xref: /openbmc/qemu/tcg/optimize.c (revision ea46c4bce8c8a8285e6715c1bac29f5b73f5062b)
1 /*
2  * Optimizations for Tiny Code Generator for QEMU
3  *
4  * Copyright (c) 2010 Samsung Electronics.
5  * Contributed by Kirill Batuzov <batuzovk@ispras.ru>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/int128.h"
28 #include "qemu/interval-tree.h"
29 #include "tcg/tcg-op-common.h"
30 #include "tcg-internal.h"
31 #include "tcg-has.h"
32 
33 #define CASE_OP_32_64(x)                        \
34         glue(glue(case INDEX_op_, x), _i32):    \
35         glue(glue(case INDEX_op_, x), _i64)
36 
37 #define CASE_OP_32_64_VEC(x)                    \
38         glue(glue(case INDEX_op_, x), _i32):    \
39         glue(glue(case INDEX_op_, x), _i64):    \
40         glue(glue(case INDEX_op_, x), _vec)
41 
42 typedef struct MemCopyInfo {
43     IntervalTreeNode itree;
44     QSIMPLEQ_ENTRY (MemCopyInfo) next;
45     TCGTemp *ts;
46     TCGType type;
47 } MemCopyInfo;
48 
49 typedef struct TempOptInfo {
50     bool is_const;
51     TCGTemp *prev_copy;
52     TCGTemp *next_copy;
53     QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy;
54     uint64_t val;
55     uint64_t z_mask;  /* mask bit is 0 if and only if value bit is 0 */
56     uint64_t s_mask;  /* mask bit is 1 if value bit matches msb */
57 } TempOptInfo;
58 
59 typedef struct OptContext {
60     TCGContext *tcg;
61     TCGOp *prev_mb;
62     TCGTempSet temps_used;
63 
64     IntervalTreeRoot mem_copy;
65     QSIMPLEQ_HEAD(, MemCopyInfo) mem_free;
66 
67     /* In flight values from optimization. */
68     TCGType type;
69 } OptContext;
70 
71 static inline TempOptInfo *ts_info(TCGTemp *ts)
72 {
73     return ts->state_ptr;
74 }
75 
76 static inline TempOptInfo *arg_info(TCGArg arg)
77 {
78     return ts_info(arg_temp(arg));
79 }
80 
81 static inline bool ti_is_const(TempOptInfo *ti)
82 {
83     return ti->is_const;
84 }
85 
86 static inline uint64_t ti_const_val(TempOptInfo *ti)
87 {
88     return ti->val;
89 }
90 
91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val)
92 {
93     return ti_is_const(ti) && ti_const_val(ti) == val;
94 }
95 
96 static inline bool ts_is_const(TCGTemp *ts)
97 {
98     return ti_is_const(ts_info(ts));
99 }
100 
101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val)
102 {
103     return ti_is_const_val(ts_info(ts), val);
104 }
105 
106 static inline bool arg_is_const(TCGArg arg)
107 {
108     return ts_is_const(arg_temp(arg));
109 }
110 
111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val)
112 {
113     return ts_is_const_val(arg_temp(arg), val);
114 }
115 
116 static inline bool ts_is_copy(TCGTemp *ts)
117 {
118     return ts_info(ts)->next_copy != ts;
119 }
120 
121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b)
122 {
123     return a->kind < b->kind ? b : a;
124 }
125 
126 /* Initialize and activate a temporary.  */
127 static void init_ts_info(OptContext *ctx, TCGTemp *ts)
128 {
129     size_t idx = temp_idx(ts);
130     TempOptInfo *ti;
131 
132     if (test_bit(idx, ctx->temps_used.l)) {
133         return;
134     }
135     set_bit(idx, ctx->temps_used.l);
136 
137     ti = ts->state_ptr;
138     if (ti == NULL) {
139         ti = tcg_malloc(sizeof(TempOptInfo));
140         ts->state_ptr = ti;
141     }
142 
143     ti->next_copy = ts;
144     ti->prev_copy = ts;
145     QSIMPLEQ_INIT(&ti->mem_copy);
146     if (ts->kind == TEMP_CONST) {
147         ti->is_const = true;
148         ti->val = ts->val;
149         ti->z_mask = ts->val;
150         ti->s_mask = INT64_MIN >> clrsb64(ts->val);
151     } else {
152         ti->is_const = false;
153         ti->z_mask = -1;
154         ti->s_mask = 0;
155     }
156 }
157 
158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l)
159 {
160     IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l);
161     return r ? container_of(r, MemCopyInfo, itree) : NULL;
162 }
163 
164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l)
165 {
