1 /* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 /* define it to use liveness analysis (better code) */ 26 #define USE_TCG_OPTIMIZATIONS 27 28 #include "qemu/osdep.h" 29 30 /* Define to jump the ELF file used to communicate with GDB. */ 31 #undef DEBUG_JIT 32 33 #include "qemu/error-report.h" 34 #include "qemu/cutils.h" 35 #include "qemu/host-utils.h" 36 #include "qemu/qemu-print.h" 37 #include "qemu/timer.h" 38 39 /* Note: the long term plan is to reduce the dependencies on the QEMU 40 CPU definitions. Currently they are used for qemu_ld/st 41 instructions */ 42 #define NO_CPU_IO_DEFS 43 #include "cpu.h" 44 45 #include "exec/cpu-common.h" 46 #include "exec/exec-all.h" 47 48 #include "tcg-op.h" 49 50 #if UINTPTR_MAX == UINT32_MAX 51 # define ELF_CLASS ELFCLASS32 52 #else 53 # define ELF_CLASS ELFCLASS64 54 #endif 55 #ifdef HOST_WORDS_BIGENDIAN 56 # define ELF_DATA ELFDATA2MSB 57 #else 58 # define ELF_DATA ELFDATA2LSB 59 #endif 60 61 #include "elf.h" 62 #include "exec/log.h" 63 #include "sysemu/sysemu.h" 64 65 /* Forward declarations for functions declared in tcg-target.inc.c and 66 used here. */ 67 static void tcg_target_init(TCGContext *s); 68 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode); 69 static void tcg_target_qemu_prologue(TCGContext *s); 70 static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 71 intptr_t value, intptr_t addend); 72 73 /* The CIE and FDE header definitions will be common to all hosts. */ 74 typedef struct { 75 uint32_t len __attribute__((aligned((sizeof(void *))))); 76 uint32_t id; 77 uint8_t version; 78 char augmentation[1]; 79 uint8_t code_align; 80 uint8_t data_align; 81 uint8_t return_column; 82 } DebugFrameCIE; 83 84 typedef struct QEMU_PACKED { 85 uint32_t len __attribute__((aligned((sizeof(void *))))); 86 uint32_t cie_offset; 87 uintptr_t func_start; 88 uintptr_t func_len; 89 } DebugFrameFDEHeader; 90 91 typedef struct QEMU_PACKED { 92 DebugFrameCIE cie; 93 DebugFrameFDEHeader fde; 94 } DebugFrameHeader; 95 96 static void tcg_register_jit_int(void *buf, size_t size, 97 const void *debug_frame, 98 size_t debug_frame_size) 99 __attribute__((unused)); 100 101 /* Forward declarations for functions declared and used in tcg-target.inc.c. */ 102 static const char *target_parse_constraint(TCGArgConstraint *ct, 103 const char *ct_str, TCGType type); 104 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1, 105 intptr_t arg2); 106 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg); 107 static void tcg_out_movi(TCGContext *s, TCGType type, 108 TCGReg ret, tcg_target_long arg); 109 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, 110 const int *const_args); 111 #if TCG_TARGET_MAYBE_vec 112 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 113 TCGReg dst, TCGReg src); 114 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 115 TCGReg dst, TCGReg base, intptr_t offset); 116 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, 117 TCGReg dst, tcg_target_long arg); 118 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 119 unsigned vece, const TCGArg *args, 120 const int *const_args); 121 #else 122 static inline bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 123 TCGReg dst, TCGReg src) 124 { 125 g_assert_not_reached(); 126 } 127 static inline bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 128 TCGReg dst, TCGReg base, intptr_t offset) 129 { 130 g_assert_not_reached(); 131 } 132 static inline void tcg_out_dupi_vec(TCGContext *s, TCGType type, 133 TCGReg dst, tcg_target_long arg) 134 { 135 g_assert_not_reached(); 136 } 137 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl, 138 unsigned vece, const TCGArg *args, 139 const int *const_args) 140 { 141 g_assert_not_reached(); 142 } 143 #endif 144 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1, 145 intptr_t arg2); 146 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 147 TCGReg base, intptr_t ofs); 148 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target); 149 static int tcg_target_const_match(tcg_target_long val, TCGType type, 150 const TCGArgConstraint *arg_ct); 151 #ifdef TCG_TARGET_NEED_LDST_LABELS 152 static int tcg_out_ldst_finalize(TCGContext *s); 153 #endif 154 155 #define TCG_HIGHWATER 1024 156 157 static TCGContext **tcg_ctxs; 158 static unsigned int n_tcg_ctxs; 159 TCGv_env cpu_env = 0; 160 161 struct tcg_region_tree { 162 QemuMutex lock; 163 GTree *tree; 164 /* padding to avoid false sharing is computed at run-time */ 165 }; 166 167 /* 168 * We divide code_gen_buffer into equally-sized "regions" that TCG threads 169 * dynamically allocate from as demand dictates. Given appropriate region 170 * sizing, this minimizes flushes even when some TCG threads generate a lot 171 * more code than others. 172 */ 173 struct tcg_region_state { 174 QemuMutex lock; 175 176 /* fields set at init time */ 177 void *start; 178 void *start_aligned; 179 void *end; 180 size_t n; 181 size_t size; /* size of one region */ 182 size_t stride; /* .size + guard size */ 183 184 /* fields protected by the lock */ 185 size_t current; /* current region index */ 186 size_t agg_size_full; /* aggregate size of full regions */ 187 }; 188 189 static struct tcg_region_state region; 190 /* 191 * This is an array of struct tcg_region_tree's, with padding. 192 * We use void * to simplify the computation of region_trees[i]; each 193 * struct is found every tree_size bytes. 194 */ 195 static void *region_trees; 196 static size_t tree_size; 197 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT]; 198 static TCGRegSet tcg_target_call_clobber_regs; 199 200 #if TCG_TARGET_INSN_UNIT_SIZE == 1 201 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v) 202 { 203 *s->code_ptr++ = v; 204 } 205 206 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p, 207 uint8_t v) 208 { 209 *p = v; 210 } 211 #endif 212 213 #if TCG_TARGET_INSN_UNIT_SIZE <= 2 214 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v) 215 { 216 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 217 *s->code_ptr++ = v; 218 } else { 219 tcg_insn_unit *p = s->code_ptr; 220 memcpy(p, &v, sizeof(v)); 221 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE); 222 } 223 } 224 225 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p, 226 uint16_t v) 227 { 228 if (TCG_TARGET_INSN_UNIT_SIZE == 2) { 229 *p = v; 230 } else { 231 memcpy(p, &v, sizeof(v)); 232 } 233 } 234 #endif 235 236 #if TCG_TARGET_INSN_UNIT_SIZE <= 4 237 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v) 238 { 239 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 240 *s->code_ptr++ = v; 241 } else { 242 tcg_insn_unit *p = s->code_ptr; 243 memcpy(p, &v, sizeof(v)); 244 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE); 245 } 246 } 247 248 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p, 249 uint32_t v) 250 { 251 if (TCG_TARGET_INSN_UNIT_SIZE == 4) { 252 *p = v; 253 } else { 254 memcpy(p, &v, sizeof(v)); 255 } 256 } 257 #endif 258 259 #if TCG_TARGET_INSN_UNIT_SIZE <= 8 260 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v) 261 { 262 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 263 *s->code_ptr++ = v; 264 } else { 265 tcg_insn_unit *p = s->code_ptr; 266 memcpy(p, &v, sizeof(v)); 267 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE); 268 } 269 } 270 271 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p, 272 uint64_t v) 273 { 274 if (TCG_TARGET_INSN_UNIT_SIZE == 8) { 275 *p = v; 276 } else { 277 memcpy(p, &v, sizeof(v)); 278 } 279 } 280 #endif 281 282 /* label relocation processing */ 283 284 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type, 285 TCGLabel *l, intptr_t addend) 286 { 287 TCGRelocation *r = tcg_malloc(sizeof(TCGRelocation)); 288 289 r->type = type; 290 r->ptr = code_ptr; 291 r->addend = addend; 292 QSIMPLEQ_INSERT_TAIL(&l->relocs, r, next); 293 } 294 295 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr) 296 { 297 tcg_debug_assert(!l->has_value); 298 l->has_value = 1; 299 l->u.value_ptr = ptr; 300 } 301 302 TCGLabel *gen_new_label(void) 303 { 304 TCGContext *s = tcg_ctx; 305 TCGLabel *l = tcg_malloc(sizeof(TCGLabel)); 306 307 memset(l, 0, sizeof(TCGLabel)); 308 l->id = s->nb_labels++; 309 QSIMPLEQ_INIT(&l->relocs); 310 311 QSIMPLEQ_INSERT_TAIL(&s->labels, l, next); 312 313 return l; 314 } 315 316 static bool tcg_resolve_relocs(TCGContext *s) 317 { 318 TCGLabel *l; 319 320 QSIMPLEQ_FOREACH(l, &s->labels, next) { 321 TCGRelocation *r; 322 uintptr_t value = l->u.value; 323 324 QSIMPLEQ_FOREACH(r, &l->relocs, next) { 325 if (!patch_reloc(r->ptr, r->type, value, r->addend)) { 326 return false; 327 } 328 } 329 } 330 return true; 331 } 332 333 static void set_jmp_reset_offset(TCGContext *s, int which) 334 { 335 size_t off = tcg_current_code_size(s); 336 s->tb_jmp_reset_offset[which] = off; 337 /* Make sure that we didn't overflow the stored offset. */ 338 assert(s->tb_jmp_reset_offset[which] == off); 339 } 340 341 #include "tcg-target.inc.c" 342 343 /* compare a pointer @ptr and a tb_tc @s */ 344 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) 345 { 346 if (ptr >= s->ptr + s->size) { 347 return 1; 348 } else if (ptr < s->ptr) { 349 return -1; 350 } 351 return 0; 352 } 353 354 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp) 355 { 356 const struct tb_tc *a = ap; 357 const struct tb_tc *b = bp; 358 359 /* 360 * When both sizes are set, we know this isn't a lookup. 361 * This is the most likely case: every TB must be inserted; lookups 362 * are a lot less frequent. 363 */ 364 if (likely(a->size && b->size)) { 365 if (a->ptr > b->ptr) { 366 return 1; 367 } else if (a->ptr < b->ptr) { 368 return -1; 369 } 370 /* a->ptr == b->ptr should happen only on deletions */ 371 g_assert(a->size == b->size); 372 return 0; 373 } 374 /* 375 * All lookups have either .size field set to 0. 376 * From the glib sources we see that @ap is always the lookup key. However 377 * the docs provide no guarantee, so we just mark this case as likely. 378 */ 379 if (likely(a->size == 0)) { 380 return ptr_cmp_tb_tc(a->ptr, b); 381 } 382 return ptr_cmp_tb_tc(b->ptr, a); 383 } 384 385 static void tcg_region_trees_init(void) 386 { 387 size_t i; 388 389 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); 390 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); 391 for (i = 0; i < region.n; i++) { 392 struct tcg_region_tree *rt = region_trees + i * tree_size; 393 394 qemu_mutex_init(&rt->lock); 395 rt->tree = g_tree_new(tb_tc_cmp); 396 } 397 } 398 399 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p) 400 { 401 size_t region_idx; 402 403 if (p < region.start_aligned) { 404 region_idx = 0; 405 } else { 406 ptrdiff_t offset = p - region.start_aligned; 407 408 if (offset > region.stride * (region.n - 1)) { 409 region_idx = region.n - 1; 410 } else { 411 region_idx = offset / region.stride; 412 } 413 } 414 return region_trees + region_idx * tree_size; 415 } 416 417 void tcg_tb_insert(TranslationBlock *tb) 418 { 419 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 420 421 qemu_mutex_lock(&rt->lock); 422 g_tree_insert(rt->tree, &tb->tc, tb); 423 qemu_mutex_unlock(&rt->lock); 424 } 425 426 void tcg_tb_remove(TranslationBlock *tb) 427 { 428 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 429 430 qemu_mutex_lock(&rt->lock); 431 g_tree_remove(rt->tree, &tb->tc); 432 qemu_mutex_unlock(&rt->lock); 433 } 434 435 /* 436 * Find the TB 'tb' such that 437 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size 438 * Return NULL if not found. 439 */ 440 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) 441 { 442 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); 443 TranslationBlock *tb; 444 struct tb_tc s = { .ptr = (void *)tc_ptr }; 445 446 qemu_mutex_lock(&rt->lock); 447 tb = g_tree_lookup(rt->tree, &s); 448 qemu_mutex_unlock(&rt->lock); 449 return tb; 450 } 451 452 static void tcg_region_tree_lock_all(void) 453 { 454 size_t i; 455 456 for (i = 0; i < region.n; i++) { 457 struct tcg_region_tree *rt = region_trees + i * tree_size; 458 459 qemu_mutex_lock(&rt->lock); 460 } 461 } 462 463 static void tcg_region_tree_unlock_all(void) 464 { 465 size_t i; 466 467 for (i = 0; i < region.n; i++) { 468 struct tcg_region_tree *rt = region_trees + i * tree_size; 469 470 qemu_mutex_unlock(&rt->lock); 471 } 472 } 473 474 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) 475 { 476 size_t i; 477 478 tcg_region_tree_lock_all(); 479 for (i = 0; i < region.n; i++) { 480 struct tcg_region_tree *rt = region_trees + i * tree_size; 481 482 g_tree_foreach(rt->tree, func, user_data); 483 } 484 tcg_region_tree_unlock_all(); 485 } 486 487 size_t tcg_nb_tbs(void) 488 { 489 size_t nb_tbs = 0; 490 size_t i; 491 492 tcg_region_tree_lock_all(); 493 for (i = 0; i < region.n; i++) { 494 struct tcg_region_tree *rt = region_trees + i * tree_size; 495 496 nb_tbs += g_tree_nnodes(rt->tree); 497 } 498 tcg_region_tree_unlock_all(); 499 return nb_tbs; 500 } 501 502 static void tcg_region_tree_reset_all(void) 503 { 504 size_t i; 505 506 tcg_region_tree_lock_all(); 507 for (i = 0; i < region.n; i++) { 508 struct tcg_region_tree *rt = region_trees + i * tree_size; 509 510 /* Increment the refcount first so that destroy acts as a reset */ 511 g_tree_ref(rt->tree); 512 g_tree_destroy(rt->tree); 513 } 514 tcg_region_tree_unlock_all(); 515 } 516 517 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) 518 { 519 void *start, *end; 520 521 start = region.start_aligned + curr_region * region.stride; 522 end = start + region.size; 523 524 if (curr_region == 0) { 525 start = region.start; 526 } 527 if (curr_region == region.n - 1) { 528 end = region.end; 529 } 530 531 *pstart = start; 532 *pend = end; 533 } 534 535 static void tcg_region_assign(TCGContext *s, size_t curr_region) 536 { 537 void *start, *end; 538 539 tcg_region_bounds(curr_region, &start, &end); 540 541 s->code_gen_buffer = start; 542 s->code_gen_ptr = start; 543 s->code_gen_buffer_size = end - start; 544 s->code_gen_highwater = end - TCG_HIGHWATER; 545 } 546 547 static bool tcg_region_alloc__locked(TCGContext *s) 548 { 549 if (region.current == region.n) { 550 return true; 551 } 552 tcg_region_assign(s, region.current); 553 region.current++; 554 return false; 555 } 556 557 /* 558 * Request a new region once the one in use has filled up. 559 * Returns true on error. 560 */ 561 static bool tcg_region_alloc(TCGContext *s) 562 { 563 bool err; 564 /* read the region size now; alloc__locked will overwrite it on success */ 565 size_t size_full = s->code_gen_buffer_size; 566 567 qemu_mutex_lock(®ion.lock); 568 err = tcg_region_alloc__locked(s); 569 if (!err) { 570 region.agg_size_full += size_full - TCG_HIGHWATER; 571 } 572 qemu_mutex_unlock(®ion.lock); 573 return err; 574 } 575 576 /* 577 * Perform a context's first region allocation. 578 * This function does _not_ increment region.agg_size_full. 579 */ 580 static inline bool tcg_region_initial_alloc__locked(TCGContext *s) 581 { 582 return tcg_region_alloc__locked(s); 583 } 584 585 /* Call from a safe-work context */ 586 void tcg_region_reset_all(void) 587 { 588 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 589 unsigned int i; 590 591 qemu_mutex_lock(®ion.lock); 592 region.current = 0; 593 region.agg_size_full = 0; 594 595 for (i = 0; i < n_ctxs; i++) { 596 TCGContext *s = atomic_read(&tcg_ctxs[i]); 597 bool err = tcg_region_initial_alloc__locked(s); 598 599 g_assert(!err); 600 } 601 qemu_mutex_unlock(®ion.lock); 602 603 tcg_region_tree_reset_all(); 604 } 605 606 #ifdef CONFIG_USER_ONLY 607 static size_t tcg_n_regions(void) 608 { 609 return 1; 610 } 611 #else 612 /* 613 * It is likely that some vCPUs will translate more code than others, so we 614 * first try to set more regions than max_cpus, with those regions being of 615 * reasonable size. If that's not possible we make do by evenly dividing 616 * the code_gen_buffer among the vCPUs. 617 */ 618 static size_t tcg_n_regions(void) 619 { 620 size_t i; 621 622 /* Use a single region if all we have is one vCPU thread */ 623 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { 624 return 1; 625 } 626 627 /* Try to have more regions than max_cpus, with each region being >= 2 MB */ 628 for (i = 8; i > 0; i--) { 629 size_t regions_per_thread = i; 630 size_t region_size; 631 632 region_size = tcg_init_ctx.code_gen_buffer_size; 633 region_size /= max_cpus * regions_per_thread; 634 635 if (region_size >= 2 * 1024u * 1024) { 636 return max_cpus * regions_per_thread; 637 } 638 } 639 /* If we can't, then just allocate one region per vCPU thread */ 640 return max_cpus; 641 } 642 #endif 643 644 /* 645 * Initializes region partitioning. 