1/* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25#include "elf.h" 26#include "../tcg-pool.c.inc" 27 28#if defined _CALL_DARWIN || defined __APPLE__ 29#define TCG_TARGET_CALL_DARWIN 30#endif 31#ifdef _CALL_SYSV 32# define TCG_TARGET_CALL_ALIGN_ARGS 1 33#endif 34 35/* For some memory operations, we need a scratch that isn't R0. For the AIX 36 calling convention, we can re-use the TOC register since we'll be reloading 37 it at every call. Otherwise R12 will do nicely as neither a call-saved 38 register nor a parameter register. */ 39#ifdef _CALL_AIX 40# define TCG_REG_TMP1 TCG_REG_R2 41#else 42# define TCG_REG_TMP1 TCG_REG_R12 43#endif 44 45#define TCG_VEC_TMP1 TCG_REG_V0 46#define TCG_VEC_TMP2 TCG_REG_V1 47 48#define TCG_REG_TB TCG_REG_R31 49#define USE_REG_TB (TCG_TARGET_REG_BITS == 64) 50 51/* Shorthand for size of a pointer. Avoid promotion to unsigned. */ 52#define SZP ((int)sizeof(void *)) 53 54/* Shorthand for size of a register. */ 55#define SZR (TCG_TARGET_REG_BITS / 8) 56 57#define TCG_CT_CONST_S16 0x100 58#define TCG_CT_CONST_U16 0x200 59#define TCG_CT_CONST_S32 0x400 60#define TCG_CT_CONST_U32 0x800 61#define TCG_CT_CONST_ZERO 0x1000 62#define TCG_CT_CONST_MONE 0x2000 63#define TCG_CT_CONST_WSZ 0x4000 64 65TCGPowerISA have_isa; 66static bool have_isel; 67bool have_altivec; 68bool have_vsx; 69 70#ifndef CONFIG_SOFTMMU 71#define TCG_GUEST_BASE_REG 30 72#endif 73 74#ifdef CONFIG_DEBUG_TCG 75static const char tcg_target_reg_names[TCG_TARGET_NB_REGS][4] = { 76 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 77 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 78 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 79 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 80 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", 81 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", 82 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", 83 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", 84}; 85#endif 86 87static const int tcg_target_reg_alloc_order[] = { 88 TCG_REG_R14, /* call saved registers */ 89 TCG_REG_R15, 90 TCG_REG_R16, 91 TCG_REG_R17, 92 TCG_REG_R18, 93 TCG_REG_R19, 94 TCG_REG_R20, 95 TCG_REG_R21, 96 TCG_REG_R22, 97 TCG_REG_R23, 98 TCG_REG_R24, 99 TCG_REG_R25, 100 TCG_REG_R26, 101 TCG_REG_R27, 102 TCG_REG_R28, 103 TCG_REG_R29, 104 TCG_REG_R30, 105 TCG_REG_R31, 106 TCG_REG_R12, /* call clobbered, non-arguments */ 107 TCG_REG_R11, 108 TCG_REG_R2, 109 TCG_REG_R13, 110 TCG_REG_R10, /* call clobbered, arguments */ 111 TCG_REG_R9, 112 TCG_REG_R8, 113 TCG_REG_R7, 114 TCG_REG_R6, 115 TCG_REG_R5, 116 TCG_REG_R4, 117 TCG_REG_R3, 118 119 /* V0 and V1 reserved as temporaries; V20 - V31 are call-saved */ 120 TCG_REG_V2, /* call clobbered, vectors */ 121 TCG_REG_V3, 122 TCG_REG_V4, 123 TCG_REG_V5, 124 TCG_REG_V6, 125 TCG_REG_V7, 126 TCG_REG_V8, 127 TCG_REG_V9, 128 TCG_REG_V10, 129 TCG_REG_V11, 130 TCG_REG_V12, 131 TCG_REG_V13, 132 TCG_REG_V14, 133 TCG_REG_V15, 134 TCG_REG_V16, 135 TCG_REG_V17, 136 TCG_REG_V18, 137 TCG_REG_V19, 138}; 139 140static const int tcg_target_call_iarg_regs[] = { 141 TCG_REG_R3, 142 TCG_REG_R4, 143 TCG_REG_R5, 144 TCG_REG_R6, 145 TCG_REG_R7, 146 TCG_REG_R8, 147 TCG_REG_R9, 148 TCG_REG_R10 149}; 150 151static const int tcg_target_call_oarg_regs[] = { 152 TCG_REG_R3, 153 TCG_REG_R4 154}; 155 156static const int tcg_target_callee_save_regs[] = { 157#ifdef TCG_TARGET_CALL_DARWIN 158 TCG_REG_R11, 159#endif 160 TCG_REG_R14, 161 TCG_REG_R15, 162 TCG_REG_R16, 163 TCG_REG_R17, 164 TCG_REG_R18, 165 TCG_REG_R19, 166 TCG_REG_R20, 167 TCG_REG_R21, 168 TCG_REG_R22, 169 TCG_REG_R23, 170 TCG_REG_R24, 171 TCG_REG_R25, 172 TCG_REG_R26, 173 TCG_REG_R27, /* currently used for the global env */ 174 TCG_REG_R28, 175 TCG_REG_R29, 176 TCG_REG_R30, 177 TCG_REG_R31 178}; 179 180static inline bool in_range_b(tcg_target_long target) 181{ 182 return target == sextract64(target, 0, 26); 183} 184 185static uint32_t reloc_pc24_val(const tcg_insn_unit *pc, 186 const tcg_insn_unit *target) 187{ 188 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc); 189 tcg_debug_assert(in_range_b(disp)); 190 return disp & 0x3fffffc; 191} 192 193static bool reloc_pc24(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 194{ 195 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 196 ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx); 197 198 if (in_range_b(disp)) { 199 *src_rw = (*src_rw & ~0x3fffffc) | (disp & 0x3fffffc); 200 return true; 201 } 202 return false; 203} 204 205static uint16_t reloc_pc14_val(const tcg_insn_unit *pc, 206 const tcg_insn_unit *target) 207{ 208 ptrdiff_t disp = tcg_ptr_byte_diff(target, pc); 209 tcg_debug_assert(disp == (int16_t) disp); 210 return disp & 0xfffc; 211} 212 213static bool reloc_pc14(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 214{ 215 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 216 ptrdiff_t disp = tcg_ptr_byte_diff(target, src_rx); 217 218 if (disp == (int16_t) disp) { 219 *src_rw = (*src_rw & ~0xfffc) | (disp & 0xfffc); 220 return true; 221 } 222 return false; 223} 224 225/* parse target specific constraints */ 226static const char *target_parse_constraint(TCGArgConstraint *ct, 227 const char *ct_str, TCGType type) 228{ 229 switch (*ct_str++) { 230 case 'A': case 'B': case 'C': case 'D': 231 tcg_regset_set_reg(ct->regs, 3 + ct_str[0] - 'A'); 232 break; 233 case 'r': 234 ct->regs = 0xffffffff; 235 break; 236 case 'v': 237 ct->regs = 0xffffffff00000000ull; 238 break; 239 case 'L': /* qemu_ld constraint */ 240 ct->regs = 0xffffffff; 241 tcg_regset_reset_reg(ct->regs, TCG_REG_R3); 242#ifdef CONFIG_SOFTMMU 243 tcg_regset_reset_reg(ct->regs, TCG_REG_R4); 244 tcg_regset_reset_reg(ct->regs, TCG_REG_R5); 245#endif 246 break; 247 case 'S': /* qemu_st constraint */ 248 ct->regs = 0xffffffff; 249 tcg_regset_reset_reg(ct->regs, TCG_REG_R3); 250#ifdef CONFIG_SOFTMMU 251 tcg_regset_reset_reg(ct->regs, TCG_REG_R4); 252 tcg_regset_reset_reg(ct->regs, TCG_REG_R5); 253 tcg_regset_reset_reg(ct->regs, TCG_REG_R6); 254#endif 255 break; 256 case 'I': 257 ct->ct |= TCG_CT_CONST_S16; 258 break; 259 case 'J': 260 ct->ct |= TCG_CT_CONST_U16; 261 break; 262 case 'M': 263 ct->ct |= TCG_CT_CONST_MONE; 264 break; 265 case 'T': 266 ct->ct |= TCG_CT_CONST_S32; 267 break; 268 case 'U': 269 ct->ct |= TCG_CT_CONST_U32; 270 break; 271 case 'W': 272 ct->ct |= TCG_CT_CONST_WSZ; 273 break; 274 case 'Z': 275 ct->ct |= TCG_CT_CONST_ZERO; 276 break; 277 default: 278 return NULL; 279 } 280 return ct_str; 281} 282 283/* test if a constant matches the constraint */ 284static int tcg_target_const_match(tcg_target_long val, TCGType type, 285 const TCGArgConstraint *arg_ct) 286{ 287 int ct = arg_ct->ct; 288 if (ct & TCG_CT_CONST) { 289 return 1; 290 } 291 292 /* The only 32-bit constraint we use aside from 293 TCG_CT_CONST is TCG_CT_CONST_S16. */ 294 if (type == TCG_TYPE_I32) { 295 val = (int32_t)val; 296 } 297 298 if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) { 299 return 1; 300 } else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) { 301 return 1; 302 } else if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) { 303 return 1; 304 } else if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) { 305 return 1; 306 } else if ((ct & TCG_CT_CONST_ZERO) && val == 0) { 307 return 1; 308 } else if ((ct & TCG_CT_CONST_MONE) && val == -1) { 309 return 1; 310 } else if ((ct & TCG_CT_CONST_WSZ) 311 && val == (type == TCG_TYPE_I32 ? 32 : 64)) { 312 return 1; 313 } 314 return 0; 315} 316 317#define OPCD(opc) ((opc)<<26) 318#define XO19(opc) (OPCD(19)|((opc)<<1)) 319#define MD30(opc) (OPCD(30)|((opc)<<2)) 320#define MDS30(opc) (OPCD(30)|((opc)<<1)) 321#define XO31(opc) (OPCD(31)|((opc)<<1)) 322#define XO58(opc) (OPCD(58)|(opc)) 323#define XO62(opc) (OPCD(62)|(opc)) 324#define VX4(opc) (OPCD(4)|(opc)) 325 326#define B OPCD( 18) 327#define BC OPCD( 16) 328#define LBZ OPCD( 34) 329#define LHZ OPCD( 40) 330#define LHA OPCD( 42) 331#define LWZ OPCD( 32) 332#define LWZUX XO31( 55) 333#define STB OPCD( 38) 334#define STH OPCD( 44) 335#define STW OPCD( 36) 336 337#define STD XO62( 0) 338#define STDU XO62( 1) 339#define STDX XO31(149) 340 341#define LD XO58( 0) 342#define LDX XO31( 21) 343#define LDU XO58( 1) 344#define LDUX XO31( 53) 345#define LWA XO58( 2) 346#define LWAX XO31(341) 347 348#define ADDIC OPCD( 12) 349#define ADDI OPCD( 14) 350#define ADDIS OPCD( 15) 351#define ORI OPCD( 24) 352#define ORIS OPCD( 25) 353#define XORI OPCD( 26) 354#define XORIS OPCD( 27) 355#define ANDI OPCD( 28) 356#define ANDIS OPCD( 29) 357#define MULLI OPCD( 7) 358#define CMPLI OPCD( 10) 359#define CMPI OPCD( 11) 360#define SUBFIC OPCD( 8) 361 362#define LWZU OPCD( 33) 363#define STWU OPCD( 37) 364 365#define RLWIMI OPCD( 20) 366#define RLWINM OPCD( 21) 367#define RLWNM OPCD( 23) 368 369#define RLDICL MD30( 0) 370#define RLDICR MD30( 1) 371#define RLDIMI MD30( 3) 372#define RLDCL MDS30( 8) 373 374#define BCLR XO19( 16) 375#define BCCTR XO19(528) 376#define CRAND XO19(257) 377#define CRANDC XO19(129) 378#define CRNAND XO19(225) 379#define CROR XO19(449) 380#define CRNOR XO19( 33) 381 382#define EXTSB XO31(954) 383#define EXTSH XO31(922) 384#define EXTSW XO31(986) 385#define ADD XO31(266) 386#define ADDE XO31(138) 387#define ADDME XO31(234) 388#define ADDZE XO31(202) 389#define ADDC XO31( 10) 390#define AND XO31( 28) 391#define SUBF XO31( 40) 392#define SUBFC XO31( 8) 393#define SUBFE XO31(136) 394#define SUBFME XO31(232) 395#define SUBFZE XO31(200) 396#define OR XO31(444) 397#define XOR XO31(316) 398#define MULLW XO31(235) 399#define MULHW XO31( 75) 400#define MULHWU XO31( 11) 401#define DIVW XO31(491) 402#define DIVWU XO31(459) 403#define CMP XO31( 0) 404#define CMPL XO31( 32) 405#define LHBRX XO31(790) 406#define LWBRX XO31(534) 407#define LDBRX XO31(532) 408#define STHBRX XO31(918) 409#define STWBRX XO31(662) 410#define STDBRX XO31(660) 411#define MFSPR XO31(339) 412#define MTSPR XO31(467) 413#define SRAWI XO31(824) 414#define NEG XO31(104) 415#define MFCR XO31( 19) 416#define MFOCRF (MFCR | (1u << 20)) 417#define NOR XO31(124) 418#define CNTLZW XO31( 26) 419#define CNTLZD XO31( 58) 420#define CNTTZW XO31(538) 421#define CNTTZD XO31(570) 422#define CNTPOPW XO31(378) 423#define CNTPOPD XO31(506) 424#define ANDC XO31( 60) 425#define ORC XO31(412) 426#define EQV XO31(284) 427#define NAND XO31(476) 428#define ISEL XO31( 15) 429 430#define MULLD XO31(233) 431#define MULHD XO31( 73) 432#define MULHDU XO31( 9) 433#define DIVD XO31(489) 434#define DIVDU XO31(457) 435 436#define LBZX XO31( 87) 437#define LHZX XO31(279) 438#define LHAX XO31(343) 439#define LWZX XO31( 23) 440#define STBX XO31(215) 441#define STHX XO31(407) 442#define STWX XO31(151) 443 444#define EIEIO XO31(854) 445#define HWSYNC XO31(598) 446#define LWSYNC (HWSYNC | (1u << 21)) 447 448#define SPR(a, b) ((((a)<<5)|(b))<<11) 449#define LR SPR(8, 0) 450#define CTR SPR(9, 0) 451 452#define SLW XO31( 24) 453#define SRW XO31(536) 454#define SRAW XO31(792) 455 456#define SLD XO31( 27) 457#define SRD XO31(539) 458#define SRAD XO31(794) 459#define SRADI XO31(413<<1) 460 461#define TW XO31( 4) 462#define TRAP (TW | TO(31)) 463 464#define NOP ORI /* ori 0,0,0 */ 465 466#define LVX XO31(103) 467#define LVEBX XO31(7) 468#define LVEHX XO31(39) 469#define LVEWX XO31(71) 470#define LXSDX (XO31(588) | 1) /* v2.06, force tx=1 */ 471#define LXVDSX (XO31(332) | 1) /* v2.06, force tx=1 */ 472#define LXSIWZX (XO31(12) | 1) /* v2.07, force tx=1 */ 473#define LXV (OPCD(61) | 8 | 1) /* v3.00, force tx=1 */ 474#define LXSD (OPCD(57) | 2) /* v3.00 */ 475#define LXVWSX (XO31(364) | 1) /* v3.00, force tx=1 */ 476 477#define STVX XO31(231) 478#define STVEWX XO31(199) 479#define STXSDX (XO31(716) | 1) /* v2.06, force sx=1 */ 480#define STXSIWX (XO31(140) | 1) /* v2.07, force sx=1 */ 481#define STXV (OPCD(61) | 8 | 5) /* v3.00, force sx=1 */ 482#define STXSD (OPCD(61) | 2) /* v3.00 */ 483 484#define VADDSBS VX4(768) 485#define VADDUBS VX4(512) 486#define VADDUBM VX4(0) 487#define VADDSHS VX4(832) 488#define VADDUHS VX4(576) 489#define VADDUHM VX4(64) 490#define VADDSWS VX4(896) 491#define VADDUWS VX4(640) 492#define VADDUWM VX4(128) 493#define VADDUDM VX4(192) /* v2.07 */ 494 495#define VSUBSBS VX4(1792) 496#define VSUBUBS VX4(1536) 497#define VSUBUBM VX4(1024) 498#define VSUBSHS VX4(1856) 499#define VSUBUHS VX4(1600) 500#define VSUBUHM VX4(1088) 501#define VSUBSWS VX4(1920) 502#define VSUBUWS VX4(1664) 503#define VSUBUWM VX4(1152) 504#define VSUBUDM VX4(1216) /* v2.07 */ 505 506#define VNEGW (VX4(1538) | (6 << 16)) /* v3.00 */ 507#define VNEGD (VX4(1538) | (7 << 16)) /* v3.00 */ 508 509#define VMAXSB VX4(258) 510#define VMAXSH VX4(322) 511#define VMAXSW VX4(386) 512#define VMAXSD VX4(450) /* v2.07 */ 513#define VMAXUB VX4(2) 514#define VMAXUH VX4(66) 515#define VMAXUW VX4(130) 516#define VMAXUD VX4(194) /* v2.07 */ 517#define VMINSB VX4(770) 518#define VMINSH VX4(834) 519#define VMINSW VX4(898) 520#define VMINSD VX4(962) /* v2.07 */ 521#define VMINUB VX4(514) 522#define VMINUH VX4(578) 523#define VMINUW VX4(642) 524#define VMINUD VX4(706) /* v2.07 */ 525 526#define VCMPEQUB VX4(6) 527#define VCMPEQUH VX4(70) 528#define VCMPEQUW VX4(134) 529#define VCMPEQUD VX4(199) /* v2.07 */ 530#define VCMPGTSB VX4(774) 531#define VCMPGTSH VX4(838) 532#define VCMPGTSW VX4(902) 533#define VCMPGTSD VX4(967) /* v2.07 */ 534#define VCMPGTUB VX4(518) 535#define VCMPGTUH VX4(582) 536#define VCMPGTUW VX4(646) 537#define VCMPGTUD VX4(711) /* v2.07 */ 538#define VCMPNEB VX4(7) /* v3.00 */ 539#define VCMPNEH VX4(71) /* v3.00 */ 540#define VCMPNEW VX4(135) /* v3.00 */ 541 542#define VSLB VX4(260) 543#define VSLH VX4(324) 544#define VSLW VX4(388) 545#define VSLD VX4(1476) /* v2.07 */ 546#define VSRB VX4(516) 547#define VSRH VX4(580) 548#define VSRW VX4(644) 549#define VSRD VX4(1732) /* v2.07 */ 550#define VSRAB VX4(772) 551#define VSRAH VX4(836) 552#define VSRAW VX4(900) 553#define VSRAD VX4(964) /* v2.07 */ 554#define VRLB VX4(4) 555#define VRLH VX4(68) 556#define VRLW VX4(132) 557#define VRLD VX4(196) /* v2.07 */ 558 559#define VMULEUB VX4(520) 560#define VMULEUH VX4(584) 561#define VMULEUW VX4(648) /* v2.07 */ 562#define VMULOUB VX4(8) 563#define VMULOUH VX4(72) 564#define VMULOUW VX4(136) /* v2.07 */ 565#define VMULUWM VX4(137) /* v2.07 */ 566#define VMULLD VX4(457) /* v3.10 */ 567#define VMSUMUHM VX4(38) 568 569#define VMRGHB VX4(12) 570#define VMRGHH VX4(76) 571#define