *s = tcg_ctx; 2342 TCGOp *op; 2343 2344 if (likely(QTAILQ_EMPTY(&s->free_ops))) { 2345 op = tcg_malloc(sizeof(TCGOp)); 2346 } else { 2347 op = QTAILQ_FIRST(&s->free_ops); 2348 QTAILQ_REMOVE(&s->free_ops, op, link); 2349 } 2350 memset(op, 0, offsetof(TCGOp, link)); 2351 op->opc = opc; 2352 s->nb_ops++; 2353 2354 return op; 2355 } 2356 2357 TCGOp *tcg_emit_op(TCGOpcode opc) 2358 { 2359 TCGOp *op = tcg_op_alloc(opc); 2360 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link); 2361 return op; 2362 } 2363 2364 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2365 { 2366 TCGOp *new_op = tcg_op_alloc(opc); 2367 QTAILQ_INSERT_BEFORE(old_op, new_op, link); 2368 return new_op; 2369 } 2370 2371 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2372 { 2373 TCGOp *new_op = tcg_op_alloc(opc); 2374 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link); 2375 return new_op; 2376 } 2377 2378 /* Reachable analysis : remove unreachable code. */ 2379 static void reachable_code_pass(TCGContext *s) 2380 { 2381 TCGOp *op, *op_next; 2382 bool dead = false; 2383 2384 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2385 bool remove = dead; 2386 TCGLabel *label; 2387 int call_flags; 2388 2389 switch (op->opc) { 2390 case INDEX_op_set_label: 2391 label = arg_label(op->args[0]); 2392 if (label->refs == 0) { 2393 /* 2394 * While there is an occasional backward branch, virtually 2395 * all branches generated by the translators are forward. 2396 * Which means that generally we will have already removed 2397 * all references to the label that will be, and there is 2398 * little to be gained by iterating. 2399 */ 2400 remove = true; 2401 } else { 2402 /* Once we see a label, insns become live again. */ 2403 dead = false; 2404 remove = false; 2405 2406 /* 2407 * Optimization can fold conditional branches to unconditional. 2408 * If we find a label with one reference which is preceded by 2409 * an unconditional branch to it, remove both. This needed to 2410 * wait until the dead code in between them was removed. 2411 */ 2412 if (label->refs == 1) { 2413 TCGOp *op_prev = QTAILQ_PREV(op, link); 2414 if (op_prev->opc == INDEX_op_br && 2415 label == arg_label(op_prev->args[0])) { 2416 tcg_op_remove(s, op_prev); 2417 remove = true; 2418 } 2419 } 2420 } 2421 break; 2422 2423 case INDEX_op_br: 2424 case INDEX_op_exit_tb: 2425 case INDEX_op_goto_ptr: 2426 /* Unconditional branches; everything following is dead. */ 2427 dead = true; 2428 break; 2429 2430 case INDEX_op_call: 2431 /* Notice noreturn helper calls, raising exceptions. */ 2432 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1]; 2433 if (call_flags & TCG_CALL_NO_RETURN) { 2434 dead = true; 2435 } 2436 break; 2437 2438 case INDEX_op_insn_start: 2439 /* Never remove -- we need to keep these for unwind. */ 2440 remove = false; 2441 break; 2442 2443 default: 2444 break; 2445 } 2446 2447 if (remove) { 2448 tcg_op_remove(s, op); 2449 } 2450 } 2451 } 2452 2453 #define TS_DEAD 1 2454 #define TS_MEM 2 2455 2456 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n))) 2457 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n))) 2458 2459 /* For liveness_pass_1, the register preferences for a given temp. */ 2460 static inline TCGRegSet *la_temp_pref(TCGTemp *ts) 2461 { 2462 return ts->state_ptr; 2463 } 2464 2465 /* For liveness_pass_1, reset the preferences for a given temp to the 2466 * maximal regset for its type. 2467 */ 2468 static inline void la_reset_pref(TCGTemp *ts) 2469 { 2470 *la_temp_pref(ts) 2471 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]); 2472 } 2473 2474 /* liveness analysis: end of function: all temps are dead, and globals 2475 should be in memory. */ 2476 static void la_func_end(TCGContext *s, int ng, int nt) 2477 { 2478 int i; 2479 2480 for (i = 0; i < ng; ++i) { 2481 s->temps[i].state = TS_DEAD | TS_MEM; 2482 la_reset_pref(&s->temps[i]); 2483 } 2484 for (i = ng; i < nt; ++i) { 2485 s->temps[i].state = TS_DEAD; 2486 la_reset_pref(&s->temps[i]); 2487 } 2488 } 2489 2490 /* liveness analysis: end of basic block: all temps are dead, globals 2491 and local temps should be in memory. */ 2492 static void la_bb_end(TCGContext *s, int ng, int nt) 2493 { 2494 int i; 2495 2496 for (i = 0; i < ng; ++i) { 2497 s->temps[i].state = TS_DEAD | TS_MEM; 2498 la_reset_pref(&s->temps[i]); 2499 } 2500 for (i = ng; i < nt; ++i) { 2501 s->temps[i].state = (s->temps[i].temp_local 2502 ? TS_DEAD | TS_MEM 2503 : TS_DEAD); 2504 la_reset_pref(&s->temps[i]); 2505 } 2506 } 2507 2508 /* liveness analysis: sync globals back to memory. */ 2509 static void la_global_sync(TCGContext *s, int ng) 2510 { 2511 int i; 2512 2513 for (i = 0; i < ng; ++i) { 2514 int state = s->temps[i].state; 2515 s->temps[i].state = state | TS_MEM; 2516 if (state == TS_DEAD) { 2517 /* If the global was previously dead, reset prefs. */ 2518 la_reset_pref(&s->temps[i]); 2519 } 2520 } 2521 } 2522 2523 /* 2524 * liveness analysis: conditional branch: all temps are dead, 2525 * globals and local temps should be synced. 2526 */ 2527 static void la_bb_sync(TCGContext *s, int ng, int nt) 2528 { 2529 la_global_sync(s, ng); 2530 2531 for (int i = ng; i < nt; ++i) { 2532 if (s->temps[i].temp_local) { 2533 int state = s->temps[i].state; 2534 s->temps[i].state = state | TS_MEM; 2535 if (state != TS_DEAD) { 2536 continue; 2537 } 2538 } else { 2539 s->temps[i].state = TS_DEAD; 2540 } 2541 la_reset_pref(&s->temps[i]); 2542 } 2543 } 2544 2545 /* liveness analysis: sync globals back to memory and kill. */ 2546 static void la_global_kill(TCGContext *s, int ng) 2547 { 2548 int i; 2549 2550 for (i = 0; i < ng; i++) { 2551 s->temps[i].state = TS_DEAD | TS_MEM; 2552 la_reset_pref(&s->temps[i]); 2553 } 2554 } 2555 2556 /* liveness analysis: note live globals crossing calls. */ 2557 static void la_cross_call(TCGContext *s, int nt) 2558 { 2559 TCGRegSet mask = ~tcg_target_call_clobber_regs; 2560 int i; 2561 2562 for (i = 0; i < nt; i++) { 2563 TCGTemp *ts = &s->temps[i]; 2564 if (!(ts->state & TS_DEAD)) { 2565 TCGRegSet *pset = la_temp_pref(ts); 2566 TCGRegSet set = *pset; 2567 2568 set &= mask; 2569 /* If the combination is not possible, restart. */ 2570 if (set == 0) { 2571 set = tcg_target_available_regs[ts->type] & mask; 2572 } 2573 *pset = set; 2574 } 2575 } 2576 } 2577 2578 /* Liveness analysis : update the opc_arg_life array to tell if a 2579 given input arguments is dead. Instructions updating dead 2580 temporaries are removed. */ 2581 static void liveness_pass_1(TCGContext *s) 2582 { 2583 int nb_globals = s->nb_globals; 2584 int nb_temps = s->nb_temps; 2585 TCGOp *op, *op_prev; 2586 TCGRegSet *prefs; 2587 int i; 2588 2589 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps); 2590 for (i = 0; i < nb_temps; ++i) { 2591 s->temps[i].state_ptr = prefs + i; 2592 } 2593 2594 /* ??? Should be redundant with the exit_tb that ends the TB. */ 2595 la_func_end(s, nb_globals, nb_temps); 2596 2597 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) { 2598 int nb_iargs, nb_oargs; 2599 TCGOpcode opc_new, opc_new2; 2600 bool have_opc_new2; 2601 TCGLifeData arg_life = 0; 2602 TCGTemp *ts; 2603 TCGOpcode opc = op->opc; 2604 const TCGOpDef *def = &tcg_op_defs[opc]; 2605 2606 switch (opc) { 2607 case INDEX_op_call: 2608 { 2609 int call_flags; 2610 int nb_call_regs; 2611 2612 nb_oargs = TCGOP_CALLO(op); 2613 nb_iargs = TCGOP_CALLI(op); 2614 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2615 2616 /* pure functions can be removed if their result is unused */ 2617 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) { 2618 for (i = 0; i < nb_oargs; i++) { 2619 ts = arg_temp(op->args[i]); 2620 if (ts->state != TS_DEAD) { 2621 goto do_not_remove_call; 2622 } 2623 } 2624 goto do_remove; 2625 } 2626 do_not_remove_call: 2627 2628 /* Output args are dead. */ 2629 for (i = 0; i < nb_oargs; i++) { 2630 ts = arg_temp(op->args[i]); 2631 if (ts->state & TS_DEAD) { 2632 arg_life |= DEAD_ARG << i; 2633 } 2634 if (ts->state & TS_MEM) { 2635 arg_life |= SYNC_ARG << i; 2636 } 2637 ts->state = TS_DEAD; 2638 la_reset_pref(ts); 2639 2640 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */ 2641 op->output_pref[i] = 0; 2642 } 2643 2644 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS | 2645 TCG_CALL_NO_READ_GLOBALS))) { 2646 la_global_kill(s, nb_globals); 2647 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) { 2648 la_global_sync(s, nb_globals); 2649 } 2650 2651 /* Record arguments that die in this helper. */ 2652 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2653 ts = arg_temp(op->args[i]); 2654 if (ts && ts->state & TS_DEAD) { 2655 arg_life |= DEAD_ARG << i; 2656 } 2657 } 2658 2659 /* For all live registers, remove call-clobbered prefs. */ 2660 la_cross_call(s, nb_temps); 2661 2662 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 2663 2664 /* Input arguments are live for preceding opcodes. */ 2665 for (i = 0; i < nb_iargs; i++) { 2666 ts = arg_temp(op->args[i + nb_oargs]); 2667 if (ts && ts->state & TS_DEAD) { 2668 /* For those arguments that die, and will be allocated 2669 * in registers, clear the register set for that arg, 2670 * to be filled in below. For args that will be on 2671 * the stack, reset to any available reg. 2672 */ 2673 *la_temp_pref(ts) 2674 = (i < nb_call_regs ? 