646 * 647 * Called at init time from the parent thread (i.e. the one calling 648 * tcg_context_init), after the target's TCG globals have been set. 649 * 650 * Region partitioning works by splitting code_gen_buffer into separate regions, 651 * and then assigning regions to TCG threads so that the threads can translate 652 * code in parallel without synchronization. 653 * 654 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at 655 * least max_cpus regions in MTTCG. In !MTTCG we use a single region. 656 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) 657 * must have been parsed before calling this function, since it calls 658 * qemu_tcg_mttcg_enabled(). 659 * 660 * In user-mode we use a single region. Having multiple regions in user-mode 661 * is not supported, because the number of vCPU threads (recall that each thread 662 * spawned by the guest corresponds to a vCPU thread) is only bounded by the 663 * OS, and usually this number is huge (tens of thousands is not uncommon). 664 * Thus, given this large bound on the number of vCPU threads and the fact 665 * that code_gen_buffer is allocated at compile-time, we cannot guarantee 666 * that the availability of at least one region per vCPU thread. 667 * 668 * However, this user-mode limitation is unlikely to be a significant problem 669 * in practice. Multi-threaded guests share most if not all of their translated 670 * code, which makes parallel code generation less appealing than in softmmu. 671 */ 672 void tcg_region_init(void) 673 { 674 void *buf = tcg_init_ctx.code_gen_buffer; 675 void *aligned; 676 size_t size = tcg_init_ctx.code_gen_buffer_size; 677 size_t page_size = qemu_real_host_page_size; 678 size_t region_size; 679 size_t n_regions; 680 size_t i; 681 682 n_regions = tcg_n_regions(); 683 684 /* The first region will be 'aligned - buf' bytes larger than the others */ 685 aligned = QEMU_ALIGN_PTR_UP(buf, page_size); 686 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size); 687 /* 688 * Make region_size a multiple of page_size, using aligned as the start. 689 * As a result of this we might end up with a few extra pages at the end of 690 * the buffer; we will assign those to the last region. 691 */ 692 region_size = (size - (aligned - buf)) / n_regions; 693 region_size = QEMU_ALIGN_DOWN(region_size, page_size); 694 695 /* A region must have at least 2 pages; one code, one guard */ 696 g_assert(region_size >= 2 * page_size); 697 698 /* init the region struct */ 699 qemu_mutex_init(®ion.lock); 700 region.n = n_regions; 701 region.size = region_size - page_size; 702 region.stride = region_size; 703 region.start = buf; 704 region.start_aligned = aligned; 705 /* page-align the end, since its last page will be a guard page */ 706 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size); 707 /* account for that last guard page */ 708 region.end -= page_size; 709 710 /* set guard pages */ 711 for (i = 0; i < region.n; i++) { 712 void *start, *end; 713 int rc; 714 715 tcg_region_bounds(i, &start, &end); 716 rc = qemu_mprotect_none(end, page_size); 717 g_assert(!rc); 718 } 719 720 tcg_region_trees_init(); 721 722 /* In user-mode we support only one ctx, so do the initial allocation now */ 723 #ifdef CONFIG_USER_ONLY 724 { 725 bool err = tcg_region_initial_alloc__locked(tcg_ctx); 726 727 g_assert(!err); 728 } 729 #endif 730 } 731 732 /* 733 * All TCG threads except the parent (i.e. the one that called tcg_context_init 734 * and registered the target's TCG globals) must register with this function 735 * before initiating translation. 736 * 737 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation 738 * of tcg_region_init() for the reasoning behind this. 739 * 740 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in 741 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context 742 * is not used anymore for translation once this function is called. 743 * 744 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates 745 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode. 746 */ 747 #ifdef CONFIG_USER_ONLY 748 void tcg_register_thread(void) 749 { 750 tcg_ctx = &tcg_init_ctx; 751 } 752 #else 753 void tcg_register_thread(void) 754 { 755 TCGContext *s = g_malloc(sizeof(*s)); 756 unsigned int i, n; 757 bool err; 758 759 *s = tcg_init_ctx; 760 761 /* Relink mem_base. */ 762 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) { 763 if (tcg_init_ctx.temps[i].mem_base) { 764 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps; 765 tcg_debug_assert(b >= 0 && b < n); 766 s->temps[i].mem_base = &s->temps[b]; 767 } 768 } 769 770 /* Claim an entry in tcg_ctxs */ 771 n = atomic_fetch_inc(&n_tcg_ctxs); 772 g_assert(n < max_cpus); 773 atomic_set(&tcg_ctxs[n], s); 774 775 tcg_ctx = s; 776 qemu_mutex_lock(®ion.lock); 777 err = tcg_region_initial_alloc__locked(tcg_ctx); 778 g_assert(!err); 779 qemu_mutex_unlock(®ion.lock); 780 } 781 #endif /* !CONFIG_USER_ONLY */ 782 783 /* 784 * Returns the size (in bytes) of all translated code (i.e. from all regions) 785 * currently in the cache. 786 * See also: tcg_code_capacity() 787 * Do not confuse with tcg_current_code_size(); that one applies to a single 788 * TCG context. 789 */ 790 size_t tcg_code_size(void) 791 { 792 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 793 unsigned int i; 794 size_t total; 795 796 qemu_mutex_lock(®ion.lock); 797 total = region.agg_size_full; 798 for (i = 0; i < n_ctxs; i++) { 799 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 800 size_t size; 801 802 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer; 803 g_assert(size <= s->code_gen_buffer_size); 804 total += size; 805 } 806 qemu_mutex_unlock(®ion.lock); 807 return total; 808 } 809 810 /* 811 * Returns the code capacity (in bytes) of the entire cache, i.e. including all 812 * regions. 813 * See also: tcg_code_size() 814 */ 815 size_t tcg_code_capacity(void) 816 { 817 size_t guard_size, capacity; 818 819 /* no need for synchronization; these variables are set at init time */ 820 guard_size = region.stride - region.size; 821 capacity = region.end + guard_size - region.start; 822 capacity -= region.n * (guard_size + TCG_HIGHWATER); 823 return capacity; 824 } 825 826 size_t tcg_tb_phys_invalidate_count(void) 827 { 828 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 829 unsigned int i; 830 size_t total = 0; 831 832 for (i = 0; i < n_ctxs; i++) { 833 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 834 835 total += atomic_read(&s->tb_phys_invalidate_count); 836 } 837 return total; 838 } 839 840 /* pool based memory allocation */ 841 void *tcg_malloc_internal(TCGContext *s, int size) 842 { 843 TCGPool *p; 844 int pool_size; 845 846 if (size > TCG_POOL_CHUNK_SIZE) { 847 /* big malloc: insert a new pool (XXX: could optimize) */ 848 p = g_malloc(sizeof(TCGPool) + size); 849 p->size = size; 850 p->next = s->pool_first_large; 851 s->pool_first_large = p; 852 return p->data; 853 } else { 854 p = s->pool_current; 855 if (!p) { 856 p = s->pool_first; 857 if (!p) 858 goto new_pool; 859 } else { 860 if (!p->next) { 861 new_pool: 862 pool_size = TCG_POOL_CHUNK_SIZE; 863 p = g_malloc(sizeof(TCGPool) + pool_size); 864 p->size = pool_size; 865 p->next = NULL; 866 if (s->pool_current) 867 s->pool_current->next = p; 868 else 869 s->pool_first = p; 870 } else { 871 p = p->next; 872 } 873 } 874 } 875 s->pool_current = p; 876 s->pool_cur = p->data + size; 877 s->pool_end = p->data + p->size; 878 return p->data; 879 } 880 881 void tcg_pool_reset(TCGContext *s) 882 { 883 TCGPool *p, *t; 884 for (p = s->pool_first_large; p; p = t) { 885 t = p->next; 886 g_free(p); 887 } 888 s->pool_first_large = NULL; 889 s->pool_cur = s->pool_end = NULL; 890 s->pool_current = NULL; 891 } 892 893 typedef struct TCGHelperInfo { 894 void *func; 895 const char *name; 896 unsigned flags; 897 unsigned sizemask; 898 } TCGHelperInfo; 899 900 #include "exec/helper-proto.h" 901 902 static const TCGHelperInfo all_helpers[] = { 903 #include "exec/helper-tcg.h" 904 }; 905 static GHashTable *helper_table; 906 907 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)]; 908 static void process_op_defs(TCGContext *s); 909 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 910 TCGReg reg, const char *name); 911 912 void tcg_context_init(TCGContext *s) 913 { 914 int op, total_args, n, i; 915 TCGOpDef *def; 916 TCGArgConstraint *args_ct; 917 int *sorted_args; 918 TCGTemp *ts; 919 920 memset(s, 0, sizeof(*s)); 921 s->nb_globals = 0; 922 923 /* Count total number of arguments and allocate the corresponding 924 space */ 925 total_args = 0; 926 for(op = 0; op < NB_OPS; op++) { 927 def = &tcg_op_defs[op]; 928 n = def->nb_iargs + def->nb_oargs; 929 total_args += n; 930 } 931 932 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args); 933 sorted_args = g_malloc(sizeof(int) * total_args); 934 935 for(op = 0; op < NB_OPS; op++) { 936 def = &tcg_op_defs[op]; 937 def->args_ct = args_ct; 938 def->sorted_args = sorted_args; 939 n = def->nb_iargs + def->nb_oargs; 940 sorted_args += n; 941 args_ct += n; 942 } 943 944 /* Register helpers. */ 945 /* Use g_direct_hash/equal for direct pointer comparisons on func. */ 946 helper_table = g_hash_table_new(NULL, NULL); 947 948 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) { 949 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func, 950 (gpointer)&all_helpers[i]); 951 } 952 953 tcg_target_init(s); 954 process_op_defs(s); 955 956 /* Reverse the order of the saved registers, assuming they're all at 957 the start of tcg_target_reg_alloc_order. */ 958 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) { 959 int r = tcg_target_reg_alloc_order[n]; 960 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) { 961 break; 962 } 963 } 964 for (i = 0; i < n; ++i) { 965 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i]; 966 } 967 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) { 968 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i]; 969 } 970 971 tcg_ctx = s; 972 /* 973 * In user-mode we simply share the init context among threads, since we 974 * use a single region. See the documentation tcg_region_init() for the 975 * reasoning behind this. 976 * In softmmu we will have at most max_cpus TCG threads. 977 */ 978 #ifdef CONFIG_USER_ONLY 979 tcg_ctxs = &tcg_ctx; 980 n_tcg_ctxs = 1; 981 #else 982 tcg_ctxs = g_new(TCGContext *, max_cpus); 983 #endif 984 985 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0)); 986 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env"); 987 cpu_env = temp_tcgv_ptr(ts); 988 } 989 990 /* 991 * Allocate TBs right before their corresponding translated code, making 992 * sure that TBs and code are on different cache lines. 993 */ 994 TranslationBlock *tcg_tb_alloc(TCGContext *s) 995 { 996 uintptr_t align = qemu_icache_linesize; 997 TranslationBlock *tb; 998 void *next; 999 1000 retry: 1001 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align); 1002 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align); 1003 1004 if (unlikely(next > s->code_gen_highwater)) { 1005 if (tcg_region_alloc(s)) { 1006 return NULL; 1007 } 1008 goto retry; 1009 } 1010 atomic_set(&s->code_gen_ptr, next); 1011 s->data_gen_ptr = NULL; 1012 return tb; 1013 } 1014 1015 void tcg_prologue_init(TCGContext *s) 1016 { 1017 size_t prologue_size, total_size; 1018 void *buf0, *buf1; 1019 1020 /* Put the prologue at the beginning of code_gen_buffer. */ 1021 buf0 = s->code_gen_buffer; 1022 total_size = s->code_gen_buffer_size; 1023 s->code_ptr = buf0; 1024 s->code_buf = buf0; 1025 s->data_gen_ptr = NULL; 1026 s->code_gen_prologue = buf0; 1027 1028 /* Compute a high-water mark, at which we voluntarily flush the buffer 1029 and start over. The size here is arbitrary, significantly larger 1030 than we expect the code generation for any one opcode to require. */ 1031 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER); 1032 1033 #ifdef TCG_TARGET_NEED_POOL_LABELS 1034 s->pool_labels = NULL; 1035 #endif 1036 1037 /* Generate the prologue. */ 1038 tcg_target_qemu_prologue(s); 1039 1040 #ifdef TCG_TARGET_NEED_POOL_LABELS 1041 /* Allow the prologue to put e.g. guest_base into a pool entry. */ 1042 { 1043 int result = tcg_out_pool_finalize(s); 1044 tcg_debug_assert(result == 0); 1045 } 1046 #endif 1047 1048 buf1 = s->code_ptr; 1049 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1); 1050 1051 /* Deduct the prologue from the buffer. */ 1052 prologue_size = tcg_current_code_size(s); 1053 s->code_gen_ptr = buf1; 1054 s->code_gen_buffer = buf1; 1055 s->code_buf = buf1; 1056 total_size -= prologue_size; 1057 s->code_gen_buffer_size = total_size; 1058 1059 tcg_register_jit(s->code_gen_buffer, total_size); 1060 1061 #ifdef DEBUG_DISAS 1062 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) { 1063 qemu_log_lock(); 1064 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size); 1065 if (s->data_gen_ptr) { 1066 size_t code_size = s->data_gen_ptr - buf0; 1067 size_t data_size = prologue_size - code_size; 1068 size_t i; 1069 1070 log_disas(buf0, code_size); 1071 1072 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) { 1073 if (sizeof(tcg_target_ulong) == 8) { 1074 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n", 1075 (uintptr_t)s->data_gen_ptr + i, 1076 *(uint64_t *)(s->data_gen_ptr + i)); 1077 } else { 1078 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n", 1079 (uintptr_t)s->data_gen_ptr + i, 1080 *(uint32_t *)(s->data_gen_ptr + i)); 1081 } 1082 } 1083 } else { 1084 log_disas(buf0, prologue_size); 1085 } 1086 qemu_log("\n"); 1087 qemu_log_flush(); 1088 qemu_log_unlock(); 1089 } 1090 #endif 1091 1092 /* Assert that goto_ptr is implemented completely. */ 1093 if (TCG_TARGET_HAS_goto_ptr) { 1094 tcg_debug_assert(s->code_gen_epilogue != NULL); 1095 } 1096 } 1097 1098 void tcg_func_start(TCGContext *s) 1099 { 1100 tcg_pool_reset(s); 1101 s->nb_temps = s->nb_globals; 1102 1103 /* No temps have been previously allocated for size or locality. */ 1104 memset(s->free_temps, 0, sizeof(s->free_temps)); 1105 1106 s->nb_ops = 0; 1107 s->nb_labels = 0; 1108 s->current_frame_offset = s->frame_start; 1109 1110 #ifdef CONFIG_DEBUG_TCG 1111 s->goto_tb_issue_mask = 0; 1112 #endif 1113 1114 QTAILQ_INIT(&s->ops); 1115 QTAILQ_INIT(&s->free_ops); 1116 QSIMPLEQ_INIT(&s->labels); 1117 } 1118 1119 static inline TCGTemp *tcg_temp_alloc(TCGContext *s) 1120 { 1121 int n = s->nb_temps++; 1122 tcg_debug_assert(n < TCG_MAX_TEMPS); 1123 return memset(&s->temps[n], 0, sizeof(TCGTemp)); 1124 } 1125 1126 static inline TCGTemp *tcg_global_alloc(TCGContext *s) 1127 { 1128 TCGTemp *ts; 1129 1130 tcg_debug_assert(s->nb_globals == s->nb_temps); 1131 s->nb_globals++; 1132 ts = tcg_temp_alloc(s); 1133 ts->temp_global = 1; 1134 1135 return ts; 1136 } 1137 1138 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type, 1139 TCGReg reg, const char *name) 1140 { 1141 TCGTemp *ts; 1142 1143 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) { 1144 tcg_abort(); 1145 } 1146 1147 ts = tcg_global_alloc(s); 1148 ts->base_type = type; 1149 ts->type = type; 1150 ts->fixed_reg = 1; 1151 ts->reg = reg; 1152 ts->name = name; 1153 tcg_regset_set_reg(s->reserved_regs, reg); 1154 1155 return ts; 1156 } 1157 1158 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size) 1159 { 1160 s->frame_start = start; 1161 s->frame_end = start + size; 1162 s->frame_temp 1163 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame"); 1164 } 1165 1166 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base, 1167 intptr_t offset, const char *name) 1168 { 1169 TCGContext *s = tcg_ctx; 1170 TCGTemp *base_ts = tcgv_ptr_temp(base); 1171 TCGTemp *ts = tcg_global_alloc(s); 1172 int indirect_reg = 0, bigendian = 0; 1173 #ifdef HOST_WORDS_BIGENDIAN 1174 bigendian = 1; 1175 #endif 1176 1177 if (!base_ts->fixed_reg) { 1178 /* We do not support double-indirect registers. */ 1179 tcg_debug_assert(!base_ts->indirect_reg); 1180 base_ts->indirect_base = 1; 1181 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64 1182 ? 