1 /* 2 * Generic vector operation expansion 3 * 4 * Copyright (c) 2018 Linaro 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "tcg/tcg.h" 22 #include "tcg/tcg-temp-internal.h" 23 #include "tcg/tcg-op-common.h" 24 #include "tcg/tcg-op-gvec-common.h" 25 #include "tcg/tcg-gvec-desc.h" 26 27 #define MAX_UNROLL 4 28 29 #ifdef CONFIG_DEBUG_TCG 30 static const TCGOpcode vecop_list_empty[1] = { 0 }; 31 #else 32 #define vecop_list_empty NULL 33 #endif 34 35 36 /* Verify vector size and alignment rules. OFS should be the OR of all 37 of the operand offsets so that we can check them all at once. */ 38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs) 39 { 40 uint32_t max_align; 41 42 switch (oprsz) { 43 case 8: 44 case 16: 45 case 32: 46 tcg_debug_assert(oprsz <= maxsz); 47 break; 48 default: 49 tcg_debug_assert(oprsz == maxsz); 50 break; 51 } 52 tcg_debug_assert(maxsz <= (8 << SIMD_MAXSZ_BITS)); 53 54 max_align = maxsz >= 16 ? 15 : 7; 55 tcg_debug_assert((maxsz & max_align) == 0); 56 tcg_debug_assert((ofs & max_align) == 0); 57 } 58 59 /* Verify vector overlap rules for two operands. */ 60 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s) 61 { 62 tcg_debug_assert(d == a || d + s <= a || a + s <= d); 63 } 64 65 /* Verify vector overlap rules for three operands. */ 66 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s) 67 { 68 check_overlap_2(d, a, s); 69 check_overlap_2(d, b, s); 70 check_overlap_2(a, b, s); 71 } 72 73 /* Verify vector overlap rules for four operands. */ 74 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b, 75 uint32_t c, uint32_t s) 76 { 77 check_overlap_2(d, a, s); 78 check_overlap_2(d, b, s); 79 check_overlap_2(d, c, s); 80 check_overlap_2(a, b, s); 81 check_overlap_2(a, c, s); 82 check_overlap_2(b, c, s); 83 } 84 85 /* Create a descriptor from components. */ 86 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data) 87 { 88 uint32_t desc = 0; 89 90 check_size_align(oprsz, maxsz, 0); 91 tcg_debug_assert(data == sextract32(data, 0, SIMD_DATA_BITS)); 92 93 oprsz = (oprsz / 8) - 1; 94 maxsz = (maxsz / 8) - 1; 95 96 /* 97 * We have just asserted in check_size_align that either 98 * oprsz is {8,16,32} or matches maxsz. Encode the final 99 * case with '2', as that would otherwise map to 24. 100 */ 101 if (oprsz == maxsz) { 102 oprsz = 2; 103 } 104 105 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz); 106 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz); 107 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data); 108 109 return desc; 110 } 111 112 /* Generate a call to a gvec-style helper with two vector operands. */ 113 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs, 114 uint32_t oprsz, uint32_t maxsz, int32_t data, 115 gen_helper_gvec_2 *fn) 116 { 117 TCGv_ptr a0, a1; 118 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); 119 120 a0 = tcg_temp_ebb_new_ptr(); 121 a1 = tcg_temp_ebb_new_ptr(); 122 123 tcg_gen_addi_ptr(a0, tcg_env, dofs); 124 tcg_gen_addi_ptr(a1, tcg_env, aofs); 125 126 fn(a0, a1, desc); 127 128 tcg_temp_free_ptr(a0); 129 tcg_temp_free_ptr(a1); 130 } 131 132 /* Generate a call to a gvec-style helper with two vector operands 133 and one scalar operand. */ 134 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c, 135 uint32_t oprsz, uint32_t maxsz, int32_t data, 136 gen_helper_gvec_2i *fn) 137 { 138 TCGv_ptr a0, a1; 139 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); 140 141 a0 = tcg_temp_ebb_new_ptr(); 142 a1 = tcg_temp_ebb_new_ptr(); 143 144 tcg_gen_addi_ptr(a0, tcg_env, dofs); 145 tcg_gen_addi_ptr(a1, tcg_env, aofs); 146 147 fn(a0, a1, c, desc); 148 149 tcg_temp_free_ptr(a0); 150 tcg_temp_free_ptr(a1); 151 } 152 153 /* Generate a call to a gvec-style helper with three vector operands. */ 154 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs, 155 uint32_t oprsz, uint32_t maxsz, int32_t data, 156 gen_helper_gvec_3 *fn) 157 { 158 TCGv_ptr a0, a1, a2; 159 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); 160 161 a0 = tcg_temp_ebb_new_ptr(); 162 a1 = tcg_temp_ebb_new_ptr(); 163 a2 = tcg_temp_ebb_new_ptr(); 164 165 tcg_gen_addi_ptr(a0, tcg_env, dofs); 166 tcg_gen_addi_ptr(a1, tcg_env, aofs); 167 tcg_gen_addi_ptr(a2, tcg_env, bofs); 168 169 fn(a0, a1, a2, desc); 170 171 tcg_temp_free_ptr(a0); 172 tcg_temp_free_ptr(a1); 173 tcg_temp_free_ptr(a2); 174 } 175 176 /* Generate a call to a gvec-style helper with four vector operands. */ 177 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs, 178 uint32_t cofs, uint32_t oprsz, uint32_t maxsz, 179 int32_t data, gen_helper_gvec_4 *fn) 180 { 181 TCGv_ptr a0, a1, a2, a3; 182 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); 183 184 a0 = tcg_temp_ebb_new_ptr(); 185 a1 = tcg_temp_ebb_new_ptr(); 186 a2 = tcg_temp_ebb_new_ptr(); 187 a3 = tcg_temp_ebb_new_ptr(); 188 189 tcg_gen_addi_ptr(a0, tcg_env, dofs); 190 tcg_gen_addi_ptr(a1, tcg_env, aofs); 191 tcg_gen_addi_ptr(a2, tcg_env, bofs); 192 tcg_gen_addi_ptr(a3, tcg_env, cofs); 193 194 fn(a0, a1, a2, a3, desc); 195 196 tcg_temp_free_ptr(a0); 197 tcg_temp_free_ptr(a1); 198 tcg_temp_free_ptr(a2); 199 tcg_temp_free_ptr(a3); 200 } 201 202 /* Generate a call to a gvec-style helper with five vector operands. */ 203 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs, 204 uint32_t cofs, uint32_t xofs, uint32_t oprsz, 205 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn) 206 { 207 TCGv_ptr a0, a1, a2, a3, a4; 208 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); 209 210 a0 = tcg_temp_ebb_new_ptr(); 211 a1 = tcg_temp_ebb_new_ptr(); 212 a2 = tcg_temp_ebb_new_ptr(); 213 a3 = tcg_temp_ebb_new_ptr(); 214 a4 = tcg_temp_ebb_new_ptr(); 215 216 tcg_gen_addi_ptr(a0, tcg_env, dofs); 217 tcg_gen_addi_ptr(a1, tcg_env, aofs); 218 tcg_gen_addi_ptr(a2, tcg_env, bofs); 219 tcg_gen_addi_ptr(a3, tcg_env, cofs); 220 tcg_gen_addi_ptr(a4, tcg_env, xofs); 221 222 fn(a0, a1, a2, a3, a4, desc); 223 224 tcg_temp_free_ptr(a0); 225 tcg_temp_free_ptr(a1); 226 tcg_temp_free_ptr(a2); 227 tcg_temp_free_ptr(a3); 228 tcg_temp_free_ptr(a4); 229 } 230 231 /* Generate a call to a gvec-style helper with three vector operands 232 and an extra pointer operand. */ 233 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs, 234 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz, 235 int32_t data, gen_helper_gvec_2_ptr *fn) 236 { 237 TCGv_ptr a0, a1; 238 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); 239 240 a0 = tcg_temp_ebb_new_ptr(); 241 a1 = tcg_temp_ebb_new_ptr(); 242 243 tcg_gen_addi_ptr(a0, tcg_env, dofs); 244 tcg_gen_addi_ptr(a1, tcg_env, aofs); 245 246 fn(a0, a1, ptr, desc); 247 248 tcg_temp_free_ptr(a0); 249 tcg_temp_free_ptr(a1); 250 } 251 252 /* Generate a call to a gvec-style helper with three vector operands 253 and an extra pointer operand. */ 254 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs, 255 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz, 256 int32_t data, gen_helper_gvec_3_ptr *fn) 257 { 258 TCGv_ptr a0, a1, a2; 259 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); 260 261 a0 = tcg_temp_ebb_new_ptr(); 262 a1 = tcg_temp_ebb_new_ptr(); 263 a2 = tcg_temp_ebb_new_ptr(); 264 265 tcg_gen_addi_ptr(a0, tcg_env, dofs); 266 tcg_gen_addi_ptr(a1, tcg_env, aofs); 267 tcg_gen_addi_ptr(a2, tcg_env, bofs); 268 269 fn(a0, a1, a2, ptr, desc); 270 271 tcg_temp_free_ptr(a0); 272 tcg_temp_free_ptr(a1); 273 tcg_temp_free_ptr(a2); 274 } 275 276 /* Generate a call to a gvec-style helper with four vector operands 277 and an extra pointer operand. */ 278 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs, 279 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz, 280 uint32_t maxsz, int32_t data, 281 gen_helper_gvec_4_ptr *fn) 282 { 283 TCGv_ptr a0, a1, a2, a3; 284 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); 285 286 a0 = tcg_temp_ebb_new_ptr(); 287 a1 = tcg_temp_ebb_new_ptr(); 288 a2 = tcg_temp_ebb_new_ptr(); 289 a3 = tcg_temp_ebb_new_ptr(); 290 291 tcg_gen_addi_ptr(a0, tcg_env, dofs); 292 tcg_gen_addi_ptr(a1, tcg_env, aofs); 293 tcg_gen_addi_ptr(a2, tcg_env, bofs); 294 tcg_gen_addi_ptr(a3, tcg_env, cofs); 295 296 fn(a0, a1, a2, a3, ptr, desc); 297 298 tcg_temp_free_ptr(a0); 299 tcg_temp_free_ptr(a1); 300 tcg_temp_free_ptr(a2); 301 tcg_temp_free_ptr(a3); 302 } 303 304 /* Generate a call to a gvec-style helper with five vector operands 305 and an extra pointer operand. */ 306 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs, 307 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr, 308 uint32_t oprsz, uint32_t maxsz, int32_t data, 309 gen_helper_gvec_5_ptr *fn) 310 { 311 TCGv_ptr a0, a1, a2, a3, a4; 312 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data)); 313 314 a0 = tcg_temp_ebb_new_ptr(); 315 a1 = tcg_temp_ebb_new_ptr(); 316 a2 = tcg_temp_ebb_new_ptr(); 317 a3 = tcg_temp_ebb_new_ptr(); 318 a4 = tcg_temp_ebb_new_ptr(); 319 320 tcg_gen_addi_ptr(a0, tcg_env, dofs); 321 tcg_gen_addi_ptr(a1, tcg_env, aofs); 322 tcg_gen_addi_ptr(a2, tcg_env, bofs); 323 tcg_gen_addi_ptr(a3, tcg_env, cofs); 324 tcg_gen_addi_ptr(a4, tcg_env, eofs); 325 326 fn(a0, a1, a2, a3, a4, ptr, desc); 327 328 tcg_temp_free_ptr(a0); 329 tcg_temp_free_ptr(a1); 330 tcg_temp_free_ptr(a2); 331 tcg_temp_free_ptr(a3); 332 tcg_temp_free_ptr(a4); 333 } 334 335 /* Return true if we want to implement something of OPRSZ bytes 336 in units of LNSZ. This limits the expansion of inline code. */ 337 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz) 338 { 339 uint32_t q, r; 340 341 if (oprsz < lnsz) { 342 return false; 343 } 344 345 q = oprsz / lnsz; 346 r = oprsz % lnsz; 347 tcg_debug_assert((r & 7) == 0); 348 349 if (lnsz < 16) { 350 /* For sizes below 16, accept no remainder. */ 351 if (r != 0) { 352 return false; 353 } 354 } else { 355 /* 356 * Recall that ARM SVE allows vector sizes that are not a 357 * power of 2, but always a multiple of 16. The intent is 358 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 359 * In addition, expand_clr needs to handle a multiple of 8. 360 * Thus we can handle the tail with one more operation per 361 * diminishing power of 2. 362 */ 363 q += ctpop32(r); 364 } 365 366 return q <= MAX_UNROLL; 367 } 368 369 static void expand_clr(uint32_t dofs, uint32_t maxsz); 370 371 /* Duplicate C as per VECE. */ 372 uint64_t (dup_const)(unsigned vece, uint64_t c) 373 { 374 switch (vece) { 375 case MO_8: 376 return 0x0101010101010101ull * (uint8_t)c; 377 case MO_16: 378 return 0x0001000100010001ull * (uint16_t)c; 379 case MO_32: 380 return 0x0000000100000001ull * (uint32_t)c; 381 case MO_64: 382 return c; 383 default: 384 g_assert_not_reached(); 385 } 386 } 387 388 /* Duplicate IN into OUT as per VECE. */ 389 void tcg_gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in) 390 { 391 switch (vece) { 392 case MO_8: 393 tcg_gen_ext8u_i32(out, in); 394 tcg_gen_muli_i32(out, out, 0x01010101); 395 break; 396 case MO_16: 397 tcg_gen_deposit_i32(out, in, in, 16, 16); 398 break; 399 case MO_32: 400 tcg_gen_mov_i32(out, in); 401 break; 402 default: 403 g_assert_not_reached(); 404 } 405 } 406 407 void tcg_gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in) 408 { 409 switch (vece) { 410 case MO_8: 411 tcg_gen_ext8u_i64(out, in); 412 tcg_gen_muli_i64(out, out, 0x0101010101010101ull); 413 break; 414 case MO_16: 415 tcg_gen_ext16u_i64(out, in); 416 tcg_gen_muli_i64(out, out, 0x0001000100010001ull); 417 break; 418 case MO_32: 419 tcg_gen_deposit_i64(out, in, in, 32, 32); 420 break; 421 case MO_64: 422 tcg_gen_mov_i64(out, in); 423 break; 424 default: 425 g_assert_not_reached(); 426 } 427 } 428 429 /* Select a supported vector type for implementing an operation on SIZE 430 * bytes. If OP is 0, assume that the real operation to be performed is 431 * required by all backends. Otherwise, make sure than OP can be performed 432 * on elements of size VECE in the selected type. Do not select V64 if 433 * PREFER_I64 is true. Return 0 if no vector type is selected. 434 */ 435 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece, 436 uint32_t size, bool prefer_i64) 437 { 438 /* 439 * Recall that ARM SVE allows vector sizes that are not a 440 * power of 2, but always a multiple of 16. The intent is 441 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 442 * It is hard to imagine a case in which v256 is supported 443 * but v128 is not, but check anyway. 444 * In addition, expand_clr needs to handle a multiple of 8. 445 */ 446 if (TCG_TARGET_HAS_v256 && 447 check_size_impl(size, 32) && 448 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) && 449 (!(size & 16) || 450 (TCG_TARGET_HAS_v128 && 451 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) && 452 (!(size & 8) || 453 (TCG_TARGET_HAS_v64 && 454 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) { 455 return TCG_TYPE_V256; 456 } 457 if (TCG_TARGET_HAS_v128 && 458 check_size_impl(size, 16) && 459 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) && 460 (!(size & 8) || 461 (TCG_TARGET_HAS_v64 && 462 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) { 463 return TCG_TYPE_V128; 464 } 465 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8) 466 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) { 467 return TCG_TYPE_V64; 468 } 469 return 0; 470 } 471 472 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz, 473 uint32_t maxsz, TCGv_vec t_vec) 474 { 475 uint32_t i = 0; 476 477 tcg_debug_assert(oprsz >= 8); 478 479 /* 480 * This may be expand_clr for the tail of an operation, e.g. 481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store 482 * are misaligned wrt the maximum vector size, so do that first. 483 */ 484 if (dofs & 8) { 485 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V64); 486 i += 8; 487 } 488 489 switch (type) { 490 case TCG_TYPE_V256: 491 /* 492 * Recall that ARM SVE allows vector sizes that are not a 493 * power of 2, but always a multiple of 16. The intent is 494 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 495 */ 496 for (; i + 32 <= oprsz; i += 32) { 497 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V256); 498 } 499 /* fallthru */ 500 case TCG_TYPE_V128: 501 for (; i + 16 <= oprsz; i += 16) { 502 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V128); 503 } 504 break; 505 case TCG_TYPE_V64: 506 for (; i < oprsz; i += 8) { 507 tcg_gen_stl_vec(t_vec, tcg_env, dofs + i, TCG_TYPE_V64); 508 } 509 break; 510 default: 511 g_assert_not_reached(); 512 } 513 514 if (oprsz < maxsz) { 515 expand_clr(dofs + oprsz, maxsz - oprsz); 516 } 517 } 518 519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C. 520 * Only one of IN_32 or IN_64 may be set; 521 * IN_C is used if IN_32 and IN_64 are unset. 522 */ 523 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz, 524 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64, 525 uint64_t in_c) 526 { 527 TCGType type; 528 TCGv_i64 t_64; 529 TCGv_i32 t_32, t_desc; 530 TCGv_ptr t_ptr; 531 uint32_t i; 532 533 assert(vece <= (in_32 ? MO_32 : MO_64)); 534 assert(in_32 == NULL || in_64 == NULL); 535 536 /* If we're storing 0, expand oprsz to maxsz. */ 537 if (in_32 == NULL && in_64 == NULL) { 538 in_c = dup_const(vece, in_c); 539 if (in_c == 0) { 540 oprsz = maxsz; 541 vece = MO_8; 542 } else if (in_c == dup_const(MO_8, in_c)) { 543 vece = MO_8; 544 } 545 } 546 547 /* Implement inline with a vector type, if possible. 