0 : 2675 tcg_target_available_regs[ts->type]); 2676 ts->state &= ~TS_DEAD; 2677 } 2678 } 2679 2680 /* For each input argument, add its input register to prefs. 2681 If a temp is used once, this produces a single set bit. */ 2682 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) { 2683 ts = arg_temp(op->args[i + nb_oargs]); 2684 if (ts) { 2685 tcg_regset_set_reg(*la_temp_pref(ts), 2686 tcg_target_call_iarg_regs[i]); 2687 } 2688 } 2689 } 2690 break; 2691 case INDEX_op_insn_start: 2692 break; 2693 case INDEX_op_discard: 2694 /* mark the temporary as dead */ 2695 ts = arg_temp(op->args[0]); 2696 ts->state = TS_DEAD; 2697 la_reset_pref(ts); 2698 break; 2699 2700 case INDEX_op_add2_i32: 2701 opc_new = INDEX_op_add_i32; 2702 goto do_addsub2; 2703 case INDEX_op_sub2_i32: 2704 opc_new = INDEX_op_sub_i32; 2705 goto do_addsub2; 2706 case INDEX_op_add2_i64: 2707 opc_new = INDEX_op_add_i64; 2708 goto do_addsub2; 2709 case INDEX_op_sub2_i64: 2710 opc_new = INDEX_op_sub_i64; 2711 do_addsub2: 2712 nb_iargs = 4; 2713 nb_oargs = 2; 2714 /* Test if the high part of the operation is dead, but not 2715 the low part. The result can be optimized to a simple 2716 add or sub. This happens often for x86_64 guest when the 2717 cpu mode is set to 32 bit. */ 2718 if (arg_temp(op->args[1])->state == TS_DEAD) { 2719 if (arg_temp(op->args[0])->state == TS_DEAD) { 2720 goto do_remove; 2721 } 2722 /* Replace the opcode and adjust the args in place, 2723 leaving 3 unused args at the end. */ 2724 op->opc = opc = opc_new; 2725 op->args[1] = op->args[2]; 2726 op->args[2] = op->args[4]; 2727 /* Fall through and mark the single-word operation live. */ 2728 nb_iargs = 2; 2729 nb_oargs = 1; 2730 } 2731 goto do_not_remove; 2732 2733 case INDEX_op_mulu2_i32: 2734 opc_new = INDEX_op_mul_i32; 2735 opc_new2 = INDEX_op_muluh_i32; 2736 have_opc_new2 = TCG_TARGET_HAS_muluh_i32; 2737 goto do_mul2; 2738 case INDEX_op_muls2_i32: 2739 opc_new = INDEX_op_mul_i32; 2740 opc_new2 = INDEX_op_mulsh_i32; 2741 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32; 2742 goto do_mul2; 2743 case INDEX_op_mulu2_i64: 2744 opc_new = INDEX_op_mul_i64; 2745 opc_new2 = INDEX_op_muluh_i64; 2746 have_opc_new2 = TCG_TARGET_HAS_muluh_i64; 2747 goto do_mul2; 2748 case INDEX_op_muls2_i64: 2749 opc_new = INDEX_op_mul_i64; 2750 opc_new2 = INDEX_op_mulsh_i64; 2751 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64; 2752 goto do_mul2; 2753 do_mul2: 2754 nb_iargs = 2; 2755 nb_oargs = 2; 2756 if (arg_temp(op->args[1])->state == TS_DEAD) { 2757 if (arg_temp(op->args[0])->state == TS_DEAD) { 2758 /* Both parts of the operation are dead. */ 2759 goto do_remove; 2760 } 2761 /* The high part of the operation is dead; generate the low. */ 2762 op->opc = opc = opc_new; 2763 op->args[1] = op->args[2]; 2764 op->args[2] = op->args[3]; 2765 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) { 2766 /* The low part of the operation is dead; generate the high. */ 2767 op->opc = opc = opc_new2; 2768 op->args[0] = op->args[1]; 2769 op->args[1] = op->args[2]; 2770 op->args[2] = op->args[3]; 2771 } else { 2772 goto do_not_remove; 2773 } 2774 /* Mark the single-word operation live. */ 2775 nb_oargs = 1; 2776 goto do_not_remove; 2777 2778 default: 2779 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */ 2780 nb_iargs = def->nb_iargs; 2781 nb_oargs = def->nb_oargs; 2782 2783 /* Test if the operation can be removed because all 2784 its outputs are dead. We assume that nb_oargs == 0 2785 implies side effects */ 2786 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) { 2787 for (i = 0; i < nb_oargs; i++) { 2788 if (arg_temp(op->args[i])->state != TS_DEAD) { 2789 goto do_not_remove; 2790 } 2791 } 2792 goto do_remove; 2793 } 2794 goto do_not_remove; 2795 2796 do_remove: 2797 tcg_op_remove(s, op); 2798 break; 2799 2800 do_not_remove: 2801 for (i = 0; i < nb_oargs; i++) { 2802 ts = arg_temp(op->args[i]); 2803 2804 /* Remember the preference of the uses that followed. */ 2805 op->output_pref[i] = *la_temp_pref(ts); 2806 2807 /* Output args are dead. */ 2808 if (ts->state & TS_DEAD) { 2809 arg_life |= DEAD_ARG << i; 2810 } 2811 if (ts->state & TS_MEM) { 2812 arg_life |= SYNC_ARG << i; 2813 } 2814 ts->state = TS_DEAD; 2815 la_reset_pref(ts); 2816 } 2817 2818 /* If end of basic block, update. */ 2819 if (def->flags & TCG_OPF_BB_EXIT) { 2820 la_func_end(s, nb_globals, nb_temps); 2821 } else if (def->flags & TCG_OPF_COND_BRANCH) { 2822 la_bb_sync(s, nb_globals, nb_temps); 2823 } else if (def->flags & TCG_OPF_BB_END) { 2824 la_bb_end(s, nb_globals, nb_temps); 2825 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2826 la_global_sync(s, nb_globals); 2827 if (def->flags & TCG_OPF_CALL_CLOBBER) { 2828 la_cross_call(s, nb_temps); 2829 } 2830 } 2831 2832 /* Record arguments that die in this opcode. */ 2833 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2834 ts = arg_temp(op->args[i]); 2835 if (ts->state & TS_DEAD) { 2836 arg_life |= DEAD_ARG << i; 2837 } 2838 } 2839 2840 /* Input arguments are live for preceding opcodes. */ 2841 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2842 ts = arg_temp(op->args[i]); 2843 if (ts->state & TS_DEAD) { 2844 /* For operands that were dead, initially allow 2845 all regs for the type. */ 2846 *la_temp_pref(ts) = tcg_target_available_regs[ts->type]; 2847 ts->state &= ~TS_DEAD; 2848 } 2849 } 2850 2851 /* Incorporate constraints for this operand. */ 2852 switch (opc) { 2853 case INDEX_op_mov_i32: 2854 case INDEX_op_mov_i64: 2855 /* Note that these are TCG_OPF_NOT_PRESENT and do not 2856 have proper constraints. That said, special case 2857 moves to propagate preferences backward. */ 2858 if (IS_DEAD_ARG(1)) { 2859 *la_temp_pref(arg_temp(op->args[0])) 2860 = *la_temp_pref(arg_temp(op->args[1])); 2861 } 2862 break; 2863 2864 default: 2865 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2866 const TCGArgConstraint *ct = &def->args_ct[i]; 2867 TCGRegSet set, *pset; 2868 2869 ts = arg_temp(op->args[i]); 2870 pset = la_temp_pref(ts); 2871 set = *pset; 2872 2873 set &= ct->regs; 2874 if (ct->ialias) { 2875 set &= op->output_pref[ct->alias_index]; 2876 } 2877 /* If the combination is not possible, restart. */ 2878 if (set == 0) { 2879 set = ct->regs; 2880 } 2881 *pset = set; 2882 } 2883 break; 2884 } 2885 break; 2886 } 2887 op->life = arg_life; 2888 } 2889 } 2890 2891 /* Liveness analysis: Convert indirect regs to direct temporaries. */ 2892 static bool liveness_pass_2(TCGContext *s) 2893 { 2894 int nb_globals = s->nb_globals; 2895 int nb_temps, i; 2896 bool changes = false; 2897 TCGOp *op, *op_next; 2898 2899 /* Create a temporary for each indirect global. */ 2900 for (i = 0; i < nb_globals; ++i) { 2901 TCGTemp *its = &s->temps[i]; 2902 if (its->indirect_reg) { 2903 TCGTemp *dts = tcg_temp_alloc(s); 2904 dts->type = its->type; 2905 dts->base_type = its->base_type; 2906 its->state_ptr = dts; 2907 } else { 2908 its->state_ptr = NULL; 2909 } 2910 /* All globals begin dead. */ 2911 its->state = TS_DEAD; 2912 } 2913 for (nb_temps = s->nb_temps; i < nb_temps; ++i) { 2914 TCGTemp *its = &s->temps[i]; 2915 its->state_ptr = NULL; 2916 its->state = TS_DEAD; 2917 } 2918 2919 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2920 TCGOpcode opc = op->opc; 2921 const TCGOpDef *def = &tcg_op_defs[opc]; 2922 TCGLifeData arg_life = op->life; 2923 int nb_iargs, nb_oargs, call_flags; 2924 TCGTemp *arg_ts, *dir_ts; 2925 2926 if (opc == INDEX_op_call) { 2927 nb_oargs = TCGOP_CALLO(op); 2928 nb_iargs = TCGOP_CALLI(op); 2929 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2930 } else { 2931 nb_iargs = def->nb_iargs; 2932 nb_oargs = def->nb_oargs; 2933 2934 /* Set flags similar to how calls require. */ 2935 if (def->flags & TCG_OPF_COND_BRANCH) { 2936 /* Like reading globals: sync_globals */ 2937 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 2938 } else if (def->flags & TCG_OPF_BB_END) { 2939 /* Like writing