2 : 1); 1183 indirect_reg = 1; 1184 } 1185 1186 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1187 TCGTemp *ts2 = tcg_global_alloc(s); 1188 char buf[64]; 1189 1190 ts->base_type = TCG_TYPE_I64; 1191 ts->type = TCG_TYPE_I32; 1192 ts->indirect_reg = indirect_reg; 1193 ts->mem_allocated = 1; 1194 ts->mem_base = base_ts; 1195 ts->mem_offset = offset + bigendian * 4; 1196 pstrcpy(buf, sizeof(buf), name); 1197 pstrcat(buf, sizeof(buf), "_0"); 1198 ts->name = strdup(buf); 1199 1200 tcg_debug_assert(ts2 == ts + 1); 1201 ts2->base_type = TCG_TYPE_I64; 1202 ts2->type = TCG_TYPE_I32; 1203 ts2->indirect_reg = indirect_reg; 1204 ts2->mem_allocated = 1; 1205 ts2->mem_base = base_ts; 1206 ts2->mem_offset = offset + (1 - bigendian) * 4; 1207 pstrcpy(buf, sizeof(buf), name); 1208 pstrcat(buf, sizeof(buf), "_1"); 1209 ts2->name = strdup(buf); 1210 } else { 1211 ts->base_type = type; 1212 ts->type = type; 1213 ts->indirect_reg = indirect_reg; 1214 ts->mem_allocated = 1; 1215 ts->mem_base = base_ts; 1216 ts->mem_offset = offset; 1217 ts->name = name; 1218 } 1219 return ts; 1220 } 1221 1222 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local) 1223 { 1224 TCGContext *s = tcg_ctx; 1225 TCGTemp *ts; 1226 int idx, k; 1227 1228 k = type + (temp_local ? TCG_TYPE_COUNT : 0); 1229 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS); 1230 if (idx < TCG_MAX_TEMPS) { 1231 /* There is already an available temp with the right type. */ 1232 clear_bit(idx, s->free_temps[k].l); 1233 1234 ts = &s->temps[idx]; 1235 ts->temp_allocated = 1; 1236 tcg_debug_assert(ts->base_type == type); 1237 tcg_debug_assert(ts->temp_local == temp_local); 1238 } else { 1239 ts = tcg_temp_alloc(s); 1240 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) { 1241 TCGTemp *ts2 = tcg_temp_alloc(s); 1242 1243 ts->base_type = type; 1244 ts->type = TCG_TYPE_I32; 1245 ts->temp_allocated = 1; 1246 ts->temp_local = temp_local; 1247 1248 tcg_debug_assert(ts2 == ts + 1); 1249 ts2->base_type = TCG_TYPE_I64; 1250 ts2->type = TCG_TYPE_I32; 1251 ts2->temp_allocated = 1; 1252 ts2->temp_local = temp_local; 1253 } else { 1254 ts->base_type = type; 1255 ts->type = type; 1256 ts->temp_allocated = 1; 1257 ts->temp_local = temp_local; 1258 } 1259 } 1260 1261 #if defined(CONFIG_DEBUG_TCG) 1262 s->temps_in_use++; 1263 #endif 1264 return ts; 1265 } 1266 1267 TCGv_vec tcg_temp_new_vec(TCGType type) 1268 { 1269 TCGTemp *t; 1270 1271 #ifdef CONFIG_DEBUG_TCG 1272 switch (type) { 1273 case TCG_TYPE_V64: 1274 assert(TCG_TARGET_HAS_v64); 1275 break; 1276 case TCG_TYPE_V128: 1277 assert(TCG_TARGET_HAS_v128); 1278 break; 1279 case TCG_TYPE_V256: 1280 assert(TCG_TARGET_HAS_v256); 1281 break; 1282 default: 1283 g_assert_not_reached(); 1284 } 1285 #endif 1286 1287 t = tcg_temp_new_internal(type, 0); 1288 return temp_tcgv_vec(t); 1289 } 1290 1291 /* Create a new temp of the same type as an existing temp. */ 1292 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match) 1293 { 1294 TCGTemp *t = tcgv_vec_temp(match); 1295 1296 tcg_debug_assert(t->temp_allocated != 0); 1297 1298 t = tcg_temp_new_internal(t->base_type, 0); 1299 return temp_tcgv_vec(t); 1300 } 1301 1302 void tcg_temp_free_internal(TCGTemp *ts) 1303 { 1304 TCGContext *s = tcg_ctx; 1305 int k, idx; 1306 1307 #if defined(CONFIG_DEBUG_TCG) 1308 s->temps_in_use--; 1309 if (s->temps_in_use < 0) { 1310 fprintf(stderr, "More temporaries freed than allocated!\n"); 1311 } 1312 #endif 1313 1314 tcg_debug_assert(ts->temp_global == 0); 1315 tcg_debug_assert(ts->temp_allocated != 0); 1316 ts->temp_allocated = 0; 1317 1318 idx = temp_idx(ts); 1319 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0); 1320 set_bit(idx, s->free_temps[k].l); 1321 } 1322 1323 TCGv_i32 tcg_const_i32(int32_t val) 1324 { 1325 TCGv_i32 t0; 1326 t0 = tcg_temp_new_i32(); 1327 tcg_gen_movi_i32(t0, val); 1328 return t0; 1329 } 1330 1331 TCGv_i64 tcg_const_i64(int64_t val) 1332 { 1333 TCGv_i64 t0; 1334 t0 = tcg_temp_new_i64(); 1335 tcg_gen_movi_i64(t0, val); 1336 return t0; 1337 } 1338 1339 TCGv_i32 tcg_const_local_i32(int32_t val) 1340 { 1341 TCGv_i32 t0; 1342 t0 = tcg_temp_local_new_i32(); 1343 tcg_gen_movi_i32(t0, val); 1344 return t0; 1345 } 1346 1347 TCGv_i64 tcg_const_local_i64(int64_t val) 1348 { 1349 TCGv_i64 t0; 1350 t0 = tcg_temp_local_new_i64(); 1351 tcg_gen_movi_i64(t0, val); 1352 return t0; 1353 } 1354 1355 #if defined(CONFIG_DEBUG_TCG) 1356 void tcg_clear_temp_count(void) 1357 { 1358 TCGContext *s = tcg_ctx; 1359 s->temps_in_use = 0; 1360 } 1361 1362 int tcg_check_temp_count(void) 1363 { 1364 TCGContext *s = tcg_ctx; 1365 if (s->temps_in_use) { 1366 /* Clear the count so that we don't give another 1367 * warning immediately next time around. 1368 */ 1369 s->temps_in_use = 0; 1370 return 1; 1371 } 1372 return 0; 1373 } 1374 #endif 1375 1376 /* Return true if OP may appear in the opcode stream. 1377 Test the runtime variable that controls each opcode. */ 1378 bool tcg_op_supported(TCGOpcode op) 1379 { 1380 const bool have_vec 1381 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256; 1382 1383 switch (op) { 1384 case INDEX_op_discard: 1385 case INDEX_op_set_label: 1386 case INDEX_op_call: 1387 case INDEX_op_br: 1388 case INDEX_op_mb: 1389 case INDEX_op_insn_start: 1390 case INDEX_op_exit_tb: 1391 case INDEX_op_goto_tb: 1392 case INDEX_op_qemu_ld_i32: 1393 case INDEX_op_qemu_st_i32: 1394 case INDEX_op_qemu_ld_i64: 1395 case INDEX_op_qemu_st_i64: 1396 return true; 1397 1398 case INDEX_op_goto_ptr: 1399 return TCG_TARGET_HAS_goto_ptr; 1400 1401 case INDEX_op_mov_i32: 1402 case INDEX_op_movi_i32: 1403 case INDEX_op_setcond_i32: 1404 case INDEX_op_brcond_i32: 1405 case INDEX_op_ld8u_i32: 1406 case INDEX_op_ld8s_i32: 1407 case INDEX_op_ld16u_i32: 1408 case INDEX_op_ld16s_i32: 1409 case INDEX_op_ld_i32: 1410 case INDEX_op_st8_i32: 1411 case INDEX_op_st16_i32: 1412 case INDEX_op_st_i32: 1413 case INDEX_op_add_i32: 1414 case INDEX_op_sub_i32: 1415 case INDEX_op_mul_i32: 1416 case INDEX_op_and_i32: 1417 case INDEX_op_or_i32: 1418 case INDEX_op_xor_i32: 1419 case INDEX_op_shl_i32: 1420 case INDEX_op_shr_i32: 1421 case INDEX_op_sar_i32: 1422 return true; 1423 1424 case INDEX_op_movcond_i32: 1425 return TCG_TARGET_HAS_movcond_i32; 1426 case INDEX_op_div_i32: 1427 case INDEX_op_divu_i32: 1428 return TCG_TARGET_HAS_div_i32; 1429 case INDEX_op_rem_i32: 1430 case INDEX_op_remu_i32: 1431 return TCG_TARGET_HAS_rem_i32; 1432 case INDEX_op_div2_i32: 1433 case INDEX_op_divu2_i32: 1434 return TCG_TARGET_HAS_div2_i32; 1435 case INDEX_op_rotl_i32: 1436 case INDEX_op_rotr_i32: 1437 return TCG_TARGET_HAS_rot_i32; 1438 case INDEX_op_deposit_i32: 1439 return TCG_TARGET_HAS_deposit_i32; 1440 case INDEX_op_extract_i32: 1441 return TCG_TARGET_HAS_extract_i32; 1442 case INDEX_op_sextract_i32: 1443 return TCG_TARGET_HAS_sextract_i32; 1444 case INDEX_op_extract2_i32: 1445 return TCG_TARGET_HAS_extract2_i32; 1446 case INDEX_op_add2_i32: 1447 return TCG_TARGET_HAS_add2_i32; 1448 case INDEX_op_sub2_i32: 1449 return TCG_TARGET_HAS_sub2_i32; 1450 case INDEX_op_mulu2_i32: 1451 return TCG_TARGET_HAS_mulu2_i32; 1452 case INDEX_op_muls2_i32: 1453 return TCG_TARGET_HAS_muls2_i32; 1454 case INDEX_op_muluh_i32: 1455 return TCG_TARGET_HAS_muluh_i32; 1456 case INDEX_op_mulsh_i32: 1457 return TCG_TARGET_HAS_mulsh_i32; 1458 case INDEX_op_ext8s_i32: 1459 return TCG_TARGET_HAS_ext8s_i32; 1460 case INDEX_op_ext16s_i32: 1461 return TCG_TARGET_HAS_ext16s_i32; 1462 case INDEX_op_ext8u_i32: 1463 return TCG_TARGET_HAS_ext8u_i32; 1464 case INDEX_op_ext16u_i32: 1465 return TCG_TARGET_HAS_ext16u_i32; 1466 case INDEX_op_bswap16_i32: 1467 return TCG_TARGET_HAS_bswap16_i32; 1468 case INDEX_op_bswap32_i32: 1469 return TCG_TARGET_HAS_bswap32_i32; 1470 case INDEX_op_not_i32: 1471 return TCG_TARGET_HAS_not_i32; 1472 case INDEX_op_neg_i32: 1473 return TCG_TARGET_HAS_neg_i32; 1474 case INDEX_op_andc_i32: 1475 return TCG_TARGET_HAS_andc_i32; 1476 case INDEX_op_orc_i32: 1477 return TCG_TARGET_HAS_orc_i32; 1478 case INDEX_op_eqv_i32: 1479 return TCG_TARGET_HAS_eqv_i32; 1480 case INDEX_op_nand_i32: 1481 return TCG_TARGET_HAS_nand_i32; 1482 case INDEX_op_nor_i32: 1483 return TCG_TARGET_HAS_nor_i32; 1484 case INDEX_op_clz_i32: 1485 return TCG_TARGET_HAS_clz_i32; 1486 case INDEX_op_ctz_i32: 1487 return TCG_TARGET_HAS_ctz_i32; 1488 case INDEX_op_ctpop_i32: 1489 return TCG_TARGET_HAS_ctpop_i32; 1490 1491 case INDEX_op_brcond2_i32: 1492 case INDEX_op_setcond2_i32: 1493 return TCG_TARGET_REG_BITS == 32; 1494 1495 case INDEX_op_mov_i64: 1496 case INDEX_op_movi_i64: 1497 case INDEX_op_setcond_i64: 1498 case INDEX_op_brcond_i64: 1499 case INDEX_op_ld8u_i64: 1500 case INDEX_op_ld8s_i64: 1501 case INDEX_op_ld16u_i64: 1502 case INDEX_op_ld16s_i64: 1503 case INDEX_op_ld32u_i64: 1504 case INDEX_op_ld32s_i64: 1505 case INDEX_op_ld_i64: 1506 case INDEX_op_st8_i64: 1507 case INDEX_op_st16_i64: 1508 case INDEX_op_st32_i64: 1509 case INDEX_op_st_i64: 1510 case INDEX_op_add_i64: 1511 case INDEX_op_sub_i64: 1512 case INDEX_op_mul_i64: 1513 case INDEX_op_and_i64: 1514 case INDEX_op_or_i64: 1515 case INDEX_op_xor_i64: 1516 case INDEX_op_shl_i64: 1517 case INDEX_op_shr_i64: 1518 case INDEX_op_sar_i64: 1519 case INDEX_op_ext_i32_i64: 1520 case INDEX_op_extu_i32_i64: 1521 return TCG_TARGET_REG_BITS == 64; 1522 1523 case INDEX_op_movcond_i64: 1524 return TCG_TARGET_HAS_movcond_i64; 1525 case INDEX_op_div_i64: 1526 case INDEX_op_divu_i64: 1527 return TCG_TARGET_HAS_div_i64; 1528 case INDEX_op_rem_i64: 1529 case INDEX_op_remu_i64: 1530 return TCG_TARGET_HAS_rem_i64; 1531 case INDEX_op_div2_i64: 1532 case INDEX_op_divu2_i64: 1533 return TCG_TARGET_HAS_div2_i64; 1534 case INDEX_op_rotl_i64: 1535 case INDEX_op_rotr_i64: 1536 return TCG_TARGET_HAS_rot_i64; 1537 case INDEX_op_deposit_i64: 1538 return TCG_TARGET_HAS_deposit_i64; 1539 case INDEX_op_extract_i64: 1540 return TCG_TARGET_HAS_extract_i64; 1541 case INDEX_op_sextract_i64: 1542 return TCG_TARGET_HAS_sextract_i64; 1543 case INDEX_op_extract2_i64: 1544 return TCG_TARGET_HAS_extract2_i64; 1545 case INDEX_op_extrl_i64_i32: 1546 return TCG_TARGET_HAS_extrl_i64_i32; 1547 case INDEX_op_extrh_i64_i32: 1548 return TCG_TARGET_HAS_extrh_i64_i32; 1549 case INDEX_op_ext8s_i64: 1550 return TCG_TARGET_HAS_ext8s_i64; 1551 case INDEX_op_ext16s_i64: 1552 return TCG_TARGET_HAS_ext16s_i64; 1553 case INDEX_op_ext32s_i64: 1554 return TCG_TARGET_HAS_ext32s_i64; 1555 case INDEX_op_ext8u_i64: 1556 return TCG_TARGET_HAS_ext8u_i64; 1557 case INDEX_op_ext16u_i64: 1558 return TCG_TARGET_HAS_ext16u_i64; 1559 case INDEX_op_ext32u_i64: 1560 return TCG_TARGET_HAS_ext32u_i64; 1561 case INDEX_op_bswap16_i64: 1562 return TCG_TARGET_HAS_bswap16_i64; 1563 case INDEX_op_bswap32_i64: 1564 return TCG_TARGET_HAS_bswap32_i64; 1565 case INDEX_op_bswap64_i64: 1566 return TCG_TARGET_HAS_bswap64_i64; 1567 case INDEX_op_not_i64: 1568 return TCG_TARGET_HAS_not_i64; 1569 case INDEX_op_neg_i64: 1570 return TCG_TARGET_HAS_neg_i64; 1571 case INDEX_op_andc_i64: 1572 return TCG_TARGET_HAS_andc_i64; 1573 case INDEX_op_orc_i64: 1574 return TCG_TARGET_HAS_orc_i64; 1575 case INDEX_op_eqv_i64: 1576 return TCG_TARGET_HAS_eqv_i64; 1577 case INDEX_op_nand_i64: 1578 return TCG_TARGET_HAS_nand_i64; 1579 case INDEX_op_nor_i64: 1580 return TCG_TARGET_HAS_nor_i64; 1581 case INDEX_op_clz_i64: 1582 return TCG_TARGET_HAS_clz_i64; 1583 case INDEX_op_ctz_i64: 1584 return TCG_TARGET_HAS_ctz_i64; 1585 case INDEX_op_ctpop_i64: 1586 return TCG_TARGET_HAS_ctpop_i64; 1587 case INDEX_op_add2_i64: 1588 return TCG_TARGET_HAS_add2_i64; 1589 case INDEX_op_sub2_i64: 1590 return TCG_TARGET_HAS_sub2_i64; 1591 case INDEX_op_mulu2_i64: 1592 return TCG_TARGET_HAS_mulu2_i64; 1593 case INDEX_op_muls2_i64: 1594 return TCG_TARGET_HAS_muls2_i64; 1595 case INDEX_op_muluh_i64: 1596 return TCG_TARGET_HAS_muluh_i64; 1597 case INDEX_op_mulsh_i64: 1598 return TCG_TARGET_HAS_mulsh_i64; 1599 1600 case INDEX_op_mov_vec: 1601 case INDEX_op_dup_vec: 1602 case INDEX_op_dupi_vec: 1603 case INDEX_op_dupm_vec: 1604 case INDEX_op_ld_vec: 1605 case INDEX_op_st_vec: 1606 case INDEX_op_add_vec: 1607 case INDEX_op_sub_vec: 1608 case INDEX_op_and_vec: 1609 case INDEX_op_or_vec: 1610 case INDEX_op_xor_vec: 1611 case INDEX_op_cmp_vec: 1612 return have_vec; 1613 case INDEX_op_dup2_vec: 1614 return have_vec && TCG_TARGET_REG_BITS == 32; 1615 case INDEX_op_not_vec: 1616 return have_vec && TCG_TARGET_HAS_not_vec; 1617 case INDEX_op_neg_vec: 1618 return have_vec && TCG_TARGET_HAS_neg_vec; 1619 case INDEX_op_andc_vec: 1620 return have_vec && TCG_TARGET_HAS_andc_vec; 1621 case INDEX_op_orc_vec: 1622 return have_vec && TCG_TARGET_HAS_orc_vec; 1623 case INDEX_op_mul_vec: 1624 return have_vec && TCG_TARGET_HAS_mul_vec; 1625 case INDEX_op_shli_vec: 1626 case INDEX_op_shri_vec: 1627 case INDEX_op_sari_vec: 1628 return have_vec && TCG_TARGET_HAS_shi_vec; 1629 case INDEX_op_shls_vec: 1630 case INDEX_op_shrs_vec: 1631 case INDEX_op_sars_vec: 1632 return have_vec && TCG_TARGET_HAS_shs_vec; 1633 case INDEX_op_shlv_vec: 1634 case INDEX_op_shrv_vec: 1635 case INDEX_op_sarv_vec: 1636 return have_vec && TCG_TARGET_HAS_shv_vec; 1637 case INDEX_op_ssadd_vec: 1638 case INDEX_op_usadd_vec: 1639 case INDEX_op_sssub_vec: 1640 case INDEX_op_ussub_vec: 1641 return have_vec && TCG_TARGET_HAS_sat_vec; 1642 case INDEX_op_smin_vec: 1643 case INDEX_op_umin_vec: 1644 case INDEX_op_smax_vec: 1645 case INDEX_op_umax_vec: 1646 return have_vec && TCG_TARGET_HAS_minmax_vec; 1647 1648 default: 1649 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS); 1650 return true; 1651 } 1652 } 1653 1654 /* Note: we convert the 64 bit args to 32 bit and do some alignment 1655 and endian swap. Maybe it would be better to do the alignment 1656 and endian swap in tcg_reg_alloc_call(). */ 1657 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args) 1658 { 1659 int i, real_args, nb_rets, pi; 1660 unsigned sizemask, flags; 1661 TCGHelperInfo *info; 1662 TCGOp *op; 1663 1664 info = g_hash_table_lookup(helper_table, (gpointer)func); 1665 flags = info->flags; 1666 sizemask = info->sizemask; 1667 1668 #if defined(__sparc__) && !defined(__arch64__) \ 1669 && !defined(CONFIG_TCG_INTERPRETER) 1670 /* We have 64-bit values in one register, but need to pass as two 1671 separate parameters. Split them. */ 1672 int orig_sizemask = sizemask; 1673 int orig_nargs = nargs; 1674 TCGv_i64 retl, reth; 1675 TCGTemp *split_args[MAX_OPC_PARAM]; 1676 1677 retl = NULL; 1678 reth = NULL; 1679 if (sizemask != 0) { 1680 for (i = real_args = 0; i < nargs; ++i) { 1681 int is_64bit = sizemask & (1 << (i+1)*2); 1682 if (is_64bit) { 1683 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1684 TCGv_i32 h = tcg_temp_new_i32(); 1685 TCGv_i32 l = tcg_temp_new_i32(); 1686 tcg_gen_extr_i64_i32(l, h, orig); 1687 split_args[real_args++] = tcgv_i32_temp(h); 1688 split_args[real_args++] = tcgv_i32_temp(l); 1689 } else { 1690 split_args[real_args++] = args[i]; 1691 } 1692 } 1693 nargs = real_args; 1694 args = split_args; 1695 sizemask = 0; 1696 } 1697 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1698 for (i = 0; i < nargs; ++i) { 1699 int is_64bit = sizemask & (1 << (i+1)*2); 1700 int is_signed = sizemask & (2 << (i+1)*2); 1701 if (!is_64bit) { 1702 TCGv_i64 temp = tcg_temp_new_i64(); 1703 TCGv_i64 orig = temp_tcgv_i64(args[i]); 1704 if (is_signed) { 1705 tcg_gen_ext32s_i64(temp, orig); 1706 } else { 1707 tcg_gen_ext32u_i64(temp, orig); 1708 } 1709 args[i] = tcgv_i64_temp(temp); 1710 } 1711 } 1712 #endif /* TCG_TARGET_EXTEND_ARGS */ 1713 1714 op = tcg_emit_op(INDEX_op_call); 1715 1716 pi = 0; 1717 if (ret != NULL) { 1718 #if defined(__sparc__) && !defined(__arch64__) \ 1719 && !defined(CONFIG_TCG_INTERPRETER) 1720 if (orig_sizemask & 1) { 1721 /* The 32-bit ABI is going to return the 64-bit value in 1722 the %o0/%o1 register pair. Prepare for this by using 1723 two return temporaries, and reassemble below. */ 1724 retl = tcg_temp_new_i64(); 1725 reth = tcg_temp_new_i64(); 1726 op->args[pi++] = tcgv_i64_arg(reth); 1727 op->args[pi++] = tcgv_i64_arg(retl); 1728 nb_rets = 2; 1729 } else { 1730 op->args[pi++] = temp_arg(ret); 1731 nb_rets = 1; 1732 } 1733 #else 1734 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) { 1735 #ifdef HOST_WORDS_BIGENDIAN 1736 op->args[pi++] = temp_arg(ret + 1); 1737 