548 * Prefer integer when 64-bit host and no variable dup. 549 */ 550 type = choose_vector_type(NULL, vece, oprsz, 551 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL 552 && (in_64 == NULL || vece == MO_64))); 553 if (type != 0) { 554 TCGv_vec t_vec = tcg_temp_new_vec(type); 555 556 if (in_32) { 557 tcg_gen_dup_i32_vec(vece, t_vec, in_32); 558 } else if (in_64) { 559 tcg_gen_dup_i64_vec(vece, t_vec, in_64); 560 } else { 561 tcg_gen_dupi_vec(vece, t_vec, in_c); 562 } 563 do_dup_store(type, dofs, oprsz, maxsz, t_vec); 564 return; 565 } 566 567 /* Otherwise, inline with an integer type, unless "large". */ 568 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) { 569 t_64 = NULL; 570 t_32 = NULL; 571 572 if (in_32) { 573 /* We are given a 32-bit variable input. For a 64-bit host, 574 use a 64-bit operation unless the 32-bit operation would 575 be simple enough. */ 576 if (TCG_TARGET_REG_BITS == 64 577 && (vece != MO_32 || !check_size_impl(oprsz, 4))) { 578 t_64 = tcg_temp_ebb_new_i64(); 579 tcg_gen_extu_i32_i64(t_64, in_32); 580 tcg_gen_dup_i64(vece, t_64, t_64); 581 } else { 582 t_32 = tcg_temp_ebb_new_i32(); 583 tcg_gen_dup_i32(vece, t_32, in_32); 584 } 585 } else if (in_64) { 586 /* We are given a 64-bit variable input. */ 587 t_64 = tcg_temp_ebb_new_i64(); 588 tcg_gen_dup_i64(vece, t_64, in_64); 589 } else { 590 /* We are given a constant input. */ 591 /* For 64-bit hosts, use 64-bit constants for "simple" constants 592 or when we'd need too many 32-bit stores, or when a 64-bit 593 constant is really required. */ 594 if (vece == MO_64 595 || (TCG_TARGET_REG_BITS == 64 596 && (in_c == 0 || in_c == -1 597 || !check_size_impl(oprsz, 4)))) { 598 t_64 = tcg_constant_i64(in_c); 599 } else { 600 t_32 = tcg_constant_i32(in_c); 601 } 602 } 603 604 /* Implement inline if we picked an implementation size above. */ 605 if (t_32) { 606 for (i = 0; i < oprsz; i += 4) { 607 tcg_gen_st_i32(t_32, tcg_env, dofs + i); 608 } 609 tcg_temp_free_i32(t_32); 610 goto done; 611 } 612 if (t_64) { 613 for (i = 0; i < oprsz; i += 8) { 614 tcg_gen_st_i64(t_64, tcg_env, dofs + i); 615 } 616 tcg_temp_free_i64(t_64); 617 goto done; 618 } 619 } 620 621 /* Otherwise implement out of line. */ 622 t_ptr = tcg_temp_ebb_new_ptr(); 623 tcg_gen_addi_ptr(t_ptr, tcg_env, dofs); 624 625 /* 626 * This may be expand_clr for the tail of an operation, e.g. 627 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned 628 * wrt simd_desc and will assert. Simply pass all replicated byte 629 * stores through to memset. 630 */ 631 if (oprsz == maxsz && vece == MO_8) { 632 TCGv_ptr t_size = tcg_constant_ptr(oprsz); 633 TCGv_i32 t_val; 634 635 if (in_32) { 636 t_val = in_32; 637 } else if (in_64) { 638 t_val = tcg_temp_ebb_new_i32(); 639 tcg_gen_extrl_i64_i32(t_val, in_64); 640 } else { 641 t_val = tcg_constant_i32(in_c); 642 } 643 gen_helper_memset(t_ptr, t_ptr, t_val, t_size); 644 645 if (in_64) { 646 tcg_temp_free_i32(t_val); 647 } 648 tcg_temp_free_ptr(t_ptr); 649 return; 650 } 651 652 t_desc = tcg_constant_i32(simd_desc(oprsz, maxsz, 0)); 653 654 if (vece == MO_64) { 655 if (in_64) { 656 gen_helper_gvec_dup64(t_ptr, t_desc, in_64); 657 } else { 658 t_64 = tcg_constant_i64(in_c); 659 gen_helper_gvec_dup64(t_ptr, t_desc, t_64); 660 } 661 } else { 662 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32); 663 static dup_fn * const fns[3] = { 664 gen_helper_gvec_dup8, 665 gen_helper_gvec_dup16, 666 gen_helper_gvec_dup32 667 }; 668 669 if (in_32) { 670 fns[vece](t_ptr, t_desc, in_32); 671 } else if (in_64) { 672 t_32 = tcg_temp_ebb_new_i32(); 673 tcg_gen_extrl_i64_i32(t_32, in_64); 674 fns[vece](t_ptr, t_desc, t_32); 675 tcg_temp_free_i32(t_32); 676 } else { 677 if (vece == MO_8) { 678 in_c &= 0xff; 679 } else if (vece == MO_16) { 680 in_c &= 0xffff; 681 } 682 t_32 = tcg_constant_i32(in_c); 683 fns[vece](t_ptr, t_desc, t_32); 684 } 685 } 686 687 tcg_temp_free_ptr(t_ptr); 688 return; 689 690 done: 691 if (oprsz < maxsz) { 692 expand_clr(dofs + oprsz, maxsz - oprsz); 693 } 694 } 695 696 /* Likewise, but with zero. */ 697 static void expand_clr(uint32_t dofs, uint32_t maxsz) 698 { 699 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0); 700 } 701 702 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */ 703 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz, 704 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32)) 705 { 706 TCGv_i32 t0 = tcg_temp_new_i32(); 707 TCGv_i32 t1 = tcg_temp_new_i32(); 708 uint32_t i; 709 710 for (i = 0; i < oprsz; i += 4) { 711 tcg_gen_ld_i32(t0, tcg_env, aofs + i); 712 if (load_dest) { 713 tcg_gen_ld_i32(t1, tcg_env, dofs + i); 714 } 715 fni(t1, t0); 716 tcg_gen_st_i32(t1, tcg_env, dofs + i); 717 } 718 tcg_temp_free_i32(t0); 719 tcg_temp_free_i32(t1); 720 } 721 722 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz, 723 int32_t c, bool load_dest, 724 void (*fni)(TCGv_i32, TCGv_i32, int32_t)) 725 { 726 TCGv_i32 t0 = tcg_temp_new_i32(); 727 TCGv_i32 t1 = tcg_temp_new_i32(); 728 uint32_t i; 729 730 for (i = 0; i < oprsz; i += 4) { 731 tcg_gen_ld_i32(t0, tcg_env, aofs + i); 732 if (load_dest) { 733 tcg_gen_ld_i32(t1, tcg_env, dofs + i); 734 } 735 fni(t1, t0, c); 736 tcg_gen_st_i32(t1, tcg_env, dofs + i); 737 } 738 tcg_temp_free_i32(t0); 739 tcg_temp_free_i32(t1); 740 } 741 742 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz, 743 TCGv_i32 c, bool scalar_first, 744 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32)) 745 { 746 TCGv_i32 t0 = tcg_temp_new_i32(); 747 TCGv_i32 t1 = tcg_temp_new_i32(); 748 uint32_t i; 749 750 for (i = 0; i < oprsz; i += 4) { 751 tcg_gen_ld_i32(t0, tcg_env, aofs + i); 752 if (scalar_first) { 753 fni(t1, c, t0); 754 } else { 755 fni(t1, t0, c); 756 } 757 tcg_gen_st_i32(t1, tcg_env, dofs + i); 758 } 759 tcg_temp_free_i32(t0); 760 tcg_temp_free_i32(t1); 761 } 762 763 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */ 764 static void expand_3_i32(uint32_t dofs, uint32_t aofs, 765 uint32_t bofs, uint32_t oprsz, bool load_dest, 766 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32)) 767 { 768 TCGv_i32 t0 = tcg_temp_new_i32(); 769 TCGv_i32 t1 = tcg_temp_new_i32(); 770 TCGv_i32 t2 = tcg_temp_new_i32(); 771 uint32_t i; 772 773 for (i = 0; i < oprsz; i += 4) { 774 tcg_gen_ld_i32(t0, tcg_env, aofs + i); 775 tcg_gen_ld_i32(t1, tcg_env, bofs + i); 776 if (load_dest) { 777 tcg_gen_ld_i32(t2, tcg_env, dofs + i); 778 } 779 fni(t2, t0, t1); 780 tcg_gen_st_i32(t2, tcg_env, dofs + i); 781 } 782 tcg_temp_free_i32(t2); 783 tcg_temp_free_i32(t1); 784 tcg_temp_free_i32(t0); 785 } 786 787 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, 788 uint32_t oprsz, int32_t c, 789 bool load_dest, bool write_aofs, 790 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t)) 791 { 792 TCGv_i32 t0 = tcg_temp_new_i32(); 793 TCGv_i32 t1 = tcg_temp_new_i32(); 794 TCGv_i32 t2 = tcg_temp_new_i32(); 795 uint32_t i; 796 797 for (i = 0; i < oprsz; i += 4) { 798 tcg_gen_ld_i32(t0, tcg_env, aofs + i); 799 tcg_gen_ld_i32(t1, tcg_env, bofs + i); 800 if (load_dest) { 801 tcg_gen_ld_i32(t2, tcg_env, dofs + i); 802 } 803 fni(t2, t0, t1, c); 804 tcg_gen_st_i32(t2, tcg_env, dofs + i); 805 if (write_aofs) { 806 tcg_gen_st_i32(t0, tcg_env, aofs + i); 807 } 808 } 809 tcg_temp_free_i32(t0); 810 tcg_temp_free_i32(t1); 811 tcg_temp_free_i32(t2); 812 } 813 814 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */ 815 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, 816 uint32_t cofs, uint32_t oprsz, bool write_aofs, 817 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32)) 818 { 819 TCGv_i32 t0 = tcg_temp_new_i32(); 820 TCGv_i32 t1 = tcg_temp_new_i32(); 821 TCGv_i32 t2 = tcg_temp_new_i32(); 822 TCGv_i32 t3 = tcg_temp_new_i32(); 823 uint32_t i; 824 825 for (i = 0; i < oprsz; i += 4) { 826 tcg_gen_ld_i32(t1, tcg_env, aofs + i); 827 tcg_gen_ld_i32(t2, tcg_env, bofs + i); 828 tcg_gen_ld_i32(t3, tcg_env, cofs + i); 829 fni(t0, t1, t2, t3); 830 tcg_gen_st_i32(t0, tcg_env, dofs + i); 831 if (write_aofs) { 832 tcg_gen_st_i32(t1, tcg_env, aofs + i); 833 } 834 } 835 tcg_temp_free_i32(t3); 836 tcg_temp_free_i32(t2); 837 tcg_temp_free_i32(t1); 838 tcg_temp_free_i32(t0); 839 } 840 841 static void expand_4i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, 842 uint32_t cofs, uint32_t oprsz, int32_t c, 843 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32, 844 int32_t)) 845 { 846 TCGv_i32 t0 = tcg_temp_new_i32(); 847 TCGv_i32 t1 = tcg_temp_new_i32(); 848 TCGv_i32 t2 = tcg_temp_new_i32(); 849 TCGv_i32 t3 = tcg_temp_new_i32(); 850 uint32_t i; 851 852 for (i = 0; i < oprsz; i += 4) { 853 tcg_gen_ld_i32(t1, tcg_env, aofs + i); 854 tcg_gen_ld_i32(t2, tcg_env, bofs + i); 855 tcg_gen_ld_i32(t3, tcg_env, cofs + i); 856 fni(t0, t1, t2, t3, c); 857 tcg_gen_st_i32(t0, tcg_env, dofs + i); 858 } 859 tcg_temp_free_i32(t3); 860 tcg_temp_free_i32(t2); 861 tcg_temp_free_i32(t1); 862 tcg_temp_free_i32(t0); 863 } 864 865 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */ 866 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz, 867 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64)) 868 { 869 TCGv_i64 t0 = tcg_temp_new_i64(); 870 TCGv_i64 t1 = tcg_temp_new_i64(); 871 uint32_t i; 872 873 for (i = 0; i < oprsz; i += 8) { 874 tcg_gen_ld_i64(t0, tcg_env, aofs + i); 875 if (load_dest) { 876 tcg_gen_ld_i64(t1, tcg_env, dofs + i); 877 } 878 fni(t1, t0); 879 tcg_gen_st_i64(t1, tcg_env, dofs + i); 880 } 881 tcg_temp_free_i64(t0); 882 tcg_temp_free_i64(t1); 883 } 884 885 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz, 886 int64_t c, bool load_dest, 887 void (*fni)(TCGv_i64, TCGv_i64, int64_t)) 888 { 889 TCGv_i64 t0 = tcg_temp_new_i64(); 890 TCGv_i64 t1 = tcg_temp_new_i64(); 891 uint32_t i; 892 893 for (i = 0; i < oprsz; i += 8) { 894 tcg_gen_ld_i64(t0, tcg_env, aofs + i); 895 if (load_dest) { 896 tcg_gen_ld_i64(t1, tcg_env, dofs + i); 897 } 898 fni(t1, t0, c); 899 tcg_gen_st_i64(t1, tcg_env, dofs + i); 900 } 901 tcg_temp_free_i64(t0); 902 tcg_temp_free_i64(t1); 903 } 904 905 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz, 906 TCGv_i64 c, bool scalar_first, 907 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64)) 908 { 909 TCGv_i64 t0 = tcg_temp_new_i64(); 910 TCGv_i64 t1 = tcg_temp_new_i64(); 911 uint32_t i; 912 913 for (i = 0; i < oprsz; i += 8) { 914 tcg_gen_ld_i64(t0, tcg_env, aofs + i); 915 if (scalar_first) { 916 fni(t1, c, t0); 917 } else { 918 fni(t1, t0, c); 919 } 920 tcg_gen_st_i64(t1, tcg_env, dofs + i); 921 } 922 tcg_temp_free_i64(t0); 923 tcg_temp_free_i64(t1); 924 } 925 926 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */ 927 static void expand_3_i64(uint32_t dofs, uint32_t aofs, 928 uint32_t bofs, uint32_t oprsz, bool load_dest, 929 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64)) 930 { 931 TCGv_i64 t0 = tcg_temp_new_i64(); 932 TCGv_i64 t1 = tcg_temp_new_i64(); 933 TCGv_i64 t2 = tcg_temp_new_i64(); 934 uint32_t i; 935 936 for (i = 0; i < oprsz; i += 8) { 937 tcg_gen_ld_i64(t0, tcg_env, aofs + i); 938 tcg_gen_ld_i64(t1, tcg_env, bofs + i); 939 if (load_dest) { 940 tcg_gen_ld_i64(t2, tcg_env, dofs + i); 941 } 942 fni(t2, t0, t1); 943 tcg_gen_st_i64(t2, tcg_env, dofs + i); 944 } 945 tcg_temp_free_i64(t2); 946 tcg_temp_free_i64(t1); 947 tcg_temp_free_i64(t0); 948 } 949 950 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, 951 uint32_t oprsz, int64_t c, 952 bool load_dest, bool write_aofs, 953 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t)) 954 { 955 TCGv_i64 t0 = tcg_temp_new_i64(); 956 TCGv_i64 t1 = tcg_temp_new_i64(); 957 TCGv_i64 t2 = tcg_temp_new_i64(); 958 uint32_t i; 959 960 for (i = 0; i < oprsz; i += 8) { 961 tcg_gen_ld_i64(t0, tcg_env, aofs + i); 962 tcg_gen_ld_i64(t1, tcg_env, bofs + i); 963 if (load_dest) { 964 tcg_gen_ld_i64(t2, tcg_env, dofs + i); 965 } 966 fni(t2, t0, t1, c); 967 tcg_gen_st_i64(t2, tcg_env, dofs + i); 968 if (write_aofs) { 969 tcg_gen_st_i64(t0, tcg_env, aofs + i); 970 } 971 } 972 tcg_temp_free_i64(t0); 973 tcg_temp_free_i64(t1); 974 tcg_temp_free_i64(t2); 975 } 976 977 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */ 978 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, 979 uint32_t cofs, uint32_t oprsz, bool write_aofs, 980 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64)) 981 { 982 TCGv_i64 t0 = tcg_temp_new_i64(); 983 TCGv_i64 t1 = tcg_temp_new_i64(); 984 TCGv_i64 t2 = tcg_temp_new_i64(); 985 TCGv_i64 t3 = tcg_temp_new_i64(); 986 uint32_t i; 987 988 for (i = 0; i < oprsz; i += 8) { 989 tcg_gen_ld_i64(t1, tcg_env, aofs + i); 990 tcg_gen_ld_i64(t2, tcg_env, bofs + i); 991 tcg_gen_ld_i64(t3, tcg_env, cofs + i); 992 fni(t0, t1, t2, t3); 993 tcg_gen_st_i64(t0, tcg_env, dofs + i); 994 if (write_aofs) { 995 tcg_gen_st_i64(t1, tcg_env, aofs + i); 996 } 997 } 998 tcg_temp_free_i64(t3); 999 tcg_temp_free_i64(t2); 1000 tcg_temp_free_i64(t1); 1001 tcg_temp_free_i64(t0); 1002 } 1003 1004 static void expand_4i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, 1005 uint32_t cofs, uint32_t oprsz, int64_t c, 1006 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64, 1007 int64_t)) 1008 { 1009 TCGv_i64 t0 = tcg_temp_new_i64(); 1010 TCGv_i64 t1 = tcg_temp_new_i64(); 1011 TCGv_i64 t2 = tcg_temp_new_i64(); 1012 TCGv_i64 t3 = tcg_temp_new_i64(); 1013 uint32_t i; 1014 1015 for (i = 0; i < oprsz; i += 8) { 1016 tcg_gen_ld_i64(t1, tcg_env, aofs + i); 1017 tcg_gen_ld_i64(t2, tcg_env, bofs + i); 1018 tcg_gen_ld_i64(t3, tcg_env, cofs + i); 1019 fni(t0, t1, t2, t3, c); 1020 tcg_gen_st_i64(t0, tcg_env, dofs + i); 1021 } 1022 tcg_temp_free_i64(t3); 1023 tcg_temp_free_i64(t2); 1024 tcg_temp_free_i64(t1); 1025 tcg_temp_free_i64(t0); 1026 } 1027 1028 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */ 1029 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs, 1030 uint32_t oprsz, uint32_t tysz, TCGType type, 1031 bool load_dest, 1032 void (*fni)(unsigned, TCGv_vec, TCGv_vec)) 1033 { 1034 for (uint32_t i = 0; i < oprsz; i += tysz) { 1035 TCGv_vec t0 = tcg_temp_new_vec(type); 1036 TCGv_vec t1 = tcg_temp_new_vec(type); 1037 1038 tcg_gen_ld_vec(t0, tcg_env, aofs + i); 1039 if (load_dest) { 1040 tcg_gen_ld_vec(t1, tcg_env, dofs + i); 1041 } 1042 fni(vece, t1, t0); 1043 tcg_gen_st_vec(t1, tcg_env, dofs + i); 1044 } 1045 } 1046 1047 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand 1048 using host vectors. */ 1049 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs, 1050 uint32_t oprsz, uint32_t tysz, TCGType type, 1051 int64_t c, bool load_dest, 1052 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t)) 1053 { 1054 for (uint32_t i = 0; i < oprsz; i += tysz) { 1055 TCGv_vec t0 = tcg_temp_new_vec(type); 1056 TCGv_vec t1 = tcg_temp_new_vec(type); 1057 1058 tcg_gen_ld_vec(t0, tcg_env, aofs + i); 1059 if (load_dest) { 1060 tcg_gen_ld_vec(t1, tcg_env, dofs + i); 1061 } 1062 fni(vece, t1, t0, c); 1063 tcg_gen_st_vec(t1, tcg_env, dofs + i); 1064 } 1065 } 1066 1067 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs, 1068 uint32_t oprsz, uint32_t tysz, TCGType type, 1069 TCGv_vec c, bool scalar_first, 1070 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec)) 1071 { 1072 for (uint32_t i = 0; i < oprsz; i += tysz) { 1073 TCGv_vec t0 = tcg_temp_new_vec(type); 1074 TCGv_vec t1 = tcg_temp_new_vec(type); 1075 1076 tcg_gen_ld_vec(t0, tcg_env, aofs + i); 1077 if (scalar_first) { 1078 fni(vece, t1, c, t0); 1079 } else { 1080 fni(vece, t1, t0, c); 1081 } 1082 tcg_gen_st_vec(t1, tcg_env, dofs + i); 1083 } 1084 } 1085 1086 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */ 1087 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs, 1088 uint32_t bofs, uint32_t oprsz, 1089 uint32_t tysz, TCGType type, bool load_dest, 1090 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec)) 1091 { 1092 for (uint32_t i = 0; i < oprsz; i += tysz) { 1093 TCGv_vec t0 = tcg_temp_new_vec(type); 1094 TCGv_vec t1 = tcg_temp_new_vec(type); 1095 TCGv_vec t2 = tcg_temp_new_vec(type); 1096 1097 tcg_gen_ld_vec(t0, tcg_env, aofs + i); 1098 tcg_gen_ld_vec(t1, tcg_env, bofs + i); 1099 if (load_dest) { 1100 tcg_gen_ld_vec(t2, tcg_env, dofs + i); 1101 } 1102 fni(vece, t2, t0, t1); 1103 tcg_gen_st_vec(t2, tcg_env, dofs + i); 1104 } 1105 } 1106 1107 /* 1108 * Expand OPSZ bytes worth of three-vector operands and an immediate operand 1109 * using host vectors. 