1/* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2018 SiFive, Inc 5 * Copyright (c) 2008-2009 Arnaud Patard <arnaud.patard@rtp-net.org> 6 * Copyright (c) 2009 Aurelien Jarno <aurelien@aurel32.net> 7 * Copyright (c) 2008 Fabrice Bellard 8 * 9 * Based on i386/tcg-target.c and mips/tcg-target.c 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a copy 12 * of this software and associated documentation files (the "Software"), to deal 13 * in the Software without restriction, including without limitation the rights 14 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 15 * copies of the Software, and to permit persons to whom the Software is 16 * furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice shall be included in 19 * all copies or substantial portions of the Software. 20 * 21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 22 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 23 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 24 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 25 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 26 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 27 * THE SOFTWARE. 28 */ 29 30/* Used for function call generation. */ 31#define TCG_REG_CALL_STACK TCG_REG_SP 32#define TCG_TARGET_STACK_ALIGN 16 33#define TCG_TARGET_CALL_STACK_OFFSET 0 34#define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL 35#define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL 36#define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL 37#define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_NORMAL 38 39#ifdef CONFIG_DEBUG_TCG 40static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { 41 "zero", "ra", "sp", "gp", "tp", "t0", "t1", "t2", 42 "s0", "s1", "a0", "a1", "a2", "a3", "a4", "a5", 43 "a6", "a7", "s2", "s3", "s4", "s5", "s6", "s7", 44 "s8", "s9", "s10", "s11", "t3", "t4", "t5", "t6", 45 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", 46 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", 47 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", 48 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", 49}; 50#endif 51 52static const int tcg_target_reg_alloc_order[] = { 53 /* Call saved registers */ 54 /* TCG_REG_S0 reserved for TCG_AREG0 */ 55 TCG_REG_S1, 56 TCG_REG_S2, 57 TCG_REG_S3, 58 TCG_REG_S4, 59 TCG_REG_S5, 60 TCG_REG_S6, 61 TCG_REG_S7, 62 TCG_REG_S8, 63 TCG_REG_S9, 64 TCG_REG_S10, 65 TCG_REG_S11, 66 67 /* Call clobbered registers */ 68 TCG_REG_T0, 69 TCG_REG_T1, 70 TCG_REG_T2, 71 TCG_REG_T3, 72 TCG_REG_T4, 73 TCG_REG_T5, 74 TCG_REG_T6, 75 76 /* Argument registers */ 77 TCG_REG_A0, 78 TCG_REG_A1, 79 TCG_REG_A2, 80 TCG_REG_A3, 81 TCG_REG_A4, 82 TCG_REG_A5, 83 TCG_REG_A6, 84 TCG_REG_A7, 85 86 /* Vector registers and TCG_REG_V0 reserved for mask. */ 87 TCG_REG_V1, TCG_REG_V2, TCG_REG_V3, TCG_REG_V4, 88 TCG_REG_V5, TCG_REG_V6, TCG_REG_V7, TCG_REG_V8, 89 TCG_REG_V9, TCG_REG_V10, TCG_REG_V11, TCG_REG_V12, 90 TCG_REG_V13, TCG_REG_V14, TCG_REG_V15, TCG_REG_V16, 91 TCG_REG_V17, TCG_REG_V18, TCG_REG_V19, TCG_REG_V20, 92 TCG_REG_V21, TCG_REG_V22, TCG_REG_V23, TCG_REG_V24, 93 TCG_REG_V25, TCG_REG_V26, TCG_REG_V27, TCG_REG_V28, 94 TCG_REG_V29, TCG_REG_V30, TCG_REG_V31, 95}; 96 97static const int tcg_target_call_iarg_regs[] = { 98 TCG_REG_A0, 99 TCG_REG_A1, 100 TCG_REG_A2, 101 TCG_REG_A3, 102 TCG_REG_A4, 103 TCG_REG_A5, 104 TCG_REG_A6, 105 TCG_REG_A7, 106}; 107 108static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) 109{ 110 tcg_debug_assert(kind == TCG_CALL_RET_NORMAL); 111 tcg_debug_assert(slot >= 0 && slot <= 1); 112 return TCG_REG_A0 + slot; 113} 114 115#define TCG_CT_CONST_S12 0x100 116#define TCG_CT_CONST_M12 0x200 117#define TCG_CT_CONST_S5 0x400 118#define TCG_CT_CONST_CMP_VI 0x800 119 120#define ALL_GENERAL_REGS MAKE_64BIT_MASK(0, 32) 121#define ALL_VECTOR_REGS MAKE_64BIT_MASK(32, 32) 122#define ALL_DVECTOR_REG_GROUPS 0x5555555500000000 123#define ALL_QVECTOR_REG_GROUPS 0x1111111100000000 124 125#define sextreg sextract64 126 127/* 128 * RISC-V Base ISA opcodes (IM) 129 */ 130 131#define V_OPIVV (0x0 << 12) 132#define V_OPFVV (0x1 << 12) 133#define V_OPMVV (0x2 << 12) 134#define V_OPIVI (0x3 << 12) 135#define V_OPIVX (0x4 << 12) 136#define V_OPFVF (0x5 << 12) 137#define V_OPMVX (0x6 << 12) 138#define V_OPCFG (0x7 << 12) 139 140/* NF <= 7 && NF >= 0 */ 141#define V_NF(x) (x << 29) 142#define V_UNIT_STRIDE (0x0 << 20) 143#define V_UNIT_STRIDE_WHOLE_REG (0x8 << 20) 144 145typedef enum { 146 VLMUL_M1 = 0, /* LMUL=1 */ 147 VLMUL_M2, /* LMUL=2 */ 148 VLMUL_M4, /* LMUL=4 */ 149 VLMUL_M8, /* LMUL=8 */ 150 VLMUL_RESERVED, 151 VLMUL_MF8, /* LMUL=1/8 */ 152 VLMUL_MF4, /* LMUL=1/4 */ 153 VLMUL_MF2, /* LMUL=1/2 */ 154} RISCVVlmul; 155 156typedef enum { 157 OPC_ADD = 0x33, 158 OPC_ADDI = 0x13, 159 OPC_AND = 0x7033, 160 OPC_ANDI = 0x7013, 161 OPC_AUIPC = 0x17, 162 OPC_BEQ = 0x63, 163 OPC_BEXTI = 0x48005013, 164 OPC_BGE = 0x5063, 165 OPC_BGEU = 0x7063, 166 OPC_BLT = 0x4063, 167 OPC_BLTU = 0x6063, 168 OPC_BNE = 0x1063, 169 OPC_DIV = 0x2004033, 170 OPC_DIVU = 0x2005033, 171 OPC_JAL = 0x6f, 172 OPC_JALR = 0x67, 173 OPC_LB = 0x3, 174 OPC_LBU = 0x4003, 175 OPC_LD = 0x3003, 176 OPC_LH = 0x1003, 177 OPC_LHU = 0x5003, 178 OPC_LUI = 0x37, 179 OPC_LW = 0x2003, 180 OPC_LWU = 0x6003, 181 OPC_MUL = 0x2000033, 182 OPC_MULH = 0x2001033, 183 OPC_MULHSU = 0x2002033, 184 OPC_MULHU = 0x2003033, 185 OPC_OR = 0x6033, 186 OPC_ORI = 0x6013, 187 OPC_REM = 0x2006033, 188 OPC_REMU = 0x2007033, 189 OPC_SB = 0x23, 190 OPC_SD = 0x3023, 191 OPC_SH = 0x1023, 192 OPC_SLL = 0x1033, 193 OPC_SLLI = 0x1013, 194 OPC_SLT = 0x2033, 195 OPC_SLTI = 0x2013, 196 OPC_SLTIU = 0x3013, 197 OPC_SLTU = 0x3033, 198 OPC_SRA = 0x40005033, 199 OPC_SRAI = 0x40005013, 200 OPC_SRL = 0x5033, 201 OPC_SRLI = 0x5013, 202 OPC_SUB = 0x40000033, 203 OPC_SW = 0x2023, 204 OPC_XOR = 0x4033, 205 OPC_XORI = 0x4013, 206 207 OPC_ADDIW = 0x1b, 208 OPC_ADDW = 0x3b, 209 OPC_DIVUW = 0x200503b, 210 OPC_DIVW = 0x200403b, 211 OPC_MULW = 0x200003b, 212 OPC_REMUW = 0x200703b, 213 OPC_REMW = 0x200603b, 214 OPC_SLLIW = 0x101b, 215 OPC_SLLW = 0x103b, 216 OPC_SRAIW = 0x4000501b, 217 OPC_SRAW = 0x4000503b, 218 OPC_SRLIW = 0x501b, 219 OPC_SRLW = 0x503b, 220 OPC_SUBW = 0x4000003b, 221 222 OPC_FENCE = 0x0000000f, 223 OPC_NOP = OPC_ADDI, /* nop = addi r0,r0,0 */ 224 225 /* Zba: Bit manipulation extension, address generation */ 226 OPC_ADD_UW = 0x0800003b, 227 228 /* Zbb: Bit manipulation extension, basic bit manipulation */ 229 OPC_ANDN = 0x40007033, 230 OPC_CLZ = 0x60001013, 231 OPC_CLZW = 0x6000101b, 232 OPC_CPOP = 0x60201013, 233 OPC_CPOPW = 0x6020101b, 234 OPC_CTZ = 0x60101013, 235 OPC_CTZW = 0x6010101b, 236 OPC_ORN = 0x40006033, 237 OPC_REV8 = 0x6b805013, 238 OPC_ROL = 0x60001033, 239 OPC_ROLW = 0x6000103b, 240 OPC_ROR = 0x60005033, 241 OPC_RORW = 0x6000503b, 242 OPC_RORI = 0x60005013, 243 OPC_RORIW = 0x6000501b, 244 OPC_SEXT_B = 0x60401013, 245 OPC_SEXT_H = 0x60501013, 246 OPC_XNOR = 0x40004033, 247 OPC_ZEXT_H = 0x0800403b, 248 249 /* Zicond: integer conditional operations */ 250 OPC_CZERO_EQZ = 0x0e005033, 251 OPC_CZERO_NEZ = 0x0e007033, 252 253 /* V: Vector extension 1.0 */ 254 OPC_VSETVLI = 0x57 | V_OPCFG, 255 OPC_VSETIVLI = 0xc0000057 | V_OPCFG, 256 OPC_VSETVL = 0x80000057 | V_OPCFG, 257 258 OPC_VLE8_V = 0x7 | V_UNIT_STRIDE, 259 OPC_VLE16_V = 0x5007 | V_UNIT_STRIDE, 260 OPC_VLE32_V = 0x6007 | V_UNIT_STRIDE, 261 OPC_VLE64_V = 0x7007 | V_UNIT_STRIDE, 262 OPC_VSE8_V = 0x27 | V_UNIT_STRIDE, 263 OPC_VSE16_V = 0x5027 | V_UNIT_STRIDE, 264 OPC_VSE32_V = 0x6027 | V_UNIT_STRIDE, 265 OPC_VSE64_V = 0x7027 | V_UNIT_STRIDE, 266 267 OPC_VL1RE64_V = 0x2007007 | V_UNIT_STRIDE_WHOLE_REG | V_NF(0), 268 OPC_VL2RE64_V = 0x2007007 | V_UNIT_STRIDE_WHOLE_REG | V_NF(1), 269 OPC_VL4RE64_V = 0x2007007 | V_UNIT_STRIDE_WHOLE_REG | V_NF(3), 270 OPC_VL8RE64_V = 0x2007007 | V_UNIT_STRIDE_WHOLE_REG | V_NF(7), 271 272 OPC_VS1R_V = 0x2000027 | V_UNIT_STRIDE_WHOLE_REG | V_NF(0), 273 OPC_VS2R_V = 0x2000027 | V_UNIT_STRIDE_WHOLE_REG | V_NF(1), 274 OPC_VS4R_V = 0x2000027 | V_UNIT_STRIDE_WHOLE_REG | V_NF(3), 275 OPC_VS8R_V = 0x2000027 | V_UNIT_STRIDE_WHOLE_REG | V_NF(7), 276 277 OPC_VMERGE_VIM = 0x5c000057 | V_OPIVI, 278 OPC_VMERGE_VVM = 0x5c000057 | V_OPIVV, 279 280 OPC_VADD_VV = 0x57 | V_OPIVV, 281 OPC_VADD_VI = 0x57 | V_OPIVI, 282 OPC_VSUB_VV = 0x8000057 | V_OPIVV, 283 OPC_VRSUB_VI = 0xc000057 | V_OPIVI, 284 OPC_VAND_VV = 0x24000057 | V_OPIVV, 285 OPC_VAND_VI = 0x24000057 | V_OPIVI, 286 OPC_VOR_VV = 0x28000057 | V_OPIVV, 287 OPC_VOR_VI = 0x28000057 | V_OPIVI, 288 OPC_VXOR_VV = 0x2c000057 | V_OPIVV, 289 OPC_VXOR_VI = 0x2c000057 | V_OPIVI, 290 291 OPC_VMUL_VV = 0x94000057 | V_OPMVV, 292 OPC_VSADD_VV = 0x84000057 | V_OPIVV, 293 OPC_VSADD_VI = 0x84000057 | V_OPIVI, 294 OPC_VSSUB_VV = 0x8c000057 | V_OPIVV, 295 OPC_VSSUB_VI = 0x8c000057 | V_OPIVI, 296 OPC_VSADDU_VV = 0x80000057 | V_OPIVV, 297 OPC_VSADDU_VI = 0x80000057 | V_OPIVI, 298 OPC_VSSUBU_VV = 0x88000057 | V_OPIVV, 299 OPC_VSSUBU_VI = 0x88000057 | V_OPIVI, 300 301 OPC_VMAX_VV = 0x1c000057 | V_OPIVV, 302 OPC_VMAX_VI = 0x1c000057 | V_OPIVI, 303 OPC_VMAXU_VV = 0x18000057 | V_OPIVV, 304 OPC_VMAXU_VI = 0x18000057 | V_OPIVI, 305 OPC_VMIN_VV = 0x14000057 | V_OPIVV, 306 OPC_VMIN_VI = 0x14000057 | V_OPIVI, 307 OPC_VMINU_VV = 0x10000057 | V_OPIVV, 308 OPC_VMINU_VI = 0x10000057 | V_OPIVI, 309 310 OPC_VMSEQ_VV = 0x60000057 | V_OPIVV, 311 OPC_VMSEQ_VI = 0x60000057 | V_OPIVI, 312 OPC_VMSEQ_VX = 0x60000057 | V_OPIVX, 313 OPC_VMSNE_VV = 0x64000057 | V_OPIVV, 314 OPC_VMSNE_VI = 0x64000057 | V_OPIVI, 315 OPC_VMSNE_VX = 0x64000057 | V_OPIVX, 316 317 OPC_VMSLTU_VV = 0x68000057 | V_OPIVV, 318 OPC_VMSLTU_VX = 0x68000057 | V_OPIVX, 319 OPC_VMSLT_VV = 0x6c000057 | V_OPIVV, 320 OPC_VMSLT_VX = 0x6c000057 | V_OPIVX, 321 OPC_VMSLEU_VV = 0x70000057 | V_OPIVV, 322 OPC_VMSLEU_VX = 0x70000057 | V_OPIVX, 323 OPC_VMSLE_VV = 0x74000057 | V_OPIVV, 324 OPC_VMSLE_VX = 0x74000057 | V_OPIVX, 325 326 OPC_VMSLEU_VI = 0x70000057 | V_OPIVI, 327 OPC_VMSLE_VI = 0x74000057 | V_OPIVI, 328 OPC_VMSGTU_VI = 0x78000057 | V_OPIVI, 329 OPC_VMSGTU_VX = 0x78000057 | V_OPIVX, 330 OPC_VMSGT_VI = 0x7c000057 | V_OPIVI, 331 OPC_VMSGT_VX = 0x7c000057 | V_OPIVX, 332 333 OPC_VSLL_VV = 0x94000057 | V_OPIVV, 334 OPC_VSLL_VI = 0x94000057 | V_OPIVI, 335 OPC_VSLL_VX = 0x94000057 | V_OPIVX, 336 OPC_VSRL_VV = 0xa0000057 | V_OPIVV, 337 OPC_VSRL_VI = 0xa0000057 | V_OPIVI, 338 OPC_VSRL_VX = 0xa0000057 | V_OPIVX, 339 OPC_VSRA_VV = 0xa4000057 | V_OPIVV, 340 OPC_VSRA_VI = 0xa4000057 | V_OPIVI, 341 OPC_VSRA_VX = 0xa4000057 | V_OPIVX, 342 343 OPC_VMV_V_V = 0x5e000057 | V_OPIVV, 344 OPC_VMV_V_I = 0x5e000057 | V_OPIVI, 345 OPC_VMV_V_X = 0x5e000057 | V_OPIVX, 346 347 OPC_VMVNR_V = 0x9e000057 | V_OPIVI, 348} RISCVInsn; 349 350static const struct { 351 RISCVInsn op; 352 bool swap; 353} tcg_cmpcond_to_rvv_vv[] = { 354 [TCG_COND_EQ] = { OPC_VMSEQ_VV, false }, 355 [TCG_COND_NE] = { OPC_VMSNE_VV, false }, 356 [TCG_COND_LT] = { OPC_VMSLT_VV, false }, 357 [TCG_COND_GE] = { OPC_VMSLE_VV, true }, 358 [TCG_COND_GT] = { OPC_VMSLT_VV, true }, 359 [TCG_COND_LE] = { OPC_VMSLE_VV, false }, 360 [TCG_COND_LTU] = { OPC_VMSLTU_VV, false }, 361 [TCG_COND_GEU] = { OPC_VMSLEU_VV, true }, 362 [TCG_COND_GTU] = { OPC_VMSLTU_VV, true }, 363 [TCG_COND_LEU] = { OPC_VMSLEU_VV, false } 364}; 365 366static const struct { 367 RISCVInsn op; 368 int min; 369 int max; 370 bool adjust; 371} tcg_cmpcond_to_rvv_vi[] = { 372 [TCG_COND_EQ] = { OPC_VMSEQ_VI, -16, 15, false }, 373 [TCG_COND_NE] = { OPC_VMSNE_VI, -16, 15, false }, 374 [TCG_COND_GT] = { OPC_VMSGT_VI, -16, 15, false }, 375 [TCG_COND_LE] = { OPC_VMSLE_VI, -16, 15, false }, 376 [TCG_COND_LT] = { OPC_VMSLE_VI, -15, 16, true }, 377 [TCG_COND_GE] = { OPC_VMSGT_VI, -15, 16, true }, 378 [TCG_COND_LEU] = { OPC_VMSLEU_VI, 0, 15, false }, 379 [TCG_COND_GTU] = { OPC_VMSGTU_VI, 0, 15, false }, 380 [TCG_COND_LTU] = { OPC_VMSLEU_VI, 1, 16, true }, 381 [TCG_COND_GEU] = { OPC_VMSGTU_VI, 1, 16, true }, 382}; 383 384/* test if a constant matches the constraint */ 385static bool tcg_target_const_match(int64_t val, int ct, 386 TCGType type, TCGCond cond, int vece) 387{ 388 if (ct & TCG_CT_CONST) { 389 return 1; 390 } 391 if (type >= TCG_TYPE_V64) { 392 /* Val is replicated by VECE; extract the highest element. */ 393 val >>= (-8 << vece) & 63; 394 } 395 /* 396 * Sign extended from 12 bits: [-0x800, 0x7ff]. 