globals: save_globals */ 2940 call_flags = 0; 2941 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2942 /* Like reading globals: sync_globals */ 2943 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 2944 } else { 2945 /* No effect on globals. */ 2946 call_flags = (TCG_CALL_NO_READ_GLOBALS | 2947 TCG_CALL_NO_WRITE_GLOBALS); 2948 } 2949 } 2950 2951 /* Make sure that input arguments are available. */ 2952 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2953 arg_ts = arg_temp(op->args[i]); 2954 if (arg_ts) { 2955 dir_ts = arg_ts->state_ptr; 2956 if (dir_ts && arg_ts->state == TS_DEAD) { 2957 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32 2958 ? INDEX_op_ld_i32 2959 : INDEX_op_ld_i64); 2960 TCGOp *lop = tcg_op_insert_before(s, op, lopc); 2961 2962 lop->args[0] = temp_arg(dir_ts); 2963 lop->args[1] = temp_arg(arg_ts->mem_base); 2964 lop->args[2] = arg_ts->mem_offset; 2965 2966 /* Loaded, but synced with memory. */ 2967 arg_ts->state = TS_MEM; 2968 } 2969 } 2970 } 2971 2972 /* Perform input replacement, and mark inputs that became dead. 2973 No action is required except keeping temp_state up to date 2974 so that we reload when needed. */ 2975 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2976 arg_ts = arg_temp(op->args[i]); 2977 if (arg_ts) { 2978 dir_ts = arg_ts->state_ptr; 2979 if (dir_ts) { 2980 op->args[i] = temp_arg(dir_ts); 2981 changes = true; 2982 if (IS_DEAD_ARG(i)) { 2983 arg_ts->state = TS_DEAD; 2984 } 2985 } 2986 } 2987 } 2988 2989 /* Liveness analysis should ensure that the following are 2990 all correct, for call sites and basic block end points. */ 2991 if (call_flags & TCG_CALL_NO_READ_GLOBALS) { 2992 /* Nothing to do */ 2993 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) { 2994 for (i = 0; i < nb_globals; ++i) { 2995 /* Liveness should see that globals are synced back, 2996 that is, either TS_DEAD or TS_MEM. */ 2997 arg_ts = &s->temps[i]; 2998 tcg_debug_assert(arg_ts->state_ptr == 0 2999 || arg_ts->state != 0); 3000 } 3001 } else { 3002 for (i = 0; i < nb_globals; ++i) { 3003 /* Liveness should see that globals are saved back, 3004 that is, TS_DEAD, waiting to be reloaded. */ 3005 arg_ts = &s->temps[i]; 3006 tcg_debug_assert(arg_ts->state_ptr == 0 3007 || arg_ts->state == TS_DEAD); 3008 } 3009 } 3010 3011 /* Outputs become available. */ 3012 if (opc == INDEX_op_mov_i32 || opc == INDEX_op_mov_i64) { 3013 arg_ts = arg_temp(op->args[0]); 3014 dir_ts = arg_ts->state_ptr; 3015 if (dir_ts) { 3016 op->args[0] = temp_arg(dir_ts); 3017 changes = true; 3018 3019 /* The output is now live and modified. */ 3020 arg_ts->state = 0; 3021 3022 if (NEED_SYNC_ARG(0)) { 3023 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 3024 ? INDEX_op_st_i32 3025 : INDEX_op_st_i64); 3026 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 3027 TCGTemp *out_ts = dir_ts; 3028 3029 if (IS_DEAD_ARG(0)) { 3030 out_ts = arg_temp(op->args[1]); 3031 arg_ts->state = TS_DEAD; 3032 tcg_op_remove(s, op); 3033 } else { 3034 arg_ts->state = TS_MEM; 3035 } 3036 3037 sop->args[0] = temp_arg(out_ts); 3038 sop->args[1] = temp_arg(arg_ts->mem_base); 3039 sop->args[2] = arg_ts->mem_offset; 3040 } else { 3041 tcg_debug_assert(!IS_DEAD_ARG(0)); 3042 } 3043 } 3044 } else { 3045 for (i = 0; i < nb_oargs; i++) { 3046 arg_ts = arg_temp(op->args[i]); 3047 dir_ts = arg_ts->state_ptr; 3048 if (!dir_ts) { 3049 continue; 3050 } 3051 op->args[i] = temp_arg(dir_ts); 3052 changes = true; 3053 3054 /* The output is now live and modified. */ 3055 arg_ts->state = 0; 3056 3057 /* Sync outputs upon their last write. */ 3058 if (NEED_SYNC_ARG(i)) { 3059 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 3060 ? INDEX_op_st_i32 3061 : INDEX_op_st_i64); 3062 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 3063 3064 sop->args[0] = temp_arg(dir_ts); 3065 sop->args[1] = temp_arg(arg_ts->mem_base); 3066 sop->args[2] = arg_ts->mem_offset; 3067 3068 arg_ts->state = TS_MEM; 3069 } 3070 /* Drop outputs that are dead. */ 3071 if (IS_DEAD_ARG(i)) { 3072 arg_ts->state = TS_DEAD; 3073 } 3074 } 3075 } 3076 } 3077 3078 return changes; 3079 } 3080 3081 #ifdef CONFIG_DEBUG_TCG 3082 static void dump_regs(TCGContext *s) 3083 { 3084 TCGTemp *ts; 3085 int i; 3086 char buf[64]; 3087 3088 for(i = 0; i < s->nb_temps; i++) { 3089 ts = &s->temps[i]; 3090 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3091 switch(ts->val_type) { 3092 case TEMP_VAL_REG: 3093 printf("%s", tcg_target_reg_names[ts->reg]); 3094 break; 3095 case TEMP_VAL_MEM: 3096 printf("%d(%s)", (int)ts->mem_offset, 3097 tcg_target_reg_names[ts->mem_base->reg]); 3098 break; 3099 case TEMP_VAL_CONST: 3100 printf("$0x%" TCG_PRIlx, ts->val); 3101 break; 3102 case TEMP_VAL_DEAD: 3103 printf("D"); 3104 break; 3105 default: 3106 printf("???"); 3107 break; 3108 } 3109 printf("\n"); 3110 } 3111 3112 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 3113 if (s->reg_to_temp[i] != NULL) { 3114 printf("%s: %s\n", 3115 tcg_target_reg_names[i], 3116 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i])); 3117 } 3118 } 3119 } 3120 3121 static void check_regs(TCGContext *s) 3122 { 3123 int reg; 3124 int k; 3125 TCGTemp *ts; 3126 char buf[64]; 3127 3128 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) { 3129 ts = s->reg_to_temp[reg]; 3130 if (ts != NULL) { 3131 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) { 3132 printf("Inconsistency for register %s:\n", 3133 tcg_target_reg_names[reg]); 3134 goto fail; 3135 } 3136 } 3137 } 3138 for (k = 0; k < s->nb_temps; k++) { 3139 ts = &s->temps[k]; 3140 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg 3141 && s->reg_to_temp[ts->reg] != ts) { 3142 printf("Inconsistency for temp %s:\n", 3143 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3144 fail: 3145 printf("reg state:\n"); 3146 dump_regs(s); 3147 tcg_abort(); 3148 } 3149 } 3150 } 3151 #endif 3152 3153 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts) 3154 { 3155 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64) 3156 /* Sparc64 stack is accessed with offset of 2047 */ 3157 s->current_frame_offset = (s->current_frame_offset + 3158 (tcg_target_long)sizeof(tcg_target_long) - 1) & 3159 ~(sizeof(tcg_target_long) - 1); 3160 #endif 3161 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) > 3162 s->frame_end) { 3163 tcg_abort(); 3164 } 3165 ts->mem_offset = s->current_frame_offset; 3166 ts->mem_base = s->frame_temp; 3167 ts->mem_allocated = 1; 3168 s->current_frame_offset += sizeof(tcg_target_long); 3169 } 3170 3171 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet); 3172 3173 /* Mark a temporary as free or dead. If 'free_or_dead' is negative, 3174 mark it free; otherwise mark it dead. */ 3175 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead) 3176 { 3177 if (ts->fixed_reg) { 3178 return; 3179 } 3180 if (ts->val_type == TEMP_VAL_REG) { 3181 s->reg_to_temp[ts->reg] = NULL; 3182 } 3183 ts->val_type = (free_or_dead < 0 3184 || ts->temp_local 3185 || ts->temp_global 3186 ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 3187 } 3188 3189 /* Mark a temporary as dead. */ 3190 static inline void temp_dead(TCGContext *s, TCGTemp *ts) 3191 { 3192 temp_free_or_dead(s, ts, 1); 3193 } 3194 3195 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary 3196 registers needs to be allocated to store a constant. If 'free_or_dead' 3197 is non-zero, subsequently release the temporary; if it is positive, the 3198 temp is dead; if it is negative, the temp is free. */ 3199 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs, 3200 TCGRegSet preferred_regs, int free_or_dead) 3201 { 3202 if (ts->fixed_reg) { 3203 return; 3204 } 3205 if (!ts->mem_coherent) { 3206 if (!ts->mem_allocated) { 3207 temp_allocate_frame(s, ts); 3208 } 3209 switch (ts->val_type) { 3210 case TEMP_VAL_CONST: 3211 /* If we're going to free the temp immediately, then we won't 3212 require it later in a register, so attempt to store the 3213 constant to memory directly. */ 3214 if (free_or_dead 3215 && tcg_out_sti(s, ts->type, ts->val, 3216 ts->mem_base->reg, ts->mem_offset)) { 3217 break; 3218 } 3219 temp_load(s, ts, tcg_target_available_regs[ts->type], 3220 allocated_regs, preferred_regs); 3221 /* fallthrough */ 3222 3223 case TEMP_VAL_REG: 3224 tcg_out_st(s, ts->type, ts->reg, 3225 ts->mem_base->reg, ts->mem_offset); 3226 break; 3227 3228 case TEMP_VAL_MEM: 3229 break; 3230 3231 case TEMP_VAL_DEAD: 3232 default: 3233 tcg_abort(); 3234 } 3235 ts->mem_coherent = 1; 3236 } 3237 if (free_or_dead) { 3238 temp_free_or_dead(s, ts, free_or_dead); 3239 } 3240 } 3241 3242 /* free register 'reg' by spilling the corresponding temporary if necessary */ 3243 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs) 3244 { 3245 TCGTemp *ts = s->reg_to_temp[reg]; 3246 if (ts != NULL) { 3247 temp_sync(s, ts, allocated_regs, 0, -1); 3248 } 3249 } 3250 3251 /** 3252 * tcg_reg_alloc: 3253 * @required_regs: Set of registers in which we must allocate. 