1110 */ 1111 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs, 1112 uint32_t bofs, uint32_t oprsz, uint32_t tysz, 1113 TCGType type, int64_t c, 1114 bool load_dest, bool write_aofs, 1115 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec, 1116 int64_t)) 1117 { 1118 for (uint32_t i = 0; i < oprsz; i += tysz) { 1119 TCGv_vec t0 = tcg_temp_new_vec(type); 1120 TCGv_vec t1 = tcg_temp_new_vec(type); 1121 TCGv_vec t2 = tcg_temp_new_vec(type); 1122 1123 tcg_gen_ld_vec(t0, tcg_env, aofs + i); 1124 tcg_gen_ld_vec(t1, tcg_env, bofs + i); 1125 if (load_dest) { 1126 tcg_gen_ld_vec(t2, tcg_env, dofs + i); 1127 } 1128 fni(vece, t2, t0, t1, c); 1129 tcg_gen_st_vec(t2, tcg_env, dofs + i); 1130 if (write_aofs) { 1131 tcg_gen_st_vec(t0, tcg_env, aofs + i); 1132 } 1133 } 1134 } 1135 1136 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */ 1137 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs, 1138 uint32_t bofs, uint32_t cofs, uint32_t oprsz, 1139 uint32_t tysz, TCGType type, bool write_aofs, 1140 void (*fni)(unsigned, TCGv_vec, TCGv_vec, 1141 TCGv_vec, TCGv_vec)) 1142 { 1143 for (uint32_t i = 0; i < oprsz; i += tysz) { 1144 TCGv_vec t0 = tcg_temp_new_vec(type); 1145 TCGv_vec t1 = tcg_temp_new_vec(type); 1146 TCGv_vec t2 = tcg_temp_new_vec(type); 1147 TCGv_vec t3 = tcg_temp_new_vec(type); 1148 1149 tcg_gen_ld_vec(t1, tcg_env, aofs + i); 1150 tcg_gen_ld_vec(t2, tcg_env, bofs + i); 1151 tcg_gen_ld_vec(t3, tcg_env, cofs + i); 1152 fni(vece, t0, t1, t2, t3); 1153 tcg_gen_st_vec(t0, tcg_env, dofs + i); 1154 if (write_aofs) { 1155 tcg_gen_st_vec(t1, tcg_env, aofs + i); 1156 } 1157 } 1158 } 1159 1160 /* 1161 * Expand OPSZ bytes worth of four-vector operands and an immediate operand 1162 * using host vectors. 1163 */ 1164 static void expand_4i_vec(unsigned vece, uint32_t dofs, uint32_t aofs, 1165 uint32_t bofs, uint32_t cofs, uint32_t oprsz, 1166 uint32_t tysz, TCGType type, int64_t c, 1167 void (*fni)(unsigned, TCGv_vec, TCGv_vec, 1168 TCGv_vec, TCGv_vec, int64_t)) 1169 { 1170 for (uint32_t i = 0; i < oprsz; i += tysz) { 1171 TCGv_vec t0 = tcg_temp_new_vec(type); 1172 TCGv_vec t1 = tcg_temp_new_vec(type); 1173 TCGv_vec t2 = tcg_temp_new_vec(type); 1174 TCGv_vec t3 = tcg_temp_new_vec(type); 1175 1176 tcg_gen_ld_vec(t1, tcg_env, aofs + i); 1177 tcg_gen_ld_vec(t2, tcg_env, bofs + i); 1178 tcg_gen_ld_vec(t3, tcg_env, cofs + i); 1179 fni(vece, t0, t1, t2, t3, c); 1180 tcg_gen_st_vec(t0, tcg_env, dofs + i); 1181 } 1182 } 1183 1184 /* Expand a vector two-operand operation. */ 1185 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs, 1186 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g) 1187 { 1188 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; 1189 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); 1190 TCGType type; 1191 uint32_t some; 1192 1193 check_size_align(oprsz, maxsz, dofs | aofs); 1194 check_overlap_2(dofs, aofs, maxsz); 1195 1196 type = 0; 1197 if (g->fniv) { 1198 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); 1199 } 1200 switch (type) { 1201 case TCG_TYPE_V256: 1202 /* Recall that ARM SVE allows vector sizes that are not a 1203 * power of 2, but always a multiple of 16. The intent is 1204 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 1205 */ 1206 some = QEMU_ALIGN_DOWN(oprsz, 32); 1207 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, 1208 g->load_dest, g->fniv); 1209 if (some == oprsz) { 1210 break; 1211 } 1212 dofs += some; 1213 aofs += some; 1214 oprsz -= some; 1215 maxsz -= some; 1216 /* fallthru */ 1217 case TCG_TYPE_V128: 1218 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, 1219 g->load_dest, g->fniv); 1220 break; 1221 case TCG_TYPE_V64: 1222 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, 1223 g->load_dest, g->fniv); 1224 break; 1225 1226 case 0: 1227 if (g->fni8 && check_size_impl(oprsz, 8)) { 1228 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8); 1229 } else if (g->fni4 && check_size_impl(oprsz, 4)) { 1230 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4); 1231 } else { 1232 assert(g->fno != NULL); 1233 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno); 1234 oprsz = maxsz; 1235 } 1236 break; 1237 1238 default: 1239 g_assert_not_reached(); 1240 } 1241 tcg_swap_vecop_list(hold_list); 1242 1243 if (oprsz < maxsz) { 1244 expand_clr(dofs + oprsz, maxsz - oprsz); 1245 } 1246 } 1247 1248 /* Expand a vector operation with two vectors and an immediate. */ 1249 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz, 1250 uint32_t maxsz, int64_t c, const GVecGen2i *g) 1251 { 1252 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; 1253 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); 1254 TCGType type; 1255 uint32_t some; 1256 1257 check_size_align(oprsz, maxsz, dofs | aofs); 1258 check_overlap_2(dofs, aofs, maxsz); 1259 1260 type = 0; 1261 if (g->fniv) { 1262 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); 1263 } 1264 switch (type) { 1265 case TCG_TYPE_V256: 1266 /* Recall that ARM SVE allows vector sizes that are not a 1267 * power of 2, but always a multiple of 16. The intent is 1268 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 1269 */ 1270 some = QEMU_ALIGN_DOWN(oprsz, 32); 1271 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, 1272 c, g->load_dest, g->fniv); 1273 if (some == oprsz) { 1274 break; 1275 } 1276 dofs += some; 1277 aofs += some; 1278 oprsz -= some; 1279 maxsz -= some; 1280 /* fallthru */ 1281 case TCG_TYPE_V128: 1282 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, 1283 c, g->load_dest, g->fniv); 1284 break; 1285 case TCG_TYPE_V64: 1286 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, 1287 c, g->load_dest, g->fniv); 1288 break; 1289 1290 case 0: 1291 if (g->fni8 && check_size_impl(oprsz, 8)) { 1292 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8); 1293 } else if (g->fni4 && check_size_impl(oprsz, 4)) { 1294 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4); 1295 } else { 1296 if (g->fno) { 1297 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno); 1298 } else { 1299 TCGv_i64 tcg_c = tcg_constant_i64(c); 1300 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz, 1301 maxsz, c, g->fnoi); 1302 } 1303 oprsz = maxsz; 1304 } 1305 break; 1306 1307 default: 1308 g_assert_not_reached(); 1309 } 1310 tcg_swap_vecop_list(hold_list); 1311 1312 if (oprsz < maxsz) { 1313 expand_clr(dofs + oprsz, maxsz - oprsz); 1314 } 1315 } 1316 1317 /* Expand a vector operation with two vectors and a scalar. */ 1318 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz, 1319 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g) 1320 { 1321 TCGType type; 1322 1323 check_size_align(oprsz, maxsz, dofs | aofs); 1324 check_overlap_2(dofs, aofs, maxsz); 1325 1326 type = 0; 1327 if (g->fniv) { 1328 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); 1329 } 1330 if (type != 0) { 1331 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; 1332 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); 1333 TCGv_vec t_vec = tcg_temp_new_vec(type); 1334 uint32_t some; 1335 1336 tcg_gen_dup_i64_vec(g->vece, t_vec, c); 1337 1338 switch (type) { 1339 case TCG_TYPE_V256: 1340 /* Recall that ARM SVE allows vector sizes that are not a 1341 * power of 2, but always a multiple of 16. The intent is 1342 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 1343 */ 1344 some = QEMU_ALIGN_DOWN(oprsz, 32); 1345 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256, 1346 t_vec, g->scalar_first, g->fniv); 1347 if (some == oprsz) { 1348 break; 1349 } 1350 dofs += some; 1351 aofs += some; 1352 oprsz -= some; 1353 maxsz -= some; 1354 /* fallthru */ 1355 1356 case TCG_TYPE_V128: 1357 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, 1358 t_vec, g->scalar_first, g->fniv); 1359 break; 1360 1361 case TCG_TYPE_V64: 1362 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, 1363 t_vec, g->scalar_first, g->fniv); 1364 break; 1365 1366 default: 1367 g_assert_not_reached(); 1368 } 1369 tcg_temp_free_vec(t_vec); 1370 tcg_swap_vecop_list(hold_list); 1371 } else if (g->fni8 && check_size_impl(oprsz, 8)) { 1372 TCGv_i64 t64 = tcg_temp_new_i64(); 1373 1374 tcg_gen_dup_i64(g->vece, t64, c); 1375 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8); 1376 tcg_temp_free_i64(t64); 1377 } else if (g->fni4 && check_size_impl(oprsz, 4)) { 1378 TCGv_i32 t32 = tcg_temp_new_i32(); 1379 1380 tcg_gen_extrl_i64_i32(t32, c); 1381 tcg_gen_dup_i32(g->vece, t32, t32); 1382 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4); 1383 tcg_temp_free_i32(t32); 1384 } else { 1385 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno); 1386 return; 1387 } 1388 1389 if (oprsz < maxsz) { 1390 expand_clr(dofs + oprsz, maxsz - oprsz); 1391 } 1392 } 1393 1394 /* Expand a vector three-operand operation. */ 1395 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs, 1396 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g) 1397 { 1398 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; 1399 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); 1400 TCGType type; 1401 uint32_t some; 1402 1403 check_size_align(oprsz, maxsz, dofs | aofs | bofs); 1404 check_overlap_3(dofs, aofs, bofs, maxsz); 1405 1406 type = 0; 1407 if (g->fniv) { 1408 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); 1409 } 1410 switch (type) { 1411 case TCG_TYPE_V256: 1412 /* Recall that ARM SVE allows vector sizes that are not a 1413 * power of 2, but always a multiple of 16. The intent is 1414 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 1415 */ 1416 some = QEMU_ALIGN_DOWN(oprsz, 32); 1417 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, 1418 g->load_dest, g->fniv); 1419 if (some == oprsz) { 1420 break; 1421 } 1422 dofs += some; 1423 aofs += some; 1424 bofs += some; 1425 oprsz -= some; 1426 maxsz -= some; 1427 /* fallthru */ 1428 case TCG_TYPE_V128: 1429 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, 1430 g->load_dest, g->fniv); 1431 break; 1432 case TCG_TYPE_V64: 1433 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, 1434 g->load_dest, g->fniv); 1435 break; 1436 1437 case 0: 1438 if (g->fni8 && check_size_impl(oprsz, 8)) { 1439 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8); 1440 } else if (g->fni4 && check_size_impl(oprsz, 4)) { 1441 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4); 1442 } else { 1443 assert(g->fno != NULL); 1444 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, 1445 maxsz, g->data, g->fno); 1446 oprsz = maxsz; 1447 } 1448 break; 1449 1450 default: 1451 g_assert_not_reached(); 1452 } 1453 tcg_swap_vecop_list(hold_list); 1454 1455 if (oprsz < maxsz) { 1456 expand_clr(dofs + oprsz, maxsz - oprsz); 1457 } 1458 } 1459 1460 /* Expand a vector operation with three vectors and an immediate. */ 1461 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs, 1462 uint32_t oprsz, uint32_t maxsz, int64_t c, 1463 const GVecGen3i *g) 1464 { 1465 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; 1466 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); 1467 TCGType type; 1468 uint32_t some; 1469 1470 check_size_align(oprsz, maxsz, dofs | aofs | bofs); 1471 check_overlap_3(dofs, aofs, bofs, maxsz); 1472 1473 type = 0; 1474 if (g->fniv) { 1475 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); 1476 } 1477 switch (type) { 1478 case TCG_TYPE_V256: 1479 /* 1480 * Recall that ARM SVE allows vector sizes that are not a 1481 * power of 2, but always a multiple of 16. The intent is 1482 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 1483 */ 1484 some = QEMU_ALIGN_DOWN(oprsz, 32); 1485 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, 1486 c, g->load_dest, g->write_aofs, g->fniv); 1487 if (some == oprsz) { 1488 break; 1489 } 1490 dofs += some; 1491 aofs += some; 1492 bofs += some; 1493 oprsz -= some; 1494 maxsz -= some; 1495 /* fallthru */ 1496 case TCG_TYPE_V128: 1497 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, 1498 c, g->load_dest, g->write_aofs, g->fniv); 1499 break; 1500 case TCG_TYPE_V64: 1501 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, 1502 c, g->load_dest, g->write_aofs, g->fniv); 1503 break; 1504 1505 case 0: 1506 if (g->fni8 && check_size_impl(oprsz, 8)) { 1507 expand_3i_i64(dofs, aofs, bofs, oprsz, c, 1508 g->load_dest, g->write_aofs, g->fni8); 1509 } else if (g->fni4 && check_size_impl(oprsz, 4)) { 1510 expand_3i_i32(dofs, aofs, bofs, oprsz, c, 1511 g->load_dest, g->write_aofs, g->fni4); 1512 } else { 1513 assert(g->fno != NULL); 1514 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno); 1515 oprsz = maxsz; 1516 } 1517 break; 1518 1519 default: 1520 g_assert_not_reached(); 1521 } 1522 tcg_swap_vecop_list(hold_list); 1523 1524 if (oprsz < maxsz) { 1525 expand_clr(dofs + oprsz, maxsz - oprsz); 1526 } 1527 } 1528 1529 /* Expand a vector four-operand operation. */ 1530 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, 1531 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g) 1532 { 1533 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; 1534 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); 1535 TCGType type; 1536 uint32_t some; 1537 1538 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs); 1539 check_overlap_4(dofs, aofs, bofs, cofs, maxsz); 1540 1541 type = 0; 1542 if (g->fniv) { 1543 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); 1544 } 1545 switch (type) { 1546 case TCG_TYPE_V256: 1547 /* Recall that ARM SVE allows vector sizes that are not a 1548 * power of 2, but always a multiple