1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op, 348 TCGOpcode opc, unsigned narg) 349 { 350 return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg); 351 } 352 353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op, 354 TCGOpcode opc, unsigned narg) 355 { 356 return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg); 357 } 358 359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 360 { 361 TCGTemp *dst_ts = arg_temp(dst); 362 TCGTemp *src_ts = arg_temp(src); 363 TempOptInfo *di; 364 TempOptInfo *si; 365 TCGOpcode new_op; 366 367 if (ts_are_copies(dst_ts, src_ts)) { 368 tcg_op_remove(ctx->tcg, op); 369 return true; 370 } 371 372 reset_ts(ctx, dst_ts); 373 di = ts_info(dst_ts); 374 si = ts_info(src_ts); 375 376 switch (ctx->type) { 377 case TCG_TYPE_I32: 378 case TCG_TYPE_I64: 379 new_op = INDEX_op_mov; 380 break; 381 case TCG_TYPE_V64: 382 case TCG_TYPE_V128: 383 case TCG_TYPE_V256: 384 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 385 new_op = INDEX_op_mov_vec; 386 break; 387 default: 388 g_assert_not_reached(); 389 } 390 op->opc = new_op; 391 op->args[0] = dst; 392 op->args[1] = src; 393 394 di->z_mask = si->z_mask; 395 di->s_mask = si->s_mask; 396 397 if (src_ts->type == dst_ts->type) { 398 TempOptInfo *ni = ts_info(si->next_copy); 399 400 di->next_copy = si->next_copy; 401 di->prev_copy = src_ts; 402 ni->prev_copy = dst_ts; 403 si->next_copy = dst_ts; 404 di->is_const = si->is_const; 405 di->val = si->val; 406 407 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 408 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 409 move_mem_copies(dst_ts, src_ts); 410 } 411 } 412 return true; 413 } 414 415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 416 TCGArg dst, uint64_t val) 417 { 418 /* Convert movi to mov with constant temp. */ 419 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 420 } 421 422 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 423 { 424 uint64_t l64, h64; 425 426 switch (op) { 427 case INDEX_op_add: 428 return x + y; 429 430 CASE_OP_32_64(sub): 431 return x - y; 432 433 CASE_OP_32_64(mul): 434 return x * y; 435 436 case INDEX_op_and: 437 case INDEX_op_and_vec: 438 return x & y; 439 440 case INDEX_op_or: 441 case INDEX_op_or_vec: 442 return x | y; 443 444 case INDEX_op_xor: 445 case INDEX_op_xor_vec: 446 return x ^ y; 447 448 case INDEX_op_shl_i32: 449 return (uint32_t)x << (y & 31); 450 451 case INDEX_op_shl_i64: 452 return (uint64_t)x << (y & 63); 453 454 case INDEX_op_shr_i32: 455 return (uint32_t)x >> (y & 31); 456 457 case INDEX_op_shr_i64: 458 return (uint64_t)x >> (y & 63); 459 460 case INDEX_op_sar_i32: 461 return (int32_t)x >> (y & 31); 462 463 case INDEX_op_sar_i64: 464 return (int64_t)x >> (y & 63); 465 466 case INDEX_op_rotr_i32: 467 return ror32(x, y & 31); 468 469 case INDEX_op_rotr_i64: 470 return ror64(x, y & 63); 471 472 case INDEX_op_rotl_i32: 473 return rol32(x, y & 31); 474 475 case INDEX_op_rotl_i64: 476 return rol64(x, y & 63); 477 478 CASE_OP_32_64_VEC(not): 479 return ~x; 480 481 CASE_OP_32_64(neg): 482 return -x; 483 484 case INDEX_op_andc: 485 case INDEX_op_andc_vec: 486 return x & ~y; 487 488 case INDEX_op_orc: 489 case INDEX_op_orc_vec: 490 return x | ~y; 491 492 CASE_OP_32_64_VEC(eqv): 493 return ~(x ^ y); 494 495 CASE_OP_32_64_VEC(nand): 496 return ~(x & y); 497 498 CASE_OP_32_64_VEC(nor): 499 return ~(x | y); 500 501 case INDEX_op_clz_i32: 502 return (uint32_t)x ? clz32(x) : y; 503 504 case INDEX_op_clz_i64: 505 return x ? clz64(x) : y; 506 507 case INDEX_op_ctz_i32: 508 return (uint32_t)x ? ctz32(x) : y; 509 510 case INDEX_op_ctz_i64: 511 return x ? ctz64(x) : y; 512 513 case INDEX_op_ctpop_i32: 514 return ctpop32(x); 515 516 case INDEX_op_ctpop_i64: 517 return ctpop64(x); 518 519 CASE_OP_32_64(bswap16): 520 x = bswap16(x); 521 return y & TCG_BSWAP_OS ? (int16_t)x : x; 522 523 CASE_OP_32_64(bswap32): 524 x = bswap32(x); 525 return y & TCG_BSWAP_OS ? (int32_t)x : x; 526 527 case INDEX_op_bswap64_i64: 528 return bswap64(x); 529 530 case INDEX_op_ext_i32_i64: 531 return (int32_t)x; 532 533 case INDEX_op_extu_i32_i64: 534 case INDEX_op_extrl_i64_i32: 535 return (uint32_t)x; 536 537 case INDEX_op_extrh_i64_i32: 538 return (uint64_t)x >> 32; 539 540 case INDEX_op_muluh_i32: 541 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 542 case INDEX_op_mulsh_i32: 543 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 544 545 case INDEX_op_muluh_i64: 546 mulu64(&l64, &h64, x, y); 547 return h64; 548 case INDEX_op_mulsh_i64: 549 muls64(&l64, &h64, x, y); 550 return h64; 551 552 case INDEX_op_div_i32: 553 /* Avoid crashing on divide by zero, otherwise undefined. */ 554 return (int32_t)x / ((int32_t)y ? : 1); 555 case INDEX_op_divu_i32: 556 return (uint32_t)x / ((uint32_t)y ? : 1); 557 case INDEX_op_div_i64: 558 return (int64_t)x / ((int64_t)y ? : 1); 559 case INDEX_op_divu_i64: 560 return (uint64_t)x / ((uint64_t)y ? : 1); 561 562 case INDEX_op_rem_i32: 563 return (int32_t)x % ((int32_t)y ? : 1); 564 case INDEX_op_remu_i32: 565 return (uint32_t)x % ((uint32_t)y ? : 1); 566 case INDEX_op_rem_i64: 567 return (int64_t)x % ((int64_t)y ? : 1); 568 case INDEX_op_remu_i64: 569 return (uint64_t)x % ((uint64_t)y ? : 1); 570 571 default: 572 g_assert_not_reached(); 573 } 574 } 575 576 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 577 uint64_t x, uint64_t y) 578 { 579 uint64_t res = do_constant_folding_2(op, x, y); 580 if (type == TCG_TYPE_I32) { 581 res = (int32_t)res; 582 } 583 return res; 584 } 585 586 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 587 { 588 switch (c) { 589 case TCG_COND_EQ: 590 return x == y; 591 case TCG_COND_NE: 592 return x != y; 593 case TCG_COND_LT: 594 return (int32_t)x < (int32_t)y; 595 case TCG_COND_GE: 596 return (int32_t)x >= (int32_t)y; 597 case TCG_COND_LE: 598 return (int32_t)x <= (int32_t)y; 599 case TCG_COND_GT: 600 return (int32_t)x > (int32_t)y; 601 case TCG_COND_LTU: 602 return x < y; 603 case TCG_COND_GEU: 604 return x >= y; 605 case TCG_COND_LEU: 606 return x <= y; 607 case TCG_COND_GTU: 608 return x > y; 609 case TCG_COND_TSTEQ: 610 return (x & y) == 0; 611 case TCG_COND_TSTNE: 612 return (x & y) != 0; 613 case TCG_COND_ALWAYS: 614 case TCG_COND_NEVER: 615 break; 616 } 617 g_assert_not_reached(); 618 } 619 620 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 621 { 622 switch (c) { 623 case TCG_COND_EQ: 624 return x == y; 625 case TCG_COND_NE: 626 return x != y; 627 case TCG_COND_LT: 628 return (int64_t)x < (int64_t)y; 629 case TCG_COND_GE: 630 return (int64_t)x >= (int64_t)y; 631 case TCG_COND_LE: 632 return (int64_t)x <= (int64_t)y; 633 case TCG_COND_GT: 634 return (int64_t)x > (int64_t)y; 635 case TCG_COND_LTU: 636 return x < y; 637 case TCG_COND_GEU: 638 return x >= y; 639 case TCG_COND_LEU: 640 return x <= y; 641 case TCG_COND_GTU: 642 return x > y; 643 case TCG_COND_TSTEQ: 644 return (x & y) == 0; 645 case TCG_COND_TSTNE: 646 return (x & y) != 0; 647 case TCG_COND_ALWAYS: 648 case TCG_COND_NEVER: 649 break; 650 } 651 g_assert_not_reached(); 652 } 653 654 static int do_constant_folding_cond_eq(TCGCond c) 655 { 656 switch (c) { 657 case TCG_COND_GT: 658 case TCG_COND_LTU: 659 case TCG_COND_LT: 660 case TCG_COND_GTU: 661 case TCG_COND_NE: 662 return 0; 663 case TCG_COND_GE: 664 case TCG_COND_GEU: 665 case TCG_COND_LE: 666 case TCG_COND_LEU: 667 case TCG_COND_EQ: 668 return 1; 669 case TCG_COND_TSTEQ: 670 case TCG_COND_TSTNE: 671 return -1; 672 case TCG_COND_ALWAYS: 673 case TCG_COND_NEVER: 674 break; 675 } 676 g_assert_not_reached(); 677 } 678 679 /* 680 * Return -1 if the condition can't be simplified, 681 * and the result of the condition (0 or 1) if it can. 682 */ 683 static int do_constant_folding_cond(TCGType type, TCGArg x, 684 TCGArg y, TCGCond c) 685 { 686 if (arg_is_const(x) && arg_is_const(y)) { 687 uint64_t xv = arg_info(x)->val; 688 uint64_t yv = arg_info(y)->val; 689 690 switch (type) { 691 case TCG_TYPE_I32: 692 return do_constant_folding_cond_32(xv, yv, c); 693 case TCG_TYPE_I64: 694 return do_constant_folding_cond_64(xv, yv, c); 695 default: 696 /* Only scalar comparisons are optimizable */ 697 return -1; 698 } 699 } else if (args_are_copies(x, y)) { 700 return do_constant_folding_cond_eq(c); 701 } else if (arg_is_const_val(y, 0)) { 702 switch (c) { 703 case TCG_COND_LTU: 704 case TCG_COND_TSTNE: 705 return 0; 706 case TCG_COND_GEU: 707 case TCG_COND_TSTEQ: 708 return 1; 709 default: 710 return -1; 711 } 712 } 713 return -1; 714 } 715 716 /** 717 * swap_commutative: 718 * @dest: TCGArg of the destination argument, or NO_DEST. 719 * @p1: first paired argument 720 * @p2: second paired argument 721 * 722 * If *@p1 is a constant and *@p2 is not, swap. 723 * If *@p2 matches @dest, swap. 724 * Return true if a swap was performed. 