3254 * @allocated_regs: Set of registers which must be avoided. 3255 * @preferred_regs: Set of registers we should prefer. 3256 * @rev: True if we search the registers in "indirect" order. 3257 * 3258 * The allocated register must be in @required_regs & ~@allocated_regs, 3259 * but if we can put it in @preferred_regs we may save a move later. 3260 */ 3261 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs, 3262 TCGRegSet allocated_regs, 3263 TCGRegSet preferred_regs, bool rev) 3264 { 3265 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order); 3266 TCGRegSet reg_ct[2]; 3267 const int *order; 3268 3269 reg_ct[1] = required_regs & ~allocated_regs; 3270 tcg_debug_assert(reg_ct[1] != 0); 3271 reg_ct[0] = reg_ct[1] & preferred_regs; 3272 3273 /* Skip the preferred_regs option if it cannot be satisfied, 3274 or if the preference made no difference. */ 3275 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1]; 3276 3277 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order; 3278 3279 /* Try free registers, preferences first. */ 3280 for (j = f; j < 2; j++) { 3281 TCGRegSet set = reg_ct[j]; 3282 3283 if (tcg_regset_single(set)) { 3284 /* One register in the set. */ 3285 TCGReg reg = tcg_regset_first(set); 3286 if (s->reg_to_temp[reg] == NULL) { 3287 return reg; 3288 } 3289 } else { 3290 for (i = 0; i < n; i++) { 3291 TCGReg reg = order[i]; 3292 if (s->reg_to_temp[reg] == NULL && 3293 tcg_regset_test_reg(set, reg)) { 3294 return reg; 3295 } 3296 } 3297 } 3298 } 3299 3300 /* We must spill something. */ 3301 for (j = f; j < 2; j++) { 3302 TCGRegSet set = reg_ct[j]; 3303 3304 if (tcg_regset_single(set)) { 3305 /* One register in the set. */ 3306 TCGReg reg = tcg_regset_first(set); 3307 tcg_reg_free(s, reg, allocated_regs); 3308 return reg; 3309 } else { 3310 for (i = 0; i < n; i++) { 3311 TCGReg reg = order[i]; 3312 if (tcg_regset_test_reg(set, reg)) { 3313 tcg_reg_free(s, reg, allocated_regs); 3314 return reg; 3315 } 3316 } 3317 } 3318 } 3319 3320 tcg_abort(); 3321 } 3322 3323 /* Make sure the temporary is in a register. If needed, allocate the register 3324 from DESIRED while avoiding ALLOCATED. */ 3325 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs, 3326 TCGRegSet allocated_regs, TCGRegSet preferred_regs) 3327 { 3328 TCGReg reg; 3329 3330 switch (ts->val_type) { 3331 case TEMP_VAL_REG: 3332 return; 3333 case TEMP_VAL_CONST: 3334 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3335 preferred_regs, ts->indirect_base); 3336 tcg_out_movi(s, ts->type, reg, ts->val); 3337 ts->mem_coherent = 0; 3338 break; 3339 case TEMP_VAL_MEM: 3340 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3341 preferred_regs, ts->indirect_base); 3342 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset); 3343 ts->mem_coherent = 1; 3344 break; 3345 case TEMP_VAL_DEAD: 3346 default: 3347 tcg_abort(); 3348 } 3349 ts->reg = reg; 3350 ts->val_type = TEMP_VAL_REG; 3351 s->reg_to_temp[reg] = ts; 3352 } 3353 3354 /* Save a temporary to memory. 'allocated_regs' is used in case a 3355 temporary registers needs to be allocated to store a constant. */ 3356 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs) 3357 { 3358 /* The liveness analysis already ensures that globals are back 3359 in memory. Keep an tcg_debug_assert for safety. */ 3360 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg); 3361 } 3362 3363 /* save globals to their canonical location and assume they can be 3364 modified be the following code. 'allocated_regs' is used in case a 3365 temporary registers needs to be allocated to store a constant. */ 3366 static void save_globals(TCGContext *s, TCGRegSet allocated_regs) 3367 { 3368 int i, n; 3369 3370 for (i = 0, n = s->nb_globals; i < n; i++) { 3371 temp_save(s, &s->temps[i], allocated_regs); 3372 } 3373 } 3374 3375 /* sync globals to their canonical location and assume they can be 3376 read by the following code. 'allocated_regs' is used in case a 3377 temporary registers needs to be allocated to store a constant. */ 3378 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs) 3379 { 3380 int i, n; 3381 3382 for (i = 0, n = s->nb_globals; i < n; i++) { 3383 TCGTemp *ts = &s->temps[i]; 3384 tcg_debug_assert(ts->val_type != TEMP_VAL_REG 3385 || ts->fixed_reg 3386 || ts->mem_coherent); 3387 } 3388 } 3389 3390 /* at the end of a basic block, we assume all temporaries are dead and 3391 all globals are stored at their canonical location. */ 3392 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs) 3393 { 3394 int i; 3395 3396 for (i = s->nb_globals; i < s->nb_temps; i++) { 3397 TCGTemp *ts = &s->temps[i]; 3398 if (ts->temp_local) { 3399 temp_save(s, ts, allocated_regs); 3400 } else { 3401 /* The liveness analysis already ensures that temps are dead. 3402 Keep an tcg_debug_assert for safety. */ 3403 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3404 } 3405 } 3406 3407 save_globals(s, allocated_regs); 3408 } 3409 3410 /* 3411 * At a conditional branch, we assume all temporaries are dead and 3412 * all globals and local temps are synced to their location. 3413 */ 3414 static void tcg_reg_alloc_cbranch(TCGContext *s, TCGRegSet allocated_regs) 3415 { 3416 sync_globals(s, allocated_regs); 3417 3418 for (int i = s->nb_globals; i < s->nb_temps; i++) { 3419 TCGTemp *ts = &s->temps[i]; 3420 /* 3421 * The liveness analysis already ensures that temps are dead. 3422 * Keep tcg_debug_asserts for safety. 3423 */ 3424 if (ts->temp_local) { 3425 tcg_debug_assert(ts->val_type != TEMP_VAL_REG || ts->mem_coherent); 3426 } else { 3427 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3428 } 3429 } 3430 } 3431 3432 /* 3433 * Specialized code generation for INDEX_op_movi_*. 3434 */ 3435 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots, 3436 tcg_target_ulong val, TCGLifeData arg_life, 3437 TCGRegSet preferred_regs) 3438 { 3439 /* ENV should not be modified. */ 3440 tcg_debug_assert(!ots->fixed_reg); 3441 3442 /* The movi is not explicitly generated here. */ 3443 if (ots->val_type == TEMP_VAL_REG) { 3444 s->reg_to_temp[ots->reg] = NULL; 3445 } 3446 ots->val_type = TEMP_VAL_CONST; 3447 ots->val = val; 3448 ots->mem_coherent = 0; 3449 if (NEED_SYNC_ARG(0)) { 3450 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0)); 3451 } else if (IS_DEAD_ARG(0)) { 3452 temp_dead(s, ots); 3453 } 3454 } 3455 3456 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op) 3457 { 3458 TCGTemp *ots = arg_temp(op->args[0]); 3459 tcg_target_ulong val = op->args[1]; 3460 3461 tcg_reg_alloc_do_movi(s, ots, val, op->life, op->output_pref[0]); 3462 } 3463 3464 /* 3465 * Specialized code generation for INDEX_op_mov_*. 3466 */ 3467 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op) 3468 { 3469 const TCGLifeData arg_life = op->life; 3470 TCGRegSet allocated_regs, preferred_regs; 3471 TCGTemp *ts, *ots; 3472 TCGType otype, itype; 3473 3474 allocated_regs = s->reserved_regs; 3475 preferred_regs = op->output_pref[0]; 3476 ots = arg_temp(op->args[0]); 3477 ts = arg_temp(op->args[1]); 3478 3479 /* ENV should not be modified. */ 3480 tcg_debug_assert(!ots->fixed_reg); 3481 3482 /* Note that otype != itype for no-op truncation. */ 3483 otype = ots->type; 3484 itype = ts->type; 3485 3486 if (ts->val_type == TEMP_VAL_CONST) { 3487 /* propagate constant or generate sti */ 3488 tcg_target_ulong val = ts->val; 3489 if (IS_DEAD_ARG(1)) { 3490 temp_dead(s, ts); 3491 } 3492 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs); 3493 return; 3494 } 3495 3496 /* If the source value is in memory we're going to be forced 3497 to have it in a register in order to perform the copy. Copy 3498 the SOURCE value into its own register first, that way we 3499 don't have to reload SOURCE the next time it is used. */ 3500 if (ts->val_type == TEMP_VAL_MEM) { 3501 temp_load(s, ts, tcg_target_available_regs[itype], 3502 allocated_regs, preferred_regs); 3503 } 3504 3505 tcg_debug_assert(ts->val_type == TEMP_VAL_REG); 3506 if (IS_DEAD_ARG(0)) { 3507 /* mov to a non-saved dead register makes no sense (even with 3508 liveness analysis disabled). */ 3509 tcg_debug_assert(NEED_SYNC_ARG(0)); 3510 if (!ots->mem_allocated) { 3511 temp_allocate_frame(s, ots); 3512 } 3513 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset); 3514 if (IS_DEAD_ARG(1)) { 3515 temp_dead(s, ts); 3516 } 3517 temp_dead(s, ots); 3518 } else { 3519 if (IS_DEAD_ARG(1) && !ts->fixed_reg) { 3520 /* the mov can be suppressed */ 3521 if (ots->val_type == TEMP_VAL_REG) { 3522 s->reg_to_temp[ots->reg] = NULL; 3523 } 3524 ots->reg = ts->reg; 3525 temp_dead(s, ts); 3526 } else { 3527 if (ots->val_type != TEMP_VAL_REG) { 3528 /* When allocating a new register, make sure to not spill the 3529 input one. */ 3530 tcg_regset_set_reg(allocated_regs, ts->reg); 3531 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype], 3532 allocated_regs, preferred_regs, 3533 ots->indirect_base); 3534 } 3535 if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) { 3536 /* 3537 * Cross register class move not supported. 