1 /* 2 * Memory region management for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "qapi/error.h" 28 #include "exec/exec-all.h" 29 #include "tcg/tcg.h" 30 #include "tcg-internal.h" 31 32 33 struct tcg_region_tree { 34 QemuMutex lock; 35 GTree *tree; 36 /* padding to avoid false sharing is computed at run-time */ 37 }; 38 39 /* 40 * We divide code_gen_buffer into equally-sized "regions" that TCG threads 41 * dynamically allocate from as demand dictates. Given appropriate region 42 * sizing, this minimizes flushes even when some TCG threads generate a lot 43 * more code than others. 44 */ 45 struct tcg_region_state { 46 QemuMutex lock; 47 48 /* fields set at init time */ 49 void *start_aligned; 50 void *after_prologue; 51 size_t n; 52 size_t size; /* size of one region */ 53 size_t stride; /* .size + guard size */ 54 size_t total_size; /* size of entire buffer, >= n * stride */ 55 56 /* fields protected by the lock */ 57 size_t current; /* current region index */ 58 size_t agg_size_full; /* aggregate size of full regions */ 59 }; 60 61 static struct tcg_region_state region; 62 63 /* 64 * This is an array of struct tcg_region_tree's, with padding. 65 * We use void * to simplify the computation of region_trees[i]; each 66 * struct is found every tree_size bytes. 67 */ 68 static void *region_trees; 69 static size_t tree_size; 70 71 bool in_code_gen_buffer(const void *p) 72 { 73 /* 74 * Much like it is valid to have a pointer to the byte past the 75 * end of an array (so long as you don't dereference it), allow 76 * a pointer to the byte past the end of the code gen buffer. 77 */ 78 return (size_t)(p - region.start_aligned) <= region.total_size; 79 } 80 81 #ifdef CONFIG_DEBUG_TCG 82 const void *tcg_splitwx_to_rx(void *rw) 83 { 84 /* Pass NULL pointers unchanged. */ 85 if (rw) { 86 g_assert(in_code_gen_buffer(rw)); 87 rw += tcg_splitwx_diff; 88 } 89 return rw; 90 } 91 92 void *tcg_splitwx_to_rw(const void *rx) 93 { 94 /* Pass NULL pointers unchanged. */ 95 if (rx) { 96 rx -= tcg_splitwx_diff; 97 /* Assert that we end with a pointer in the rw region. */ 98 g_assert(in_code_gen_buffer(rx)); 99 } 100 return (void *)rx; 101 } 102 #endif /* CONFIG_DEBUG_TCG */ 103 104 /* compare a pointer @ptr and a tb_tc @s */ 105 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s) 106 { 107 if (ptr >= s->ptr + s->size) { 108 return 1; 109 } else if (ptr < s->ptr) { 110 return -1; 111 } 112 return 0; 113 } 114 115 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp, gpointer userdata) 116 { 117 const struct tb_tc *a = ap; 118 const struct tb_tc *b = bp; 119 120 /* 121 * When both sizes are set, we know this isn't a lookup. 122 * This is the most likely case: every TB must be inserted; lookups 123 * are a lot less frequent. 124 */ 125 if (likely(a->size && b->size)) { 126 if (a->ptr > b->ptr) { 127 return 1; 128 } else if (a->ptr < b->ptr) { 129 return -1; 130 } 131 /* a->ptr == b->ptr should happen only on deletions */ 132 g_assert(a->size == b->size); 133 return 0; 134 } 135 /* 136 * All lookups have either .size field set to 0. 137 * From the glib sources we see that @ap is always the lookup key. However 138 * the docs provide no guarantee, so we just mark this case as likely. 