397 * Used for most arithmetic, as this is the isa field. 398 */ 399 if ((ct & TCG_CT_CONST_S12) && val >= -0x800 && val <= 0x7ff) { 400 return 1; 401 } 402 /* 403 * Sign extended from 12 bits, +/- matching: [-0x7ff, 0x7ff]. 404 * Used by addsub2 and movcond, which may need the negative value, 405 * and requires the modified constant to be representable. 406 */ 407 if ((ct & TCG_CT_CONST_M12) && val >= -0x7ff && val <= 0x7ff) { 408 return 1; 409 } 410 /* 411 * Sign extended from 5 bits: [-0x10, 0x0f]. 412 * Used for vector-immediate. 413 */ 414 if ((ct & TCG_CT_CONST_S5) && val >= -0x10 && val <= 0x0f) { 415 return 1; 416 } 417 /* 418 * Used for vector compare OPIVI instructions. 419 */ 420 if ((ct & TCG_CT_CONST_CMP_VI) && 421 val >= tcg_cmpcond_to_rvv_vi[cond].min && 422 val <= tcg_cmpcond_to_rvv_vi[cond].max) { 423 return true; 424 } 425 return 0; 426} 427 428/* 429 * RISC-V immediate and instruction encoders (excludes 16-bit RVC) 430 */ 431 432/* Type-R */ 433 434static int32_t encode_r(RISCVInsn opc, TCGReg rd, TCGReg rs1, TCGReg rs2) 435{ 436 return opc | (rd & 0x1f) << 7 | (rs1 & 0x1f) << 15 | (rs2 & 0x1f) << 20; 437} 438 439/* Type-I */ 440 441static int32_t encode_imm12(uint32_t imm) 442{ 443 return (imm & 0xfff) << 20; 444} 445 446static int32_t encode_i(RISCVInsn opc, TCGReg rd, TCGReg rs1, uint32_t imm) 447{ 448 return opc | (rd & 0x1f) << 7 | (rs1 & 0x1f) << 15 | encode_imm12(imm); 449} 450 451/* Type-S */ 452 453static int32_t encode_simm12(uint32_t imm) 454{ 455 int32_t ret = 0; 456 457 ret |= (imm & 0xFE0) << 20; 458 ret |= (imm & 0x1F) << 7; 459 460 return ret; 461} 462 463static int32_t encode_s(RISCVInsn opc, TCGReg rs1, TCGReg rs2, uint32_t imm) 464{ 465 return opc | (rs1 & 0x1f) << 15 | (rs2 & 0x1f) << 20 | encode_simm12(imm); 466} 467 468/* Type-SB */ 469 470static int32_t encode_sbimm12(uint32_t imm) 471{ 472 int32_t ret = 0; 473 474 ret |= (imm & 0x1000) << 19; 475 ret |= (imm & 0x7e0) << 20; 476 ret |= (imm & 0x1e) << 7; 477 ret |= (imm & 0x800) >> 4; 478 479 return ret; 480} 481 482static int32_t encode_sb(RISCVInsn opc, TCGReg rs1, TCGReg rs2, uint32_t imm) 483{ 484 return opc | (rs1 & 0x1f) << 15 | (rs2 & 0x1f) << 20 | encode_sbimm12(imm); 485} 486 487/* Type-U */ 488 489static int32_t encode_uimm20(uint32_t imm) 490{ 491 return imm & 0xfffff000; 492} 493 494static int32_t encode_u(RISCVInsn opc, TCGReg rd, uint32_t imm) 495{ 496 return opc | (rd & 0x1f) << 7 | encode_uimm20(imm); 497} 498 499/* Type-UJ */ 500 501static int32_t encode_ujimm20(uint32_t imm) 502{ 503 int32_t ret = 0; 504 505 ret |= (imm & 0x0007fe) << (21 - 1); 506 ret |= (imm & 0x000800) << (20 - 11); 507 ret |= (imm & 0x0ff000) << (12 - 12); 508 ret |= (imm & 0x100000) << (31 - 20); 509 510 return ret; 511} 512 513static int32_t encode_uj(RISCVInsn opc, TCGReg rd, uint32_t imm) 514{ 515 return opc | (rd & 0x1f) << 7 | encode_ujimm20(imm); 516} 517 518 519/* Type-OPIVI */ 520 521static int32_t encode_vi(RISCVInsn opc, TCGReg rd, int32_t imm, 522 TCGReg vs2, bool vm) 523{ 524 return opc | (rd & 0x1f) << 7 | (imm & 0x1f) << 15 | 525 (vs2 & 0x1f) << 20 | (vm << 25); 526} 527 528/* Type-OPIVV/OPMVV/OPIVX/OPMVX, Vector load and store */ 529 530static int32_t encode_v(RISCVInsn opc, TCGReg d, TCGReg s1, 531 TCGReg s2, bool vm) 532{ 533 return opc | (d & 0x1f) << 7 | (s1 & 0x1f) << 15 | 534 (s2 & 0x1f) << 20 | (vm << 25); 535} 536 537/* Vector vtype */ 538 539static uint32_t encode_vtype(bool vta, bool vma, 540 MemOp vsew, RISCVVlmul vlmul) 541{ 542 return vma << 7 | vta << 6 | vsew << 3 | vlmul; 543} 544 545static int32_t encode_vset(RISCVInsn opc, TCGReg rd, 546 TCGArg rs1, uint32_t vtype) 547{ 548 return opc | (rd & 0x1f) << 7 | (rs1 & 0x1f) << 15 | (vtype & 0x7ff) << 20; 549} 550 551static int32_t encode_vseti(RISCVInsn opc, TCGReg rd, 552 uint32_t uimm, uint32_t vtype) 553{ 554 return opc | (rd & 0x1f) << 7 | (uimm & 0x1f) << 15 | (vtype & 0x3ff) << 20; 555} 556 557/* 558 * RISC-V instruction emitters 559 */ 560 561static void tcg_out_opc_reg(TCGContext *s, RISCVInsn opc, 562 TCGReg rd, TCGReg rs1, TCGReg rs2) 563{ 564 tcg_out32(s, encode_r(opc, rd, rs1, rs2)); 565} 566 567static void tcg_out_opc_imm(TCGContext *s, RISCVInsn opc, 568 TCGReg rd, TCGReg rs1, TCGArg imm) 569{ 570 tcg_out32(s, encode_i(opc, rd, rs1, imm)); 571} 572 573static void tcg_out_opc_store(TCGContext *s, RISCVInsn opc, 574 TCGReg rs1, TCGReg rs2, uint32_t imm) 575{ 576 tcg_out32(s, encode_s(opc, rs1, rs2, imm)); 577} 578 579static void tcg_out_opc_branch(TCGContext *s, RISCVInsn opc, 580 TCGReg rs1, TCGReg rs2, uint32_t imm) 581{ 582 tcg_out32(s, encode_sb(opc, rs1, rs2, imm)); 583} 584 585static void tcg_out_opc_upper(TCGContext *s, RISCVInsn opc, 586 TCGReg rd, uint32_t imm) 587{ 588 tcg_out32(s, encode_u(opc, rd, imm)); 589} 590 591static void tcg_out_opc_jump(TCGContext *s, RISCVInsn opc, 592 TCGReg rd, uint32_t imm) 593{ 594 tcg_out32(s, encode_uj(opc, rd, imm)); 595} 596 597static void tcg_out_nop_fill(tcg_insn_unit *p, int count) 598{ 599 int i; 600 for (i = 0; i < count; ++i) { 601 p[i] = OPC_NOP; 602 } 603} 604 605/* 606 * Relocations 607 */ 608 609static bool reloc_sbimm12(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 610{ 611 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 612 intptr_t offset = (intptr_t)target - (intptr_t)src_rx; 613 614 tcg_debug_assert((offset & 1) == 0); 615 if (offset == sextreg(offset, 0, 12)) { 616 *src_rw |= encode_sbimm12(offset); 617 return true; 618 } 619 620 return false; 621} 622 623static bool reloc_jimm20(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 624{ 625 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 626 intptr_t offset = (intptr_t)target - (intptr_t)src_rx; 627 628 tcg_debug_assert((offset & 1) == 0); 629 if (offset == sextreg(offset, 0, 20)) { 630 *src_rw |= encode_ujimm20(offset); 631 return true; 632 } 633 634 return false; 635} 636 637static bool reloc_call(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 638{ 639 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 640 intptr_t offset = (intptr_t)target - (intptr_t)src_rx; 641 int32_t lo = sextreg(offset, 0, 12); 642 int32_t hi = offset - lo; 643 644 if (offset == hi + lo) { 645 src_rw[0] |= encode_uimm20(hi); 646 src_rw[1] |= encode_imm12(lo); 647 return true; 648 } 649 650 return false; 651} 652 653static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 654 intptr_t value, intptr_t addend) 655{ 656 tcg_debug_assert(addend == 0); 657 switch (type) { 658 case R_RISCV_BRANCH: 659 return reloc_sbimm12(code_ptr, (tcg_insn_unit *)value); 660 case R_RISCV_JAL: 661 return reloc_jimm20(code_ptr, (tcg_insn_unit *)value); 662 case R_RISCV_CALL: 663 return reloc_call(code_ptr, (tcg_insn_unit *)value); 664 default: 665 g_assert_not_reached(); 666 } 667} 668 669/* 670 * RISC-V vector instruction emitters 671 */ 672 673/* 674 * Vector registers uses the same 5 lower bits as GPR registers, 675 * and vm=0 (vm = false) means vector masking ENABLED. 676 * With RVV 1.0, vs2 is the first operand, while rs1/imm is the 677 * second operand. 678 */ 679static void tcg_out_opc_vv(TCGContext *s, RISCVInsn opc, 680 TCGReg vd, TCGReg vs2, TCGReg vs1) 681{ 682 tcg_out32(s, encode_v(opc, vd, vs1, vs2, true)); 683} 684 685static void tcg_out_opc_vx(TCGContext *s, RISCVInsn opc, 686 TCGReg vd, TCGReg vs2, TCGReg rs1) 687{ 688 tcg_out32(s, encode_v(opc, vd, rs1, vs2, true)); 689} 690 691static void tcg_out_opc_vi(TCGContext *s, RISCVInsn opc, 692 TCGReg vd, TCGReg vs2, int32_t imm) 693{ 694 tcg_out32(s, encode_vi(opc, vd, imm, vs2, true)); 695} 696 697static void tcg_out_opc_vv_vi(TCGContext *s, RISCVInsn o_vv, RISCVInsn o_vi, 698 TCGReg vd, TCGReg vs2, TCGArg vi1, int c_vi1) 699{ 700 if (c_vi1) { 701 tcg_out_opc_vi(s, o_vi, vd, vs2, vi1); 702 } else { 703 tcg_out_opc_vv(s, o_vv, vd, vs2, vi1); 704 } 705} 706 707static void tcg_out_opc_vim_mask(TCGContext *s, RISCVInsn opc, TCGReg vd, 708 TCGReg vs2, int32_t imm) 709{ 710 tcg_out32(s, encode_vi(opc, vd, imm, vs2, false)); 711} 712 713static void tcg_out_opc_vvm_mask(TCGContext *s, RISCVInsn opc, TCGReg vd, 714 TCGReg vs2, TCGReg vs1) 715{ 716 tcg_out32(s, encode_v(opc, vd, vs1, vs2, false)); 717} 718 719typedef struct VsetCache { 720 uint32_t movi_insn; 721 uint32_t vset_insn; 722} VsetCache; 723 724static VsetCache riscv_vset_cache[3][4]; 725 726static void set_vtype(TCGContext *s, TCGType type, MemOp vsew) 727{ 728 const VsetCache *p = &riscv_vset_cache[type - TCG_TYPE_V64][vsew]; 729 730 s->riscv_cur_type = type; 731 s->riscv_cur_vsew = vsew; 732 733 if (p->movi_insn) { 734 tcg_out32(s, p->movi_insn); 735 } 736 tcg_out32(s, p->vset_insn); 737} 738 739static MemOp set_vtype_len(TCGContext *s, TCGType type) 740{ 741 if (type != s->riscv_cur_type) { 742 set_vtype(s, type, MO_64); 743 } 744 return s->riscv_cur_vsew; 745} 746 747static void set_vtype_len_sew(TCGContext *s, TCGType type, MemOp vsew) 748{ 749 if (type != s->riscv_cur_type || vsew != s->riscv_cur_vsew) { 750 set_vtype(s, type, vsew); 751 } 752} 753 754/* 755 * TCG intrinsics 756 */ 757 758static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 759{ 760 if (ret == arg) { 761 return true; 762 } 763 switch (type) { 764 case TCG_TYPE_I32: 765 case TCG_TYPE_I64: 766 tcg_out_opc_imm(s, OPC_ADDI, ret, arg, 0); 767 break; 768 case TCG_TYPE_V64: 769 case TCG_TYPE_V128: 770 case TCG_TYPE_V256: 771 { 772 int lmul = type - riscv_lg2_vlenb; 773 int nf = 1 << MAX(lmul, 0); 774 tcg_out_opc_vi(s, OPC_VMVNR_V, ret, arg, nf - 1); 775 } 776 break; 777 default: 778 g_assert_not_reached(); 779 } 780 return true; 781} 782 783static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg rd, 784 tcg_target_long val) 785{ 786 tcg_target_long lo, hi, tmp; 787 int shift, ret; 788 789 if (type == TCG_TYPE_I32) { 790 val = (int32_t)val; 791 } 792 793 lo = sextreg(val, 0, 12); 794 if (val == lo) { 795 tcg_out_opc_imm(s, OPC_ADDI, rd, TCG_REG_ZERO, lo); 796 return; 797 } 798 799 hi = val - lo; 800 if (val == (int32_t)val) { 801 tcg_out_opc_upper(s, OPC_LUI, rd, hi); 802 if (lo != 0) { 803 tcg_out_opc_imm(s, OPC_ADDIW, rd, rd, lo); 804 } 805 return; 806 } 807 808 tmp = tcg_pcrel_diff(s, (void *)val); 809 if (tmp == (int32_t)tmp) { 810 tcg_out_opc_upper(s, OPC_AUIPC, rd, 0); 811 tcg_out_opc_imm(s, OPC_ADDI, rd, rd, 0); 812 ret = reloc_call(s->code_ptr - 2, (const tcg_insn_unit *)val); 813 tcg_debug_assert(ret == true); 814 return; 815 } 816 817 /* Look for a single 20-bit section. */ 818 shift = ctz64(val); 819 tmp = val >> shift; 820 if (tmp == sextreg(tmp, 0, 20)) { 821 tcg_out_opc_upper(s, OPC_LUI, rd, tmp << 12); 822 if (shift > 12) { 823 tcg_out_opc_imm(s, OPC_SLLI, rd, rd, shift - 12); 824 } else { 825 tcg_out_opc_imm(s, OPC_SRAI, rd, rd, 12 - shift); 826 } 827 return; 828 } 829 830 /* Look for a few high zero bits, with lots of bits set in the middle. */ 831 shift = clz64(val); 832 tmp = val << shift; 833 if (tmp == sextreg(tmp, 12, 20) << 12) { 834 tcg_out_opc_upper(s, OPC_LUI, rd, tmp); 835 tcg_out_opc_imm(s, OPC_SRLI, rd, rd, shift); 836 return; 837 } else if (tmp == sextreg(tmp, 0, 12)) { 838 tcg_out_opc_imm(s, OPC_ADDI, rd, TCG_REG_ZERO, tmp); 839 tcg_out_opc_imm(s, OPC_SRLI, rd, rd, shift); 840 return; 841 } 842 843 /* Drop into the constant