3538 * Store the source register into the destination slot 3539 * and leave the destination temp as TEMP_VAL_MEM. 3540 */ 3541 assert(!ots->fixed_reg); 3542 if (!ts->mem_allocated) { 3543 temp_allocate_frame(s, ots); 3544 } 3545 tcg_out_st(s, ts->type, ts->reg, 3546 ots->mem_base->reg, ots->mem_offset); 3547 ots->mem_coherent = 1; 3548 temp_free_or_dead(s, ots, -1); 3549 return; 3550 } 3551 } 3552 ots->val_type = TEMP_VAL_REG; 3553 ots->mem_coherent = 0; 3554 s->reg_to_temp[ots->reg] = ots; 3555 if (NEED_SYNC_ARG(0)) { 3556 temp_sync(s, ots, allocated_regs, 0, 0); 3557 } 3558 } 3559 } 3560 3561 /* 3562 * Specialized code generation for INDEX_op_dup_vec. 3563 */ 3564 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op) 3565 { 3566 const TCGLifeData arg_life = op->life; 3567 TCGRegSet dup_out_regs, dup_in_regs; 3568 TCGTemp *its, *ots; 3569 TCGType itype, vtype; 3570 intptr_t endian_fixup; 3571 unsigned vece; 3572 bool ok; 3573 3574 ots = arg_temp(op->args[0]); 3575 its = arg_temp(op->args[1]); 3576 3577 /* ENV should not be modified. */ 3578 tcg_debug_assert(!ots->fixed_reg); 3579 3580 itype = its->type; 3581 vece = TCGOP_VECE(op); 3582 vtype = TCGOP_VECL(op) + TCG_TYPE_V64; 3583 3584 if (its->val_type == TEMP_VAL_CONST) { 3585 /* Propagate constant via movi -> dupi. */ 3586 tcg_target_ulong val = its->val; 3587 if (IS_DEAD_ARG(1)) { 3588 temp_dead(s, its); 3589 } 3590 tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]); 3591 return; 3592 } 3593 3594 dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].regs; 3595 dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].regs; 3596 3597 /* Allocate the output register now. */ 3598 if (ots->val_type != TEMP_VAL_REG) { 3599 TCGRegSet allocated_regs = s->reserved_regs; 3600 3601 if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) { 3602 /* Make sure to not spill the input register. */ 3603 tcg_regset_set_reg(allocated_regs, its->reg); 3604 } 3605 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs, 3606 op->output_pref[0], ots->indirect_base); 3607 ots->val_type = TEMP_VAL_REG; 3608 ots->mem_coherent = 0; 3609 s->reg_to_temp[ots->reg] = ots; 3610 } 3611 3612 switch (its->val_type) { 3613 case TEMP_VAL_REG: 3614 /* 3615 * The dup constriaints must be broad, covering all possible VECE. 3616 * However, tcg_op_dup_vec() gets to see the VECE and we allow it 3617 * to fail, indicating that extra moves are required for that case. 3618 */ 3619 if (tcg_regset_test_reg(dup_in_regs, its->reg)) { 3620 if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) { 3621 goto done; 3622 } 3623 /* Try again from memory or a vector input register. */ 3624 } 3625 if (!its->mem_coherent) { 3626 /* 3627 * The input register is not synced, and so an extra store 3628 * would be required to use memory. Attempt an integer-vector 3629 * register move first. We do not have a TCGRegSet for this. 3630 */ 3631 if (tcg_out_mov(s, itype, ots->reg, its->reg)) { 3632 break; 3633 } 3634 /* Sync the temp back to its slot and load from there. */ 3635 temp_sync(s, its, s->reserved_regs, 0, 0); 3636 } 3637 /* fall through */ 3638 3639 case TEMP_VAL_MEM: 3640 #ifdef HOST_WORDS_BIGENDIAN 3641 endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8; 3642 endian_fixup -= 1 << vece; 3643 #else 3644 endian_fixup = 0; 3645 #endif 3646 if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg, 3647 its->mem_offset + endian_fixup)) { 3648 goto done; 3649 } 3650 tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset); 3651 break; 3652 3653 default: 3654 g_assert_not_reached(); 3655 } 3656 3657 /* We now have a vector input register, so dup must succeed. */ 3658 ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg); 3659 tcg_debug_assert(ok); 3660 3661 done: 3662 if (IS_DEAD_ARG(1)) { 3663 temp_dead(s, its); 3664 } 3665 if (NEED_SYNC_ARG(0)) { 3666 temp_sync(s, ots, s->reserved_regs, 0, 0); 3667 } 3668 if (IS_DEAD_ARG(0)) { 3669 temp_dead(s, ots); 3670 } 3671 } 3672 3673 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op) 3674 { 3675 const TCGLifeData arg_life = op->life; 3676 const TCGOpDef * const def = &tcg_op_defs[op->opc]; 3677 TCGRegSet i_allocated_regs; 3678 TCGRegSet o_allocated_regs; 3679 int i, k, nb_iargs, nb_oargs; 3680 TCGReg reg; 3681 TCGArg arg; 3682 const TCGArgConstraint *arg_ct; 3683 TCGTemp *ts; 3684 TCGArg new_args[TCG_MAX_OP_ARGS]; 3685 int const_args[TCG_MAX_OP_ARGS]; 3686 3687 nb_oargs = def->nb_oargs; 3688 nb_iargs = def->nb_iargs; 3689 3690 /* copy constants */ 3691 memcpy(new_args + nb_oargs + nb_iargs, 3692 op->args + nb_oargs + nb_iargs, 3693 sizeof(TCGArg) * def->nb_cargs); 3694 3695 i_allocated_regs = s->reserved_regs; 3696 o_allocated_regs = s->reserved_regs; 3697 3698 /* satisfy input constraints */ 3699 for (k = 0; k < nb_iargs; k++) { 3700 TCGRegSet i_preferred_regs, o_preferred_regs; 3701 3702 i = def->args_ct[nb_oargs + k].sort_index; 3703 arg = op->args[i]; 3704 arg_ct = &def->args_ct[i]; 3705 ts = arg_temp(arg); 3706 3707 if (ts->val_type == TEMP_VAL_CONST 3708 && tcg_target_const_match(ts->val, ts->type, arg_ct)) { 3709 /* constant is OK for instruction */ 3710 const_args[i] = 1; 3711 new_args[i] = ts->val; 3712 continue; 3713 } 3714 3715 i_preferred_regs = o_preferred_regs = 0; 3716 if (arg_ct->ialias) { 3717 o_preferred_regs = op->output_pref[arg_ct->alias_index]; 3718 if (ts->fixed_reg) { 3719 /* if fixed register, we must allocate a new register 3720 if the alias is not the same register */ 3721 if (arg != op->args[arg_ct->alias_index]) { 3722 goto allocate_in_reg; 3723 } 3724 } else { 3725 /* if the input is aliased to an output and if it is 3726 not dead after the instruction, we must allocate 3727 a new register and move it */ 3728 if (!IS_DEAD_ARG(i)) { 3729 goto allocate_in_reg; 3730 } 3731 3732 /* check if the current register has already been allocated 3733 for another input aliased to an output */ 3734 if (ts->val_type == TEMP_VAL_REG) { 3735 int k2, i2; 3736 reg = ts->reg; 3737 for (k2 = 0 ; k2 < k ; k2++) { 3738 i2 = def->args_ct[nb_oargs + k2].sort_index; 3739 if (def->args_ct[i2].ialias && reg == new_args[i2]) { 3740 goto allocate_in_reg; 3741 } 3742 } 3743 } 3744 i_preferred_regs = o_preferred_regs; 3745 } 3746 } 3747 3748 temp_load(s, ts, arg_ct->regs, i_allocated_regs, i_preferred_regs); 3749 reg = ts->reg; 3750 3751 if (tcg_regset_test_reg(arg_ct->regs, reg)) { 3752 /* nothing to do : the constraint is satisfied */ 3753 } else { 3754 allocate_in_reg: 3755 /* allocate a new register matching the constraint 3756 and move the temporary register into it */ 3757 temp_load(s, ts, tcg_target_available_regs[ts->type], 3758 i_allocated_regs, 0); 3759 reg = tcg_reg_alloc(s, arg_ct->regs, i_allocated_regs, 3760 o_preferred_regs, ts->indirect_base); 3761 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3762 /* 3763 * Cross register class move not supported. Sync the 3764 * temp back to its slot and load from there. 