139 */ 140 if (likely(a->size == 0)) { 141 return ptr_cmp_tb_tc(a->ptr, b); 142 } 143 return ptr_cmp_tb_tc(b->ptr, a); 144 } 145 146 static void tb_destroy(gpointer value) 147 { 148 TranslationBlock *tb = value; 149 qemu_spin_destroy(&tb->jmp_lock); 150 } 151 152 static void tcg_region_trees_init(void) 153 { 154 size_t i; 155 156 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize); 157 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size); 158 for (i = 0; i < region.n; i++) { 159 struct tcg_region_tree *rt = region_trees + i * tree_size; 160 161 qemu_mutex_init(&rt->lock); 162 rt->tree = g_tree_new_full(tb_tc_cmp, NULL, NULL, tb_destroy); 163 } 164 } 165 166 static struct tcg_region_tree *tc_ptr_to_region_tree(const void *p) 167 { 168 size_t region_idx; 169 170 /* 171 * Like tcg_splitwx_to_rw, with no assert. The pc may come from 172 * a signal handler over which the caller has no control. 173 */ 174 if (!in_code_gen_buffer(p)) { 175 p -= tcg_splitwx_diff; 176 if (!in_code_gen_buffer(p)) { 177 return NULL; 178 } 179 } 180 181 if (p < region.start_aligned) { 182 region_idx = 0; 183 } else { 184 ptrdiff_t offset = p - region.start_aligned; 185 186 if (offset > region.stride * (region.n - 1)) { 187 region_idx = region.n - 1; 188 } else { 189 region_idx = offset / region.stride; 190 } 191 } 192 return region_trees + region_idx * tree_size; 193 } 194 195 void tcg_tb_insert(TranslationBlock *tb) 196 { 197 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 198 199 g_assert(rt != NULL); 200 qemu_mutex_lock(&rt->lock); 201 g_tree_insert(rt->tree, &tb->tc, tb); 202 qemu_mutex_unlock(&rt->lock); 203 } 204 205 void tcg_tb_remove(TranslationBlock *tb) 206 { 207 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr); 208 209 g_assert(rt != NULL); 210 qemu_mutex_lock(&rt->lock); 211 g_tree_remove(rt->tree, &tb->tc); 212 qemu_mutex_unlock(&rt->lock); 213 } 214 215 /* 216 * Find the TB 'tb' such that 217 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size 218 * Return NULL if not found. 219 */ 220 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr) 221 { 222 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr); 223 TranslationBlock *tb; 224 struct tb_tc s = { .ptr = (void *)tc_ptr }; 225 226 if (rt == NULL) { 227 return NULL; 228 } 229 230 qemu_mutex_lock(&rt->lock); 231 tb = g_tree_lookup(rt->tree, &s); 232 qemu_mutex_unlock(&rt->lock); 233 return tb; 234 } 235 236 static void tcg_region_tree_lock_all(void) 237 { 238 size_t i; 239 240 for (i = 0; i < region.n; i++) { 241 struct tcg_region_tree *rt = region_trees + i * tree_size; 242 243 qemu_mutex_lock(&rt->lock); 244 } 245 } 246 247 static void tcg_region_tree_unlock_all(void) 248 { 249 size_t i; 250 251 for (i = 0; i < region.n; i++) { 252 struct tcg_region_tree *rt = region_trees + i * tree_size; 253 254 qemu_mutex_unlock(&rt->lock); 255 } 256 } 257 258 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data) 259 { 260 size_t i; 261 262 tcg_region_tree_lock_all(); 263 for (i = 0; i < region.n; i++) { 264 struct tcg_region_tree *rt = region_trees + i * tree_size; 265 266 g_tree_foreach(rt->tree, func, user_data); 267 } 268 tcg_region_tree_unlock_all(); 269 } 270 271 size_t tcg_nb_tbs(void) 272 { 273 size_t nb_tbs = 0; 274 size_t i; 275 276 tcg_region_tree_lock_all(); 277 for (i = 0; i < region.n; i++) { 278 struct tcg_region_tree *rt = region_trees + i * tree_size; 279 280 nb_tbs += g_tree_nnodes(rt->tree); 281 } 282 tcg_region_tree_unlock_all(); 283 return nb_tbs; 284 } 285 286 static void tcg_region_tree_reset_all(void) 287 { 288 size_t i; 289 290 tcg_region_tree_lock_all(); 