pool. */ 844 new_pool_label(s, val, R_RISCV_CALL, s->code_ptr, 0); 845 tcg_out_opc_upper(s, OPC_AUIPC, rd, 0); 846 tcg_out_opc_imm(s, OPC_LD, rd, rd, 0); 847} 848 849static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) 850{ 851 return false; 852} 853 854static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, 855 tcg_target_long imm) 856{ 857 /* This function is only used for passing structs by reference. */ 858 g_assert_not_reached(); 859} 860 861static void tcg_out_ext8u(TCGContext *s, TCGReg ret, TCGReg arg) 862{ 863 tcg_out_opc_imm(s, OPC_ANDI, ret, arg, 0xff); 864} 865 866static void tcg_out_ext16u(TCGContext *s, TCGReg ret, TCGReg arg) 867{ 868 if (cpuinfo & CPUINFO_ZBB) { 869 tcg_out_opc_reg(s, OPC_ZEXT_H, ret, arg, TCG_REG_ZERO); 870 } else { 871 tcg_out_opc_imm(s, OPC_SLLIW, ret, arg, 16); 872 tcg_out_opc_imm(s, OPC_SRLIW, ret, ret, 16); 873 } 874} 875 876static void tcg_out_ext32u(TCGContext *s, TCGReg ret, TCGReg arg) 877{ 878 if (cpuinfo & CPUINFO_ZBA) { 879 tcg_out_opc_reg(s, OPC_ADD_UW, ret, arg, TCG_REG_ZERO); 880 } else { 881 tcg_out_opc_imm(s, OPC_SLLI, ret, arg, 32); 882 tcg_out_opc_imm(s, OPC_SRLI, ret, ret, 32); 883 } 884} 885 886static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 887{ 888 if (cpuinfo & CPUINFO_ZBB) { 889 tcg_out_opc_imm(s, OPC_SEXT_B, ret, arg, 0); 890 } else { 891 tcg_out_opc_imm(s, OPC_SLLIW, ret, arg, 24); 892 tcg_out_opc_imm(s, OPC_SRAIW, ret, ret, 24); 893 } 894} 895 896static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 897{ 898 if (cpuinfo & CPUINFO_ZBB) { 899 tcg_out_opc_imm(s, OPC_SEXT_H, ret, arg, 0); 900 } else { 901 tcg_out_opc_imm(s, OPC_SLLIW, ret, arg, 16); 902 tcg_out_opc_imm(s, OPC_SRAIW, ret, ret, 16); 903 } 904} 905 906static void tcg_out_ext32s(TCGContext *s, TCGReg ret, TCGReg arg) 907{ 908 tcg_out_opc_imm(s, OPC_ADDIW, ret, arg, 0); 909} 910 911static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg ret, TCGReg arg) 912{ 913 if (ret != arg) { 914 tcg_out_ext32s(s, ret, arg); 915 } 916} 917 918static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg ret, TCGReg arg) 919{ 920 tcg_out_ext32u(s, ret, arg); 921} 922 923static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg ret, TCGReg arg) 924{ 925 tcg_out_ext32s(s, ret, arg); 926} 927 928static void tcg_out_ldst(TCGContext *s, RISCVInsn opc, TCGReg data, 929 TCGReg addr, intptr_t offset) 930{ 931 intptr_t imm12 = sextreg(offset, 0, 12); 932 933 if (offset != imm12) { 934 intptr_t diff = tcg_pcrel_diff(s, (void *)offset); 935 936 if (addr == TCG_REG_ZERO && diff == (int32_t)diff) { 937 imm12 = sextreg(diff, 0, 12); 938 tcg_out_opc_upper(s, OPC_AUIPC, TCG_REG_TMP2, diff - imm12); 939 } else { 940 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP2, offset - imm12); 941 if (addr != TCG_REG_ZERO) { 942 tcg_out_opc_reg(s, OPC_ADD, TCG_REG_TMP2, TCG_REG_TMP2, addr); 943 } 944 } 945 addr = TCG_REG_TMP2; 946 } 947 948 switch (opc) { 949 case OPC_SB: 950 case OPC_SH: 951 case OPC_SW: 952 case OPC_SD: 953 tcg_out_opc_store(s, opc, addr, data, imm12); 954 break; 955 case OPC_LB: 956 case OPC_LBU: 957 case OPC_LH: 958 case OPC_LHU: 959 case OPC_LW: 960 case OPC_LWU: 961 case OPC_LD: 962 tcg_out_opc_imm(s, opc, data, addr, imm12); 963 break; 964 default: 965 g_assert_not_reached(); 966 } 967} 968 969static void tcg_out_vec_ldst(TCGContext *s, RISCVInsn opc, TCGReg data, 970 TCGReg addr, intptr_t offset) 971{ 972 tcg_debug_assert(data >= TCG_REG_V0); 973 tcg_debug_assert(addr < TCG_REG_V0); 974 975 if (offset) { 976 tcg_debug_assert(addr != TCG_REG_ZERO); 977 if (offset == sextreg(offset, 0, 12)) { 978 tcg_out_opc_imm(s, OPC_ADDI, TCG_REG_TMP0, addr, offset); 979 } else { 980 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP0, offset); 981 tcg_out_opc_reg(s, OPC_ADD, TCG_REG_TMP0, TCG_REG_TMP0, addr); 982 } 983 addr = TCG_REG_TMP0; 984 } 985 tcg_out32(s, encode_v(opc, data, addr, 0, true)); 986} 987 988static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg arg, 989 TCGReg arg1, intptr_t arg2) 990{ 991 RISCVInsn insn; 992 993 switch (type) { 994 case TCG_TYPE_I32: 995 tcg_out_ldst(s, OPC_LW, arg, arg1, arg2); 996 break; 997 case TCG_TYPE_I64: 998 tcg_out_ldst(s, OPC_LD, arg, arg1, arg2); 999 break; 1000 case TCG_TYPE_V64: 1001 case TCG_TYPE_V128: 1002 case TCG_TYPE_V256: 1003 if (type >= riscv_lg2_vlenb) { 1004 static const RISCVInsn whole_reg_ld[] = { 1005 OPC_VL1RE64_V, OPC_VL2RE64_V, OPC_VL4RE64_V, OPC_VL8RE64_V 1006 }; 1007 unsigned idx = type - riscv_lg2_vlenb; 1008 1009 tcg_debug_assert(idx < ARRAY_SIZE(whole_reg_ld)); 1010 insn = whole_reg_ld[idx]; 1011 } else { 1012 static const RISCVInsn unit_stride_ld[] = { 1013 OPC_VLE8_V, OPC_VLE16_V, OPC_VLE32_V, OPC_VLE64_V 1014 }; 1015 MemOp prev_vsew = set_vtype_len(s, type); 1016 1017 tcg_debug_assert(prev_vsew < ARRAY_SIZE(unit_stride_ld)); 1018 insn = unit_stride_ld[prev_vsew]; 1019 } 1020 tcg_out_vec_ldst(s, insn, arg, arg1, arg2); 1021 break; 1022 default: 1023 g_assert_not_reached(); 1024 } 1025} 1026 1027static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, 1028 TCGReg arg1, intptr_t arg2) 1029{ 1030 RISCVInsn insn; 1031 1032 switch (type) { 1033 case TCG_TYPE_I32: 1034 tcg_out_ldst(s, OPC_SW, arg, arg1, arg2); 1035 break; 1036 case TCG_TYPE_I64: 1037 tcg_out_ldst(s, OPC_SD, arg, arg1, arg2); 1038 break; 1039 case TCG_TYPE_V64: 1040 case TCG_TYPE_V128: 1041 case TCG_TYPE_V256: 1042 if (type >= riscv_lg2_vlenb) { 1043 static const RISCVInsn whole_reg_st[] = { 1044 OPC_VS1R_V, OPC_VS2R_V, OPC_VS4R_V, OPC_VS8R_V 1045 }; 1046 unsigned idx = type - riscv_lg2_vlenb; 1047 1048 tcg_debug_assert(idx < ARRAY_SIZE(whole_reg_st)); 1049 insn = whole_reg_st[idx]; 1050 } else { 1051 static const RISCVInsn unit_stride_st[] = { 1052 OPC_VSE8_V, OPC_VSE16_V, OPC_VSE32_V, OPC_VSE64_V 1053 }; 1054 MemOp prev_vsew = set_vtype_len(s, type); 1055 1056 tcg_debug_assert(prev_vsew < ARRAY_SIZE(unit_stride_st)); 1057 insn = unit_stride_st[prev_vsew]; 1058 } 1059 tcg_out_vec_ldst(s, insn, arg, arg1, arg2); 1060 break; 1061 default: 1062 g_assert_not_reached(); 1063 } 1064} 1065 1066static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 1067 TCGReg base, intptr_t ofs) 1068{ 1069 if (val == 0) { 1070 tcg_out_st(s, type, TCG_REG_ZERO, base, ofs); 1071 return true; 1072 } 1073 return false; 1074} 1075 1076static void tcg_out_addsub2(TCGContext *s, 1077 TCGReg rl, TCGReg rh, 1078 TCGReg al, TCGReg ah, 1079 TCGArg bl, TCGArg bh, 1080 bool cbl, bool cbh, bool is_sub, bool is32bit) 1081{ 1082 const RISCVInsn opc_add = is32bit ? OPC_ADDW : OPC_ADD; 1083 const RISCVInsn opc_addi = is32bit ? OPC_ADDIW : OPC_ADDI; 1084 const RISCVInsn opc_sub = is32bit ? OPC_SUBW : OPC_SUB; 1085 TCGReg th = TCG_REG_TMP1; 1086 1087 /* If we have a negative constant such that negating it would 1088 make the high part zero, we can (usually) eliminate one insn. */ 1089 if (cbl && cbh && bh == -1 && bl != 0) { 1090 bl = -bl; 1091 bh = 0; 1092 is_sub = !is_sub; 1093 } 1094 1095 /* By operating on the high part first, we get to use the final 1096 carry operation to move back from the temporary. */ 1097 if (!cbh) { 1098 tcg_out_opc_reg(s, (is_sub ? opc_sub : opc_add), th, ah, bh); 1099 } else if (bh != 0 || ah == rl) { 1100 tcg_out_opc_imm(s, opc_addi, th, ah, (is_sub ? -bh : bh)); 1101 } else { 1102 th = ah; 1103 } 1104 1105 /* Note that tcg optimization should eliminate the bl == 0 case. */ 1106 if (is_sub) { 1107 if (cbl) { 1108 tcg_out_opc_imm(s, OPC_SLTIU, TCG_REG_TMP0, al, bl); 1109 tcg_out_opc_imm(s, opc_addi, rl, al, -bl); 1110 } else { 1111 tcg_out_opc_reg(s, OPC_SLTU, TCG_REG_TMP0, al, bl); 1112 tcg_out_opc_reg(s, opc_sub, rl, al, bl); 1113 } 1114 tcg_out_opc_reg(s, opc_sub, rh, th, TCG_REG_TMP0); 1115 } else { 1116 if (cbl) { 1117 tcg_out_opc_imm(s, opc_addi, rl, al, bl); 1118 tcg_out_opc_imm(s, OPC_SLTIU, TCG_REG_TMP0, rl, bl); 1119 } else if (al == bl) { 1120 /* 1121 * If the input regs overlap, this is a simple doubling 1122 * and carry-out is the input msb. This special case is 1123 * required when the output reg overlaps the input, 1124 * but we might as well use it always. 1125 */ 1126 tcg_out_opc_imm(s, OPC_SLTI, TCG_REG_TMP0, al, 0); 1127 tcg_out_opc_reg(s, opc_add, rl, al, al); 1128 } else { 1129 tcg_out_opc_reg(s, opc_add, rl, al, bl); 1130 tcg_out_opc_reg(s, OPC_SLTU, TCG_REG_TMP0, 1131 rl, (rl == bl ? al : bl)); 1132 } 1133 tcg_out_opc_reg(s, opc_add, rh, th, TCG_REG_TMP0); 1134 } 1135} 1136 1137static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 1138 TCGReg dst, TCGReg src) 1139{ 1140 set_vtype_len_sew(s, type, vece); 1141 tcg_out_opc_vx(s, OPC_VMV_V_X, dst, 0, src); 1142 return true; 1143} 1144 1145static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 1146 TCGReg dst, TCGReg base, intptr_t offset) 1147{ 1148 tcg_out_ld(s, TCG_TYPE_REG, TCG_REG_TMP0, base, offset); 1149 return tcg_out_dup_vec(s, type, vece, dst, TCG_REG_TMP0); 1150} 1151 1152static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 1153 TCGReg dst, int64_t arg) 1154{ 1155 /* Arg is replicated by VECE; extract the highest element. */ 1156 arg >>= (-8 << vece) & 63; 1157 1158 if (arg >= -16 && arg < 16) { 1159 if (arg == 0 || arg == -1) { 1160 set_vtype_len(s, type); 1161 } else { 1162 set_vtype_len_sew(s, type, vece); 1163 } 1164 tcg_out_opc_vi(s, OPC_VMV_V_I, dst, 0, arg); 1165 return; 1166 } 1167 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, arg); 1168 tcg_out_dup_vec(s, type, vece, dst, TCG_REG_TMP0); 1169} 1170 1171static const struct { 1172 RISCVInsn op; 1173 bool swap; 1174} tcg_brcond_to_riscv[] = { 1175 [TCG_COND_EQ] = { OPC_BEQ, false }, 1176 [TCG_COND_NE] = { OPC_BNE, false }, 1177 [TCG_COND_LT] = { OPC_BLT, false }, 1178 [TCG_COND_GE] = { OPC_BGE, false }, 1179 [TCG_COND_LE] = { OPC_BGE, true }, 1180 [TCG_COND_GT] = { OPC_BLT, true }, 1181 [TCG_COND_LTU] = { OPC_BLTU, false }, 1182 [TCG_COND_GEU] = { OPC_BGEU, false }, 1183 [TCG_COND_LEU] = { OPC_BGEU, true }, 1184 [TCG_COND_GTU] = { OPC_BLTU, true } 1185}; 1186 1187static void tgen_brcond(TCGContext *s, TCGType type, TCGCond cond, 1188 TCGReg arg1, TCGReg arg2, TCGLabel *l) 1189{ 1190 RISCVInsn op = tcg_brcond_to_riscv[cond].op; 1191 1192 tcg_debug_assert(op != 0); 1193 1194 if (tcg_brcond_to_riscv[cond].swap) { 1195 TCGReg t = arg1; 1196 arg1 = arg2; 1197 arg2 = t; 1198 } 1199 1200 tcg_out_reloc(s, s->code_ptr, R_RISCV_BRANCH, l, 0); 1201 tcg_out_opc_branch(s, op, arg1, arg2, 0); 1202} 1203 1204static const TCGOutOpBrcond outop_brcond = { 1205 .base.static_constraint = C_O0_I2(r, rz), 1206 .out_rr = tgen_brcond, 1207}; 1208 1209#define SETCOND_INV TCG_TARGET_NB_REGS 1210#define SETCOND_NEZ (SETCOND_INV << 1) 1211#define SETCOND_FLAGS (SETCOND_INV | SETCOND_NEZ) 1212 1213static int tcg_out_setcond_int(TCGContext *s, TCGCond cond, TCGReg ret, 1214 TCGReg arg1, tcg_target_long arg2, bool c2) 1215{ 1216 int flags = 0; 1217 1218 switch (cond) { 1219 case TCG_COND_EQ: /* -> NE */ 1220 case TCG_COND_GE: /* -> LT */ 1221 case TCG_COND_GEU: /* -> LTU */ 1222 case TCG_COND_GT: /* -> LE */ 1223 case TCG_COND_GTU: /* -> LEU */ 1224 cond = tcg_invert_cond(cond); 1225 flags ^= SETCOND_INV; 1226 break; 1227 default: 1228 break; 1229 } 1230 1231 switch (cond) { 1232 case TCG_COND_LE: 1233 case TCG_COND_LEU: 1234 /* 1235 * If we have a constant input, the most efficient way to implement 1236 * LE is by adding 1 and using LT. Watch out for wrap around for LEU. 1237 * We don't need to care for this for LE because the constant input 1238 * is constrained to signed 12-bit, and 0x800 is representable in the 1239 * temporary register. 1240 */ 1241 if (c2) { 1242 if (cond == TCG_COND_LEU) { 1243 /* unsigned <= -1 is true */ 1244 if (arg2 == -1) { 1245 tcg_out_movi(s, TCG_TYPE_REG, ret, !