725 */ 726 727 #define NO_DEST temp_arg(NULL) 728 729 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 730 { 731 TCGArg a1 = *p1, a2 = *p2; 732 int sum = 0; 733 sum += arg_is_const(a1); 734 sum -= arg_is_const(a2); 735 736 /* Prefer the constant in second argument, and then the form 737 op a, a, b, which is better handled on non-RISC hosts. */ 738 if (sum > 0 || (sum == 0 && dest == a2)) { 739 *p1 = a2; 740 *p2 = a1; 741 return true; 742 } 743 return false; 744 } 745 746 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 747 { 748 int sum = 0; 749 sum += arg_is_const(p1[0]); 750 sum += arg_is_const(p1[1]); 751 sum -= arg_is_const(p2[0]); 752 sum -= arg_is_const(p2[1]); 753 if (sum > 0) { 754 TCGArg t; 755 t = p1[0], p1[0] = p2[0], p2[0] = t; 756 t = p1[1], p1[1] = p2[1], p2[1] = t; 757 return true; 758 } 759 return false; 760 } 761 762 /* 763 * Return -1 if the condition can't be simplified, 764 * and the result of the condition (0 or 1) if it can. 765 */ 766 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 767 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 768 { 769 TCGCond cond; 770 TempOptInfo *i1; 771 bool swap; 772 int r; 773 774 swap = swap_commutative(dest, p1, p2); 775 cond = *pcond; 776 if (swap) { 777 *pcond = cond = tcg_swap_cond(cond); 778 } 779 780 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 781 if (r >= 0) { 782 return r; 783 } 784 if (!is_tst_cond(cond)) { 785 return -1; 786 } 787 788 i1 = arg_info(*p1); 789 790 /* 791 * TSTNE x,x -> NE x,0 792 * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x 793 */ 794 if (args_are_copies(*p1, *p2) || 795 (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) { 796 *p2 = arg_new_constant(ctx, 0); 797 *pcond = tcg_tst_eqne_cond(cond); 798 return -1; 799 } 800 801 /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */ 802 if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) { 803 *p2 = arg_new_constant(ctx, 0); 804 *pcond = tcg_tst_ltge_cond(cond); 805 return -1; 806 } 807 808 /* Expand to AND with a temporary if no backend support. */ 809 if (!TCG_TARGET_HAS_tst) { 810 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 811 TCGArg tmp = arg_new_temp(ctx); 812 813 op2->args[0] = tmp; 814 op2->args[1] = *p1; 815 op2->args[2] = *p2; 816 817 *p1 = tmp; 818 *p2 = arg_new_constant(ctx, 0); 819 *pcond = tcg_tst_eqne_cond(cond); 820 } 821 return -1; 822 } 823 824 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 825 { 826 TCGArg al, ah, bl, bh; 827 TCGCond c; 828 bool swap; 829 int r; 830 831 swap = swap_commutative2(args, args + 2); 832 c = args[4]; 833 if (swap) { 834 args[4] = c = tcg_swap_cond(c); 835 } 836 837 al = args[0]; 838 ah = args[1]; 839 bl = args[2]; 840 bh = args[3]; 841 842 if (arg_is_const(bl) && arg_is_const(bh)) { 843 tcg_target_ulong blv = arg_info(bl)->val; 844 tcg_target_ulong bhv = arg_info(bh)->val; 845 uint64_t b = deposit64(blv, 32, 32, bhv); 846 847 if (arg_is_const(al) && arg_is_const(ah)) { 848 tcg_target_ulong alv = arg_info(al)->val; 849 tcg_target_ulong ahv = arg_info(ah)->val; 850 uint64_t a = deposit64(alv, 32, 32, ahv); 851 852 r = do_constant_folding_cond_64(a, b, c); 853 if (r >= 0) { 854 return r; 855 } 856 } 857 858 if (b == 0) { 859 switch (c) { 860 case TCG_COND_LTU: 861 case TCG_COND_TSTNE: 862 return 0; 863 case TCG_COND_GEU: 864 case TCG_COND_TSTEQ: 865 return 1; 866 default: 867 break; 868 } 869 } 870 871 /* TSTNE x,-1 -> NE x,0 */ 872 if (b == -1 && is_tst_cond(c)) { 873 args[3] = args[2] = arg_new_constant(ctx, 0); 874 args[4] = tcg_tst_eqne_cond(c); 875 return -1; 876 } 877 878 /* TSTNE x,sign -> LT x,0 */ 879 if (b == INT64_MIN && is_tst_cond(c)) { 880 /* bl must be 0, so copy that to bh */ 881 args[3] = bl; 882 args[4] = tcg_tst_ltge_cond(c); 883 return -1; 884 } 885 } 886 887 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 888 r = do_constant_folding_cond_eq(c); 889 if (r >= 0) { 890 return r; 891 } 892 893 /* TSTNE x,x -> NE x,0 */ 894 if (is_tst_cond(c)) { 895 args[3] = args[2] = arg_new_constant(ctx, 0); 896 args[4] = tcg_tst_eqne_cond(c); 897 return -1; 898 } 899 } 900 901 /* Expand to AND with a temporary if no backend support. */ 902 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 903 TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and, 3); 904 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 905 TCGArg t1 = arg_new_temp(ctx); 906 TCGArg t2 = arg_new_temp(ctx); 907 908 op1->args[0] = t1; 909 op1->args[1] = al; 910 op1->args[2] = bl; 911 op2->args[0] = t2; 912 op2->args[1] = ah; 913 op2->args[2] = bh; 914 915 args[0] = t1; 916 args[1] = t2; 917 args[3] = args[2] = arg_new_constant(ctx, 0); 918 args[4] = tcg_tst_eqne_cond(c); 919 } 920 return -1; 921 } 922 923 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 924 { 925 for (int i = 0; i < nb_args; i++) { 926 TCGTemp *ts = arg_temp(op->args[i]); 927 init_ts_info(ctx, ts); 928 } 929 } 930 931 static void copy_propagate(OptContext *ctx, TCGOp *op, 932 int nb_oargs, int nb_iargs) 933 { 934 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 935 TCGTemp *ts = arg_temp(op->args[i]); 936 if (ts_is_copy(ts)) { 937 op->args[i] = temp_arg(find_better_copy(ts)); 938 } 939 } 940 } 941 942 static void finish_bb(OptContext *ctx) 943 { 944 /* We only optimize memory barriers across basic blocks. */ 945 ctx->prev_mb = NULL; 946 } 947 948 static void finish_ebb(OptContext *ctx) 949 { 950 finish_bb(ctx); 951 /* We only optimize across extended basic blocks. */ 952 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 953 remove_mem_copy_all(ctx); 954 } 955 956 static bool finish_folding(OptContext *ctx, TCGOp *op) 957 { 958 const TCGOpDef *def = &tcg_op_defs[op->opc]; 959 int i, nb_oargs; 960 961 nb_oargs = def->nb_oargs; 962 for (i = 0; i < nb_oargs; i++) { 963 TCGTemp *ts = arg_temp(op->args[i]); 964 reset_ts(ctx, ts); 965 } 966 return true; 967 } 968 969 /* 970 * The fold_* functions return true when processing is complete, 971 * usually by folding the operation to a constant or to a copy, 972 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 973 * like collect information about the value produced, for use in 974 * optimizing a subsequent operation. 975 * 976 * These first fold_* functions are all helpers, used by other 977 * folders for more specific operations. 978 */ 979 980 static bool fold_const1(OptContext *ctx, TCGOp *op) 981 { 982 if (arg_is_const(op->args[1])) { 983 uint64_t t; 984 985 t = arg_info(op->args[1])->val; 986 t = do_constant_folding(op->opc, ctx->type, t, 0); 987 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 988 } 989 return false; 990 } 991 992 static bool fold_const2(OptContext *ctx, TCGOp *op) 993 { 994 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 995 uint64_t t1 = arg_info(op->args[1])->val; 996 uint64_t t2 = arg_info(op->args[2])->val; 997 998 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 999 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 1000 } 1001 return false; 1002 } 1003 1004 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1005 { 1006 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1007 return false; 1008 } 1009 1010 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1011 { 1012 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1013 return fold_const2(ctx, op); 1014 } 1015 1016 /* 1017 * Record "zero" and "sign" masks for the single output of @op. 1018 * See TempOptInfo definition of z_mask and s_mask. 1019 * If z_mask allows, fold the output to constant zero. 1020 * The passed s_mask may be augmented by z_mask. 1021 */ 1022 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1023 uint64_t z_mask, int64_t s_mask) 1024 { 1025 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1026 TCGTemp *ts; 1027 TempOptInfo *ti; 1028 int rep; 1029 1030 /* Only single-output opcodes are supported here. */ 1031 tcg_debug_assert(def->nb_oargs == 1); 1032 1033 /* 1034 * 32-bit ops generate 32-bit results, which for the purpose of 1035 * simplifying tcg are sign-extended. Certainly that's how we 1036 * represent our constants elsewhere. Note that the bits will 1037 * be reset properly for a 64-bit value when encountering the 1038 * type changing opcodes. 