VMRGHW VX4(140) 572#define VMRGLB VX4(268) 573#define VMRGLH VX4(332) 574#define VMRGLW VX4(396) 575 576#define VPKUHUM VX4(14) 577#define VPKUWUM VX4(78) 578 579#define VAND VX4(1028) 580#define VANDC VX4(1092) 581#define VNOR VX4(1284) 582#define VOR VX4(1156) 583#define VXOR VX4(1220) 584#define VEQV VX4(1668) /* v2.07 */ 585#define VNAND VX4(1412) /* v2.07 */ 586#define VORC VX4(1348) /* v2.07 */ 587 588#define VSPLTB VX4(524) 589#define VSPLTH VX4(588) 590#define VSPLTW VX4(652) 591#define VSPLTISB VX4(780) 592#define VSPLTISH VX4(844) 593#define VSPLTISW VX4(908) 594 595#define VSLDOI VX4(44) 596 597#define XXPERMDI (OPCD(60) | (10 << 3) | 7) /* v2.06, force ax=bx=tx=1 */ 598#define XXSEL (OPCD(60) | (3 << 4) | 0xf) /* v2.06, force ax=bx=cx=tx=1 */ 599#define XXSPLTIB (OPCD(60) | (360 << 1) | 1) /* v3.00, force tx=1 */ 600 601#define MFVSRD (XO31(51) | 1) /* v2.07, force sx=1 */ 602#define MFVSRWZ (XO31(115) | 1) /* v2.07, force sx=1 */ 603#define MTVSRD (XO31(179) | 1) /* v2.07, force tx=1 */ 604#define MTVSRWZ (XO31(243) | 1) /* v2.07, force tx=1 */ 605#define MTVSRDD (XO31(435) | 1) /* v3.00, force tx=1 */ 606#define MTVSRWS (XO31(403) | 1) /* v3.00, force tx=1 */ 607 608#define RT(r) ((r)<<21) 609#define RS(r) ((r)<<21) 610#define RA(r) ((r)<<16) 611#define RB(r) ((r)<<11) 612#define TO(t) ((t)<<21) 613#define SH(s) ((s)<<11) 614#define MB(b) ((b)<<6) 615#define ME(e) ((e)<<1) 616#define BO(o) ((o)<<21) 617#define MB64(b) ((b)<<5) 618#define FXM(b) (1 << (19 - (b))) 619 620#define VRT(r) (((r) & 31) << 21) 621#define VRA(r) (((r) & 31) << 16) 622#define VRB(r) (((r) & 31) << 11) 623#define VRC(r) (((r) & 31) << 6) 624 625#define LK 1 626 627#define TAB(t, a, b) (RT(t) | RA(a) | RB(b)) 628#define SAB(s, a, b) (RS(s) | RA(a) | RB(b)) 629#define TAI(s, a, i) (RT(s) | RA(a) | ((i) & 0xffff)) 630#define SAI(s, a, i) (RS(s) | RA(a) | ((i) & 0xffff)) 631 632#define BF(n) ((n)<<23) 633#define BI(n, c) (((c)+((n)*4))<<16) 634#define BT(n, c) (((c)+((n)*4))<<21) 635#define BA(n, c) (((c)+((n)*4))<<16) 636#define BB(n, c) (((c)+((n)*4))<<11) 637#define BC_(n, c) (((c)+((n)*4))<<6) 638 639#define BO_COND_TRUE BO(12) 640#define BO_COND_FALSE BO( 4) 641#define BO_ALWAYS BO(20) 642 643enum { 644 CR_LT, 645 CR_GT, 646 CR_EQ, 647 CR_SO 648}; 649 650static const uint32_t tcg_to_bc[] = { 651 [TCG_COND_EQ] = BC | BI(7, CR_EQ) | BO_COND_TRUE, 652 [TCG_COND_NE] = BC | BI(7, CR_EQ) | BO_COND_FALSE, 653 [TCG_COND_LT] = BC | BI(7, CR_LT) | BO_COND_TRUE, 654 [TCG_COND_GE] = BC | BI(7, CR_LT) | BO_COND_FALSE, 655 [TCG_COND_LE] = BC | BI(7, CR_GT) | BO_COND_FALSE, 656 [TCG_COND_GT] = BC | BI(7, CR_GT) | BO_COND_TRUE, 657 [TCG_COND_LTU] = BC | BI(7, CR_LT) | BO_COND_TRUE, 658 [TCG_COND_GEU] = BC | BI(7, CR_LT) | BO_COND_FALSE, 659 [TCG_COND_LEU] = BC | BI(7, CR_GT) | BO_COND_FALSE, 660 [TCG_COND_GTU] = BC | BI(7, CR_GT) | BO_COND_TRUE, 661}; 662 663/* The low bit here is set if the RA and RB fields must be inverted. */ 664static const uint32_t tcg_to_isel[] = { 665 [TCG_COND_EQ] = ISEL | BC_(7, CR_EQ), 666 [TCG_COND_NE] = ISEL | BC_(7, CR_EQ) | 1, 667 [TCG_COND_LT] = ISEL | BC_(7, CR_LT), 668 [TCG_COND_GE] = ISEL | BC_(7, CR_LT) | 1, 669 [TCG_COND_LE] = ISEL | BC_(7, CR_GT) | 1, 670 [TCG_COND_GT] = ISEL | BC_(7, CR_GT), 671 [TCG_COND_LTU] = ISEL | BC_(7, CR_LT), 672 [TCG_COND_GEU] = ISEL | BC_(7, CR_LT) | 1, 673 [TCG_COND_LEU] = ISEL | BC_(7, CR_GT) | 1, 674 [TCG_COND_GTU] = ISEL | BC_(7, CR_GT), 675}; 676 677static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 678 intptr_t value, intptr_t addend) 679{ 680 const tcg_insn_unit *target; 681 int16_t lo; 682 int32_t hi; 683 684 value += addend; 685 target = (const tcg_insn_unit *)value; 686 687 switch (type) { 688 case R_PPC_REL14: 689 return reloc_pc14(code_ptr, target); 690 case R_PPC_REL24: 691 return reloc_pc24(code_ptr, target); 692 case R_PPC_ADDR16: 693 /* 694 * We are (slightly) abusing this relocation type. In particular, 695 * assert that the low 2 bits are zero, and do not modify them. 696 * That way we can use this with LD et al that have opcode bits 697 * in the low 2 bits of the insn. 698 */ 699 if ((value & 3) || value != (int16_t)value) { 700 return false; 701 } 702 *code_ptr = (*code_ptr & ~0xfffc) | (value & 0xfffc); 703 break; 704 case R_PPC_ADDR32: 705 /* 706 * We are abusing this relocation type. Again, this points to 707 * a pair of insns, lis + load. This is an absolute address 708 * relocation for PPC32 so the lis cannot be removed. 709 */ 710 lo = value; 711 hi = value - lo; 712 if (hi + lo != value) { 713 return false; 714 } 715 code_ptr[0] = deposit32(code_ptr[0], 0, 16, hi >> 16); 716 code_ptr[1] = deposit32(code_ptr[1], 0, 16, lo); 717 break; 718 default: 719 g_assert_not_reached(); 720 } 721 return true; 722} 723 724static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt, 725 TCGReg base, tcg_target_long offset); 726 727static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 728{ 729 if (ret == arg) { 730 return true; 731 } 732 switch (type) { 733 case TCG_TYPE_I64: 734 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 735 /* fallthru */ 736 case TCG_TYPE_I32: 737 if (ret < TCG_REG_V0) { 738 if (arg < TCG_REG_V0) { 739 tcg_out32(s, OR | SAB(arg, ret, arg)); 740 break; 741 } else if (have_isa_2_07) { 742 tcg_out32(s, (type == TCG_TYPE_I32 ? MFVSRWZ : MFVSRD) 743 | VRT(arg) | RA(ret)); 744 break; 745 } else { 746 /* Altivec does not support vector->integer moves. */ 747 return false; 748 } 749 } else if (arg < TCG_REG_V0) { 750 if (have_isa_2_07) { 751 tcg_out32(s, (type == TCG_TYPE_I32 ? MTVSRWZ : MTVSRD) 752 | VRT(ret) | RA(arg)); 753 break; 754 } else { 755 /* Altivec does not support integer->vector moves. */ 756 return false; 757 } 758 } 759 /* fallthru */ 760 case TCG_TYPE_V64: 761 case TCG_TYPE_V128: 762 tcg_debug_assert(ret >= TCG_REG_V0 && arg >= TCG_REG_V0); 763 tcg_out32(s, VOR | VRT(ret) | VRA(arg) | VRB(arg)); 764 break; 765 default: 766 g_assert_not_reached(); 767 } 768 return true; 769} 770 771static inline void tcg_out_rld(TCGContext *s, int op, TCGReg ra, TCGReg rs, 772 int sh, int mb) 773{ 774 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 775 sh = SH(sh & 0x1f) | (((sh >> 5) & 1) << 1); 776 mb = MB64((mb >> 5) | ((mb << 1) & 0x3f)); 777 tcg_out32(s, op | RA(ra) | RS(rs) | sh | mb); 778} 779 780static inline void tcg_out_rlw(TCGContext *s, int op, TCGReg ra, TCGReg rs, 781 int sh, int mb, int me) 782{ 783 tcg_out32(s, op | RA(ra) | RS(rs) | SH(sh) | MB(mb) | ME(me)); 784} 785 786static inline void tcg_out_ext32u(TCGContext *s, TCGReg dst, TCGReg src) 787{ 788 tcg_out_rld(s, RLDICL, dst, src, 0, 32); 789} 790 791static inline void tcg_out_shli32(TCGContext *s, TCGReg dst, TCGReg src, int c) 792{ 793 tcg_out_rlw(s, RLWINM, dst, src, c, 0, 31 - c); 794} 795 796static inline void tcg_out_shli64(TCGContext *s, TCGReg dst, TCGReg src, int c) 797{ 798 tcg_out_rld(s, RLDICR, dst, src, c, 63 - c); 799} 800 801static inline void tcg_out_shri32(TCGContext *s, TCGReg dst, TCGReg src, int c) 802{ 803 tcg_out_rlw(s, RLWINM, dst, src, 32 - c, c, 31); 804} 805 806static inline void tcg_out_shri64(TCGContext *s, TCGReg dst, TCGReg src, int c) 807{ 808 tcg_out_rld(s, RLDICL, dst, src, 64 - c, c); 809} 810 811/* Emit a move into ret of arg, if it can be done in one insn. */ 812static bool tcg_out_movi_one(TCGContext *s, TCGReg ret, tcg_target_long arg) 813{ 814 if (arg == (int16_t)arg) { 815 tcg_out32(s, ADDI | TAI(ret, 0, arg)); 816 return true; 817 } 818 if (arg == (int32_t)arg && (arg & 0xffff) == 0) { 819 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16)); 820 return true; 821 } 822 return false; 823} 824 825static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret, 826 tcg_target_long arg, bool in_prologue) 827{ 828 intptr_t tb_diff; 829 tcg_target_long tmp; 830 int shift; 831 832 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32); 833 834 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) { 835 arg = (int32_t)arg; 836 } 837 838 /* Load 16-bit immediates with one insn. */ 839 if (tcg_out_movi_one(s, ret, arg)) { 840 return; 841 } 842 843 /* Load addresses within the TB with one insn. */ 844 tb_diff = tcg_tbrel_diff(s, (void *)arg); 845 if (!in_prologue && USE_REG_TB && tb_diff == (int16_t)tb_diff) { 846 tcg_out32(s, ADDI | TAI(ret, TCG_REG_TB, tb_diff)); 847 return; 848 } 849 850 /* Load 32-bit immediates with two insns. Note that we've already 851 eliminated bare ADDIS, so we know both insns are required. */ 852 if (TCG_TARGET_REG_BITS == 32 || arg == (int32_t)arg) { 853 tcg_out32(s, ADDIS | TAI(ret, 0, arg >> 16)); 854 tcg_out32(s, ORI | SAI(ret, ret, arg)); 855 return; 856 } 857 if (arg == (uint32_t)arg && !(arg & 0x8000)) { 858 tcg_out32(s, ADDI | TAI(ret, 0, arg)); 859 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16)); 860 return; 861 } 862 863 /* Load masked 16-bit value. */ 864 if (arg > 0 && (arg & 0x8000)) { 865 tmp = arg | 0x7fff; 866 if ((tmp & (tmp + 1)) == 0) { 867 int mb = clz64(tmp + 1) + 1; 868 tcg_out32(s, ADDI | TAI(ret, 0, arg)); 869 tcg_out_rld(s, RLDICL, ret, ret, 0, mb); 870 return; 871 } 872 } 873 874 /* Load common masks with 2 insns. */ 875 shift = ctz64(arg); 876 tmp = arg >> shift; 877 if (tmp == (int16_t)tmp) { 878 tcg_out32(s, ADDI | TAI(ret, 0, tmp)); 879 tcg_out_shli64(s, ret, ret, shift); 880 return; 881 } 882 shift = clz64(arg); 883 if (tcg_out_movi_one(s, ret, arg << shift)) { 884 tcg_out_shri64(s, ret, ret, shift); 885 return; 886 } 887 888 /* Load addresses within 2GB of TB with 2 (or rarely 3) insns. */ 889 if (!in_prologue && USE_REG_TB && tb_diff == (int32_t)tb_diff) { 890 tcg_out_mem_long(s, ADDI, ADD, ret, TCG_REG_TB, tb_diff); 891 return; 892 } 893 894 /* Use the constant pool, if possible. */ 895 if (!in_prologue && USE_REG_TB) { 896 new_pool_label(s, arg, R_PPC_ADDR16, s->code_ptr, 897 tcg_tbrel_diff(s, NULL)); 898 tcg_out32(s, LD | TAI(ret, TCG_REG_TB, 0)); 899 return; 900 } 901 902 tmp = arg >> 31 >> 1; 903 tcg_out_movi(s, TCG_TYPE_I32, ret, tmp); 904 if (tmp) { 905 tcg_out_shli64(s, ret, ret, 32); 906 } 907 if (arg & 0xffff0000) { 908 tcg_out32(s, ORIS | SAI(ret, ret, arg >> 16)); 909 } 910 if (arg & 0xffff) { 911 tcg_out32(s, ORI | SAI(ret, ret, arg)); 912 } 913} 914 915static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 916 TCGReg ret, int64_t val) 917{ 918 uint32_t load_insn; 919 int rel, low; 920 intptr_t add; 921 922 switch (vece) { 923 case MO_8: 924 low = (int8_t)val; 925 if (low >= -16 && low < 16) { 926 tcg_out32(s, VSPLTISB | VRT(ret) | ((val & 31) << 16)); 927 return; 928 } 929 if (have_isa_3_00) { 930 tcg_out32(s, XXSPLTIB | VRT(ret) | ((val & 0xff) << 11)); 931 return; 932 } 933 break; 934 935 case MO_16: 936 low = (int16_t)val; 937 if (low >= -16 && low < 16) { 938 tcg_out32(s, VSPLTISH | VRT(ret) | ((val & 31) << 16)); 939 return; 940 } 941 break; 942 943 case MO_32: 944 low = (int32_t)val; 945 if (low >= -16 && low < 16) { 946 tcg_out32(s, VSPLTISW | VRT(ret) | ((val & 31) << 16)); 947 return; 948 } 949 break; 950 } 951 952 /* 953 * Otherwise we must load the value from the constant pool. 954 */ 955 if (USE_REG_TB) { 956 rel = R_PPC_ADDR16; 957 add = tcg_tbrel_diff(s, NULL); 958 } else { 959 rel = R_PPC_ADDR32; 960 add = 0; 961 } 962 963 if (have_vsx) { 964 load_insn = type == TCG_TYPE_V64 ? LXSDX : LXVDSX; 965 load_insn |= VRT(ret) | RB(TCG_REG_TMP1); 966 if (TCG_TARGET_REG_BITS == 64) { 967 new_pool_label(s, val, rel, s->code_ptr, add); 968 } else { 969 new_pool_l2(s, rel, s->code_ptr, add, val >> 32, val); 970 } 971 } else { 972 load_insn = LVX | VRT(ret) | RB(TCG_REG_TMP1); 973 if (TCG_TARGET_REG_BITS == 64) { 974 new_pool_l2(s, rel, s->code_ptr, add, val, val); 975 } else { 976 new_pool_l4(s, rel, s->code_ptr, add, 977 val >> 32, val, val >> 32, val); 978 } 979 } 980 981 if (USE_REG_TB) { 982 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, 0, 0)); 983 load_insn |= RA(TCG_REG_TB); 984 } else { 985 tcg_out32(s, ADDIS | TAI(TCG_REG_TMP1, 0, 0)); 986 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, TCG_REG_TMP1, 0)); 987 } 988 tcg_out32(s, load_insn); 989} 990 991static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg ret, 992 tcg_target_long arg) 993{ 994 switch (type) { 995 case TCG_TYPE_I32: 996 case TCG_TYPE_I64: 997 tcg_debug_assert(ret < TCG_REG_V0); 998 tcg_out_movi_int(s, type, ret, arg, false); 999 break; 1000 1001 default: 1002 g_assert_not_reached(); 1003 } 1004} 1005 1006static bool mask_operand(uint32_t c, int *mb, int *me) 1007{ 1008 uint32_t lsb, test; 1009 1010 /* Accept a bit pattern like: 1011 0....01....1 1012 1....10....0 1013 0..01..10..0 1014 Keep track of the transitions. */ 1015 if (c == 0 || c == -1) { 1016 return false; 1017 } 1018 test = c; 1019 lsb = test & -test; 1020 test += lsb; 1021 if (test & (test - 1)) { 1022 return false; 1023 } 1024 1025 *me = clz32(lsb); 1026 *mb = test ? clz32(test & -test) + 1 : 0; 1027 return true; 1028} 1029 1030static bool mask64_operand(uint64_t c, int *mb, int *me) 1031{ 1032 uint64_t lsb; 1033 1034 if (c == 0) { 1035 return false; 1036 } 1037 1038 lsb = c & -c; 1039 /* Accept 1..10..0. */ 1040 if (c == -lsb) { 1041 *mb = 0; 1042 *me = clz64(lsb); 1043 return true; 1044 } 1045 /* Accept 0..01..1. */ 1046 if (lsb == 1 && (c & (c + 1)) == 0) { 1047 *mb = clz64(c + 1) + 1; 1048 *me = 63; 1049 return true; 1050 } 1051 return false; 1052} 1053 1054static void tcg_out_andi32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c) 1055{ 1056 int mb, me; 1057 1058 if (mask_operand(c, &mb, &me)) { 1059 tcg_out_rlw(s, RLWINM, dst, src, 0, mb, me); 1060 } else if ((c & 0xffff) == c) { 1061 tcg_out32(s, ANDI | SAI(src, dst, c)); 1062 return; 1063 } else if ((c & 0xffff0000) == c) { 1064 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16)); 1065 return; 1066 } else { 1067 tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_R0, c); 1068 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0)); 1069 } 1070} 1071 1072static void tcg_out_andi64(TCGContext *s, TCGReg dst, TCGReg src, uint64_t c) 1073{ 1074 int mb, me; 1075 1076 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 1077 if (mask64_operand(c, &mb, &me)) { 1078 if (mb == 0) { 1079 tcg_out_rld(s, RLDICR, dst, src, 0, me); 1080 } else { 1081 tcg_out_rld(s, RLDICL, dst, src, 0, mb); 1082 } 1083 } else if ((c & 0xffff) == c) { 1084 tcg_out32(s, ANDI | SAI(src, dst, c)); 1085 return; 