(flags & SETCOND_INV)); 1246 return ret; 1247 } 1248 cond = TCG_COND_LTU; 1249 } else { 1250 cond = TCG_COND_LT; 1251 } 1252 tcg_debug_assert(arg2 <= 0x7ff); 1253 if (++arg2 == 0x800) { 1254 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_TMP0, arg2); 1255 arg2 = TCG_REG_TMP0; 1256 c2 = false; 1257 } 1258 } else { 1259 TCGReg tmp = arg2; 1260 arg2 = arg1; 1261 arg1 = tmp; 1262 cond = tcg_swap_cond(cond); /* LE -> GE */ 1263 cond = tcg_invert_cond(cond); /* GE -> LT */ 1264 flags ^= SETCOND_INV; 1265 } 1266 break; 1267 default: 1268 break; 1269 } 1270 1271 switch (cond) { 1272 case TCG_COND_NE: 1273 flags |= SETCOND_NEZ; 1274 if (!c2) { 1275 tcg_out_opc_reg(s, OPC_XOR, ret, arg1, arg2); 1276 } else if (arg2 == 0) { 1277 ret = arg1; 1278 } else { 1279 tcg_out_opc_imm(s, OPC_XORI, ret, arg1, arg2); 1280 } 1281 break; 1282 1283 case TCG_COND_LT: 1284 if (c2) { 1285 tcg_out_opc_imm(s, OPC_SLTI, ret, arg1, arg2); 1286 } else { 1287 tcg_out_opc_reg(s, OPC_SLT, ret, arg1, arg2); 1288 } 1289 break; 1290 1291 case TCG_COND_LTU: 1292 if (c2) { 1293 tcg_out_opc_imm(s, OPC_SLTIU, ret, arg1, arg2); 1294 } else { 1295 tcg_out_opc_reg(s, OPC_SLTU, ret, arg1, arg2); 1296 } 1297 break; 1298 1299 default: 1300 g_assert_not_reached(); 1301 } 1302 1303 return ret | flags; 1304} 1305 1306static void tcg_out_setcond(TCGContext *s, TCGCond cond, TCGReg ret, 1307 TCGReg arg1, tcg_target_long arg2, bool c2) 1308{ 1309 int tmpflags = tcg_out_setcond_int(s, cond, ret, arg1, arg2, c2); 1310 1311 if (tmpflags != ret) { 1312 TCGReg tmp = tmpflags & ~SETCOND_FLAGS; 1313 1314 switch (tmpflags & SETCOND_FLAGS) { 1315 case SETCOND_INV: 1316 /* Intermediate result is boolean: simply invert. */ 1317 tcg_out_opc_imm(s, OPC_XORI, ret, tmp, 1); 1318 break; 1319 case SETCOND_NEZ: 1320 /* Intermediate result is zero/non-zero: test != 0. */ 1321 tcg_out_opc_reg(s, OPC_SLTU, ret, TCG_REG_ZERO, tmp); 1322 break; 1323 case SETCOND_NEZ | SETCOND_INV: 1324 /* Intermediate result is zero/non-zero: test == 0. */ 1325 tcg_out_opc_imm(s, OPC_SLTIU, ret, tmp, 1); 1326 break; 1327 default: 1328 g_assert_not_reached(); 1329 } 1330 } 1331} 1332 1333static void tgen_setcond(TCGContext *s, TCGType type, TCGCond cond, 1334 TCGReg dest, TCGReg arg1, TCGReg arg2) 1335{ 1336 tcg_out_setcond(s, cond, dest, arg1, arg2, false); 1337} 1338 1339static void tgen_setcondi(TCGContext *s, TCGType type, TCGCond cond, 1340 TCGReg dest, TCGReg arg1, tcg_target_long arg2) 1341{ 1342 tcg_out_setcond(s, cond, dest, arg1, arg2, true); 1343} 1344 1345static const TCGOutOpSetcond outop_setcond = { 1346 .base.static_constraint = C_O1_I2(r, r, rI), 1347 .out_rrr = tgen_setcond, 1348 .out_rri = tgen_setcondi, 1349}; 1350 1351static void tcg_out_negsetcond(TCGContext *s, TCGCond cond, TCGReg ret, 1352 TCGReg arg1, tcg_target_long arg2, bool c2) 1353{ 1354 int tmpflags; 1355 TCGReg tmp; 1356 1357 /* For LT/GE comparison against 0, replicate the sign bit. */ 1358 if (c2 && arg2 == 0) { 1359 switch (cond) { 1360 case TCG_COND_GE: 1361 tcg_out_opc_imm(s, OPC_XORI, ret, arg1, -1); 1362 arg1 = ret; 1363 /* fall through */ 1364 case TCG_COND_LT: 1365 tcg_out_opc_imm(s, OPC_SRAI, ret, arg1, TCG_TARGET_REG_BITS - 1); 1366 return; 1367 default: 1368 break; 1369 } 1370 } 1371 1372 tmpflags = tcg_out_setcond_int(s, cond, ret, arg1, arg2, c2); 1373 tmp = tmpflags & ~SETCOND_FLAGS; 1374 1375 /* If intermediate result is zero/non-zero: test != 0. */ 1376 if (tmpflags & SETCOND_NEZ) { 1377 tcg_out_opc_reg(s, OPC_SLTU, ret, TCG_REG_ZERO, tmp); 1378 tmp = ret; 1379 } 1380 1381 /* Produce the 0/-1 result. */ 1382 if (tmpflags & SETCOND_INV) { 1383 tcg_out_opc_imm(s, OPC_ADDI, ret, tmp, -1); 1384 } else { 1385 tcg_out_opc_reg(s, OPC_SUB, ret, TCG_REG_ZERO, tmp); 1386 } 1387} 1388 1389static void tgen_negsetcond(TCGContext *s, TCGType type, TCGCond cond, 1390 TCGReg dest, TCGReg arg1, TCGReg arg2) 1391{ 1392 tcg_out_negsetcond(s, cond, dest, arg1, arg2, false); 1393} 1394 1395static void tgen_negsetcondi(TCGContext *s, TCGType type, TCGCond cond, 1396 TCGReg dest, TCGReg arg1, tcg_target_long arg2) 1397{ 1398 tcg_out_negsetcond(s, cond, dest, arg1, arg2, true); 1399} 1400 1401static const TCGOutOpSetcond outop_negsetcond = { 1402 .base.static_constraint = C_O1_I2(r, r, rI), 1403 .out_rrr = tgen_negsetcond, 1404 .out_rri = tgen_negsetcondi, 1405}; 1406 1407static void tcg_out_movcond_zicond(TCGContext *s, TCGReg ret, TCGReg test_ne, 1408 int val1, bool c_val1, 1409 int val2, bool c_val2) 1410{ 1411 if (val1 == 0) { 1412 if (c_val2) { 1413 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_TMP1, val2); 1414 val2 = TCG_REG_TMP1; 1415 } 1416 tcg_out_opc_reg(s, OPC_CZERO_NEZ, ret, val2, test_ne); 1417 return; 1418 } 1419 1420 if (val2 == 0) { 1421 if (c_val1) { 1422 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_TMP1, val1); 1423 val1 = TCG_REG_TMP1; 1424 } 1425 tcg_out_opc_reg(s, OPC_CZERO_EQZ, ret, val1, test_ne); 1426 return; 1427 } 1428 1429 if (c_val2) { 1430 if (c_val1) { 1431 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_TMP1, val1 - val2); 1432 } else { 1433 tcg_out_opc_imm(s, OPC_ADDI, TCG_REG_TMP1, val1, -val2); 1434 } 1435 tcg_out_opc_reg(s, OPC_CZERO_EQZ, ret, TCG_REG_TMP1, test_ne); 1436 tcg_out_opc_imm(s, OPC_ADDI, ret, ret, val2); 1437 return; 1438 } 1439 1440 if (c_val1) { 1441 tcg_out_opc_imm(s, OPC_ADDI, TCG_REG_TMP1, val2, -val1); 1442 tcg_out_opc_reg(s, OPC_CZERO_NEZ, ret, TCG_REG_TMP1, test_ne); 1443 tcg_out_opc_imm(s, OPC_ADDI, ret, ret, val1); 1444 return; 1445 } 1446 1447 tcg_out_opc_reg(s, OPC_CZERO_NEZ, TCG_REG_TMP1, val2, test_ne); 1448 tcg_out_opc_reg(s, OPC_CZERO_EQZ, TCG_REG_TMP0, val1, test_ne); 1449 tcg_out_opc_reg(s, OPC_OR, ret, TCG_REG_TMP0, TCG_REG_TMP1); 1450} 1451 1452static void tcg_out_movcond_br1(TCGContext *s, TCGCond cond, TCGReg ret, 1453 TCGReg cmp1, TCGReg cmp2, 1454 int val, bool c_val) 1455{ 1456 RISCVInsn op; 1457 int disp = 8; 1458 1459 tcg_debug_assert((unsigned)cond < ARRAY_SIZE(tcg_brcond_to_riscv)); 1460 op = tcg_brcond_to_riscv[cond].op; 1461 tcg_debug_assert(op != 0); 1462 1463 if (tcg_brcond_to_riscv[cond].swap) { 1464 tcg_out_opc_branch(s, op, cmp2, cmp1, disp); 1465 } else { 1466 tcg_out_opc_branch(s, op, cmp1, cmp2, disp); 1467 } 1468 if (c_val) { 1469 tcg_out_opc_imm(s, OPC_ADDI, ret, TCG_REG_ZERO, val); 1470 } else { 1471 tcg_out_opc_imm(s, OPC_ADDI, ret, val, 0); 1472 } 1473} 1474 1475static void tcg_out_movcond_br2(TCGContext *s, TCGCond cond, TCGReg ret, 1476 TCGReg cmp1, TCGReg cmp2, 1477 int val1, bool c_val1, 1478 int val2, bool c_val2) 1479{ 1480 TCGReg tmp; 1481 1482 /* TCG optimizer reorders to prefer ret matching val2. */ 1483 if (!c_val2 && ret == val2) { 1484 cond = tcg_invert_cond(cond); 1485 tcg_out_movcond_br1(s, cond, ret, cmp1, cmp2, val1, c_val1); 1486 return; 1487 } 1488 1489 if (!c_val1 && ret == val1) { 1490 tcg_out_movcond_br1(s, cond, ret, cmp1, cmp2, val2, c_val2); 1491 return; 1492 } 1493 1494 tmp = (ret == cmp1 || ret == cmp2 ? TCG_REG_TMP1 : ret); 1495 if (c_val1) { 1496 tcg_out_movi(s, TCG_TYPE_REG, tmp, val1); 1497 } else { 1498 tcg_out_mov(s, TCG_TYPE_REG, tmp, val1); 1499 } 1500 tcg_out_movcond_br1(s, cond, tmp, cmp1, cmp2, val2, c_val2); 1501 tcg_out_mov(s, TCG_TYPE_REG, ret, tmp); 1502} 1503 1504static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond, 1505 TCGReg ret, TCGReg cmp1, TCGArg cmp2, bool c_cmp2, 1506 TCGArg val1, bool c_val1, 1507 TCGArg val2, bool c_val2) 1508{ 1509 int tmpflags; 1510 TCGReg t; 1511 1512 if (!(cpuinfo & CPUINFO_ZICOND) && (!c_cmp2 || cmp2 == 0)) { 1513 tcg_out_movcond_br2(s, cond, ret, cmp1, cmp2, 1514 val1, c_val1, val2, c_val2); 1515 return; 1516 } 1517 1518 tmpflags = tcg_out_setcond_int(s, cond, TCG_REG_TMP0, cmp1, cmp2, c_cmp2); 1519 t = tmpflags & ~SETCOND_FLAGS; 1520 1521 if (cpuinfo & CPUINFO_ZICOND) { 1522 if (tmpflags & SETCOND_INV) { 1523 tcg_out_movcond_zicond(s, ret, t, val2, c_val2, val1, c_val1); 1524 } else { 1525 tcg_out_movcond_zicond(s, ret, t, val1, c_val1, val2, c_val2); 1526 } 1527 } else { 1528 cond = tmpflags & SETCOND_INV ? TCG_COND_EQ : TCG_COND_NE; 1529 tcg_out_movcond_br2(s, cond, ret, t, TCG_REG_ZERO, 1530 val1, c_val1, val2, c_val2); 1531 } 1532} 1533 1534static const TCGOutOpMovcond outop_movcond = { 1535 .base.static_constraint = C_O1_I4(r, r, rI, rM, rM), 1536 .out = tcg_out_movcond, 1537}; 1538 1539static void tcg_out_cltz(TCGContext *s, TCGType type, RISCVInsn insn, 1540 TCGReg ret, TCGReg src1, int src2, bool c_src2) 1541{ 1542 tcg_out_opc_imm(s, insn, ret, src1, 0); 1543 1544 if (!c_src2 || src2 != (type == TCG_TYPE_I32 ? 32 : 64)) { 1545 /* 1546 * The requested zero result does not match the insn, so adjust. 1547 * Note that constraints put 'ret' in a new register, so the 1548 * computation above did not clobber either 'src1' or 'src2'. 1549 */ 1550 tcg_out_movcond(s, type, TCG_COND_EQ, ret, src1, 0, true, 1551 src2, c_src2, ret, false); 1552 } 1553} 1554 1555static void tcg_out_cmpsel(TCGContext *s, TCGType type, unsigned vece, 1556 TCGCond cond, TCGReg ret, 1557 TCGReg cmp1, TCGReg cmp2, bool c_cmp2, 1558 TCGReg val1, bool c_val1, 1559 TCGReg val2, bool c_val2) 1560{ 1561 set_vtype_len_sew(s, type, vece); 1562 1563 /* Use only vmerge_vim if possible, by inverting the test. */ 1564 if (c_val2 && !c_val1) { 1565 TCGArg temp = val1; 1566 cond = tcg_invert_cond(cond); 1567 val1 = val2; 1568 val2 = temp; 1569 c_val1 = true; 1570 c_val2 = false; 1571 } 1572 1573 /* Perform the comparison into V0 mask. */ 1574 if (c_cmp2) { 1575 tcg_out_opc_vi(s, tcg_cmpcond_to_rvv_vi[cond].op, TCG_REG_V0, cmp1, 1576 cmp2 - tcg_cmpcond_to_rvv_vi[cond].adjust); 1577 } else if (tcg_cmpcond_to_rvv_vv[cond].swap) { 1578 tcg_out_opc_vv(s, tcg_cmpcond_to_rvv_vv[cond].op, 1579 TCG_REG_V0, cmp2, cmp1); 1580 } else { 1581 tcg_out_opc_vv(s, tcg_cmpcond_to_rvv_vv[cond].op, 1582 TCG_REG_V0, cmp1, cmp2); 1583 } 1584 if (c_val1) { 1585 if (c_val2) { 1586 tcg_out_opc_vi(s, OPC_VMV_V_I, ret, 0, val2); 1587 val2 = ret; 1588 } 1589 /* vd[i] == v0.mask[i] ? imm : vs2[i] */ 1590 tcg_out_opc_vim_mask(s, OPC_VMERGE_VIM, ret, val2, val1); 1591 } else { 1592 /* vd[i] == v0.mask[i] ? vs1[i] : vs2[i] */ 1593 tcg_out_opc_vvm_mask(s, OPC_VMERGE_VVM, ret, val2, val1); 1594 } 1595} 1596 1597static void tcg_out_vshifti(TCGContext *s, RISCVInsn opc_vi, RISCVInsn opc_vx, 1598 TCGReg dst, TCGReg src, unsigned imm) 1599{ 1600 if (imm < 32) { 1601 tcg_out_opc_vi(s, opc_vi, dst, src, imm); 1602 } else { 1603 tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_TMP0, imm); 1604 tcg_out_opc_vx(s, opc_vx, dst, src, TCG_REG_TMP0); 1605 } 1606} 1607 1608static void init_setting_vtype(TCGContext *s) 1609{ 1610 s->riscv_cur_type = TCG_TYPE_COUNT; 1611} 1612 1613static void tcg_out_call_int(TCGContext *s, const tcg_insn_unit *arg, bool tail) 1614{ 1615 TCGReg link = tail ? TCG_REG_ZERO : TCG_REG_RA; 1616 ptrdiff_t offset = tcg_pcrel_diff(s, arg); 1617 int ret; 1618 1619 init_setting_vtype(s); 1620 1621 tcg_debug_assert((offset & 1) == 0); 1622 if (offset == sextreg(offset, 0, 20)) { 1623 /* short jump: -2097150 to 2097152 */ 1624 tcg_out_opc_jump(s, OPC_JAL, link, offset); 1625 } else if (offset == (int32_t)offset) { 1626 /* long jump: -2147483646 to 2147483648 */ 1627 tcg_out_opc_upper(s, OPC_AUIPC, TCG_REG_TMP0, 0); 1628 tcg_out_opc_imm(s, OPC_JALR, link, TCG_REG_TMP0, 0); 1629 ret = reloc_call(s->code_ptr - 2, arg); 1630 tcg_debug_assert(ret == true); 1631 } else { 1632 /* far jump: 64-bit */ 1633 tcg_target_long imm = sextreg((tcg_target_long)arg, 0, 12); 1634 tcg_target_long base = (tcg_target_long)arg - imm; 1635 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP0, base); 1636 tcg_out_opc_imm(s, OPC_JALR, link, TCG_REG_TMP0, imm); 1637 } 1638} 1639 1640static void tcg_out_call(TCGContext *s, const tcg_insn_unit *arg, 1641 const TCGHelperInfo *info) 