1039 */ 1040 if (ctx->type == TCG_TYPE_I32) { 1041 z_mask = (int32_t)z_mask; 1042 s_mask |= INT32_MIN; 1043 } 1044 1045 if (z_mask == 0) { 1046 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1047 } 1048 1049 ts = arg_temp(op->args[0]); 1050 reset_ts(ctx, ts); 1051 1052 ti = ts_info(ts); 1053 ti->z_mask = z_mask; 1054 1055 /* Canonicalize s_mask and incorporate data from z_mask. */ 1056 rep = clz64(~s_mask); 1057 rep = MAX(rep, clz64(z_mask)); 1058 rep = MAX(rep - 1, 0); 1059 ti->s_mask = INT64_MIN >> rep; 1060 1061 return true; 1062 } 1063 1064 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1065 { 1066 return fold_masks_zs(ctx, op, z_mask, 0); 1067 } 1068 1069 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1070 { 1071 return fold_masks_zs(ctx, op, -1, s_mask); 1072 } 1073 1074 /* 1075 * An "affected" mask bit is 0 if and only if the result is identical 1076 * to the first input. Thus if the entire mask is 0, the operation 1077 * is equivalent to a copy. 1078 */ 1079 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1080 { 1081 if (ctx->type == TCG_TYPE_I32) { 1082 a_mask = (uint32_t)a_mask; 1083 } 1084 if (a_mask == 0) { 1085 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1086 } 1087 return false; 1088 } 1089 1090 /* 1091 * Convert @op to NOT, if NOT is supported by the host. 1092 * Return true f the conversion is successful, which will still 1093 * indicate that the processing is complete. 1094 */ 1095 static bool fold_not(OptContext *ctx, TCGOp *op); 1096 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1097 { 1098 TCGOpcode not_op; 1099 bool have_not; 1100 1101 switch (ctx->type) { 1102 case TCG_TYPE_I32: 1103 not_op = INDEX_op_not_i32; 1104 have_not = TCG_TARGET_HAS_not_i32; 1105 break; 1106 case TCG_TYPE_I64: 1107 not_op = INDEX_op_not_i64; 1108 have_not = TCG_TARGET_HAS_not_i64; 1109 break; 1110 case TCG_TYPE_V64: 1111 case TCG_TYPE_V128: 1112 case TCG_TYPE_V256: 1113 not_op = INDEX_op_not_vec; 1114 have_not = TCG_TARGET_HAS_not_vec; 1115 break; 1116 default: 1117 g_assert_not_reached(); 1118 } 1119 if (have_not) { 1120 op->opc = not_op; 1121 op->args[1] = op->args[idx]; 1122 return fold_not(ctx, op); 1123 } 1124 return false; 1125 } 1126 1127 /* If the binary operation has first argument @i, fold to @i. */ 1128 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1129 { 1130 if (arg_is_const_val(op->args[1], i)) { 1131 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1132 } 1133 return false; 1134 } 1135 1136 /* If the binary operation has first argument @i, fold to NOT. */ 1137 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1138 { 1139 if (arg_is_const_val(op->args[1], i)) { 1140 return fold_to_not(ctx, op, 2); 1141 } 1142 return false; 1143 } 1144 1145 /* If the binary operation has second argument @i, fold to @i. */ 1146 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1147 { 1148 if (arg_is_const_val(op->args[2], i)) { 1149 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1150 } 1151 return false; 1152 } 1153 1154 /* If the binary operation has second argument @i, fold to identity. */ 1155 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1156 { 1157 if (arg_is_const_val(op->args[2], i)) { 1158 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1159 } 1160 return false; 1161 } 1162 1163 /* If the binary operation has second argument @i, fold to NOT. */ 1164 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1165 { 1166 if (arg_is_const_val(op->args[2], i)) { 1167 return fold_to_not(ctx, op, 1); 1168 } 1169 return false; 1170 } 1171 1172 /* If the binary operation has both arguments equal, fold to @i. */ 1173 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1174 { 1175 if (args_are_copies(op->args[1], op->args[2])) { 1176 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1177 } 1178 return false; 1179 } 1180 1181 /* If the binary operation has both arguments equal, fold to identity. */ 1182 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1183 { 1184 if (args_are_copies(op->args[1], op->args[2])) { 1185 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1186 } 1187 return false; 1188 } 1189 1190 /* 1191 * These outermost fold_<op> functions are sorted alphabetically. 1192 * 1193 * The ordering of the transformations should be: 1194 * 1) those that produce a constant 1195 * 2) those that produce a copy 1196 * 3) those that produce information about the result value. 1197 */ 1198 1199 static bool fold_or(OptContext *ctx, TCGOp *op); 1200 static bool fold_orc(OptContext *ctx, TCGOp *op); 1201 static bool fold_xor(OptContext *ctx, TCGOp *op); 1202 1203 static bool fold_add(OptContext *ctx, TCGOp *op) 1204 { 1205 if (fold_const2_commutative(ctx, op) || 1206 fold_xi_to_x(ctx, op, 0)) { 1207 return true; 1208 } 1209 return finish_folding(ctx, op); 1210 } 1211 1212 /* We cannot as yet do_constant_folding with vectors. */ 1213 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1214 { 1215 if (fold_commutative(ctx, op) || 1216 fold_xi_to_x(ctx, op, 0)) { 1217 return true; 1218 } 1219 return finish_folding(ctx, op); 1220 } 1221 1222 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1223 { 1224 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1225 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1226 1227 if (a_const && b_const) { 1228 uint64_t al = arg_info(op->args[2])->val; 1229 uint64_t ah = arg_info(op->args[3])->val; 1230 uint64_t bl = arg_info(op->args[4])->val; 1231 uint64_t bh = arg_info(op->args[5])->val; 1232 TCGArg rl, rh; 1233 TCGOp *op2; 1234 1235 if (ctx->type == TCG_TYPE_I32) { 1236 uint64_t a = deposit64(al, 32, 32, ah); 1237 uint64_t b = deposit64(bl, 32, 32, bh); 1238 1239 if (add) { 1240 a += b; 1241 } else { 1242 a -= b; 1243 } 1244 1245 al = sextract64(a, 0, 32); 1246 ah = sextract64(a, 32, 32); 1247 } else { 1248 Int128 a = int128_make128(al, ah); 1249 Int128 b = int128_make128(bl, bh); 1250 1251 if (add) { 1252 a = int128_add(a, b); 1253 } else { 1254 a = int128_sub(a, b); 1255 } 1256 1257 al = int128_getlo(a); 1258 ah = int128_gethi(a); 1259 } 1260 1261 rl = op->args[0]; 1262 rh = op->args[1]; 1263 1264 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1265 op2 = opt_insert_before(ctx, op, 0, 2); 1266 1267 tcg_opt_gen_movi(ctx, op, rl, al); 1268 tcg_opt_gen_movi(ctx, op2, rh, ah); 1269 return true; 1270 } 1271 1272 /* Fold sub2 r,x,i to add2 r,x,-i */ 1273 if (!add && b_const) { 1274 uint64_t bl = arg_info(op->args[4])->val; 1275 uint64_t bh = arg_info(op->args[5])->val; 1276 1277 /* Negate the two parts without assembling and disassembling. */ 1278 bl = -bl; 1279 bh = ~bh + !bl; 1280 1281 op->opc = (ctx->type == TCG_TYPE_I32 1282 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1283 op->args[4] = arg_new_constant(ctx, bl); 1284 op->args[5] = arg_new_constant(ctx, bh); 1285 } 1286 return finish_folding(ctx, op); 1287 } 1288 1289 static bool fold_add2(OptContext *ctx, TCGOp *op) 1290 { 1291 /* Note that the high and low parts may be independently swapped. */ 1292 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1293 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1294 1295 return fold_addsub2(ctx, op, true); 1296 } 1297 1298 static bool fold_and(OptContext *ctx, TCGOp *op) 1299 { 1300 uint64_t z1, z2, z_mask, s_mask; 1301 TempOptInfo *t1, *t2; 1302 1303 if (fold_const2_commutative(ctx, op) || 1304 fold_xi_to_i(ctx, op, 0) || 1305 fold_xi_to_x(ctx, op, -1) || 1306 fold_xx_to_x(ctx, op)) { 1307 return true; 1308 } 1309 1310 t1 = arg_info(op->args[1]); 1311 t2 = arg_info(op->args[2]); 1312 z1 = t1->z_mask; 1313 z2 = t2->z_mask; 1314 1315 /* 1316 * Known-zeros does not imply known-ones. Therefore unless 1317 * arg2 is constant, we can't infer affected bits from it. 1318 */ 1319 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1320 return true; 1321 } 1322 1323 z_mask = z1 & z2; 1324 1325 /* 1326 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1327 * Bitwise operations preserve the relative quantity of the repetitions. 