op->args[pi++] = temp_arg(ret); 1738 #else 1739 op->args[pi++] = temp_arg(ret); 1740 op->args[pi++] = temp_arg(ret + 1); 1741 #endif 1742 nb_rets = 2; 1743 } else { 1744 op->args[pi++] = temp_arg(ret); 1745 nb_rets = 1; 1746 } 1747 #endif 1748 } else { 1749 nb_rets = 0; 1750 } 1751 TCGOP_CALLO(op) = nb_rets; 1752 1753 real_args = 0; 1754 for (i = 0; i < nargs; i++) { 1755 int is_64bit = sizemask & (1 << (i+1)*2); 1756 if (TCG_TARGET_REG_BITS < 64 && is_64bit) { 1757 #ifdef TCG_TARGET_CALL_ALIGN_ARGS 1758 /* some targets want aligned 64 bit args */ 1759 if (real_args & 1) { 1760 op->args[pi++] = TCG_CALL_DUMMY_ARG; 1761 real_args++; 1762 } 1763 #endif 1764 /* If stack grows up, then we will be placing successive 1765 arguments at lower addresses, which means we need to 1766 reverse the order compared to how we would normally 1767 treat either big or little-endian. For those arguments 1768 that will wind up in registers, this still works for 1769 HPPA (the only current STACK_GROWSUP target) since the 1770 argument registers are *also* allocated in decreasing 1771 order. If another such target is added, this logic may 1772 have to get more complicated to differentiate between 1773 stack arguments and register arguments. */ 1774 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP) 1775 op->args[pi++] = temp_arg(args[i] + 1); 1776 op->args[pi++] = temp_arg(args[i]); 1777 #else 1778 op->args[pi++] = temp_arg(args[i]); 1779 op->args[pi++] = temp_arg(args[i] + 1); 1780 #endif 1781 real_args += 2; 1782 continue; 1783 } 1784 1785 op->args[pi++] = temp_arg(args[i]); 1786 real_args++; 1787 } 1788 op->args[pi++] = (uintptr_t)func; 1789 op->args[pi++] = flags; 1790 TCGOP_CALLI(op) = real_args; 1791 1792 /* Make sure the fields didn't overflow. */ 1793 tcg_debug_assert(TCGOP_CALLI(op) == real_args); 1794 tcg_debug_assert(pi <= ARRAY_SIZE(op->args)); 1795 1796 #if defined(__sparc__) && !defined(__arch64__) \ 1797 && !defined(CONFIG_TCG_INTERPRETER) 1798 /* Free all of the parts we allocated above. */ 1799 for (i = real_args = 0; i < orig_nargs; ++i) { 1800 int is_64bit = orig_sizemask & (1 << (i+1)*2); 1801 if (is_64bit) { 1802 tcg_temp_free_internal(args[real_args++]); 1803 tcg_temp_free_internal(args[real_args++]); 1804 } else { 1805 real_args++; 1806 } 1807 } 1808 if (orig_sizemask & 1) { 1809 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them. 1810 Note that describing these as TCGv_i64 eliminates an unnecessary 1811 zero-extension that tcg_gen_concat_i32_i64 would create. */ 1812 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth); 1813 tcg_temp_free_i64(retl); 1814 tcg_temp_free_i64(reth); 1815 } 1816 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64 1817 for (i = 0; i < nargs; ++i) { 1818 int is_64bit = sizemask & (1 << (i+1)*2); 1819 if (!is_64bit) { 1820 tcg_temp_free_internal(args[i]); 1821 } 1822 } 1823 #endif /* TCG_TARGET_EXTEND_ARGS */ 1824 } 1825 1826 static void tcg_reg_alloc_start(TCGContext *s) 1827 { 1828 int i, n; 1829 TCGTemp *ts; 1830 1831 for (i = 0, n = s->nb_globals; i < n; i++) { 1832 ts = &s->temps[i]; 1833 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM); 1834 } 1835 for (n = s->nb_temps; i < n; i++) { 1836 ts = &s->temps[i]; 1837 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 1838 ts->mem_allocated = 0; 1839 ts->fixed_reg = 0; 1840 } 1841 1842 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp)); 1843 } 1844 1845 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size, 1846 TCGTemp *ts) 1847 { 1848 int idx = temp_idx(ts); 1849 1850 if (ts->temp_global) { 1851 pstrcpy(buf, buf_size, ts->name); 1852 } else if (ts->temp_local) { 1853 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals); 1854 } else { 1855 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals); 1856 } 1857 return buf; 1858 } 1859 1860 static char *tcg_get_arg_str(TCGContext *s, char *buf, 1861 int buf_size, TCGArg arg) 1862 { 1863 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg)); 1864 } 1865 1866 /* Find helper name. */ 1867 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val) 1868 { 1869 const char *ret = NULL; 1870 if (helper_table) { 1871 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val); 1872 if (info) { 1873 ret = info->name; 1874 } 1875 } 1876 return ret; 1877 } 1878 1879 static const char * const cond_name[] = 1880 { 1881 [TCG_COND_NEVER] = "never", 1882 [TCG_COND_ALWAYS] = "always", 1883 [TCG_COND_EQ] = "eq", 1884 [TCG_COND_NE] = "ne", 1885 [TCG_COND_LT] = "lt", 1886 [TCG_COND_GE] = "ge", 1887 [TCG_COND_LE] = "le", 1888 [TCG_COND_GT] = "gt", 1889 [TCG_COND_LTU] = "ltu", 1890 [TCG_COND_GEU] = "geu", 1891 [TCG_COND_LEU] = "leu", 1892 [TCG_COND_GTU] = "gtu" 1893 }; 1894 1895 static const char * const ldst_name[] = 1896 { 1897 [MO_UB] = "ub", 1898 [MO_SB] = "sb", 1899 [MO_LEUW] = "leuw", 1900 [MO_LESW] = "lesw", 1901 [MO_LEUL] = "leul", 1902 [MO_LESL] = "lesl", 1903 [MO_LEQ] = "leq", 1904 [MO_BEUW] = "beuw", 1905 [MO_BESW] = "besw", 1906 [MO_BEUL] = "beul", 1907 [MO_BESL] = "besl", 1908 [MO_BEQ] = "beq", 1909 }; 1910 1911 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = { 1912 #ifdef ALIGNED_ONLY 1913 [MO_UNALN >> MO_ASHIFT] = "un+", 1914 [MO_ALIGN >> MO_ASHIFT] = "", 1915 #else 1916 [MO_UNALN >> MO_ASHIFT] = "", 1917 [MO_ALIGN >> MO_ASHIFT] = "al+", 1918 #endif 1919 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+", 1920 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+", 1921 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+", 1922 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+", 1923 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+", 1924 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+", 1925 }; 1926 1927 static inline bool tcg_regset_single(TCGRegSet d) 1928 { 1929 return (d & (d - 1)) == 0; 1930 } 1931 1932 static inline TCGReg tcg_regset_first(TCGRegSet d) 1933 { 1934 if (TCG_TARGET_NB_REGS <= 32) { 1935 return ctz32(d); 1936 } else { 1937 return ctz64(d); 1938 } 1939 } 1940 1941 static void tcg_dump_ops(TCGContext *s, bool have_prefs) 1942 { 1943 char buf[128]; 1944 TCGOp *op; 1945 1946 QTAILQ_FOREACH(op, &s->ops, link) { 1947 int i, k, nb_oargs, nb_iargs, nb_cargs; 1948 const TCGOpDef *def; 1949 TCGOpcode c; 1950 int col = 0; 1951 1952 c = op->opc; 1953 def = &tcg_op_defs[c]; 1954 1955 if (c == INDEX_op_insn_start) { 1956 nb_oargs = 0; 1957 col += qemu_log("\n ----"); 1958 1959 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 1960 target_ulong a; 1961 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 1962 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 1963 #else 1964 a = op->args[i]; 1965 #endif 1966 col += qemu_log(" " TARGET_FMT_lx, a); 1967 } 1968 } else if (c == INDEX_op_call) { 1969 /* variable number of arguments */ 1970 nb_oargs = TCGOP_CALLO(op); 1971 nb_iargs = TCGOP_CALLI(op); 1972 nb_cargs = def->nb_cargs; 1973 1974 /* function name, flags, out args */ 1975 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name, 1976 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]), 1977 op->args[nb_oargs + nb_iargs + 1], nb_oargs); 1978 for (i = 0; i < nb_oargs; i++) { 1979 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf), 1980 op->args[i])); 1981 } 1982 for (i = 0; i < nb_iargs; i++) { 1983 TCGArg arg = op->args[nb_oargs + i]; 1984 const char *t = "<dummy>"; 1985 if (arg != TCG_CALL_DUMMY_ARG) { 1986 t = tcg_get_arg_str(s, buf, sizeof(buf), arg); 1987 } 1988 col += qemu_log(",%s", t); 1989 } 1990 } else { 1991 col += qemu_log(" %s ", def->name); 1992 1993 nb_oargs = def->nb_oargs; 1994 nb_iargs = def->nb_iargs; 1995 nb_cargs = def->nb_cargs; 1996 1997 if (def->flags & TCG_OPF_VECTOR) { 1998 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op), 1999 8 << TCGOP_VECE(op)); 2000 } 2001 2002 k = 0; 2003 for (i = 0; i < nb_oargs; i++) { 2004 if (k != 0) { 2005 col += qemu_log(","); 2006 } 2007 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2008 op->args[k++])); 2009 } 2010 for (i = 0; i < nb_iargs; i++) { 2011 if (k != 0) { 2012 col += qemu_log(","); 2013 } 2014 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf), 2015 op->args[k++])); 2016 } 2017 switch (c) { 2018 case INDEX_op_brcond_i32: 2019 case INDEX_op_setcond_i32: 2020 case INDEX_op_movcond_i32: 2021 case INDEX_op_brcond2_i32: 2022 case INDEX_op_setcond2_i32: 2023 case INDEX_op_brcond_i64: 2024 case INDEX_op_setcond_i64: 2025 case INDEX_op_movcond_i64: 2026 case INDEX_op_cmp_vec: 2027 if (op->args[k] < ARRAY_SIZE(cond_name) 2028 && cond_name[op->args[k]]) { 2029 col += qemu_log(",%s", cond_name[op->args[k++]]); 2030 } else { 2031 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]); 2032 } 2033 i = 1; 2034 break; 2035 case INDEX_op_qemu_ld_i32: 2036 case INDEX_op_qemu_st_i32: 2037 case INDEX_op_qemu_ld_i64: 2038 case INDEX_op_qemu_st_i64: 2039 { 2040 TCGMemOpIdx oi = op->args[k++]; 2041 TCGMemOp op = get_memop(oi); 2042 unsigned ix = get_mmuidx(oi); 2043 2044 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) { 2045 col += qemu_log(",$0x%x,%u", op, ix); 2046 } else { 2047 const char *s_al, *s_op; 2048 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT]; 2049 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)]; 2050 col += qemu_log(",%s%s,%u", s_al, s_op, ix); 2051 } 2052 i = 1; 2053 } 2054 break; 2055 default: 2056 i = 0; 2057 break; 2058 } 2059 switch (c) { 2060 case INDEX_op_set_label: 2061 case INDEX_op_br: 2062 case INDEX_op_brcond_i32: 2063 case INDEX_op_brcond_i64: 2064 case INDEX_op_brcond2_i32: 2065 col += qemu_log("%s$L%d", k ? "," : "", 2066 arg_label(op->args[k])->id); 2067 i++, k++; 2068 break; 2069 default: 2070 break; 2071 } 2072 for (; i < nb_cargs; i++, k++) { 2073 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]); 2074 } 2075 } 2076 2077 if (have_prefs || op->life) { 2078 for (; col < 40; ++col) { 2079 putc(' ', qemu_logfile); 2080 } 2081 } 2082 2083 if (op->life) { 2084 unsigned life = op->life; 2085 2086 if (life & (SYNC_ARG * 3)) { 2087 qemu_log(" sync:"); 2088 for (i = 0; i < 2; ++i) { 2089 if (life & (SYNC_ARG << i)) { 2090 qemu_log(" %d", i); 2091 } 2092 } 2093 } 2094 life /= DEAD_ARG; 2095 if (life) { 2096 qemu_log(" dead:"); 2097 for (i = 0; life; ++i, life >>= 1) { 2098 if (life & 1) { 2099 qemu_log(" %d", i); 2100 } 2101 } 2102 } 2103 } 2104 2105 if (have_prefs) { 2106 for (i = 0; i < nb_oargs; ++i) { 2107 TCGRegSet set = op->output_pref[i]; 2108 2109 if (i == 0) { 2110 qemu_log(" pref="); 2111 } else { 2112 qemu_log(","); 2113 } 2114 if (set == 0) { 2115 qemu_log("none"); 2116 } else if (set == MAKE_64BIT_MASK(0, TCG_TARGET_NB_REGS)) { 2117 qemu_log("all"); 2118 #ifdef CONFIG_DEBUG_TCG 2119 } else if (tcg_regset_single(set)) { 2120 TCGReg reg = tcg_regset_first(set); 2121 qemu_log("%s", tcg_target_reg_names[reg]); 2122 #endif 2123 } else if (TCG_TARGET_NB_REGS <= 32) { 2124 qemu_log("%#x", (uint32_t)set); 2125 } else { 2126 qemu_log("%#" PRIx64, (uint64_t)set); 2127 } 2128 } 2129 } 2130 2131 qemu_log("\n"); 2132 } 2133 } 2134 2135 /* we give more priority to constraints with less registers */ 2136 static int get_constraint_priority(const TCGOpDef *def, int k) 2137 { 2138 const TCGArgConstraint *arg_ct; 2139 2140 int i, n; 2141 arg_ct = &def->args_ct[k]; 2142 if (arg_ct->ct & TCG_CT_ALIAS) { 2143 /* an alias is equivalent to a single register */ 2144 n = 1; 2145 } else { 2146 if (!(arg_ct->ct & TCG_CT_REG)) 2147 return 0; 2148 n = 0; 2149 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 2150 if (tcg_regset_test_reg(arg_ct->u.regs, i)) 2151 n++; 2152 } 2153 } 2154 return TCG_TARGET_NB_REGS - n + 1; 2155 } 2156 2157 /* sort from highest priority to lowest */ 2158 static void sort_constraints(TCGOpDef *def, int start, int n) 2159 { 2160 int i, j, p1, p2, tmp; 2161 2162 for(i = 0; i < n; i++) 2163 def->sorted_args[start + i] = start + i; 2164 if (n <= 1) 2165 return; 2166 for(i = 0; i < n - 1; i++) { 2167 for(j = i + 1; j < n; j++) { 2168 p1 = get_constraint_priority(def, def->sorted_args[start + i]); 2169 p2 = get_constraint_priority(def, def->sorted_args[start + j]); 2170 if (p1 < p2) { 2171 tmp = def->sorted_args[start + i]; 2172 def->sorted_args[start + i] = def->sorted_args[start + j]; 2173 def->sorted_args[start + j] = tmp; 2174 } 2175 } 2176 } 2177 } 2178 2179 static void process_op_defs(TCGContext *s) 2180 { 2181 TCGOpcode op; 2182 2183 for (op = 0; op < NB_OPS; op++) { 2184 TCGOpDef *def = &tcg_op_defs[op]; 2185 const TCGTargetOpDef *tdefs; 2186 TCGType type; 2187 int i, nb_args; 2188 2189 if (def->flags & TCG_OPF_NOT_PRESENT) { 2190 continue; 2191 } 2192 2193 nb_args = def->nb_iargs + def->nb_oargs; 2194 if (nb_args == 0) { 2195 continue; 2196 } 2197 2198 tdefs = tcg_target_op_def(op); 2199 /* Missing TCGTargetOpDef entry. */ 2200 tcg_debug_assert(tdefs != NULL); 2201 2202 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32); 2203 for (i = 0; i < nb_args; i++) { 2204 const char *ct_str = tdefs->args_ct_str[i]; 2205 /* Incomplete TCGTargetOpDef entry. */ 2206 tcg_debug_assert(ct_str != NULL); 2207 2208 def->args_ct[i].u.regs = 0; 2209 def->args_ct[i].ct = 0; 2210 while (*ct_str != '\0') { 2211 switch(*ct_str) { 2212 case '0' ... '9': 2213 { 2214 int oarg = *ct_str - '0'; 2215 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]); 2216 tcg_debug_assert(oarg < def->nb_oargs); 2217 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG); 2218 /* TCG_CT_ALIAS is for the output arguments. 2219 The input is tagged with TCG_CT_IALIAS. */ 2220 def->args_ct[i] = def->args_ct[oarg]; 2221 def->args_ct[oarg].ct |= TCG_CT_ALIAS; 2222 def->args_ct[oarg].alias_index = i; 2223 def->args_ct[i].ct |= TCG_CT_IALIAS; 2224 def->args_ct[i].alias_index = oarg; 2225 } 2226 ct_str++; 2227 break; 2228 case '&': 2229 def->args_ct[i].ct |= TCG_CT_NEWREG; 2230 ct_str++; 2231 break; 2232 case 'i': 2233 def->args_ct[i].ct |= TCG_CT_CONST; 2234 ct_str++; 2235 break; 2236 default: 2237 ct_str = target_parse_constraint(&def->args_ct[i], 2238 ct_str, type); 2239 /* Typo in TCGTargetOpDef constraint. */ 2240 tcg_debug_assert(ct_str != NULL); 2241 } 2242 } 2243 } 2244 2245 /* TCGTargetOpDef entry with too much information? */ 2246 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL); 2247 2248 /* sort the constraints (XXX: this is just an heuristic) */ 2249 sort_constraints(def, 0, def->nb_oargs); 2250 sort_constraints(def, def->nb_oargs, def->nb_iargs); 2251 } 2252 } 2253 2254 void tcg_op_remove(TCGContext *s, TCGOp *op) 2255 { 2256 TCGLabel *label; 2257 2258 switch (op->opc) { 2259 case INDEX_op_br: 2260 label = arg_label(op->args[0]); 2261 label->refs--; 2262 break; 2263 case INDEX_op_brcond_i32: 2264 case INDEX_op_brcond_i64: 2265 label = arg_label(op->args[3]); 2266 label->refs--; 2267 break; 2268 case INDEX_op_brcond2_i32: 2269 label = arg_label(op->args[5]); 2270 label->refs--; 2271 break; 2272 default: 2273 break; 2274 } 2275 2276 QTAILQ_REMOVE(&s->ops, op, link); 2277 QTAILQ_INSERT_TAIL(&s->free_ops, op, link); 2278 s->nb_ops--; 2279 2280 #ifdef CONFIG_PROFILER 2281 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1); 2282 #endif 2283 } 2284 2285 static TCGOp *tcg_op_alloc(TCGOpcode opc) 2286 { 2287 TCGContext *s = tcg_ctx; 2288 TCGOp *op; 2289 2290 if (likely(QTAILQ_EMPTY(&s->free_ops))) { 2291 op = tcg_malloc(sizeof(TCGOp)); 2292 } else { 2293 op = QTAILQ_FIRST(&s->free_ops); 2294 QTAILQ_REMOVE(&s->free_ops, op, link); 2295 } 2296 memset(op, 0, offsetof(TCGOp, link)); 2297 op->opc = opc; 2298 s->nb_ops++; 2299 2300 return op; 2301 } 2302 2303 TCGOp *tcg_emit_op(TCGOpcode opc) 2304 { 2305 TCGOp *op = tcg_op_alloc(opc); 2306 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link); 2307 return op; 2308 } 2309 2310 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2311 { 2312 TCGOp *new_op = tcg_op_alloc(opc); 2313 QTAILQ_INSERT_BEFORE(old_op, new_op, link); 2314 return new_op; 2315 } 2316 2317 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op, TCGOpcode opc) 2318 { 2319 TCGOp *new_op = tcg_op_alloc(opc); 2320 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link); 2321 return new_op; 2322 } 2323 2324 /* Reachable analysis : remove unreachable code. */ 2325 static void reachable_code_pass(TCGContext *s) 2326 { 2327 TCGOp *op, *op_next; 2328 bool dead = false; 2329 2330 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2331 bool remove = dead; 2332 TCGLabel *label; 2333 int call_flags; 2334 2335 switch (op->opc) { 2336 case INDEX_op_set_label: 2337 label = arg_label(op->args[0]); 2338 if (label->refs == 0) { 2339 /* 2340 * While there is an occasional backward branch, virtually 2341 * all branches generated by the translators are forward. 