1642{ 1643 tcg_out_call_int(s, arg, false); 1644} 1645 1646static void tcg_out_mb(TCGContext *s, TCGArg a0) 1647{ 1648 tcg_insn_unit insn = OPC_FENCE; 1649 1650 if (a0 & TCG_MO_LD_LD) { 1651 insn |= 0x02200000; 1652 } 1653 if (a0 & TCG_MO_ST_LD) { 1654 insn |= 0x01200000; 1655 } 1656 if (a0 & TCG_MO_LD_ST) { 1657 insn |= 0x02100000; 1658 } 1659 if (a0 & TCG_MO_ST_ST) { 1660 insn |= 0x01100000; 1661 } 1662 tcg_out32(s, insn); 1663} 1664 1665/* 1666 * Load/store and TLB 1667 */ 1668 1669static void tcg_out_goto(TCGContext *s, const tcg_insn_unit *target) 1670{ 1671 tcg_out_opc_jump(s, OPC_JAL, TCG_REG_ZERO, 0); 1672 bool ok = reloc_jimm20(s->code_ptr - 1, target); 1673 tcg_debug_assert(ok); 1674} 1675 1676bool tcg_target_has_memory_bswap(MemOp memop) 1677{ 1678 return false; 1679} 1680 1681/* We have three temps, we might as well expose them. */ 1682static const TCGLdstHelperParam ldst_helper_param = { 1683 .ntmp = 3, .tmp = { TCG_REG_TMP0, TCG_REG_TMP1, TCG_REG_TMP2 } 1684}; 1685 1686static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 1687{ 1688 MemOp opc = get_memop(l->oi); 1689 1690 /* resolve label address */ 1691 if (!reloc_sbimm12(l->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1692 return false; 1693 } 1694 1695 /* call load helper */ 1696 tcg_out_ld_helper_args(s, l, &ldst_helper_param); 1697 tcg_out_call_int(s, qemu_ld_helpers[opc & MO_SSIZE], false); 1698 tcg_out_ld_helper_ret(s, l, true, &ldst_helper_param); 1699 1700 tcg_out_goto(s, l->raddr); 1701 return true; 1702} 1703 1704static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 1705{ 1706 MemOp opc = get_memop(l->oi); 1707 1708 /* resolve label address */ 1709 if (!reloc_sbimm12(l->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1710 return false; 1711 } 1712 1713 /* call store helper */ 1714 tcg_out_st_helper_args(s, l, &ldst_helper_param); 1715 tcg_out_call_int(s, qemu_st_helpers[opc & MO_SIZE], false); 1716 1717 tcg_out_goto(s, l->raddr); 1718 return true; 1719} 1720 1721/* We expect to use a 12-bit negative offset from ENV. */ 1722#define MIN_TLB_MASK_TABLE_OFS -(1 << 11) 1723 1724/* 1725 * For system-mode, perform the TLB load and compare. 1726 * For user-mode, perform any required alignment tests. 1727 * In both cases, return a TCGLabelQemuLdst structure if the slow path 1728 * is required and fill in @h with the host address for the fast path. 1729 */ 1730static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, TCGReg *pbase, 1731 TCGReg addr_reg, MemOpIdx oi, 1732 bool is_ld) 1733{ 1734 TCGType addr_type = s->addr_type; 1735 TCGLabelQemuLdst *ldst = NULL; 1736 MemOp opc = get_memop(oi); 1737 TCGAtomAlign aa; 1738 unsigned a_mask; 1739 1740 aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, false); 1741 a_mask = (1u << aa.align) - 1; 1742 1743 if (tcg_use_softmmu) { 1744 unsigned s_bits = opc & MO_SIZE; 1745 unsigned s_mask = (1u << s_bits) - 1; 1746 int mem_index = get_mmuidx(oi); 1747 int fast_ofs = tlb_mask_table_ofs(s, mem_index); 1748 int mask_ofs = fast_ofs + offsetof(CPUTLBDescFast, mask); 1749 int table_ofs = fast_ofs + offsetof(CPUTLBDescFast, table); 1750 int compare_mask; 1751 TCGReg addr_adj; 1752 1753 ldst = new_ldst_label(s); 1754 ldst->is_ld = is_ld; 1755 ldst->oi = oi; 1756 ldst->addr_reg = addr_reg; 1757 1758 init_setting_vtype(s); 1759 1760 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP0, TCG_AREG0, mask_ofs); 1761 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_AREG0, table_ofs); 1762 1763 tcg_out_opc_imm(s, OPC_SRLI, TCG_REG_TMP2, addr_reg, 1764 s->page_bits - CPU_TLB_ENTRY_BITS); 1765 tcg_out_opc_reg(s, OPC_AND, TCG_REG_TMP2, TCG_REG_TMP2, TCG_REG_TMP0); 1766 tcg_out_opc_reg(s, OPC_ADD, TCG_REG_TMP2, TCG_REG_TMP2, TCG_REG_TMP1); 1767 1768 /* 1769 * For aligned accesses, we check the first byte and include the 1770 * alignment bits within the address. For unaligned access, we 1771 * check that we don't cross pages using the address of the last 1772 * byte of the access. 1773 */ 1774 addr_adj = addr_reg; 1775 if (a_mask < s_mask) { 1776 addr_adj = TCG_REG_TMP0; 1777 tcg_out_opc_imm(s, addr_type == TCG_TYPE_I32 ? OPC_ADDIW : OPC_ADDI, 1778 addr_adj, addr_reg, s_mask - a_mask); 1779 } 1780 compare_mask = s->page_mask | a_mask; 1781 if (compare_mask == sextreg(compare_mask, 0, 12)) { 1782 tcg_out_opc_imm(s, OPC_ANDI, TCG_REG_TMP1, addr_adj, compare_mask); 1783 } else { 1784 tcg_out_movi(s, addr_type, TCG_REG_TMP1, compare_mask); 1785 tcg_out_opc_reg(s, OPC_AND, TCG_REG_TMP1, TCG_REG_TMP1, addr_adj); 1786 } 1787 1788 /* Load the tlb comparator and the addend. */ 1789 QEMU_BUILD_BUG_ON(HOST_BIG_ENDIAN); 1790 tcg_out_ld(s, addr_type, TCG_REG_TMP0, TCG_REG_TMP2, 1791 is_ld ? offsetof(CPUTLBEntry, addr_read) 1792 : offsetof(CPUTLBEntry, addr_write)); 1793 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP2, TCG_REG_TMP2, 1794 offsetof(CPUTLBEntry, addend)); 1795 1796 /* Compare masked address with the TLB entry. */ 1797 ldst->label_ptr[0] = s->code_ptr; 1798 tcg_out_opc_branch(s, OPC_BNE, TCG_REG_TMP0, TCG_REG_TMP1, 0); 1799 1800 /* TLB Hit - translate address using addend. */ 1801 if (addr_type != TCG_TYPE_I32) { 1802 tcg_out_opc_reg(s, OPC_ADD, TCG_REG_TMP0, addr_reg, TCG_REG_TMP2); 1803 } else if (cpuinfo & CPUINFO_ZBA) { 1804 tcg_out_opc_reg(s, OPC_ADD_UW, TCG_REG_TMP0, 1805 addr_reg, TCG_REG_TMP2); 1806 } else { 1807 tcg_out_ext32u(s, TCG_REG_TMP0, addr_reg); 1808 tcg_out_opc_reg(s, OPC_ADD, TCG_REG_TMP0, 1809 TCG_REG_TMP0, TCG_REG_TMP2); 1810 } 1811 *pbase = TCG_REG_TMP0; 1812 } else { 1813 TCGReg base; 1814 1815 if (a_mask) { 1816 ldst = new_ldst_label(s); 1817 ldst->is_ld = is_ld; 1818 ldst->oi = oi; 1819 ldst->addr_reg = addr_reg; 1820 1821 init_setting_vtype(s); 1822 1823 /* We are expecting alignment max 7, so we can always use andi. */ 1824 tcg_debug_assert(a_mask == sextreg(a_mask, 0, 12)); 1825 tcg_out_opc_imm(s, OPC_ANDI, TCG_REG_TMP1, addr_reg, a_mask); 1826 1827 ldst->label_ptr[0] = s->code_ptr; 1828 tcg_out_opc_branch(s, OPC_BNE, TCG_REG_TMP1, TCG_REG_ZERO, 0); 1829 } 1830 1831 if (guest_base != 0) { 1832 base = TCG_REG_TMP0; 1833 if (addr_type != TCG_TYPE_I32) { 1834 tcg_out_opc_reg(s, OPC_ADD, base, addr_reg, 1835 TCG_GUEST_BASE_REG); 1836 } else if (cpuinfo & CPUINFO_ZBA) { 1837 tcg_out_opc_reg(s, OPC_ADD_UW, base, addr_reg, 1838 TCG_GUEST_BASE_REG); 1839 } else { 1840 tcg_out_ext32u(s, base, addr_reg); 1841 tcg_out_opc_reg(s, OPC_ADD, base, base, TCG_GUEST_BASE_REG); 1842 } 1843 } else if (addr_type != TCG_TYPE_I32) { 1844 base = addr_reg; 1845 } else { 1846 base = TCG_REG_TMP0; 1847 tcg_out_ext32u(s, base, addr_reg); 1848 } 1849 *pbase = base; 1850 } 1851 1852 return ldst; 1853} 1854 1855static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg val, 1856 TCGReg base, MemOp opc, TCGType type) 1857{ 1858 /* Byte swapping is left to middle-end expansion. */ 1859 tcg_debug_assert((opc & MO_BSWAP) == 0); 1860 1861 switch (opc & (MO_SSIZE)) { 1862 case MO_UB: 1863 tcg_out_opc_imm(s, OPC_LBU, val, base, 0); 1864 break; 1865 case MO_SB: 1866 tcg_out_opc_imm(s, OPC_LB, val, base, 0); 1867 break; 1868 case MO_UW: 1869 tcg_out_opc_imm(s, OPC_LHU, val, base, 0); 1870 break; 1871 case MO_SW: 1872 tcg_out_opc_imm(s, OPC_LH, val, base, 0); 1873 break; 1874 case MO_UL: 1875 if (type == TCG_TYPE_I64) { 1876 tcg_out_opc_imm(s, OPC_LWU, val, base, 0); 1877 break; 1878 } 1879 /* FALLTHRU */ 1880 case MO_SL: 1881 tcg_out_opc_imm(s, OPC_LW, val, base, 0); 1882 break; 1883 case MO_UQ: 1884 tcg_out_opc_imm(s, OPC_LD, val, base, 0); 1885 break; 1886 default: 1887 g_assert_not_reached(); 1888 } 1889} 1890 1891static void tcg_out_qemu_ld(TCGContext *s, TCGReg data_reg, TCGReg addr_reg, 1892 MemOpIdx oi, TCGType data_type) 1893{ 1894 TCGLabelQemuLdst *ldst; 1895 TCGReg base; 1896 1897 ldst = prepare_host_addr(s, &base, addr_reg, oi, true); 1898 tcg_out_qemu_ld_direct(s, data_reg, base, get_memop(oi), data_type); 1899 1900 if (ldst) { 1901 ldst->type = data_type; 1902 ldst->datalo_reg = data_reg; 1903 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1904 } 1905} 1906 1907static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg val, 1908 TCGReg base, MemOp opc) 1909{ 1910 /* Byte swapping is left to middle-end expansion. */ 1911 tcg_debug_assert((opc & MO_BSWAP) == 0); 1912 1913 switch (opc & (MO_SSIZE)) { 1914 case MO_8: 1915 tcg_out_opc_store(s, OPC_SB, base, val, 0); 1916 break; 1917 case MO_16: 1918 tcg_out_opc_store(s, OPC_SH, base, val, 0); 1919 break; 1920 case MO_32: 1921 tcg_out_opc_store(s, OPC_SW, base, val, 0); 1922 break; 1923 case MO_64: 1924 tcg_out_opc_store(s, OPC_SD, base, val, 0); 1925 break; 1926 default: 1927 g_assert_not_reached(); 1928 } 1929} 1930 1931static void tcg_out_qemu_st(TCGContext *s, TCGReg data_reg, TCGReg addr_reg, 1932 MemOpIdx oi, TCGType data_type) 1933{ 1934 TCGLabelQemuLdst *ldst; 1935 TCGReg base; 1936 1937 ldst = prepare_host_addr(s, &base, addr_reg, oi, false); 1938 tcg_out_qemu_st_direct(s, data_reg, base, get_memop(oi)); 1939 1940 if (ldst) { 1941 ldst->type = data_type; 1942 ldst->datalo_reg = data_reg; 1943 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1944 } 1945} 1946 1947static const tcg_insn_unit *tb_ret_addr; 1948 1949static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0) 1950{ 1951 /* Reuse the zeroing that exists for goto_ptr. */ 1952 if (a0 == 0) { 1953 tcg_out_call_int(s, tcg_code_gen_epilogue, true); 1954 } else { 1955 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_A0, a0); 1956 tcg_out_call_int(s, tb_ret_addr, true); 1957 } 1958} 1959 1960static void tcg_out_goto_tb(TCGContext *s, int which) 1961{ 1962 /* Direct branch will be patched by tb_target_set_jmp_target. */ 1963 set_jmp_insn_offset(s, which); 1964 tcg_out32(s, OPC_JAL); 1965 1966 /* When branch is out of range, fall through to indirect. */ 1967 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP0, TCG_REG_ZERO, 1968 get_jmp_target_addr(s, which)); 1969 tcg_out_opc_imm(s, OPC_JALR, TCG_REG_ZERO, TCG_REG_TMP0, 0); 1970 set_jmp_reset_offset(s, which); 1971} 1972 1973void tb_target_set_jmp_target(const TranslationBlock *tb, int n, 1974 uintptr_t jmp_rx, uintptr_t jmp_rw) 1975{ 1976 uintptr_t addr = tb->jmp_target_addr[n]; 1977 ptrdiff_t offset = addr - jmp_rx; 1978 tcg_insn_unit insn; 1979 1980 /* Either directly branch, or fall through to indirect branch. */ 1981 if (offset == sextreg(offset, 0, 20)) { 1982 insn = encode_uj(OPC_JAL, TCG_REG_ZERO, offset); 1983 } else { 1984 insn = OPC_NOP; 1985 } 1986 qatomic_set((uint32_t *)jmp_rw, insn); 1987 flush_idcache_range(jmp_rx, jmp_rw, 4); 1988} 1989 1990 1991static void tgen_add(TCGContext *s, TCGType type, 1992 TCGReg a0, TCGReg a1, TCGReg a2) 1993{ 1994 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_ADDW : OPC_ADD; 1995 tcg_out_opc_reg(s, insn, a0, a1, a2); 1996} 1997 1998static void tgen_addi(TCGContext *s, TCGType type, 1999 TCGReg a0, TCGReg a1, tcg_target_long a2) 2000{ 2001 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_ADDIW : OPC_ADDI; 2002 tcg_out_opc_imm(s, insn, a0, a1, a2); 2003} 2004 2005static const TCGOutOpBinary outop_add = { 2006 .base.static_constraint = C_O1_I2(r, r, rI), 2007 .out_rrr = tgen_add, 2008 .out_rri = tgen_addi, 2009}; 2010 2011static void tgen_and(TCGContext *s, TCGType type, 2012 TCGReg a0, TCGReg a1, TCGReg a2) 2013{ 2014 tcg_out_opc_reg(s, OPC_AND, a0, a1, a2); 2015} 2016 2017static void tgen_andi(TCGContext *s, TCGType type, 2018 TCGReg a0, TCGReg a1, tcg_target_long a2) 2019{ 2020 tcg_out_opc_imm(s, OPC_ANDI, a0, a1, a2); 2021} 2022 2023static const TCGOutOpBinary outop_and = { 2024 .base.static_constraint = C_O1_I2(r, r, rI), 2025 .out_rrr = tgen_and, 2026 .out_rri = tgen_andi, 2027}; 2028 2029static void tgen_andc(TCGContext *s, TCGType type, 2030 TCGReg a0, TCGReg