1328 */ 1329 s_mask = t1->s_mask & t2->s_mask; 1330 1331 return fold_masks_zs(ctx, op, z_mask, s_mask); 1332 } 1333 1334 static bool fold_andc(OptContext *ctx, TCGOp *op) 1335 { 1336 uint64_t z_mask, s_mask; 1337 TempOptInfo *t1, *t2; 1338 1339 if (fold_const2(ctx, op) || 1340 fold_xx_to_i(ctx, op, 0) || 1341 fold_xi_to_x(ctx, op, 0) || 1342 fold_ix_to_not(ctx, op, -1)) { 1343 return true; 1344 } 1345 1346 t1 = arg_info(op->args[1]); 1347 t2 = arg_info(op->args[2]); 1348 z_mask = t1->z_mask; 1349 1350 if (ti_is_const(t2)) { 1351 /* Fold andc r,x,i to and r,x,~i. */ 1352 switch (ctx->type) { 1353 case TCG_TYPE_I32: 1354 case TCG_TYPE_I64: 1355 op->opc = INDEX_op_and; 1356 break; 1357 case TCG_TYPE_V64: 1358 case TCG_TYPE_V128: 1359 case TCG_TYPE_V256: 1360 op->opc = INDEX_op_and_vec; 1361 break; 1362 default: 1363 g_assert_not_reached(); 1364 } 1365 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 1366 return fold_and(ctx, op); 1367 } 1368 1369 /* 1370 * Known-zeros does not imply known-ones. Therefore unless 1371 * arg2 is constant, we can't infer anything from it. 1372 */ 1373 if (ti_is_const(t2)) { 1374 uint64_t v2 = ti_const_val(t2); 1375 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1376 return true; 1377 } 1378 z_mask &= ~v2; 1379 } 1380 1381 s_mask = t1->s_mask & t2->s_mask; 1382 return fold_masks_zs(ctx, op, z_mask, s_mask); 1383 } 1384 1385 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1386 { 1387 /* If true and false values are the same, eliminate the cmp. */ 1388 if (args_are_copies(op->args[2], op->args[3])) { 1389 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1390 } 1391 1392 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1393 uint64_t tv = arg_info(op->args[2])->val; 1394 uint64_t fv = arg_info(op->args[3])->val; 1395 1396 if (tv == -1 && fv == 0) { 1397 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1398 } 1399 if (tv == 0 && fv == -1) { 1400 if (TCG_TARGET_HAS_not_vec) { 1401 op->opc = INDEX_op_not_vec; 1402 return fold_not(ctx, op); 1403 } else { 1404 op->opc = INDEX_op_xor_vec; 1405 op->args[2] = arg_new_constant(ctx, -1); 1406 return fold_xor(ctx, op); 1407 } 1408 } 1409 } 1410 if (arg_is_const(op->args[2])) { 1411 uint64_t tv = arg_info(op->args[2])->val; 1412 if (tv == -1) { 1413 op->opc = INDEX_op_or_vec; 1414 op->args[2] = op->args[3]; 1415 return fold_or(ctx, op); 1416 } 1417 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1418 op->opc = INDEX_op_andc_vec; 1419 op->args[2] = op->args[1]; 1420 op->args[1] = op->args[3]; 1421 return fold_andc(ctx, op); 1422 } 1423 } 1424 if (arg_is_const(op->args[3])) { 1425 uint64_t fv = arg_info(op->args[3])->val; 1426 if (fv == 0) { 1427 op->opc = INDEX_op_and_vec; 1428 return fold_and(ctx, op); 1429 } 1430 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1431 op->opc = INDEX_op_orc_vec; 1432 op->args[2] = op->args[1]; 1433 op->args[1] = op->args[3]; 1434 return fold_orc(ctx, op); 1435 } 1436 } 1437 return finish_folding(ctx, op); 1438 } 1439 1440 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1441 { 1442 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1443 &op->args[1], &op->args[2]); 1444 if (i == 0) { 1445 tcg_op_remove(ctx->tcg, op); 1446 return true; 1447 } 1448 if (i > 0) { 1449 op->opc = INDEX_op_br; 1450 op->args[0] = op->args[3]; 1451 finish_ebb(ctx); 1452 } else { 1453 finish_bb(ctx); 1454 } 1455 return true; 1456 } 1457 1458 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1459 { 1460 TCGCond cond; 1461 TCGArg label; 1462 int i, inv = 0; 1463 1464 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1465 cond = op->args[4]; 1466 label = op->args[5]; 1467 if (i >= 0) { 1468 goto do_brcond_const; 1469 } 1470 1471 switch (cond) { 1472 case TCG_COND_LT: 1473 case TCG_COND_GE: 1474 /* 1475 * Simplify LT/GE comparisons vs zero to a single compare 1476 * vs the high word of the input. 1477 */ 1478 if (arg_is_const_val(op->args[2], 0) && 1479 arg_is_const_val(op->args[3], 0)) { 1480 goto do_brcond_high; 1481 } 1482 break; 1483 1484 case TCG_COND_NE: 1485 inv = 1; 1486 QEMU_FALLTHROUGH; 1487 case TCG_COND_EQ: 1488 /* 1489 * Simplify EQ/NE comparisons where one of the pairs 1490 * can be simplified. 1491 */ 1492 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1493 op->args[2], cond); 1494 switch (i ^ inv) { 1495 case 0: 1496 goto do_brcond_const; 1497 case 1: 1498 goto do_brcond_high; 1499 } 1500 1501 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1502 op->args[3], cond); 1503 switch (i ^ inv) { 1504 case 0: 1505 goto do_brcond_const; 1506 case 1: 1507 goto do_brcond_low; 1508 } 1509 break; 1510 1511 case TCG_COND_TSTEQ: 1512 case TCG_COND_TSTNE: 1513 if (arg_is_const_val(op->args[2], 0)) { 1514 goto do_brcond_high; 1515 } 1516 if (arg_is_const_val(op->args[3], 0)) { 1517 goto do_brcond_low; 1518 } 1519 break; 1520 1521 default: 1522 break; 1523 1524 do_brcond_low: 1525 op->opc = INDEX_op_brcond_i32; 1526 op->args[1] = op->args[2]; 1527 op->args[2] = cond; 1528 op->args[3] = label; 1529 return fold_brcond(ctx, op); 1530 1531 do_brcond_high: 1532 op->opc = INDEX_op_brcond_i32; 1533 op->args[0] = op->args[1]; 1534 op->args[1] = op->args[3]; 1535 op->args[2] = cond; 1536 op->args[3] = label; 1537 return fold_brcond(ctx, op); 1538 1539 do_brcond_const: 1540 if (i == 0) { 1541 tcg_op_remove(ctx->tcg, op); 1542 return true; 1543 } 1544 op->opc = INDEX_op_br; 1545 op->args[0] = label; 1546 finish_ebb(ctx); 1547 return true; 1548 } 1549 1550 finish_bb(ctx); 1551 return true; 1552 } 1553 1554 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1555 { 1556 uint64_t z_mask, s_mask, sign; 1557 TempOptInfo *t1 = arg_info(op->args[1]); 1558 1559 if (ti_is_const(t1)) { 1560 return tcg_opt_gen_movi(ctx, op, op->args[0], 1561 do_constant_folding(op->opc, ctx->type, 1562 ti_const_val(t1), 1563 op->args[2])); 1564 } 1565 1566 z_mask = t1->z_mask; 1567 switch (op->opc) { 1568 case INDEX_op_bswap16_i32: 1569 case INDEX_op_bswap16_i64: 1570 z_mask = bswap16(z_mask); 1571 sign = INT16_MIN; 1572 break; 1573 case INDEX_op_bswap32_i32: 1574 case INDEX_op_bswap32_i64: 1575 z_mask = bswap32(z_mask); 1576 sign = INT32_MIN; 1577 break; 1578 case INDEX_op_bswap64_i64: 1579 z_mask = bswap64(z_mask); 1580 sign = INT64_MIN; 1581 break; 1582 default: 1583 g_assert_not_reached(); 1584 } 1585 1586 s_mask = 0; 1587 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1588 case TCG_BSWAP_OZ: 1589 break; 1590 case TCG_BSWAP_OS: 1591 /* If the sign bit may be 1, force all the bits above to 1. */ 1592 if (z_mask & sign) { 1593 z_mask |= sign; 1594 } 1595 /* The value and therefore s_mask is explicitly sign-extended. */ 1596 s_mask = sign; 1597 break; 1598 default: 1599 /* The high bits are undefined: force all bits above the sign to 1. */ 1600 z_mask |= sign << 1; 1601 break; 1602 } 1603 1604 return fold_masks_zs(ctx, op, z_mask, s_mask); 1605 } 1606 1607 static bool fold_call(OptContext *ctx, TCGOp *op) 1608 { 1609 TCGContext *s = ctx->tcg; 1610 int nb_oargs = TCGOP_CALLO(op); 1611 int nb_iargs = TCGOP_CALLI(op); 1612 int flags, i; 1613 1614 init_arguments(ctx, op, nb_oargs + nb_iargs); 1615 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1616 1617 /* If the function reads or writes globals, reset temp data. */ 1618 flags = tcg_call_flags(op); 1619 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1620 int nb_globals = s->nb_globals; 1621 1622 for (i = 0; i < nb_globals; i++) { 1623 if (test_bit(i, ctx->temps_used.l)) { 1624 reset_ts(ctx, &ctx->tcg->temps[i]); 1625 } 1626 } 1627 } 1628 1629 /* If the function has side effects, reset mem data. */ 1630 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1631 remove_mem_copy_all(ctx); 1632 } 1633 1634 /* Reset temp data for outputs. */ 1635 for (i = 0; i < nb_oargs; i++) { 1636 reset_temp(ctx, op->args[i]); 1637 } 1638 1639 /* Stop optimizing MB across calls. */ 1640 ctx->prev_mb = NULL; 1641 return true; 1642 } 1643 1644 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1645 { 1646 /* Canonicalize the comparison to put immediate second. */ 1647 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1648 op->args[3] = tcg_swap_cond(op->args[3]); 1649 } 1650 return finish_folding(ctx, op); 1651 } 1652 1653 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1654 { 1655 /* If true and false values are the same, eliminate the cmp. */ 1656 if (args_are_copies(op->args[3], op->args[4])) { 1657 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1658 } 1659 1660 /* Canonicalize the comparison to put immediate second. */ 1661 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1662 op->args[5] = tcg_swap_cond(op->args[5]); 1663 } 1664 /* 1665 * Canonicalize the "false" input reg to match the destination, 1666 * so that the tcg backend can implement "move if true". 