1086 } else if ((c & 0xffff0000) == c) { 1087 tcg_out32(s, ANDIS | SAI(src, dst, c >> 16)); 1088 return; 1089 } else { 1090 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, c); 1091 tcg_out32(s, AND | SAB(src, dst, TCG_REG_R0)); 1092 } 1093} 1094 1095static void tcg_out_zori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c, 1096 int op_lo, int op_hi) 1097{ 1098 if (c >> 16) { 1099 tcg_out32(s, op_hi | SAI(src, dst, c >> 16)); 1100 src = dst; 1101 } 1102 if (c & 0xffff) { 1103 tcg_out32(s, op_lo | SAI(src, dst, c)); 1104 src = dst; 1105 } 1106} 1107 1108static void tcg_out_ori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c) 1109{ 1110 tcg_out_zori32(s, dst, src, c, ORI, ORIS); 1111} 1112 1113static void tcg_out_xori32(TCGContext *s, TCGReg dst, TCGReg src, uint32_t c) 1114{ 1115 tcg_out_zori32(s, dst, src, c, XORI, XORIS); 1116} 1117 1118static void tcg_out_b(TCGContext *s, int mask, const tcg_insn_unit *target) 1119{ 1120 ptrdiff_t disp = tcg_pcrel_diff(s, target); 1121 if (in_range_b(disp)) { 1122 tcg_out32(s, B | (disp & 0x3fffffc) | mask); 1123 } else { 1124 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, (uintptr_t)target); 1125 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | CTR); 1126 tcg_out32(s, BCCTR | BO_ALWAYS | mask); 1127 } 1128} 1129 1130static void tcg_out_mem_long(TCGContext *s, int opi, int opx, TCGReg rt, 1131 TCGReg base, tcg_target_long offset) 1132{ 1133 tcg_target_long orig = offset, l0, l1, extra = 0, align = 0; 1134 bool is_int_store = false; 1135 TCGReg rs = TCG_REG_TMP1; 1136 1137 switch (opi) { 1138 case LD: case LWA: 1139 align = 3; 1140 /* FALLTHRU */ 1141 default: 1142 if (rt > TCG_REG_R0 && rt < TCG_REG_V0) { 1143 rs = rt; 1144 break; 1145 } 1146 break; 1147 case LXSD: 1148 case STXSD: 1149 align = 3; 1150 break; 1151 case LXV: 1152 case STXV: 1153 align = 15; 1154 break; 1155 case STD: 1156 align = 3; 1157 /* FALLTHRU */ 1158 case STB: case STH: case STW: 1159 is_int_store = true; 1160 break; 1161 } 1162 1163 /* For unaligned, or very large offsets, use the indexed form. */ 1164 if (offset & align || offset != (int32_t)offset || opi == 0) { 1165 if (rs == base) { 1166 rs = TCG_REG_R0; 1167 } 1168 tcg_debug_assert(!is_int_store || rs != rt); 1169 tcg_out_movi(s, TCG_TYPE_PTR, rs, orig); 1170 tcg_out32(s, opx | TAB(rt & 31, base, rs)); 1171 return; 1172 } 1173 1174 l0 = (int16_t)offset; 1175 offset = (offset - l0) >> 16; 1176 l1 = (int16_t)offset; 1177 1178 if (l1 < 0 && orig >= 0) { 1179 extra = 0x4000; 1180 l1 = (int16_t)(offset - 0x4000); 1181 } 1182 if (l1) { 1183 tcg_out32(s, ADDIS | TAI(rs, base, l1)); 1184 base = rs; 1185 } 1186 if (extra) { 1187 tcg_out32(s, ADDIS | TAI(rs, base, extra)); 1188 base = rs; 1189 } 1190 if (opi != ADDI || base != rt || l0 != 0) { 1191 tcg_out32(s, opi | TAI(rt & 31, base, l0)); 1192 } 1193} 1194 1195static void tcg_out_vsldoi(TCGContext *s, TCGReg ret, 1196 TCGReg va, TCGReg vb, int shb) 1197{ 1198 tcg_out32(s, VSLDOI | VRT(ret) | VRA(va) | VRB(vb) | (shb << 6)); 1199} 1200 1201static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, 1202 TCGReg base, intptr_t offset) 1203{ 1204 int shift; 1205 1206 switch (type) { 1207 case TCG_TYPE_I32: 1208 if (ret < TCG_REG_V0) { 1209 tcg_out_mem_long(s, LWZ, LWZX, ret, base, offset); 1210 break; 1211 } 1212 if (have_isa_2_07 && have_vsx) { 1213 tcg_out_mem_long(s, 0, LXSIWZX, ret, base, offset); 1214 break; 1215 } 1216 tcg_debug_assert((offset & 3) == 0); 1217 tcg_out_mem_long(s, 0, LVEWX, ret, base, offset); 1218 shift = (offset - 4) & 0xc; 1219 if (shift) { 1220 tcg_out_vsldoi(s, ret, ret, ret, shift); 1221 } 1222 break; 1223 case TCG_TYPE_I64: 1224 if (ret < TCG_REG_V0) { 1225 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 1226 tcg_out_mem_long(s, LD, LDX, ret, base, offset); 1227 break; 1228 } 1229 /* fallthru */ 1230 case TCG_TYPE_V64: 1231 tcg_debug_assert(ret >= TCG_REG_V0); 1232 if (have_vsx) { 1233 tcg_out_mem_long(s, have_isa_3_00 ? LXSD : 0, LXSDX, 1234 ret, base, offset); 1235 break; 1236 } 1237 tcg_debug_assert((offset & 7) == 0); 1238 tcg_out_mem_long(s, 0, LVX, ret, base, offset & -16); 1239 if (offset & 8) { 1240 tcg_out_vsldoi(s, ret, ret, ret, 8); 1241 } 1242 break; 1243 case TCG_TYPE_V128: 1244 tcg_debug_assert(ret >= TCG_REG_V0); 1245 tcg_debug_assert((offset & 15) == 0); 1246 tcg_out_mem_long(s, have_isa_3_00 ? LXV : 0, 1247 LVX, ret, base, offset); 1248 break; 1249 default: 1250 g_assert_not_reached(); 1251 } 1252} 1253 1254static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, 1255 TCGReg base, intptr_t offset) 1256{ 1257 int shift; 1258 1259 switch (type) { 1260 case TCG_TYPE_I32: 1261 if (arg < TCG_REG_V0) { 1262 tcg_out_mem_long(s, STW, STWX, arg, base, offset); 1263 break; 1264 } 1265 if (have_isa_2_07 && have_vsx) { 1266 tcg_out_mem_long(s, 0, STXSIWX, arg, base, offset); 1267 break; 1268 } 1269 assert((offset & 3) == 0); 1270 tcg_debug_assert((offset & 3) == 0); 1271 shift = (offset - 4) & 0xc; 1272 if (shift) { 1273 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, shift); 1274 arg = TCG_VEC_TMP1; 1275 } 1276 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset); 1277 break; 1278 case TCG_TYPE_I64: 1279 if (arg < TCG_REG_V0) { 1280 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 1281 tcg_out_mem_long(s, STD, STDX, arg, base, offset); 1282 break; 1283 } 1284 /* fallthru */ 1285 case TCG_TYPE_V64: 1286 tcg_debug_assert(arg >= TCG_REG_V0); 1287 if (have_vsx) { 1288 tcg_out_mem_long(s, have_isa_3_00 ? STXSD : 0, 1289 STXSDX, arg, base, offset); 1290 break; 1291 } 1292 tcg_debug_assert((offset & 7) == 0); 1293 if (offset & 8) { 1294 tcg_out_vsldoi(s, TCG_VEC_TMP1, arg, arg, 8); 1295 arg = TCG_VEC_TMP1; 1296 } 1297 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset); 1298 tcg_out_mem_long(s, 0, STVEWX, arg, base, offset + 4); 1299 break; 1300 case TCG_TYPE_V128: 1301 tcg_debug_assert(arg >= TCG_REG_V0); 1302 tcg_out_mem_long(s, have_isa_3_00 ? STXV : 0, 1303 STVX, arg, base, offset); 1304 break; 1305 default: 1306 g_assert_not_reached(); 1307 } 1308} 1309 1310static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 1311 TCGReg base, intptr_t ofs) 1312{ 1313 return false; 1314} 1315 1316static void tcg_out_cmp(TCGContext *s, int cond, TCGArg arg1, TCGArg arg2, 1317 int const_arg2, int cr, TCGType type) 1318{ 1319 int imm; 1320 uint32_t op; 1321 1322 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32); 1323 1324 /* Simplify the comparisons below wrt CMPI. */ 1325 if (type == TCG_TYPE_I32) { 1326 arg2 = (int32_t)arg2; 1327 } 1328 1329 switch (cond) { 1330 case TCG_COND_EQ: 1331 case TCG_COND_NE: 1332 if (const_arg2) { 1333 if ((int16_t) arg2 == arg2) { 1334 op = CMPI; 1335 imm = 1; 1336 break; 1337 } else if ((uint16_t) arg2 == arg2) { 1338 op = CMPLI; 1339 imm = 1; 1340 break; 1341 } 1342 } 1343 op = CMPL; 1344 imm = 0; 1345 break; 1346 1347 case TCG_COND_LT: 1348 case TCG_COND_GE: 1349 case TCG_COND_LE: 1350 case TCG_COND_GT: 1351 if (const_arg2) { 1352 if ((int16_t) arg2 == arg2) { 1353 op = CMPI; 1354 imm = 1; 1355 break; 1356 } 1357 } 1358 op = CMP; 1359 imm = 0; 1360 break; 1361 1362 case TCG_COND_LTU: 1363 case TCG_COND_GEU: 1364 case TCG_COND_LEU: 1365 case TCG_COND_GTU: 1366 if (const_arg2) { 1367 if ((uint16_t) arg2 == arg2) { 1368 op = CMPLI; 1369 imm = 1; 1370 break; 1371 } 1372 } 1373 op = CMPL; 1374 imm = 0; 1375 break; 1376 1377 default: 1378 tcg_abort(); 1379 } 1380 op |= BF(cr) | ((type == TCG_TYPE_I64) << 21); 1381 1382 if (imm) { 1383 tcg_out32(s, op | RA(arg1) | (arg2 & 0xffff)); 1384 } else { 1385 if (const_arg2) { 1386 tcg_out_movi(s, type, TCG_REG_R0, arg2); 1387 arg2 = TCG_REG_R0; 1388 } 1389 tcg_out32(s, op | RA(arg1) | RB(arg2)); 1390 } 1391} 1392 1393static void tcg_out_setcond_eq0(TCGContext *s, TCGType type, 1394 TCGReg dst, TCGReg src) 1395{ 1396 if (type == TCG_TYPE_I32) { 1397 tcg_out32(s, CNTLZW | RS(src) | RA(dst)); 1398 tcg_out_shri32(s, dst, dst, 5); 1399 } else { 1400 tcg_out32(s, CNTLZD | RS(src) | RA(dst)); 1401 tcg_out_shri64(s, dst, dst, 6); 1402 } 1403} 1404 1405static void tcg_out_setcond_ne0(TCGContext *s, TCGReg dst, TCGReg src) 1406{ 1407 /* X != 0 implies X + -1 generates a carry. Extra addition 1408 trickery means: R = X-1 + ~X + C = X-1 + (-X+1) + C = C. */ 1409 if (dst != src) { 1410 tcg_out32(s, ADDIC | TAI(dst, src, -1)); 1411 tcg_out32(s, SUBFE | TAB(dst, dst, src)); 1412 } else { 1413 tcg_out32(s, ADDIC | TAI(TCG_REG_R0, src, -1)); 1414 tcg_out32(s, SUBFE | TAB(dst, TCG_REG_R0, src)); 1415 } 1416} 1417 1418static TCGReg tcg_gen_setcond_xor(TCGContext *s, TCGReg arg1, TCGArg arg2, 1419 bool const_arg2) 1420{ 1421 if (const_arg2) { 1422 if ((uint32_t)arg2 == arg2) { 1423 tcg_out_xori32(s, TCG_REG_R0, arg1, arg2); 1424 } else { 1425 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_R0, arg2); 1426 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, TCG_REG_R0)); 1427 } 1428 } else { 1429 tcg_out32(s, XOR | SAB(arg1, TCG_REG_R0, arg2)); 1430 } 1431 return TCG_REG_R0; 1432} 1433 1434static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond, 1435 TCGArg arg0, TCGArg arg1, TCGArg arg2, 1436 int const_arg2) 1437{ 1438 int crop, sh; 1439 1440 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || type == TCG_TYPE_I32); 1441 1442 /* Ignore high bits of a potential constant arg2. */ 1443 if (type == TCG_TYPE_I32) { 1444 arg2 = (uint32_t)arg2; 1445 } 1446 1447 /* Handle common and trivial cases before handling anything else. */ 1448 if (arg2 == 0) { 1449 switch (cond) { 1450 case TCG_COND_EQ: 1451 tcg_out_setcond_eq0(s, type, arg0, arg1); 1452 return; 1453 case TCG_COND_NE: 1454 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) { 1455 tcg_out_ext32u(s, TCG_REG_R0, arg1); 1456 arg1 = TCG_REG_R0; 1457 } 1458 tcg_out_setcond_ne0(s, arg0, arg1); 1459 return; 1460 case TCG_COND_GE: 1461 tcg_out32(s, NOR | SAB(arg1, arg0, arg1)); 1462 arg1 = arg0; 1463 /* FALLTHRU */ 1464 case TCG_COND_LT: 1465 /* Extract the sign bit. */ 1466 if (type == TCG_TYPE_I32) { 1467 tcg_out_shri32(s, arg0, arg1, 31); 1468 } else { 1469 tcg_out_shri64(s, arg0, arg1, 63); 1470 } 1471 return; 1472 default: 1473 break; 1474 } 1475 } 1476 1477 /* If we have ISEL, we can implement everything with 3 or 4 insns. 1478 All other cases below are also at least 3 insns, so speed up the 1479 code generator by not considering them and always using ISEL. */ 1480 if (have_isel) { 1481 int isel, tab; 1482 1483 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type); 1484 1485 isel = tcg_to_isel[cond]; 1486 1487 tcg_out_movi(s, type, arg0, 1); 1488 if (isel & 1) { 1489 /* arg0 = (bc ? 0 : 1) */ 1490 tab = TAB(arg0, 0, arg0); 1491 isel &= ~1; 1492 } else { 1493 /* arg0 = (bc ? 1 : 0) */ 1494 tcg_out_movi(s, type, TCG_REG_R0, 0); 1495 tab = TAB(arg0, arg0, TCG_REG_R0); 1496 } 1497 tcg_out32(s, isel | tab); 1498 return; 1499 } 1500 1501 switch (cond) { 1502 case TCG_COND_EQ: 1503 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2); 1504 tcg_out_setcond_eq0(s, type, arg0, arg1); 1505 return; 1506 1507 case TCG_COND_NE: 1508 arg1 = tcg_gen_setcond_xor(s, arg1, arg2, const_arg2); 1509 /* Discard the high bits only once, rather than both inputs. */ 1510 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) { 1511 tcg_out_ext32u(s, TCG_REG_R0, arg1); 1512 arg1 = TCG_REG_R0; 1513 } 1514 tcg_out_setcond_ne0(s, arg0, arg1); 1515 return; 1516 1517 case TCG_COND_GT: 1518 case TCG_COND_GTU: 1519 sh = 30; 1520 crop = 0; 1521 goto crtest; 1522 1523 case TCG_COND_LT: 1524 case TCG_COND_LTU: 1525 sh = 29; 1526 crop = 0; 1527 goto crtest; 1528 1529 case TCG_COND_GE: 1530 case TCG_COND_GEU: 1531 sh = 31; 1532 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_LT) | BB(7, CR_LT); 1533 goto crtest; 1534 1535 case TCG_COND_LE: 1536 case TCG_COND_LEU: 1537 sh = 31; 1538 crop = CRNOR | BT(7, CR_EQ) | BA(7, CR_GT) | BB(7, CR_GT); 1539 crtest: 1540 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type); 1541 if (crop) { 1542 tcg_out32(s, crop); 1543 } 1544 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7)); 1545 tcg_out_rlw(s, RLWINM, arg0, TCG_REG_R0, sh, 31, 31); 1546 break; 1547 1548 default: 1549 tcg_abort(); 1550 } 1551} 1552 1553static void tcg_out_bc(TCGContext *s, int bc, TCGLabel *l) 1554{ 1555 if (l->has_value) { 1556 bc |= reloc_pc14_val(tcg_splitwx_to_rx(s->code_ptr), l->u.value_ptr); 1557 } else { 1558 tcg_out_reloc(s, s->code_ptr, R_PPC_REL14, l, 0); 1559 } 1560 tcg_out32(s, bc); 1561} 1562 1563static void tcg_out_brcond(TCGContext *s, TCGCond cond, 1564 TCGArg arg1, TCGArg arg2, int const_arg2, 1565 TCGLabel *l, TCGType type) 1566{ 1567 tcg_out_cmp(s, cond, arg1, arg2, const_arg2, 7, type); 1568 tcg_out_bc(s, tcg_to_bc[cond], l); 1569} 1570 1571static void tcg_out_movcond(TCGContext *s, TCGType type, TCGCond cond, 1572 TCGArg dest, TCGArg c1, TCGArg c2, TCGArg v1, 1573 TCGArg v2, bool const_c2) 1574{ 1575 /* If for some reason both inputs are zero, don't produce bad code. */ 1576 if (v1 == 0 && v2 == 0) { 1577 tcg_out_movi(s, type, dest, 0); 1578 return; 1579 } 1580 1581 tcg_out_cmp(s, cond, c1, c2, const_c2, 7, type); 1582 1583 if (have_isel) { 1584 int isel = tcg_to_isel[cond]; 1585 1586 /* Swap the V operands if the operation indicates inversion. */ 1587 if (isel & 1) { 1588 int t = v1; 1589 v1 = v2; 1590 v2 = t; 1591 isel &= ~1; 1592 } 1593 /* V1 == 0 is handled by isel; V2 == 0 must be handled by hand. */ 1594 if (v2 == 0) { 1595 tcg_out_movi(s, type, TCG_REG_R0, 0); 1596 } 1597 tcg_out32(s, isel | TAB(dest, v1, v2)); 1598 } else { 1599 if (dest == v2) { 1600 cond = tcg_invert_cond(cond); 1601 v2 = v1; 1602 } else if (dest != v1) { 1603 if (v1 == 0) { 1604 tcg_out_movi(s, type, dest, 0); 1605 } else { 1606 tcg_out_mov(s, type, dest, v1); 1607 } 1608 } 1609 /* Branch forward over one insn */ 1610 tcg_out32(s, tcg_to_bc[cond] | 8); 1611 if (v2 == 0) { 1612 tcg_out_movi(s, type, dest, 0); 1613 } else { 1614 tcg_out_mov(s, type, dest, v2); 1615 } 1616 } 1617} 1618 1619static void tcg_out_cntxz(TCGContext *s, TCGType type, uint32_t opc, 1620 TCGArg a0, TCGArg a1, TCGArg a2, bool const_a2) 1621{ 1622 if (const_a2 && a2 == (type == TCG_TYPE_I32 ? 