3765 */ 3766 temp_sync(s, ts, i_allocated_regs, 0, 0); 3767 tcg_out_ld(s, ts->type, reg, 3768 ts->mem_base->reg, ts->mem_offset); 3769 } 3770 } 3771 new_args[i] = reg; 3772 const_args[i] = 0; 3773 tcg_regset_set_reg(i_allocated_regs, reg); 3774 } 3775 3776 /* mark dead temporaries and free the associated registers */ 3777 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3778 if (IS_DEAD_ARG(i)) { 3779 temp_dead(s, arg_temp(op->args[i])); 3780 } 3781 } 3782 3783 if (def->flags & TCG_OPF_COND_BRANCH) { 3784 tcg_reg_alloc_cbranch(s, i_allocated_regs); 3785 } else if (def->flags & TCG_OPF_BB_END) { 3786 tcg_reg_alloc_bb_end(s, i_allocated_regs); 3787 } else { 3788 if (def->flags & TCG_OPF_CALL_CLOBBER) { 3789 /* XXX: permit generic clobber register list ? */ 3790 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3791 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3792 tcg_reg_free(s, i, i_allocated_regs); 3793 } 3794 } 3795 } 3796 if (def->flags & TCG_OPF_SIDE_EFFECTS) { 3797 /* sync globals if the op has side effects and might trigger 3798 an exception. */ 3799 sync_globals(s, i_allocated_regs); 3800 } 3801 3802 /* satisfy the output constraints */ 3803 for(k = 0; k < nb_oargs; k++) { 3804 i = def->args_ct[k].sort_index; 3805 arg = op->args[i]; 3806 arg_ct = &def->args_ct[i]; 3807 ts = arg_temp(arg); 3808 3809 /* ENV should not be modified. */ 3810 tcg_debug_assert(!ts->fixed_reg); 3811 3812 if (arg_ct->oalias && !const_args[arg_ct->alias_index]) { 3813 reg = new_args[arg_ct->alias_index]; 3814 } else if (arg_ct->newreg) { 3815 reg = tcg_reg_alloc(s, arg_ct->regs, 3816 i_allocated_regs | o_allocated_regs, 3817 op->output_pref[k], ts->indirect_base); 3818 } else { 3819 reg = tcg_reg_alloc(s, arg_ct->regs, o_allocated_regs, 3820 op->output_pref[k], ts->indirect_base); 3821 } 3822 tcg_regset_set_reg(o_allocated_regs, reg); 3823 if (ts->val_type == TEMP_VAL_REG) { 3824 s->reg_to_temp[ts->reg] = NULL; 3825 } 3826 ts->val_type = TEMP_VAL_REG; 3827 ts->reg = reg; 3828 /* 3829 * Temp value is modified, so the value kept in memory is 3830 * potentially not the same. 3831 */ 3832 ts->mem_coherent = 0; 3833 s->reg_to_temp[reg] = ts; 3834 new_args[i] = reg; 3835 } 3836 } 3837 3838 /* emit instruction */ 3839 if (def->flags & TCG_OPF_VECTOR) { 3840 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op), 3841 new_args, const_args); 3842 } else { 3843 tcg_out_op(s, op->opc, new_args, const_args); 3844 } 3845 3846 /* move the outputs in the correct register if needed */ 3847 for(i = 0; i < nb_oargs; i++) { 3848 ts = arg_temp(op->args[i]); 3849 3850 /* ENV should not be modified. */ 3851 tcg_debug_assert(!ts->fixed_reg); 3852 3853 if (NEED_SYNC_ARG(i)) { 3854 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i)); 3855 } else if (IS_DEAD_ARG(i)) { 3856 temp_dead(s, ts); 3857 } 3858 } 3859 } 3860 3861 #ifdef TCG_TARGET_STACK_GROWSUP 3862 #define STACK_DIR(x) (-(x)) 3863 #else 3864 #define STACK_DIR(x) (x) 3865 #endif 3866 3867 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op) 3868 { 3869 const int nb_oargs = TCGOP_CALLO(op); 3870 const int nb_iargs = TCGOP_CALLI(op); 3871 const TCGLifeData arg_life = op->life; 3872 int flags, nb_regs, i; 3873 TCGReg reg; 3874 TCGArg arg; 3875 TCGTemp *ts; 3876 intptr_t stack_offset; 3877 size_t call_stack_size; 3878 tcg_insn_unit *func_addr; 3879 int allocate_args; 3880 TCGRegSet allocated_regs; 3881 3882 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs]; 3883 flags = op->args[nb_oargs + nb_iargs + 1]; 3884 3885 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 3886 if (nb_regs > nb_iargs) { 3887 nb_regs = nb_iargs; 3888 } 3889 3890 /* assign stack slots first */ 3891 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long); 3892 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) & 3893 ~(TCG_TARGET_STACK_ALIGN - 1); 3894 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE); 3895 if (allocate_args) { 3896 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed, 3897 preallocate call stack */ 3898 tcg_abort(); 3899 } 3900 3901 stack_offset = TCG_TARGET_CALL_STACK_OFFSET; 3902 for (i = nb_regs; i < nb_iargs; i++) { 3903 arg = op->args[nb_oargs + i]; 3904 #ifdef TCG_TARGET_STACK_GROWSUP 3905 stack_offset -= sizeof(tcg_target_long); 3906 #endif 3907 if (arg != TCG_CALL_DUMMY_ARG) { 3908 ts = arg_temp(arg); 3909 temp_load(s, ts, tcg_target_available_regs[ts->type], 3910 s->reserved_regs, 0); 3911 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset); 3912 } 3913 #ifndef TCG_TARGET_STACK_GROWSUP 3914 stack_offset += sizeof(tcg_target_long); 3915 #endif 3916 } 3917 3918 /* assign input registers */ 3919 allocated_regs = s->reserved_regs; 3920 for (i = 0; i < nb_regs; i++) { 3921 arg = op->args[nb_oargs + i]; 3922 if (arg != TCG_CALL_DUMMY_ARG) { 3923 ts = arg_temp(arg); 3924 reg = tcg_target_call_iarg_regs[i]; 3925 3926 if (ts->val_type == TEMP_VAL_REG) { 3927 if (ts->reg != reg) { 3928 tcg_reg_free(s, reg, allocated_regs); 3929 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3930 /* 3931 * Cross register class move not supported. Sync the 3932 * temp back to its slot and load from there. 3933 */ 3934 temp_sync(s, ts, allocated_regs, 0, 0); 3935 tcg_out_ld(s, ts->type, reg, 3936 ts->mem_base->reg, ts->mem_offset); 3937 } 3938 } 3939 } else { 3940 TCGRegSet arg_set = 0; 3941 3942 tcg_reg_free(s, reg, allocated_regs); 3943 tcg_regset_set_reg(arg_set, reg); 3944 temp_load(s, ts, arg_set, allocated_regs, 0); 3945 } 3946 3947 tcg_regset_set_reg(allocated_regs, reg); 3948 } 3949 } 3950 3951 /* mark dead temporaries and free the associated registers */ 3952 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 3953 if (IS_DEAD_ARG(i)) { 3954 temp_dead(s, arg_temp(op->args[i])); 3955 } 3956 } 3957 3958 /* clobber call registers */ 3959 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3960 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3961 tcg_reg_free(s, i, allocated_regs); 3962 } 3963 } 3964 3965 /* Save globals if they might be written by the helper, sync them if 3966 they might be read. */ 3967 if (flags & TCG_CALL_NO_READ_GLOBALS) { 3968 /* Nothing to do */ 3969 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) { 3970 sync_globals(s, allocated_regs); 3971 } else { 3972 save_globals(s, allocated_regs); 3973 } 3974 3975 tcg_out_call(s, func_addr); 3976 3977 /* assign output registers and emit moves if needed */ 3978 for(i = 0; i < nb_oargs; i++) { 3979 arg = op->args[i]; 3980 ts = arg_temp(arg); 3981 3982 /* ENV should not be modified. */ 3983 tcg_debug_assert(!ts->fixed_reg); 3984 3985 reg = tcg_target_call_oarg_regs[i]; 3986 tcg_debug_assert(s->reg_to_temp[reg] == NULL); 3987 if (ts->val_type == TEMP_VAL_REG) { 3988 s->reg_to_temp[ts->reg] = NULL; 3989 } 3990 ts->val_type = TEMP_VAL_REG; 3991 ts->reg = reg; 3992 ts->mem_coherent = 0; 3993 s->reg_to_temp[reg] = ts; 3994 if (NEED_SYNC_ARG(i)) { 3995 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i)); 3996 } else if (IS_DEAD_ARG(i)) { 3997 temp_dead(s, ts); 3998 } 3999 } 4000 } 4001 4002 #ifdef CONFIG_PROFILER 4003 4004 /* avoid copy/paste errors */ 4005 #define PROF_ADD(to, from, field) \ 4006 do { \ 4007 (to)->field += qatomic_read(&((from)->field)); \ 4008 } while (0) 4009 4010 #define PROF_MAX(to, from, field) \ 4011 do { \ 4012 typeof((from)->field) val__ = qatomic_read(&((from)->field)); \ 4013 if (val__ > (to)->field) { \ 4014 (to)->field = val__; \ 4015 } \ 4016 } while (0) 4017 4018 /* Pass in a zero'ed @prof */ 4019 static inline 4020 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table) 4021 { 4022 unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); 4023 unsigned int i; 4024 4025 for (i = 0; i < n_ctxs; i++) { 4026 TCGContext *s = qatomic_read(&tcg_ctxs[i]); 4027 const TCGProfile *orig = &s->prof; 4028 4029 if (counters) { 4030 PROF_ADD(prof, orig, cpu_exec_time); 4031 PROF_ADD(prof, orig, tb_count1); 4032 PROF_ADD(prof, orig, tb_count); 4033 PROF_ADD(prof, orig, op_count); 4034 PROF_MAX(prof, orig, op_count_max); 4035 PROF_ADD(prof, orig, temp_count); 4036 PROF_MAX(prof, orig, temp_count_max); 4037 PROF_ADD(prof, orig, del_op_count); 4038 PROF_ADD(prof, orig, code_in_len); 4039 PROF_ADD(prof, orig, code_out_len); 4040 PROF_ADD(prof, orig, search_out_len); 4041 PROF_ADD(prof, orig, interm_time); 4042 PROF_ADD(prof, orig, code_time); 4043 PROF_ADD(prof, orig, la_time); 4044 PROF_ADD(prof, orig, opt_time); 4045 PROF_ADD(prof, orig, restore_count); 4046 PROF_ADD(prof, orig, restore_time); 4047 } 4048 if (table) { 4049 int i; 4050 4051 for (i = 0; i < NB_OPS; i++) { 4052 PROF_ADD(prof, orig, table_op_count[i]); 4053 } 4054 } 4055 } 4056 } 4057 4058 #undef PROF_ADD 4059 #undef PROF_MAX 4060 4061 static void tcg_profile_snapshot_counters(TCGProfile *prof) 4062 { 4063 tcg_profile_snapshot(prof, true, false); 4064 } 4065 4066 static void tcg_profile_snapshot_table(TCGProfile *prof) 4067 { 4068 tcg_profile_snapshot(prof, false, true); 4069 } 4070 4071 void tcg_dump_op_count(void) 4072 { 4073 TCGProfile prof = {}; 4074 int i; 4075 4076 tcg_profile_snapshot_table(&prof); 4077 for (i = 0; i < NB_OPS; i++) { 4078 qemu_printf("%s %" PRId64 "\n", tcg_op_defs[i].name, 4079 prof.table_op_count[i]); 4080 } 4081 } 4082 4083 int64_t tcg_cpu_exec_time(void) 4084 { 4085 unsigned int n_ctxs = qatomic_read(&n_tcg_ctxs); 4086 unsigned int i; 4087 int64_t ret = 0; 4088 4089 for (i = 0; i < n_ctxs; i++) { 4090 const TCGContext *s = qatomic_read(&tcg_ctxs[i]); 4091 const TCGProfile *prof = &s->prof; 4092 4093 ret += qatomic_read(&prof->cpu_exec_time); 4094 } 4095 return ret; 4096 } 4097 #else 4098 void tcg_dump_op_count(void) 4099 { 4100 qemu_printf("[TCG profiler not compiled]\n"); 4101 } 4102 4103 int64_t tcg_cpu_exec_time(void) 4104 { 4105 error_report("%s: TCG profiler not compiled", __func__); 4106 exit(EXIT_FAILURE); 4107 } 4108 #endif 4109 4110 4111 int tcg_gen_code(TCGContext *s, TranslationBlock *tb) 4112 { 4113 #ifdef CONFIG_PROFILER 4114 TCGProfile *prof = &s->prof; 4115 #endif 4116 int i, num_insns; 4117 TCGOp *op; 4118 4119 #ifdef CONFIG_PROFILER 4120 { 4121 int n = 0; 4122 4123 QTAILQ_FOREACH(op, &s->ops, link) { 4124 n++; 4125 } 4126 qatomic_set(&prof->op_count, prof->op_count + n); 4127 if (n > prof->op_count_max) { 4128 qatomic_set(&prof->op_count_max, n); 4129 } 4130 4131 n = s->nb_temps; 4132 qatomic_set(&prof->temp_count, prof->temp_count + n); 4133 if (n > prof->temp_count_max) { 4134 qatomic_set(&prof->temp_count_max, n); 4135 } 4136 } 4137 #endif 4138 4139 #ifdef DEBUG_DISAS 4140 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP) 4141 && qemu_log_in_addr_range(tb->pc))) { 4142 FILE *logfile = qemu_log_lock(); 4143 qemu_log("OP:\n"); 4144 tcg_dump_ops(s, false); 4145 qemu_log("\n"); 4146 qemu_log_unlock(logfile); 4147 } 4148 #endif 4149 4150 #ifdef CONFIG_DEBUG_TCG 4151 /* Ensure all labels referenced have been emitted. */ 4152 { 4153 TCGLabel *l; 4154 bool error = false; 4155 4156 QSIMPLEQ_FOREACH(l, &s->labels, next) { 4157 if (unlikely(!l->present) && l->refs) { 4158 qemu_log_mask(CPU_LOG_TB_OP, 4159 "$L%d referenced but not present.\n", l->id); 4160 error = true; 4161 } 4162 } 4163 assert(!error); 4164 } 4165 #endif 4166 4167 #ifdef CONFIG_PROFILER 4168 qatomic_set(&prof->opt_time, prof->opt_time - profile_getclock()); 4169 #endif 4170 4171 #ifdef USE_TCG_OPTIMIZATIONS 4172 tcg_optimize(s); 4173 #endif 4174 4175 #ifdef CONFIG_PROFILER 4176 qatomic_set(&prof->opt_time, prof->opt_time + profile_getclock()); 4177 qatomic_set(&prof->la_time, prof->la_time - profile_getclock()); 4178 #endif 4179 4180 reachable_code_pass(s); 4181 liveness_pass_1(s); 4182 4183 if (s->nb_indirects > 0) { 4184 #ifdef DEBUG_DISAS 4185 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND) 4186 && qemu_log_in_addr_range(tb->pc))) { 4187 FILE *logfile = qemu_log_lock(); 4188 qemu_log("OP before indirect lowering:\n"); 4189 tcg_dump_ops(s, false); 4190 qemu_log("\n"); 4191 qemu_log_unlock(logfile); 4192 } 4193 #endif 4194 /* Replace indirect temps with direct temps. */ 4195 if (liveness_pass_2(s)) { 4196 /* If changes were made, re-run liveness. */ 4197 liveness_pass_1(s); 4198 } 4199 } 4200 4201 #ifdef CONFIG_PROFILER 4202 qatomic_set(&prof->la_time, prof->la_time + profile_getclock()); 4203 #endif 4204 4205 #ifdef DEBUG_DISAS 4206 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT) 4207 && qemu_log_in_addr_range(tb->pc))) { 4208 FILE *logfile = qemu_log_lock(); 4209 qemu_log("OP after optimization and liveness analysis:\n"); 4210 tcg_dump_ops(s, true); 4211 qemu_log("\n"); 4212 qemu_log_unlock(logfile); 4213 } 4214 #endif 4215 4216 tcg_reg_alloc_start(s); 4217 4218 s->code_buf = tb->tc.ptr; 4219 s->code_ptr = tb->tc.ptr; 4220 4221 #ifdef TCG_TARGET_NEED_LDST_LABELS 4222 QSIMPLEQ_INIT(&s->ldst_labels); 4223 #endif 4224 #ifdef TCG_TARGET_NEED_POOL_LABELS 4225 s->pool_labels = NULL; 4226 #endif 4227 4228 num_insns = -1; 4229 QTAILQ_FOREACH(op, &s->ops, link) { 4230 TCGOpcode opc = op->opc; 4231 4232 #ifdef CONFIG_PROFILER 4233 qatomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1); 4234 #endif 4235 4236 switch (opc) { 4237 case INDEX_op_mov_i32: 4238 case INDEX_op_mov_i64: 4239 case INDEX_op_mov_vec: 4240 tcg_reg_alloc_mov(s, op); 4241 break; 4242 case INDEX_op_movi_i32: 4243 case INDEX_op_movi_i64: 4244 case INDEX_op_dupi_vec: 4245 tcg_reg_alloc_movi(s, op); 4246 break; 4247 case INDEX_op_dup_vec: 4248 tcg_reg_alloc_dup(s, op); 4249 break; 4250 case INDEX_op_insn_start: 4251 if (num_insns >= 0) { 4252 size_t off = tcg_current_code_size(s); 4253 s->gen_insn_end_off[num_insns] = off; 4254 /* Assert that we do not overflow our stored offset. */ 4255 assert(s->gen_insn_end_off[num_insns] == off); 4256 } 4257 num_insns++; 4258 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 4259 target_ulong a; 4260 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 4261 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 4262 #else 4263 a = op->args[i]; 4264 #endif 4265 s->gen_insn_data[num_insns][i] = a; 4266 } 4267 break; 4268 case INDEX_op_discard: 4269 temp_dead(s, arg_temp(op->args[0])); 4270 break; 4271 case INDEX_op_set_label: 4272 tcg_reg_alloc_bb_end(s, s->reserved_regs); 4273 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr); 4274 break; 4275 case INDEX_op_call: 4276 tcg_reg_alloc_call(s, op); 4277 break; 4278 default: 4279 /* Sanity check that we've not introduced any unhandled opcodes. */ 4280 tcg_debug_assert(tcg_op_supported(opc)); 4281 /* Note: in order to speed up the code, it would be much 4282 faster to have specialized register allocator functions for 4283 some common argument patterns */ 4284 tcg_reg_alloc_op(s, op); 4285 break; 4286 } 4287 #ifdef CONFIG_DEBUG_TCG 4288 check_regs(s); 4289 #endif 4290 /* Test for (pending) buffer overflow. The assumption is that any 4291 one operation beginning below the high water mark cannot overrun 4292 the buffer completely. Thus we can test for overflow after 4293 generating code without having to check during generation. */ 4294 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) { 4295 return -1; 4296 } 4297 /* Test for TB overflow, as seen by gen_insn_end_off. */ 4298 if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) { 4299 return -2; 4300 } 4301 } 4302 tcg_debug_assert(num_insns >= 0); 4303 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); 4304 4305 /* Generate TB finalization at the end of block */ 4306 #ifdef TCG_TARGET_NEED_LDST_LABELS 4307 i = tcg_out_ldst_finalize(s); 4308 if (i < 0) { 4309 return i; 4310 } 4311 #endif 4312 #ifdef TCG_TARGET_NEED_POOL_LABELS 4313 i = tcg_out_pool_finalize(s); 4314 if (i < 0) { 4315 return i; 4316 } 4317 #endif 4318 if (!tcg_resolve_relocs(s)) { 4319 return -2; 4320 } 4321 4322 /* flush instruction cache */ 4323 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr); 4324 4325 return tcg_current_code_size(s); 4326 } 4327 4328 #ifdef CONFIG_PROFILER 4329 void tcg_dump_info(void) 4330 { 4331 TCGProfile prof = {}; 4332 const TCGProfile *s; 4333 int64_t tb_count; 4334 int64_t tb_div_count; 4335 int64_t tot; 4336 4337 tcg_profile_snapshot_counters(&prof); 4338 s = &prof; 4339 tb_count = s->tb_count; 4340 tb_div_count = tb_count ? tb_count : 1; 4341 tot = s->interm_time + s->code_time; 4342 4343 qemu_printf("JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n", 4344 tot, tot / 2.4e9); 4345 qemu_printf("translated TBs %" PRId64 " (aborted=%" PRId64 4346 " %0.1f%%)\n", 4347 tb_count, s->tb_count1 - tb_count, 4348 (double)(s->tb_count1 - s->tb_count) 4349 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0); 4350 qemu_printf("avg ops/TB %0.1f max=%d\n", 4351 (double)s->op_count / tb_div_count, s->op_count_max); 4352 qemu_printf("deleted ops/TB %0.2f\n", 4353 (double)s->del_op_count / tb_div_count); 4354 qemu_printf("avg temps/TB %0.2f max=%d\n", 4355 (double)s->temp_count / tb_div_count, s->temp_count_max); 4356 qemu_printf("avg host code/TB %0.1f\n", 4357 (double)s->code_out_len / tb_div_count); 4358 qemu_printf("avg search data/TB %0.1f\n", 4359 (double)s->search_out_len / tb_div_count); 4360 4361 qemu_printf("cycles/op %0.1f\n", 4362 s->op_count ? (double)tot / s->op_count : 0); 4363 qemu_printf("cycles/in byte %0.1f\n", 4364 s->code_in_len ? (double)tot / s->code_in_len : 0); 4365 qemu_printf("cycles/out byte %0.1f\n", 4366 s->code_out_len ? (double)tot / s->code_out_len : 0); 4367 qemu_printf("cycles/search byte %0.1f\n", 4368 s->search_out_len ? (double)tot / s->search_out_len : 0); 4369 if (tot == 0) { 4370 tot = 1; 4371 } 4372 qemu_printf(" gen_interm time %0.1f%%\n", 4373 (double)s->interm_time / tot * 100.0); 4374 qemu_printf(" gen_code time %0.1f%%\n", 4375 (double)s->code_time / tot * 100.0); 4376 qemu_printf("optim./code time %0.1f%%\n", 4377 (double)s->opt_time / (s->code_time ? s->code_time : 1) 4378 * 100.0); 4379 qemu_printf("liveness/code time %0.1f%%\n", 4380 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0); 4381 qemu_printf("cpu_restore count %" PRId64 "\n", 4382 s->restore_count); 4383 qemu_printf(" avg cycles %0.1f\n", 4384 s->restore_count ? (double)s->restore_time / s->restore_count : 0); 4385 } 4386 #else 4387 void tcg_dump_info(void) 4388 { 4389 qemu_printf("[TCG profiler not compiled]\n"); 4390 } 4391 #endif 4392 4393 #ifdef ELF_HOST_MACHINE 4394 /* In order to use this feature, the backend needs to do three things: 4395 4396 (1) Define ELF_HOST_MACHINE to indicate both what value to 4397 put into the ELF image and to indicate support for the feature. 