1667 */ 1668 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1669 op->args[5] = tcg_invert_cond(op->args[5]); 1670 } 1671 return finish_folding(ctx, op); 1672 } 1673 1674 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1675 { 1676 uint64_t z_mask, s_mask; 1677 TempOptInfo *t1 = arg_info(op->args[1]); 1678 TempOptInfo *t2 = arg_info(op->args[2]); 1679 1680 if (ti_is_const(t1)) { 1681 uint64_t t = ti_const_val(t1); 1682 1683 if (t != 0) { 1684 t = do_constant_folding(op->opc, ctx->type, t, 0); 1685 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1686 } 1687 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1688 } 1689 1690 switch (ctx->type) { 1691 case TCG_TYPE_I32: 1692 z_mask = 31; 1693 break; 1694 case TCG_TYPE_I64: 1695 z_mask = 63; 1696 break; 1697 default: 1698 g_assert_not_reached(); 1699 } 1700 s_mask = ~z_mask; 1701 z_mask |= t2->z_mask; 1702 s_mask &= t2->s_mask; 1703 1704 return fold_masks_zs(ctx, op, z_mask, s_mask); 1705 } 1706 1707 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1708 { 1709 uint64_t z_mask; 1710 1711 if (fold_const1(ctx, op)) { 1712 return true; 1713 } 1714 1715 switch (ctx->type) { 1716 case TCG_TYPE_I32: 1717 z_mask = 32 | 31; 1718 break; 1719 case TCG_TYPE_I64: 1720 z_mask = 64 | 63; 1721 break; 1722 default: 1723 g_assert_not_reached(); 1724 } 1725 return fold_masks_z(ctx, op, z_mask); 1726 } 1727 1728 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1729 { 1730 TempOptInfo *t1 = arg_info(op->args[1]); 1731 TempOptInfo *t2 = arg_info(op->args[2]); 1732 int ofs = op->args[3]; 1733 int len = op->args[4]; 1734 int width = 8 * tcg_type_size(ctx->type); 1735 uint64_t z_mask, s_mask; 1736 1737 if (ti_is_const(t1) && ti_is_const(t2)) { 1738 return tcg_opt_gen_movi(ctx, op, op->args[0], 1739 deposit64(ti_const_val(t1), ofs, len, 1740 ti_const_val(t2))); 1741 } 1742 1743 /* Inserting a value into zero at offset 0. */ 1744 if (ti_is_const_val(t1, 0) && ofs == 0) { 1745 uint64_t mask = MAKE_64BIT_MASK(0, len); 1746 1747 op->opc = INDEX_op_and; 1748 op->args[1] = op->args[2]; 1749 op->args[2] = arg_new_constant(ctx, mask); 1750 return fold_and(ctx, op); 1751 } 1752 1753 /* Inserting zero into a value. */ 1754 if (ti_is_const_val(t2, 0)) { 1755 uint64_t mask = deposit64(-1, ofs, len, 0); 1756 1757 op->opc = INDEX_op_and; 1758 op->args[2] = arg_new_constant(ctx, mask); 1759 return fold_and(ctx, op); 1760 } 1761 1762 /* The s_mask from the top portion of the deposit is still valid. */ 1763 if (ofs + len == width) { 1764 s_mask = t2->s_mask << ofs; 1765 } else { 1766 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1767 } 1768 1769 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1770 return fold_masks_zs(ctx, op, z_mask, s_mask); 1771 } 1772 1773 static bool fold_divide(OptContext *ctx, TCGOp *op) 1774 { 1775 if (fold_const2(ctx, op) || 1776 fold_xi_to_x(ctx, op, 1)) { 1777 return true; 1778 } 1779 return finish_folding(ctx, op); 1780 } 1781 1782 static bool fold_dup(OptContext *ctx, TCGOp *op) 1783 { 1784 if (arg_is_const(op->args[1])) { 1785 uint64_t t = arg_info(op->args[1])->val; 1786 t = dup_const(TCGOP_VECE(op), t); 1787 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1788 } 1789 return finish_folding(ctx, op); 1790 } 1791 1792 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1793 { 1794 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1795 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1796 arg_info(op->args[2])->val); 1797 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1798 } 1799 1800 if (args_are_copies(op->args[1], op->args[2])) { 1801 op->opc = INDEX_op_dup_vec; 1802 TCGOP_VECE(op) = MO_32; 1803 } 1804 return finish_folding(ctx, op); 1805 } 1806 1807 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1808 { 1809 uint64_t s_mask; 1810 1811 if (fold_const2_commutative(ctx, op) || 1812 fold_xi_to_x(ctx, op, -1) || 1813 fold_xi_to_not(ctx, op, 0)) { 1814 return true; 1815 } 1816 1817 s_mask = arg_info(op->args[1])->s_mask 1818 & arg_info(op->args[2])->s_mask; 1819 return fold_masks_s(ctx, op, s_mask); 1820 } 1821 1822 static bool fold_extract(OptContext *ctx, TCGOp *op) 1823 { 1824 uint64_t z_mask_old, z_mask; 1825 TempOptInfo *t1 = arg_info(op->args[1]); 1826 int pos = op->args[2]; 1827 int len = op->args[3]; 1828 1829 if (ti_is_const(t1)) { 1830 return tcg_opt_gen_movi(ctx, op, op->args[0], 1831 extract64(ti_const_val(t1), pos, len)); 1832 } 1833 1834 z_mask_old = t1->z_mask; 1835 z_mask = extract64(z_mask_old, pos, len); 1836 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1837 return true; 1838 } 1839 1840 return fold_masks_z(ctx, op, z_mask); 1841 } 1842 1843 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1844 { 1845 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1846 uint64_t v1 = arg_info(op->args[1])->val; 1847 uint64_t v2 = arg_info(op->args[2])->val; 1848 int shr = op->args[3]; 1849 1850 if (op->opc == INDEX_op_extract2_i64) { 1851 v1 >>= shr; 1852 v2 <<= 64 - shr; 1853 } else { 1854 v1 = (uint32_t)v1 >> shr; 1855 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1856 } 1857 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1858 } 1859 return finish_folding(ctx, op); 1860 } 1861 1862 static bool fold_exts(OptContext *ctx, TCGOp *op) 1863 { 1864 uint64_t s_mask, z_mask; 1865 TempOptInfo *t1; 1866 1867 if (fold_const1(ctx, op)) { 1868 return true; 1869 } 1870 1871 t1 = arg_info(op->args[1]); 1872 z_mask = t1->z_mask; 1873 s_mask = t1->s_mask; 1874 1875 switch (op->opc) { 1876 case INDEX_op_ext_i32_i64: 1877 s_mask |= INT32_MIN; 1878 z_mask = (int32_t)z_mask; 1879 break; 1880 default: 1881 g_assert_not_reached(); 1882 } 1883 return fold_masks_zs(ctx, op, z_mask, s_mask); 1884 } 1885 1886 static bool fold_extu(OptContext *ctx, TCGOp *op) 1887 { 1888 uint64_t z_mask; 1889 1890 if (fold_const1(ctx, op)) { 1891 return true; 1892 } 1893 1894 z_mask = arg_info(op->args[1])->z_mask; 1895 switch (op->opc) { 1896 case INDEX_op_extrl_i64_i32: 1897 case INDEX_op_extu_i32_i64: 1898 z_mask = (uint32_t)z_mask; 1899 break; 1900 case INDEX_op_extrh_i64_i32: 1901 z_mask >>= 32; 1902 break; 1903 default: 1904 g_assert_not_reached(); 1905 } 1906 return fold_masks_z(ctx, op, z_mask); 1907 } 1908 1909 static bool fold_mb(OptContext *ctx, TCGOp *op) 1910 { 1911 /* Eliminate duplicate and redundant fence instructions. */ 1912 if (ctx->prev_mb) { 1913 /* 1914 * Merge two barriers of the same type into one, 1915 * or a weaker barrier into a stronger one, 1916 * or two weaker barriers into a stronger one. 1917 * mb X; mb Y => mb X|Y 1918 * mb; strl => mb; st 1919 * ldaq; mb => ld; mb 1920 * ldaq; strl => ld; mb; st 1921 * Other combinations are also merged into a strong 1922 * barrier. This is stricter than specified but for 1923 * the purposes of TCG is better than not optimizing. 1924 */ 1925 ctx->prev_mb->args[0] |= op->args[0]; 1926 tcg_op_remove(ctx->tcg, op); 1927 } else { 1928 ctx->prev_mb = op; 1929 } 1930 return true; 1931 } 1932 1933 static bool fold_mov(OptContext *ctx, TCGOp *op) 1934 { 1935 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1936 } 1937 1938 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1939 { 1940 uint64_t z_mask, s_mask; 1941 TempOptInfo *tt, *ft; 1942 int i; 1943 1944 /* If true and false values are the same, eliminate the cmp. */ 1945 if (args_are_copies(op->args[3], op->args[4])) { 1946 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1947 } 1948 1949 /* 1950 * Canonicalize the "false" input reg to match the destination reg so 1951 * that the tcg backend can implement a "move if true" operation. 1952 */ 1953 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1954 op->args[5] = tcg_invert_cond(op->args[5]); 1955 } 1956 1957 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1958 &op->args[2], &op->args[5]); 1959 if (i >= 0) { 1960 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1961 } 1962 1963 tt = arg_info(op->args[3]); 1964 ft = arg_info(op->args[4]); 1965 z_mask = tt->z_mask | ft->z_mask; 1966 s_mask = tt->s_mask & ft->s_mask; 1967 1968 if (ti_is_const(tt) && ti_is_const(ft)) { 1969 uint64_t tv = ti_const_val(tt); 1970 uint64_t fv = ti_const_val(ft); 1971 TCGOpcode opc, negopc = 0; 1972 TCGCond cond = op->args[5]; 1973 1974 switch (ctx->type) { 1975 case TCG_TYPE_I32: 1976 opc = INDEX_op_setcond_i32; 1977 if (TCG_TARGET_HAS_negsetcond_i32) { 1978 negopc = INDEX_op_negsetcond_i32; 1979 } 1980 tv = (int32_t)tv; 1981 fv = (int32_t)fv; 1982 break; 1983 case TCG_TYPE_I64: 1984 opc = INDEX_op_setcond_i64; 1985 if (TCG_TARGET_HAS_negsetcond_i64) { 1986 negopc = INDEX_op_negsetcond_i64; 1987 } 1988 break; 1989 default: 1990 g_assert_not_reached(); 1991 } 1992 1993 if (tv == 1 && fv == 0) { 1994 op->opc = opc; 1995 op->args[3] = cond; 1996 } else if (fv == 1 && tv == 0) { 1997 op->opc = opc; 1998 op->args[3] = tcg_invert_cond(cond); 1999 } else if (negopc) { 2000 if (tv == -1 && fv == 0) { 2001 op->opc = negopc; 2002 op->args[3] = cond; 2003 } else if (fv == -1 && tv == 0) { 2004 op->opc = negopc; 2005 op->args[3] = tcg_invert_cond(cond); 2006 } 2007 } 2008 } 2009 2010 return fold_masks_zs(ctx, op, z_mask, s_mask); 2011 } 2012 2013 static bool fold_mul(OptContext *ctx, TCGOp *op) 2014 { 2015 if (fold_const2(ctx, op) || 2016 fold_xi_to_i(ctx, op, 0) || 2017 fold_xi_to_x(ctx, op, 1)) { 2018 return true; 2019 } 2020 return finish_folding(ctx, op); 2021 } 2022 2023 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2024 { 2025 if (fold_const2_commutative(ctx, op) || 2026 fold_xi_to_i(ctx, op, 0)) { 2027 return true; 2028 } 2029 return finish_folding(ctx, op); 2030 } 2031 2032 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2033 { 2034 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2035 2036 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2037 uint64_t a = arg_info(op->args[2])->val; 2038 uint64_t b = arg_info(op->args[3])->val; 2039 uint64_t h, l; 2040 TCGArg rl, rh; 2041 TCGOp *op2; 2042 2043 switch (op->opc) { 2044 case INDEX_op_mulu2_i32: 2045 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2046 h = (int32_t)(l >> 32); 2047 l = (int32_t)l; 2048 break; 2049 case INDEX_op_muls2_i32: 2050 l = (int64_t)(int32_t)a * (int32_t)b; 2051 h = l >> 32; 2052 l = (int32_t)l; 2053 break; 2054 case INDEX_op_mulu2_i64: 2055 mulu64(&l, &h, a, b); 2056 break; 2057 case INDEX_op_muls2_i64: 2058 muls64(&l, &h, a, b); 2059 break; 2060 default: 2061 g_assert_not_reached(); 2062 } 2063 2064 rl = op->args[0]; 2065 rh = op->args[1]; 2066 2067 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2068 op2 = opt_insert_before(ctx, op, 0, 2); 2069 2070 tcg_opt_gen_movi(ctx, op, rl, l); 2071 tcg_opt_gen_movi(ctx, op2, rh, h); 2072 return true; 2073 } 2074 return finish_folding(ctx, op); 2075 } 2076 2077 static bool fold_nand(OptContext *ctx, TCGOp *op) 2078 { 2079 uint64_t s_mask; 2080 2081 if (fold_const2_commutative(ctx, op) || 2082 fold_xi_to_not(ctx, op, -1)) { 2083 return true; 2084 } 2085 2086 s_mask = arg_info(op->args[1])->s_mask 2087 & arg_info(op->args[2])->s_mask; 2088 return fold_masks_s(ctx, op, s_mask); 2089 } 2090 2091 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2092 { 2093 /* Set to 1 all bits to the left of the rightmost. */ 2094 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2095 z_mask = -(z_mask & -z_mask); 2096 2097 return fold_masks_z(ctx, op, z_mask); 2098 } 2099 2100 static bool fold_neg(OptContext *ctx, TCGOp *op) 2101 { 2102 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2103 } 2104 2105 static bool fold_nor(OptContext *ctx, TCGOp *op) 2106 { 2107 uint64_t s_mask; 2108 2109 if (fold_const2_commutative(ctx, op) || 2110 fold_xi_to_not(ctx, op, 0)) { 2111 return true; 2112 } 2113 2114 s_mask = arg_info(op->args[1])->s_mask 2115 & arg_info(op->args[2])->s_mask; 2116 return fold_masks_s(ctx, op, s_mask); 2117 } 2118 2119 static bool fold_not(OptContext *ctx, TCGOp *op) 2120 { 2121 if (fold_const1(ctx, op)) { 2122 return true; 2123 } 2124 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2125 } 2126 2127 static bool fold_or(OptContext *ctx, TCGOp *op) 2128 { 2129 uint64_t z_mask, s_mask; 2130 TempOptInfo *t1, *t2; 2131 2132 if (fold_const2_commutative(ctx, op) || 2133 fold_xi_to_x(ctx, op, 0) || 2134 fold_xx_to_x(ctx, op)) { 2135 return true; 2136 } 2137 2138 t1 = arg_info(op->args[1]); 2139 t2 = arg_info(op->args[2]); 2140 z_mask = t1->z_mask | t2->z_mask; 2141 s_mask = t1->s_mask & t2->s_mask; 2142 return fold_masks_zs(ctx, op, z_mask, s_mask); 2143 } 2144 2145 static bool fold_orc(OptContext *ctx, TCGOp *op) 2146 { 2147 uint64_t s_mask; 2148 TempOptInfo *t1, *t2; 2149 2150 if (fold_const2(ctx, op) || 2151 fold_xx_to_i(ctx, op, -1) || 2152 fold_xi_to_x(ctx, op, -1) || 2153 fold_ix_to_not(ctx, op, 0)) { 2154 return true; 2155 } 2156 2157 t2 = arg_info(op->args[2]); 2158 if (ti_is_const(t2)) { 2159 /* Fold orc r,x,i to or r,x,~i. */ 2160 switch (ctx->type) { 2161 case TCG_TYPE_I32: 2162 case TCG_TYPE_I64: 2163 op->opc = INDEX_op_or; 2164 break; 2165 case TCG_TYPE_V64: 2166 case TCG_TYPE_V128: 2167 case TCG_TYPE_V256: 2168 op->opc = INDEX_op_or_vec; 2169 break; 2170 default: 2171 g_assert_not_reached(); 2172 } 2173 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 2174 return fold_or(ctx, op); 2175 } 2176 2177 t1 = arg_info(op->args[1]); 2178 s_mask = t1->s_mask & t2->s_mask; 2179 return fold_masks_s(ctx, op, s_mask); 2180 } 2181 2182 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2183 { 2184 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2185 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2186 MemOp mop = get_memop(oi); 2187 int width = 8 * memop_size(mop); 2188 uint64_t z_mask = -1, s_mask = 0; 2189 2190 if (width < 64) { 2191 if (mop & MO_SIGN) { 2192 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2193 } else { 2194 z_mask = MAKE_64BIT_MASK(0, width); 2195 } 2196 } 2197 2198 /* Opcodes that touch guest memory stop the mb optimization. */ 2199 ctx->prev_mb = NULL; 2200 2201 return fold_masks_zs(ctx, op, z_mask, s_mask); 2202 } 2203 2204 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2205 { 2206 /* Opcodes that touch guest memory stop the mb optimization. */ 2207 ctx->prev_mb = NULL; 2208 return finish_folding(ctx, op); 2209 } 2210 2211 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2212 { 2213 /* Opcodes that touch guest memory stop the mb optimization. */ 2214 ctx->prev_mb = NULL; 2215 return true; 2216 } 2217 2218 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2219 { 2220 if (fold_const2(ctx, op) || 2221 fold_xx_to_i(ctx, op, 0)) { 2222 return true; 2223 } 2224 return finish_folding(ctx, op); 2225 } 2226 2227 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2228 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2229 { 2230 uint64_t a_zmask, b_val; 2231 TCGCond cond; 2232 2233 if (!arg_is_const(op->args[2])) { 2234 return false; 2235 } 2236 2237 a_zmask = arg_info(op->args[1])->z_mask; 2238 b_val = arg_info(op->args[2])->val; 2239 cond = op->args[3]; 2240 2241 if (ctx->type == TCG_TYPE_I32) { 2242 a_zmask = (uint32_t)a_zmask; 2243 b_val = (uint32_t)b_val; 2244 } 2245 2246 /* 2247 * A with only low bits set vs B with high bits set means that A < B. 2248 */ 2249 if (a_zmask < b_val) { 2250 bool inv = false; 2251 2252 switch (cond) { 2253 case TCG_COND_NE: 2254 case TCG_COND_LEU: 2255 case TCG_COND_LTU: 2256 inv = true; 2257 /* fall through */ 2258 case TCG_COND_GTU: 2259 case TCG_COND_GEU: 2260 case TCG_COND_EQ: 2261 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2262 default: 2263 break; 2264 } 2265 } 2266 2267 /* 2268 * A with only lsb set is already boolean. 2269 */ 2270 if (a_zmask <= 1) { 2271 bool convert = false; 2272 bool inv = false; 2273 2274 switch (cond) { 2275 case TCG_COND_EQ: 2276 inv = true; 2277 /* fall through */ 2278 case TCG_COND_NE: 2279 convert = (b_val == 0); 2280 break; 2281 case TCG_COND_LTU: 2282 case TCG_COND_TSTEQ: 2283 inv = true; 2284 /* fall through */ 2285 case TCG_COND_GEU: 2286 case TCG_COND_TSTNE: 2287 convert = (b_val == 1); 2288 break; 2289 default: 2290 break; 2291 } 2292 if (convert) { 2293 TCGOpcode neg_opc; 2294 2295 if (!inv && !neg) { 2296 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2297 } 2298 2299 switch (ctx->type) { 2300 case TCG_TYPE_I32: 2301 neg_opc = INDEX_op_neg_i32; 2302 break; 2303 case TCG_TYPE_I64: 2304 neg_opc = INDEX_op_neg_i64; 2305 break; 2306 default: 2307 g_assert_not_reached(); 2308 } 2309 2310 if (!inv) { 2311 op->opc = neg_opc; 2312 } else if (neg) { 2313 op->opc = INDEX_op_add; 2314 op->args[2] = arg_new_constant(ctx, -1); 2315 } else { 2316 op->opc = INDEX_op_xor; 2317 op->args[2] = arg_new_constant(ctx, 1); 2318 } 2319 return -1; 2320 } 2321 } 2322 return 0; 2323 } 2324 2325 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2326 { 2327 TCGOpcode neg_opc, shr_opc; 2328 TCGOpcode uext_opc = 0, sext_opc = 0; 2329 TCGCond cond = op->args[3]; 2330 TCGArg ret, src1, src2; 2331 TCGOp *op2; 2332 uint64_t val; 2333 int sh; 2334 bool inv; 2335 2336 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2337 return; 2338 } 2339 2340 src2 = op->args[2]; 2341 val = arg_info(src2)->val; 2342 if (!is_power_of_2(val)) { 2343 return; 2344 } 2345 sh = ctz64(val); 2346 2347 switch (ctx->type) { 2348 case TCG_TYPE_I32: 2349 shr_opc = INDEX_op_shr_i32; 2350 neg_opc = INDEX_op_neg_i32; 2351 if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) { 2352 uext_opc = INDEX_op_extract_i32; 2353 } 2354 if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) { 2355 sext_opc = INDEX_op_sextract_i32; 2356 } 2357 break; 2358 case TCG_TYPE_I64: 2359 shr_opc = INDEX_op_shr_i64; 2360 neg_opc = INDEX_op_neg_i64; 2361 if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) { 2362 uext_opc = INDEX_op_extract_i64; 2363 } 2364 if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) { 2365 sext_opc = INDEX_op_sextract_i64; 2366 } 2367 break; 2368 default: 2369 g_assert_not_reached(); 2370 } 2371 2372 ret = op->args[0]; 2373 src1 = op->args[1]; 2374 inv = cond == TCG_COND_TSTEQ; 2375 2376 if (sh && sext_opc && neg && !inv) { 2377 op->opc = sext_opc; 2378 op->args[1] = src1; 