2342 * Which means that generally we will have already removed 2343 * all references to the label that will be, and there is 2344 * little to be gained by iterating. 2345 */ 2346 remove = true; 2347 } else { 2348 /* Once we see a label, insns become live again. */ 2349 dead = false; 2350 remove = false; 2351 2352 /* 2353 * Optimization can fold conditional branches to unconditional. 2354 * If we find a label with one reference which is preceded by 2355 * an unconditional branch to it, remove both. This needed to 2356 * wait until the dead code in between them was removed. 2357 */ 2358 if (label->refs == 1) { 2359 TCGOp *op_prev = QTAILQ_PREV(op, link); 2360 if (op_prev->opc == INDEX_op_br && 2361 label == arg_label(op_prev->args[0])) { 2362 tcg_op_remove(s, op_prev); 2363 remove = true; 2364 } 2365 } 2366 } 2367 break; 2368 2369 case INDEX_op_br: 2370 case INDEX_op_exit_tb: 2371 case INDEX_op_goto_ptr: 2372 /* Unconditional branches; everything following is dead. */ 2373 dead = true; 2374 break; 2375 2376 case INDEX_op_call: 2377 /* Notice noreturn helper calls, raising exceptions. */ 2378 call_flags = op->args[TCGOP_CALLO(op) + TCGOP_CALLI(op) + 1]; 2379 if (call_flags & TCG_CALL_NO_RETURN) { 2380 dead = true; 2381 } 2382 break; 2383 2384 case INDEX_op_insn_start: 2385 /* Never remove -- we need to keep these for unwind. */ 2386 remove = false; 2387 break; 2388 2389 default: 2390 break; 2391 } 2392 2393 if (remove) { 2394 tcg_op_remove(s, op); 2395 } 2396 } 2397 } 2398 2399 #define TS_DEAD 1 2400 #define TS_MEM 2 2401 2402 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n))) 2403 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n))) 2404 2405 /* For liveness_pass_1, the register preferences for a given temp. */ 2406 static inline TCGRegSet *la_temp_pref(TCGTemp *ts) 2407 { 2408 return ts->state_ptr; 2409 } 2410 2411 /* For liveness_pass_1, reset the preferences for a given temp to the 2412 * maximal regset for its type. 2413 */ 2414 static inline void la_reset_pref(TCGTemp *ts) 2415 { 2416 *la_temp_pref(ts) 2417 = (ts->state == TS_DEAD ? 0 : tcg_target_available_regs[ts->type]); 2418 } 2419 2420 /* liveness analysis: end of function: all temps are dead, and globals 2421 should be in memory. */ 2422 static void la_func_end(TCGContext *s, int ng, int nt) 2423 { 2424 int i; 2425 2426 for (i = 0; i < ng; ++i) { 2427 s->temps[i].state = TS_DEAD | TS_MEM; 2428 la_reset_pref(&s->temps[i]); 2429 } 2430 for (i = ng; i < nt; ++i) { 2431 s->temps[i].state = TS_DEAD; 2432 la_reset_pref(&s->temps[i]); 2433 } 2434 } 2435 2436 /* liveness analysis: end of basic block: all temps are dead, globals 2437 and local temps should be in memory. */ 2438 static void la_bb_end(TCGContext *s, int ng, int nt) 2439 { 2440 int i; 2441 2442 for (i = 0; i < ng; ++i) { 2443 s->temps[i].state = TS_DEAD | TS_MEM; 2444 la_reset_pref(&s->temps[i]); 2445 } 2446 for (i = ng; i < nt; ++i) { 2447 s->temps[i].state = (s->temps[i].temp_local 2448 ? TS_DEAD | TS_MEM 2449 : TS_DEAD); 2450 la_reset_pref(&s->temps[i]); 2451 } 2452 } 2453 2454 /* liveness analysis: sync globals back to memory. */ 2455 static void la_global_sync(TCGContext *s, int ng) 2456 { 2457 int i; 2458 2459 for (i = 0; i < ng; ++i) { 2460 int state = s->temps[i].state; 2461 s->temps[i].state = state | TS_MEM; 2462 if (state == TS_DEAD) { 2463 /* If the global was previously dead, reset prefs. */ 2464 la_reset_pref(&s->temps[i]); 2465 } 2466 } 2467 } 2468 2469 /* liveness analysis: sync globals back to memory and kill. */ 2470 static void la_global_kill(TCGContext *s, int ng) 2471 { 2472 int i; 2473 2474 for (i = 0; i < ng; i++) { 2475 s->temps[i].state = TS_DEAD | TS_MEM; 2476 la_reset_pref(&s->temps[i]); 2477 } 2478 } 2479 2480 /* liveness analysis: note live globals crossing calls. */ 2481 static void la_cross_call(TCGContext *s, int nt) 2482 { 2483 TCGRegSet mask = ~tcg_target_call_clobber_regs; 2484 int i; 2485 2486 for (i = 0; i < nt; i++) { 2487 TCGTemp *ts = &s->temps[i]; 2488 if (!(ts->state & TS_DEAD)) { 2489 TCGRegSet *pset = la_temp_pref(ts); 2490 TCGRegSet set = *pset; 2491 2492 set &= mask; 2493 /* If the combination is not possible, restart. */ 2494 if (set == 0) { 2495 set = tcg_target_available_regs[ts->type] & mask; 2496 } 2497 *pset = set; 2498 } 2499 } 2500 } 2501 2502 /* Liveness analysis : update the opc_arg_life array to tell if a 2503 given input arguments is dead. Instructions updating dead 2504 temporaries are removed. */ 2505 static void liveness_pass_1(TCGContext *s) 2506 { 2507 int nb_globals = s->nb_globals; 2508 int nb_temps = s->nb_temps; 2509 TCGOp *op, *op_prev; 2510 TCGRegSet *prefs; 2511 int i; 2512 2513 prefs = tcg_malloc(sizeof(TCGRegSet) * nb_temps); 2514 for (i = 0; i < nb_temps; ++i) { 2515 s->temps[i].state_ptr = prefs + i; 2516 } 2517 2518 /* ??? Should be redundant with the exit_tb that ends the TB. */ 2519 la_func_end(s, nb_globals, nb_temps); 2520 2521 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, link, op_prev) { 2522 int nb_iargs, nb_oargs; 2523 TCGOpcode opc_new, opc_new2; 2524 bool have_opc_new2; 2525 TCGLifeData arg_life = 0; 2526 TCGTemp *ts; 2527 TCGOpcode opc = op->opc; 2528 const TCGOpDef *def = &tcg_op_defs[opc]; 2529 2530 switch (opc) { 2531 case INDEX_op_call: 2532 { 2533 int call_flags; 2534 int nb_call_regs; 2535 2536 nb_oargs = TCGOP_CALLO(op); 2537 nb_iargs = TCGOP_CALLI(op); 2538 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2539 2540 /* pure functions can be removed if their result is unused */ 2541 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) { 2542 for (i = 0; i < nb_oargs; i++) { 2543 ts = arg_temp(op->args[i]); 2544 if (ts->state != TS_DEAD) { 2545 goto do_not_remove_call; 2546 } 2547 } 2548 goto do_remove; 2549 } 2550 do_not_remove_call: 2551 2552 /* Output args are dead. */ 2553 for (i = 0; i < nb_oargs; i++) { 2554 ts = arg_temp(op->args[i]); 2555 if (ts->state & TS_DEAD) { 2556 arg_life |= DEAD_ARG << i; 2557 } 2558 if (ts->state & TS_MEM) { 2559 arg_life |= SYNC_ARG << i; 2560 } 2561 ts->state = TS_DEAD; 2562 la_reset_pref(ts); 2563 2564 /* Not used -- it will be tcg_target_call_oarg_regs[i]. */ 2565 op->output_pref[i] = 0; 2566 } 2567 2568 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS | 2569 TCG_CALL_NO_READ_GLOBALS))) { 2570 la_global_kill(s, nb_globals); 2571 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) { 2572 la_global_sync(s, nb_globals); 2573 } 2574 2575 /* Record arguments that die in this helper. */ 2576 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2577 ts = arg_temp(op->args[i]); 2578 if (ts && ts->state & TS_DEAD) { 2579 arg_life |= DEAD_ARG << i; 2580 } 2581 } 2582 2583 /* For all live registers, remove call-clobbered prefs. */ 2584 la_cross_call(s, nb_temps); 2585 2586 nb_call_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 2587 2588 /* Input arguments are live for preceding opcodes. */ 2589 for (i = 0; i < nb_iargs; i++) { 2590 ts = arg_temp(op->args[i + nb_oargs]); 2591 if (ts && ts->state & TS_DEAD) { 2592 /* For those arguments that die, and will be allocated 2593 * in registers, clear the register set for that arg, 2594 * to be filled in below. For args that will be on 2595 * the stack, reset to any available reg. 2596 */ 2597 *la_temp_pref(ts) 2598 = (i < nb_call_regs ? 0 : 2599 tcg_target_available_regs[ts->type]); 2600 ts->state &= ~TS_DEAD; 2601 } 2602 } 2603 2604 /* For each input argument, add its input register to prefs. 2605 If a temp is used once, this produces a single set bit. */ 2606 for (i = 0; i < MIN(nb_call_regs, nb_iargs); i++) { 2607 ts = arg_temp(op->args[i + nb_oargs]); 2608 if (ts) { 2609 tcg_regset_set_reg(*la_temp_pref(ts), 2610 tcg_target_call_iarg_regs[i]); 2611 } 2612 } 2613 } 2614 break; 2615 case INDEX_op_insn_start: 2616 break; 2617 case INDEX_op_discard: 2618 /* mark the temporary as dead */ 2619 ts = arg_temp(op->args[0]); 2620 ts->state = TS_DEAD; 2621 la_reset_pref(ts); 2622 break; 2623 2624 case INDEX_op_add2_i32: 2625 opc_new = INDEX_op_add_i32; 2626 goto do_addsub2; 2627 case INDEX_op_sub2_i32: 2628 opc_new = INDEX_op_sub_i32; 2629 goto do_addsub2; 2630 case INDEX_op_add2_i64: 2631 opc_new = INDEX_op_add_i64; 2632 goto do_addsub2; 2633 case INDEX_op_sub2_i64: 2634 opc_new = INDEX_op_sub_i64; 2635 do_addsub2: 2636 nb_iargs = 4; 2637 nb_oargs = 2; 2638 /* Test if the high part of the operation is dead, but not 2639 the low part. The result can be optimized to a simple 2640 add or sub. This happens often for x86_64 guest when the 2641 cpu mode is set to 32 bit. */ 2642 if (arg_temp(op->args[1])->state == TS_DEAD) { 2643 if (arg_temp(op->args[0])->state == TS_DEAD) { 2644 goto do_remove; 2645 } 2646 /* Replace the opcode and adjust the args in place, 2647 leaving 3 unused args at the end. */ 2648 op->opc = opc = opc_new; 2649 op->args[1] = op->args[2]; 2650 op->args[2] = op->args[4]; 2651 /* Fall through and mark the single-word operation live. */ 2652 nb_iargs = 2; 2653 nb_oargs = 1; 2654 } 2655 goto do_not_remove; 2656 2657 case INDEX_op_mulu2_i32: 2658 opc_new = INDEX_op_mul_i32; 2659 opc_new2 = INDEX_op_muluh_i32; 2660 have_opc_new2 = TCG_TARGET_HAS_muluh_i32; 2661 goto do_mul2; 2662 case INDEX_op_muls2_i32: 2663 opc_new = INDEX_op_mul_i32; 2664 opc_new2 = INDEX_op_mulsh_i32; 2665 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32; 2666 goto do_mul2; 2667 case INDEX_op_mulu2_i64: 2668 opc_new = INDEX_op_mul_i64; 2669 opc_new2 = INDEX_op_muluh_i64; 2670 have_opc_new2 = TCG_TARGET_HAS_muluh_i64; 2671 goto do_mul2; 2672 case INDEX_op_muls2_i64: 2673 opc_new = INDEX_op_mul_i64; 2674 opc_new2 = INDEX_op_mulsh_i64; 2675 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64; 2676 goto do_mul2; 2677 do_mul2: 2678 nb_iargs = 2; 2679 nb_oargs = 2; 2680 if (arg_temp(op->args[1])->state == TS_DEAD) { 2681 if (arg_temp(op->args[0])->state == TS_DEAD) { 2682 /* Both parts of the operation are dead. */ 2683 goto do_remove; 2684 } 2685 /* The high part of the operation is dead; generate the low. */ 2686 op->opc = opc = opc_new; 2687 op->args[1] = op->args[2]; 2688 op->args[2] = op->args[3]; 2689 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) { 2690 /* The low part of the operation is dead; generate the high. */ 2691 op->opc = opc = opc_new2; 2692 op->args[0] = op->args[1]; 2693 op->args[1] = op->args[2]; 2694 op->args[2] = op->args[3]; 2695 } else { 2696 goto do_not_remove; 2697 } 2698 /* Mark the single-word operation live. */ 2699 nb_oargs = 1; 2700 goto do_not_remove; 2701 2702 default: 2703 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */ 2704 nb_iargs = def->nb_iargs; 2705 nb_oargs = def->nb_oargs; 2706 2707 /* Test if the operation can be removed because all 2708 its outputs are dead. We assume that nb_oargs == 0 2709 implies side effects */ 2710 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) { 2711 for (i = 0; i < nb_oargs; i++) { 2712 if (arg_temp(op->args[i])->state != TS_DEAD) { 2713 goto do_not_remove; 2714 } 2715 } 2716 goto do_remove; 2717 } 2718 goto do_not_remove; 2719 2720 do_remove: 2721 tcg_op_remove(s, op); 2722 break; 2723 2724 do_not_remove: 2725 for (i = 0; i < nb_oargs; i++) { 2726 ts = arg_temp(op->args[i]); 2727 2728 /* Remember the preference of the uses that followed. */ 2729 op->output_pref[i] = *la_temp_pref(ts); 2730 2731 /* Output args are dead. */ 2732 if (ts->state & TS_DEAD) { 2733 arg_life |= DEAD_ARG << i; 2734 } 2735 if (ts->state & TS_MEM) { 2736 arg_life |= SYNC_ARG << i; 2737 } 2738 ts->state = TS_DEAD; 2739 la_reset_pref(ts); 2740 } 2741 2742 /* If end of basic block, update. */ 2743 if (def->flags & TCG_OPF_BB_EXIT) { 2744 la_func_end(s, nb_globals, nb_temps); 2745 } else if (def->flags & TCG_OPF_BB_END) { 2746 la_bb_end(s, nb_globals, nb_temps); 2747 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2748 la_global_sync(s, nb_globals); 2749 if (def->flags & TCG_OPF_CALL_CLOBBER) { 2750 la_cross_call(s, nb_temps); 2751 } 2752 } 2753 2754 /* Record arguments that die in this opcode. */ 2755 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2756 ts = arg_temp(op->args[i]); 2757 if (ts->state & TS_DEAD) { 2758 arg_life |= DEAD_ARG << i; 2759 } 2760 } 2761 2762 /* Input arguments are live for preceding opcodes. */ 2763 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2764 ts = arg_temp(op->args[i]); 2765 if (ts->state & TS_DEAD) { 2766 /* For operands that were dead, initially allow 2767 all regs for the type. */ 2768 *la_temp_pref(ts) = tcg_target_available_regs[ts->type]; 2769 ts->state &= ~TS_DEAD; 2770 } 2771 } 2772 2773 /* Incorporate constraints for this operand. */ 2774 switch (opc) { 2775 case INDEX_op_mov_i32: 2776 case INDEX_op_mov_i64: 2777 /* Note that these are TCG_OPF_NOT_PRESENT and do not 2778 have proper constraints. That said, special case 2779 moves to propagate preferences backward. */ 2780 if (IS_DEAD_ARG(1)) { 2781 *la_temp_pref(arg_temp(op->args[0])) 2782 = *la_temp_pref(arg_temp(op->args[1])); 2783 } 2784 break; 2785 2786 default: 2787 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 2788 const TCGArgConstraint *ct = &def->args_ct[i]; 2789 TCGRegSet set, *pset; 2790 2791 ts = arg_temp(op->args[i]); 2792 pset = la_temp_pref(ts); 2793 set = *pset; 2794 2795 set &= ct->u.regs; 2796 if (ct->ct & TCG_CT_IALIAS) { 2797 set &= op->output_pref[ct->alias_index]; 2798 } 2799 /* If the combination is not possible, restart. */ 2800 if (set == 0) { 2801 set = ct->u.regs; 2802 } 2803 *pset = set; 2804 } 2805 break; 2806 } 2807 break; 2808 } 2809 op->life = arg_life; 2810 } 2811 } 2812 2813 /* Liveness analysis: Convert indirect regs to direct temporaries. */ 2814 static bool liveness_pass_2(TCGContext *s) 2815 { 2816 int nb_globals = s->nb_globals; 2817 int nb_temps, i; 2818 bool changes = false; 2819 TCGOp *op, *op_next; 2820 2821 /* Create a temporary for each indirect global. */ 2822 for (i = 0; i < nb_globals; ++i) { 2823 TCGTemp *its = &s->temps[i]; 2824 if (its->indirect_reg) { 2825 TCGTemp *dts = tcg_temp_alloc(s); 2826 dts->type = its->type; 2827 dts->base_type = its->base_type; 2828 its->state_ptr = dts; 2829 } else { 2830 its->state_ptr = NULL; 2831 } 2832 /* All globals begin dead. */ 2833 its->state = TS_DEAD; 2834 } 2835 for (nb_temps = s->nb_temps; i < nb_temps; ++i) { 2836 TCGTemp *its = &s->temps[i]; 2837 its->state_ptr = NULL; 2838 its->state = TS_DEAD; 2839 } 2840 2841 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2842 TCGOpcode opc = op->opc; 2843 const TCGOpDef *def = &tcg_op_defs[opc]; 2844 TCGLifeData arg_life = op->life; 2845 int nb_iargs, nb_oargs, call_flags; 2846 TCGTemp *arg_ts, *dir_ts; 2847 2848 if (opc == INDEX_op_call) { 2849 nb_oargs = TCGOP_CALLO(op); 2850 nb_iargs = TCGOP_CALLI(op); 2851 call_flags = op->args[nb_oargs + nb_iargs + 1]; 2852 } else { 2853 nb_iargs = def->nb_iargs; 2854 nb_oargs = def->nb_oargs; 2855 2856 /* Set flags similar to how calls require. */ 2857 if (def->flags & TCG_OPF_BB_END) { 2858 /* Like writing globals: save_globals */ 2859 call_flags = 0; 2860 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) { 2861 /* Like reading globals: sync_globals */ 2862 call_flags = TCG_CALL_NO_WRITE_GLOBALS; 2863 } else { 2864 /* No effect on globals. */ 2865 call_flags = (TCG_CALL_NO_READ_GLOBALS | 2866 TCG_CALL_NO_WRITE_GLOBALS); 2867 } 2868 } 2869 2870 /* Make sure that input arguments are available. */ 2871 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2872 arg_ts = arg_temp(op->args[i]); 2873 if (arg_ts) { 2874 dir_ts = arg_ts->state_ptr; 2875 if (dir_ts && arg_ts->state == TS_DEAD) { 2876 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32 2877 ? INDEX_op_ld_i32 2878 : INDEX_op_ld_i64); 2879 TCGOp *lop = tcg_op_insert_before(s, op, lopc); 2880 2881 lop->args[0] = temp_arg(dir_ts); 2882 lop->args[1] = temp_arg(arg_ts->mem_base); 2883 lop->args[2] = arg_ts->mem_offset; 2884 2885 /* Loaded, but synced with memory. */ 2886 arg_ts->state = TS_MEM; 2887 } 2888 } 2889 } 2890 2891 /* Perform input replacement, and mark inputs that became dead. 2892 No action is required except keeping temp_state up to date 2893 so that we reload when needed. */ 2894 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 2895 arg_ts = arg_temp(op->args[i]); 2896 if (arg_ts) { 2897 dir_ts = arg_ts->state_ptr; 2898 if (dir_ts) { 2899 op->args[i] = temp_arg(dir_ts); 2900 changes = true; 2901 if (IS_DEAD_ARG(i)) { 2902 arg_ts->state = TS_DEAD; 2903 } 2904 } 2905 } 2906 } 2907 2908 /* Liveness analysis should ensure that the following are 2909 all correct, for call sites and basic block end points. */ 2910 if (call_flags & TCG_CALL_NO_READ_GLOBALS) { 2911 /* Nothing to do */ 2912 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) { 2913 for (i = 0; i < nb_globals; ++i) { 2914 /* Liveness should see that globals are synced back, 2915 that is, either TS_DEAD or TS_MEM. */ 2916 arg_ts = &s->temps[i]; 2917 tcg_debug_assert(arg_ts->state_ptr == 0 2918 || arg_ts->state != 0); 2919 } 2920 } else { 2921 for (i = 0; i < nb_globals; ++i) { 2922 /* Liveness should see that globals are saved back, 2923 that is, TS_DEAD, waiting to be reloaded. */ 2924 arg_ts = &s->temps[i]; 2925 tcg_debug_assert(arg_ts->state_ptr == 0 2926 || arg_ts->state == TS_DEAD); 2927 } 2928 } 2929 2930 /* Outputs become available. */ 2931 for (i = 0; i < nb_oargs; i++) { 2932 arg_ts = arg_temp(op->args[i]); 2933 dir_ts = arg_ts->state_ptr; 2934 if (!dir_ts) { 2935 continue; 2936 } 2937 op->args[i] = temp_arg(dir_ts); 2938 changes = true; 2939 2940 /* The output is now live and modified. */ 2941 arg_ts->state = 0; 2942 2943 /* Sync outputs upon their last write. */ 2944 if (NEED_SYNC_ARG(i)) { 2945 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32 2946 ? INDEX_op_st_i32 2947 : INDEX_op_st_i64); 2948 TCGOp *sop = tcg_op_insert_after(s, op, sopc); 2949 2950 sop->args[0] = temp_arg(dir_ts); 2951 sop->args[1] = temp_arg(arg_ts->mem_base); 2952 sop->args[2] = arg_ts->mem_offset; 2953 2954 arg_ts->state = TS_MEM; 2955 } 2956 /* Drop outputs that are dead. */ 2957 if (IS_DEAD_ARG(i)) { 2958 arg_ts->state = TS_DEAD; 2959 } 2960 } 2961 } 2962 2963 return changes; 2964 } 2965 2966 #ifdef CONFIG_DEBUG_TCG 2967 static void dump_regs(TCGContext *s) 2968 { 2969 TCGTemp *ts; 2970 int i; 2971 char buf[64]; 2972 2973 for(i = 0; i < s->nb_temps; i++) { 2974 ts = &s->temps[i]; 2975 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 2976 switch(ts->val_type) { 2977 case TEMP_VAL_REG: 2978 printf("%s", tcg_target_reg_names[ts->reg]); 2979 break; 2980 case TEMP_VAL_MEM: 2981 printf("%d(%s)", (int)ts->mem_offset, 2982 tcg_target_reg_names[ts->mem_base->reg]); 2983 break; 2984 case TEMP_VAL_CONST: 2985 printf("$0x%" TCG_PRIlx, ts->val); 2986 break; 2987 case TEMP_VAL_DEAD: 2988 printf("D"); 2989 break; 2990 default: 2991 printf("???"); 2992 break; 2993 } 2994 printf("\n"); 2995 } 2996 2997 for(i = 0; i < TCG_TARGET_NB_REGS; i++) { 2998 if (s->reg_to_temp[i] != NULL) { 2999 printf("%s: %s\n", 3000 tcg_target_reg_names[i], 3001 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i])); 3002 } 3003 } 3004 } 3005 3006 static void check_regs(TCGContext *s) 3007 { 3008 int reg; 3009 int k; 3010 TCGTemp *ts; 3011 char buf[64]; 3012 3013 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) { 3014 ts = s->reg_to_temp[reg]; 3015 if (ts != NULL) { 3016 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) { 3017 printf("Inconsistency for register %s:\n", 3018 tcg_target_reg_names[reg]); 3019 goto fail; 3020 } 3021 } 3022 } 3023 for (k = 0; k < s->nb_temps; k++) { 3024 ts = &s->temps[k]; 3025 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg 3026 && s->reg_to_temp[ts->reg] != ts) { 3027 printf("Inconsistency for temp %s:\n", 3028 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts)); 3029 fail: 3030 printf("reg state:\n"); 3031 dump_regs(s); 3032 tcg_abort(); 3033 } 3034 } 3035 } 3036 #endif 3037 3038 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts) 3039 { 3040 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64) 3041 /* Sparc64 stack is accessed with offset of 2047 */ 3042 s->current_frame_offset = (s->current_frame_offset + 3043 (tcg_target_long)sizeof(tcg_target_long) - 1) & 3044 ~(sizeof(tcg_target_long) - 1); 3045 #endif 3046 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) > 3047 s->frame_end) { 3048 tcg_abort(); 3049 } 3050 ts->mem_offset = s->current_frame_offset; 3051 ts->mem_base = s->frame_temp; 3052 ts->mem_allocated = 1; 3053 s->current_frame_offset += sizeof(tcg_target_long); 3054 } 3055 3056 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet, TCGRegSet); 3057 3058 /* Mark a temporary as free or dead. If 'free_or_dead' is negative, 3059 mark it free; otherwise mark it dead. */ 3060 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead) 3061 { 3062 if (ts->fixed_reg) { 3063 return; 3064 } 3065 if (ts->val_type == TEMP_VAL_REG) { 3066 s->reg_to_temp[ts->reg] = NULL; 3067 } 3068 ts->val_type = (free_or_dead < 0 3069 || ts->temp_local 3070 || ts->temp_global 3071 ? TEMP_VAL_MEM : TEMP_VAL_DEAD); 3072 } 3073 3074 /* Mark a temporary as dead. */ 3075 static inline void temp_dead(TCGContext *s, TCGTemp *ts) 3076 { 3077 temp_free_or_dead(s, ts, 1); 3078 } 3079 3080 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary 3081 registers needs to be allocated to store a constant. If 'free_or_dead' 3082 is non-zero, subsequently release the temporary; if it is positive, the 3083 temp is dead; if it is negative, the temp is free. */ 3084 static void temp_sync(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs, 3085 TCGRegSet preferred_regs, int free_or_dead) 3086 { 3087 if (ts->fixed_reg) { 3088 return; 3089 } 3090 if (!ts->mem_coherent) { 3091 if (!ts->mem_allocated) { 3092 temp_allocate_frame(s, ts); 3093 } 3094 switch (ts->val_type) { 3095 case TEMP_VAL_CONST: 3096 /* If we're going to free the temp immediately, then we won't 3097 require it later in a register, so attempt to store the 3098 constant to memory directly. */ 3099 if (free_or_dead 3100 && tcg_out_sti(s, ts->type, ts->val, 3101 ts->mem_base->reg, ts->mem_offset)) { 3102 break; 3103 } 3104 temp_load(s, ts, tcg_target_available_regs[ts->type], 3105 allocated_regs, preferred_regs); 3106 /* fallthrough */ 3107 3108 case TEMP_VAL_REG: 3109 tcg_out_st(s, ts->type, ts->reg, 3110 ts->mem_base->reg, ts->mem_offset); 3111 break; 3112 3113 case TEMP_VAL_MEM: 3114 break; 3115 3116 case TEMP_VAL_DEAD: 3117 default: 3118 tcg_abort(); 3119 } 3120 ts->mem_coherent = 1; 3121 } 3122 if (free_or_dead) { 3123 temp_free_or_dead(s, ts, free_or_dead); 3124 } 3125 } 3126 3127 /* free register 'reg' by spilling the corresponding temporary if necessary */ 3128 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs) 3129 { 3130 TCGTemp *ts = s->reg_to_temp[reg]; 3131 if (ts != NULL) { 3132 temp_sync(s, ts, allocated_regs, 0, -1); 3133 } 3134 } 3135 3136 /** 3137 * tcg_reg_alloc: 3138 * @required_regs: Set of registers in which we must allocate. 3139 * @allocated_regs: Set of registers which must be avoided. 3140 * @preferred_regs: Set of registers we should prefer. 3141 * @rev: True if we search the registers in "indirect" order. 3142 * 3143 * The allocated register must be in @required_regs & ~@allocated_regs, 3144 * but if we can put it in @preferred_regs we may save a move later. 3145 */ 3146 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet required_regs, 3147 TCGRegSet allocated_regs, 3148 TCGRegSet preferred_regs, bool rev) 3149 { 3150 int i, j, f, n = ARRAY_SIZE(tcg_target_reg_alloc_order); 3151 TCGRegSet reg_ct[2]; 3152 const int *order; 3153 3154 reg_ct[1] = required_regs & ~allocated_regs; 3155 tcg_debug_assert(reg_ct[1] != 0); 3156 reg_ct[0] = reg_ct[1] & preferred_regs; 3157 3158 /* Skip the preferred_regs option if it cannot be satisfied, 3159 or if the preference made no difference. */ 3160 f = reg_ct[0] == 0 || reg_ct[0] == reg_ct[1]; 3161 3162 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order; 3163 3164 /* Try free registers, preferences first. */ 3165 for (j = f; j < 2; j++) { 3166 TCGRegSet set = reg_ct[j]; 3167 3168 if (tcg_regset_single(set)) { 3169 /* One register in the set. */ 3170 TCGReg reg = tcg_regset_first(set); 3171 if (s->reg_to_temp[reg] == NULL) { 3172 return reg; 3173 } 3174 } else { 3175 for (i = 0; i < n; i++) { 3176 TCGReg reg = order[i]; 3177 if (s->reg_to_temp[reg] == NULL && 3178 tcg_regset_test_reg(set, reg)) { 3179 return reg; 3180 } 3181 } 3182 } 3183 } 3184 3185 /* We must spill something. */ 3186 for (j = f; j < 2; j++) { 3187 TCGRegSet set = reg_ct[j]; 3188 3189 if (tcg_regset_single(set)) { 3190 /* One register in the set. */ 3191 TCGReg reg = tcg_regset_first(set); 3192 tcg_reg_free(s, reg, allocated_regs); 3193 return reg; 3194 } else { 3195 for (i = 0; i < n; i++) { 3196 TCGReg reg = order[i]; 3197 if (tcg_regset_test_reg(set, reg)) { 3198 tcg_reg_free(s, reg, allocated_regs); 3199 return reg; 3200 } 3201 } 3202 } 3203 } 3204 3205 tcg_abort(); 3206 } 3207 3208 /* Make sure the temporary is in a register. If needed, allocate the register 3209 from DESIRED while avoiding ALLOCATED. */ 3210 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs, 3211 TCGRegSet allocated_regs, TCGRegSet preferred_regs) 3212 { 3213 TCGReg reg; 3214 3215 switch (ts->val_type) { 3216 case TEMP_VAL_REG: 3217 return; 3218 case TEMP_VAL_CONST: 3219 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3220 preferred_regs, ts->indirect_base); 3221 tcg_out_movi(s, ts->type, reg, ts->val); 3222 ts->mem_coherent = 0; 3223 break; 3224 case TEMP_VAL_MEM: 3225 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, 3226 preferred_regs, ts->indirect_base); 3227 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset); 3228 ts->mem_coherent = 1; 3229 break; 3230 case TEMP_VAL_DEAD: 3231 default: 3232 tcg_abort(); 3233 } 3234 ts->reg = reg; 3235 ts->val_type = TEMP_VAL_REG; 3236 s->reg_to_temp[reg] = ts; 3237 } 3238 3239 /* Save a temporary to memory. 'allocated_regs' is used in case a 3240 temporary registers needs to be allocated to store a constant. */ 3241 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs) 3242 { 3243 /* The liveness analysis already ensures that globals are back 3244 in memory. Keep an tcg_debug_assert for safety. */ 3245 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg); 3246 } 3247 3248 /* save globals to their canonical location and assume they can be 3249 modified be the following code. 'allocated_regs' is used in case a 3250 temporary registers needs to be allocated to store a constant. */ 3251 static void save_globals(TCGContext *s, TCGRegSet allocated_regs) 3252 { 3253 int i, n; 3254 3255 for (i = 0, n = s->nb_globals; i < n; i++) { 3256 temp_save(s, &s->temps[i], allocated_regs); 3257 } 3258 } 3259 3260 /* sync globals to their canonical location and assume they can be 3261 read by the following code. 'allocated_regs' is used in case a 3262 temporary registers needs to be allocated to store a constant. */ 3263 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs) 3264 { 3265 int i, n; 3266 3267 for (i = 0, n = s->nb_globals; i < n; i++) { 3268 TCGTemp *ts = &s->temps[i]; 3269 tcg_debug_assert(ts->val_type != TEMP_VAL_REG 3270 || ts->fixed_reg 3271 || ts->mem_coherent); 3272 } 3273 } 3274 3275 /* at the end of a basic block, we assume all temporaries are dead and 3276 all globals are stored at their canonical location. */ 3277 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs) 3278 { 3279 int i; 3280 3281 for (i = s->nb_globals; i < s->nb_temps; i++) { 3282 TCGTemp *ts = &s->temps[i]; 3283 if (ts->temp_local) { 3284 temp_save(s, ts, allocated_regs); 3285 } else { 3286 /* The liveness analysis already ensures that temps are dead. 3287 Keep an tcg_debug_assert for safety. */ 3288 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD); 3289 } 3290 } 3291 3292 save_globals(s, allocated_regs); 3293 } 3294 3295 /* 3296 * Specialized code generation for INDEX_op_movi_*. 3297 */ 3298 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots, 3299 tcg_target_ulong val, TCGLifeData arg_life, 3300 TCGRegSet preferred_regs) 3301 { 3302 /* ENV should not be modified. */ 3303 tcg_debug_assert(!ots->fixed_reg); 3304 3305 /* The movi is not explicitly generated here. */ 3306 if (ots->val_type == TEMP_VAL_REG) { 3307 s->reg_to_temp[ots->reg] = NULL; 3308 } 3309 ots->val_type = TEMP_VAL_CONST; 3310 ots->val = val; 3311 ots->mem_coherent = 0; 3312 if (NEED_SYNC_ARG(0)) { 3313 temp_sync(s, ots, s->reserved_regs, preferred_regs, IS_DEAD_ARG(0)); 3314 } else if (IS_DEAD_ARG(0)) { 3315 temp_dead(s, ots); 3316 } 3317 } 3318 3319 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op) 3320 { 3321 TCGTemp *ots = arg_temp(op->args[0]); 3322 tcg_target_ulong val = op->args[1]; 3323 3324 tcg_reg_alloc_do_movi(s, ots, val, op->life, op->output_pref[0]); 3325 } 3326 3327 /* 3328 * Specialized code generation for INDEX_op_mov_*. 3329 */ 3330 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op) 3331 { 3332 const TCGLifeData arg_life = op->life; 3333 TCGRegSet allocated_regs, preferred_regs; 3334 TCGTemp *ts, *ots; 3335 TCGType otype, itype; 3336 3337 allocated_regs = s->reserved_regs; 3338 preferred_regs = op->output_pref[0]; 3339 ots = arg_temp(op->args[0]); 3340 ts = arg_temp(op->args[1]); 3341 3342 /* ENV should not be modified. */ 3343 tcg_debug_assert(!ots->fixed_reg); 3344 3345 /* Note that otype != itype for no-op truncation. */ 3346 otype = ots->type; 3347 itype = ts->type; 3348 3349 if (ts->val_type == TEMP_VAL_CONST) { 3350 /* propagate constant or generate sti */ 3351 tcg_target_ulong val = ts->val; 3352 if (IS_DEAD_ARG(1)) { 3353 temp_dead(s, ts); 3354 } 3355 tcg_reg_alloc_do_movi(s, ots, val, arg_life, preferred_regs); 3356 return; 3357 } 3358 3359 /* If the source value is in memory we're going to be forced 3360 to have it in a register in order to perform the copy. Copy 3361 the SOURCE value into its own register first, that way we 3362 don't have to reload SOURCE the next time it is used. */ 3363 if (ts->val_type == TEMP_VAL_MEM) { 3364 temp_load(s, ts, tcg_target_available_regs[itype], 3365 allocated_regs, preferred_regs); 3366 } 3367 3368 tcg_debug_assert(ts->val_type == TEMP_VAL_REG); 3369 if (IS_DEAD_ARG(0)) { 3370 /* mov to a non-saved dead register makes no sense (even with 3371 liveness analysis disabled). */ 3372 tcg_debug_assert(NEED_SYNC_ARG(0)); 3373 if (!ots->mem_allocated) { 3374 temp_allocate_frame(s, ots); 3375 } 3376 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset); 3377 if (IS_DEAD_ARG(1)) { 3378 temp_dead(s, ts); 3379 } 3380 temp_dead(s, ots); 3381 } else { 3382 if (IS_DEAD_ARG(1) && !ts->fixed_reg) { 3383 /* the mov can be suppressed */ 3384 if (ots->val_type == TEMP_VAL_REG) { 3385 s->reg_to_temp[ots->reg] = NULL; 3386 } 3387 ots->reg = ts->reg; 3388 temp_dead(s, ts); 3389 } else { 3390 if (ots->val_type != TEMP_VAL_REG) { 3391 /* When allocating a new register, make sure to not spill the 3392 input one. */ 3393 tcg_regset_set_reg(allocated_regs, ts->reg); 3394 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype], 3395 allocated_regs, preferred_regs, 3396 ots->indirect_base); 3397 } 3398 if (!tcg_out_mov(s, otype, ots->reg, ts->reg)) { 3399 /* 3400 * Cross register class move not supported. 