of 16. The intent is 1549 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 1550 */ 1551 some = QEMU_ALIGN_DOWN(oprsz, 32); 1552 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some, 1553 32, TCG_TYPE_V256, g->write_aofs, g->fniv); 1554 if (some == oprsz) { 1555 break; 1556 } 1557 dofs += some; 1558 aofs += some; 1559 bofs += some; 1560 cofs += some; 1561 oprsz -= some; 1562 maxsz -= some; 1563 /* fallthru */ 1564 case TCG_TYPE_V128: 1565 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz, 1566 16, TCG_TYPE_V128, g->write_aofs, g->fniv); 1567 break; 1568 case TCG_TYPE_V64: 1569 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz, 1570 8, TCG_TYPE_V64, g->write_aofs, g->fniv); 1571 break; 1572 1573 case 0: 1574 if (g->fni8 && check_size_impl(oprsz, 8)) { 1575 expand_4_i64(dofs, aofs, bofs, cofs, oprsz, 1576 g->write_aofs, g->fni8); 1577 } else if (g->fni4 && check_size_impl(oprsz, 4)) { 1578 expand_4_i32(dofs, aofs, bofs, cofs, oprsz, 1579 g->write_aofs, g->fni4); 1580 } else { 1581 assert(g->fno != NULL); 1582 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs, 1583 oprsz, maxsz, g->data, g->fno); 1584 oprsz = maxsz; 1585 } 1586 break; 1587 1588 default: 1589 g_assert_not_reached(); 1590 } 1591 tcg_swap_vecop_list(hold_list); 1592 1593 if (oprsz < maxsz) { 1594 expand_clr(dofs + oprsz, maxsz - oprsz); 1595 } 1596 } 1597 1598 /* Expand a vector four-operand operation. */ 1599 void tcg_gen_gvec_4i(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs, 1600 uint32_t oprsz, uint32_t maxsz, int64_t c, 1601 const GVecGen4i *g) 1602 { 1603 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty; 1604 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list); 1605 TCGType type; 1606 uint32_t some; 1607 1608 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs); 1609 check_overlap_4(dofs, aofs, bofs, cofs, maxsz); 1610 1611 type = 0; 1612 if (g->fniv) { 1613 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64); 1614 } 1615 switch (type) { 1616 case TCG_TYPE_V256: 1617 /* 1618 * Recall that ARM SVE allows vector sizes that are not a 1619 * power of 2, but always a multiple of 16. The intent is 1620 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 1621 */ 1622 some = QEMU_ALIGN_DOWN(oprsz, 32); 1623 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, some, 1624 32, TCG_TYPE_V256, c, g->fniv); 1625 if (some == oprsz) { 1626 break; 1627 } 1628 dofs += some; 1629 aofs += some; 1630 bofs += some; 1631 cofs += some; 1632 oprsz -= some; 1633 maxsz -= some; 1634 /* fallthru */ 1635 case TCG_TYPE_V128: 1636 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz, 1637 16, TCG_TYPE_V128, c, g->fniv); 1638 break; 1639 case TCG_TYPE_V64: 1640 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz, 1641 8, TCG_TYPE_V64, c, g->fniv); 1642 break; 1643 1644 case 0: 1645 if (g->fni8 && check_size_impl(oprsz, 8)) { 1646 expand_4i_i64(dofs, aofs, bofs, cofs, oprsz, c, g->fni8); 1647 } else if (g->fni4 && check_size_impl(oprsz, 4)) { 1648 expand_4i_i32(dofs, aofs, bofs, cofs, oprsz, c, g->fni4); 1649 } else { 1650 assert(g->fno != NULL); 1651 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs, 1652 oprsz, maxsz, c, g->fno); 1653 oprsz = maxsz; 1654 } 1655 break; 1656 1657 default: 1658 g_assert_not_reached(); 1659 } 1660 tcg_swap_vecop_list(hold_list); 1661 1662 if (oprsz < maxsz) { 1663 expand_clr(dofs + oprsz, maxsz - oprsz); 1664 } 1665 } 1666 1667 /* 1668 * Expand specific vector operations. 1669 */ 1670 1671 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b) 1672 { 1673 tcg_gen_mov_vec(a, b); 1674 } 1675 1676 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs, 1677 uint32_t oprsz, uint32_t maxsz) 1678 { 1679 static const GVecGen2 g = { 1680 .fni8 = tcg_gen_mov_i64, 1681 .fniv = vec_mov2, 1682 .fno = gen_helper_gvec_mov, 1683 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1684 }; 1685 if (dofs != aofs) { 1686 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g); 1687 } else { 1688 check_size_align(oprsz, maxsz, dofs); 1689 if (oprsz < maxsz) { 1690 expand_clr(dofs + oprsz, maxsz - oprsz); 1691 } 1692 } 1693 } 1694 1695 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz, 1696 uint32_t maxsz, TCGv_i32 in) 1697 { 1698 check_size_align(oprsz, maxsz, dofs); 1699 tcg_debug_assert(vece <= MO_32); 1700 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0); 1701 } 1702 1703 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz, 1704 uint32_t maxsz, TCGv_i64 in) 1705 { 1706 check_size_align(oprsz, maxsz, dofs); 1707 tcg_debug_assert(vece <= MO_64); 1708 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0); 1709 } 1710 1711 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs, 1712 uint32_t oprsz, uint32_t maxsz) 1713 { 1714 check_size_align(oprsz, maxsz, dofs); 1715 if (vece <= MO_64) { 1716 TCGType type = choose_vector_type(NULL, vece, oprsz, 0); 1717 if (type != 0) { 1718 TCGv_vec t_vec = tcg_temp_new_vec(type); 1719 tcg_gen_dup_mem_vec(vece, t_vec, tcg_env, aofs); 1720 do_dup_store(type, dofs, oprsz, maxsz, t_vec); 1721 } else if (vece <= MO_32) { 1722 TCGv_i32 in = tcg_temp_ebb_new_i32(); 1723 switch (vece) { 1724 case MO_8: 1725 tcg_gen_ld8u_i32(in, tcg_env, aofs); 1726 break; 1727 case MO_16: 1728 tcg_gen_ld16u_i32(in, tcg_env, aofs); 1729 break; 1730 default: 1731 tcg_gen_ld_i32(in, tcg_env, aofs); 1732 break; 1733 } 1734 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0); 1735 tcg_temp_free_i32(in); 1736 } else { 1737 TCGv_i64 in = tcg_temp_ebb_new_i64(); 1738 tcg_gen_ld_i64(in, tcg_env, aofs); 1739 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0); 1740 tcg_temp_free_i64(in); 1741 } 1742 } else if (vece == 4) { 1743 /* 128-bit duplicate. */ 1744 int i; 1745 1746 tcg_debug_assert(oprsz >= 16); 1747 if (TCG_TARGET_HAS_v128) { 1748 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128); 1749 1750 tcg_gen_ld_vec(in, tcg_env, aofs); 1751 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) { 1752 tcg_gen_st_vec(in, tcg_env, dofs + i); 1753 } 1754 } else { 1755 TCGv_i64 in0 = tcg_temp_ebb_new_i64(); 1756 TCGv_i64 in1 = tcg_temp_ebb_new_i64(); 1757 1758 tcg_gen_ld_i64(in0, tcg_env, aofs); 1759 tcg_gen_ld_i64(in1, tcg_env, aofs + 8); 1760 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) { 1761 tcg_gen_st_i64(in0, tcg_env, dofs + i); 1762 tcg_gen_st_i64(in1, tcg_env, dofs + i + 8); 1763 } 1764 tcg_temp_free_i64(in0); 1765 tcg_temp_free_i64(in1); 1766 } 1767 if (oprsz < maxsz) { 1768 expand_clr(dofs + oprsz, maxsz - oprsz); 1769 } 1770 } else if (vece == 5) { 1771 /* 256-bit duplicate. */ 1772 int i; 1773 1774 tcg_debug_assert(oprsz >= 32); 1775 tcg_debug_assert(oprsz % 32 == 0); 1776 if (TCG_TARGET_HAS_v256) { 1777 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256); 1778 1779 tcg_gen_ld_vec(in, tcg_env, aofs); 1780 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) { 1781 tcg_gen_st_vec(in, tcg_env, dofs + i); 1782 } 1783 } else if (TCG_TARGET_HAS_v128) { 1784 TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128); 1785 TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128); 1786 1787 tcg_gen_ld_vec(in0, tcg_env, aofs); 1788 tcg_gen_ld_vec(in1, tcg_env, aofs + 16); 1789 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) { 1790 tcg_gen_st_vec(in0, tcg_env, dofs + i); 1791 tcg_gen_st_vec(in1, tcg_env, dofs + i + 16); 1792 } 1793 } else { 1794 TCGv_i64 in[4]; 1795 int j; 1796 1797 for (j = 0; j < 4; ++j) { 1798 in[j] = tcg_temp_ebb_new_i64(); 1799 tcg_gen_ld_i64(in[j], tcg_env, aofs + j * 8); 1800 } 1801 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) { 1802 for (j = 0; j < 4; ++j) { 1803 tcg_gen_st_i64(in[j], tcg_env, dofs + i + j * 8); 1804 } 1805 } 1806 for (j = 0; j < 4; ++j) { 1807 tcg_temp_free_i64(in[j]); 1808 } 1809 } 1810 if (oprsz < maxsz) { 1811 expand_clr(dofs + oprsz, maxsz - oprsz); 1812 } 1813 } else { 1814 g_assert_not_reached(); 1815 } 1816 } 1817 1818 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz, 1819 uint32_t maxsz, uint64_t x) 1820 { 1821 check_size_align(oprsz, maxsz, dofs); 1822 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x); 1823 } 1824 1825 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs, 1826 uint32_t oprsz, uint32_t maxsz) 1827 { 1828 static const GVecGen2 g = { 1829 .fni8 = tcg_gen_not_i64, 1830 .fniv = tcg_gen_not_vec, 1831 .fno = gen_helper_gvec_not, 1832 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1833 }; 1834 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g); 1835 } 1836 1837 /* Perform a vector addition using normal addition and a mask. The mask 1838 should be the sign bit of each lane. This 6-operation form is more 1839 efficient than separate additions when there are 4 or more lanes in 1840 the 64-bit operation. */ 1841 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m) 1842 { 1843 TCGv_i64 t1 = tcg_temp_ebb_new_i64(); 1844 TCGv_i64 t2 = tcg_temp_ebb_new_i64(); 1845 TCGv_i64 t3 = tcg_temp_ebb_new_i64(); 1846 1847 tcg_gen_andc_i64(t1, a, m); 1848 tcg_gen_andc_i64(t2, b, m); 1849 tcg_gen_xor_i64(t3, a, b); 1850 tcg_gen_add_i64(d, t1, t2); 1851 tcg_gen_and_i64(t3, t3, m); 1852 tcg_gen_xor_i64(d, d, t3); 1853 1854 tcg_temp_free_i64(t1); 1855 tcg_temp_free_i64(t2); 1856 tcg_temp_free_i64(t3); 1857 } 1858 1859 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1860 { 1861 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80)); 1862 gen_addv_mask(d, a, b, m); 1863 } 1864 1865 void tcg_gen_vec_add8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 1866 { 1867 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80)); 1868 TCGv_i32 t1 = tcg_temp_ebb_new_i32(); 1869 TCGv_i32 t2 = tcg_temp_ebb_new_i32(); 1870 TCGv_i32 t3 = tcg_temp_ebb_new_i32(); 1871 1872 tcg_gen_andc_i32(t1, a, m); 1873 tcg_gen_andc_i32(t2, b, m); 1874 tcg_gen_xor_i32(t3, a, b); 1875 tcg_gen_add_i32(d, t1, t2); 1876 tcg_gen_and_i32(t3, t3, m); 1877 tcg_gen_xor_i32(d, d, t3); 1878 1879 tcg_temp_free_i32(t1); 1880 tcg_temp_free_i32(t2); 1881 tcg_temp_free_i32(t3); 1882 } 1883 1884 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1885 { 1886 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000)); 1887 gen_addv_mask(d, a, b, m); 1888 } 1889 1890 void tcg_gen_vec_add16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 1891 { 1892 TCGv_i32 t1 = tcg_temp_ebb_new_i32(); 1893 TCGv_i32 t2 = tcg_temp_ebb_new_i32(); 1894 1895 tcg_gen_andi_i32(t1, a, ~0xffff); 1896 tcg_gen_add_i32(t2, a, b); 1897 tcg_gen_add_i32(t1, t1, b); 1898 tcg_gen_deposit_i32(d, t1, t2, 0, 16); 1899 1900 tcg_temp_free_i32(t1); 1901 tcg_temp_free_i32(t2); 1902 } 1903 1904 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 1905 { 1906 TCGv_i64 t1 = tcg_temp_ebb_new_i64(); 1907 TCGv_i64 t2 = tcg_temp_ebb_new_i64(); 1908 1909 tcg_gen_andi_i64(t1, a, ~0xffffffffull); 1910 tcg_gen_add_i64(t2, a, b); 1911 tcg_gen_add_i64(t1, t1, b); 1912 tcg_gen_deposit_i64(d, t1, t2, 0, 32); 1913 1914 tcg_temp_free_i64(t1); 1915 tcg_temp_free_i64(t2); 1916 } 1917 1918 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 }; 1919 1920 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs, 1921 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 1922 { 1923 static const GVecGen3 g[4] = { 1924 { .fni8 = tcg_gen_vec_add8_i64, 1925 .fniv = tcg_gen_add_vec, 1926 .fno = gen_helper_gvec_add8, 1927 .opt_opc = vecop_list_add, 1928 .vece = MO_8 }, 1929 { .fni8 = tcg_gen_vec_add16_i64, 1930 .fniv = tcg_gen_add_vec, 1931 .fno = gen_helper_gvec_add16, 1932 .opt_opc = vecop_list_add, 1933 .vece = MO_16 }, 1934 { .fni4 = tcg_gen_add_i32, 1935 .fniv = tcg_gen_add_vec, 1936 .fno = gen_helper_gvec_add32, 1937 .opt_opc = vecop_list_add, 1938 .vece = MO_32 }, 1939 { .fni8 = tcg_gen_add_i64, 1940 .fniv = tcg_gen_add_vec, 1941 .fno = gen_helper_gvec_add64, 1942 .opt_opc = vecop_list_add, 1943 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1944 .vece = MO_64 }, 1945 }; 1946 1947 tcg_debug_assert(vece <= MO_64); 1948 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 1949 } 1950 1951 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs, 1952 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1953 { 1954 static const GVecGen2s g[4] = { 1955 { .fni8 = tcg_gen_vec_add8_i64, 1956 .fniv = tcg_gen_add_vec, 1957 .fno = gen_helper_gvec_adds8, 1958 .opt_opc = vecop_list_add, 1959 .vece = MO_8 }, 1960 { .fni8 = tcg_gen_vec_add16_i64, 1961 .fniv = tcg_gen_add_vec, 1962 .fno = gen_helper_gvec_adds16, 1963 .opt_opc = vecop_list_add, 1964 .vece = MO_16 }, 1965 { .fni4 = tcg_gen_add_i32, 1966 .fniv = tcg_gen_add_vec, 1967 .fno = gen_helper_gvec_adds32, 1968 .opt_opc = vecop_list_add, 1969 .vece = MO_32 }, 1970 { .fni8 = tcg_gen_add_i64, 1971 .fniv = tcg_gen_add_vec, 1972 .fno = gen_helper_gvec_adds64, 1973 .opt_opc = vecop_list_add, 1974 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 1975 .vece = MO_64 }, 1976 }; 1977 1978 tcg_debug_assert(vece <= MO_64); 1979 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]); 1980 } 1981 1982 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs, 1983 int64_t c, uint32_t oprsz, uint32_t maxsz) 1984 { 1985 TCGv_i64 tmp = tcg_constant_i64(c); 1986 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz); 1987 } 1988 1989 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 }; 1990 1991 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs, 1992 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 1993 { 1994 static const GVecGen2s g[4] = { 1995 { .fni8 = tcg_gen_vec_sub8_i64, 1996 .fniv = tcg_gen_sub_vec, 1997 .fno = gen_helper_gvec_subs8, 1998 .opt_opc = vecop_list_sub, 1999 .vece = MO_8 }, 2000 { .fni8 = tcg_gen_vec_sub16_i64, 2001 .fniv = tcg_gen_sub_vec, 2002 .fno = gen_helper_gvec_subs16, 2003 .opt_opc = vecop_list_sub, 2004 .vece = MO_16 }, 2005 { .fni4 = tcg_gen_sub_i32, 2006 .fniv = tcg_gen_sub_vec, 2007 .fno = gen_helper_gvec_subs32, 2008 .opt_opc = vecop_list_sub, 2009 .vece = MO_32 }, 2010 { .fni8 = tcg_gen_sub_i64, 2011 .fniv = tcg_gen_sub_vec, 2012 .fno = gen_helper_gvec_subs64, 2013 .opt_opc = vecop_list_sub, 2014 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2015 .vece = MO_64 }, 2016 }; 2017 2018 tcg_debug_assert(vece <= MO_64); 2019 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]); 2020 } 2021 2022 /* Perform a vector subtraction using normal subtraction and a mask. 2023 Compare gen_addv_mask above. */ 2024 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m) 2025 { 2026 TCGv_i64 t1 = tcg_temp_ebb_new_i64(); 2027 TCGv_i64 t2 = tcg_temp_ebb_new_i64(); 2028 TCGv_i64 t3 = tcg_temp_ebb_new_i64(); 2029 2030 tcg_gen_or_i64(t1, a, m); 2031 tcg_gen_andc_i64(t2, b, m); 2032 tcg_gen_eqv_i64(t3, a, b); 2033 tcg_gen_sub_i64(d, t1, t2); 2034 tcg_gen_and_i64(t3, t3, m); 2035 tcg_gen_xor_i64(d, d, t3); 2036 2037 tcg_temp_free_i64(t1); 2038 tcg_temp_free_i64(t2); 2039 tcg_temp_free_i64(t3); 2040 } 2041 2042 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 2043 { 2044 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80)); 2045 gen_subv_mask(d, a, b, m); 