32 : 64)) { 1623 tcg_out32(s, opc | RA(a0) | RS(a1)); 1624 } else { 1625 tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, 7, type); 1626 /* Note that the only other valid constant for a2 is 0. */ 1627 if (have_isel) { 1628 tcg_out32(s, opc | RA(TCG_REG_R0) | RS(a1)); 1629 tcg_out32(s, tcg_to_isel[TCG_COND_EQ] | TAB(a0, a2, TCG_REG_R0)); 1630 } else if (!const_a2 && a0 == a2) { 1631 tcg_out32(s, tcg_to_bc[TCG_COND_EQ] | 8); 1632 tcg_out32(s, opc | RA(a0) | RS(a1)); 1633 } else { 1634 tcg_out32(s, opc | RA(a0) | RS(a1)); 1635 tcg_out32(s, tcg_to_bc[TCG_COND_NE] | 8); 1636 if (const_a2) { 1637 tcg_out_movi(s, type, a0, 0); 1638 } else { 1639 tcg_out_mov(s, type, a0, a2); 1640 } 1641 } 1642 } 1643} 1644 1645static void tcg_out_cmp2(TCGContext *s, const TCGArg *args, 1646 const int *const_args) 1647{ 1648 static const struct { uint8_t bit1, bit2; } bits[] = { 1649 [TCG_COND_LT ] = { CR_LT, CR_LT }, 1650 [TCG_COND_LE ] = { CR_LT, CR_GT }, 1651 [TCG_COND_GT ] = { CR_GT, CR_GT }, 1652 [TCG_COND_GE ] = { CR_GT, CR_LT }, 1653 [TCG_COND_LTU] = { CR_LT, CR_LT }, 1654 [TCG_COND_LEU] = { CR_LT, CR_GT }, 1655 [TCG_COND_GTU] = { CR_GT, CR_GT }, 1656 [TCG_COND_GEU] = { CR_GT, CR_LT }, 1657 }; 1658 1659 TCGCond cond = args[4], cond2; 1660 TCGArg al, ah, bl, bh; 1661 int blconst, bhconst; 1662 int op, bit1, bit2; 1663 1664 al = args[0]; 1665 ah = args[1]; 1666 bl = args[2]; 1667 bh = args[3]; 1668 blconst = const_args[2]; 1669 bhconst = const_args[3]; 1670 1671 switch (cond) { 1672 case TCG_COND_EQ: 1673 op = CRAND; 1674 goto do_equality; 1675 case TCG_COND_NE: 1676 op = CRNAND; 1677 do_equality: 1678 tcg_out_cmp(s, cond, al, bl, blconst, 6, TCG_TYPE_I32); 1679 tcg_out_cmp(s, cond, ah, bh, bhconst, 7, TCG_TYPE_I32); 1680 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ)); 1681 break; 1682 1683 case TCG_COND_LT: 1684 case TCG_COND_LE: 1685 case TCG_COND_GT: 1686 case TCG_COND_GE: 1687 case TCG_COND_LTU: 1688 case TCG_COND_LEU: 1689 case TCG_COND_GTU: 1690 case TCG_COND_GEU: 1691 bit1 = bits[cond].bit1; 1692 bit2 = bits[cond].bit2; 1693 op = (bit1 != bit2 ? CRANDC : CRAND); 1694 cond2 = tcg_unsigned_cond(cond); 1695 1696 tcg_out_cmp(s, cond, ah, bh, bhconst, 6, TCG_TYPE_I32); 1697 tcg_out_cmp(s, cond2, al, bl, blconst, 7, TCG_TYPE_I32); 1698 tcg_out32(s, op | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, bit2)); 1699 tcg_out32(s, CROR | BT(7, CR_EQ) | BA(6, bit1) | BB(7, CR_EQ)); 1700 break; 1701 1702 default: 1703 tcg_abort(); 1704 } 1705} 1706 1707static void tcg_out_setcond2(TCGContext *s, const TCGArg *args, 1708 const int *const_args) 1709{ 1710 tcg_out_cmp2(s, args + 1, const_args + 1); 1711 tcg_out32(s, MFOCRF | RT(TCG_REG_R0) | FXM(7)); 1712 tcg_out_rlw(s, RLWINM, args[0], TCG_REG_R0, 31, 31, 31); 1713} 1714 1715static void tcg_out_brcond2 (TCGContext *s, const TCGArg *args, 1716 const int *const_args) 1717{ 1718 tcg_out_cmp2(s, args, const_args); 1719 tcg_out_bc(s, BC | BI(7, CR_EQ) | BO_COND_TRUE, arg_label(args[5])); 1720} 1721 1722static void tcg_out_mb(TCGContext *s, TCGArg a0) 1723{ 1724 uint32_t insn = HWSYNC; 1725 a0 &= TCG_MO_ALL; 1726 if (a0 == TCG_MO_LD_LD) { 1727 insn = LWSYNC; 1728 } else if (a0 == TCG_MO_ST_ST) { 1729 insn = EIEIO; 1730 } 1731 tcg_out32(s, insn); 1732} 1733 1734void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_rx, 1735 uintptr_t jmp_rw, uintptr_t addr) 1736{ 1737 if (TCG_TARGET_REG_BITS == 64) { 1738 tcg_insn_unit i1, i2; 1739 intptr_t tb_diff = addr - tc_ptr; 1740 intptr_t br_diff = addr - (jmp_rx + 4); 1741 uint64_t pair; 1742 1743 /* This does not exercise the range of the branch, but we do 1744 still need to be able to load the new value of TCG_REG_TB. 1745 But this does still happen quite often. */ 1746 if (tb_diff == (int16_t)tb_diff) { 1747 i1 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, tb_diff); 1748 i2 = B | (br_diff & 0x3fffffc); 1749 } else { 1750 intptr_t lo = (int16_t)tb_diff; 1751 intptr_t hi = (int32_t)(tb_diff - lo); 1752 assert(tb_diff == hi + lo); 1753 i1 = ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, hi >> 16); 1754 i2 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, lo); 1755 } 1756#ifdef HOST_WORDS_BIGENDIAN 1757 pair = (uint64_t)i1 << 32 | i2; 1758#else 1759 pair = (uint64_t)i2 << 32 | i1; 1760#endif 1761 1762 /* As per the enclosing if, this is ppc64. Avoid the _Static_assert 1763 within qatomic_set that would fail to build a ppc32 host. */ 1764 qatomic_set__nocheck((uint64_t *)jmp_rw, pair); 1765 flush_idcache_range(jmp_rx, jmp_rw, 8); 1766 } else { 1767 intptr_t diff = addr - jmp_rx; 1768 tcg_debug_assert(in_range_b(diff)); 1769 qatomic_set((uint32_t *)jmp_rw, B | (diff & 0x3fffffc)); 1770 flush_idcache_range(jmp_rx, jmp_rw, 4); 1771 } 1772} 1773 1774static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target) 1775{ 1776#ifdef _CALL_AIX 1777 /* Look through the descriptor. If the branch is in range, and we 1778 don't have to spend too much effort on building the toc. */ 1779 const void *tgt = ((const void * const *)target)[0]; 1780 uintptr_t toc = ((const uintptr_t *)target)[1]; 1781 intptr_t diff = tcg_pcrel_diff(s, tgt); 1782 1783 if (in_range_b(diff) && toc == (uint32_t)toc) { 1784 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, toc); 1785 tcg_out_b(s, LK, tgt); 1786 } else { 1787 /* Fold the low bits of the constant into the addresses below. */ 1788 intptr_t arg = (intptr_t)target; 1789 int ofs = (int16_t)arg; 1790 1791 if (ofs + 8 < 0x8000) { 1792 arg -= ofs; 1793 } else { 1794 ofs = 0; 1795 } 1796 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP1, arg); 1797 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_TMP1, ofs); 1798 tcg_out32(s, MTSPR | RA(TCG_REG_R0) | CTR); 1799 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R2, TCG_REG_TMP1, ofs + SZP); 1800 tcg_out32(s, BCCTR | BO_ALWAYS | LK); 1801 } 1802#elif defined(_CALL_ELF) && _CALL_ELF == 2 1803 intptr_t diff; 1804 1805 /* In the ELFv2 ABI, we have to set up r12 to contain the destination 1806 address, which the callee uses to compute its TOC address. */ 1807 /* FIXME: when the branch is in range, we could avoid r12 load if we 1808 knew that the destination uses the same TOC, and what its local 1809 entry point offset is. */ 1810 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R12, (intptr_t)target); 1811 1812 diff = tcg_pcrel_diff(s, target); 1813 if (in_range_b(diff)) { 1814 tcg_out_b(s, LK, target); 1815 } else { 1816 tcg_out32(s, MTSPR | RS(TCG_REG_R12) | CTR); 1817 tcg_out32(s, BCCTR | BO_ALWAYS | LK); 1818 } 1819#else 1820 tcg_out_b(s, LK, target); 1821#endif 1822} 1823 1824static const uint32_t qemu_ldx_opc[16] = { 1825 [MO_UB] = LBZX, 1826 [MO_UW] = LHZX, 1827 [MO_UL] = LWZX, 1828 [MO_Q] = LDX, 1829 [MO_SW] = LHAX, 1830 [MO_SL] = LWAX, 1831 [MO_BSWAP | MO_UB] = LBZX, 1832 [MO_BSWAP | MO_UW] = LHBRX, 1833 [MO_BSWAP | MO_UL] = LWBRX, 1834 [MO_BSWAP | MO_Q] = LDBRX, 1835}; 1836 1837static const uint32_t qemu_stx_opc[16] = { 1838 [MO_UB] = STBX, 1839 [MO_UW] = STHX, 1840 [MO_UL] = STWX, 1841 [MO_Q] = STDX, 1842 [MO_BSWAP | MO_UB] = STBX, 1843 [MO_BSWAP | MO_UW] = STHBRX, 1844 [MO_BSWAP | MO_UL] = STWBRX, 1845 [MO_BSWAP | MO_Q] = STDBRX, 1846}; 1847 1848static const uint32_t qemu_exts_opc[4] = { 1849 EXTSB, EXTSH, EXTSW, 0 1850}; 1851 1852#if defined (CONFIG_SOFTMMU) 1853#include "../tcg-ldst.c.inc" 1854 1855/* helper signature: helper_ld_mmu(CPUState *env, target_ulong addr, 1856 * int mmu_idx, uintptr_t ra) 1857 */ 1858static void * const qemu_ld_helpers[16] = { 1859 [MO_UB] = helper_ret_ldub_mmu, 1860 [MO_LEUW] = helper_le_lduw_mmu, 1861 [MO_LEUL] = helper_le_ldul_mmu, 1862 [MO_LEQ] = helper_le_ldq_mmu, 1863 [MO_BEUW] = helper_be_lduw_mmu, 1864 [MO_BEUL] = helper_be_ldul_mmu, 1865 [MO_BEQ] = helper_be_ldq_mmu, 1866}; 1867 1868/* helper signature: helper_st_mmu(CPUState *env, target_ulong addr, 1869 * uintxx_t val, int mmu_idx, uintptr_t ra) 1870 */ 1871static void * const qemu_st_helpers[16] = { 1872 [MO_UB] = helper_ret_stb_mmu, 1873 [MO_LEUW] = helper_le_stw_mmu, 1874 [MO_LEUL] = helper_le_stl_mmu, 1875 [MO_LEQ] = helper_le_stq_mmu, 1876 [MO_BEUW] = helper_be_stw_mmu, 1877 [MO_BEUL] = helper_be_stl_mmu, 1878 [MO_BEQ] = helper_be_stq_mmu, 1879}; 1880 1881/* We expect to use a 16-bit negative offset from ENV. */ 1882QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0); 1883QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -32768); 1884 1885/* Perform the TLB load and compare. Places the result of the comparison 1886 in CR7, loads the addend of the TLB into R3, and returns the register 1887 containing the guest address (zero-extended into R4). Clobbers R0 and R2. */ 1888 1889static TCGReg tcg_out_tlb_read(TCGContext *s, MemOp opc, 1890 TCGReg addrlo, TCGReg addrhi, 1891 int mem_index, bool is_read) 1892{ 1893 int cmp_off 1894 = (is_read 1895 ? offsetof(CPUTLBEntry, addr_read) 1896 : offsetof(CPUTLBEntry, addr_write)); 1897 int fast_off = TLB_MASK_TABLE_OFS(mem_index); 1898 int mask_off = fast_off + offsetof(CPUTLBDescFast, mask); 1899 int table_off = fast_off + offsetof(CPUTLBDescFast, table); 1900 unsigned s_bits = opc & MO_SIZE; 1901 unsigned a_bits = get_alignment_bits(opc); 1902 1903 /* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */ 1904 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_AREG0, mask_off); 1905 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R4, TCG_AREG0, table_off); 1906 1907 /* Extract the page index, shifted into place for tlb index. */ 1908 if (TCG_TARGET_REG_BITS == 32) { 1909 tcg_out_shri32(s, TCG_REG_TMP1, addrlo, 1910 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS); 1911 } else { 1912 tcg_out_shri64(s, TCG_REG_TMP1, addrlo, 1913 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS); 1914 } 1915 tcg_out32(s, AND | SAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_TMP1)); 1916 1917 /* Load the TLB comparator. */ 1918 if (cmp_off == 0 && TCG_TARGET_REG_BITS >= TARGET_LONG_BITS) { 1919 uint32_t lxu = (TCG_TARGET_REG_BITS == 32 || TARGET_LONG_BITS == 32 1920 ? LWZUX : LDUX); 1921 tcg_out32(s, lxu | TAB(TCG_REG_TMP1, TCG_REG_R3, TCG_REG_R4)); 1922 } else { 1923 tcg_out32(s, ADD | TAB(TCG_REG_R3, TCG_REG_R3, TCG_REG_R4)); 1924 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) { 1925 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_TMP1, TCG_REG_R3, cmp_off + 4); 1926 tcg_out_ld(s, TCG_TYPE_I32, TCG_REG_R4, TCG_REG_R3, cmp_off); 1927 } else { 1928 tcg_out_ld(s, TCG_TYPE_TL, TCG_REG_TMP1, TCG_REG_R3, cmp_off); 1929 } 1930 } 1931 1932 /* Load the TLB addend for use on the fast path. Do this asap 1933 to minimize any load use delay. */ 1934 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R3, TCG_REG_R3, 1935 offsetof(CPUTLBEntry, addend)); 1936 1937 /* Clear the non-page, non-alignment bits from the address */ 1938 if (TCG_TARGET_REG_BITS == 32) { 1939 /* We don't support unaligned accesses on 32-bits. 1940 * Preserve the bottom bits and thus trigger a comparison 1941 * failure on unaligned accesses. 1942 */ 1943 if (a_bits < s_bits) { 1944 a_bits = s_bits; 1945 } 1946 tcg_out_rlw(s, RLWINM, TCG_REG_R0, addrlo, 0, 1947 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS); 1948 } else { 1949 TCGReg t = addrlo; 1950 1951 /* If the access is unaligned, we need to make sure we fail if we 1952 * cross a page boundary. The trick is to add the access size-1 1953 * to the address before masking the low bits. That will make the 1954 * address overflow to the next page if we cross a page boundary, 1955 * which will then force a mismatch of the TLB compare. 1956 */ 1957 if (a_bits < s_bits) { 1958 unsigned a_mask = (1 << a_bits) - 1; 1959 unsigned s_mask = (1 << s_bits) - 1; 1960 tcg_out32(s, ADDI | TAI(TCG_REG_R0, t, s_mask - a_mask)); 1961 t = TCG_REG_R0; 1962 } 1963 1964 /* Mask the address for the requested alignment. */ 1965 if (TARGET_LONG_BITS == 32) { 1966 tcg_out_rlw(s, RLWINM, TCG_REG_R0, t, 0, 1967 (32 - a_bits) & 31, 31 - TARGET_PAGE_BITS); 1968 /* Zero-extend the address for use in the final address. */ 1969 tcg_out_ext32u(s, TCG_REG_R4, addrlo); 1970 addrlo = TCG_REG_R4; 1971 } else if (a_bits == 0) { 1972 tcg_out_rld(s, RLDICR, TCG_REG_R0, t, 0, 63 - TARGET_PAGE_BITS); 1973 } else { 1974 tcg_out_rld(s, RLDICL, TCG_REG_R0, t, 1975 64 - TARGET_PAGE_BITS, TARGET_PAGE_BITS - a_bits); 1976 tcg_out_rld(s, RLDICL, TCG_REG_R0, TCG_REG_R0, TARGET_PAGE_BITS, 0); 1977 } 1978 } 1979 1980 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) { 1981 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1, 1982 0, 7, TCG_TYPE_I32); 1983 tcg_out_cmp(s, TCG_COND_EQ, addrhi, TCG_REG_R4, 0, 6, TCG_TYPE_I32); 1984 tcg_out32(s, CRAND | BT(7, CR_EQ) | BA(6, CR_EQ) | BB(7, CR_EQ)); 1985 } else { 1986 tcg_out_cmp(s, TCG_COND_EQ, TCG_REG_R0, TCG_REG_TMP1, 1987 0, 7, TCG_TYPE_TL); 1988 } 1989 1990 return addrlo; 1991} 1992 1993/* Record the context of a call to the out of line helper code for the slow 1994 path for a load or store, so that we can later generate the correct 1995 helper code. */ 1996static void add_qemu_ldst_label(TCGContext *s, bool is_ld, TCGMemOpIdx oi, 1997 TCGReg datalo_reg, TCGReg datahi_reg, 1998 TCGReg addrlo_reg, TCGReg addrhi_reg, 1999 tcg_insn_unit *raddr, tcg_insn_unit *lptr) 2000{ 2001 TCGLabelQemuLdst *label = new_ldst_label(s); 2002 2003 label->is_ld = is_ld; 2004 label->oi = oi; 2005 label->datalo_reg = datalo_reg; 2006 label->datahi_reg = datahi_reg; 2007 label->addrlo_reg = addrlo_reg; 2008 label->addrhi_reg = addrhi_reg; 2009 label->raddr = tcg_splitwx_to_rx(raddr); 2010 label->label_ptr[0] = lptr; 2011} 2012 2013static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) 2014{ 2015 TCGMemOpIdx oi = lb->oi; 2016 MemOp opc = get_memop(oi); 2017 TCGReg hi, lo, arg = TCG_REG_R3; 2018 2019 if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 2020 return false; 2021 } 2022 2023 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0); 2024 2025 lo = lb->addrlo_reg; 2026 hi = lb->addrhi_reg; 2027 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) { 2028#ifdef TCG_TARGET_CALL_ALIGN_ARGS 2029 arg |= 1; 2030#endif 2031 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi); 2032 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo); 2033 } else { 2034 /* If the address needed to be zero-extended, we'll have already 2035 placed it in R4. The only remaining case is 64-bit guest. */ 2036 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo); 2037 } 2038 2039 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi); 2040 tcg_out32(s, MFSPR | RT(arg) | LR); 2041 2042 tcg_out_call(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]); 2043 2044 lo = lb->datalo_reg; 2045 hi = lb->datahi_reg; 2046 if (TCG_TARGET_REG_BITS == 32 && (opc & MO_SIZE) == MO_64) { 2047 tcg_out_mov(s, TCG_TYPE_I32, lo, TCG_REG_R4); 2048 tcg_out_mov(s, TCG_TYPE_I32, hi, TCG_REG_R3); 2049 } else if (opc & MO_SIGN) { 2050 uint32_t insn = qemu_exts_opc[opc & MO_SIZE]; 2051 tcg_out32(s, insn | RA(lo) | RS(TCG_REG_R3)); 2052 } else { 2053 tcg_out_mov(s, TCG_TYPE_REG, lo, TCG_REG_R3); 2054 } 2055 2056 tcg_out_b(s, 0, lb->raddr); 2057 return true; 2058} 2059 2060static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) 2061{ 2062 TCGMemOpIdx oi = lb->oi; 2063 MemOp opc = get_memop(oi); 2064 MemOp s_bits = opc & MO_SIZE; 2065 TCGReg hi, lo, arg = TCG_REG_R3; 2066 2067 if (!reloc_pc14(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 2068 return false; 2069 } 2070 2071 tcg_out_mov(s, TCG_TYPE_PTR, arg++, TCG_AREG0); 2072 2073 lo = lb->addrlo_reg; 2074 hi = lb->addrhi_reg; 2075 if (TCG_TARGET_REG_BITS < TARGET_LONG_BITS) { 2076#ifdef TCG_TARGET_CALL_ALIGN_ARGS 2077 arg |= 1; 2078#endif 2079 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi); 2080 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo); 2081 } else { 2082 /* If the address needed to be zero-extended, we'll have already 2083 placed it in R4. The only remaining case is 64-bit guest. */ 2084 tcg_out_mov(s, TCG_TYPE_TL, arg++, lo); 2085 } 2086 2087 lo = lb->datalo_reg; 2088 hi = lb->datahi_reg; 2089 if (TCG_TARGET_REG_BITS == 32) { 2090 switch (s_bits) { 2091 case MO_64: 2092#ifdef TCG_TARGET_CALL_ALIGN_ARGS 2093 arg |= 1; 2094#endif 2095 tcg_out_mov(s, TCG_TYPE_I32, arg++, hi); 2096 /* FALLTHRU */ 2097 case MO_32: 2098 tcg_out_mov(s, TCG_TYPE_I32, arg++, lo); 2099 break; 2100 default: 2101 tcg_out_rlw(s, RLWINM, arg++, lo, 0, 32 - (8 << s_bits), 31); 2102 break; 2103 } 2104 } else { 2105 if (s_bits == MO_64) { 2106 tcg_out_mov(s, TCG_TYPE_I64, arg++, lo); 2107 } else { 2108 tcg_out_rld(s, RLDICL, arg++, lo, 0, 64 - (8 << s_bits)); 2109 } 2110 } 2111 2112 tcg_out_movi(s, TCG_TYPE_I32, arg++, oi); 2113 tcg_out32(s, MFSPR | RT(arg) | LR); 2114 2115 tcg_out_call(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]); 2116 2117 tcg_out_b(s, 0, lb->raddr); 2118 return true; 2119} 2120#endif /* SOFTMMU */ 2121 2122static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is_64) 2123{ 2124 TCGReg datalo, datahi, addrlo, rbase; 2125 TCGReg addrhi __attribute__((unused)); 2126 TCGMemOpIdx oi; 2127 MemOp opc, s_bits; 2128#ifdef CONFIG_SOFTMMU 2129 int mem_index; 2130 tcg_insn_unit *label_ptr; 2131#endif 2132 2133 datalo = *args++; 2134 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0); 2135 addrlo = *args++; 2136 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0); 2137 oi = *args++; 2138 opc = get_memop(oi); 2139 s_bits = opc & MO_SIZE; 2140 2141#ifdef CONFIG_SOFTMMU 2142 mem_index = get_mmuidx(oi); 2143 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, true); 2144 2145 /* Load a pointer into the current opcode w/conditional branch-link. */ 2146 label_ptr = s->code_ptr; 2147 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK); 2148 2149 rbase = TCG_REG_R3; 2150#else /* !CONFIG_SOFTMMU */ 2151 rbase = guest_base ? TCG_GUEST_BASE_REG : 0; 2152 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) { 2153 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo); 2154 addrlo = TCG_REG_TMP1; 2155 } 2156#endif 2157 2158 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) { 2159 if (opc & MO_BSWAP) { 2160 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4)); 2161 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo)); 2162 tcg_out32(s, LWBRX | TAB(datahi, rbase, TCG_REG_R0)); 2163 } else if (rbase != 0) { 2164 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4)); 2165 tcg_out32(s, LWZX | TAB(datahi, rbase, addrlo)); 2166 tcg_out32(s, LWZX | TAB(datalo, rbase, TCG_REG_R0)); 2167 } else if (addrlo == datahi) { 2168 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4)); 2169 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0)); 2170 } else { 2171 tcg_out32(s, LWZ | TAI(datahi, addrlo, 0)); 2172 tcg_out32(s, LWZ | TAI(datalo, addrlo, 4)); 2173 } 2174 } else { 2175 uint32_t insn = qemu_ldx_opc[opc & (MO_BSWAP | MO_SSIZE)]; 2176 if (!have_isa_2_06 && insn == LDBRX) { 2177 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4)); 2178 tcg_out32(s, LWBRX | TAB(datalo, rbase, addrlo)); 2179 tcg_out32(s, LWBRX | TAB(TCG_REG_R0, rbase, TCG_REG_R0)); 2180 tcg_out_rld(s, RLDIMI, datalo, TCG_REG_R0, 32, 0); 2181 } else if (insn) { 2182 tcg_out32(s, insn | TAB(datalo, rbase, addrlo)); 2183 } else { 2184 insn = qemu_ldx_opc[opc & (MO_SIZE | MO_BSWAP)]; 2185 tcg_out32(s, insn | TAB(datalo, rbase, addrlo)); 2186 insn = qemu_exts_opc[s_bits]; 2187 tcg_out32(s, insn | RA(datalo) | RS(datalo)); 2188 } 2189 } 2190 2191#ifdef CONFIG_SOFTMMU 2192 add_qemu_ldst_label(s, true, oi, datalo, datahi, addrlo, addrhi, 2193 s->code_ptr, label_ptr); 2194#endif 2195} 2196 2197static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is_64) 2198{ 2199 TCGReg datalo, datahi, addrlo, rbase; 2200 TCGReg addrhi __attribute__((unused)); 2201 TCGMemOpIdx oi; 2202 MemOp opc, s_bits; 2203#ifdef CONFIG_SOFTMMU 2204 int mem_index; 2205 tcg_insn_unit *label_ptr; 2206#endif 2207 2208 datalo = *args++; 2209 datahi = (TCG_TARGET_REG_BITS == 32 && is_64 ? *args++ : 0); 2210 addrlo = *args++; 2211 addrhi = (TCG_TARGET_REG_BITS < TARGET_LONG_BITS ? *args++ : 0); 2212 oi = *args++; 2213 opc = get_memop(oi); 2214 s_bits = opc & MO_SIZE; 2215 2216#ifdef CONFIG_SOFTMMU 2217 mem_index = get_mmuidx(oi); 2218 addrlo = tcg_out_tlb_read(s, opc, addrlo, addrhi, mem_index, false); 2219 2220 /* Load a pointer into the current opcode w/conditional branch-link. */ 2221 label_ptr = s->code_ptr; 2222 tcg_out32(s, BC | BI(7, CR_EQ) | BO_COND_FALSE | LK); 2223 2224 rbase = TCG_REG_R3; 2225#else /* !CONFIG_SOFTMMU */ 2226 rbase = guest_base ? TCG_GUEST_BASE_REG : 0; 2227 if (TCG_TARGET_REG_BITS > TARGET_LONG_BITS) { 2228 tcg_out_ext32u(s, TCG_REG_TMP1, addrlo); 2229 addrlo = TCG_REG_TMP1; 2230 } 2231#endif 2232 2233 if (TCG_TARGET_REG_BITS == 32 && s_bits == MO_64) { 2234 if (opc & MO_BSWAP) { 2235 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4)); 2236 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo)); 2237 tcg_out32(s, STWBRX | SAB(datahi, rbase, TCG_REG_R0)); 2238 } else if (rbase != 0) { 2239 tcg_out32(s, ADDI | TAI(TCG_REG_R0, addrlo, 4)); 2240 tcg_out32(s, STWX | SAB(datahi, rbase, addrlo)); 2241 tcg_out32(s, STWX | SAB(datalo, rbase, TCG_REG_R0)); 2242 } else { 2243 tcg_out32(s, STW | TAI(datahi, addrlo, 0)); 2244 tcg_out32(s, STW | TAI(datalo, addrlo, 4)); 2245 } 2246 } else { 2247 uint32_t insn = qemu_stx_opc[opc & (MO_BSWAP | MO_SIZE)]; 2248 if (!have_isa_2_06 && insn == STDBRX) { 2249 tcg_out32(s, STWBRX | SAB(datalo, rbase, addrlo)); 2250 tcg_out32(s, ADDI | TAI(TCG_REG_TMP1, addrlo, 4)); 2251 tcg_out_shri64(s, TCG_REG_R0, datalo, 32); 2252 tcg_out32(s, STWBRX | SAB(TCG_REG_R0, rbase, TCG_REG_TMP1)); 2253 } else { 2254 tcg_out32(s, insn | SAB(datalo, rbase, addrlo)); 2255 } 2256 } 2257 2258#ifdef CONFIG_SOFTMMU 2259 add_qemu_ldst_label(s, false, oi, datalo, datahi, addrlo, addrhi, 2260 s->code_ptr, label_ptr); 2261#endif 2262} 2263 2264static void tcg_out_nop_fill(tcg_insn_unit *p, int count) 2265{ 2266 int i; 2267 for (i = 0; i < count; ++i) { 2268 p[i] = NOP; 2269 } 2270} 2271 2272/* Parameters for function call generation, used in tcg.c. */ 2273#define TCG_TARGET_STACK_ALIGN 16 2274#define TCG_TARGET_EXTEND_ARGS 1 2275 2276#ifdef _CALL_AIX 2277# define LINK_AREA_SIZE (6 * SZR) 2278# define LR_OFFSET (1 * SZR) 2279# define TCG_TARGET_CALL_STACK_OFFSET (LINK_AREA_SIZE + 8 * SZR) 2280#elif defined(TCG_TARGET_CALL_DARWIN) 2281# define LINK_AREA_SIZE (6 * SZR) 2282# define LR_OFFSET (2 * SZR) 2283#elif TCG_TARGET_REG_BITS == 64 2284# if defined(_CALL_ELF) && _CALL_ELF == 2 2285# define LINK_AREA_SIZE (4 * SZR) 2286# define LR_OFFSET (1 * SZR) 2287# endif 2288#else /* TCG_TARGET_REG_BITS == 32 */ 2289# if defined(_CALL_SYSV) 2290# define LINK_AREA_SIZE (2 * SZR) 2291# define LR_OFFSET (1 * SZR) 2292# endif 2293#endif 2294#ifndef LR_OFFSET 2295# error "Unhandled abi" 2296#endif 2297#ifndef TCG_TARGET_CALL_STACK_OFFSET 2298# define TCG_TARGET_CALL_STACK_OFFSET LINK_AREA_SIZE 2299#endif 2300 2301#define CPU_TEMP_BUF_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long)) 2302#define REG_SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * SZR) 2303 2304#define FRAME_SIZE ((TCG_TARGET_CALL_STACK_OFFSET \ 2305 + TCG_STATIC_CALL_ARGS_SIZE \ 2306 + CPU_TEMP_BUF_SIZE \ 2307 + REG_SAVE_SIZE \ 2308 + TCG_TARGET_STACK_ALIGN - 1) \ 2309 & -TCG_TARGET_STACK_ALIGN) 2310 2311#define REG_SAVE_BOT (FRAME_SIZE - REG_SAVE_SIZE) 2312 2313static void tcg_target_qemu_prologue(TCGContext *s) 2314{ 2315 int i; 2316 2317#ifdef _CALL_AIX 2318 const void **desc = (const void **)s->code_ptr; 2319 desc[0] = tcg_splitwx_to_rx(desc + 2); /* entry point */ 2320 desc[1] = 0; /* environment pointer */ 2321 s->code_ptr = (void *)(desc + 2); /* skip over descriptor */ 2322#endif 2323 2324 tcg_set_frame(s, TCG_REG_CALL_STACK, REG_SAVE_BOT - CPU_TEMP_BUF_SIZE, 2325 CPU_TEMP_BUF_SIZE); 2326 2327 /* Prologue */ 2328 tcg_out32(s, MFSPR | RT(TCG_REG_R0) | LR); 2329 tcg_out32(s, (SZR == 8 ? STDU : STWU) 2330 | SAI(TCG_REG_R1, TCG_REG_R1, -FRAME_SIZE)); 2331 2332 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) { 2333 tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i], 2334 TCG_REG_R1, REG_SAVE_BOT + i * SZR); 2335 } 2336 tcg_out_st(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET); 2337 2338#ifndef CONFIG_SOFTMMU 2339 if (guest_base) { 2340 tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base, true); 2341 tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG); 2342 } 2343#endif 2344 2345 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); 2346 tcg_out32(s, MTSPR | RS(tcg_target_call_iarg_regs[1]) | CTR); 2347 if (USE_REG_TB) { 2348 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, tcg_target_call_iarg_regs[1]); 2349 } 2350 tcg_out32(s, BCCTR | BO_ALWAYS); 2351 2352 /* Epilogue */ 2353 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); 2354 2355 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_R0, TCG_REG_R1, FRAME_SIZE+LR_OFFSET); 2356 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i) { 2357 tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i], 2358 TCG_REG_R1, REG_SAVE_BOT + i * SZR); 2359 } 2360 tcg_out32(s, MTSPR | RS(TCG_REG_R0) | LR); 2361 tcg_out32(s, ADDI | TAI(TCG_REG_R1, TCG_REG_R1, FRAME_SIZE)); 2362 tcg_out32(s, BCLR | BO_ALWAYS); 2363} 2364 2365static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args, 2366 const int *const_args) 2367{ 2368 TCGArg a0, a1, a2; 2369 int c; 2370 2371 switch (opc) { 2372 case INDEX_op_exit_tb: 2373 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R3, args[0]); 2374 tcg_out_b(s, 0, tcg_code_gen_epilogue); 2375 break; 2376 case INDEX_op_goto_tb: 2377 if (s->tb_jmp_insn_offset) { 2378 /* Direct jump. */ 2379 if (TCG_TARGET_REG_BITS == 64) { 2380 /* Ensure the next insns are 8-byte aligned. */ 2381 if ((uintptr_t)s->code_ptr & 7) { 2382 tcg_out32(s, NOP); 2383 } 2384 s->tb_jmp_insn_offset[args[0]] = tcg_current_code_size(s); 2385 tcg_out32(s, ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, 0)); 2386 tcg_out32(s, ADDI | TAI(TCG_REG_TB, TCG_REG_TB, 0)); 2387 } else { 2388 s->tb_jmp_insn_offset[args[0]] = tcg_current_code_size(s); 2389 tcg_out32(s, B); 2390 s->tb_jmp_reset_offset[args[0]] = tcg_current_code_size(s); 2391 break; 2392 } 2393 } else { 2394 /* Indirect jump. */ 2395 tcg_debug_assert(s->tb_jmp_insn_offset == NULL); 2396 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TB, 0, 2397 (intptr_t)(s->tb_jmp_insn_offset + args[0])); 2398 } 2399 tcg_out32(s, MTSPR | RS(TCG_REG_TB) | CTR); 2400 tcg_out32(s, BCCTR | BO_ALWAYS); 2401 set_jmp_reset_offset(s, args[0]); 2402 if (USE_REG_TB) { 2403 /* For the unlinked case, need to reset TCG_REG_TB. */ 2404 tcg_out_mem_long(s, ADDI, ADD, TCG_REG_TB, TCG_REG_TB, 2405 -tcg_current_code_size(s)); 2406 } 2407 break; 2408 case INDEX_op_goto_ptr: 2409 tcg_out32(s, MTSPR | RS(args[0]) | CTR); 2410 if (USE_REG_TB) { 2411 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, args[0]); 2412 } 2413 tcg_out32(s, ADDI | TAI(TCG_REG_R3, 0, 0)); 2414 tcg_out32(s, BCCTR | BO_ALWAYS); 2415 break; 2416 case INDEX_op_br: 2417 { 2418 TCGLabel *l = arg_label(args[0]); 2419 uint32_t insn = B; 2420 2421 if (l->has_value) { 2422 insn |= reloc_pc24_val(tcg_splitwx_to_rx(s->code_ptr), 2423 l->u.value_ptr); 2424 } else { 2425 tcg_out_reloc(s, s->code_ptr, R_PPC_REL24, l, 0); 2426 } 2427 tcg_out32(s, insn); 2428 } 2429 break; 2430 case INDEX_op_ld8u_i32: 2431 case INDEX_op_ld8u_i64: 2432 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]); 2433 break; 2434 case INDEX_op_ld8s_i32: 2435 case INDEX_op_ld8s_i64: 2436 tcg_out_mem_long(s, LBZ, LBZX, args[0], args[1], args[2]); 2437 tcg_out32(s, EXTSB | RS(args[0]) | RA(args[0])); 2438 break; 2439 case INDEX_op_ld16u_i32: 2440 case INDEX_op_ld16u_i64: 2441 tcg_out_mem_long(s, LHZ, LHZX, args[0], args[1], args[2]); 2442 break; 2443 case INDEX_op_ld16s_i32: 2444 case INDEX_op_ld16s_i64: 2445 tcg_out_mem_long(s, LHA, LHAX, args[0], args[1], args[2]); 2446 break; 2447 case INDEX_op_ld_i32: 2448 case INDEX_op_ld32u_i64: 2449 tcg_out_mem_long(s, LWZ, LWZX, args[0], args[1], args[2]); 2450 break; 2451 case INDEX_op_ld32s_i64: 2452 tcg_out_mem_long(s, LWA, LWAX, args[0], args[1], args[2]); 2453 break; 2454 case INDEX_op_ld_i64: 2455 tcg_out_mem_long(s, LD, LDX, args[0], args[1], args[2]); 2456 break; 2457 case INDEX_op_st8_i32: 2458 case INDEX_op_st8_i64: 2459 tcg_out_mem_long(s, STB, STBX, args[0], args[1], args[2]); 2460 break; 2461 case INDEX_op_st16_i32: 2462 case INDEX_op_st16_i64: 2463 tcg_out_mem_long(s, STH, STHX, args[0], args[1], args[2]); 2464 break; 2465 case INDEX_op_st_i32: 2466 case INDEX_op_st32_i64: 2467 tcg_out_mem_long(s, STW, STWX, args[0], args[1], args[2]); 2468 break; 2469 case INDEX_op_st_i64: 2470 tcg_out_mem_long(s, STD, STDX, args[0], args[1], args[2]); 2471 break; 2472 2473 case INDEX_op_add_i32: 2474 a0 = args[0], a1 = args[1], a2 = args[2]; 2475 if (const_args[2]) { 2476 do_addi_32: 2477 tcg_out_mem_long(s, ADDI, ADD, a0, a1, (int32_t)a2); 2478 } else { 2479 