291 for (i = 0; i < region.n; i++) { 292 struct tcg_region_tree *rt = region_trees + i * tree_size; 293 294 /* Increment the refcount first so that destroy acts as a reset */ 295 g_tree_ref(rt->tree); 296 g_tree_destroy(rt->tree); 297 } 298 tcg_region_tree_unlock_all(); 299 } 300 301 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend) 302 { 303 void *start, *end; 304 305 start = region.start_aligned + curr_region * region.stride; 306 end = start + region.size; 307 308 if (curr_region == 0) { 309 start = region.after_prologue; 310 } 311 /* The final region may have a few extra pages due to earlier rounding. */ 312 if (curr_region == region.n - 1) { 313 end = region.start_aligned + region.total_size; 314 } 315 316 *pstart = start; 317 *pend = end; 318 } 319 320 static void tcg_region_assign(TCGContext *s, size_t curr_region) 321 { 322 void *start, *end; 323 324 tcg_region_bounds(curr_region, &start, &end); 325 326 s->code_gen_buffer = start; 327 s->code_gen_ptr = start; 328 s->code_gen_buffer_size = end - start; 329 s->code_gen_highwater = end - TCG_HIGHWATER; 330 } 331 332 static bool tcg_region_alloc__locked(TCGContext *s) 333 { 334 if (region.current == region.n) { 335 return true; 336 } 337 tcg_region_assign(s, region.current); 338 region.current++; 339 return false; 340 } 341 342 /* 343 * Request a new region once the one in use has filled up. 344 * Returns true on error. 345 */ 346 bool tcg_region_alloc(TCGContext *s) 347 { 348 bool err; 349 /* read the region size now; alloc__locked will overwrite it on success */ 350 size_t size_full = s->code_gen_buffer_size; 351 352 qemu_mutex_lock(®ion.lock); 353 err = tcg_region_alloc__locked(s); 354 if (!err) { 355 region.agg_size_full += size_full - TCG_HIGHWATER; 356 } 357 qemu_mutex_unlock(®ion.lock); 358 return err; 359 } 360 361 /* 362 * Perform a context's first region allocation. 363 * This function does _not_ increment region.agg_size_full. 364 */ 365 static void tcg_region_initial_alloc__locked(TCGContext *s) 366 { 367 bool err = tcg_region_alloc__locked(s); 368 g_assert(!err); 369 } 370 371 void tcg_region_initial_alloc(TCGContext *s) 372 { 373 qemu_mutex_lock(®ion.lock); 374 tcg_region_initial_alloc__locked(s); 375 qemu_mutex_unlock(®ion.lock); 376 } 377 378 /* Call from a safe-work context */ 379 void tcg_region_reset_all(void) 380 { 381 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs); 382 unsigned int i; 383 384 qemu_mutex_lock(®ion.lock); 385 region.current = 0; 386 region.agg_size_full = 0; 387 388 for (i = 0; i < n_ctxs; i++) { 389 TCGContext *s = qatomic_read(&tcg_ctxs[i]); 390 tcg_region_initial_alloc__locked(s); 391 } 392 qemu_mutex_unlock(®ion.lock); 393 394 tcg_region_tree_reset_all(); 395 } 396 397 static size_t tcg_n_regions(size_t tb_size, unsigned max_cpus) 398 { 399 #ifdef CONFIG_USER_ONLY 400 return 1; 401 #else 402 size_t n_regions; 403 404 /* 405 * It is likely that some vCPUs will translate more code than others, 406 * so we first try to set more regions than max_cpus, with those regions 407 * being of reasonable size. If that's not possible we make do by evenly 408 * dividing the code_gen_buffer among the vCPUs. 409 */ 410 /* Use a single region if all we have is one vCPU thread */ 411 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) { 412 return 1; 413 } 414 415 /* 416 * Try to have more regions than max_cpus, with each region being >= 2 MB. 417 * If we can't, then just allocate one region per vCPU thread. 