2046 } 2047 2048 void tcg_gen_vec_sub8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 2049 { 2050 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80)); 2051 TCGv_i32 t1 = tcg_temp_ebb_new_i32(); 2052 TCGv_i32 t2 = tcg_temp_ebb_new_i32(); 2053 TCGv_i32 t3 = tcg_temp_ebb_new_i32(); 2054 2055 tcg_gen_or_i32(t1, a, m); 2056 tcg_gen_andc_i32(t2, b, m); 2057 tcg_gen_eqv_i32(t3, a, b); 2058 tcg_gen_sub_i32(d, t1, t2); 2059 tcg_gen_and_i32(t3, t3, m); 2060 tcg_gen_xor_i32(d, d, t3); 2061 2062 tcg_temp_free_i32(t1); 2063 tcg_temp_free_i32(t2); 2064 tcg_temp_free_i32(t3); 2065 } 2066 2067 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 2068 { 2069 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000)); 2070 gen_subv_mask(d, a, b, m); 2071 } 2072 2073 void tcg_gen_vec_sub16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 2074 { 2075 TCGv_i32 t1 = tcg_temp_ebb_new_i32(); 2076 TCGv_i32 t2 = tcg_temp_ebb_new_i32(); 2077 2078 tcg_gen_andi_i32(t1, b, ~0xffff); 2079 tcg_gen_sub_i32(t2, a, b); 2080 tcg_gen_sub_i32(t1, a, t1); 2081 tcg_gen_deposit_i32(d, t1, t2, 0, 16); 2082 2083 tcg_temp_free_i32(t1); 2084 tcg_temp_free_i32(t2); 2085 } 2086 2087 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 2088 { 2089 TCGv_i64 t1 = tcg_temp_ebb_new_i64(); 2090 TCGv_i64 t2 = tcg_temp_ebb_new_i64(); 2091 2092 tcg_gen_andi_i64(t1, b, ~0xffffffffull); 2093 tcg_gen_sub_i64(t2, a, b); 2094 tcg_gen_sub_i64(t1, a, t1); 2095 tcg_gen_deposit_i64(d, t1, t2, 0, 32); 2096 2097 tcg_temp_free_i64(t1); 2098 tcg_temp_free_i64(t2); 2099 } 2100 2101 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs, 2102 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2103 { 2104 static const GVecGen3 g[4] = { 2105 { .fni8 = tcg_gen_vec_sub8_i64, 2106 .fniv = tcg_gen_sub_vec, 2107 .fno = gen_helper_gvec_sub8, 2108 .opt_opc = vecop_list_sub, 2109 .vece = MO_8 }, 2110 { .fni8 = tcg_gen_vec_sub16_i64, 2111 .fniv = tcg_gen_sub_vec, 2112 .fno = gen_helper_gvec_sub16, 2113 .opt_opc = vecop_list_sub, 2114 .vece = MO_16 }, 2115 { .fni4 = tcg_gen_sub_i32, 2116 .fniv = tcg_gen_sub_vec, 2117 .fno = gen_helper_gvec_sub32, 2118 .opt_opc = vecop_list_sub, 2119 .vece = MO_32 }, 2120 { .fni8 = tcg_gen_sub_i64, 2121 .fniv = tcg_gen_sub_vec, 2122 .fno = gen_helper_gvec_sub64, 2123 .opt_opc = vecop_list_sub, 2124 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2125 .vece = MO_64 }, 2126 }; 2127 2128 tcg_debug_assert(vece <= MO_64); 2129 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 2130 } 2131 2132 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 }; 2133 2134 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs, 2135 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2136 { 2137 static const GVecGen3 g[4] = { 2138 { .fniv = tcg_gen_mul_vec, 2139 .fno = gen_helper_gvec_mul8, 2140 .opt_opc = vecop_list_mul, 2141 .vece = MO_8 }, 2142 { .fniv = tcg_gen_mul_vec, 2143 .fno = gen_helper_gvec_mul16, 2144 .opt_opc = vecop_list_mul, 2145 .vece = MO_16 }, 2146 { .fni4 = tcg_gen_mul_i32, 2147 .fniv = tcg_gen_mul_vec, 2148 .fno = gen_helper_gvec_mul32, 2149 .opt_opc = vecop_list_mul, 2150 .vece = MO_32 }, 2151 { .fni8 = tcg_gen_mul_i64, 2152 .fniv = tcg_gen_mul_vec, 2153 .fno = gen_helper_gvec_mul64, 2154 .opt_opc = vecop_list_mul, 2155 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2156 .vece = MO_64 }, 2157 }; 2158 2159 tcg_debug_assert(vece <= MO_64); 2160 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 2161 } 2162 2163 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs, 2164 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 2165 { 2166 static const GVecGen2s g[4] = { 2167 { .fniv = tcg_gen_mul_vec, 2168 .fno = gen_helper_gvec_muls8, 2169 .opt_opc = vecop_list_mul, 2170 .vece = MO_8 }, 2171 { .fniv = tcg_gen_mul_vec, 2172 .fno = gen_helper_gvec_muls16, 2173 .opt_opc = vecop_list_mul, 2174 .vece = MO_16 }, 2175 { .fni4 = tcg_gen_mul_i32, 2176 .fniv = tcg_gen_mul_vec, 2177 .fno = gen_helper_gvec_muls32, 2178 .opt_opc = vecop_list_mul, 2179 .vece = MO_32 }, 2180 { .fni8 = tcg_gen_mul_i64, 2181 .fniv = tcg_gen_mul_vec, 2182 .fno = gen_helper_gvec_muls64, 2183 .opt_opc = vecop_list_mul, 2184 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2185 .vece = MO_64 }, 2186 }; 2187 2188 tcg_debug_assert(vece <= MO_64); 2189 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]); 2190 } 2191 2192 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs, 2193 int64_t c, uint32_t oprsz, uint32_t maxsz) 2194 { 2195 TCGv_i64 tmp = tcg_constant_i64(c); 2196 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz); 2197 } 2198 2199 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs, 2200 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2201 { 2202 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 }; 2203 static const GVecGen3 g[4] = { 2204 { .fniv = tcg_gen_ssadd_vec, 2205 .fno = gen_helper_gvec_ssadd8, 2206 .opt_opc = vecop_list, 2207 .vece = MO_8 }, 2208 { .fniv = tcg_gen_ssadd_vec, 2209 .fno = gen_helper_gvec_ssadd16, 2210 .opt_opc = vecop_list, 2211 .vece = MO_16 }, 2212 { .fniv = tcg_gen_ssadd_vec, 2213 .fno = gen_helper_gvec_ssadd32, 2214 .opt_opc = vecop_list, 2215 .vece = MO_32 }, 2216 { .fniv = tcg_gen_ssadd_vec, 2217 .fno = gen_helper_gvec_ssadd64, 2218 .opt_opc = vecop_list, 2219 .vece = MO_64 }, 2220 }; 2221 tcg_debug_assert(vece <= MO_64); 2222 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 2223 } 2224 2225 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs, 2226 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2227 { 2228 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 }; 2229 static const GVecGen3 g[4] = { 2230 { .fniv = tcg_gen_sssub_vec, 2231 .fno = gen_helper_gvec_sssub8, 2232 .opt_opc = vecop_list, 2233 .vece = MO_8 }, 2234 { .fniv = tcg_gen_sssub_vec, 2235 .fno = gen_helper_gvec_sssub16, 2236 .opt_opc = vecop_list, 2237 .vece = MO_16 }, 2238 { .fniv = tcg_gen_sssub_vec, 2239 .fno = gen_helper_gvec_sssub32, 2240 .opt_opc = vecop_list, 2241 .vece = MO_32 }, 2242 { .fniv = tcg_gen_sssub_vec, 2243 .fno = gen_helper_gvec_sssub64, 2244 .opt_opc = vecop_list, 2245 .vece = MO_64 }, 2246 }; 2247 tcg_debug_assert(vece <= MO_64); 2248 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 2249 } 2250 2251 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 2252 { 2253 TCGv_i32 max = tcg_constant_i32(-1); 2254 tcg_gen_add_i32(d, a, b); 2255 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d); 2256 } 2257 2258 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 2259 { 2260 TCGv_i64 max = tcg_constant_i64(-1); 2261 tcg_gen_add_i64(d, a, b); 2262 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d); 2263 } 2264 2265 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs, 2266 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2267 { 2268 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 }; 2269 static const GVecGen3 g[4] = { 2270 { .fniv = tcg_gen_usadd_vec, 2271 .fno = gen_helper_gvec_usadd8, 2272 .opt_opc = vecop_list, 2273 .vece = MO_8 }, 2274 { .fniv = tcg_gen_usadd_vec, 2275 .fno = gen_helper_gvec_usadd16, 2276 .opt_opc = vecop_list, 2277 .vece = MO_16 }, 2278 { .fni4 = tcg_gen_usadd_i32, 2279 .fniv = tcg_gen_usadd_vec, 2280 .fno = gen_helper_gvec_usadd32, 2281 .opt_opc = vecop_list, 2282 .vece = MO_32 }, 2283 { .fni8 = tcg_gen_usadd_i64, 2284 .fniv = tcg_gen_usadd_vec, 2285 .fno = gen_helper_gvec_usadd64, 2286 .opt_opc = vecop_list, 2287 .vece = MO_64 } 2288 }; 2289 tcg_debug_assert(vece <= MO_64); 2290 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 2291 } 2292 2293 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 2294 { 2295 TCGv_i32 min = tcg_constant_i32(0); 2296 tcg_gen_sub_i32(d, a, b); 2297 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d); 2298 } 2299 2300 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 2301 { 2302 TCGv_i64 min = tcg_constant_i64(0); 2303 tcg_gen_sub_i64(d, a, b); 2304 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d); 2305 } 2306 2307 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs, 2308 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2309 { 2310 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 }; 2311 static const GVecGen3 g[4] = { 2312 { .fniv = tcg_gen_ussub_vec, 2313 .fno = gen_helper_gvec_ussub8, 2314 .opt_opc = vecop_list, 2315 .vece = MO_8 }, 2316 { .fniv = tcg_gen_ussub_vec, 2317 .fno = gen_helper_gvec_ussub16, 2318 .opt_opc = vecop_list, 2319 .vece = MO_16 }, 2320 { .fni4 = tcg_gen_ussub_i32, 2321 .fniv = tcg_gen_ussub_vec, 2322 .fno = gen_helper_gvec_ussub32, 2323 .opt_opc = vecop_list, 2324 .vece = MO_32 }, 2325 { .fni8 = tcg_gen_ussub_i64, 2326 .fniv = tcg_gen_ussub_vec, 2327 .fno = gen_helper_gvec_ussub64, 2328 .opt_opc = vecop_list, 2329 .vece = MO_64 } 2330 }; 2331 tcg_debug_assert(vece <= MO_64); 2332 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 2333 } 2334 2335 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs, 2336 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2337 { 2338 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 }; 2339 static const GVecGen3 g[4] = { 2340 { .fniv = tcg_gen_smin_vec, 2341 .fno = gen_helper_gvec_smin8, 2342 .opt_opc = vecop_list, 2343 .vece = MO_8 }, 2344 { .fniv = tcg_gen_smin_vec, 2345 .fno = gen_helper_gvec_smin16, 2346 .opt_opc = vecop_list, 2347 .vece = MO_16 }, 2348 { .fni4 = tcg_gen_smin_i32, 2349 .fniv = tcg_gen_smin_vec, 2350 .fno = gen_helper_gvec_smin32, 2351 .opt_opc = vecop_list, 2352 .vece = MO_32 }, 2353 { .fni8 = tcg_gen_smin_i64, 2354 .fniv = tcg_gen_smin_vec, 2355 .fno = gen_helper_gvec_smin64, 2356 .opt_opc = vecop_list, 2357 .vece = MO_64 } 2358 }; 2359 tcg_debug_assert(vece <= MO_64); 2360 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 2361 } 2362 2363 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs, 2364 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2365 { 2366 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 }; 2367 static const GVecGen3 g[4] = { 2368 { .fniv = tcg_gen_umin_vec, 2369 .fno = gen_helper_gvec_umin8, 2370 .opt_opc = vecop_list, 2371 .vece = MO_8 }, 2372 { .fniv = tcg_gen_umin_vec, 2373 .fno = gen_helper_gvec_umin16, 2374 .opt_opc = vecop_list, 2375 .vece = MO_16 }, 2376 { .fni4 = tcg_gen_umin_i32, 2377 .fniv = tcg_gen_umin_vec, 2378 .fno = gen_helper_gvec_umin32, 2379 .opt_opc = vecop_list, 2380 .vece = MO_32 }, 2381 { .fni8 = tcg_gen_umin_i64, 2382 .fniv = tcg_gen_umin_vec, 2383 .fno = gen_helper_gvec_umin64, 2384 .opt_opc = vecop_list, 2385 .vece = MO_64 } 2386 }; 2387 tcg_debug_assert(vece <= MO_64); 2388 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 2389 } 2390 2391 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs, 2392 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2393 { 2394 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 }; 2395 static const GVecGen3 g[4] = { 2396 { .fniv = tcg_gen_smax_vec, 2397 .fno = gen_helper_gvec_smax8, 2398 .opt_opc = vecop_list, 2399 .vece = MO_8 }, 2400 { .fniv = tcg_gen_smax_vec, 2401 .fno = gen_helper_gvec_smax16, 2402 .opt_opc = vecop_list, 2403 .vece = MO_16 }, 2404 { .fni4 = tcg_gen_smax_i32, 2405 .fniv = tcg_gen_smax_vec, 2406 .fno = gen_helper_gvec_smax32, 2407 .opt_opc = vecop_list, 2408 .vece = MO_32 }, 2409 { .fni8 = tcg_gen_smax_i64, 2410 .fniv = tcg_gen_smax_vec, 2411 .fno = gen_helper_gvec_smax64, 2412 .opt_opc = vecop_list, 2413 .vece = MO_64 } 2414 }; 2415 tcg_debug_assert(vece <= MO_64); 2416 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 2417 } 2418 2419 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs, 2420 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2421 { 2422 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 }; 2423 static const GVecGen3 g[4] = { 2424 { .fniv = tcg_gen_umax_vec, 2425 .fno = gen_helper_gvec_umax8, 2426 .opt_opc = vecop_list, 2427 .vece = MO_8 }, 2428 { .fniv = tcg_gen_umax_vec, 2429 .fno = gen_helper_gvec_umax16, 2430 .opt_opc = vecop_list, 2431 .vece = MO_16 }, 2432 { .fni4 = tcg_gen_umax_i32, 2433 .fniv = tcg_gen_umax_vec, 2434 .fno = gen_helper_gvec_umax32, 2435 .opt_opc = vecop_list, 2436 .vece = MO_32 }, 2437 { .fni8 = tcg_gen_umax_i64, 2438 .fniv = tcg_gen_umax_vec, 2439 .fno = gen_helper_gvec_umax64, 2440 .opt_opc = vecop_list, 2441 .vece = MO_64 } 2442 }; 2443 tcg_debug_assert(vece <= MO_64); 2444 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 2445 } 2446 2447 /* Perform a vector negation using normal negation and a mask. 2448 Compare gen_subv_mask above. */ 2449 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m) 2450 { 2451 TCGv_i64 t2 = tcg_temp_ebb_new_i64(); 2452 TCGv_i64 t3 = tcg_temp_ebb_new_i64(); 2453 2454 tcg_gen_andc_i64(t3, m, b); 2455 tcg_gen_andc_i64(t2, b, m); 2456 tcg_gen_sub_i64(d, m, t2); 2457 tcg_gen_xor_i64(d, d, t3); 2458 2459 tcg_temp_free_i64(t2); 2460 tcg_temp_free_i64(t3); 2461 } 2462 2463 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b) 2464 { 2465 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80)); 2466 gen_negv_mask(d, b, m); 2467 } 2468 2469 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b) 2470 { 2471 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000)); 2472 gen_negv_mask(d, b, m); 2473 } 2474 2475 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b) 2476 { 2477 TCGv_i64 t1 = tcg_temp_ebb_new_i64(); 2478 TCGv_i64 t2 = tcg_temp_ebb_new_i64(); 2479 2480 tcg_gen_andi_i64(t1, b, ~0xffffffffull); 2481 tcg_gen_neg_i64(t2, b); 2482 tcg_gen_neg_i64(t1, t1); 2483 tcg_gen_deposit_i64(d, t1, t2, 0, 32); 2484 2485 tcg_temp_free_i64(t1); 2486 tcg_temp_free_i64(t2); 2487 } 2488 2489 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs, 2490 uint32_t oprsz, uint32_t maxsz) 2491 { 2492 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 }; 2493 static const GVecGen2 g[4] = { 2494 { .fni8 = tcg_gen_vec_neg8_i64, 2495 .fniv = tcg_gen_neg_vec, 2496 .fno = gen_helper_gvec_neg8, 2497 .opt_opc = vecop_list, 2498 .vece = MO_8 }, 2499 { .fni8 = tcg_gen_vec_neg16_i64, 2500 .fniv = tcg_gen_neg_vec, 2501 .fno = gen_helper_gvec_neg16, 2502 .opt_opc = vecop_list, 2503 .vece = MO_16 }, 2504 { .fni4 = tcg_gen_neg_i32, 2505 .fniv = tcg_gen_neg_vec, 2506 .fno = gen_helper_gvec_neg32, 2507 .opt_opc = vecop_list, 2508 .vece = MO_32 }, 2509 { .fni8 = tcg_gen_neg_i64, 2510 .fniv = tcg_gen_neg_vec, 2511 .fno = gen_helper_gvec_neg64, 2512 .opt_opc = vecop_list, 2513 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2514 .vece = MO_64 }, 2515 }; 2516 2517 tcg_debug_assert(vece <= MO_64); 2518 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]); 2519 } 2520 2521 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece) 2522 { 2523 TCGv_i64 t = tcg_temp_ebb_new_i64(); 2524 int nbit = 8 << vece; 2525 2526 /* Create -1 for each negative element. */ 2527 tcg_gen_shri_i64(t, b, nbit - 1); 2528 tcg_gen_andi_i64(t, t, dup_const(vece, 1)); 2529 tcg_gen_muli_i64(t, t, (1 << nbit) - 1); 2530 2531 /* 2532 * Invert (via xor -1) and add one. 2533 * Because of the ordering the msb is cleared, 2534 * so we never have carry into the next element. 