tcg_out32(s, ADD | TAB(a0, a1, a2)); 2480 } 2481 break; 2482 case INDEX_op_sub_i32: 2483 a0 = args[0], a1 = args[1], a2 = args[2]; 2484 if (const_args[1]) { 2485 if (const_args[2]) { 2486 tcg_out_movi(s, TCG_TYPE_I32, a0, a1 - a2); 2487 } else { 2488 tcg_out32(s, SUBFIC | TAI(a0, a2, a1)); 2489 } 2490 } else if (const_args[2]) { 2491 a2 = -a2; 2492 goto do_addi_32; 2493 } else { 2494 tcg_out32(s, SUBF | TAB(a0, a2, a1)); 2495 } 2496 break; 2497 2498 case INDEX_op_and_i32: 2499 a0 = args[0], a1 = args[1], a2 = args[2]; 2500 if (const_args[2]) { 2501 tcg_out_andi32(s, a0, a1, a2); 2502 } else { 2503 tcg_out32(s, AND | SAB(a1, a0, a2)); 2504 } 2505 break; 2506 case INDEX_op_and_i64: 2507 a0 = args[0], a1 = args[1], a2 = args[2]; 2508 if (const_args[2]) { 2509 tcg_out_andi64(s, a0, a1, a2); 2510 } else { 2511 tcg_out32(s, AND | SAB(a1, a0, a2)); 2512 } 2513 break; 2514 case INDEX_op_or_i64: 2515 case INDEX_op_or_i32: 2516 a0 = args[0], a1 = args[1], a2 = args[2]; 2517 if (const_args[2]) { 2518 tcg_out_ori32(s, a0, a1, a2); 2519 } else { 2520 tcg_out32(s, OR | SAB(a1, a0, a2)); 2521 } 2522 break; 2523 case INDEX_op_xor_i64: 2524 case INDEX_op_xor_i32: 2525 a0 = args[0], a1 = args[1], a2 = args[2]; 2526 if (const_args[2]) { 2527 tcg_out_xori32(s, a0, a1, a2); 2528 } else { 2529 tcg_out32(s, XOR | SAB(a1, a0, a2)); 2530 } 2531 break; 2532 case INDEX_op_andc_i32: 2533 a0 = args[0], a1 = args[1], a2 = args[2]; 2534 if (const_args[2]) { 2535 tcg_out_andi32(s, a0, a1, ~a2); 2536 } else { 2537 tcg_out32(s, ANDC | SAB(a1, a0, a2)); 2538 } 2539 break; 2540 case INDEX_op_andc_i64: 2541 a0 = args[0], a1 = args[1], a2 = args[2]; 2542 if (const_args[2]) { 2543 tcg_out_andi64(s, a0, a1, ~a2); 2544 } else { 2545 tcg_out32(s, ANDC | SAB(a1, a0, a2)); 2546 } 2547 break; 2548 case INDEX_op_orc_i32: 2549 if (const_args[2]) { 2550 tcg_out_ori32(s, args[0], args[1], ~args[2]); 2551 break; 2552 } 2553 /* FALLTHRU */ 2554 case INDEX_op_orc_i64: 2555 tcg_out32(s, ORC | SAB(args[1], args[0], args[2])); 2556 break; 2557 case INDEX_op_eqv_i32: 2558 if (const_args[2]) { 2559 tcg_out_xori32(s, args[0], args[1], ~args[2]); 2560 break; 2561 } 2562 /* FALLTHRU */ 2563 case INDEX_op_eqv_i64: 2564 tcg_out32(s, EQV | SAB(args[1], args[0], args[2])); 2565 break; 2566 case INDEX_op_nand_i32: 2567 case INDEX_op_nand_i64: 2568 tcg_out32(s, NAND | SAB(args[1], args[0], args[2])); 2569 break; 2570 case INDEX_op_nor_i32: 2571 case INDEX_op_nor_i64: 2572 tcg_out32(s, NOR | SAB(args[1], args[0], args[2])); 2573 break; 2574 2575 case INDEX_op_clz_i32: 2576 tcg_out_cntxz(s, TCG_TYPE_I32, CNTLZW, args[0], args[1], 2577 args[2], const_args[2]); 2578 break; 2579 case INDEX_op_ctz_i32: 2580 tcg_out_cntxz(s, TCG_TYPE_I32, CNTTZW, args[0], args[1], 2581 args[2], const_args[2]); 2582 break; 2583 case INDEX_op_ctpop_i32: 2584 tcg_out32(s, CNTPOPW | SAB(args[1], args[0], 0)); 2585 break; 2586 2587 case INDEX_op_clz_i64: 2588 tcg_out_cntxz(s, TCG_TYPE_I64, CNTLZD, args[0], args[1], 2589 args[2], const_args[2]); 2590 break; 2591 case INDEX_op_ctz_i64: 2592 tcg_out_cntxz(s, TCG_TYPE_I64, CNTTZD, args[0], args[1], 2593 args[2], const_args[2]); 2594 break; 2595 case INDEX_op_ctpop_i64: 2596 tcg_out32(s, CNTPOPD | SAB(args[1], args[0], 0)); 2597 break; 2598 2599 case INDEX_op_mul_i32: 2600 a0 = args[0], a1 = args[1], a2 = args[2]; 2601 if (const_args[2]) { 2602 tcg_out32(s, MULLI | TAI(a0, a1, a2)); 2603 } else { 2604 tcg_out32(s, MULLW | TAB(a0, a1, a2)); 2605 } 2606 break; 2607 2608 case INDEX_op_div_i32: 2609 tcg_out32(s, DIVW | TAB(args[0], args[1], args[2])); 2610 break; 2611 2612 case INDEX_op_divu_i32: 2613 tcg_out32(s, DIVWU | TAB(args[0], args[1], args[2])); 2614 break; 2615 2616 case INDEX_op_shl_i32: 2617 if (const_args[2]) { 2618 /* Limit immediate shift count lest we create an illegal insn. */ 2619 tcg_out_shli32(s, args[0], args[1], args[2] & 31); 2620 } else { 2621 tcg_out32(s, SLW | SAB(args[1], args[0], args[2])); 2622 } 2623 break; 2624 case INDEX_op_shr_i32: 2625 if (const_args[2]) { 2626 /* Limit immediate shift count lest we create an illegal insn. */ 2627 tcg_out_shri32(s, args[0], args[1], args[2] & 31); 2628 } else { 2629 tcg_out32(s, SRW | SAB(args[1], args[0], args[2])); 2630 } 2631 break; 2632 case INDEX_op_sar_i32: 2633 if (const_args[2]) { 2634 /* Limit immediate shift count lest we create an illegal insn. */ 2635 tcg_out32(s, SRAWI | RS(args[1]) | RA(args[0]) | SH(args[2] & 31)); 2636 } else { 2637 tcg_out32(s, SRAW | SAB(args[1], args[0], args[2])); 2638 } 2639 break; 2640 case INDEX_op_rotl_i32: 2641 if (const_args[2]) { 2642 tcg_out_rlw(s, RLWINM, args[0], args[1], args[2], 0, 31); 2643 } else { 2644 tcg_out32(s, RLWNM | SAB(args[1], args[0], args[2]) 2645 | MB(0) | ME(31)); 2646 } 2647 break; 2648 case INDEX_op_rotr_i32: 2649 if (const_args[2]) { 2650 tcg_out_rlw(s, RLWINM, args[0], args[1], 32 - args[2], 0, 31); 2651 } else { 2652 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 32)); 2653 tcg_out32(s, RLWNM | SAB(args[1], args[0], TCG_REG_R0) 2654 | MB(0) | ME(31)); 2655 } 2656 break; 2657 2658 case INDEX_op_brcond_i32: 2659 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1], 2660 arg_label(args[3]), TCG_TYPE_I32); 2661 break; 2662 case INDEX_op_brcond_i64: 2663 tcg_out_brcond(s, args[2], args[0], args[1], const_args[1], 2664 arg_label(args[3]), TCG_TYPE_I64); 2665 break; 2666 case INDEX_op_brcond2_i32: 2667 tcg_out_brcond2(s, args, const_args); 2668 break; 2669 2670 case INDEX_op_neg_i32: 2671 case INDEX_op_neg_i64: 2672 tcg_out32(s, NEG | RT(args[0]) | RA(args[1])); 2673 break; 2674 2675 case INDEX_op_not_i32: 2676 case INDEX_op_not_i64: 2677 tcg_out32(s, NOR | SAB(args[1], args[0], args[1])); 2678 break; 2679 2680 case INDEX_op_add_i64: 2681 a0 = args[0], a1 = args[1], a2 = args[2]; 2682 if (const_args[2]) { 2683 do_addi_64: 2684 tcg_out_mem_long(s, ADDI, ADD, a0, a1, a2); 2685 } else { 2686 tcg_out32(s, ADD | TAB(a0, a1, a2)); 2687 } 2688 break; 2689 case INDEX_op_sub_i64: 2690 a0 = args[0], a1 = args[1], a2 = args[2]; 2691 if (const_args[1]) { 2692 if (const_args[2]) { 2693 tcg_out_movi(s, TCG_TYPE_I64, a0, a1 - a2); 2694 } else { 2695 tcg_out32(s, SUBFIC | TAI(a0, a2, a1)); 2696 } 2697 } else if (const_args[2]) { 2698 a2 = -a2; 2699 goto do_addi_64; 2700 } else { 2701 tcg_out32(s, SUBF | TAB(a0, a2, a1)); 2702 } 2703 break; 2704 2705 case INDEX_op_shl_i64: 2706 if (const_args[2]) { 2707 /* Limit immediate shift count lest we create an illegal insn. */ 2708 tcg_out_shli64(s, args[0], args[1], args[2] & 63); 2709 } else { 2710 tcg_out32(s, SLD | SAB(args[1], args[0], args[2])); 2711 } 2712 break; 2713 case INDEX_op_shr_i64: 2714 if (const_args[2]) { 2715 /* Limit immediate shift count lest we create an illegal insn. */ 2716 tcg_out_shri64(s, args[0], args[1], args[2] & 63); 2717 } else { 2718 tcg_out32(s, SRD | SAB(args[1], args[0], args[2])); 2719 } 2720 break; 2721 case INDEX_op_sar_i64: 2722 if (const_args[2]) { 2723 int sh = SH(args[2] & 0x1f) | (((args[2] >> 5) & 1) << 1); 2724 tcg_out32(s, SRADI | RA(args[0]) | RS(args[1]) | sh); 2725 } else { 2726 tcg_out32(s, SRAD | SAB(args[1], args[0], args[2])); 2727 } 2728 break; 2729 case INDEX_op_rotl_i64: 2730 if (const_args[2]) { 2731 tcg_out_rld(s, RLDICL, args[0], args[1], args[2], 0); 2732 } else { 2733 tcg_out32(s, RLDCL | SAB(args[1], args[0], args[2]) | MB64(0)); 2734 } 2735 break; 2736 case INDEX_op_rotr_i64: 2737 if (const_args[2]) { 2738 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 0); 2739 } else { 2740 tcg_out32(s, SUBFIC | TAI(TCG_REG_R0, args[2], 64)); 2741 tcg_out32(s, RLDCL | SAB(args[1], args[0], TCG_REG_R0) | MB64(0)); 2742 } 2743 break; 2744 2745 case INDEX_op_mul_i64: 2746 a0 = args[0], a1 = args[1], a2 = args[2]; 2747 if (const_args[2]) { 2748 tcg_out32(s, MULLI | TAI(a0, a1, a2)); 2749 } else { 2750 tcg_out32(s, MULLD | TAB(a0, a1, a2)); 2751 } 2752 break; 2753 case INDEX_op_div_i64: 2754 tcg_out32(s, DIVD | TAB(args[0], args[1], args[2])); 2755 break; 2756 case INDEX_op_divu_i64: 2757 tcg_out32(s, DIVDU | TAB(args[0], args[1], args[2])); 2758 break; 2759 2760 case INDEX_op_qemu_ld_i32: 2761 tcg_out_qemu_ld(s, args, false); 2762 break; 2763 case INDEX_op_qemu_ld_i64: 2764 tcg_out_qemu_ld(s, args, true); 2765 break; 2766 case INDEX_op_qemu_st_i32: 2767 tcg_out_qemu_st(s, args, false); 2768 break; 2769 case INDEX_op_qemu_st_i64: 2770 tcg_out_qemu_st(s, args, true); 2771 break; 2772 2773 case INDEX_op_ext8s_i32: 2774 case INDEX_op_ext8s_i64: 2775 c = EXTSB; 2776 goto gen_ext; 2777 case INDEX_op_ext16s_i32: 2778 case INDEX_op_ext16s_i64: 2779 c = EXTSH; 2780 goto gen_ext; 2781 case INDEX_op_ext_i32_i64: 2782 case INDEX_op_ext32s_i64: 2783 c = EXTSW; 2784 goto gen_ext; 2785 gen_ext: 2786 tcg_out32(s, c | RS(args[1]) | RA(args[0])); 2787 break; 2788 case INDEX_op_extu_i32_i64: 2789 tcg_out_ext32u(s, args[0], args[1]); 2790 break; 2791 2792 case INDEX_op_setcond_i32: 2793 tcg_out_setcond(s, TCG_TYPE_I32, args[3], args[0], args[1], args[2], 2794 const_args[2]); 2795 break; 2796 case INDEX_op_setcond_i64: 2797 tcg_out_setcond(s, TCG_TYPE_I64, args[3], args[0], args[1], args[2], 2798 const_args[2]); 2799 break; 2800 case INDEX_op_setcond2_i32: 2801 tcg_out_setcond2(s, args, const_args); 2802 break; 2803 2804 case INDEX_op_bswap16_i32: 2805 case INDEX_op_bswap16_i64: 2806 a0 = args[0], a1 = args[1]; 2807 /* a1 = abcd */ 2808 if (a0 != a1) { 2809 /* a0 = (a1 r<< 24) & 0xff # 000c */ 2810 tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31); 2811 /* a0 = (a0 & ~0xff00) | (a1 r<< 8) & 0xff00 # 00dc */ 2812 tcg_out_rlw(s, RLWIMI, a0, a1, 8, 16, 23); 2813 } else { 2814 /* r0 = (a1 r<< 8) & 0xff00 # 00d0 */ 2815 tcg_out_rlw(s, RLWINM, TCG_REG_R0, a1, 8, 16, 23); 2816 /* a0 = (a1 r<< 24) & 0xff # 000c */ 2817 tcg_out_rlw(s, RLWINM, a0, a1, 24, 24, 31); 2818 /* a0 = a0 | r0 # 00dc */ 2819 tcg_out32(s, OR | SAB(TCG_REG_R0, a0, a0)); 2820 } 2821 break; 2822 2823 case INDEX_op_bswap32_i32: 2824 case INDEX_op_bswap32_i64: 2825 /* Stolen from gcc's builtin_bswap32 */ 2826 a1 = args[1]; 2827 a0 = args[0] == a1 ? TCG_REG_R0 : args[0]; 2828 2829 /* a1 = args[1] # abcd */ 2830 /* a0 = rotate_left (a1, 8) # bcda */ 2831 tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31); 2832 /* a0 = (a0 & ~0xff000000) | ((a1 r<< 24) & 0xff000000) # dcda */ 2833 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7); 2834 /* a0 = (a0 & ~0x0000ff00) | ((a1 r<< 24) & 0x0000ff00) # dcba */ 2835 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23); 2836 2837 if (a0 == TCG_REG_R0) { 2838 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0); 2839 } 2840 break; 2841 2842 case INDEX_op_bswap64_i64: 2843 a0 = args[0], a1 = args[1], a2 = TCG_REG_R0; 2844 if (a0 == a1) { 2845 a0 = TCG_REG_R0; 2846 a2 = a1; 2847 } 2848 2849 /* a1 = # abcd efgh */ 2850 /* a0 = rl32(a1, 8) # 0000 fghe */ 2851 tcg_out_rlw(s, RLWINM, a0, a1, 8, 0, 31); 2852 /* a0 = dep(a0, rl32(a1, 24), 0xff000000) # 0000 hghe */ 2853 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 0, 7); 2854 /* a0 = dep(a0, rl32(a1, 24), 0x0000ff00) # 0000 hgfe */ 2855 tcg_out_rlw(s, RLWIMI, a0, a1, 24, 16, 23); 2856 2857 /* a0 = rl64(a0, 32) # hgfe 0000 */ 2858 /* a2 = rl64(a1, 32) # efgh abcd */ 2859 tcg_out_rld(s, RLDICL, a0, a0, 32, 0); 2860 tcg_out_rld(s, RLDICL, a2, a1, 32, 0); 2861 2862 /* a0 = dep(a0, rl32(a2, 8), 0xffffffff) # hgfe bcda */ 2863 tcg_out_rlw(s, RLWIMI, a0, a2, 8, 0, 31); 2864 /* a0 = dep(a0, rl32(a2, 24), 0xff000000) # hgfe dcda */ 2865 tcg_out_rlw(s, RLWIMI, a0, a2, 24, 0, 7); 2866 /* a0 = dep(a0, rl32(a2, 24), 0x0000ff00) # hgfe dcba */ 2867 tcg_out_rlw(s, RLWIMI, a0, a2, 24, 16, 23); 2868 2869 if (a0 == 0) { 2870 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0); 2871 } 2872 break; 2873 2874 case INDEX_op_deposit_i32: 2875 if (const_args[2]) { 2876 uint32_t mask = ((2u << (args[4] - 1)) - 1) << args[3]; 2877 tcg_out_andi32(s, args[0], args[0], ~mask); 2878 } else { 2879 tcg_out_rlw(s, RLWIMI, args[0], args[2], args[3], 2880 32 - args[3] - args[4], 31 - args[3]); 2881 } 2882 break; 2883 case INDEX_op_deposit_i64: 2884 if (const_args[2]) { 2885 uint64_t mask = ((2ull << (args[4] - 1)) - 1) << args[3]; 2886 tcg_out_andi64(s, args[0], args[0], ~mask); 2887 } else { 2888 tcg_out_rld(s, RLDIMI, args[0], args[2], args[3], 2889 64 - args[3] - args[4]); 2890 } 2891 break; 2892 2893 case INDEX_op_extract_i32: 2894 tcg_out_rlw(s, RLWINM, args[0], args[1], 2895 32 - args[2], 32 - args[3], 31); 2896 break; 2897 case INDEX_op_extract_i64: 2898 tcg_out_rld(s, RLDICL, args[0], args[1], 64 - args[2], 64 - args[3]); 2899 break; 2900 2901 case INDEX_op_movcond_i32: 2902 tcg_out_movcond(s, TCG_TYPE_I32, args[5], args[0], args[1], args[2], 2903 args[3], args[4], const_args[2]); 2904 break; 2905 case INDEX_op_movcond_i64: 2906 tcg_out_movcond(s, TCG_TYPE_I64, args[5], args[0], args[1], args[2], 2907 args[3], args[4], const_args[2]); 2908 break; 2909 2910#if TCG_TARGET_REG_BITS == 64 2911 case INDEX_op_add2_i64: 2912#else 2913 case INDEX_op_add2_i32: 2914#endif 2915 /* Note that the CA bit is defined based on the word size of the 2916 environment. So in 64-bit mode it's always carry-out of bit 63. 