2379 op->args[2] = sh; 2380 op->args[3] = 1; 2381 return; 2382 } else if (sh && uext_opc) { 2383 op->opc = uext_opc; 2384 op->args[1] = src1; 2385 op->args[2] = sh; 2386 op->args[3] = 1; 2387 } else { 2388 if (sh) { 2389 op2 = opt_insert_before(ctx, op, shr_opc, 3); 2390 op2->args[0] = ret; 2391 op2->args[1] = src1; 2392 op2->args[2] = arg_new_constant(ctx, sh); 2393 src1 = ret; 2394 } 2395 op->opc = INDEX_op_and; 2396 op->args[1] = src1; 2397 op->args[2] = arg_new_constant(ctx, 1); 2398 } 2399 2400 if (neg && inv) { 2401 op2 = opt_insert_after(ctx, op, INDEX_op_add, 3); 2402 op2->args[0] = ret; 2403 op2->args[1] = ret; 2404 op2->args[2] = arg_new_constant(ctx, -1); 2405 } else if (inv) { 2406 op2 = opt_insert_after(ctx, op, INDEX_op_xor, 3); 2407 op2->args[0] = ret; 2408 op2->args[1] = ret; 2409 op2->args[2] = arg_new_constant(ctx, 1); 2410 } else if (neg) { 2411 op2 = opt_insert_after(ctx, op, neg_opc, 2); 2412 op2->args[0] = ret; 2413 op2->args[1] = ret; 2414 } 2415 } 2416 2417 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2418 { 2419 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2420 &op->args[2], &op->args[3]); 2421 if (i >= 0) { 2422 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2423 } 2424 2425 i = fold_setcond_zmask(ctx, op, false); 2426 if (i > 0) { 2427 return true; 2428 } 2429 if (i == 0) { 2430 fold_setcond_tst_pow2(ctx, op, false); 2431 } 2432 2433 return fold_masks_z(ctx, op, 1); 2434 } 2435 2436 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2437 { 2438 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2439 &op->args[2], &op->args[3]); 2440 if (i >= 0) { 2441 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2442 } 2443 2444 i = fold_setcond_zmask(ctx, op, true); 2445 if (i > 0) { 2446 return true; 2447 } 2448 if (i == 0) { 2449 fold_setcond_tst_pow2(ctx, op, true); 2450 } 2451 2452 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2453 return fold_masks_s(ctx, op, -1); 2454 } 2455 2456 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2457 { 2458 TCGCond cond; 2459 int i, inv = 0; 2460 2461 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2462 cond = op->args[5]; 2463 if (i >= 0) { 2464 goto do_setcond_const; 2465 } 2466 2467 switch (cond) { 2468 case TCG_COND_LT: 2469 case TCG_COND_GE: 2470 /* 2471 * Simplify LT/GE comparisons vs zero to a single compare 2472 * vs the high word of the input. 2473 */ 2474 if (arg_is_const_val(op->args[3], 0) && 2475 arg_is_const_val(op->args[4], 0)) { 2476 goto do_setcond_high; 2477 } 2478 break; 2479 2480 case TCG_COND_NE: 2481 inv = 1; 2482 QEMU_FALLTHROUGH; 2483 case TCG_COND_EQ: 2484 /* 2485 * Simplify EQ/NE comparisons where one of the pairs 2486 * can be simplified. 2487 */ 2488 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2489 op->args[3], cond); 2490 switch (i ^ inv) { 2491 case 0: 2492 goto do_setcond_const; 2493 case 1: 2494 goto do_setcond_high; 2495 } 2496 2497 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2498 op->args[4], cond); 2499 switch (i ^ inv) { 2500 case 0: 2501 goto do_setcond_const; 2502 case 1: 2503 goto do_setcond_low; 2504 } 2505 break; 2506 2507 case TCG_COND_TSTEQ: 2508 case TCG_COND_TSTNE: 2509 if (arg_is_const_val(op->args[3], 0)) { 2510 goto do_setcond_high; 2511 } 2512 if (arg_is_const_val(op->args[4], 0)) { 2513 goto do_setcond_low; 2514 } 2515 break; 2516 2517 default: 2518 break; 2519 2520 do_setcond_low: 2521 op->args[2] = op->args[3]; 2522 op->args[3] = cond; 2523 op->opc = INDEX_op_setcond_i32; 2524 return fold_setcond(ctx, op); 2525 2526 do_setcond_high: 2527 op->args[1] = op->args[2]; 2528 op->args[2] = op->args[4]; 2529 op->args[3] = cond; 2530 op->opc = INDEX_op_setcond_i32; 2531 return fold_setcond(ctx, op); 2532 } 2533 2534 return fold_masks_z(ctx, op, 1); 2535 2536 do_setcond_const: 2537 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2538 } 2539 2540 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2541 { 2542 uint64_t z_mask, s_mask, s_mask_old; 2543 TempOptInfo *t1 = arg_info(op->args[1]); 2544 int pos = op->args[2]; 2545 int len = op->args[3]; 2546 2547 if (ti_is_const(t1)) { 2548 return tcg_opt_gen_movi(ctx, op, op->args[0], 2549 sextract64(ti_const_val(t1), pos, len)); 2550 } 2551 2552 s_mask_old = t1->s_mask; 2553 s_mask = s_mask_old >> pos; 2554 s_mask |= -1ull << (len - 1); 2555 2556 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2557 return true; 2558 } 2559 2560 z_mask = sextract64(t1->z_mask, pos, len); 2561 return fold_masks_zs(ctx, op, z_mask, s_mask); 2562 } 2563 2564 static bool fold_shift(OptContext *ctx, TCGOp *op) 2565 { 2566 uint64_t s_mask, z_mask; 2567 TempOptInfo *t1, *t2; 2568 2569 if (fold_const2(ctx, op) || 2570 fold_ix_to_i(ctx, op, 0) || 2571 fold_xi_to_x(ctx, op, 0)) { 2572 return true; 2573 } 2574 2575 t1 = arg_info(op->args[1]); 2576 t2 = arg_info(op->args[2]); 2577 s_mask = t1->s_mask; 2578 z_mask = t1->z_mask; 2579 2580 if (ti_is_const(t2)) { 2581 int sh = ti_const_val(t2); 2582 2583 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2584 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2585 2586 return fold_masks_zs(ctx, op, z_mask, s_mask); 2587 } 2588 2589 switch (op->opc) { 2590 CASE_OP_32_64(sar): 2591 /* 2592 * Arithmetic right shift will not reduce the number of 2593 * input sign repetitions. 2594 */ 2595 return fold_masks_s(ctx, op, s_mask); 2596 CASE_OP_32_64(shr): 2597 /* 2598 * If the sign bit is known zero, then logical right shift 2599 * will not reduce the number of input sign repetitions. 2600 */ 2601 if (~z_mask & -s_mask) { 2602 return fold_masks_s(ctx, op, s_mask); 2603 } 2604 break; 2605 default: 2606 break; 2607 } 2608 2609 return finish_folding(ctx, op); 2610 } 2611 2612 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2613 { 2614 TCGOpcode neg_op; 2615 bool have_neg; 2616 2617 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2618 return false; 2619 } 2620 2621 switch (ctx->type) { 2622 case TCG_TYPE_I32: 2623 neg_op = INDEX_op_neg_i32; 2624 have_neg = true; 2625 break; 2626 case TCG_TYPE_I64: 2627 neg_op = INDEX_op_neg_i64; 2628 have_neg = true; 2629 break; 2630 case TCG_TYPE_V64: 2631 case TCG_TYPE_V128: 2632 case TCG_TYPE_V256: 2633 neg_op = INDEX_op_neg_vec; 2634 have_neg = (TCG_TARGET_HAS_neg_vec && 2635 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2636 break; 2637 default: 2638 g_assert_not_reached(); 2639 } 2640 if (have_neg) { 2641 op->opc = neg_op; 2642 op->args[1] = op->args[2]; 2643 return fold_neg_no_const(ctx, op); 2644 } 2645 return false; 2646 } 2647 2648 /* We cannot as yet do_constant_folding with vectors. */ 2649 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2650 { 2651 if (fold_xx_to_i(ctx, op, 0) || 2652 fold_xi_to_x(ctx, op, 0) || 2653 fold_sub_to_neg(ctx, op)) { 2654 return true; 2655 } 2656 return finish_folding(ctx, op); 2657 } 2658 2659 static bool fold_sub(OptContext *ctx, TCGOp *op) 2660 { 2661 if (fold_const2(ctx, op) || 2662 fold_xx_to_i(ctx, op, 0) || 2663 fold_xi_to_x(ctx, op, 0) || 2664 fold_sub_to_neg(ctx, op)) { 2665 return true; 2666 } 2667 2668 /* Fold sub r,x,i to add r,x,-i */ 2669 if (arg_is_const(op->args[2])) { 2670 uint64_t val = arg_info(op->args[2])->val; 2671 2672 op->opc = INDEX_op_add; 2673 op->args[2] = arg_new_constant(ctx, -val); 2674 } 2675 return finish_folding(ctx, op); 2676 } 2677 2678 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2679 { 2680 return fold_addsub2(ctx, op, false); 2681 } 2682 2683 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2684 { 2685 uint64_t z_mask = -1, s_mask = 0; 2686 2687 /* We can't do any folding with a load, but we can record bits. */ 2688 switch (op->opc) { 2689 CASE_OP_32_64(ld8s): 2690 s_mask = INT8_MIN; 2691 break; 2692 CASE_OP_32_64(ld8u): 2693 z_mask = MAKE_64BIT_MASK(0, 8); 2694 break; 2695 CASE_OP_32_64(ld16s): 2696 s_mask = INT16_MIN; 2697 break; 2698 CASE_OP_32_64(ld16u): 2699 z_mask = MAKE_64BIT_MASK(0, 16); 2700 break; 2701 case INDEX_op_ld32s_i64: 2702 s_mask = INT32_MIN; 2703 break; 2704 case INDEX_op_ld32u_i64: 2705 z_mask = MAKE_64BIT_MASK(0, 32); 2706 break; 2707 default: 2708 g_assert_not_reached(); 2709 } 2710 return fold_masks_zs(ctx, op, z_mask, s_mask); 2711 } 2712 2713 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2714 { 2715 TCGTemp *dst, *src; 2716 intptr_t ofs; 2717 TCGType type; 2718 2719 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2720 return finish_folding(ctx, op); 2721 } 2722 2723 type = ctx->type; 2724 ofs = op->args[2]; 2725 dst = arg_temp(op->args[0]); 2726 src = find_mem_copy_for(ctx, type, ofs); 2727 if (src && src->base_type == type) { 2728 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2729 } 2730 2731 reset_ts(ctx, dst); 2732 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2733 return true; 2734 } 2735 2736 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2737 { 2738 intptr_t ofs = op->args[2]; 2739 intptr_t lm1; 2740 2741 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2742 remove_mem_copy_all(ctx); 2743 return true; 2744 } 2745 2746 switch (op->opc) { 2747 CASE_OP_32_64(st8): 2748 lm1 = 0; 2749 break; 2750 CASE_OP_32_64(st16): 2751 lm1 = 1; 2752 break; 2753 case INDEX_op_st32_i64: 2754 case INDEX_op_st_i32: 2755 lm1 = 3; 2756 break; 2757 case INDEX_op_st_i64: 2758 lm1 = 7; 2759 break; 2760 case INDEX_op_st_vec: 2761 lm1 = tcg_type_size(ctx->type) - 1; 2762 break; 2763 default: 2764 g_assert_not_reached(); 2765 } 2766 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2767 return true; 2768 } 2769 2770 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2771 { 2772 TCGTemp *src; 2773 intptr_t ofs, last; 2774 TCGType type; 2775 2776 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2777 return fold_tcg_st(ctx, op); 2778 } 2779 2780 src = arg_temp(op->args[0]); 2781 ofs = op->args[2]; 2782 type = ctx->type; 2783 2784 /* 2785 * Eliminate duplicate stores of a constant. 