2535 */ 2536 tcg_gen_xor_i64(d, b, t); 2537 tcg_gen_andi_i64(t, t, dup_const(vece, 1)); 2538 tcg_gen_add_i64(d, d, t); 2539 2540 tcg_temp_free_i64(t); 2541 } 2542 2543 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b) 2544 { 2545 gen_absv_mask(d, b, MO_8); 2546 } 2547 2548 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b) 2549 { 2550 gen_absv_mask(d, b, MO_16); 2551 } 2552 2553 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs, 2554 uint32_t oprsz, uint32_t maxsz) 2555 { 2556 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 }; 2557 static const GVecGen2 g[4] = { 2558 { .fni8 = tcg_gen_vec_abs8_i64, 2559 .fniv = tcg_gen_abs_vec, 2560 .fno = gen_helper_gvec_abs8, 2561 .opt_opc = vecop_list, 2562 .vece = MO_8 }, 2563 { .fni8 = tcg_gen_vec_abs16_i64, 2564 .fniv = tcg_gen_abs_vec, 2565 .fno = gen_helper_gvec_abs16, 2566 .opt_opc = vecop_list, 2567 .vece = MO_16 }, 2568 { .fni4 = tcg_gen_abs_i32, 2569 .fniv = tcg_gen_abs_vec, 2570 .fno = gen_helper_gvec_abs32, 2571 .opt_opc = vecop_list, 2572 .vece = MO_32 }, 2573 { .fni8 = tcg_gen_abs_i64, 2574 .fniv = tcg_gen_abs_vec, 2575 .fno = gen_helper_gvec_abs64, 2576 .opt_opc = vecop_list, 2577 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2578 .vece = MO_64 }, 2579 }; 2580 2581 tcg_debug_assert(vece <= MO_64); 2582 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]); 2583 } 2584 2585 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs, 2586 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2587 { 2588 static const GVecGen3 g = { 2589 .fni8 = tcg_gen_and_i64, 2590 .fniv = tcg_gen_and_vec, 2591 .fno = gen_helper_gvec_and, 2592 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2593 }; 2594 2595 if (aofs == bofs) { 2596 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); 2597 } else { 2598 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); 2599 } 2600 } 2601 2602 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs, 2603 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2604 { 2605 static const GVecGen3 g = { 2606 .fni8 = tcg_gen_or_i64, 2607 .fniv = tcg_gen_or_vec, 2608 .fno = gen_helper_gvec_or, 2609 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2610 }; 2611 2612 if (aofs == bofs) { 2613 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); 2614 } else { 2615 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); 2616 } 2617 } 2618 2619 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs, 2620 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2621 { 2622 static const GVecGen3 g = { 2623 .fni8 = tcg_gen_xor_i64, 2624 .fniv = tcg_gen_xor_vec, 2625 .fno = gen_helper_gvec_xor, 2626 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2627 }; 2628 2629 if (aofs == bofs) { 2630 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0); 2631 } else { 2632 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); 2633 } 2634 } 2635 2636 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs, 2637 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2638 { 2639 static const GVecGen3 g = { 2640 .fni8 = tcg_gen_andc_i64, 2641 .fniv = tcg_gen_andc_vec, 2642 .fno = gen_helper_gvec_andc, 2643 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2644 }; 2645 2646 if (aofs == bofs) { 2647 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0); 2648 } else { 2649 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); 2650 } 2651 } 2652 2653 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs, 2654 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2655 { 2656 static const GVecGen3 g = { 2657 .fni8 = tcg_gen_orc_i64, 2658 .fniv = tcg_gen_orc_vec, 2659 .fno = gen_helper_gvec_orc, 2660 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2661 }; 2662 2663 if (aofs == bofs) { 2664 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1); 2665 } else { 2666 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); 2667 } 2668 } 2669 2670 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs, 2671 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2672 { 2673 static const GVecGen3 g = { 2674 .fni8 = tcg_gen_nand_i64, 2675 .fniv = tcg_gen_nand_vec, 2676 .fno = gen_helper_gvec_nand, 2677 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2678 }; 2679 2680 if (aofs == bofs) { 2681 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz); 2682 } else { 2683 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); 2684 } 2685 } 2686 2687 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs, 2688 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2689 { 2690 static const GVecGen3 g = { 2691 .fni8 = tcg_gen_nor_i64, 2692 .fniv = tcg_gen_nor_vec, 2693 .fno = gen_helper_gvec_nor, 2694 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2695 }; 2696 2697 if (aofs == bofs) { 2698 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz); 2699 } else { 2700 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); 2701 } 2702 } 2703 2704 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs, 2705 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 2706 { 2707 static const GVecGen3 g = { 2708 .fni8 = tcg_gen_eqv_i64, 2709 .fniv = tcg_gen_eqv_vec, 2710 .fno = gen_helper_gvec_eqv, 2711 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2712 }; 2713 2714 if (aofs == bofs) { 2715 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1); 2716 } else { 2717 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g); 2718 } 2719 } 2720 2721 static const GVecGen2s gop_ands = { 2722 .fni8 = tcg_gen_and_i64, 2723 .fniv = tcg_gen_and_vec, 2724 .fno = gen_helper_gvec_ands, 2725 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2726 .vece = MO_64 2727 }; 2728 2729 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs, 2730 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 2731 { 2732 TCGv_i64 tmp = tcg_temp_ebb_new_i64(); 2733 tcg_gen_dup_i64(vece, tmp, c); 2734 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands); 2735 tcg_temp_free_i64(tmp); 2736 } 2737 2738 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs, 2739 int64_t c, uint32_t oprsz, uint32_t maxsz) 2740 { 2741 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c)); 2742 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands); 2743 } 2744 2745 void tcg_gen_gvec_andcs(unsigned vece, uint32_t dofs, uint32_t aofs, 2746 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 2747 { 2748 static GVecGen2s g = { 2749 .fni8 = tcg_gen_andc_i64, 2750 .fniv = tcg_gen_andc_vec, 2751 .fno = gen_helper_gvec_andcs, 2752 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2753 .vece = MO_64 2754 }; 2755 2756 TCGv_i64 tmp = tcg_temp_ebb_new_i64(); 2757 tcg_gen_dup_i64(vece, tmp, c); 2758 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &g); 2759 tcg_temp_free_i64(tmp); 2760 } 2761 2762 static const GVecGen2s gop_xors = { 2763 .fni8 = tcg_gen_xor_i64, 2764 .fniv = tcg_gen_xor_vec, 2765 .fno = gen_helper_gvec_xors, 2766 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2767 .vece = MO_64 2768 }; 2769 2770 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs, 2771 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 2772 { 2773 TCGv_i64 tmp = tcg_temp_ebb_new_i64(); 2774 tcg_gen_dup_i64(vece, tmp, c); 2775 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors); 2776 tcg_temp_free_i64(tmp); 2777 } 2778 2779 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs, 2780 int64_t c, uint32_t oprsz, uint32_t maxsz) 2781 { 2782 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c)); 2783 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors); 2784 } 2785 2786 static const GVecGen2s gop_ors = { 2787 .fni8 = tcg_gen_or_i64, 2788 .fniv = tcg_gen_or_vec, 2789 .fno = gen_helper_gvec_ors, 2790 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2791 .vece = MO_64 2792 }; 2793 2794 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs, 2795 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz) 2796 { 2797 TCGv_i64 tmp = tcg_temp_ebb_new_i64(); 2798 tcg_gen_dup_i64(vece, tmp, c); 2799 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors); 2800 tcg_temp_free_i64(tmp); 2801 } 2802 2803 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs, 2804 int64_t c, uint32_t oprsz, uint32_t maxsz) 2805 { 2806 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c)); 2807 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors); 2808 } 2809 2810 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) 2811 { 2812 uint64_t mask = dup_const(MO_8, 0xff << c); 2813 tcg_gen_shli_i64(d, a, c); 2814 tcg_gen_andi_i64(d, d, mask); 2815 } 2816 2817 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) 2818 { 2819 uint64_t mask = dup_const(MO_16, 0xffff << c); 2820 tcg_gen_shli_i64(d, a, c); 2821 tcg_gen_andi_i64(d, d, mask); 2822 } 2823 2824 void tcg_gen_vec_shl8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) 2825 { 2826 uint32_t mask = dup_const(MO_8, 0xff << c); 2827 tcg_gen_shli_i32(d, a, c); 2828 tcg_gen_andi_i32(d, d, mask); 2829 } 2830 2831 void tcg_gen_vec_shl16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) 2832 { 2833 uint32_t mask = dup_const(MO_16, 0xffff << c); 2834 tcg_gen_shli_i32(d, a, c); 2835 tcg_gen_andi_i32(d, d, mask); 2836 } 2837 2838 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs, 2839 int64_t shift, uint32_t oprsz, uint32_t maxsz) 2840 { 2841 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 }; 2842 static const GVecGen2i g[4] = { 2843 { .fni8 = tcg_gen_vec_shl8i_i64, 2844 .fniv = tcg_gen_shli_vec, 2845 .fno = gen_helper_gvec_shl8i, 2846 .opt_opc = vecop_list, 2847 .vece = MO_8 }, 2848 { .fni8 = tcg_gen_vec_shl16i_i64, 2849 .fniv = tcg_gen_shli_vec, 2850 .fno = gen_helper_gvec_shl16i, 2851 .opt_opc = vecop_list, 2852 .vece = MO_16 }, 2853 { .fni4 = tcg_gen_shli_i32, 2854 .fniv = tcg_gen_shli_vec, 2855 .fno = gen_helper_gvec_shl32i, 2856 .opt_opc = vecop_list, 2857 .vece = MO_32 }, 2858 { .fni8 = tcg_gen_shli_i64, 2859 .fniv = tcg_gen_shli_vec, 2860 .fno = gen_helper_gvec_shl64i, 2861 .opt_opc = vecop_list, 2862 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2863 .vece = MO_64 }, 2864 }; 2865 2866 tcg_debug_assert(vece <= MO_64); 2867 tcg_debug_assert(shift >= 0 && shift < (8 << vece)); 2868 if (shift == 0) { 2869 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); 2870 } else { 2871 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); 2872 } 2873 } 2874 2875 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) 2876 { 2877 uint64_t mask = dup_const(MO_8, 0xff >> c); 2878 tcg_gen_shri_i64(d, a, c); 2879 tcg_gen_andi_i64(d, d, mask); 2880 } 2881 2882 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) 2883 { 2884 uint64_t mask = dup_const(MO_16, 0xffff >> c); 2885 tcg_gen_shri_i64(d, a, c); 2886 tcg_gen_andi_i64(d, d, mask); 2887 } 2888 2889 void tcg_gen_vec_shr8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) 2890 { 2891 uint32_t mask = dup_const(MO_8, 0xff >> c); 2892 tcg_gen_shri_i32(d, a, c); 2893 tcg_gen_andi_i32(d, d, mask); 2894 } 2895 2896 void tcg_gen_vec_shr16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) 2897 { 2898 uint32_t mask = dup_const(MO_16, 0xffff >> c); 2899 tcg_gen_shri_i32(d, a, c); 2900 tcg_gen_andi_i32(d, d, mask); 2901 } 2902 2903 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs, 2904 int64_t shift, uint32_t oprsz, uint32_t maxsz) 2905 { 2906 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 }; 2907 static const GVecGen2i g[4] = { 2908 { .fni8 = tcg_gen_vec_shr8i_i64, 2909 .fniv = tcg_gen_shri_vec, 2910 .fno = gen_helper_gvec_shr8i, 2911 .opt_opc = vecop_list, 2912 .vece = MO_8 }, 2913 { .fni8 = tcg_gen_vec_shr16i_i64, 2914 .fniv = tcg_gen_shri_vec, 2915 .fno = gen_helper_gvec_shr16i, 2916 .opt_opc = vecop_list, 2917 .vece = MO_16 }, 2918 { .fni4 = tcg_gen_shri_i32, 2919 .fniv = tcg_gen_shri_vec, 2920 .fno = gen_helper_gvec_shr32i, 2921 .opt_opc = vecop_list, 2922 .vece = MO_32 }, 2923 { .fni8 = tcg_gen_shri_i64, 2924 .fniv = tcg_gen_shri_vec, 2925 .fno = gen_helper_gvec_shr64i, 2926 .opt_opc = vecop_list, 2927 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 2928 .vece = MO_64 }, 2929 }; 2930 2931 tcg_debug_assert(vece <= MO_64); 2932 tcg_debug_assert(shift >= 0 && shift < (8 << vece)); 2933 if (shift == 0) { 2934 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); 2935 } else { 2936 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); 2937 } 2938 } 2939 2940 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) 2941 { 2942 uint64_t s_mask = dup_const(MO_8, 0x80 >> c); 2943 uint64_t c_mask = dup_const(MO_8, 0xff >> c); 2944 TCGv_i64 s = tcg_temp_ebb_new_i64(); 2945 2946 tcg_gen_shri_i64(d, a, c); 2947 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */ 2948 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */ 2949 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */ 2950 tcg_gen_or_i64(d, d, s); /* include sign extension */ 2951 tcg_temp_free_i64(s); 2952 } 2953 2954 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) 2955 { 2956 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c); 2957 uint64_t c_mask = dup_const(MO_16, 0xffff >> c); 2958 TCGv_i64 s = tcg_temp_ebb_new_i64(); 2959 2960 tcg_gen_shri_i64(d, a, c); 2961 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */ 2962 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */ 2963 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */ 2964 tcg_gen_or_i64(d, d, s); /* include sign extension */ 2965 tcg_temp_free_i64(s); 2966 } 2967 2968 void tcg_gen_vec_sar8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) 2969 { 2970 uint32_t s_mask = dup_const(MO_8, 0x80 >> c); 2971 uint32_t c_mask = dup_const(MO_8, 0xff >> c); 2972 TCGv_i32 s = tcg_temp_ebb_new_i32(); 2973 2974 tcg_gen_shri_i32(d, a, c); 2975 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */ 2976 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */ 2977 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */ 2978 tcg_gen_or_i32(d, d, s); /* include sign extension */ 2979 tcg_temp_free_i32(s); 2980 } 2981 2982 void tcg_gen_vec_sar16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c) 2983 { 2984 uint32_t s_mask = dup_const(MO_16, 0x8000 >> c); 2985 uint32_t c_mask = dup_const(MO_16, 0xffff >> c); 2986 TCGv_i32 s = tcg_temp_ebb_new_i32(); 2987 2988 tcg_gen_shri_i32(d, a, c); 2989 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */ 2990 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */ 2991 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */ 2992 tcg_gen_or_i32(d, d, s); /* include sign extension */ 2993 tcg_temp_free_i32(s); 2994 } 2995 2996 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs, 2997 int64_t shift, uint32_t oprsz, uint32_t maxsz) 2998 { 2999 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 }; 3000 static const GVecGen2i g[4] = { 3001 { .fni8 = tcg_gen_vec_sar8i_i64, 3002 .fniv = tcg_gen_sari_vec, 3003 .fno = gen_helper_gvec_sar8i, 3004 .opt_opc = vecop_list, 3005 .vece = MO_8 }, 3006 { .fni8 = tcg_gen_vec_sar16i_i64, 3007 .fniv = tcg_gen_sari_vec, 3008 .fno = gen_helper_gvec_sar16i, 3009 .opt_opc = vecop_list, 3010 .vece = MO_16 }, 3011 { .fni4 = tcg_gen_sari_i32, 3012 .fniv = tcg_gen_sari_vec, 3013 .fno = gen_helper_gvec_sar32i, 3014 .opt_opc = vecop_list, 3015 .vece = MO_32 }, 3016 { .fni8 = tcg_gen_sari_i64, 3017 .fniv = tcg_gen_sari_vec, 3018 .fno = gen_helper_gvec_sar64i, 3019 .opt_opc = vecop_list, 3020 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3021 .vece = MO_64 }, 3022 }; 3023 3024 tcg_debug_assert(vece <= MO_64); 3025 tcg_debug_assert(shift >= 0 && shift < (8 << vece)); 3026 if (shift == 0) { 3027 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); 3028 } else { 3029 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); 3030 } 3031 } 3032 3033 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) 3034 { 3035 uint64_t mask = dup_const(MO_8, 0xff << c); 3036 3037 tcg_gen_shli_i64(d, a, c); 3038 tcg_gen_shri_i64(a, a, 8 - c); 3039 tcg_gen_andi_i64(d, d, mask); 3040 tcg_gen_andi_i64(a, a, ~mask); 3041 tcg_gen_or_i64(d, d, a); 3042 } 3043 3044 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c) 3045 { 3046 uint64_t mask = dup_const(MO_16, 0xffff << c); 3047 3048 tcg_gen_shli_i64(d, a, c); 3049 tcg_gen_shri_i64(a, a, 16 - c); 3050 tcg_gen_andi_i64(d, d, mask); 3051 tcg_gen_andi_i64(a, a, ~mask); 3052 tcg_gen_or_i64(d, d, a); 3053 } 3054 3055 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs, 3056 int64_t shift, uint32_t oprsz, uint32_t maxsz) 3057 { 3058 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 }; 3059 static const GVecGen2i g[4] = { 3060 { .fni8 = tcg_gen_vec_rotl8i_i64, 3061 .fniv = tcg_gen_rotli_vec, 3062 .fno = gen_helper_gvec_rotl8i, 3063 .opt_opc = vecop_list, 3064 .vece = MO_8 }, 3065 { .fni8 = tcg_gen_vec_rotl16i_i64, 3066 .fniv = tcg_gen_rotli_vec, 3067 .fno = gen_helper_gvec_rotl16i, 3068 .opt_opc = vecop_list, 3069 .vece = MO_16 }, 3070 { .fni4 = tcg_gen_rotli_i32, 3071 .fniv = tcg_gen_rotli_vec, 3072 .fno = gen_helper_gvec_rotl32i, 3073 .opt_opc = vecop_list, 3074 .vece = MO_32 }, 3075 { .fni8 = tcg_gen_rotli_i64, 3076 .fniv = tcg_gen_rotli_vec, 3077 .fno = gen_helper_gvec_rotl64i, 3078 .opt_opc = vecop_list, 3079 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3080 .vece = MO_64 }, 3081 }; 3082 3083 tcg_debug_assert(vece <= MO_64); 3084 tcg_debug_assert(shift >= 0 && shift < (8 << vece)); 3085 if (shift == 0) { 3086 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz); 3087 } else { 3088 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]); 3089 } 3090 } 3091 3092 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs, 3093 int64_t shift, uint32_t oprsz, uint32_t maxsz) 3094 { 3095 tcg_debug_assert(vece <= MO_64); 3096 tcg_debug_assert(shift >= 0 && shift < (8 << vece)); 3097 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1), 3098 oprsz, maxsz); 3099 } 3100 3101 /* 3102 * Specialized generation vector shifts by a non-constant scalar. 3103 */ 3104 3105 typedef struct { 3106 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32); 3107 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64); 3108 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32); 3109 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec); 3110 gen_helper_gvec_2 *fno[4]; 3111 TCGOpcode s_list[2]; 3112 TCGOpcode v_list[2]; 3113 } GVecGen2sh; 3114 3115 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs, 3116 uint32_t oprsz, uint32_t tysz, TCGType type, 3117 TCGv_i32 shift, 3118 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32)) 3119 { 3120 for (uint32_t i = 0; i < oprsz; i += tysz) { 3121 TCGv_vec t0 = tcg_temp_new_vec(type); 3122 TCGv_vec t1 = tcg_temp_new_vec(type); 3123 3124 tcg_gen_ld_vec(t0, tcg_env, aofs + i); 3125 fni(vece, t1, t0, shift); 3126 tcg_gen_st_vec(t1, tcg_env, dofs + i); 3127 } 3128 } 3129 3130 static void 3131 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift, 3132 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g) 3133 { 3134 TCGType type; 3135 uint32_t some; 3136 3137 check_size_align(oprsz, maxsz, dofs | aofs); 3138 check_overlap_2(dofs, aofs, maxsz); 3139 3140 /* If the backend has a scalar expansion, great. */ 3141 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64); 3142 if (type) { 3143 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL); 3144 switch (type) { 3145 case TCG_TYPE_V256: 3146 some = QEMU_ALIGN_DOWN(oprsz, 32); 3147 expand_2sh_vec(vece, dofs, aofs, some, 32, 3148 TCG_TYPE_V256, shift, g->fniv_s); 3149 if (some == oprsz) { 3150 break; 3151 } 3152 dofs += some; 3153 aofs += some; 3154 oprsz -= some; 3155 maxsz -= some; 3156 /* fallthru */ 3157 case TCG_TYPE_V128: 3158 expand_2sh_vec(vece, dofs, aofs, oprsz, 16, 3159 TCG_TYPE_V128, shift, g->fniv_s); 3160 break; 3161 case TCG_TYPE_V64: 3162 expand_2sh_vec(vece, dofs, aofs, oprsz, 8, 3163 TCG_TYPE_V64, shift, g->fniv_s); 3164 break; 3165 default: 3166 g_assert_not_reached(); 3167 } 3168 tcg_swap_vecop_list(hold_list); 3169 goto clear_tail; 3170 } 3171 3172 /* If the backend supports variable vector shifts, also cool. */ 3173 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64); 3174 if (type) { 3175 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL); 3176 TCGv_vec v_shift = tcg_temp_new_vec(type); 3177 3178 if (vece == MO_64) { 3179 TCGv_i64 sh64 = tcg_temp_ebb_new_i64(); 3180 tcg_gen_extu_i32_i64(sh64, shift); 3181 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64); 3182 tcg_temp_free_i64(sh64); 3183 } else { 3184 tcg_gen_dup_i32_vec(vece, v_shift, shift); 3185 } 3186 3187 switch (type) { 3188 case TCG_TYPE_V256: 3189 some = QEMU_ALIGN_DOWN(oprsz, 32); 3190 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256, 3191 v_shift, false, g->fniv_v); 3192 if (some == oprsz) { 3193 break; 3194 } 3195 dofs += some; 3196 aofs += some; 3197 oprsz -= some; 3198 maxsz -= some; 3199 /* fallthru */ 3200 case TCG_TYPE_V128: 3201 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128, 3202 v_shift, false, g->fniv_v); 3203 break; 3204 case TCG_TYPE_V64: 3205 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64, 3206 v_shift, false, g->fniv_v); 3207 break; 3208 default: 3209 g_assert_not_reached(); 3210 } 3211 tcg_temp_free_vec(v_shift); 3212 tcg_swap_vecop_list(hold_list); 3213 goto clear_tail; 3214 } 3215 3216 /* Otherwise fall back to integral... */ 3217 if (vece == MO_32 && check_size_impl(oprsz, 4)) { 3218 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4); 3219 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) { 3220 TCGv_i64 sh64 = tcg_temp_ebb_new_i64(); 3221 tcg_gen_extu_i32_i64(sh64, shift); 3222 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8); 3223 tcg_temp_free_i64(sh64); 3224 } else { 3225 TCGv_ptr a0 = tcg_temp_ebb_new_ptr(); 3226 TCGv_ptr a1 = tcg_temp_ebb_new_ptr(); 3227 TCGv_i32 desc = tcg_temp_ebb_new_i32(); 3228 3229 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT); 3230 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0)); 3231 tcg_gen_addi_ptr(a0, tcg_env, dofs); 3232 tcg_gen_addi_ptr(a1, tcg_env, aofs); 3233 3234 g->fno[vece](a0, a1, desc); 3235 3236 tcg_temp_free_ptr(a0); 3237 tcg_temp_free_ptr(a1); 3238 tcg_temp_free_i32(desc); 3239 return; 3240 } 3241 3242 clear_tail: 3243 if (oprsz < maxsz) { 3244 expand_clr(dofs + oprsz, maxsz - oprsz); 3245 } 3246 } 3247 3248 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs, 3249 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) 3250 { 3251 static const GVecGen2sh g = { 3252 .fni4 = tcg_gen_shl_i32, 3253 .fni8 = tcg_gen_shl_i64, 3254 .fniv_s = tcg_gen_shls_vec, 3255 .fniv_v = tcg_gen_shlv_vec, 3256 .fno = { 3257 gen_helper_gvec_shl8i, 3258 gen_helper_gvec_shl16i, 3259 gen_helper_gvec_shl32i, 3260 gen_helper_gvec_shl64i, 3261 }, 3262 .s_list = { INDEX_op_shls_vec, 0 }, 3263 .v_list = { INDEX_op_shlv_vec, 0 }, 3264 }; 3265 3266 tcg_debug_assert(vece <= MO_64); 3267 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); 3268 } 3269 3270 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs, 3271 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) 3272 { 3273 static const GVecGen2sh g = { 3274 .fni4 = tcg_gen_shr_i32, 3275 .fni8 = tcg_gen_shr_i64, 3276 .fniv_s = tcg_gen_shrs_vec, 3277 .fniv_v = tcg_gen_shrv_vec, 3278 .fno = { 3279 gen_helper_gvec_shr8i, 3280 gen_helper_gvec_shr16i, 3281 gen_helper_gvec_shr32i, 3282 gen_helper_gvec_shr64i, 3283 }, 3284 .s_list = { INDEX_op_shrs_vec, 0 }, 3285 .v_list = { INDEX_op_shrv_vec, 0 }, 3286 }; 3287 3288 tcg_debug_assert(vece <= MO_64); 3289 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); 3290 } 3291 3292 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs, 3293 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) 3294 { 3295 static const GVecGen2sh g = { 3296 .fni4 = tcg_gen_sar_i32, 3297 .fni8 = tcg_gen_sar_i64, 3298 .fniv_s = tcg_gen_sars_vec, 3299 .fniv_v = tcg_gen_sarv_vec, 3300 .fno = { 3301 gen_helper_gvec_sar8i, 3302 gen_helper_gvec_sar16i, 3303 gen_helper_gvec_sar32i, 3304 gen_helper_gvec_sar64i, 3305 }, 3306 .s_list = { INDEX_op_sars_vec, 0 }, 3307 .v_list = { INDEX_op_sarv_vec, 0 }, 3308 }; 3309 3310 tcg_debug_assert(vece <= MO_64); 3311 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); 3312 } 3313 3314 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs, 3315 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) 3316 { 3317 static const GVecGen2sh g = { 3318 .fni4 = tcg_gen_rotl_i32, 3319 .fni8 = tcg_gen_rotl_i64, 3320 .fniv_s = tcg_gen_rotls_vec, 3321 .fniv_v = tcg_gen_rotlv_vec, 3322 .fno = { 3323 gen_helper_gvec_rotl8i, 3324 gen_helper_gvec_rotl16i, 3325 gen_helper_gvec_rotl32i, 3326 gen_helper_gvec_rotl64i, 3327 }, 3328 .s_list = { INDEX_op_rotls_vec, 0 }, 3329 .v_list = { INDEX_op_rotlv_vec, 0 }, 3330 }; 3331 3332 tcg_debug_assert(vece <= MO_64); 3333 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g); 3334 } 3335 3336 void tcg_gen_gvec_rotrs(unsigned vece, uint32_t dofs, uint32_t aofs, 3337 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz) 3338 { 3339 TCGv_i32 tmp = tcg_temp_ebb_new_i32(); 3340 3341 tcg_gen_neg_i32(tmp, shift); 3342 tcg_gen_andi_i32(tmp, tmp, (8 << vece) - 1); 3343 tcg_gen_gvec_rotls(vece, dofs, aofs, tmp, oprsz, maxsz); 3344 tcg_temp_free_i32(tmp); 3345 } 3346 3347 /* 3348 * Expand D = A << (B % element bits) 3349 * 3350 * Unlike scalar shifts, where it is easy for the target front end 3351 * to include the modulo as part of the expansion. If the target 3352 * naturally includes the modulo as part of the operation, great! 3353 * If the target has some other behaviour from out-of-range shifts, 3354 * then it could not use this function anyway, and would need to 3355 * do it's own expansion with custom functions. 3356 */ 3357 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d, 3358 TCGv_vec a, TCGv_vec b) 3359 { 3360 TCGv_vec t = tcg_temp_new_vec_matching(d); 3361 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1); 3362 3363 tcg_gen_and_vec(vece, t, b, m); 3364 tcg_gen_shlv_vec(vece, d, a, t); 3365 tcg_temp_free_vec(t); 3366 } 3367 3368 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3369 { 3370 TCGv_i32 t = tcg_temp_ebb_new_i32(); 3371 3372 tcg_gen_andi_i32(t, b, 31); 3373 tcg_gen_shl_i32(d, a, t); 3374 tcg_temp_free_i32(t); 3375 } 3376 3377 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3378 { 3379 TCGv_i64 t = tcg_temp_ebb_new_i64(); 3380 3381 tcg_gen_andi_i64(t, b, 63); 3382 tcg_gen_shl_i64(d, a, t); 3383 tcg_temp_free_i64(t); 3384 } 3385 3386 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs, 3387 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 3388 { 3389 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 }; 3390 static const GVecGen3 g[4] = { 3391 { .fniv = tcg_gen_shlv_mod_vec, 3392 .fno = gen_helper_gvec_shl8v, 3393 .opt_opc = vecop_list, 3394 .vece = MO_8 }, 3395 { .fniv = tcg_gen_shlv_mod_vec, 3396 .fno = gen_helper_gvec_shl16v, 3397 .opt_opc = vecop_list, 3398 .vece = MO_16 }, 3399 { .fni4 = tcg_gen_shl_mod_i32, 3400 .fniv = tcg_gen_shlv_mod_vec, 3401 .fno = gen_helper_gvec_shl32v, 3402 .opt_opc = vecop_list, 3403 .vece = MO_32 }, 3404 { .fni8 = tcg_gen_shl_mod_i64, 3405 .fniv = tcg_gen_shlv_mod_vec, 3406 .fno = gen_helper_gvec_shl64v, 3407 .opt_opc = vecop_list, 3408 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3409 .vece = MO_64 }, 3410 }; 3411 3412 tcg_debug_assert(vece <= MO_64); 3413 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 3414 } 3415 3416 /* 3417 * Similarly for logical right shifts. 3418 */ 3419 3420 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d, 3421 TCGv_vec a, TCGv_vec b) 3422 { 3423 TCGv_vec t = tcg_temp_new_vec_matching(d); 3424 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1); 3425 3426 tcg_gen_and_vec(vece, t, b, m); 3427 tcg_gen_shrv_vec(vece, d, a, t); 3428 tcg_temp_free_vec(t); 3429 } 3430 3431 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3432 { 3433 TCGv_i32 t = tcg_temp_ebb_new_i32(); 3434 3435 tcg_gen_andi_i32(t, b, 31); 3436 tcg_gen_shr_i32(d, a, t); 3437 tcg_temp_free_i32(t); 3438 } 3439 3440 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3441 { 3442 TCGv_i64 t = tcg_temp_ebb_new_i64(); 3443 3444 tcg_gen_andi_i64(t, b, 63); 3445 tcg_gen_shr_i64(d, a, t); 3446 tcg_temp_free_i64(t); 3447 } 3448 3449 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs, 3450 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 3451 { 3452 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 }; 3453 static const GVecGen3 g[4] = { 3454 { .fniv = tcg_gen_shrv_mod_vec, 3455 .fno = gen_helper_gvec_shr8v, 3456 .opt_opc = vecop_list, 3457 .vece = MO_8 }, 3458 { .fniv = tcg_gen_shrv_mod_vec, 3459 .fno = gen_helper_gvec_shr16v, 3460 .opt_opc = vecop_list, 3461 .vece = MO_16 }, 3462 { .fni4 = tcg_gen_shr_mod_i32, 3463 .fniv = tcg_gen_shrv_mod_vec, 3464 .fno = gen_helper_gvec_shr32v, 3465 .opt_opc = vecop_list, 3466 .vece = MO_32 }, 3467 { .fni8 = tcg_gen_shr_mod_i64, 3468 .fniv = tcg_gen_shrv_mod_vec, 3469 .fno = gen_helper_gvec_shr64v, 3470 .opt_opc = vecop_list, 3471 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3472 .vece = MO_64 }, 3473 }; 3474 3475 tcg_debug_assert(vece <= MO_64); 3476 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 3477 } 3478 3479 /* 3480 * Similarly for arithmetic right shifts. 