2917 The fallback code using deposit works just as well for 32-bit. */ 2918 a0 = args[0], a1 = args[1]; 2919 if (a0 == args[3] || (!const_args[5] && a0 == args[5])) { 2920 a0 = TCG_REG_R0; 2921 } 2922 if (const_args[4]) { 2923 tcg_out32(s, ADDIC | TAI(a0, args[2], args[4])); 2924 } else { 2925 tcg_out32(s, ADDC | TAB(a0, args[2], args[4])); 2926 } 2927 if (const_args[5]) { 2928 tcg_out32(s, (args[5] ? ADDME : ADDZE) | RT(a1) | RA(args[3])); 2929 } else { 2930 tcg_out32(s, ADDE | TAB(a1, args[3], args[5])); 2931 } 2932 if (a0 != args[0]) { 2933 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0); 2934 } 2935 break; 2936 2937#if TCG_TARGET_REG_BITS == 64 2938 case INDEX_op_sub2_i64: 2939#else 2940 case INDEX_op_sub2_i32: 2941#endif 2942 a0 = args[0], a1 = args[1]; 2943 if (a0 == args[5] || (!const_args[3] && a0 == args[3])) { 2944 a0 = TCG_REG_R0; 2945 } 2946 if (const_args[2]) { 2947 tcg_out32(s, SUBFIC | TAI(a0, args[4], args[2])); 2948 } else { 2949 tcg_out32(s, SUBFC | TAB(a0, args[4], args[2])); 2950 } 2951 if (const_args[3]) { 2952 tcg_out32(s, (args[3] ? SUBFME : SUBFZE) | RT(a1) | RA(args[5])); 2953 } else { 2954 tcg_out32(s, SUBFE | TAB(a1, args[5], args[3])); 2955 } 2956 if (a0 != args[0]) { 2957 tcg_out_mov(s, TCG_TYPE_REG, args[0], a0); 2958 } 2959 break; 2960 2961 case INDEX_op_muluh_i32: 2962 tcg_out32(s, MULHWU | TAB(args[0], args[1], args[2])); 2963 break; 2964 case INDEX_op_mulsh_i32: 2965 tcg_out32(s, MULHW | TAB(args[0], args[1], args[2])); 2966 break; 2967 case INDEX_op_muluh_i64: 2968 tcg_out32(s, MULHDU | TAB(args[0], args[1], args[2])); 2969 break; 2970 case INDEX_op_mulsh_i64: 2971 tcg_out32(s, MULHD | TAB(args[0], args[1], args[2])); 2972 break; 2973 2974 case INDEX_op_mb: 2975 tcg_out_mb(s, args[0]); 2976 break; 2977 2978 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */ 2979 case INDEX_op_mov_i64: 2980 case INDEX_op_call: /* Always emitted via tcg_out_call. */ 2981 default: 2982 tcg_abort(); 2983 } 2984} 2985 2986int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) 2987{ 2988 switch (opc) { 2989 case INDEX_op_and_vec: 2990 case INDEX_op_or_vec: 2991 case INDEX_op_xor_vec: 2992 case INDEX_op_andc_vec: 2993 case INDEX_op_not_vec: 2994 return 1; 2995 case INDEX_op_orc_vec: 2996 return have_isa_2_07; 2997 case INDEX_op_add_vec: 2998 case INDEX_op_sub_vec: 2999 case INDEX_op_smax_vec: 3000 case INDEX_op_smin_vec: 3001 case INDEX_op_umax_vec: 3002 case INDEX_op_umin_vec: 3003 case INDEX_op_shlv_vec: 3004 case INDEX_op_shrv_vec: 3005 case INDEX_op_sarv_vec: 3006 case INDEX_op_rotlv_vec: 3007 return vece <= MO_32 || have_isa_2_07; 3008 case INDEX_op_ssadd_vec: 3009 case INDEX_op_sssub_vec: 3010 case INDEX_op_usadd_vec: 3011 case INDEX_op_ussub_vec: 3012 return vece <= MO_32; 3013 case INDEX_op_cmp_vec: 3014 case INDEX_op_shli_vec: 3015 case INDEX_op_shri_vec: 3016 case INDEX_op_sari_vec: 3017 case INDEX_op_rotli_vec: 3018 return vece <= MO_32 || have_isa_2_07 ? -1 : 0; 3019 case INDEX_op_neg_vec: 3020 return vece >= MO_32 && have_isa_3_00; 3021 case INDEX_op_mul_vec: 3022 switch (vece) { 3023 case MO_8: 3024 case MO_16: 3025 return -1; 3026 case MO_32: 3027 return have_isa_2_07 ? 1 : -1; 3028 case MO_64: 3029 return have_isa_3_10; 3030 } 3031 return 0; 3032 case INDEX_op_bitsel_vec: 3033 return have_vsx; 3034 case INDEX_op_rotrv_vec: 3035 return -1; 3036 default: 3037 return 0; 3038 } 3039} 3040 3041static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 3042 TCGReg dst, TCGReg src) 3043{ 3044 tcg_debug_assert(dst >= TCG_REG_V0); 3045 3046 /* Splat from integer reg allowed via constraints for v3.00. */ 3047 if (src < TCG_REG_V0) { 3048 tcg_debug_assert(have_isa_3_00); 3049 switch (vece) { 3050 case MO_64: 3051 tcg_out32(s, MTVSRDD | VRT(dst) | RA(src) | RB(src)); 3052 return true; 3053 case MO_32: 3054 tcg_out32(s, MTVSRWS | VRT(dst) | RA(src)); 3055 return true; 3056 default: 3057 /* Fail, so that we fall back on either dupm or mov+dup. */ 3058 return false; 3059 } 3060 } 3061 3062 /* 3063 * Recall we use (or emulate) VSX integer loads, so the integer is 3064 * right justified within the left (zero-index) double-word. 3065 */ 3066 switch (vece) { 3067 case MO_8: 3068 tcg_out32(s, VSPLTB | VRT(dst) | VRB(src) | (7 << 16)); 3069 break; 3070 case MO_16: 3071 tcg_out32(s, VSPLTH | VRT(dst) | VRB(src) | (3 << 16)); 3072 break; 3073 case MO_32: 3074 tcg_out32(s, VSPLTW | VRT(dst) | VRB(src) | (1 << 16)); 3075 break; 3076 case MO_64: 3077 if (have_vsx) { 3078 tcg_out32(s, XXPERMDI | VRT(dst) | VRA(src) | VRB(src)); 3079 break; 3080 } 3081 tcg_out_vsldoi(s, TCG_VEC_TMP1, src, src, 8); 3082 tcg_out_vsldoi(s, dst, TCG_VEC_TMP1, src, 8); 3083 break; 3084 default: 3085 g_assert_not_reached(); 3086 } 3087 return true; 3088} 3089 3090static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 3091 TCGReg out, TCGReg base, intptr_t offset) 3092{ 3093 int elt; 3094 3095 tcg_debug_assert(out >= TCG_REG_V0); 3096 switch (vece) { 3097 case MO_8: 3098 if (have_isa_3_00) { 3099 tcg_out_mem_long(s, LXV, LVX, out, base, offset & -16); 3100 } else { 3101 tcg_out_mem_long(s, 0, LVEBX, out, base, offset); 3102 } 3103 elt = extract32(offset, 0, 4); 3104#ifndef HOST_WORDS_BIGENDIAN 3105 elt ^= 15; 3106#endif 3107 tcg_out32(s, VSPLTB | VRT(out) | VRB(out) | (elt << 16)); 3108 break; 3109 case MO_16: 3110 tcg_debug_assert((offset & 1) == 0); 3111 if (have_isa_3_00) { 3112 tcg_out_mem_long(s, LXV | 8, LVX, out, base, offset & -16); 3113 } else { 3114 tcg_out_mem_long(s, 0, LVEHX, out, base, offset); 3115 } 3116 elt = extract32(offset, 1, 3); 3117#ifndef HOST_WORDS_BIGENDIAN 3118 elt ^= 7; 3119#endif 3120 tcg_out32(s, VSPLTH | VRT(out) | VRB(out) | (elt << 16)); 3121 break; 3122 case MO_32: 3123 if (have_isa_3_00) { 3124 tcg_out_mem_long(s, 0, LXVWSX, out, base, offset); 3125 break; 3126 } 3127 tcg_debug_assert((offset & 3) == 0); 3128 tcg_out_mem_long(s, 0, LVEWX, out, base, offset); 3129 elt = extract32(offset, 2, 2); 3130#ifndef HOST_WORDS_BIGENDIAN 3131 elt ^= 3; 3132#endif 3133 tcg_out32(s, VSPLTW | VRT(out) | VRB(out) | (elt << 16)); 3134 break; 3135 case MO_64: 3136 if (have_vsx) { 3137 tcg_out_mem_long(s, 0, LXVDSX, out, base, offset); 3138 break; 3139 } 3140 tcg_debug_assert((offset & 7) == 0); 3141 tcg_out_mem_long(s, 0, LVX, out, base, offset & -16); 3142 tcg_out_vsldoi(s, TCG_VEC_TMP1, out, out, 8); 3143 elt = extract32(offset, 3, 1); 3144#ifndef HOST_WORDS_BIGENDIAN 3145 elt = !elt; 3146#endif 3147 if (elt) { 3148 tcg_out_vsldoi(s, out, out, TCG_VEC_TMP1, 8); 3149 } else { 3150 tcg_out_vsldoi(s, out, TCG_VEC_TMP1, out, 8); 3151 } 3152 break; 3153 default: 3154 g_assert_not_reached(); 3155 } 3156 return true; 3157} 3158 3159static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 3160 unsigned vecl, unsigned vece, 3161 const TCGArg *args, const int *const_args) 3162{ 3163 static const uint32_t 3164 add_op[4] = { VADDUBM, VADDUHM, VADDUWM, VADDUDM }, 3165 sub_op[4] = { VSUBUBM, VSUBUHM, VSUBUWM, VSUBUDM }, 3166 mul_op[4] = { 0, 0, VMULUWM, VMULLD }, 3167 neg_op[4] = { 0, 0, VNEGW, VNEGD }, 3168 eq_op[4] = { VCMPEQUB, VCMPEQUH, VCMPEQUW, VCMPEQUD }, 3169 ne_op[4] = { VCMPNEB, VCMPNEH, VCMPNEW, 0 }, 3170 gts_op[4] = { VCMPGTSB, VCMPGTSH, VCMPGTSW, VCMPGTSD }, 3171 gtu_op[4] = { VCMPGTUB, VCMPGTUH, VCMPGTUW, VCMPGTUD }, 3172 ssadd_op[4] = { VADDSBS, VADDSHS, VADDSWS, 0 }, 3173 usadd_op[4] = { VADDUBS, VADDUHS, VADDUWS, 0 }, 3174 sssub_op[4] = { VSUBSBS, VSUBSHS, VSUBSWS, 0 }, 3175 ussub_op[4] = { VSUBUBS, VSUBUHS, VSUBUWS, 0 }, 3176 umin_op[4] = { VMINUB, VMINUH, VMINUW, VMINUD }, 3177 smin_op[4] = { VMINSB, VMINSH, VMINSW, VMINSD }, 3178 umax_op[4] = { VMAXUB, VMAXUH, VMAXUW, VMAXUD }, 3179 smax_op[4] = { VMAXSB, VMAXSH, VMAXSW, VMAXSD }, 3180 shlv_op[4] = { VSLB, VSLH, VSLW, VSLD }, 3181 shrv_op[4] = { VSRB, VSRH, VSRW, VSRD }, 3182 sarv_op[4] = { VSRAB, VSRAH, VSRAW, VSRAD }, 3183 mrgh_op[4] = { VMRGHB, VMRGHH, VMRGHW, 0 }, 3184 mrgl_op[4] = { VMRGLB, VMRGLH, VMRGLW, 0 }, 3185 muleu_op[4] = { VMULEUB, VMULEUH, VMULEUW, 0 }, 3186 mulou_op[4] = { VMULOUB, VMULOUH, VMULOUW, 0 }, 3187 pkum_op[4] = { VPKUHUM, VPKUWUM, 0, 0 }, 3188 rotl_op[4] = { VRLB, VRLH, VRLW, VRLD }; 3189 3190 TCGType type = vecl + TCG_TYPE_V64; 3191 TCGArg a0 = args[0], a1 = args[1], a2 = args[2]; 3192 uint32_t insn; 3193 3194 switch (opc) { 3195 case INDEX_op_ld_vec: 3196 tcg_out_ld(s, type, a0, a1, a2); 3197 return; 3198 case INDEX_op_st_vec: 3199 tcg_out_st(s, type, a0, a1, a2); 3200 return; 3201 case INDEX_op_dupm_vec: 3202 tcg_out_dupm_vec(s, type, vece, a0, a1, a2); 3203 return; 3204 3205 case INDEX_op_add_vec: 3206 insn = add_op[vece]; 3207 break; 3208 case INDEX_op_sub_vec: 3209 insn = sub_op[vece]; 3210 break; 3211 case INDEX_op_neg_vec: 3212 insn = neg_op[vece]; 3213 a2 = a1; 3214 a1 = 0; 3215 break; 3216 case INDEX_op_mul_vec: 3217 insn = mul_op[vece]; 3218 break; 3219 case INDEX_op_ssadd_vec: 3220 insn = ssadd_op[vece]; 3221 break; 3222 case INDEX_op_sssub_vec: 3223 insn = sssub_op[vece]; 3224 break; 3225 case INDEX_op_usadd_vec: 3226 insn = usadd_op[vece]; 3227 break; 3228 case INDEX_op_ussub_vec: 3229 insn = ussub_op[vece]; 3230 break; 3231 case INDEX_op_smin_vec: 3232 insn = smin_op[vece]; 3233 break; 3234 case INDEX_op_umin_vec: 3235 insn = umin_op[vece]; 3236 break; 3237 case INDEX_op_smax_vec: 3238 insn = smax_op[vece]; 3239 break; 3240 case INDEX_op_umax_vec: 3241 insn = umax_op[vece]; 3242 break; 3243 case INDEX_op_shlv_vec: 3244 insn = shlv_op[vece]; 3245 break; 3246 case INDEX_op_shrv_vec: 3247 insn = shrv_op[vece]; 3248 break; 3249 case INDEX_op_sarv_vec: 3250 insn = sarv_op[vece]; 3251 break; 3252 case INDEX_op_and_vec: 3253 insn = VAND; 3254 break; 3255 case INDEX_op_or_vec: 3256 insn = VOR; 3257 break; 3258 case INDEX_op_xor_vec: 3259 insn = VXOR; 3260 break; 3261 case INDEX_op_andc_vec: 3262 insn = VANDC; 3263 break; 3264 case INDEX_op_not_vec: 3265 insn = VNOR; 3266 a2 = a1; 3267 break; 3268 case INDEX_op_orc_vec: 3269 insn = VORC; 3270 break; 3271 3272 case INDEX_op_cmp_vec: 3273 switch (args[3]) { 3274 case TCG_COND_EQ: 3275 insn = eq_op[vece]; 3276 break; 3277 case TCG_COND_NE: 3278 insn = ne_op[vece]; 3279 break; 3280 case TCG_COND_GT: 3281 insn = gts_op[vece]; 3282 break; 3283 case TCG_COND_GTU: 3284 insn = gtu_op[vece]; 3285 break; 3286 default: 3287 g_assert_not_reached(); 3288 } 3289 break; 3290 3291 case INDEX_op_bitsel_vec: 3292 tcg_out32(s, XXSEL | VRT(a0) | VRC(a1) | VRB(a2) | VRA(args[3])); 3293 return; 3294 3295 case INDEX_op_dup2_vec: 3296 assert(TCG_TARGET_REG_BITS == 32); 3297 /* With inputs a1 = xLxx, a2 = xHxx */ 3298 tcg_out32(s, VMRGHW | VRT(a0) | VRA(a2) | VRB(a1)); /* a0 = xxHL */ 3299 tcg_out_vsldoi(s, TCG_VEC_TMP1, a0, a0, 8); /* tmp = HLxx */ 3300 tcg_out_vsldoi(s, a0, a0, TCG_VEC_TMP1, 8); /* a0 = HLHL */ 3301 return; 3302 3303 case INDEX_op_ppc_mrgh_vec: 3304 insn = mrgh_op[vece]; 3305 break; 3306 case INDEX_op_ppc_mrgl_vec: 3307 insn = mrgl_op[vece]; 3308 break; 3309 case INDEX_op_ppc_muleu_vec: 3310 insn = muleu_op[vece]; 3311 break; 3312 case INDEX_op_ppc_mulou_vec: 3313 insn = mulou_op[vece]; 3314 break; 3315 case INDEX_op_ppc_pkum_vec: 3316 insn = pkum_op[vece]; 3317 break; 3318 case INDEX_op_rotlv_vec: 3319 insn = rotl_op[vece]; 3320 break; 3321 case INDEX_op_ppc_msum_vec: 3322 tcg_debug_assert(vece == MO_16); 3323 tcg_out32(s, VMSUMUHM | VRT(a0) | VRA(a1) | VRB(a2) | VRC(args[3])); 3324 return; 3325 3326 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ 3327 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ 3328 default: 3329 g_assert_not_reached(); 3330 } 3331 3332 tcg_debug_assert(insn != 0); 3333 tcg_out32(s, insn | VRT(a0) | VRA(a1) | VRB(a2)); 3334} 3335 3336static void expand_vec_shi(TCGType type, unsigned vece, TCGv_vec v0, 3337 TCGv_vec v1, TCGArg imm, TCGOpcode opci) 3338{ 3339 TCGv_vec t1; 3340 3341 if (vece == MO_32) { 3342 /* 3343 * Only 5 bits are significant, and VSPLTISB can represent -16..15. 3344 * So using negative numbers gets us the 4th bit easily. 3345 */ 3346 imm = sextract32(imm, 0, 5); 3347 } else { 3348 imm &= (8 << vece) - 1; 3349 } 3350 3351 /* Splat w/bytes for xxspltib when 2.07 allows MO_64. */ 3352 t1 = tcg_constant_vec(type, MO_8, imm); 3353 vec_gen_3(opci, type, vece, tcgv_vec_arg(v0), 3354 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 3355} 3356 3357static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0, 3358 TCGv_vec v1, TCGv_vec v2, TCGCond cond) 3359{ 3360 bool need_swap = false, need_inv = false; 3361 3362 tcg_debug_assert(vece <= MO_32 || have_isa_2_07); 3363 3364 switch (cond) { 3365 case TCG_COND_EQ: 3366 case TCG_COND_GT: 3367 case TCG_COND_GTU: 3368 break; 3369 case TCG_COND_NE: 3370 if (have_isa_3_00 && vece <= MO_32) { 3371 break; 3372 } 3373 /* fall through */ 3374 case TCG_COND_LE: 3375 case TCG_COND_LEU: 3376 need_inv = true; 3377 break; 3378 case TCG_COND_LT: 3379 case TCG_COND_LTU: 3380 need_swap = true; 3381 break; 3382 case TCG_COND_GE: 3383 case TCG_COND_GEU: 3384 need_swap = need_inv = true; 3385 break; 3386 default: 3387 g_assert_not_reached(); 3388 } 3389 3390 if (need_inv) { 3391 cond = tcg_invert_cond(cond); 3392 } 3393 if (need_swap) { 3394 TCGv_vec t1; 3395 t1 = v1, v1 = v2, v2 = t1; 3396 cond = tcg_swap_cond(cond); 3397 } 3398 3399 vec_gen_4(INDEX_op_cmp_vec, type, vece, tcgv_vec_arg(v0), 3400 tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond); 3401 3402 if (need_inv) { 3403 tcg_gen_not_vec(vece, v0, v0); 3404 } 3405} 3406 3407static void expand_vec_mul(TCGType type, unsigned vece, TCGv_vec v0, 3408 TCGv_vec v1, TCGv_vec v2) 3409{ 3410 TCGv_vec t1 = tcg_temp_new_vec(type); 3411 TCGv_vec t2 = tcg_temp_new_vec(type); 3412 TCGv_vec c0, c16; 3413 3414 switch (vece) { 3415 case MO_8: 3416 case MO_16: 3417 vec_gen_3(INDEX_op_ppc_muleu_vec, type, vece, tcgv_vec_arg(t1), 3418 tcgv_vec_arg(v1), tcgv_vec_arg(v2)); 3419 vec_gen_3(INDEX_op_ppc_mulou_vec, type, vece, tcgv_vec_arg(t2), 3420 tcgv_vec_arg(v1), tcgv_vec_arg(v2)); 3421 vec_gen_3(INDEX_op_ppc_mrgh_vec, type, vece + 1, tcgv_vec_arg(v0), 3422 tcgv_vec_arg(t1), tcgv_vec_arg(t2)); 3423 vec_gen_3(INDEX_op_ppc_mrgl_vec, type, vece + 1, tcgv_vec_arg(t1), 3424 tcgv_vec_arg(t1), tcgv_vec_arg(t2)); 3425 vec_gen_3(INDEX_op_ppc_pkum_vec, type, vece, tcgv_vec_arg(v0), 3426 tcgv_vec_arg(v0), tcgv_vec_arg(t1)); 3427 break; 3428 3429 case MO_32: 3430 tcg_debug_assert(!have_isa_2_07); 3431 /* 3432 * Only 5 bits are significant, and VSPLTISB can represent -16..15. 3433 * So using -16 is a quick way to represent 16. 3434 */ 3435 c16 = tcg_constant_vec(type, MO_8, -16); 3436 c0 = tcg_constant_vec(type, MO_8, 0); 3437 3438 vec_gen_3(INDEX_op_rotlv_vec, type, MO_32, tcgv_vec_arg(t1), 3439 tcgv_vec_arg(v2), tcgv_vec_arg(c16)); 3440 vec_gen_3(INDEX_op_ppc_mulou_vec, type, MO_16, tcgv_vec_arg(t2), 3441 tcgv_vec_arg(v1), tcgv_vec_arg(v2)); 3442 vec_gen_4(INDEX_op_ppc_msum_vec, type, MO_16, tcgv_vec_arg(t1), 3443 tcgv_vec_arg(v1), tcgv_vec_arg(t1), tcgv_vec_arg(c0)); 3444 vec_gen_3(INDEX_op_shlv_vec, type, MO_32, tcgv_vec_arg(t1), 3445 tcgv_vec_arg(t1), tcgv_vec_arg(c16)); 3446 tcg_gen_add_vec(MO_32, v0, t1, t2); 3447 break; 3448 3449 default: 3450 g_assert_not_reached(); 3451 } 3452 tcg_temp_free_vec(t1); 3453 tcg_temp_free_vec(t2); 3454} 3455 3456void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, 3457 TCGArg a0, ...) 