a1, TCGReg a2) 2031{ 2032 tcg_out_opc_reg(s, OPC_ANDN, a0, a1, a2); 2033} 2034 2035static TCGConstraintSetIndex cset_zbb_rrr(TCGType type, unsigned flags) 2036{ 2037 return cpuinfo & CPUINFO_ZBB ? C_O1_I2(r, r, r) : C_NotImplemented; 2038} 2039 2040static const TCGOutOpBinary outop_andc = { 2041 .base.static_constraint = C_Dynamic, 2042 .base.dynamic_constraint = cset_zbb_rrr, 2043 .out_rrr = tgen_andc, 2044}; 2045 2046static void tgen_clz(TCGContext *s, TCGType type, 2047 TCGReg a0, TCGReg a1, TCGReg a2) 2048{ 2049 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_CLZW : OPC_CLZ; 2050 tcg_out_cltz(s, type, insn, a0, a1, a2, false); 2051} 2052 2053static void tgen_clzi(TCGContext *s, TCGType type, 2054 TCGReg a0, TCGReg a1, tcg_target_long a2) 2055{ 2056 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_CLZW : OPC_CLZ; 2057 tcg_out_cltz(s, type, insn, a0, a1, a2, true); 2058} 2059 2060static TCGConstraintSetIndex cset_clzctz(TCGType type, unsigned flags) 2061{ 2062 return cpuinfo & CPUINFO_ZBB ? C_N1_I2(r, r, rM) : C_NotImplemented; 2063} 2064 2065static const TCGOutOpBinary outop_clz = { 2066 .base.static_constraint = C_Dynamic, 2067 .base.dynamic_constraint = cset_clzctz, 2068 .out_rrr = tgen_clz, 2069 .out_rri = tgen_clzi, 2070}; 2071 2072static void tgen_ctpop(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2073{ 2074 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_CPOPW : OPC_CPOP; 2075 tcg_out_opc_imm(s, insn, a0, a1, 0); 2076} 2077 2078static TCGConstraintSetIndex cset_ctpop(TCGType type, unsigned flags) 2079{ 2080 return cpuinfo & CPUINFO_ZBB ? C_O1_I1(r, r) : C_NotImplemented; 2081} 2082 2083static const TCGOutOpUnary outop_ctpop = { 2084 .base.static_constraint = C_Dynamic, 2085 .base.dynamic_constraint = cset_ctpop, 2086 .out_rr = tgen_ctpop, 2087}; 2088 2089static void tgen_ctz(TCGContext *s, TCGType type, 2090 TCGReg a0, TCGReg a1, TCGReg a2) 2091{ 2092 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_CTZW : OPC_CTZ; 2093 tcg_out_cltz(s, type, insn, a0, a1, a2, false); 2094} 2095 2096static void tgen_ctzi(TCGContext *s, TCGType type, 2097 TCGReg a0, TCGReg a1, tcg_target_long a2) 2098{ 2099 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_CTZW : OPC_CTZ; 2100 tcg_out_cltz(s, type, insn, a0, a1, a2, true); 2101} 2102 2103static const TCGOutOpBinary outop_ctz = { 2104 .base.static_constraint = C_Dynamic, 2105 .base.dynamic_constraint = cset_clzctz, 2106 .out_rrr = tgen_ctz, 2107 .out_rri = tgen_ctzi, 2108}; 2109 2110static void tgen_divs(TCGContext *s, TCGType type, 2111 TCGReg a0, TCGReg a1, TCGReg a2) 2112{ 2113 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_DIVW : OPC_DIV; 2114 tcg_out_opc_reg(s, insn, a0, a1, a2); 2115} 2116 2117static const TCGOutOpBinary outop_divs = { 2118 .base.static_constraint = C_O1_I2(r, r, r), 2119 .out_rrr = tgen_divs, 2120}; 2121 2122static const TCGOutOpDivRem outop_divs2 = { 2123 .base.static_constraint = C_NotImplemented, 2124}; 2125 2126static void tgen_divu(TCGContext *s, TCGType type, 2127 TCGReg a0, TCGReg a1, TCGReg a2) 2128{ 2129 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_DIVUW : OPC_DIVU; 2130 tcg_out_opc_reg(s, insn, a0, a1, a2); 2131} 2132 2133static const TCGOutOpBinary outop_divu = { 2134 .base.static_constraint = C_O1_I2(r, r, r), 2135 .out_rrr = tgen_divu, 2136}; 2137 2138static const TCGOutOpDivRem outop_divu2 = { 2139 .base.static_constraint = C_NotImplemented, 2140}; 2141 2142static void tgen_eqv(TCGContext *s, TCGType type, 2143 TCGReg a0, TCGReg a1, TCGReg a2) 2144{ 2145 tcg_out_opc_reg(s, OPC_XNOR, a0, a1, a2); 2146} 2147 2148static const TCGOutOpBinary outop_eqv = { 2149 .base.static_constraint = C_Dynamic, 2150 .base.dynamic_constraint = cset_zbb_rrr, 2151 .out_rrr = tgen_eqv, 2152}; 2153 2154static void tgen_mul(TCGContext *s, TCGType type, 2155 TCGReg a0, TCGReg a1, TCGReg a2) 2156{ 2157 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_MULW : OPC_MUL; 2158 tcg_out_opc_reg(s, insn, a0, a1, a2); 2159} 2160 2161static const TCGOutOpBinary outop_mul = { 2162 .base.static_constraint = C_O1_I2(r, r, r), 2163 .out_rrr = tgen_mul, 2164}; 2165 2166static const TCGOutOpMul2 outop_muls2 = { 2167 .base.static_constraint = C_NotImplemented, 2168}; 2169 2170static TCGConstraintSetIndex cset_mulh(TCGType type, unsigned flags) 2171{ 2172 return type == TCG_TYPE_I32 ? C_NotImplemented : C_O1_I2(r, r, r); 2173} 2174 2175static void tgen_mulsh(TCGContext *s, TCGType type, 2176 TCGReg a0, TCGReg a1, TCGReg a2) 2177{ 2178 tcg_out_opc_reg(s, OPC_MULH, a0, a1, a2); 2179} 2180 2181static const TCGOutOpBinary outop_mulsh = { 2182 .base.static_constraint = C_Dynamic, 2183 .base.dynamic_constraint = cset_mulh, 2184 .out_rrr = tgen_mulsh, 2185}; 2186 2187static const TCGOutOpMul2 outop_mulu2 = { 2188 .base.static_constraint = C_NotImplemented, 2189}; 2190 2191static void tgen_muluh(TCGContext *s, TCGType type, 2192 TCGReg a0, TCGReg a1, TCGReg a2) 2193{ 2194 tcg_out_opc_reg(s, OPC_MULHU, a0, a1, a2); 2195} 2196 2197static const TCGOutOpBinary outop_muluh = { 2198 .base.static_constraint = C_Dynamic, 2199 .base.dynamic_constraint = cset_mulh, 2200 .out_rrr = tgen_muluh, 2201}; 2202 2203static const TCGOutOpBinary outop_nand = { 2204 .base.static_constraint = C_NotImplemented, 2205}; 2206 2207static const TCGOutOpBinary outop_nor = { 2208 .base.static_constraint = C_NotImplemented, 2209}; 2210 2211static void tgen_or(TCGContext *s, TCGType type, 2212 TCGReg a0, TCGReg a1, TCGReg a2) 2213{ 2214 tcg_out_opc_reg(s, OPC_OR, a0, a1, a2); 2215} 2216 2217static void tgen_ori(TCGContext *s, TCGType type, 2218 TCGReg a0, TCGReg a1, tcg_target_long a2) 2219{ 2220 tcg_out_opc_imm(s, OPC_ORI, a0, a1, a2); 2221} 2222 2223static const TCGOutOpBinary outop_or = { 2224 .base.static_constraint = C_O1_I2(r, r, rI), 2225 .out_rrr = tgen_or, 2226 .out_rri = tgen_ori, 2227}; 2228 2229static void tgen_orc(TCGContext *s, TCGType type, 2230 TCGReg a0, TCGReg a1, TCGReg a2) 2231{ 2232 tcg_out_opc_reg(s, OPC_ORN, a0, a1, a2); 2233} 2234 2235static const TCGOutOpBinary outop_orc = { 2236 .base.static_constraint = C_Dynamic, 2237 .base.dynamic_constraint = cset_zbb_rrr, 2238 .out_rrr = tgen_orc, 2239}; 2240 2241static void tgen_rems(TCGContext *s, TCGType type, 2242 TCGReg a0, TCGReg a1, TCGReg a2) 2243{ 2244 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_REMW : OPC_REM; 2245 tcg_out_opc_reg(s, insn, a0, a1, a2); 2246} 2247 2248static const TCGOutOpBinary outop_rems = { 2249 .base.static_constraint = C_O1_I2(r, r, r), 2250 .out_rrr = tgen_rems, 2251}; 2252 2253static void tgen_remu(TCGContext *s, TCGType type, 2254 TCGReg a0, TCGReg a1, TCGReg a2) 2255{ 2256 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_REMUW : OPC_REMU; 2257 tcg_out_opc_reg(s, insn, a0, a1, a2); 2258} 2259 2260static const TCGOutOpBinary outop_remu = { 2261 .base.static_constraint = C_O1_I2(r, r, r), 2262 .out_rrr = tgen_remu, 2263}; 2264 2265static TCGConstraintSetIndex cset_rot(TCGType type, unsigned flags) 2266{ 2267 return cpuinfo & CPUINFO_ZBB ? C_O1_I2(r, r, ri) : C_NotImplemented; 2268} 2269 2270static void tgen_rotr(TCGContext *s, TCGType type, 2271 TCGReg a0, TCGReg a1, TCGReg a2) 2272{ 2273 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_RORW : OPC_ROR; 2274 tcg_out_opc_reg(s, insn, a0, a1, a2); 2275} 2276 2277static void tgen_rotri(TCGContext *s, TCGType type, 2278 TCGReg a0, TCGReg a1, tcg_target_long a2) 2279{ 2280 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_RORIW : OPC_RORI; 2281 unsigned mask = type == TCG_TYPE_I32 ? 31 : 63; 2282 tcg_out_opc_imm(s, insn, a0, a1, a2 & mask); 2283} 2284 2285static const TCGOutOpBinary outop_rotr = { 2286 .base.static_constraint = C_Dynamic, 2287 .base.dynamic_constraint = cset_rot, 2288 .out_rrr = tgen_rotr, 2289 .out_rri = tgen_rotri, 2290}; 2291 2292static void tgen_rotl(TCGContext *s, TCGType type, 2293 TCGReg a0, TCGReg a1, TCGReg a2) 2294{ 2295 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_ROLW : OPC_ROL; 2296 tcg_out_opc_reg(s, insn, a0, a1, a2); 2297} 2298 2299static void tgen_rotli(TCGContext *s, TCGType type, 2300 TCGReg a0, TCGReg a1, tcg_target_long a2) 2301{ 2302 tgen_rotri(s, type, a0, a1, -a2); 2303} 2304 2305static const TCGOutOpBinary outop_rotl = { 2306 .base.static_constraint = C_Dynamic, 2307 .base.dynamic_constraint = cset_rot, 2308 .out_rrr = tgen_rotl, 2309 .out_rri = tgen_rotli, 2310}; 2311 2312static void tgen_sar(TCGContext *s, TCGType type, 2313 TCGReg a0, TCGReg a1, TCGReg a2) 2314{ 2315 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_SRAW : OPC_SRA; 2316 tcg_out_opc_reg(s, insn, a0, a1, a2); 2317} 2318 2319static void tgen_sari(TCGContext *s, TCGType type, 2320 TCGReg a0, TCGReg a1, tcg_target_long a2) 2321{ 2322 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_SRAIW : OPC_SRAI; 2323 unsigned mask = type == TCG_TYPE_I32 ? 31 : 63; 2324 tcg_out_opc_imm(s, insn, a0, a1, a2 & mask); 2325} 2326 2327static const TCGOutOpBinary outop_sar = { 2328 .base.static_constraint = C_O1_I2(r, r, ri), 2329 .out_rrr = tgen_sar, 2330 .out_rri = tgen_sari, 2331}; 2332 2333static void tgen_shl(TCGContext *s, TCGType type, 2334 TCGReg a0, TCGReg a1, TCGReg a2) 2335{ 2336 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_SLLW : OPC_SLL; 2337 tcg_out_opc_reg(s, insn, a0, a1, a2); 2338} 2339 2340static void tgen_shli(TCGContext *s, TCGType type, 2341 TCGReg a0, TCGReg a1, tcg_target_long a2) 2342{ 2343 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_SLLIW : OPC_SLLI; 2344 unsigned mask = type == TCG_TYPE_I32 ? 31 : 63; 2345 tcg_out_opc_imm(s, insn, a0, a1, a2 & mask); 2346} 2347 2348static const TCGOutOpBinary outop_shl = { 2349 .base.static_constraint = C_O1_I2(r, r, ri), 2350 .out_rrr = tgen_shl, 2351 .out_rri = tgen_shli, 2352}; 2353 2354static void tgen_shr(TCGContext *s, TCGType type, 2355 TCGReg a0, TCGReg a1, TCGReg a2) 2356{ 2357 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_SRLW : OPC_SRL; 2358 tcg_out_opc_reg(s, insn, a0, a1, a2); 2359} 2360 2361static void tgen_shri(TCGContext *s, TCGType type, 2362 TCGReg a0, TCGReg a1, tcg_target_long a2) 2363{ 2364 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_SRLIW : OPC_SRLI; 2365 unsigned mask = type == TCG_TYPE_I32 ? 