418 */ 419 n_regions = tb_size / (2 * MiB); 420 if (n_regions <= max_cpus) { 421 return max_cpus; 422 } 423 return MIN(n_regions, max_cpus * 8); 424 #endif 425 } 426 427 /* 428 * Minimum size of the code gen buffer. This number is randomly chosen, 429 * but not so small that we can't have a fair number of TB's live. 430 * 431 * Maximum size, MAX_CODE_GEN_BUFFER_SIZE, is defined in tcg-target.h. 432 * Unless otherwise indicated, this is constrained by the range of 433 * direct branches on the host cpu, as used by the TCG implementation 434 * of goto_tb. 435 */ 436 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB) 437 438 #if TCG_TARGET_REG_BITS == 32 439 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB) 440 #ifdef CONFIG_USER_ONLY 441 /* 442 * For user mode on smaller 32 bit systems we may run into trouble 443 * allocating big chunks of data in the right place. On these systems 444 * we utilise a static code generation buffer directly in the binary. 445 */ 446 #define USE_STATIC_CODE_GEN_BUFFER 447 #endif 448 #else /* TCG_TARGET_REG_BITS == 64 */ 449 #ifdef CONFIG_USER_ONLY 450 /* 451 * As user-mode emulation typically means running multiple instances 452 * of the translator don't go too nuts with our default code gen 453 * buffer lest we make things too hard for the OS. 454 */ 455 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB) 456 #else 457 /* 458 * We expect most system emulation to run one or two guests per host. 459 * Users running large scale system emulation may want to tweak their 460 * runtime setup via the tb-size control on the command line. 461 */ 462 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB) 463 #endif 464 #endif 465 466 #define DEFAULT_CODE_GEN_BUFFER_SIZE \ 467 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \ 468 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE) 469 470 #ifdef __mips__ 471 /* 472 * In order to use J and JAL within the code_gen_buffer, we require 473 * that the buffer not cross a 256MB boundary. 474 */ 475 static inline bool cross_256mb(void *addr, size_t size) 476 { 477 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful; 478 } 479 480 /* 481 * We weren't able to allocate a buffer without crossing that boundary, 482 * so make do with the larger portion of the buffer that doesn't cross. 483 * Returns the new base and size of the buffer in *obuf and *osize. 484 */ 485 static inline void split_cross_256mb(void **obuf, size_t *osize, 486 void *buf1, size_t size1) 487 { 488 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful); 489 size_t size2 = buf1 + size1 - buf2; 490 491 size1 = buf2 - buf1; 492 if (size1 < size2) { 493 size1 = size2; 494 buf1 = buf2; 495 } 496 497 *obuf = buf1; 498 *osize = size1; 499 } 500 #endif 501 502 #ifdef USE_STATIC_CODE_GEN_BUFFER 503 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE] 504 __attribute__((aligned(CODE_GEN_ALIGN))); 505 506 static int alloc_code_gen_buffer(size_t tb_size, int splitwx, Error **errp) 507 { 508 void *buf, *end; 509 size_t size; 510 511 if (splitwx > 0) { 512 error_setg(errp, "jit split-wx not supported"); 513 return -1; 514 } 515 516 /* page-align the beginning and end of the buffer */ 517 buf = static_code_gen_buffer; 518 end = static_code_gen_buffer + sizeof(static_code_gen_buffer); 519 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size); 520 