3481 */ 3482 3483 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d, 3484 TCGv_vec a, TCGv_vec b) 3485 { 3486 TCGv_vec t = tcg_temp_new_vec_matching(d); 3487 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1); 3488 3489 tcg_gen_and_vec(vece, t, b, m); 3490 tcg_gen_sarv_vec(vece, d, a, t); 3491 tcg_temp_free_vec(t); 3492 } 3493 3494 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3495 { 3496 TCGv_i32 t = tcg_temp_ebb_new_i32(); 3497 3498 tcg_gen_andi_i32(t, b, 31); 3499 tcg_gen_sar_i32(d, a, t); 3500 tcg_temp_free_i32(t); 3501 } 3502 3503 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3504 { 3505 TCGv_i64 t = tcg_temp_ebb_new_i64(); 3506 3507 tcg_gen_andi_i64(t, b, 63); 3508 tcg_gen_sar_i64(d, a, t); 3509 tcg_temp_free_i64(t); 3510 } 3511 3512 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs, 3513 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 3514 { 3515 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 }; 3516 static const GVecGen3 g[4] = { 3517 { .fniv = tcg_gen_sarv_mod_vec, 3518 .fno = gen_helper_gvec_sar8v, 3519 .opt_opc = vecop_list, 3520 .vece = MO_8 }, 3521 { .fniv = tcg_gen_sarv_mod_vec, 3522 .fno = gen_helper_gvec_sar16v, 3523 .opt_opc = vecop_list, 3524 .vece = MO_16 }, 3525 { .fni4 = tcg_gen_sar_mod_i32, 3526 .fniv = tcg_gen_sarv_mod_vec, 3527 .fno = gen_helper_gvec_sar32v, 3528 .opt_opc = vecop_list, 3529 .vece = MO_32 }, 3530 { .fni8 = tcg_gen_sar_mod_i64, 3531 .fniv = tcg_gen_sarv_mod_vec, 3532 .fno = gen_helper_gvec_sar64v, 3533 .opt_opc = vecop_list, 3534 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3535 .vece = MO_64 }, 3536 }; 3537 3538 tcg_debug_assert(vece <= MO_64); 3539 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 3540 } 3541 3542 /* 3543 * Similarly for rotates. 3544 */ 3545 3546 static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d, 3547 TCGv_vec a, TCGv_vec b) 3548 { 3549 TCGv_vec t = tcg_temp_new_vec_matching(d); 3550 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1); 3551 3552 tcg_gen_and_vec(vece, t, b, m); 3553 tcg_gen_rotlv_vec(vece, d, a, t); 3554 tcg_temp_free_vec(t); 3555 } 3556 3557 static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3558 { 3559 TCGv_i32 t = tcg_temp_ebb_new_i32(); 3560 3561 tcg_gen_andi_i32(t, b, 31); 3562 tcg_gen_rotl_i32(d, a, t); 3563 tcg_temp_free_i32(t); 3564 } 3565 3566 static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3567 { 3568 TCGv_i64 t = tcg_temp_ebb_new_i64(); 3569 3570 tcg_gen_andi_i64(t, b, 63); 3571 tcg_gen_rotl_i64(d, a, t); 3572 tcg_temp_free_i64(t); 3573 } 3574 3575 void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs, 3576 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 3577 { 3578 static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 }; 3579 static const GVecGen3 g[4] = { 3580 { .fniv = tcg_gen_rotlv_mod_vec, 3581 .fno = gen_helper_gvec_rotl8v, 3582 .opt_opc = vecop_list, 3583 .vece = MO_8 }, 3584 { .fniv = tcg_gen_rotlv_mod_vec, 3585 .fno = gen_helper_gvec_rotl16v, 3586 .opt_opc = vecop_list, 3587 .vece = MO_16 }, 3588 { .fni4 = tcg_gen_rotl_mod_i32, 3589 .fniv = tcg_gen_rotlv_mod_vec, 3590 .fno = gen_helper_gvec_rotl32v, 3591 .opt_opc = vecop_list, 3592 .vece = MO_32 }, 3593 { .fni8 = tcg_gen_rotl_mod_i64, 3594 .fniv = tcg_gen_rotlv_mod_vec, 3595 .fno = gen_helper_gvec_rotl64v, 3596 .opt_opc = vecop_list, 3597 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3598 .vece = MO_64 }, 3599 }; 3600 3601 tcg_debug_assert(vece <= MO_64); 3602 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 3603 } 3604 3605 static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d, 3606 TCGv_vec a, TCGv_vec b) 3607 { 3608 TCGv_vec t = tcg_temp_new_vec_matching(d); 3609 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1); 3610 3611 tcg_gen_and_vec(vece, t, b, m); 3612 tcg_gen_rotrv_vec(vece, d, a, t); 3613 tcg_temp_free_vec(t); 3614 } 3615 3616 static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) 3617 { 3618 TCGv_i32 t = tcg_temp_ebb_new_i32(); 3619 3620 tcg_gen_andi_i32(t, b, 31); 3621 tcg_gen_rotr_i32(d, a, t); 3622 tcg_temp_free_i32(t); 3623 } 3624 3625 static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) 3626 { 3627 TCGv_i64 t = tcg_temp_ebb_new_i64(); 3628 3629 tcg_gen_andi_i64(t, b, 63); 3630 tcg_gen_rotr_i64(d, a, t); 3631 tcg_temp_free_i64(t); 3632 } 3633 3634 void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs, 3635 uint32_t bofs, uint32_t oprsz, uint32_t maxsz) 3636 { 3637 static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 }; 3638 static const GVecGen3 g[4] = { 3639 { .fniv = tcg_gen_rotrv_mod_vec, 3640 .fno = gen_helper_gvec_rotr8v, 3641 .opt_opc = vecop_list, 3642 .vece = MO_8 }, 3643 { .fniv = tcg_gen_rotrv_mod_vec, 3644 .fno = gen_helper_gvec_rotr16v, 3645 .opt_opc = vecop_list, 3646 .vece = MO_16 }, 3647 { .fni4 = tcg_gen_rotr_mod_i32, 3648 .fniv = tcg_gen_rotrv_mod_vec, 3649 .fno = gen_helper_gvec_rotr32v, 3650 .opt_opc = vecop_list, 3651 .vece = MO_32 }, 3652 { .fni8 = tcg_gen_rotr_mod_i64, 3653 .fniv = tcg_gen_rotrv_mod_vec, 3654 .fno = gen_helper_gvec_rotr64v, 3655 .opt_opc = vecop_list, 3656 .prefer_i64 = TCG_TARGET_REG_BITS == 64, 3657 .vece = MO_64 }, 3658 }; 3659 3660 tcg_debug_assert(vece <= MO_64); 3661 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]); 3662 } 3663 3664 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */ 3665 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs, 3666 uint32_t oprsz, TCGCond cond) 3667 { 3668 TCGv_i32 t0 = tcg_temp_ebb_new_i32(); 3669 TCGv_i32 t1 = tcg_temp_ebb_new_i32(); 3670 uint32_t i; 3671 3672 for (i = 0; i < oprsz; i += 4) { 3673 tcg_gen_ld_i32(t0, tcg_env, aofs + i); 3674 tcg_gen_ld_i32(t1, tcg_env, bofs + i); 3675 tcg_gen_negsetcond_i32(cond, t0, t0, t1); 3676 tcg_gen_st_i32(t0, tcg_env, dofs + i); 3677 } 3678 tcg_temp_free_i32(t1); 3679 tcg_temp_free_i32(t0); 3680 } 3681 3682 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs, 3683 uint32_t oprsz, TCGCond cond) 3684 { 3685 TCGv_i64 t0 = tcg_temp_ebb_new_i64(); 3686 TCGv_i64 t1 = tcg_temp_ebb_new_i64(); 3687 uint32_t i; 3688 3689 for (i = 0; i < oprsz; i += 8) { 3690 tcg_gen_ld_i64(t0, tcg_env, aofs + i); 3691 tcg_gen_ld_i64(t1, tcg_env, bofs + i); 3692 tcg_gen_negsetcond_i64(cond, t0, t0, t1); 3693 tcg_gen_st_i64(t0, tcg_env, dofs + i); 3694 } 3695 tcg_temp_free_i64(t1); 3696 tcg_temp_free_i64(t0); 3697 } 3698 3699 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs, 3700 uint32_t bofs, uint32_t oprsz, uint32_t tysz, 3701 TCGType type, TCGCond cond) 3702 { 3703 for (uint32_t i = 0; i < oprsz; i += tysz) { 3704 TCGv_vec t0 = tcg_temp_new_vec(type); 3705 TCGv_vec t1 = tcg_temp_new_vec(type); 3706 TCGv_vec t2 = tcg_temp_new_vec(type); 3707 3708 tcg_gen_ld_vec(t0, tcg_env, aofs + i); 3709 tcg_gen_ld_vec(t1, tcg_env, bofs + i); 3710 tcg_gen_cmp_vec(cond, vece, t2, t0, t1); 3711 tcg_gen_st_vec(t2, tcg_env, dofs + i); 3712 } 3713 } 3714 3715 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs, 3716 uint32_t aofs, uint32_t bofs, 3717 uint32_t oprsz, uint32_t maxsz) 3718 { 3719 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 }; 3720 static gen_helper_gvec_3 * const eq_fn[4] = { 3721 gen_helper_gvec_eq8, gen_helper_gvec_eq16, 3722 gen_helper_gvec_eq32, gen_helper_gvec_eq64 3723 }; 3724 static gen_helper_gvec_3 * const ne_fn[4] = { 3725 gen_helper_gvec_ne8, gen_helper_gvec_ne16, 3726 gen_helper_gvec_ne32, gen_helper_gvec_ne64 3727 }; 3728 static gen_helper_gvec_3 * const lt_fn[4] = { 3729 gen_helper_gvec_lt8, gen_helper_gvec_lt16, 3730 gen_helper_gvec_lt32, gen_helper_gvec_lt64 3731 }; 3732 static gen_helper_gvec_3 * const le_fn[4] = { 3733 gen_helper_gvec_le8, gen_helper_gvec_le16, 3734 gen_helper_gvec_le32, gen_helper_gvec_le64 3735 }; 3736 static gen_helper_gvec_3 * const ltu_fn[4] = { 3737 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16, 3738 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64 3739 }; 3740 static gen_helper_gvec_3 * const leu_fn[4] = { 3741 gen_helper_gvec_leu8, gen_helper_gvec_leu16, 3742 gen_helper_gvec_leu32, gen_helper_gvec_leu64 3743 }; 3744 static gen_helper_gvec_3 * const * const fns[16] = { 3745 [TCG_COND_EQ] = eq_fn, 3746 [TCG_COND_NE] = ne_fn, 3747 [TCG_COND_LT] = lt_fn, 3748 [TCG_COND_LE] = le_fn, 3749 [TCG_COND_LTU] = ltu_fn, 3750 [TCG_COND_LEU] = leu_fn, 3751 }; 3752 3753 const TCGOpcode *hold_list; 3754 TCGType type; 3755 uint32_t some; 3756 3757 check_size_align(oprsz, maxsz, dofs | aofs | bofs); 3758 check_overlap_3(dofs, aofs, bofs, maxsz); 3759 3760 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) { 3761 do_dup(MO_8, dofs, oprsz, maxsz, 3762 NULL, NULL, -(cond == TCG_COND_ALWAYS)); 3763 return; 3764 } 3765 3766 /* 3767 * Implement inline with a vector type, if possible. 3768 * Prefer integer when 64-bit host and 64-bit comparison. 3769 */ 3770 hold_list = tcg_swap_vecop_list(cmp_list); 3771 type = choose_vector_type(cmp_list, vece, oprsz, 3772 TCG_TARGET_REG_BITS == 64 && vece == MO_64); 3773 switch (type) { 3774 case TCG_TYPE_V256: 3775 /* Recall that ARM SVE allows vector sizes that are not a 3776 * power of 2, but always a multiple of 16. The intent is 3777 * that e.g. size == 80 would be expanded with 2x32 + 1x16. 3778 */ 3779 some = QEMU_ALIGN_DOWN(oprsz, 32); 3780 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond); 3781 if (some == oprsz) { 3782 break; 3783 } 3784 dofs += some; 3785 aofs += some; 3786 bofs += some; 3787 oprsz -= some; 3788 maxsz -= some; 3789 /* fallthru */ 3790 case TCG_TYPE_V128: 3791 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond); 3792 break; 3793 case TCG_TYPE_V64: 3794 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond); 3795 break; 3796 3797 case 0: 3798 if (vece == MO_64 && check_size_impl(oprsz, 8)) { 3799 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond); 3800 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) { 3801 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond); 3802 } else { 3803 gen_helper_gvec_3 * const *fn = fns[cond]; 3804 3805 if (fn == NULL) { 3806 uint32_t tmp; 3807 tmp = aofs, aofs = bofs, bofs = tmp; 3808 cond = tcg_swap_cond(cond); 3809 fn = fns[cond]; 3810 assert(fn != NULL); 3811 } 3812 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]); 3813 oprsz = maxsz; 3814 } 3815 break; 3816 3817 default: 3818 g_assert_not_reached(); 3819 } 3820 tcg_swap_vecop_list(hold_list); 3821 3822 if (oprsz < maxsz) { 3823 expand_clr(dofs + oprsz, maxsz - oprsz); 3824 } 3825 } 3826 3827 static void expand_cmps_vec(unsigned vece, uint32_t dofs, uint32_t aofs, 3828 uint32_t oprsz, uint32_t tysz, TCGType type, 3829 TCGCond cond, TCGv_vec c) 3830 { 3831 TCGv_vec t0 = tcg_temp_new_vec(type); 3832 TCGv_vec t1 = tcg_temp_new_vec(type); 3833 uint32_t i; 3834 3835 for (i = 0; i < oprsz; i += tysz) { 3836 tcg_gen_ld_vec(t1, tcg_env, aofs + i); 3837 tcg_gen_cmp_vec(cond, vece, t0, t1, c); 3838 tcg_gen_st_vec(t0, tcg_env, dofs + i); 3839 } 3840 } 3841 3842 void tcg_gen_gvec_cmps(TCGCond cond, unsigned vece, uint32_t dofs, 3843 uint32_t aofs, TCGv_i64 c, 3844 uint32_t oprsz, uint32_t maxsz) 3845 { 3846 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 }; 3847 static gen_helper_gvec_2i * const eq_fn[4] = { 3848 gen_helper_gvec_eqs8, gen_helper_gvec_eqs16, 3849 gen_helper_gvec_eqs32, gen_helper_gvec_eqs64 3850 }; 3851 static gen_helper_gvec_2i * const lt_fn[4] = { 3852 gen_helper_gvec_lts8, gen_helper_gvec_lts16, 3853 gen_helper_gvec_lts32, gen_helper_gvec_lts64 3854 }; 3855 static gen_helper_gvec_2i * const le_fn[4] = { 3856 gen_helper_gvec_les8, gen_helper_gvec_les16, 3857 gen_helper_gvec_les32, gen_helper_gvec_les64 3858 }; 3859 static gen_helper_gvec_2i * const ltu_fn[4] = { 3860 gen_helper_gvec_ltus8, gen_helper_gvec_ltus16, 3861 gen_helper_gvec_ltus32, gen_helper_gvec_ltus64 3862 }; 3863 static gen_helper_gvec_2i * const leu_fn[4] = { 3864 gen_helper_gvec_leus8, gen_helper_gvec_leus16, 3865 gen_helper_gvec_leus32, gen_helper_gvec_leus64 3866 }; 3867 static gen_helper_gvec_2i * const * const fns[16] = { 3868 [TCG_COND_EQ] = eq_fn, 3869 [TCG_COND_LT] = lt_fn, 3870 [TCG_COND_LE] = le_fn, 3871 [TCG_COND_LTU] = ltu_fn, 3872 [TCG_COND_LEU] = leu_fn, 3873 }; 3874 3875 TCGType type; 3876 3877 check_size_align(oprsz, maxsz, dofs | aofs); 3878 check_overlap_2(dofs, aofs, maxsz); 3879 3880 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) { 3881 do_dup(MO_8, dofs, oprsz, maxsz, 3882 NULL, NULL, -(cond == TCG_COND_ALWAYS)); 3883 return; 3884 } 3885 3886 /* 3887 * Implement inline with a vector type, if possible. 3888 * Prefer integer when 64-bit host and 64-bit comparison. 3889 */ 3890 type = choose_vector_type(cmp_list, vece, oprsz, 3891 TCG_TARGET_REG_BITS == 64 && vece == MO_64); 3892 if (type != 0) { 3893 const TCGOpcode *hold_list = tcg_swap_vecop_list(cmp_list); 3894 TCGv_vec t_vec = tcg_temp_new_vec(type); 3895 uint32_t some; 3896 3897 tcg_gen_dup_i64_vec(vece, t_vec, c); 3898 switch (type) { 3899 case TCG_TYPE_V256: 3900 some = QEMU_ALIGN_DOWN(oprsz, 32); 3901 expand_cmps_vec(vece, dofs, aofs, some, 32, 3902 TCG_TYPE_V256, cond, t_vec); 3903 aofs += some; 3904 dofs += some; 3905 oprsz -= some; 3906 maxsz -= some; 3907 /* fallthru */ 3908 3909 case TCG_TYPE_V128: 3910 some = QEMU_ALIGN_DOWN(oprsz, 16); 3911 expand_cmps_vec(vece, dofs, aofs, some, 16, 3912 TCG_TYPE_V128, cond, t_vec); 3913 break; 3914 3915 case TCG_TYPE_V64: 3916 some = QEMU_ALIGN_DOWN(oprsz, 8); 3917 expand_cmps_vec(vece, dofs, aofs, some, 8, 3918 TCG_TYPE_V64, cond, t_vec); 3919 break; 3920 3921 default: 3922 g_assert_not_reached(); 3923 } 3924 tcg_temp_free_vec(t_vec); 3925 tcg_swap_vecop_list(hold_list); 3926 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) { 3927 TCGv_i64 t0 = tcg_temp_ebb_new_i64(); 3928 uint32_t i; 3929 3930 for (i = 0; i < oprsz; i += 8) { 3931 tcg_gen_ld_i64(t0, tcg_env, aofs + i); 3932 tcg_gen_negsetcond_i64(cond, t0, t0, c); 3933 tcg_gen_st_i64(t0, tcg_env, dofs + i); 3934 } 3935 tcg_temp_free_i64(t0); 3936 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) { 3937 TCGv_i32 t0 = tcg_temp_ebb_new_i32(); 3938 TCGv_i32 t1 = tcg_temp_ebb_new_i32(); 3939 uint32_t i; 3940 3941 tcg_gen_extrl_i64_i32(t1, c); 3942 for (i = 0; i < oprsz; i += 4) { 3943 tcg_gen_ld_i32(t0, tcg_env, aofs + i); 3944 tcg_gen_negsetcond_i32(cond, t0, t0, t1); 3945 tcg_gen_st_i32(t0, tcg_env, dofs + i); 3946 } 3947 tcg_temp_free_i32(t0); 3948 tcg_temp_free_i32(t1); 3949 } else { 3950 gen_helper_gvec_2i * const *fn = fns[cond]; 3951 bool inv = false; 3952 3953 if (fn == NULL) { 3954 cond = tcg_invert_cond(cond); 3955 fn = fns[cond]; 3956 assert(fn != NULL); 3957 inv = true; 3958 } 3959 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, inv, fn[vece]); 3960 return; 3961 } 3962 3963 if (oprsz < maxsz) { 3964 expand_clr(dofs + oprsz, maxsz - oprsz); 3965 } 3966 } 3967 3968 void tcg_gen_gvec_cmpi(TCGCond cond, unsigned vece, uint32_t dofs, 3969 uint32_t aofs, int64_t c, 3970 uint32_t oprsz, uint32_t maxsz) 3971 { 3972 TCGv_i64 tmp = tcg_constant_i64(c); 3973 tcg_gen_gvec_cmps(cond, vece, dofs, aofs, tmp, oprsz, maxsz); 3974 } 3975 3976 static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c) 3977 { 3978 TCGv_i64 t = tcg_temp_ebb_new_i64(); 3979 3980 tcg_gen_and_i64(t, b, a); 3981 tcg_gen_andc_i64(d, c, a); 3982 tcg_gen_or_i64(d, d, t); 3983 tcg_temp_free_i64(t); 3984 } 3985 3986 void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs, 3987 uint32_t bofs, uint32_t cofs, 3988 uint32_t oprsz, uint32_t maxsz) 3989 { 3990 static const GVecGen4 g = { 3991 .fni8 = tcg_gen_bitsel_i64, 3992 .fniv = tcg_gen_bitsel_vec, 3993 .fno = gen_helper_gvec_bitsel, 3994 }; 3995 3996 tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g); 3997 } 3998