31 : 63; 2366 tcg_out_opc_imm(s, insn, a0, a1, a2 & mask); 2367} 2368 2369static const TCGOutOpBinary outop_shr = { 2370 .base.static_constraint = C_O1_I2(r, r, ri), 2371 .out_rrr = tgen_shr, 2372 .out_rri = tgen_shri, 2373}; 2374 2375static void tgen_sub(TCGContext *s, TCGType type, 2376 TCGReg a0, TCGReg a1, TCGReg a2) 2377{ 2378 RISCVInsn insn = type == TCG_TYPE_I32 ? OPC_SUBW : OPC_SUB; 2379 tcg_out_opc_reg(s, insn, a0, a1, a2); 2380} 2381 2382static const TCGOutOpSubtract outop_sub = { 2383 .base.static_constraint = C_O1_I2(r, r, r), 2384 .out_rrr = tgen_sub, 2385}; 2386 2387static void tgen_xor(TCGContext *s, TCGType type, 2388 TCGReg a0, TCGReg a1, TCGReg a2) 2389{ 2390 tcg_out_opc_reg(s, OPC_XOR, a0, a1, a2); 2391} 2392 2393static void tgen_xori(TCGContext *s, TCGType type, 2394 TCGReg a0, TCGReg a1, tcg_target_long a2) 2395{ 2396 tcg_out_opc_imm(s, OPC_XORI, a0, a1, a2); 2397} 2398 2399static const TCGOutOpBinary outop_xor = { 2400 .base.static_constraint = C_O1_I2(r, r, rI), 2401 .out_rrr = tgen_xor, 2402 .out_rri = tgen_xori, 2403}; 2404 2405static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2406{ 2407 tgen_sub(s, type, a0, TCG_REG_ZERO, a1); 2408} 2409 2410static const TCGOutOpUnary outop_neg = { 2411 .base.static_constraint = C_O1_I1(r, r), 2412 .out_rr = tgen_neg, 2413}; 2414 2415static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2416{ 2417 tgen_xori(s, type, a0, a1, -1); 2418} 2419 2420static const TCGOutOpUnary outop_not = { 2421 .base.static_constraint = C_O1_I1(r, r), 2422 .out_rr = tgen_not, 2423}; 2424 2425 2426static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType type, 2427 const TCGArg args[TCG_MAX_OP_ARGS], 2428 const int const_args[TCG_MAX_OP_ARGS]) 2429{ 2430 TCGArg a0 = args[0]; 2431 TCGArg a1 = args[1]; 2432 TCGArg a2 = args[2]; 2433 2434 switch (opc) { 2435 case INDEX_op_goto_ptr: 2436 tcg_out_opc_imm(s, OPC_JALR, TCG_REG_ZERO, a0, 0); 2437 break; 2438 2439 case INDEX_op_br: 2440 tcg_out_reloc(s, s->code_ptr, R_RISCV_JAL, arg_label(a0), 0); 2441 tcg_out_opc_jump(s, OPC_JAL, TCG_REG_ZERO, 0); 2442 break; 2443 2444 case INDEX_op_ld8u_i32: 2445 case INDEX_op_ld8u_i64: 2446 tcg_out_ldst(s, OPC_LBU, a0, a1, a2); 2447 break; 2448 case INDEX_op_ld8s_i32: 2449 case INDEX_op_ld8s_i64: 2450 tcg_out_ldst(s, OPC_LB, a0, a1, a2); 2451 break; 2452 case INDEX_op_ld16u_i32: 2453 case INDEX_op_ld16u_i64: 2454 tcg_out_ldst(s, OPC_LHU, a0, a1, a2); 2455 break; 2456 case INDEX_op_ld16s_i32: 2457 case INDEX_op_ld16s_i64: 2458 tcg_out_ldst(s, OPC_LH, a0, a1, a2); 2459 break; 2460 case INDEX_op_ld32u_i64: 2461 tcg_out_ldst(s, OPC_LWU, a0, a1, a2); 2462 break; 2463 case INDEX_op_ld_i32: 2464 case INDEX_op_ld32s_i64: 2465 tcg_out_ldst(s, OPC_LW, a0, a1, a2); 2466 break; 2467 case INDEX_op_ld_i64: 2468 tcg_out_ldst(s, OPC_LD, a0, a1, a2); 2469 break; 2470 2471 case INDEX_op_st8_i32: 2472 case INDEX_op_st8_i64: 2473 tcg_out_ldst(s, OPC_SB, a0, a1, a2); 2474 break; 2475 case INDEX_op_st16_i32: 2476 case INDEX_op_st16_i64: 2477 tcg_out_ldst(s, OPC_SH, a0, a1, a2); 2478 break; 2479 case INDEX_op_st_i32: 2480 case INDEX_op_st32_i64: 2481 tcg_out_ldst(s, OPC_SW, a0, a1, a2); 2482 break; 2483 case INDEX_op_st_i64: 2484 tcg_out_ldst(s, OPC_SD, a0, a1, a2); 2485 break; 2486 2487 case INDEX_op_bswap64_i64: 2488 tcg_out_opc_imm(s, OPC_REV8, a0, a1, 0); 2489 break; 2490 case INDEX_op_bswap32_i32: 2491 a2 = 0; 2492 /* fall through */ 2493 case INDEX_op_bswap32_i64: 2494 tcg_out_opc_imm(s, OPC_REV8, a0, a1, 0); 2495 if (a2 & TCG_BSWAP_OZ) { 2496 tcg_out_opc_imm(s, OPC_SRLI, a0, a0, 32); 2497 } else { 2498 tcg_out_opc_imm(s, OPC_SRAI, a0, a0, 32); 2499 } 2500 break; 2501 case INDEX_op_bswap16_i64: 2502 case INDEX_op_bswap16_i32: 2503 tcg_out_opc_imm(s, OPC_REV8, a0, a1, 0); 2504 if (a2 & TCG_BSWAP_OZ) { 2505 tcg_out_opc_imm(s, OPC_SRLI, a0, a0, 48); 2506 } else { 2507 tcg_out_opc_imm(s, OPC_SRAI, a0, a0, 48); 2508 } 2509 break; 2510 2511 case INDEX_op_add2_i32: 2512 tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5], 2513 const_args[4], const_args[5], false, true); 2514 break; 2515 case INDEX_op_add2_i64: 2516 tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5], 2517 const_args[4], const_args[5], false, false); 2518 break; 2519 case INDEX_op_sub2_i32: 2520 tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5], 2521 const_args[4], const_args[5], true, true); 2522 break; 2523 case INDEX_op_sub2_i64: 2524 tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5], 2525 const_args[4], const_args[5], true, false); 2526 break; 2527 2528 case INDEX_op_qemu_ld_i32: 2529 tcg_out_qemu_ld(s, a0, a1, a2, TCG_TYPE_I32); 2530 break; 2531 case INDEX_op_qemu_ld_i64: 2532 tcg_out_qemu_ld(s, a0, a1, a2, TCG_TYPE_I64); 2533 break; 2534 case INDEX_op_qemu_st_i32: 2535 tcg_out_qemu_st(s, a0, a1, a2, TCG_TYPE_I32); 2536 break; 2537 case INDEX_op_qemu_st_i64: 2538 tcg_out_qemu_st(s, a0, a1, a2, TCG_TYPE_I64); 2539 break; 2540 2541 case INDEX_op_extrh_i64_i32: 2542 tcg_out_opc_imm(s, OPC_SRAI, a0, a1, 32); 2543 break; 2544 2545 case INDEX_op_mb: 2546 tcg_out_mb(s, a0); 2547 break; 2548 2549 case INDEX_op_extract_i64: 2550 if (a2 + args[3] == 32) { 2551 if (a2 == 0) { 2552 tcg_out_ext32u(s, a0, a1); 2553 } else { 2554 tcg_out_opc_imm(s, OPC_SRLIW, a0, a1, a2); 2555 } 2556 break; 2557 } 2558 /* FALLTHRU */ 2559 case INDEX_op_extract_i32: 2560 switch (args[3]) { 2561 case 1: 2562 tcg_out_opc_imm(s, OPC_BEXTI, a0, a1, a2); 2563 break; 2564 case 16: 2565 tcg_debug_assert(a2 == 0); 2566 tcg_out_ext16u(s, a0, a1); 2567 break; 2568 default: 2569 g_assert_not_reached(); 2570 } 2571 break; 2572 2573 case INDEX_op_sextract_i64: 2574 if (a2 + args[3] == 32) { 2575 if (a2 == 0) { 2576 tcg_out_ext32s(s, a0, a1); 2577 } else { 2578 tcg_out_opc_imm(s, OPC_SRAIW, a0, a1, a2); 2579 } 2580 break; 2581 } 2582 /* FALLTHRU */ 2583 case INDEX_op_sextract_i32: 2584 if (a2 == 0 && args[3] == 8) { 2585 tcg_out_ext8s(s, TCG_TYPE_REG, a0, a1); 2586 } else if (a2 == 0 && args[3] == 16) { 2587 tcg_out_ext16s(s, TCG_TYPE_REG, a0, a1); 2588 } else { 2589 g_assert_not_reached(); 2590 } 2591 break; 2592 2593 case INDEX_op_call: /* Always emitted via tcg_out_call. */ 2594 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ 2595 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ 2596 case INDEX_op_ext_i32_i64: /* Always emitted via tcg_reg_alloc_op. */ 2597 case INDEX_op_extu_i32_i64: 2598 case INDEX_op_extrl_i64_i32: 2599 default: 2600 g_assert_not_reached(); 2601 } 2602} 2603 2604static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 2605 unsigned vecl, unsigned vece, 2606 const TCGArg args[TCG_MAX_OP_ARGS], 2607 const int const_args[TCG_MAX_OP_ARGS]) 2608{ 2609 TCGType type = vecl + TCG_TYPE_V64; 2610 TCGArg a0, a1, a2; 2611 int c2; 2612 2613 a0 = args[0]; 2614 a1 = args[1]; 2615 a2 = args[2]; 2616 c2 = const_args[2]; 2617 2618 switch (opc) { 2619 case INDEX_op_dupm_vec: 2620 tcg_out_dupm_vec(s, type, vece, a0, a1, a2); 2621 break; 2622 case INDEX_op_ld_vec: 2623 tcg_out_ld(s, type, a0, a1, a2); 2624 break; 2625 case INDEX_op_st_vec: 2626 tcg_out_st(s, type, a0, a1, a2); 2627 break; 2628 case INDEX_op_add_vec: 2629 set_vtype_len_sew(s, type, vece); 2630 tcg_out_opc_vv_vi(s, OPC_VADD_VV, OPC_VADD_VI, a0, a1, a2, c2); 2631 break; 2632 case INDEX_op_sub_vec: 2633 set_vtype_len_sew(s, type, vece); 2634 if (const_args[1]) { 2635 tcg_out_opc_vi(s, OPC_VRSUB_VI, a0, a2, a1); 2636 } else { 2637 tcg_out_opc_vv(s, OPC_VSUB_VV, a0, a1, a2); 2638 } 2639 break; 2640 case INDEX_op_and_vec: 2641 set_vtype_len(s, type); 2642 tcg_out_opc_vv_vi(s, OPC_VAND_VV, OPC_VAND_VI, a0, a1, a2, c2); 2643 break; 2644 case INDEX_op_or_vec: 2645 set_vtype_len(s, type); 2646 tcg_out_opc_vv_vi(s, OPC_VOR_VV, OPC_VOR_VI, a0, a1, a2, c2); 2647 break; 2648 case INDEX_op_xor_vec: 2649 set_vtype_len(s, type); 2650 tcg_out_opc_vv_vi(s, OPC_VXOR_VV, OPC_VXOR_VI, a0, a1, a2, c2); 2651 break; 2652 case INDEX_op_not_vec: 2653 set_vtype_len(s, type); 2654 tcg_out_opc_vi(s, OPC_VXOR_VI, a0, a1, -1); 2655 break; 2656 case INDEX_op_neg_vec: 2657 set_vtype_len_sew(s, type, vece); 2658 tcg_out_opc_vi(s, OPC_VRSUB_VI, a0, a1, 0); 2659 break; 2660 case INDEX_op_mul_vec: 2661 set_vtype_len_sew(s, type, vece); 2662 tcg_out_opc_vv(s, OPC_VMUL_VV, a0, a1, a2); 2663 break; 2664 case INDEX_op_ssadd_vec: 2665 set_vtype_len_sew(s, type, vece); 2666 tcg_out_opc_vv_vi(s, OPC_VSADD_VV, OPC_VSADD_VI, a0, a1, a2, c2); 2667 break; 2668 case INDEX_op_sssub_vec: 2669 set_vtype_len_sew(s, type, vece); 2670 tcg_out_opc_vv_vi(s, OPC_VSSUB_VV, OPC_VSSUB_VI, a0, a1, a2, c2); 2671 break; 2672 case INDEX_op_usadd_vec: 2673 set_vtype_len_sew(s, type, vece); 2674 tcg_out_opc_vv_vi(s, OPC_VSADDU_VV, OPC_VSADDU_VI, a0, a1, a2, c2); 2675 break; 2676 case INDEX_op_ussub_vec: 2677 set_vtype_len_sew(s, type, vece); 2678 tcg_out_opc_vv_vi(s, OPC_VSSUBU_VV, OPC_VSSUBU_VI, a0, a1, a2, c2); 2679 break; 2680 case INDEX_op_smax_vec: 2681 set_vtype_len_sew(s, type, vece); 2682 tcg_out_opc_vv_vi(s, OPC_VMAX_VV, OPC_VMAX_VI, a0, a1, a2, c2); 2683 break; 2684 case INDEX_op_smin_vec: 2685 set_vtype_len_sew(s, type, vece); 2686 tcg_out_opc_vv_vi(s, OPC_VMIN_VV, OPC_VMIN_VI, a0, a1, a2, c2); 2687 break; 2688 case INDEX_op_umax_vec: 2689 set_vtype_len_sew(s, type, vece); 2690 tcg_out_opc_vv_vi(s, OPC_VMAXU_VV, OPC_VMAXU_VI, a0, a1, a2, c2); 2691 break; 2692 case INDEX_op_umin_vec: 2693 set_vtype_len_sew(s, type, vece); 2694 tcg_out_opc_vv_vi(s, OPC_VMINU_VV, OPC_VMINU_VI, a0, a1, a2, c2); 2695 break; 2696 case INDEX_op_shls_vec: 2697 set_vtype_len_sew(s, type, vece); 2698 tcg_out_opc_vx(s, OPC_VSLL_VX, a0, a1, a2); 2699 break; 2700 case INDEX_op_shrs_vec: 2701 set_vtype_len_sew(s, type, vece); 2702 tcg_out_opc_vx(s, OPC_VSRL_VX, a0, a1, a2); 2703 break; 2704 case INDEX_op_sars_vec: 2705 set_vtype_len_sew(s, type, vece); 2706 tcg_out_opc_vx(s, OPC_VSRA_VX, a0, a1, a2); 2707 break; 2708 case INDEX_op_shlv_vec: 2709 set_vtype_len_sew(s, type, vece); 2710 tcg_out_opc_vv(s, OPC_VSLL_VV, a0, a1, a2); 2711 break; 2712 case INDEX_op_shrv_vec: 2713 set_vtype_len_sew(s, type, vece); 2714 tcg_out_opc_vv(s, OPC_VSRL_VV, a0, a1, a2); 2715 break; 2716 case INDEX_op_sarv_vec: 2717 set_vtype_len_sew(s, type, vece); 2718 tcg_out_opc_vv(s, OPC_VSRA_VV, a0, a1, a2); 2719 break; 2720 case INDEX_op_shli_vec: 2721 set_vtype_len_sew(s, type, vece); 2722 tcg_out_vshifti(s, OPC_VSLL_VI, OPC_VSLL_VX, a0, a1, a2); 2723 break; 2724 case INDEX_op_shri_vec: 2725 set_vtype_len_sew(s, type, vece); 2726 tcg_out_vshifti(s, OPC_VSRL_VI, OPC_VSRL_VX, a0, a1, a2); 2727 break; 2728 case INDEX_op_sari_vec: 2729 set_vtype_len_sew(s, type, vece); 2730 tcg_out_vshifti(s, OPC_VSRA_VI, OPC_VSRA_VX, a0, a1, a2); 2731 break; 2732 case INDEX_op_rotli_vec: 2733 set_vtype_len_sew(s, type, vece); 2734 tcg_out_vshifti(s, OPC_VSLL_VI, OPC_VSLL_VX, TCG_REG_V0, a1, a2); 2735 tcg_out_vshifti(s, OPC_VSRL_VI, OPC_VSRL_VX, a0, a1, 2736 -a2 & ((8 << vece) - 1)); 2737 tcg_out_opc_vv(s, OPC_VOR_VV, a0, a0, TCG_REG_V0); 2738 break; 2739 case INDEX_op_rotls_vec: 2740 set_vtype_len_sew(s, type, vece); 2741 tcg_out_opc_vx(s, OPC_VSLL_VX, TCG_REG_V0, a1, a2); 2742 tcg_out_opc_reg(s, OPC_SUBW, TCG_REG_TMP0, TCG_REG_ZERO, a2); 2743 tcg_out_opc_vx(s, OPC_VSRL_VX, a0, a1, TCG_REG_TMP0); 2744 tcg_out_opc_vv(s, OPC_VOR_VV, a0, a0, TCG_REG_V0); 2745 break; 2746 case INDEX_op_rotlv_vec: 2747 set_vtype_len_sew(s, type, vece); 2748 tcg_out_opc_vi(s, OPC_VRSUB_VI, TCG_REG_V0, a2, 0); 2749 tcg_out_opc_vv(s, OPC_VSRL_VV, TCG_REG_V0, a1, TCG_REG_V0); 2750 tcg_out_opc_vv(s, OPC_VSLL_VV, a0, a1, a2); 2751 tcg_out_opc_vv(s, OPC_VOR_VV, a0, a0, TCG_REG_V0); 2752 break; 2753 case INDEX_op_rotrv_vec: 2754 set_vtype_len_sew(s, type, vece); 2755 tcg_out_opc_vi(s, OPC_VRSUB_VI, TCG_REG_V0, a2, 0); 2756 tcg_out_opc_vv(s, OPC_VSLL_VV, TCG_REG_V0, a1, TCG_REG_V0); 2757 tcg_out_opc_vv(s, OPC_VSRL_VV, a0, a1, a2); 2758 tcg_out_opc_vv(s, OPC_VOR_VV, a0, a0, TCG_REG_V0); 2759 break; 2760 case INDEX_op_cmp_vec: 2761 tcg_out_cmpsel(s, type, vece, args[3], a0, a1, a2, c2, 2762 -1, true, 0, true); 2763 break; 2764 case INDEX_op_cmpsel_vec: 2765 tcg_out_cmpsel(s, type, vece, args[5], a0, a1, a2, c2, 2766 args[3], const_args[3], args[4], const_args[4]); 2767 break; 2768 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ 2769 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ 2770 default: 2771 g_assert_not_reached(); 2772 } 2773} 2774 2775void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, 2776 TCGArg a0, ...) 