4398 4399 (2) Define tcg_register_jit. This should create a buffer containing 4400 the contents of a .debug_frame section that describes the post- 4401 prologue unwind info for the tcg machine. 4402 4403 (3) Call tcg_register_jit_int, with the constructed .debug_frame. 4404 */ 4405 4406 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */ 4407 typedef enum { 4408 JIT_NOACTION = 0, 4409 JIT_REGISTER_FN, 4410 JIT_UNREGISTER_FN 4411 } jit_actions_t; 4412 4413 struct jit_code_entry { 4414 struct jit_code_entry *next_entry; 4415 struct jit_code_entry *prev_entry; 4416 const void *symfile_addr; 4417 uint64_t symfile_size; 4418 }; 4419 4420 struct jit_descriptor { 4421 uint32_t version; 4422 uint32_t action_flag; 4423 struct jit_code_entry *relevant_entry; 4424 struct jit_code_entry *first_entry; 4425 }; 4426 4427 void __jit_debug_register_code(void) __attribute__((noinline)); 4428 void __jit_debug_register_code(void) 4429 { 4430 asm(""); 4431 } 4432 4433 /* Must statically initialize the version, because GDB may check 4434 the version before we can set it. */ 4435 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 4436 4437 /* End GDB interface. */ 4438 4439 static int find_string(const char *strtab, const char *str) 4440 { 4441 const char *p = strtab + 1; 4442 4443 while (1) { 4444 if (strcmp(p, str) == 0) { 4445 return p - strtab; 4446 } 4447 p += strlen(p) + 1; 4448 } 4449 } 4450 4451 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size, 4452 const void *debug_frame, 4453 size_t debug_frame_size) 4454 { 4455 struct __attribute__((packed)) DebugInfo { 4456 uint32_t len; 4457 uint16_t version; 4458 uint32_t abbrev; 4459 uint8_t ptr_size; 4460 uint8_t cu_die; 4461 uint16_t cu_lang; 4462 uintptr_t cu_low_pc; 4463 uintptr_t cu_high_pc; 4464 uint8_t fn_die; 4465 char fn_name[16]; 4466 uintptr_t fn_low_pc; 4467 uintptr_t fn_high_pc; 4468 uint8_t cu_eoc; 4469 }; 4470 4471 struct ElfImage { 4472 ElfW(Ehdr) ehdr; 4473 ElfW(Phdr) phdr; 4474 ElfW(Shdr) shdr[7]; 4475 ElfW(Sym) sym[2]; 4476 struct DebugInfo di; 4477 uint8_t da[24]; 4478 char str[80]; 4479 }; 4480 4481 struct ElfImage *img; 4482 4483 static const struct ElfImage img_template = { 4484 .ehdr = { 4485 .e_ident[EI_MAG0] = ELFMAG0, 4486 .e_ident[EI_MAG1] = ELFMAG1, 4487 .e_ident[EI_MAG2] = ELFMAG2, 4488 .e_ident[EI_MAG3] = ELFMAG3, 4489 .e_ident[EI_CLASS] = ELF_CLASS, 4490 .e_ident[EI_DATA] = ELF_DATA, 4491 .e_ident[EI_VERSION] = EV_CURRENT, 4492 .e_type = ET_EXEC, 4493 .e_machine = ELF_HOST_MACHINE, 4494 .e_version = EV_CURRENT, 4495 .e_phoff = offsetof(struct ElfImage, phdr), 4496 .e_shoff = offsetof(struct ElfImage, shdr), 4497 .e_ehsize = sizeof(ElfW(Shdr)), 4498 .e_phentsize = sizeof(ElfW(Phdr)), 4499 .e_phnum = 1, 4500 .e_shentsize = sizeof(ElfW(Shdr)), 4501 .e_shnum = ARRAY_SIZE(img->shdr), 4502 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1, 4503 #ifdef ELF_HOST_FLAGS 4504 .e_flags = ELF_HOST_FLAGS, 4505 #endif 4506 #ifdef ELF_OSABI 4507 .e_ident[EI_OSABI] = ELF_OSABI, 4508 #endif 4509 }, 4510 .phdr = { 4511 .p_type = PT_LOAD, 4512 .p_flags = PF_X, 4513 }, 4514 .shdr = { 4515 [0] = { .sh_type = SHT_NULL }, 4516 /* Trick: The contents of code_gen_buffer are not present in 4517 this fake ELF file; that got allocated elsewhere. Therefore 4518 we mark .text as SHT_NOBITS (similar to .bss) so that readers 4519 will not look for contents. We can record any address. */ 4520 [1] = { /* .text */ 4521 .sh_type = SHT_NOBITS, 4522 .sh_flags = SHF_EXECINSTR | SHF_ALLOC, 4523 }, 4524 [2] = { /* .debug_info */ 4525 .sh_type = SHT_PROGBITS, 4526 .sh_offset = offsetof(struct ElfImage, di), 4527 .sh_size = sizeof(struct DebugInfo), 4528 }, 4529 [3] = { /* .debug_abbrev */ 4530 .sh_type = SHT_PROGBITS, 4531 .sh_offset = offsetof(struct ElfImage, da), 4532 .sh_size = sizeof(img->da), 4533 }, 4534 [4] = { /* .debug_frame */ 4535 .sh_type = SHT_PROGBITS, 4536 .sh_offset = sizeof(struct ElfImage), 4537 }, 4538 [5] = { /* .symtab */ 4539 .sh_type = SHT_SYMTAB, 4540 .sh_offset = offsetof(struct ElfImage, sym), 4541 .sh_size = sizeof(img->sym), 4542 .sh_info = 1, 4543 .sh_link = ARRAY_SIZE(img->shdr) - 1, 4544 .sh_entsize = sizeof(ElfW(Sym)), 4545 }, 4546 [6] = { /* .strtab */ 4547 .sh_type = SHT_STRTAB, 4548 .sh_offset = offsetof(struct ElfImage, str), 4549 .sh_size = sizeof(img->str), 4550 } 4551 }, 4552 .sym = { 4553 [1] = { /* code_gen_buffer */ 4554 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC), 4555 .st_shndx = 1, 4556 } 4557 }, 4558 .di = { 4559 .len = sizeof(struct DebugInfo) - 4, 4560 .version = 2, 4561 .ptr_size = sizeof(void *), 4562 .cu_die = 1, 4563 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */ 4564 .fn_die = 2, 4565 .fn_name = "code_gen_buffer" 4566 }, 4567 .da = { 4568 1, /* abbrev number (the cu) */ 4569 0x11, 1, /* DW_TAG_compile_unit, has children */ 4570 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */ 4571 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4572 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4573 0, 0, /* end of abbrev */ 4574 2, /* abbrev number (the fn) */ 4575 0x2e, 0, /* DW_TAG_subprogram, no children */ 4576 0x3, 0x8, /* DW_AT_name, DW_FORM_string */ 4577 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4578 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4579 0, 0, /* end of abbrev */ 4580 0 /* no more abbrev */ 4581 }, 4582 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0" 4583 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer", 4584 }; 4585 4586 /* We only need a single jit entry; statically allocate it. */ 4587 static struct jit_code_entry one_entry; 4588 4589 uintptr_t buf = (uintptr_t)buf_ptr; 4590 size_t img_size = sizeof(struct ElfImage) + debug_frame_size; 4591 DebugFrameHeader *dfh; 4592 4593 img = g_malloc(img_size); 4594 *img = img_template; 4595 4596 img->phdr.p_vaddr = buf; 4597 img->phdr.p_paddr = buf; 4598 img->phdr.p_memsz = buf_size; 4599 4600 img->shdr[1].sh_name = find_string(img->str, ".text"); 4601 img->shdr[1].sh_addr = buf; 4602 img->shdr[1].sh_size = buf_size; 4603 4604 img->shdr[2].sh_name = find_string(img->str, ".debug_info"); 4605 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev"); 4606 4607 img->shdr[4].sh_name = find_string(img->str, ".debug_frame"); 4608 img->shdr[4].sh_size = debug_frame_size; 4609 4610 img->shdr[5].sh_name = find_string(img->str, ".symtab"); 4611 img->shdr[6].sh_name = find_string(img->str, ".strtab"); 4612 4613 img->sym[1].st_name = find_string(img->str, "code_gen_buffer"); 4614 img->sym[1].st_value = buf; 4615 img->sym[1].st_size = buf_size; 4616 4617 img->di.cu_low_pc = buf; 4618 img->di.cu_high_pc = buf + buf_size; 4619 img->di.fn_low_pc = buf; 4620 img->di.fn_high_pc = buf + buf_size; 4621 4622 dfh = (DebugFrameHeader *)(img + 1); 4623 memcpy(dfh, debug_frame, debug_frame_size); 4624 dfh->fde.func_start = buf; 4625 dfh->fde.func_len = buf_size; 4626 4627 #ifdef DEBUG_JIT 4628 /* Enable this block to be able to debug the ELF image file creation. 4629 One can use readelf, objdump, or other inspection utilities. */ 4630 { 4631 FILE *f = fopen("/tmp/qemu.jit", "w+b"); 4632 if (f) { 4633 if (fwrite(img, img_size, 1, f) != img_size) { 4634 /* Avoid stupid unused return value warning for fwrite. */ 4635 } 4636 fclose(f); 4637 } 4638 } 4639 #endif 4640 4641 one_entry.symfile_addr = img; 4642 one_entry.symfile_size = img_size; 4643 4644 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; 4645 __jit_debug_descriptor.relevant_entry = &one_entry; 4646 __jit_debug_descriptor.first_entry = &one_entry; 4647 __jit_debug_register_code(); 4648 } 4649 #else 4650 /* No support for the feature. Provide the entry point expected by exec.c, 4651 and implement the internal function we declared earlier. */ 4652 4653 static void tcg_register_jit_int(void *buf, size_t size, 4654 const void *debug_frame, 4655 size_t debug_frame_size) 4656 { 4657 } 4658 4659 void tcg_register_jit(void *buf, size_t buf_size) 4660 { 4661 } 4662 #endif /* ELF_HOST_MACHINE */ 4663 4664 #if !TCG_TARGET_MAYBE_vec 4665 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...) 4666 { 4667 g_assert_not_reached(); 4668 } 4669 #endif 4670