3458{ 3459 va_list va; 3460 TCGv_vec v0, v1, v2, t0; 3461 TCGArg a2; 3462 3463 va_start(va, a0); 3464 v0 = temp_tcgv_vec(arg_temp(a0)); 3465 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 3466 a2 = va_arg(va, TCGArg); 3467 3468 switch (opc) { 3469 case INDEX_op_shli_vec: 3470 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shlv_vec); 3471 break; 3472 case INDEX_op_shri_vec: 3473 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_shrv_vec); 3474 break; 3475 case INDEX_op_sari_vec: 3476 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_sarv_vec); 3477 break; 3478 case INDEX_op_rotli_vec: 3479 expand_vec_shi(type, vece, v0, v1, a2, INDEX_op_rotlv_vec); 3480 break; 3481 case INDEX_op_cmp_vec: 3482 v2 = temp_tcgv_vec(arg_temp(a2)); 3483 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg)); 3484 break; 3485 case INDEX_op_mul_vec: 3486 v2 = temp_tcgv_vec(arg_temp(a2)); 3487 expand_vec_mul(type, vece, v0, v1, v2); 3488 break; 3489 case INDEX_op_rotlv_vec: 3490 v2 = temp_tcgv_vec(arg_temp(a2)); 3491 t0 = tcg_temp_new_vec(type); 3492 tcg_gen_neg_vec(vece, t0, v2); 3493 tcg_gen_rotlv_vec(vece, v0, v1, t0); 3494 tcg_temp_free_vec(t0); 3495 break; 3496 default: 3497 g_assert_not_reached(); 3498 } 3499 va_end(va); 3500} 3501 3502static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode op) 3503{ 3504 static const TCGTargetOpDef r = { .args_ct_str = { "r" } }; 3505 static const TCGTargetOpDef r_r = { .args_ct_str = { "r", "r" } }; 3506 static const TCGTargetOpDef r_L = { .args_ct_str = { "r", "L" } }; 3507 static const TCGTargetOpDef S_S = { .args_ct_str = { "S", "S" } }; 3508 static const TCGTargetOpDef r_ri = { .args_ct_str = { "r", "ri" } }; 3509 static const TCGTargetOpDef r_r_r = { .args_ct_str = { "r", "r", "r" } }; 3510 static const TCGTargetOpDef r_L_L = { .args_ct_str = { "r", "L", "L" } }; 3511 static const TCGTargetOpDef L_L_L = { .args_ct_str = { "L", "L", "L" } }; 3512 static const TCGTargetOpDef S_S_S = { .args_ct_str = { "S", "S", "S" } }; 3513 static const TCGTargetOpDef r_r_ri = { .args_ct_str = { "r", "r", "ri" } }; 3514 static const TCGTargetOpDef r_r_rI = { .args_ct_str = { "r", "r", "rI" } }; 3515 static const TCGTargetOpDef r_r_rT = { .args_ct_str = { "r", "r", "rT" } }; 3516 static const TCGTargetOpDef r_r_rU = { .args_ct_str = { "r", "r", "rU" } }; 3517 static const TCGTargetOpDef r_rI_ri 3518 = { .args_ct_str = { "r", "rI", "ri" } }; 3519 static const TCGTargetOpDef r_rI_rT 3520 = { .args_ct_str = { "r", "rI", "rT" } }; 3521 static const TCGTargetOpDef r_r_rZW 3522 = { .args_ct_str = { "r", "r", "rZW" } }; 3523 static const TCGTargetOpDef L_L_L_L 3524 = { .args_ct_str = { "L", "L", "L", "L" } }; 3525 static const TCGTargetOpDef S_S_S_S 3526 = { .args_ct_str = { "S", "S", "S", "S" } }; 3527 static const TCGTargetOpDef movc 3528 = { .args_ct_str = { "r", "r", "ri", "rZ", "rZ" } }; 3529 static const TCGTargetOpDef dep 3530 = { .args_ct_str = { "r", "0", "rZ" } }; 3531 static const TCGTargetOpDef br2 3532 = { .args_ct_str = { "r", "r", "ri", "ri" } }; 3533 static const TCGTargetOpDef setc2 3534 = { .args_ct_str = { "r", "r", "r", "ri", "ri" } }; 3535 static const TCGTargetOpDef add2 3536 = { .args_ct_str = { "r", "r", "r", "r", "rI", "rZM" } }; 3537 static const TCGTargetOpDef sub2 3538 = { .args_ct_str = { "r", "r", "rI", "rZM", "r", "r" } }; 3539 static const TCGTargetOpDef v_r = { .args_ct_str = { "v", "r" } }; 3540 static const TCGTargetOpDef v_vr = { .args_ct_str = { "v", "vr" } }; 3541 static const TCGTargetOpDef v_v = { .args_ct_str = { "v", "v" } }; 3542 static const TCGTargetOpDef v_v_v = { .args_ct_str = { "v", "v", "v" } }; 3543 static const TCGTargetOpDef v_v_v_v 3544 = { .args_ct_str = { "v", "v", "v", "v" } }; 3545 3546 switch (op) { 3547 case INDEX_op_goto_ptr: 3548 return &r; 3549 3550 case INDEX_op_ld8u_i32: 3551 case INDEX_op_ld8s_i32: 3552 case INDEX_op_ld16u_i32: 3553 case INDEX_op_ld16s_i32: 3554 case INDEX_op_ld_i32: 3555 case INDEX_op_st8_i32: 3556 case INDEX_op_st16_i32: 3557 case INDEX_op_st_i32: 3558 case INDEX_op_ctpop_i32: 3559 case INDEX_op_neg_i32: 3560 case INDEX_op_not_i32: 3561 case INDEX_op_ext8s_i32: 3562 case INDEX_op_ext16s_i32: 3563 case INDEX_op_bswap16_i32: 3564 case INDEX_op_bswap32_i32: 3565 case INDEX_op_extract_i32: 3566 case INDEX_op_ld8u_i64: 3567 case INDEX_op_ld8s_i64: 3568 case INDEX_op_ld16u_i64: 3569 case INDEX_op_ld16s_i64: 3570 case INDEX_op_ld32u_i64: 3571 case INDEX_op_ld32s_i64: 3572 case INDEX_op_ld_i64: 3573 case INDEX_op_st8_i64: 3574 case INDEX_op_st16_i64: 3575 case INDEX_op_st32_i64: 3576 case INDEX_op_st_i64: 3577 case INDEX_op_ctpop_i64: 3578 case INDEX_op_neg_i64: 3579 case INDEX_op_not_i64: 3580 case INDEX_op_ext8s_i64: 3581 case INDEX_op_ext16s_i64: 3582 case INDEX_op_ext32s_i64: 3583 case INDEX_op_ext_i32_i64: 3584 case INDEX_op_extu_i32_i64: 3585 case INDEX_op_bswap16_i64: 3586 case INDEX_op_bswap32_i64: 3587 case INDEX_op_bswap64_i64: 3588 case INDEX_op_extract_i64: 3589 return &r_r; 3590 3591 case INDEX_op_add_i32: 3592 case INDEX_op_and_i32: 3593 case INDEX_op_or_i32: 3594 case INDEX_op_xor_i32: 3595 case INDEX_op_andc_i32: 3596 case INDEX_op_orc_i32: 3597 case INDEX_op_eqv_i32: 3598 case INDEX_op_shl_i32: 3599 case INDEX_op_shr_i32: 3600 case INDEX_op_sar_i32: 3601 case INDEX_op_rotl_i32: 3602 case INDEX_op_rotr_i32: 3603 case INDEX_op_setcond_i32: 3604 case INDEX_op_and_i64: 3605 case INDEX_op_andc_i64: 3606 case INDEX_op_shl_i64: 3607 case INDEX_op_shr_i64: 3608 case INDEX_op_sar_i64: 3609 case INDEX_op_rotl_i64: 3610 case INDEX_op_rotr_i64: 3611 case INDEX_op_setcond_i64: 3612 return &r_r_ri; 3613 case INDEX_op_mul_i32: 3614 case INDEX_op_mul_i64: 3615 return &r_r_rI; 3616 case INDEX_op_div_i32: 3617 case INDEX_op_divu_i32: 3618 case INDEX_op_nand_i32: 3619 case INDEX_op_nor_i32: 3620 case INDEX_op_muluh_i32: 3621 case INDEX_op_mulsh_i32: 3622 case INDEX_op_orc_i64: 3623 case INDEX_op_eqv_i64: 3624 case INDEX_op_nand_i64: 3625 case INDEX_op_nor_i64: 3626 case INDEX_op_div_i64: 3627 case INDEX_op_divu_i64: 3628 case INDEX_op_mulsh_i64: 3629 case INDEX_op_muluh_i64: 3630 return &r_r_r; 3631 case INDEX_op_sub_i32: 3632 return &r_rI_ri; 3633 case INDEX_op_add_i64: 3634 return &r_r_rT; 3635 case INDEX_op_or_i64: 3636 case INDEX_op_xor_i64: 3637 return &r_r_rU; 3638 case INDEX_op_sub_i64: 3639 return &r_rI_rT; 3640 case INDEX_op_clz_i32: 3641 case INDEX_op_ctz_i32: 3642 case INDEX_op_clz_i64: 3643 case INDEX_op_ctz_i64: 3644 return &r_r_rZW; 3645 3646 case INDEX_op_brcond_i32: 3647 case INDEX_op_brcond_i64: 3648 return &r_ri; 3649 3650 case INDEX_op_movcond_i32: 3651 case INDEX_op_movcond_i64: 3652 return &movc; 3653 case INDEX_op_deposit_i32: 3654 case INDEX_op_deposit_i64: 3655 return &dep; 3656 case INDEX_op_brcond2_i32: 3657 return &br2; 3658 case INDEX_op_setcond2_i32: 3659 return &setc2; 3660 case INDEX_op_add2_i64: 3661 case INDEX_op_add2_i32: 3662 return &add2; 3663 case INDEX_op_sub2_i64: 3664 case INDEX_op_sub2_i32: 3665 return &sub2; 3666 3667 case INDEX_op_qemu_ld_i32: 3668 return (TCG_TARGET_REG_BITS == 64 || TARGET_LONG_BITS == 32 3669 ? &r_L : &r_L_L); 3670 case INDEX_op_qemu_st_i32: 3671 return (TCG_TARGET_REG_BITS == 64 || TARGET_LONG_BITS == 32 3672 ? &S_S : &S_S_S); 3673 case INDEX_op_qemu_ld_i64: 3674 return (TCG_TARGET_REG_BITS == 64 ? &r_L 3675 : TARGET_LONG_BITS == 32 ? &L_L_L : &L_L_L_L); 3676 case INDEX_op_qemu_st_i64: 3677 return (TCG_TARGET_REG_BITS == 64 ? &S_S 3678 : TARGET_LONG_BITS == 32 ? &S_S_S : &S_S_S_S); 3679 3680 case INDEX_op_add_vec: 3681 case INDEX_op_sub_vec: 3682 case INDEX_op_mul_vec: 3683 case INDEX_op_and_vec: 3684 case INDEX_op_or_vec: 3685 case INDEX_op_xor_vec: 3686 case INDEX_op_andc_vec: 3687 case INDEX_op_orc_vec: 3688 case INDEX_op_cmp_vec: 3689 case INDEX_op_ssadd_vec: 3690 case INDEX_op_sssub_vec: 3691 case INDEX_op_usadd_vec: 3692 case INDEX_op_ussub_vec: 3693 case INDEX_op_smax_vec: 3694 case INDEX_op_smin_vec: 3695 case INDEX_op_umax_vec: 3696 case INDEX_op_umin_vec: 3697 case INDEX_op_shlv_vec: 3698 case INDEX_op_shrv_vec: 3699 case INDEX_op_sarv_vec: 3700 case INDEX_op_rotlv_vec: 3701 case INDEX_op_rotrv_vec: 3702 case INDEX_op_ppc_mrgh_vec: 3703 case INDEX_op_ppc_mrgl_vec: 3704 case INDEX_op_ppc_muleu_vec: 3705 case INDEX_op_ppc_mulou_vec: 3706 case INDEX_op_ppc_pkum_vec: 3707 case INDEX_op_dup2_vec: 3708 return &v_v_v; 3709 case INDEX_op_not_vec: 3710 case INDEX_op_neg_vec: 3711 return &v_v; 3712 case INDEX_op_dup_vec: 3713 return have_isa_3_00 ? &v_vr : &v_v; 3714 case INDEX_op_ld_vec: 3715 case INDEX_op_st_vec: 3716 case INDEX_op_dupm_vec: 3717 return &v_r; 3718 case INDEX_op_bitsel_vec: 3719 case INDEX_op_ppc_msum_vec: 3720 return &v_v_v_v; 3721 3722 default: 3723 return NULL; 3724 } 3725} 3726 3727static void tcg_target_init(TCGContext *s) 3728{ 3729 unsigned long hwcap = qemu_getauxval(AT_HWCAP); 3730 unsigned long hwcap2 = qemu_getauxval(AT_HWCAP2); 3731 3732 have_isa = tcg_isa_base; 3733 if (hwcap & PPC_FEATURE_ARCH_2_06) { 3734 have_isa = tcg_isa_2_06; 3735 } 3736#ifdef PPC_FEATURE2_ARCH_2_07 3737 if (hwcap2 & PPC_FEATURE2_ARCH_2_07) { 3738 have_isa = tcg_isa_2_07; 3739 } 3740#endif 3741#ifdef PPC_FEATURE2_ARCH_3_00 3742 if (hwcap2 & PPC_FEATURE2_ARCH_3_00) { 3743 have_isa = tcg_isa_3_00; 3744 } 3745#endif 3746#ifdef PPC_FEATURE2_ARCH_3_10 3747 if (hwcap2 & PPC_FEATURE2_ARCH_3_10) { 3748 have_isa = tcg_isa_3_10; 3749 } 3750#endif 3751 3752#ifdef PPC_FEATURE2_HAS_ISEL 3753 /* Prefer explicit instruction from the kernel. */ 3754 have_isel = (hwcap2 & PPC_FEATURE2_HAS_ISEL) != 0; 3755#else 3756 /* Fall back to knowing Power7 (2.06) has ISEL. */ 3757 have_isel = have_isa_2_06; 3758#endif 3759 3760 if (hwcap & PPC_FEATURE_HAS_ALTIVEC) { 3761 have_altivec = true; 3762 /* We only care about the portion of VSX that overlaps Altivec. */ 3763 if (hwcap & PPC_FEATURE_HAS_VSX) { 3764 have_vsx = true; 3765 } 3766 } 3767 3768 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff; 3769 tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffff; 3770 if (have_altivec) { 3771 tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull; 3772 tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull; 3773 } 3774 3775 tcg_target_call_clobber_regs = 0; 3776 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0); 3777 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2); 3778 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3); 3779 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R4); 3780 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R5); 3781 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R6); 3782 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R7); 3783 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8); 3784 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9); 3785 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10); 3786 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11); 3787 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R12); 3788 3789 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V0); 3790 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V1); 3791 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V2); 3792 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V3); 3793 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V4); 3794 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V5); 3795 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V6); 3796 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V7); 3797 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V8); 3798 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V9); 3799 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V10); 3800 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V11); 3801 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V12); 3802 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V13); 3803 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V14); 3804 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V15); 3805 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V16); 3806 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V17); 3807 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V18); 3808 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V19); 3809 3810 s->reserved_regs = 0; 3811 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R0); /* tcg temp */ 3812 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R1); /* stack pointer */ 3813#if defined(_CALL_SYSV) 3814 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R2); /* toc pointer */ 3815#endif 3816#if defined(_CALL_SYSV) || TCG_TARGET_REG_BITS == 64 3817 tcg_regset_set_reg(s->reserved_regs, TCG_REG_R13); /* thread pointer */ 3818#endif 3819 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1); /* mem temp */ 3820 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP1); 3821 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP2); 3822 if (USE_REG_TB) { 3823 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB); /* tb->tc_ptr */ 3824 } 3825} 3826 3827#ifdef __ELF__ 3828typedef struct { 3829 DebugFrameCIE cie; 3830 DebugFrameFDEHeader fde; 3831 uint8_t fde_def_cfa[4]; 3832 uint8_t fde_reg_ofs[ARRAY_SIZE(tcg_target_callee_save_regs) * 2 + 3]; 3833} DebugFrame; 3834 3835/* We're expecting a 2 byte uleb128 encoded value. */ 3836QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); 3837 3838#if TCG_TARGET_REG_BITS == 64 3839# define ELF_HOST_MACHINE EM_PPC64 3840#else 3841# define ELF_HOST_MACHINE EM_PPC 3842#endif 3843 3844static DebugFrame debug_frame = { 3845 .cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 3846 .cie.id = -1, 3847 .cie.version = 1, 3848 .cie.code_align = 1, 3849 .cie.data_align = (-SZR & 0x7f), /* sleb128 -SZR */ 3850 .cie.return_column = 65, 3851 3852 /* Total FDE size does not include the "len" member. */ 3853 .fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, fde.cie_offset), 3854 3855 .fde_def_cfa = { 3856 12, TCG_REG_R1, /* DW_CFA_def_cfa r1, ... */ 3857 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 3858 (FRAME_SIZE >> 7) 3859 }, 3860 .fde_reg_ofs = { 3861 /* DW_CFA_offset_extended_sf, lr, LR_OFFSET */ 3862 0x11, 65, (LR_OFFSET / -SZR) & 0x7f, 3863 } 3864}; 3865 3866void tcg_register_jit(const void *buf, size_t buf_size) 3867{ 3868 uint8_t *p = &debug_frame.fde_reg_ofs[3]; 3869 int i; 3870 3871 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); ++i, p += 2) { 3872 p[0] = 0x80 + tcg_target_callee_save_regs[i]; 3873 p[1] = (FRAME_SIZE - (REG_SAVE_BOT + i * SZR)) / SZR; 3874 } 3875 3876 debug_frame.fde.func_start = (uintptr_t)buf; 3877 debug_frame.fde.func_len = buf_size; 3878 3879 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); 3880} 3881#endif /* __ELF__ */ 3882