2777{ 2778 g_assert_not_reached(); 2779} 2780 2781int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) 2782{ 2783 switch (opc) { 2784 case INDEX_op_add_vec: 2785 case INDEX_op_sub_vec: 2786 case INDEX_op_and_vec: 2787 case INDEX_op_or_vec: 2788 case INDEX_op_xor_vec: 2789 case INDEX_op_not_vec: 2790 case INDEX_op_neg_vec: 2791 case INDEX_op_mul_vec: 2792 case INDEX_op_ssadd_vec: 2793 case INDEX_op_sssub_vec: 2794 case INDEX_op_usadd_vec: 2795 case INDEX_op_ussub_vec: 2796 case INDEX_op_smax_vec: 2797 case INDEX_op_smin_vec: 2798 case INDEX_op_umax_vec: 2799 case INDEX_op_umin_vec: 2800 case INDEX_op_shls_vec: 2801 case INDEX_op_shrs_vec: 2802 case INDEX_op_sars_vec: 2803 case INDEX_op_shlv_vec: 2804 case INDEX_op_shrv_vec: 2805 case INDEX_op_sarv_vec: 2806 case INDEX_op_shri_vec: 2807 case INDEX_op_shli_vec: 2808 case INDEX_op_sari_vec: 2809 case INDEX_op_rotls_vec: 2810 case INDEX_op_rotlv_vec: 2811 case INDEX_op_rotrv_vec: 2812 case INDEX_op_rotli_vec: 2813 case INDEX_op_cmp_vec: 2814 case INDEX_op_cmpsel_vec: 2815 return 1; 2816 default: 2817 return 0; 2818 } 2819} 2820 2821static TCGConstraintSetIndex 2822tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags) 2823{ 2824 switch (op) { 2825 case INDEX_op_goto_ptr: 2826 return C_O0_I1(r); 2827 2828 case INDEX_op_ld8u_i32: 2829 case INDEX_op_ld8s_i32: 2830 case INDEX_op_ld16u_i32: 2831 case INDEX_op_ld16s_i32: 2832 case INDEX_op_ld_i32: 2833 case INDEX_op_ld8u_i64: 2834 case INDEX_op_ld8s_i64: 2835 case INDEX_op_ld16u_i64: 2836 case INDEX_op_ld16s_i64: 2837 case INDEX_op_ld32s_i64: 2838 case INDEX_op_ld32u_i64: 2839 case INDEX_op_ld_i64: 2840 case INDEX_op_extu_i32_i64: 2841 case INDEX_op_extrl_i64_i32: 2842 case INDEX_op_extrh_i64_i32: 2843 case INDEX_op_ext_i32_i64: 2844 case INDEX_op_extract_i32: 2845 case INDEX_op_extract_i64: 2846 case INDEX_op_sextract_i32: 2847 case INDEX_op_sextract_i64: 2848 case INDEX_op_bswap16_i32: 2849 case INDEX_op_bswap32_i32: 2850 case INDEX_op_bswap16_i64: 2851 case INDEX_op_bswap32_i64: 2852 case INDEX_op_bswap64_i64: 2853 return C_O1_I1(r, r); 2854 2855 case INDEX_op_st8_i32: 2856 case INDEX_op_st16_i32: 2857 case INDEX_op_st_i32: 2858 case INDEX_op_st8_i64: 2859 case INDEX_op_st16_i64: 2860 case INDEX_op_st32_i64: 2861 case INDEX_op_st_i64: 2862 return C_O0_I2(rz, r); 2863 2864 case INDEX_op_add2_i32: 2865 case INDEX_op_add2_i64: 2866 case INDEX_op_sub2_i32: 2867 case INDEX_op_sub2_i64: 2868 return C_O2_I4(r, r, rz, rz, rM, rM); 2869 2870 case INDEX_op_qemu_ld_i32: 2871 case INDEX_op_qemu_ld_i64: 2872 return C_O1_I1(r, r); 2873 case INDEX_op_qemu_st_i32: 2874 case INDEX_op_qemu_st_i64: 2875 return C_O0_I2(rz, r); 2876 2877 case INDEX_op_st_vec: 2878 return C_O0_I2(v, r); 2879 case INDEX_op_dup_vec: 2880 case INDEX_op_dupm_vec: 2881 case INDEX_op_ld_vec: 2882 return C_O1_I1(v, r); 2883 case INDEX_op_neg_vec: 2884 case INDEX_op_not_vec: 2885 case INDEX_op_shli_vec: 2886 case INDEX_op_shri_vec: 2887 case INDEX_op_sari_vec: 2888 case INDEX_op_rotli_vec: 2889 return C_O1_I1(v, v); 2890 case INDEX_op_add_vec: 2891 case INDEX_op_and_vec: 2892 case INDEX_op_or_vec: 2893 case INDEX_op_xor_vec: 2894 case INDEX_op_ssadd_vec: 2895 case INDEX_op_sssub_vec: 2896 case INDEX_op_usadd_vec: 2897 case INDEX_op_ussub_vec: 2898 case INDEX_op_smax_vec: 2899 case INDEX_op_smin_vec: 2900 case INDEX_op_umax_vec: 2901 case INDEX_op_umin_vec: 2902 return C_O1_I2(v, v, vK); 2903 case INDEX_op_sub_vec: 2904 return C_O1_I2(v, vK, v); 2905 case INDEX_op_mul_vec: 2906 case INDEX_op_shlv_vec: 2907 case INDEX_op_shrv_vec: 2908 case INDEX_op_sarv_vec: 2909 case INDEX_op_rotlv_vec: 2910 case INDEX_op_rotrv_vec: 2911 return C_O1_I2(v, v, v); 2912 case INDEX_op_shls_vec: 2913 case INDEX_op_shrs_vec: 2914 case INDEX_op_sars_vec: 2915 case INDEX_op_rotls_vec: 2916 return C_O1_I2(v, v, r); 2917 case INDEX_op_cmp_vec: 2918 return C_O1_I2(v, v, vL); 2919 case INDEX_op_cmpsel_vec: 2920 return C_O1_I4(v, v, vL, vK, vK); 2921 default: 2922 return C_NotImplemented; 2923 } 2924} 2925 2926static const int tcg_target_callee_save_regs[] = { 2927 TCG_REG_S0, /* used for the global env (TCG_AREG0) */ 2928 TCG_REG_S1, 2929 TCG_REG_S2, 2930 TCG_REG_S3, 2931 TCG_REG_S4, 2932 TCG_REG_S5, 2933 TCG_REG_S6, 2934 TCG_REG_S7, 2935 TCG_REG_S8, 2936 TCG_REG_S9, 2937 TCG_REG_S10, 2938 TCG_REG_S11, 2939 TCG_REG_RA, /* should be last for ABI compliance */ 2940}; 2941 2942/* Stack frame parameters. */ 2943#define REG_SIZE (TCG_TARGET_REG_BITS / 8) 2944#define SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * REG_SIZE) 2945#define TEMP_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long)) 2946#define FRAME_SIZE ((TCG_STATIC_CALL_ARGS_SIZE + TEMP_SIZE + SAVE_SIZE \ 2947 + TCG_TARGET_STACK_ALIGN - 1) \ 2948 & -TCG_TARGET_STACK_ALIGN) 2949#define SAVE_OFS (TCG_STATIC_CALL_ARGS_SIZE + TEMP_SIZE) 2950 2951/* We're expecting to be able to use an immediate for frame allocation. */ 2952QEMU_BUILD_BUG_ON(FRAME_SIZE > 0x7ff); 2953 2954/* Generate global QEMU prologue and epilogue code */ 2955static void tcg_target_qemu_prologue(TCGContext *s) 2956{ 2957 int i; 2958 2959 tcg_set_frame(s, TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE, TEMP_SIZE); 2960 2961 /* TB prologue */ 2962 tcg_out_opc_imm(s, OPC_ADDI, TCG_REG_SP, TCG_REG_SP, -FRAME_SIZE); 2963 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) { 2964 tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i], 2965 TCG_REG_SP, SAVE_OFS + i * REG_SIZE); 2966 } 2967 2968 if (!tcg_use_softmmu && guest_base) { 2969 tcg_out_movi(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base); 2970 tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG); 2971 } 2972 2973 /* Call generated code */ 2974 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); 2975 tcg_out_opc_imm(s, OPC_JALR, TCG_REG_ZERO, tcg_target_call_iarg_regs[1], 0); 2976 2977 /* Return path for goto_ptr. Set return value to 0 */ 2978 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); 2979 tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_A0, TCG_REG_ZERO); 2980 2981 /* TB epilogue */ 2982 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr); 2983 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) { 2984 tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i], 2985 TCG_REG_SP, SAVE_OFS + i * REG_SIZE); 2986 } 2987 2988 tcg_out_opc_imm(s, OPC_ADDI, TCG_REG_SP, TCG_REG_SP, FRAME_SIZE); 2989 tcg_out_opc_imm(s, OPC_JALR, TCG_REG_ZERO, TCG_REG_RA, 0); 2990} 2991 2992static void tcg_out_tb_start(TCGContext *s) 2993{ 2994 init_setting_vtype(s); 2995} 2996 2997static bool vtype_check(unsigned vtype) 2998{ 2999 unsigned long tmp; 3000 3001 /* vsetvl tmp, zero, vtype */ 3002 asm(".insn r 0x57, 7, 0x40, %0, zero, %1" : "=r"(tmp) : "r"(vtype)); 3003 return tmp != 0; 3004} 3005 3006static void probe_frac_lmul_1(TCGType type, MemOp vsew) 3007{ 3008 VsetCache *p = &riscv_vset_cache[type - TCG_TYPE_V64][vsew]; 3009 unsigned avl = tcg_type_size(type) >> vsew; 3010 int lmul = type - riscv_lg2_vlenb; 3011 unsigned vtype = encode_vtype(true, true, vsew, lmul & 7); 3012 bool lmul_eq_avl = true; 3013 3014 /* Guaranteed by Zve64x. */ 3015 assert(lmul < 3); 3016 3017 /* 3018 * For LMUL < -3, the host vector size is so large that TYPE 3019 * is smaller than the minimum 1/8 fraction. 3020 * 3021 * For other fractional LMUL settings, implementations must 3022 * support SEW settings between SEW_MIN and LMUL * ELEN, inclusive. 3023 * So if ELEN = 64, LMUL = 1/2, then SEW will support e8, e16, e32, 3024 * but e64 may not be supported. In other words, the hardware only 3025 * guarantees SEW_MIN <= SEW <= LMUL * ELEN. Check. 3026 */ 3027 if (lmul < 0 && (lmul < -3 || !vtype_check(vtype))) { 3028 vtype = encode_vtype(true, true, vsew, VLMUL_M1); 3029 lmul_eq_avl = false; 3030 } 3031 3032 if (avl < 32) { 3033 p->vset_insn = encode_vseti(OPC_VSETIVLI, TCG_REG_ZERO, avl, vtype); 3034 } else if (lmul_eq_avl) { 3035 /* rd != 0 and rs1 == 0 uses vlmax */ 3036 p->vset_insn = encode_vset(OPC_VSETVLI, TCG_REG_TMP0, TCG_REG_ZERO, vtype); 3037 } else { 3038 p->movi_insn = encode_i(OPC_ADDI, TCG_REG_TMP0, TCG_REG_ZERO, avl); 3039 p->vset_insn = encode_vset(OPC_VSETVLI, TCG_REG_ZERO, TCG_REG_TMP0, vtype); 3040 } 3041} 3042 3043static void probe_frac_lmul(void) 3044{ 3045 /* Match riscv_lg2_vlenb to TCG_TYPE_V64. */ 3046 QEMU_BUILD_BUG_ON(TCG_TYPE_V64 != 3); 3047 3048 for (TCGType t = TCG_TYPE_V64; t <= TCG_TYPE_V256; t++) { 3049 for (MemOp e = MO_8; e <= MO_64; e++) { 3050 probe_frac_lmul_1(t, e); 3051 } 3052 } 3053} 3054 3055static void tcg_target_init(TCGContext *s) 3056{ 3057 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff; 3058 tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffff; 3059 3060 tcg_target_call_clobber_regs = -1; 3061 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S0); 3062 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S1); 3063 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S2); 3064 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S3); 3065 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S4); 3066 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S5); 3067 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S6); 3068 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S7); 3069 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S8); 3070 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S9); 3071 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S10); 3072 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_S11); 3073 3074 s->reserved_regs = 0; 3075 tcg_regset_set_reg(s->reserved_regs, TCG_REG_ZERO); 3076 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP0); 3077 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1); 3078 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP2); 3079 tcg_regset_set_reg(s->reserved_regs, TCG_REG_SP); 3080 tcg_regset_set_reg(s->reserved_regs, TCG_REG_GP); 3081 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TP); 3082 3083 if (cpuinfo & CPUINFO_ZVE64X) { 3084 switch (riscv_lg2_vlenb) { 3085 case TCG_TYPE_V64: 3086 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS; 3087 tcg_target_available_regs[TCG_TYPE_V128] = ALL_DVECTOR_REG_GROUPS; 3088 tcg_target_available_regs[TCG_TYPE_V256] = ALL_QVECTOR_REG_GROUPS; 3089 s->reserved_regs |= (~ALL_QVECTOR_REG_GROUPS & ALL_VECTOR_REGS); 3090 break; 3091 case TCG_TYPE_V128: 3092 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS; 3093 tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS; 3094 tcg_target_available_regs[TCG_TYPE_V256] = ALL_DVECTOR_REG_GROUPS; 3095 s->reserved_regs |= (~ALL_DVECTOR_REG_GROUPS & ALL_VECTOR_REGS); 3096 break; 3097 default: 3098 /* Guaranteed by Zve64x. */ 3099 tcg_debug_assert(riscv_lg2_vlenb >= TCG_TYPE_V256); 3100 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS; 3101 tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS; 3102 tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS; 3103 break; 3104 } 3105 tcg_regset_set_reg(s->reserved_regs, TCG_REG_V0); 3106 probe_frac_lmul(); 3107 } 3108} 3109 3110typedef struct { 3111 DebugFrameHeader h; 3112 uint8_t fde_def_cfa[4]; 3113 uint8_t fde_reg_ofs[ARRAY_SIZE(tcg_target_callee_save_regs) * 2]; 3114} DebugFrame; 3115 3116#define ELF_HOST_MACHINE EM_RISCV 3117 3118static const DebugFrame debug_frame = { 3119 .h.cie.len = sizeof(DebugFrameCIE) - 4, /* length after .len member */ 3120 .h.cie.id = -1, 3121 .h.cie.version = 1, 3122 .h.cie.code_align = 1, 3123 .h.cie.data_align = -(TCG_TARGET_REG_BITS / 8) & 0x7f, /* sleb128 */ 3124 .h.cie.return_column = TCG_REG_RA, 3125 3126 /* Total FDE size does not include the "len" member. */ 3127 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 3128 3129 .fde_def_cfa = { 3130 12, TCG_REG_SP, /* DW_CFA_def_cfa sp, ... */ 3131 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 3132 (FRAME_SIZE >> 7) 3133 }, 3134 .fde_reg_ofs = { 3135 0x80 + 9, 12, /* DW_CFA_offset, s1, -96 */ 3136 0x80 + 18, 11, /* DW_CFA_offset, s2, -88 */ 3137 0x80 + 19, 10, /* DW_CFA_offset, s3, -80 */ 3138 0x80 + 20, 9, /* DW_CFA_offset, s4, -72 */ 3139 0x80 + 21, 8, /* DW_CFA_offset, s5, -64 */ 3140 0x80 + 22, 7, /* DW_CFA_offset, s6, -56 */ 3141 0x80 + 23, 6, /* DW_CFA_offset, s7, -48 */ 3142 0x80 + 24, 5, /* DW_CFA_offset, s8, -40 */ 3143 0x80 + 25, 4, /* DW_CFA_offset, s9, -32 */ 3144 0x80 + 26, 3, /* DW_CFA_offset, s10, -24 */ 3145 0x80 + 27, 2, /* DW_CFA_offset, s11, -16 */ 3146 0x80 + 1 , 1, /* DW_CFA_offset, ra, -8 */ 3147 } 3148}; 3149 3150void tcg_register_jit(const void *buf, size_t buf_size) 3151{ 3152 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); 3153} 3154