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size); 521 522 size = end - buf; 523 524 /* Honor a command-line option limiting the size of the buffer. */ 525 if (size > tb_size) { 526 size = QEMU_ALIGN_DOWN(tb_size, qemu_real_host_page_size); 527 } 528 529 #ifdef __mips__ 530 if (cross_256mb(buf, size)) { 531 split_cross_256mb(&buf, &size, buf, size); 532 } 533 #endif 534 535 region.start_aligned = buf; 536 region.total_size = size; 537 538 return PROT_READ | PROT_WRITE; 539 } 540 #elif defined(_WIN32) 541 static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp) 542 { 543 void *buf; 544 545 if (splitwx > 0) { 546 error_setg(errp, "jit split-wx not supported"); 547 return -1; 548 } 549 550 buf = VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT, 551 PAGE_EXECUTE_READWRITE); 552 if (buf == NULL) { 553 error_setg_win32(errp, GetLastError(), 554 "allocate %zu bytes for jit buffer", size); 555 return false; 556 } 557 558 region.start_aligned = buf; 559 region.total_size = size; 560 561 return PAGE_READ | PAGE_WRITE | PAGE_EXEC; 562 } 563 #else 564 static int alloc_code_gen_buffer_anon(size_t size, int prot, 565 int flags, Error **errp) 566 { 567 void *buf; 568 569 buf = mmap(NULL, size, prot, flags, -1, 0); 570 if (buf == MAP_FAILED) { 571 error_setg_errno(errp, errno, 572 "allocate %zu bytes for jit buffer", size); 573 return -1; 574 } 575 576 #ifdef __mips__ 577 if (cross_256mb(buf, size)) { 578 /* 579 * Try again, with the original still mapped, to avoid re-acquiring 580 * the same 256mb crossing. 581 */ 582 size_t size2; 583 void *buf2 = mmap(NULL, size, prot, flags, -1, 0); 584 switch ((int)(buf2 != MAP_FAILED)) { 585 case 1: 586 if (!cross_256mb(buf2, size)) { 587 /* Success! Use the new buffer. */ 588 munmap(buf, size); 589 break; 590 } 591 /* Failure. Work with what we had. */ 592 munmap(buf2, size); 593 /* fallthru */ 594 default: 595 /* Split the original buffer. Free the smaller half. */ 596 split_cross_256mb(&buf2, &size2, buf, size); 597 if (buf == buf2) { 598 munmap(buf + size2, size - size2); 599 } else { 600 munmap(buf, size - size2); 601 } 602 size = size2; 603 break; 604 } 605 buf = buf2; 606 } 607 #endif 608 609 region.start_aligned = buf; 610 region.total_size = size; 611 return prot; 612 } 613 614 #ifndef CONFIG_TCG_INTERPRETER 615 #ifdef CONFIG_POSIX 616 #include "qemu/memfd.h" 617 618 static bool alloc_code_gen_buffer_splitwx_memfd(size_t size, Error **errp) 619 { 620 void *buf_rw = NULL, *buf_rx = MAP_FAILED; 621 int fd = -1; 622 623 #ifdef __mips__ 624 /* Find space for the RX mapping, vs the 256MiB regions. */ 625 if (alloc_code_gen_buffer_anon(size, PROT_NONE, 626 MAP_PRIVATE | MAP_ANONYMOUS | 627 MAP_NORESERVE, errp) < 0) { 628 return false; 629 } 630 /* The size of the mapping may have been adjusted. */ 631 buf_rx = region.start_aligned; 632 size = region.total_size; 633 #endif 634 635 buf_rw = qemu_memfd_alloc("tcg-jit", size, 0, &fd, errp); 636 if (buf_rw == NULL) { 637 goto fail; 638 } 639 640 #ifdef __mips__ 641 void *tmp = mmap(buf_rx, size, PROT_READ | PROT_EXEC, 642 MAP_SHARED | MAP_FIXED, fd, 0); 643 if (tmp != buf_rx) { 644 goto fail_rx; 645 } 646 #else 647 buf_rx = mmap(NULL, size, PROT_READ | PROT_EXEC, MAP_SHARED, fd, 0); 648 if (buf_rx == MAP_FAILED) { 649 goto fail_rx; 650 } 651 #endif 652 653 close(fd); 654 region.start_aligned = buf_rw; 655 region.total_size = size; 656 tcg_splitwx_diff = buf_rx - buf_rw; 657 658 return PROT_READ | PROT_WRITE; 659 660 fail_rx: 661 error_setg_errno(errp, errno, "failed to map shared memory for execute"); 662 fail: 663 if (buf_rx != MAP_FAILED) { 664 munmap(buf_rx, size); 665 } 666 if (buf_rw) { 667 munmap(buf_rw, size); 668 } 669 if (fd >= 0) { 670 close(fd); 671 } 672 return -1; 673 } 674 #endif /* CONFIG_POSIX */ 675 676 #ifdef CONFIG_DARWIN 677 #include <mach/mach.h> 678 679 extern kern_return_t mach_vm_remap(vm_map_t target_task, 680 mach_vm_address_t *target_address, 681 mach_vm_size_t size, 682 mach_vm_offset_t mask, 683 int flags, 684 vm_map_t src_task, 685 mach_vm_address_t src_address, 686 boolean_t copy, 687 vm_prot_t *cur_protection, 688 vm_prot_t *max_protection, 689 vm_inherit_t inheritance); 690 691 static int alloc_code_gen_buffer_splitwx_vmremap(size_t size, Error **errp) 692 { 693 kern_return_t ret; 694 mach_vm_address_t buf_rw, buf_rx; 695 vm_prot_t cur_prot, max_prot; 696 697 /* Map the read-write portion via normal anon memory. */ 698 if (!alloc_code_gen_buffer_anon(size, PROT_READ | PROT_WRITE, 699 MAP_PRIVATE | MAP_ANONYMOUS, errp)) { 700 return -1; 701 } 702 703 buf_rw = (mach_vm_address_t)region.start_aligned; 704 buf_rx = 0; 705 ret = mach_vm_remap(mach_task_self(), 706 &buf_rx, 707 size, 708 0, 709 VM_FLAGS_ANYWHERE, 710 mach_task_self(), 711 buf_rw, 712 false, 713 &cur_prot, 714 &max_prot, 715 VM_INHERIT_NONE); 716 if (ret != KERN_SUCCESS) { 717 /* TODO: Convert "ret" to a human readable error message. */ 718 error_setg(errp, "vm_remap for jit splitwx failed"); 719 munmap((void *)buf_rw, size); 720 return -1; 721 } 722 723 if (mprotect((void *)buf_rx, size, PROT_READ | PROT_EXEC) != 0) { 724 error_setg_errno(errp, errno, "mprotect for jit splitwx"); 725 munmap((void *)buf_rx, size); 726 munmap((void *)buf_rw, size); 727 return -1; 728 } 729 730 tcg_splitwx_diff = buf_rx - buf_rw; 731 return PROT_READ | PROT_WRITE; 732 } 733 #endif /* CONFIG_DARWIN */ 734 #endif /* CONFIG_TCG_INTERPRETER */ 735 736 static int alloc_code_gen_buffer_splitwx(size_t size, Error **errp) 737 { 738 #ifndef CONFIG_TCG_INTERPRETER 739 # ifdef CONFIG_DARWIN 740 return alloc_code_gen_buffer_splitwx_vmremap(size, errp); 741 # endif 742 # ifdef CONFIG_POSIX 743 return alloc_code_gen_buffer_splitwx_memfd(size, errp); 744 # endif 745 #endif 746 error_setg(errp, "jit split-wx not supported"); 747 return -1; 748 } 749 750 static int alloc_code_gen_buffer(size_t size, int splitwx, Error **errp) 751 { 752 ERRP_GUARD(); 753 int prot, flags; 754 755 if (splitwx) { 756 prot = alloc_code_gen_buffer_splitwx(size, errp); 757 if (prot >= 0) { 758 return prot; 759 } 760 /* 761 * If splitwx force-on (1), fail; 762 * if splitwx default-on (-1), fall through to splitwx off. 763 */ 764 if (splitwx > 0) { 765 return -1; 766 } 767 error_free_or_abort(errp); 768 } 769 770 /* 771 * macOS 11.2 has a bug (Apple Feedback FB8994773) in which mprotect 772 * rejects a permission change from RWX -> NONE when reserving the 773 * guard pages later. We can go the other way with the same number 774 * of syscalls, so always begin with PROT_NONE. 775 */ 776 prot = PROT_NONE; 777 flags = MAP_PRIVATE | MAP_ANONYMOUS; 778 #ifdef CONFIG_DARWIN 779 /* Applicable to both iOS and macOS (Apple Silicon). */ 780 if (!splitwx) { 781 flags |= MAP_JIT; 782 } 783 #endif 784 785 return alloc_code_gen_buffer_anon(size, prot, flags, errp); 786 } 787 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */ 788 789 /* 790 * Initializes region partitioning. 