3401 * Store the source register into the destination slot 3402 * and leave the destination temp as TEMP_VAL_MEM. 3403 */ 3404 assert(!ots->fixed_reg); 3405 if (!ts->mem_allocated) { 3406 temp_allocate_frame(s, ots); 3407 } 3408 tcg_out_st(s, ts->type, ts->reg, 3409 ots->mem_base->reg, ots->mem_offset); 3410 ots->mem_coherent = 1; 3411 temp_free_or_dead(s, ots, -1); 3412 return; 3413 } 3414 } 3415 ots->val_type = TEMP_VAL_REG; 3416 ots->mem_coherent = 0; 3417 s->reg_to_temp[ots->reg] = ots; 3418 if (NEED_SYNC_ARG(0)) { 3419 temp_sync(s, ots, allocated_regs, 0, 0); 3420 } 3421 } 3422 } 3423 3424 /* 3425 * Specialized code generation for INDEX_op_dup_vec. 3426 */ 3427 static void tcg_reg_alloc_dup(TCGContext *s, const TCGOp *op) 3428 { 3429 const TCGLifeData arg_life = op->life; 3430 TCGRegSet dup_out_regs, dup_in_regs; 3431 TCGTemp *its, *ots; 3432 TCGType itype, vtype; 3433 intptr_t endian_fixup; 3434 unsigned vece; 3435 bool ok; 3436 3437 ots = arg_temp(op->args[0]); 3438 its = arg_temp(op->args[1]); 3439 3440 /* ENV should not be modified. */ 3441 tcg_debug_assert(!ots->fixed_reg); 3442 3443 itype = its->type; 3444 vece = TCGOP_VECE(op); 3445 vtype = TCGOP_VECL(op) + TCG_TYPE_V64; 3446 3447 if (its->val_type == TEMP_VAL_CONST) { 3448 /* Propagate constant via movi -> dupi. */ 3449 tcg_target_ulong val = its->val; 3450 if (IS_DEAD_ARG(1)) { 3451 temp_dead(s, its); 3452 } 3453 tcg_reg_alloc_do_movi(s, ots, val, arg_life, op->output_pref[0]); 3454 return; 3455 } 3456 3457 dup_out_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[0].u.regs; 3458 dup_in_regs = tcg_op_defs[INDEX_op_dup_vec].args_ct[1].u.regs; 3459 3460 /* Allocate the output register now. */ 3461 if (ots->val_type != TEMP_VAL_REG) { 3462 TCGRegSet allocated_regs = s->reserved_regs; 3463 3464 if (!IS_DEAD_ARG(1) && its->val_type == TEMP_VAL_REG) { 3465 /* Make sure to not spill the input register. */ 3466 tcg_regset_set_reg(allocated_regs, its->reg); 3467 } 3468 ots->reg = tcg_reg_alloc(s, dup_out_regs, allocated_regs, 3469 op->output_pref[0], ots->indirect_base); 3470 ots->val_type = TEMP_VAL_REG; 3471 ots->mem_coherent = 0; 3472 s->reg_to_temp[ots->reg] = ots; 3473 } 3474 3475 switch (its->val_type) { 3476 case TEMP_VAL_REG: 3477 /* 3478 * The dup constriaints must be broad, covering all possible VECE. 3479 * However, tcg_op_dup_vec() gets to see the VECE and we allow it 3480 * to fail, indicating that extra moves are required for that case. 3481 */ 3482 if (tcg_regset_test_reg(dup_in_regs, its->reg)) { 3483 if (tcg_out_dup_vec(s, vtype, vece, ots->reg, its->reg)) { 3484 goto done; 3485 } 3486 /* Try again from memory or a vector input register. */ 3487 } 3488 if (!its->mem_coherent) { 3489 /* 3490 * The input register is not synced, and so an extra store 3491 * would be required to use memory. Attempt an integer-vector 3492 * register move first. We do not have a TCGRegSet for this. 3493 */ 3494 if (tcg_out_mov(s, itype, ots->reg, its->reg)) { 3495 break; 3496 } 3497 /* Sync the temp back to its slot and load from there. */ 3498 temp_sync(s, its, s->reserved_regs, 0, 0); 3499 } 3500 /* fall through */ 3501 3502 case TEMP_VAL_MEM: 3503 #ifdef HOST_WORDS_BIGENDIAN 3504 endian_fixup = itype == TCG_TYPE_I32 ? 4 : 8; 3505 endian_fixup -= 1 << vece; 3506 #else 3507 endian_fixup = 0; 3508 #endif 3509 if (tcg_out_dupm_vec(s, vtype, vece, ots->reg, its->mem_base->reg, 3510 its->mem_offset + endian_fixup)) { 3511 goto done; 3512 } 3513 tcg_out_ld(s, itype, ots->reg, its->mem_base->reg, its->mem_offset); 3514 break; 3515 3516 default: 3517 g_assert_not_reached(); 3518 } 3519 3520 /* We now have a vector input register, so dup must succeed. */ 3521 ok = tcg_out_dup_vec(s, vtype, vece, ots->reg, ots->reg); 3522 tcg_debug_assert(ok); 3523 3524 done: 3525 if (IS_DEAD_ARG(1)) { 3526 temp_dead(s, its); 3527 } 3528 if (NEED_SYNC_ARG(0)) { 3529 temp_sync(s, ots, s->reserved_regs, 0, 0); 3530 } 3531 if (IS_DEAD_ARG(0)) { 3532 temp_dead(s, ots); 3533 } 3534 } 3535 3536 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op) 3537 { 3538 const TCGLifeData arg_life = op->life; 3539 const TCGOpDef * const def = &tcg_op_defs[op->opc]; 3540 TCGRegSet i_allocated_regs; 3541 TCGRegSet o_allocated_regs; 3542 int i, k, nb_iargs, nb_oargs; 3543 TCGReg reg; 3544 TCGArg arg; 3545 const TCGArgConstraint *arg_ct; 3546 TCGTemp *ts; 3547 TCGArg new_args[TCG_MAX_OP_ARGS]; 3548 int const_args[TCG_MAX_OP_ARGS]; 3549 3550 nb_oargs = def->nb_oargs; 3551 nb_iargs = def->nb_iargs; 3552 3553 /* copy constants */ 3554 memcpy(new_args + nb_oargs + nb_iargs, 3555 op->args + nb_oargs + nb_iargs, 3556 sizeof(TCGArg) * def->nb_cargs); 3557 3558 i_allocated_regs = s->reserved_regs; 3559 o_allocated_regs = s->reserved_regs; 3560 3561 /* satisfy input constraints */ 3562 for (k = 0; k < nb_iargs; k++) { 3563 TCGRegSet i_preferred_regs, o_preferred_regs; 3564 3565 i = def->sorted_args[nb_oargs + k]; 3566 arg = op->args[i]; 3567 arg_ct = &def->args_ct[i]; 3568 ts = arg_temp(arg); 3569 3570 if (ts->val_type == TEMP_VAL_CONST 3571 && tcg_target_const_match(ts->val, ts->type, arg_ct)) { 3572 /* constant is OK for instruction */ 3573 const_args[i] = 1; 3574 new_args[i] = ts->val; 3575 continue; 3576 } 3577 3578 i_preferred_regs = o_preferred_regs = 0; 3579 if (arg_ct->ct & TCG_CT_IALIAS) { 3580 o_preferred_regs = op->output_pref[arg_ct->alias_index]; 3581 if (ts->fixed_reg) { 3582 /* if fixed register, we must allocate a new register 3583 if the alias is not the same register */ 3584 if (arg != op->args[arg_ct->alias_index]) { 3585 goto allocate_in_reg; 3586 } 3587 } else { 3588 /* if the input is aliased to an output and if it is 3589 not dead after the instruction, we must allocate 3590 a new register and move it */ 3591 if (!IS_DEAD_ARG(i)) { 3592 goto allocate_in_reg; 3593 } 3594 3595 /* check if the current register has already been allocated 3596 for another input aliased to an output */ 3597 if (ts->val_type == TEMP_VAL_REG) { 3598 int k2, i2; 3599 reg = ts->reg; 3600 for (k2 = 0 ; k2 < k ; k2++) { 3601 i2 = def->sorted_args[nb_oargs + k2]; 3602 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) && 3603 reg == new_args[i2]) { 3604 goto allocate_in_reg; 3605 } 3606 } 3607 } 3608 i_preferred_regs = o_preferred_regs; 3609 } 3610 } 3611 3612 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs, i_preferred_regs); 3613 reg = ts->reg; 3614 3615 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) { 3616 /* nothing to do : the constraint is satisfied */ 3617 } else { 3618 allocate_in_reg: 3619 /* allocate a new register matching the constraint 3620 and move the temporary register into it */ 3621 temp_load(s, ts, tcg_target_available_regs[ts->type], 3622 i_allocated_regs, 0); 3623 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs, 3624 o_preferred_regs, ts->indirect_base); 3625 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3626 /* 3627 * Cross register class move not supported. Sync the 3628 * temp back to its slot and load from there. 3629 */ 3630 temp_sync(s, ts, i_allocated_regs, 0, 0); 3631 tcg_out_ld(s, ts->type, reg, 3632 ts->mem_base->reg, ts->mem_offset); 3633 } 3634 } 3635 new_args[i] = reg; 3636 const_args[i] = 0; 3637 tcg_regset_set_reg(i_allocated_regs, reg); 3638 } 3639 3640 /* mark dead temporaries and free the associated registers */ 3641 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 3642 if (IS_DEAD_ARG(i)) { 3643 temp_dead(s, arg_temp(op->args[i])); 3644 } 3645 } 3646 3647 if (def->flags & TCG_OPF_BB_END) { 3648 tcg_reg_alloc_bb_end(s, i_allocated_regs); 3649 } else { 3650 if (def->flags & TCG_OPF_CALL_CLOBBER) { 3651 /* XXX: permit generic clobber register list ? */ 3652 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3653 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3654 tcg_reg_free(s, i, i_allocated_regs); 3655 } 3656 } 3657 } 3658 if (def->flags & TCG_OPF_SIDE_EFFECTS) { 3659 /* sync globals if the op has side effects and might trigger 3660 an exception. */ 3661 sync_globals(s, i_allocated_regs); 3662 } 3663 3664 /* satisfy the output constraints */ 3665 for(k = 0; k < nb_oargs; k++) { 3666 i = def->sorted_args[k]; 3667 arg = op->args[i]; 3668 arg_ct = &def->args_ct[i]; 3669 ts = arg_temp(arg); 3670 3671 /* ENV should not be modified. */ 3672 tcg_debug_assert(!ts->fixed_reg); 3673 3674 if ((arg_ct->ct & TCG_CT_ALIAS) 3675 && !const_args[arg_ct->alias_index]) { 3676 reg = new_args[arg_ct->alias_index]; 3677 } else if (arg_ct->ct & TCG_CT_NEWREG) { 3678 reg = tcg_reg_alloc(s, arg_ct->u.regs, 3679 i_allocated_regs | o_allocated_regs, 3680 op->output_pref[k], ts->indirect_base); 3681 } else { 3682 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs, 3683 op->output_pref[k], ts->indirect_base); 3684 } 3685 tcg_regset_set_reg(o_allocated_regs, reg); 3686 if (ts->val_type == TEMP_VAL_REG) { 3687 s->reg_to_temp[ts->reg] = NULL; 3688 } 3689 ts->val_type = TEMP_VAL_REG; 3690 ts->reg = reg; 3691 /* 3692 * Temp value is modified, so the value kept in memory is 3693 * potentially not the same. 3694 */ 3695 ts->mem_coherent = 0; 3696 s->reg_to_temp[reg] = ts; 3697 new_args[i] = reg; 3698 } 3699 } 3700 3701 /* emit instruction */ 3702 if (def->flags & TCG_OPF_VECTOR) { 3703 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op), 3704 new_args, const_args); 3705 } else { 3706 tcg_out_op(s, op->opc, new_args, const_args); 3707 } 3708 3709 /* move the outputs in the correct register if needed */ 3710 for(i = 0; i < nb_oargs; i++) { 3711 ts = arg_temp(op->args[i]); 3712 3713 /* ENV should not be modified. */ 3714 tcg_debug_assert(!ts->fixed_reg); 3715 3716 if (NEED_SYNC_ARG(i)) { 3717 temp_sync(s, ts, o_allocated_regs, 0, IS_DEAD_ARG(i)); 3718 } else if (IS_DEAD_ARG(i)) { 3719 temp_dead(s, ts); 3720 } 3721 } 3722 } 3723 3724 #ifdef TCG_TARGET_STACK_GROWSUP 3725 #define STACK_DIR(x) (-(x)) 3726 #else 3727 #define STACK_DIR(x) (x) 3728 #endif 3729 3730 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op) 3731 { 3732 const int nb_oargs = TCGOP_CALLO(op); 3733 const int nb_iargs = TCGOP_CALLI(op); 3734 const TCGLifeData arg_life = op->life; 3735 int flags, nb_regs, i; 3736 TCGReg reg; 3737 TCGArg arg; 3738 TCGTemp *ts; 3739 intptr_t stack_offset; 3740 size_t call_stack_size; 3741 tcg_insn_unit *func_addr; 3742 int allocate_args; 3743 TCGRegSet allocated_regs; 3744 3745 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs]; 3746 flags = op->args[nb_oargs + nb_iargs + 1]; 3747 3748 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs); 3749 if (nb_regs > nb_iargs) { 3750 nb_regs = nb_iargs; 3751 } 3752 3753 /* assign stack slots first */ 3754 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long); 3755 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) & 3756 ~(TCG_TARGET_STACK_ALIGN - 1); 3757 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE); 3758 if (allocate_args) { 3759 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed, 3760 preallocate call stack */ 3761 tcg_abort(); 3762 } 3763 3764 stack_offset = TCG_TARGET_CALL_STACK_OFFSET; 3765 for (i = nb_regs; i < nb_iargs; i++) { 3766 arg = op->args[nb_oargs + i]; 3767 #ifdef TCG_TARGET_STACK_GROWSUP 3768 stack_offset -= sizeof(tcg_target_long); 3769 #endif 3770 if (arg != TCG_CALL_DUMMY_ARG) { 3771 ts = arg_temp(arg); 3772 temp_load(s, ts, tcg_target_available_regs[ts->type], 3773 s->reserved_regs, 0); 3774 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset); 3775 } 3776 #ifndef TCG_TARGET_STACK_GROWSUP 3777 stack_offset += sizeof(tcg_target_long); 3778 #endif 3779 } 3780 3781 /* assign input registers */ 3782 allocated_regs = s->reserved_regs; 3783 for (i = 0; i < nb_regs; i++) { 3784 arg = op->args[nb_oargs + i]; 3785 if (arg != TCG_CALL_DUMMY_ARG) { 3786 ts = arg_temp(arg); 3787 reg = tcg_target_call_iarg_regs[i]; 3788 3789 if (ts->val_type == TEMP_VAL_REG) { 3790 if (ts->reg != reg) { 3791 tcg_reg_free(s, reg, allocated_regs); 3792 if (!tcg_out_mov(s, ts->type, reg, ts->reg)) { 3793 /* 3794 * Cross register class move not supported. Sync the 3795 * temp back to its slot and load from there. 3796 */ 3797 temp_sync(s, ts, allocated_regs, 0, 0); 3798 tcg_out_ld(s, ts->type, reg, 3799 ts->mem_base->reg, ts->mem_offset); 3800 } 3801 } 3802 } else { 3803 TCGRegSet arg_set = 0; 3804 3805 tcg_reg_free(s, reg, allocated_regs); 3806 tcg_regset_set_reg(arg_set, reg); 3807 temp_load(s, ts, arg_set, allocated_regs, 0); 3808 } 3809 3810 tcg_regset_set_reg(allocated_regs, reg); 3811 } 3812 } 3813 3814 /* mark dead temporaries and free the associated registers */ 3815 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) { 3816 if (IS_DEAD_ARG(i)) { 3817 temp_dead(s, arg_temp(op->args[i])); 3818 } 3819 } 3820 3821 /* clobber call registers */ 3822 for (i = 0; i < TCG_TARGET_NB_REGS; i++) { 3823 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) { 3824 tcg_reg_free(s, i, allocated_regs); 3825 } 3826 } 3827 3828 /* Save globals if they might be written by the helper, sync them if 3829 they might be read. */ 3830 if (flags & TCG_CALL_NO_READ_GLOBALS) { 3831 /* Nothing to do */ 3832 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) { 3833 sync_globals(s, allocated_regs); 3834 } else { 3835 save_globals(s, allocated_regs); 3836 } 3837 3838 tcg_out_call(s, func_addr); 3839 3840 /* assign output registers and emit moves if needed */ 3841 for(i = 0; i < nb_oargs; i++) { 3842 arg = op->args[i]; 3843 ts = arg_temp(arg); 3844 3845 /* ENV should not be modified. */ 3846 tcg_debug_assert(!ts->fixed_reg); 3847 3848 reg = tcg_target_call_oarg_regs[i]; 3849 tcg_debug_assert(s->reg_to_temp[reg] == NULL); 3850 if (ts->val_type == TEMP_VAL_REG) { 3851 s->reg_to_temp[ts->reg] = NULL; 3852 } 3853 ts->val_type = TEMP_VAL_REG; 3854 ts->reg = reg; 3855 ts->mem_coherent = 0; 3856 s->reg_to_temp[reg] = ts; 3857 if (NEED_SYNC_ARG(i)) { 3858 temp_sync(s, ts, allocated_regs, 0, IS_DEAD_ARG(i)); 3859 } else if (IS_DEAD_ARG(i)) { 3860 temp_dead(s, ts); 3861 } 3862 } 3863 } 3864 3865 #ifdef CONFIG_PROFILER 3866 3867 /* avoid copy/paste errors */ 3868 #define PROF_ADD(to, from, field) \ 3869 do { \ 3870 (to)->field += atomic_read(&((from)->field)); \ 3871 } while (0) 3872 3873 #define PROF_MAX(to, from, field) \ 3874 do { \ 3875 typeof((from)->field) val__ = atomic_read(&((from)->field)); \ 3876 if (val__ > (to)->field) { \ 3877 (to)->field = val__; \ 3878 } \ 3879 } while (0) 3880 3881 /* Pass in a zero'ed @prof */ 3882 static inline 3883 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table) 3884 { 3885 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3886 unsigned int i; 3887 3888 for (i = 0; i < n_ctxs; i++) { 3889 TCGContext *s = atomic_read(&tcg_ctxs[i]); 3890 const TCGProfile *orig = &s->prof; 3891 3892 if (counters) { 3893 PROF_ADD(prof, orig, cpu_exec_time); 3894 PROF_ADD(prof, orig, tb_count1); 3895 PROF_ADD(prof, orig, tb_count); 3896 PROF_ADD(prof, orig, op_count); 3897 PROF_MAX(prof, orig, op_count_max); 3898 PROF_ADD(prof, orig, temp_count); 3899 PROF_MAX(prof, orig, temp_count_max); 3900 PROF_ADD(prof, orig, del_op_count); 3901 PROF_ADD(prof, orig, code_in_len); 3902 PROF_ADD(prof, orig, code_out_len); 3903 PROF_ADD(prof, orig, search_out_len); 3904 PROF_ADD(prof, orig, interm_time); 3905 PROF_ADD(prof, orig, code_time); 3906 PROF_ADD(prof, orig, la_time); 3907 PROF_ADD(prof, orig, opt_time); 3908 PROF_ADD(prof, orig, restore_count); 3909 PROF_ADD(prof, orig, restore_time); 3910 } 3911 if (table) { 3912 int i; 3913 3914 for (i = 0; i < NB_OPS; i++) { 3915 PROF_ADD(prof, orig, table_op_count[i]); 3916 } 3917 } 3918 } 3919 } 3920 3921 #undef PROF_ADD 3922 #undef PROF_MAX 3923 3924 static void tcg_profile_snapshot_counters(TCGProfile *prof) 3925 { 3926 tcg_profile_snapshot(prof, true, false); 3927 } 3928 3929 static void tcg_profile_snapshot_table(TCGProfile *prof) 3930 { 3931 tcg_profile_snapshot(prof, false, true); 3932 } 3933 3934 void tcg_dump_op_count(void) 3935 { 3936 TCGProfile prof = {}; 3937 int i; 3938 3939 tcg_profile_snapshot_table(&prof); 3940 for (i = 0; i < NB_OPS; i++) { 3941 qemu_printf("%s %" PRId64 "\n", tcg_op_defs[i].name, 3942 prof.table_op_count[i]); 3943 } 3944 } 3945 3946 int64_t tcg_cpu_exec_time(void) 3947 { 3948 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs); 3949 unsigned int i; 3950 int64_t ret = 0; 3951 3952 for (i = 0; i < n_ctxs; i++) { 3953 const TCGContext *s = atomic_read(&tcg_ctxs[i]); 3954 const TCGProfile *prof = &s->prof; 3955 3956 ret += atomic_read(&prof->cpu_exec_time); 3957 } 3958 return ret; 3959 } 3960 #else 3961 void tcg_dump_op_count(void) 3962 { 3963 qemu_printf("[TCG profiler not compiled]\n"); 3964 } 3965 3966 int64_t tcg_cpu_exec_time(void) 3967 { 3968 error_report("%s: TCG profiler not compiled", __func__); 3969 exit(EXIT_FAILURE); 3970 } 3971 #endif 3972 3973 3974 int tcg_gen_code(TCGContext *s, TranslationBlock *tb) 3975 { 3976 #ifdef CONFIG_PROFILER 3977 TCGProfile *prof = &s->prof; 3978 #endif 3979 int i, num_insns; 3980 TCGOp *op; 3981 3982 #ifdef CONFIG_PROFILER 3983 { 3984 int n = 0; 3985 3986 QTAILQ_FOREACH(op, &s->ops, link) { 3987 n++; 3988 } 3989 atomic_set(&prof->op_count, prof->op_count + n); 3990 if (n > prof->op_count_max) { 3991 atomic_set(&prof->op_count_max, n); 3992 } 3993 3994 n = s->nb_temps; 3995 atomic_set(&prof->temp_count, prof->temp_count + n); 3996 if (n > prof->temp_count_max) { 3997 atomic_set(&prof->temp_count_max, n); 3998 } 3999 } 4000 #endif 4001 4002 #ifdef DEBUG_DISAS 4003 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP) 4004 && qemu_log_in_addr_range(tb->pc))) { 4005 qemu_log_lock(); 4006 qemu_log("OP:\n"); 4007 tcg_dump_ops(s, false); 4008 qemu_log("\n"); 4009 qemu_log_unlock(); 4010 } 4011 #endif 4012 4013 #ifdef CONFIG_DEBUG_TCG 4014 /* Ensure all labels referenced have been emitted. */ 4015 { 4016 TCGLabel *l; 4017 bool error = false; 4018 4019 QSIMPLEQ_FOREACH(l, &s->labels, next) { 4020 if (unlikely(!l->present) && l->refs) { 4021 qemu_log_mask(CPU_LOG_TB_OP, 4022 "$L%d referenced but not present.