2786 * This happens frequently when the target ISA zero-extends. 2787 */ 2788 if (ts_is_const(src)) { 2789 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2790 if (src == prev) { 2791 tcg_op_remove(ctx->tcg, op); 2792 return true; 2793 } 2794 } 2795 2796 last = ofs + tcg_type_size(type) - 1; 2797 remove_mem_copy_in(ctx, ofs, last); 2798 record_mem_copy(ctx, type, src, ofs, last); 2799 return true; 2800 } 2801 2802 static bool fold_xor(OptContext *ctx, TCGOp *op) 2803 { 2804 uint64_t z_mask, s_mask; 2805 TempOptInfo *t1, *t2; 2806 2807 if (fold_const2_commutative(ctx, op) || 2808 fold_xx_to_i(ctx, op, 0) || 2809 fold_xi_to_x(ctx, op, 0) || 2810 fold_xi_to_not(ctx, op, -1)) { 2811 return true; 2812 } 2813 2814 t1 = arg_info(op->args[1]); 2815 t2 = arg_info(op->args[2]); 2816 z_mask = t1->z_mask | t2->z_mask; 2817 s_mask = t1->s_mask & t2->s_mask; 2818 return fold_masks_zs(ctx, op, z_mask, s_mask); 2819 } 2820 2821 /* Propagate constants and copies, fold constant expressions. */ 2822 void tcg_optimize(TCGContext *s) 2823 { 2824 int nb_temps, i; 2825 TCGOp *op, *op_next; 2826 OptContext ctx = { .tcg = s }; 2827 2828 QSIMPLEQ_INIT(&ctx.mem_free); 2829 2830 /* Array VALS has an element for each temp. 2831 If this temp holds a constant then its value is kept in VALS' element. 2832 If this temp is a copy of other ones then the other copies are 2833 available through the doubly linked circular list. */ 2834 2835 nb_temps = s->nb_temps; 2836 for (i = 0; i < nb_temps; ++i) { 2837 s->temps[i].state_ptr = NULL; 2838 } 2839 2840 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2841 TCGOpcode opc = op->opc; 2842 const TCGOpDef *def; 2843 bool done = false; 2844 2845 /* Calls are special. */ 2846 if (opc == INDEX_op_call) { 2847 fold_call(&ctx, op); 2848 continue; 2849 } 2850 2851 def = &tcg_op_defs[opc]; 2852 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2853 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2854 2855 /* Pre-compute the type of the operation. */ 2856 ctx.type = TCGOP_TYPE(op); 2857 2858 /* 2859 * Process each opcode. 2860 * Sorted alphabetically by opcode as much as possible. 2861 */ 2862 switch (opc) { 2863 case INDEX_op_add: 2864 done = fold_add(&ctx, op); 2865 break; 2866 case INDEX_op_add_vec: 2867 done = fold_add_vec(&ctx, op); 2868 break; 2869 CASE_OP_32_64(add2): 2870 done = fold_add2(&ctx, op); 2871 break; 2872 case INDEX_op_and: 2873 case INDEX_op_and_vec: 2874 done = fold_and(&ctx, op); 2875 break; 2876 case INDEX_op_andc: 2877 case INDEX_op_andc_vec: 2878 done = fold_andc(&ctx, op); 2879 break; 2880 CASE_OP_32_64(brcond): 2881 done = fold_brcond(&ctx, op); 2882 break; 2883 case INDEX_op_brcond2_i32: 2884 done = fold_brcond2(&ctx, op); 2885 break; 2886 CASE_OP_32_64(bswap16): 2887 CASE_OP_32_64(bswap32): 2888 case INDEX_op_bswap64_i64: 2889 done = fold_bswap(&ctx, op); 2890 break; 2891 CASE_OP_32_64(clz): 2892 CASE_OP_32_64(ctz): 2893 done = fold_count_zeros(&ctx, op); 2894 break; 2895 CASE_OP_32_64(ctpop): 2896 done = fold_ctpop(&ctx, op); 2897 break; 2898 CASE_OP_32_64(deposit): 2899 done = fold_deposit(&ctx, op); 2900 break; 2901 CASE_OP_32_64(div): 2902 CASE_OP_32_64(divu): 2903 done = fold_divide(&ctx, op); 2904 break; 2905 case INDEX_op_dup_vec: 2906 done = fold_dup(&ctx, op); 2907 break; 2908 case INDEX_op_dup2_vec: 2909 done = fold_dup2(&ctx, op); 2910 break; 2911 CASE_OP_32_64_VEC(eqv): 2912 done = fold_eqv(&ctx, op); 2913 break; 2914 CASE_OP_32_64(extract): 2915 done = fold_extract(&ctx, op); 2916 break; 2917 CASE_OP_32_64(extract2): 2918 done = fold_extract2(&ctx, op); 2919 break; 2920 case INDEX_op_ext_i32_i64: 2921 done = fold_exts(&ctx, op); 2922 break; 2923 case INDEX_op_extu_i32_i64: 2924 case INDEX_op_extrl_i64_i32: 2925 case INDEX_op_extrh_i64_i32: 2926 done = fold_extu(&ctx, op); 2927 break; 2928 CASE_OP_32_64(ld8s): 2929 CASE_OP_32_64(ld8u): 2930 CASE_OP_32_64(ld16s): 2931 CASE_OP_32_64(ld16u): 2932 case INDEX_op_ld32s_i64: 2933 case INDEX_op_ld32u_i64: 2934 done = fold_tcg_ld(&ctx, op); 2935 break; 2936 case INDEX_op_ld_i32: 2937 case INDEX_op_ld_i64: 2938 case INDEX_op_ld_vec: 2939 done = fold_tcg_ld_memcopy(&ctx, op); 2940 break; 2941 CASE_OP_32_64(st8): 2942 CASE_OP_32_64(st16): 2943 case INDEX_op_st32_i64: 2944 done = fold_tcg_st(&ctx, op); 2945 break; 2946 case INDEX_op_st_i32: 2947 case INDEX_op_st_i64: 2948 case INDEX_op_st_vec: 2949 done = fold_tcg_st_memcopy(&ctx, op); 2950 break; 2951 case INDEX_op_mb: 2952 done = fold_mb(&ctx, op); 2953 break; 2954 case INDEX_op_mov: 2955 case INDEX_op_mov_vec: 2956 done = fold_mov(&ctx, op); 2957 break; 2958 CASE_OP_32_64(movcond): 2959 done = fold_movcond(&ctx, op); 2960 break; 2961 CASE_OP_32_64(mul): 2962 done = fold_mul(&ctx, op); 2963 break; 2964 CASE_OP_32_64(mulsh): 2965 CASE_OP_32_64(muluh): 2966 done = fold_mul_highpart(&ctx, op); 2967 break; 2968 CASE_OP_32_64(muls2): 2969 CASE_OP_32_64(mulu2): 2970 done = fold_multiply2(&ctx, op); 2971 break; 2972 CASE_OP_32_64_VEC(nand): 2973 done = fold_nand(&ctx, op); 2974 break; 2975 CASE_OP_32_64(neg): 2976 done = fold_neg(&ctx, op); 2977 break; 2978 CASE_OP_32_64_VEC(nor): 2979 done = fold_nor(&ctx, op); 2980 break; 2981 CASE_OP_32_64_VEC(not): 2982 done = fold_not(&ctx, op); 2983 break; 2984 case INDEX_op_or: 2985 case INDEX_op_or_vec: 2986 done = fold_or(&ctx, op); 2987 break; 2988 case INDEX_op_orc: 2989 case INDEX_op_orc_vec: 2990 done = fold_orc(&ctx, op); 2991 break; 2992 case INDEX_op_qemu_ld_i32: 2993 done = fold_qemu_ld_1reg(&ctx, op); 2994 break; 2995 case INDEX_op_qemu_ld_i64: 2996 if (TCG_TARGET_REG_BITS == 64) { 2997 done = fold_qemu_ld_1reg(&ctx, op); 2998 break; 2999 } 3000 QEMU_FALLTHROUGH; 3001 case INDEX_op_qemu_ld_i128: 3002 done = fold_qemu_ld_2reg(&ctx, op); 3003 break; 3004 case INDEX_op_qemu_st8_i32: 3005 case INDEX_op_qemu_st_i32: 3006 case INDEX_op_qemu_st_i64: 3007 case INDEX_op_qemu_st_i128: 3008 done = fold_qemu_st(&ctx, op); 3009 break; 3010 CASE_OP_32_64(rem): 3011 CASE_OP_32_64(remu): 3012 done = fold_remainder(&ctx, op); 3013 break; 3014 CASE_OP_32_64(rotl): 3015 CASE_OP_32_64(rotr): 3016 CASE_OP_32_64(sar): 3017 CASE_OP_32_64(shl): 3018 CASE_OP_32_64(shr): 3019 done = fold_shift(&ctx, op); 3020 break; 3021 CASE_OP_32_64(setcond): 3022 done = fold_setcond(&ctx, op); 3023 break; 3024 CASE_OP_32_64(negsetcond): 3025 done = fold_negsetcond(&ctx, op); 3026 break; 3027 case INDEX_op_setcond2_i32: 3028 done = fold_setcond2(&ctx, op); 3029 break; 3030 case INDEX_op_cmp_vec: 3031 done = fold_cmp_vec(&ctx, op); 3032 break; 3033 case INDEX_op_cmpsel_vec: 3034 done = fold_cmpsel_vec(&ctx, op); 3035 break; 3036 case INDEX_op_bitsel_vec: 3037 done = fold_bitsel_vec(&ctx, op); 3038 break; 3039 CASE_OP_32_64(sextract): 3040 done = fold_sextract(&ctx, op); 3041 break; 3042 CASE_OP_32_64(sub): 3043 done = fold_sub(&ctx, op); 3044 break; 3045 case INDEX_op_sub_vec: 3046 done = fold_sub_vec(&ctx, op); 3047 break; 3048 CASE_OP_32_64(sub2): 3049 done = fold_sub2(&ctx, op); 3050 break; 3051 case INDEX_op_xor: 3052 case INDEX_op_xor_vec: 3053 done = fold_xor(&ctx, op); 3054 break; 3055 case INDEX_op_set_label: 3056 case INDEX_op_br: 3057 case INDEX_op_exit_tb: 3058 case INDEX_op_goto_tb: 3059 case INDEX_op_goto_ptr: 3060 finish_ebb(&ctx); 3061 done = true; 3062 break; 3063 default: 3064 done = finish_folding(&ctx, op); 3065 break; 3066 } 3067 tcg_debug_assert(done); 3068 } 3069 } 3070