791 * 792 * Called at init time from the parent thread (i.e. the one calling 793 * tcg_context_init), after the target's TCG globals have been set. 794 * 795 * Region partitioning works by splitting code_gen_buffer into separate regions, 796 * and then assigning regions to TCG threads so that the threads can translate 797 * code in parallel without synchronization. 798 * 799 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at 800 * least max_cpus regions in MTTCG. In !MTTCG we use a single region. 801 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...]) 802 * must have been parsed before calling this function, since it calls 803 * qemu_tcg_mttcg_enabled(). 804 * 805 * In user-mode we use a single region. Having multiple regions in user-mode 806 * is not supported, because the number of vCPU threads (recall that each thread 807 * spawned by the guest corresponds to a vCPU thread) is only bounded by the 808 * OS, and usually this number is huge (tens of thousands is not uncommon). 809 * Thus, given this large bound on the number of vCPU threads and the fact 810 * that code_gen_buffer is allocated at compile-time, we cannot guarantee 811 * that the availability of at least one region per vCPU thread. 812 * 813 * However, this user-mode limitation is unlikely to be a significant problem 814 * in practice. Multi-threaded guests share most if not all of their translated 815 * code, which makes parallel code generation less appealing than in softmmu. 816 */ 817 void tcg_region_init(size_t tb_size, int splitwx, unsigned max_cpus) 818 { 819 const size_t page_size = qemu_real_host_page_size; 820 size_t region_size; 821 int have_prot, need_prot; 822 823 /* Size the buffer. */ 824 if (tb_size == 0) { 825 size_t phys_mem = qemu_get_host_physmem(); 826 if (phys_mem == 0) { 827 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE; 828 } else { 829 tb_size = QEMU_ALIGN_DOWN(phys_mem / 8, page_size); 830 tb_size = MIN(DEFAULT_CODE_GEN_BUFFER_SIZE, tb_size); 831 } 832 } 833 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) { 834 tb_size = MIN_CODE_GEN_BUFFER_SIZE; 835 } 836 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) { 837 tb_size = MAX_CODE_GEN_BUFFER_SIZE; 838 } 839 840 have_prot = alloc_code_gen_buffer(tb_size, splitwx, &error_fatal); 841 assert(have_prot >= 0); 842 843 /* Request large pages for the buffer and the splitwx. */ 844 qemu_madvise(region.start_aligned, region.total_size, QEMU_MADV_HUGEPAGE); 845 if (tcg_splitwx_diff) { 846 qemu_madvise(region.start_aligned + tcg_splitwx_diff, 847 region.total_size, QEMU_MADV_HUGEPAGE); 848 } 849 850 /* 851 * Make region_size a multiple of page_size, using aligned as the start. 852 * As a result of this we might end up with a few extra pages at the end of 853 * the buffer; we will assign those to the last region. 854 */ 855 region.n = tcg_n_regions(tb_size, max_cpus); 856 region_size = tb_size / region.n; 857 region_size = QEMU_ALIGN_DOWN(region_size, page_size); 858 859 /* A region must have at least 2 pages; one code, one guard */ 860 g_assert(region_size >= 2 * page_size); 861 region.stride = region_size; 862 863 /* Reserve space for guard pages. */ 864 region.size = region_size - page_size; 865 region.total_size -= page_size; 866 867 /* 868 * The first region will be smaller than the others, via the prologue, 869 * which has yet to be allocated. For now, the first region begins at 870 * the page boundary. 