\n", l->id); 4023 error = true; 4024 } 4025 } 4026 assert(!error); 4027 } 4028 #endif 4029 4030 #ifdef CONFIG_PROFILER 4031 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock()); 4032 #endif 4033 4034 #ifdef USE_TCG_OPTIMIZATIONS 4035 tcg_optimize(s); 4036 #endif 4037 4038 #ifdef CONFIG_PROFILER 4039 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock()); 4040 atomic_set(&prof->la_time, prof->la_time - profile_getclock()); 4041 #endif 4042 4043 reachable_code_pass(s); 4044 liveness_pass_1(s); 4045 4046 if (s->nb_indirects > 0) { 4047 #ifdef DEBUG_DISAS 4048 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND) 4049 && qemu_log_in_addr_range(tb->pc))) { 4050 qemu_log_lock(); 4051 qemu_log("OP before indirect lowering:\n"); 4052 tcg_dump_ops(s, false); 4053 qemu_log("\n"); 4054 qemu_log_unlock(); 4055 } 4056 #endif 4057 /* Replace indirect temps with direct temps. */ 4058 if (liveness_pass_2(s)) { 4059 /* If changes were made, re-run liveness. */ 4060 liveness_pass_1(s); 4061 } 4062 } 4063 4064 #ifdef CONFIG_PROFILER 4065 atomic_set(&prof->la_time, prof->la_time + profile_getclock()); 4066 #endif 4067 4068 #ifdef DEBUG_DISAS 4069 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT) 4070 && qemu_log_in_addr_range(tb->pc))) { 4071 qemu_log_lock(); 4072 qemu_log("OP after optimization and liveness analysis:\n"); 4073 tcg_dump_ops(s, true); 4074 qemu_log("\n"); 4075 qemu_log_unlock(); 4076 } 4077 #endif 4078 4079 tcg_reg_alloc_start(s); 4080 4081 s->code_buf = tb->tc.ptr; 4082 s->code_ptr = tb->tc.ptr; 4083 4084 #ifdef TCG_TARGET_NEED_LDST_LABELS 4085 QSIMPLEQ_INIT(&s->ldst_labels); 4086 #endif 4087 #ifdef TCG_TARGET_NEED_POOL_LABELS 4088 s->pool_labels = NULL; 4089 #endif 4090 4091 num_insns = -1; 4092 QTAILQ_FOREACH(op, &s->ops, link) { 4093 TCGOpcode opc = op->opc; 4094 4095 #ifdef CONFIG_PROFILER 4096 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1); 4097 #endif 4098 4099 switch (opc) { 4100 case INDEX_op_mov_i32: 4101 case INDEX_op_mov_i64: 4102 case INDEX_op_mov_vec: 4103 tcg_reg_alloc_mov(s, op); 4104 break; 4105 case INDEX_op_movi_i32: 4106 case INDEX_op_movi_i64: 4107 case INDEX_op_dupi_vec: 4108 tcg_reg_alloc_movi(s, op); 4109 break; 4110 case INDEX_op_dup_vec: 4111 tcg_reg_alloc_dup(s, op); 4112 break; 4113 case INDEX_op_insn_start: 4114 if (num_insns >= 0) { 4115 size_t off = tcg_current_code_size(s); 4116 s->gen_insn_end_off[num_insns] = off; 4117 /* Assert that we do not overflow our stored offset. */ 4118 assert(s->gen_insn_end_off[num_insns] == off); 4119 } 4120 num_insns++; 4121 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) { 4122 target_ulong a; 4123 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS 4124 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]); 4125 #else 4126 a = op->args[i]; 4127 #endif 4128 s->gen_insn_data[num_insns][i] = a; 4129 } 4130 break; 4131 case INDEX_op_discard: 4132 temp_dead(s, arg_temp(op->args[0])); 4133 break; 4134 case INDEX_op_set_label: 4135 tcg_reg_alloc_bb_end(s, s->reserved_regs); 4136 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr); 4137 break; 4138 case INDEX_op_call: 4139 tcg_reg_alloc_call(s, op); 4140 break; 4141 default: 4142 /* Sanity check that we've not introduced any unhandled opcodes. */ 4143 tcg_debug_assert(tcg_op_supported(opc)); 4144 /* Note: in order to speed up the code, it would be much 4145 faster to have specialized register allocator functions for 4146 some common argument patterns */ 4147 tcg_reg_alloc_op(s, op); 4148 break; 4149 } 4150 #ifdef CONFIG_DEBUG_TCG 4151 check_regs(s); 4152 #endif 4153 /* Test for (pending) buffer overflow. The assumption is that any 4154 one operation beginning below the high water mark cannot overrun 4155 the buffer completely. Thus we can test for overflow after 4156 generating code without having to check during generation. */ 4157 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) { 4158 return -1; 4159 } 4160 /* Test for TB overflow, as seen by gen_insn_end_off. */ 4161 if (unlikely(tcg_current_code_size(s) > UINT16_MAX)) { 4162 return -2; 4163 } 4164 } 4165 tcg_debug_assert(num_insns >= 0); 4166 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s); 4167 4168 /* Generate TB finalization at the end of block */ 4169 #ifdef TCG_TARGET_NEED_LDST_LABELS 4170 i = tcg_out_ldst_finalize(s); 4171 if (i < 0) { 4172 return i; 4173 } 4174 #endif 4175 #ifdef TCG_TARGET_NEED_POOL_LABELS 4176 i = tcg_out_pool_finalize(s); 4177 if (i < 0) { 4178 return i; 4179 } 4180 #endif 4181 if (!tcg_resolve_relocs(s)) { 4182 return -2; 4183 } 4184 4185 /* flush instruction cache */ 4186 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr); 4187 4188 return tcg_current_code_size(s); 4189 } 4190 4191 #ifdef CONFIG_PROFILER 4192 void tcg_dump_info(void) 4193 { 4194 TCGProfile prof = {}; 4195 const TCGProfile *s; 4196 int64_t tb_count; 4197 int64_t tb_div_count; 4198 int64_t tot; 4199 4200 tcg_profile_snapshot_counters(&prof); 4201 s = &prof; 4202 tb_count = s->tb_count; 4203 tb_div_count = tb_count ? tb_count : 1; 4204 tot = s->interm_time + s->code_time; 4205 4206 qemu_printf("JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n", 4207 tot, tot / 2.4e9); 4208 qemu_printf("translated TBs %" PRId64 " (aborted=%" PRId64 4209 " %0.1f%%)\n", 4210 tb_count, s->tb_count1 - tb_count, 4211 (double)(s->tb_count1 - s->tb_count) 4212 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0); 4213 qemu_printf("avg ops/TB %0.1f max=%d\n", 4214 (double)s->op_count / tb_div_count, s->op_count_max); 4215 qemu_printf("deleted ops/TB %0.2f\n", 4216 (double)s->del_op_count / tb_div_count); 4217 qemu_printf("avg temps/TB %0.2f max=%d\n", 4218 (double)s->temp_count / tb_div_count, s->temp_count_max); 4219 qemu_printf("avg host code/TB %0.1f\n", 4220 (double)s->code_out_len / tb_div_count); 4221 qemu_printf("avg search data/TB %0.1f\n", 4222 (double)s->search_out_len / tb_div_count); 4223 4224 qemu_printf("cycles/op %0.1f\n", 4225 s->op_count ? (double)tot / s->op_count : 0); 4226 qemu_printf("cycles/in byte %0.1f\n", 4227 s->code_in_len ? (double)tot / s->code_in_len : 0); 4228 qemu_printf("cycles/out byte %0.1f\n", 4229 s->code_out_len ? (double)tot / s->code_out_len : 0); 4230 qemu_printf("cycles/search byte %0.1f\n", 4231 s->search_out_len ? (double)tot / s->search_out_len : 0); 4232 if (tot == 0) { 4233 tot = 1; 4234 } 4235 qemu_printf(" gen_interm time %0.1f%%\n", 4236 (double)s->interm_time / tot * 100.0); 4237 qemu_printf(" gen_code time %0.1f%%\n", 4238 (double)s->code_time / tot * 100.0); 4239 qemu_printf("optim./code time %0.1f%%\n", 4240 (double)s->opt_time / (s->code_time ? s->code_time : 1) 4241 * 100.0); 4242 qemu_printf("liveness/code time %0.1f%%\n", 4243 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0); 4244 qemu_printf("cpu_restore count %" PRId64 "\n", 4245 s->restore_count); 4246 qemu_printf(" avg cycles %0.1f\n", 4247 s->restore_count ? (double)s->restore_time / s->restore_count : 0); 4248 } 4249 #else 4250 void tcg_dump_info(void) 4251 { 4252 qemu_printf("[TCG profiler not compiled]\n"); 4253 } 4254 #endif 4255 4256 #ifdef ELF_HOST_MACHINE 4257 /* In order to use this feature, the backend needs to do three things: 4258 4259 (1) Define ELF_HOST_MACHINE to indicate both what value to 4260 put into the ELF image and to indicate support for the feature. 4261 4262 (2) Define tcg_register_jit. This should create a buffer containing 4263 the contents of a .debug_frame section that describes the post- 4264 prologue unwind info for the tcg machine. 4265 4266 (3) Call tcg_register_jit_int, with the constructed .debug_frame. 4267 */ 4268 4269 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */ 4270 typedef enum { 4271 JIT_NOACTION = 0, 4272 JIT_REGISTER_FN, 4273 JIT_UNREGISTER_FN 4274 } jit_actions_t; 4275 4276 struct jit_code_entry { 4277 struct jit_code_entry *next_entry; 4278 struct jit_code_entry *prev_entry; 4279 const void *symfile_addr; 4280 uint64_t symfile_size; 4281 }; 4282 4283 struct jit_descriptor { 4284 uint32_t version; 4285 uint32_t action_flag; 4286 struct jit_code_entry *relevant_entry; 4287 struct jit_code_entry *first_entry; 4288 }; 4289 4290 void __jit_debug_register_code(void) __attribute__((noinline)); 4291 void __jit_debug_register_code(void) 4292 { 4293 asm(""); 4294 } 4295 4296 /* Must statically initialize the version, because GDB may check 4297 the version before we can set it. */ 4298 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 }; 4299 4300 /* End GDB interface. */ 4301 4302 static int find_string(const char *strtab, const char *str) 4303 { 4304 const char *p = strtab + 1; 4305 4306 while (1) { 4307 if (strcmp(p, str) == 0) { 4308 return p - strtab; 4309 } 4310 p += strlen(p) + 1; 4311 } 4312 } 4313 4314 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size, 4315 const void *debug_frame, 4316 size_t debug_frame_size) 4317 { 4318 struct __attribute__((packed)) DebugInfo { 4319 uint32_t len; 4320 uint16_t version; 4321 uint32_t abbrev; 4322 uint8_t ptr_size; 4323 uint8_t cu_die; 4324 uint16_t cu_lang; 4325 uintptr_t cu_low_pc; 4326 uintptr_t cu_high_pc; 4327 uint8_t fn_die; 4328 char fn_name[16]; 4329 uintptr_t fn_low_pc; 4330 uintptr_t fn_high_pc; 4331 uint8_t cu_eoc; 4332 }; 4333 4334 struct ElfImage { 4335 ElfW(Ehdr) ehdr; 4336 ElfW(Phdr) phdr; 4337 ElfW(Shdr) shdr[7]; 4338 ElfW(Sym) sym[2]; 4339 struct DebugInfo di; 4340 uint8_t da[24]; 4341 char str[80]; 4342 }; 4343 4344 struct ElfImage *img; 4345 4346 static const struct ElfImage img_template = { 4347 .ehdr = { 4348 .e_ident[EI_MAG0] = ELFMAG0, 4349 .e_ident[EI_MAG1] = ELFMAG1, 4350 .e_ident[EI_MAG2] = ELFMAG2, 4351 .e_ident[EI_MAG3] = ELFMAG3, 4352 .e_ident[EI_CLASS] = ELF_CLASS, 4353 .e_ident[EI_DATA] = ELF_DATA, 4354 .e_ident[EI_VERSION] = EV_CURRENT, 4355 .e_type = ET_EXEC, 4356 .e_machine = ELF_HOST_MACHINE, 4357 .e_version = EV_CURRENT, 4358 .e_phoff = offsetof(struct ElfImage, phdr), 4359 .e_shoff = offsetof(struct ElfImage, shdr), 4360 .e_ehsize = sizeof(ElfW(Shdr)), 4361 .e_phentsize = sizeof(ElfW(Phdr)), 4362 .e_phnum = 1, 4363 .e_shentsize = sizeof(ElfW(Shdr)), 4364 .e_shnum = ARRAY_SIZE(img->shdr), 4365 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1, 4366 #ifdef ELF_HOST_FLAGS 4367 .e_flags = ELF_HOST_FLAGS, 4368 #endif 4369 #ifdef ELF_OSABI 4370 .e_ident[EI_OSABI] = ELF_OSABI, 4371 #endif 4372 }, 4373 .phdr = { 4374 .p_type = PT_LOAD, 4375 .p_flags = PF_X, 4376 }, 4377 .shdr = { 4378 [0] = { .sh_type = SHT_NULL }, 4379 /* Trick: The contents of code_gen_buffer are not present in 4380 this fake ELF file; that got allocated elsewhere. Therefore 4381 we mark .text as SHT_NOBITS (similar to .bss) so that readers 4382 will not look for contents. We can record any address. */ 4383 [1] = { /* .text */ 4384 .sh_type = SHT_NOBITS, 4385 .sh_flags = SHF_EXECINSTR | SHF_ALLOC, 4386 }, 4387 [2] = { /* .debug_info */ 4388 .sh_type = SHT_PROGBITS, 4389 .sh_offset = offsetof(struct ElfImage, di), 4390 .sh_size = sizeof(struct DebugInfo), 4391 }, 4392 [3] = { /* .debug_abbrev */ 4393 .sh_type = SHT_PROGBITS, 4394 .sh_offset = offsetof(struct ElfImage, da), 4395 .sh_size = sizeof(img->da), 4396 }, 4397 [4] = { /* .debug_frame */ 4398 .sh_type = SHT_PROGBITS, 4399 .sh_offset = sizeof(struct ElfImage), 4400 }, 4401 [5] = { /* .symtab */ 4402 .sh_type = SHT_SYMTAB, 4403 .sh_offset = offsetof(struct ElfImage, sym), 4404 .sh_size = sizeof(img->sym), 4405 .sh_info = 1, 4406 .sh_link = ARRAY_SIZE(img->shdr) - 1, 4407 .sh_entsize = sizeof(ElfW(Sym)), 4408 }, 4409 [6] = { /* .strtab */ 4410 .sh_type = SHT_STRTAB, 4411 .sh_offset = offsetof(struct ElfImage, str), 4412 .sh_size = sizeof(img->str), 4413 } 4414 }, 4415 .sym = { 4416 [1] = { /* code_gen_buffer */ 4417 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC), 4418 .st_shndx = 1, 4419 } 4420 }, 4421 .di = { 4422 .len = sizeof(struct DebugInfo) - 4, 4423 .version = 2, 4424 .ptr_size = sizeof(void *), 4425 .cu_die = 1, 4426 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */ 4427 .fn_die = 2, 4428 .fn_name = "code_gen_buffer" 4429 }, 4430 .da = { 4431 1, /* abbrev number (the cu) */ 4432 0x11, 1, /* DW_TAG_compile_unit, has children */ 4433 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */ 4434 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4435 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4436 0, 0, /* end of abbrev */ 4437 2, /* abbrev number (the fn) */ 4438 0x2e, 0, /* DW_TAG_subprogram, no children */ 4439 0x3, 0x8, /* DW_AT_name, DW_FORM_string */ 4440 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */ 4441 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */ 4442 0, 0, /* end of abbrev */ 4443 0 /* no more abbrev */ 4444 }, 4445 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0" 4446 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer", 4447 }; 4448 4449 /* We only need a single jit entry; statically allocate it. */ 4450 static struct jit_code_entry one_entry; 4451 4452 uintptr_t buf = (uintptr_t)buf_ptr; 4453 size_t img_size = sizeof(struct ElfImage) + debug_frame_size; 4454 DebugFrameHeader *dfh; 4455 4456 img = g_malloc(img_size); 4457 *img = img_template; 4458 4459 img->phdr.p_vaddr = buf; 4460 img->phdr.p_paddr = buf; 4461 img->phdr.p_memsz = buf_size; 4462 4463 img->shdr[1].sh_name = find_string(img->str, ".text"); 4464 img->shdr[1].sh_addr = buf; 4465 img->shdr[1].sh_size = buf_size; 4466 4467 img->shdr[2].sh_name = find_string(img->str, ".debug_info"); 4468 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev"); 4469 4470 img->shdr[4].sh_name = find_string(img->str, ".debug_frame"); 4471 img->shdr[4].sh_size = debug_frame_size; 4472 4473 img->shdr[5].sh_name = find_string(img->str, ".symtab"); 4474 img->shdr[6].sh_name = find_string(img->str, ".strtab"); 4475 4476 img->sym[1].st_name = find_string(img->str, "code_gen_buffer"); 4477 img->sym[1].st_value = buf; 4478 img->sym[1].st_size = buf_size; 4479 4480 img->di.cu_low_pc = buf; 4481 img->di.cu_high_pc = buf + buf_size; 4482 img->di.fn_low_pc = buf; 4483 img->di.fn_high_pc = buf + buf_size; 4484 4485 dfh = (DebugFrameHeader *)(img + 1); 4486 memcpy(dfh, debug_frame, debug_frame_size); 4487 dfh->fde.func_start = buf; 4488 dfh->fde.func_len = buf_size; 4489 4490 #ifdef DEBUG_JIT 4491 /* Enable this block to be able to debug the ELF image file creation. 4492 One can use readelf, objdump, or other inspection utilities. */ 4493 { 4494 FILE *f = fopen("/tmp/qemu.jit", "w+b"); 4495 if (f) { 4496 if (fwrite(img, img_size, 1, f) != img_size) { 4497 /* Avoid stupid unused return value warning for fwrite. */ 4498 } 4499 fclose(f); 4500 } 4501 } 4502 #endif 4503 4504 one_entry.symfile_addr = img; 4505 one_entry.symfile_size = img_size; 4506 4507 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN; 4508 __jit_debug_descriptor.relevant_entry = &one_entry; 4509 __jit_debug_descriptor.first_entry = &one_entry; 4510 __jit_debug_register_code(); 4511 } 4512 #else 4513 /* No support for the feature. Provide the entry point expected by exec.c, 4514 and implement the internal function we declared earlier. */ 4515 4516 static void tcg_register_jit_int(void *buf, size_t size, 4517 const void *debug_frame, 4518 size_t debug_frame_size) 4519 { 4520 } 4521 4522 void tcg_register_jit(void *buf, size_t buf_size) 4523 { 4524 } 4525 #endif /* ELF_HOST_MACHINE */ 4526 4527 #if !TCG_TARGET_MAYBE_vec 4528 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...) 4529 { 4530 g_assert_not_reached(); 4531 } 4532 #endif 4533