871 */ 872 region.after_prologue = region.start_aligned; 873 874 /* init the region struct */ 875 qemu_mutex_init(®ion.lock); 876 877 /* 878 * Set guard pages in the rw buffer, as that's the one into which 879 * buffer overruns could occur. Do not set guard pages in the rx 880 * buffer -- let that one use hugepages throughout. 881 * Work with the page protections set up with the initial mapping. 882 */ 883 need_prot = PAGE_READ | PAGE_WRITE; 884 #ifndef CONFIG_TCG_INTERPRETER 885 if (tcg_splitwx_diff == 0) { 886 need_prot |= PAGE_EXEC; 887 } 888 #endif 889 for (size_t i = 0, n = region.n; i < n; i++) { 890 void *start, *end; 891 892 tcg_region_bounds(i, &start, &end); 893 if (have_prot != need_prot) { 894 int rc; 895 896 if (need_prot == (PAGE_READ | PAGE_WRITE | PAGE_EXEC)) { 897 rc = qemu_mprotect_rwx(start, end - start); 898 } else if (need_prot == (PAGE_READ | PAGE_WRITE)) { 899 rc = qemu_mprotect_rw(start, end - start); 900 } else { 901 g_assert_not_reached(); 902 } 903 if (rc) { 904 error_setg_errno(&error_fatal, errno, 905 "mprotect of jit buffer"); 906 } 907 } 908 if (have_prot != 0) { 909 /* Guard pages are nice for bug detection but are not essential. */ 910 (void)qemu_mprotect_none(end, page_size); 911 } 912 } 913 914 tcg_region_trees_init(); 915 916 /* 917 * Leave the initial context initialized to the first region. 918 * This will be the context into which we generate the prologue. 919 * It is also the only context for CONFIG_USER_ONLY. 920 */ 921 tcg_region_initial_alloc__locked(&tcg_init_ctx); 922 } 923 924 void tcg_region_prologue_set(TCGContext *s) 925 { 926 /* Deduct the prologue from the first region. */ 927 g_assert(region.start_aligned == s->code_gen_buffer); 928 region.after_prologue = s->code_ptr; 929 930 /* Recompute boundaries of the first region. */ 931 tcg_region_assign(s, 0); 932 933 /* Register the balance of the buffer with gdb. */ 934 tcg_register_jit(tcg_splitwx_to_rx(region.after_prologue), 935 region.start_aligned + region.total_size - 936 region.after_prologue); 937 } 938 939 /* 940 * Returns the size (in bytes) of all translated code (i.e. from all regions) 941 * currently in the cache. 942 * See also: tcg_code_capacity() 943 * Do not confuse with tcg_current_code_size(); that one applies to a single 944 * TCG context. 945 */ 946 size_t tcg_code_size(void) 947 { 948 unsigned int n_ctxs = qatomic_read(&tcg_cur_ctxs); 949 unsigned int i; 950 size_t total; 951 952 qemu_mutex_lock(®ion.lock); 953 total = region.agg_size_full; 954 for (i = 0; i < n_ctxs; i++) { 955 const TCGContext *s = qatomic_read(&tcg_ctxs[i]); 956 size_t size; 957 958 size = qatomic_read(&s->code_gen_ptr) - s->code_gen_buffer; 959 g_assert(size <= s->code_gen_buffer_size); 960 total += size; 961 } 962 qemu_mutex_unlock(®ion.lock); 963 return total; 964 } 965 966 /* 967 * Returns the code capacity (in bytes) of the entire cache, i.e. including all 968 * regions. 969 * See also: tcg_code_size() 970 */ 971 size_t tcg_code_capacity(void) 972 { 973 size_t guard_size, capacity; 974 975 /* no need for synchronization; these variables are set at init time */ 976 guard_size = region.stride - region.size; 977 capacity = region.total_size; 978 capacity -= (region.n - 1) * guard_size; 979 capacity -= region.n * TCG_HIGHWATER; 980 981 return capacity; 982 } 983