166     IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l);
167     return r ? container_of(r, MemCopyInfo, itree) : NULL;
168 }
169 
170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc)
171 {
172     TCGTemp *ts = mc->ts;
173     TempOptInfo *ti = ts_info(ts);
174 
175     interval_tree_remove(&mc->itree, &ctx->mem_copy);
176     QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next);
177     QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next);
178 }
179 
180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l)
181 {
182     while (true) {
183         MemCopyInfo *mc = mem_copy_first(ctx, s, l);
184         if (!mc) {
185             break;
186         }
187         remove_mem_copy(ctx, mc);
188     }
189 }
190 
191 static void remove_mem_copy_all(OptContext *ctx)
192 {
193     remove_mem_copy_in(ctx, 0, -1);
194     tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy));
195 }
196 
197 static TCGTemp *find_better_copy(TCGTemp *ts)
198 {
199     TCGTemp *i, *ret;
200 
201     /* If this is already readonly, we can't do better. */
202     if (temp_readonly(ts)) {
203         return ts;
204     }
205 
206     ret = ts;
207     for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) {
208         ret = cmp_better_copy(ret, i);
209     }
210     return ret;
211 }
212 
213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts)
214 {
215     TempOptInfo *si = ts_info(src_ts);
216     TempOptInfo *di = ts_info(dst_ts);
217     MemCopyInfo *mc;
218 
219     QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) {
220         tcg_debug_assert(mc->ts == src_ts);
221         mc->ts = dst_ts;
222     }
223     QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy);
224 }
225 
226 /* Reset TEMP's state, possibly removing the temp for the list of copies.  */
227 static void reset_ts(OptContext *ctx, TCGTemp *ts)
228 {
229     TempOptInfo *ti = ts_info(ts);
230     TCGTemp *pts = ti->prev_copy;
231     TCGTemp *nts = ti->next_copy;
232     TempOptInfo *pi = ts_info(pts);
233     TempOptInfo *ni = ts_info(nts);
234 
235     ni->prev_copy = ti->prev_copy;
236     pi->next_copy = ti->next_copy;
237     ti->next_copy = ts;
238     ti->prev_copy = ts;
239     ti->is_const = false;
240     ti->z_mask = -1;
241     ti->s_mask = 0;
242 
243     if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) {
244         if (ts == nts) {
245             /* Last temp copy being removed, the mem copies die. */
246             MemCopyInfo *mc;
247             QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) {
248                 interval_tree_remove(&mc->itree, &ctx->mem_copy);
249             }
250             QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy);
251         } else {
252             move_mem_copies(find_better_copy(nts), ts);
253         }
254     }
255 }
256 
257 static void reset_temp(OptContext *ctx, TCGArg arg)
258 {
259     reset_ts(ctx, arg_temp(arg));
260 }
261 
262 static void record_mem_copy(OptContext *ctx, TCGType type,
263                             TCGTemp *ts, intptr_t start, intptr_t last)
264 {
265     MemCopyInfo *mc;
266     TempOptInfo *ti;
267 
268     mc = QSIMPLEQ_FIRST(&ctx->mem_free);
269     if (mc) {
270         QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next);
271     } else {
272         mc = tcg_malloc(sizeof(*mc));
273     }
274 
275     memset(mc, 0, sizeof(*mc));
276     mc->itree.start = start;
277     mc->itree.last = last;
278     mc->type = type;
279     interval_tree_insert(&mc->itree, &ctx->mem_copy);
280 
281     ts = find_better_copy(ts);
282     ti = ts_info(ts);
283     mc->ts = ts;
284     QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next);
285 }
286 
287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2)
288 {
289     TCGTemp *i;
290 
291     if (ts1 == ts2) {
292         return true;
293     }
294 
295     if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) {
296         return false;
297     }
298 
299     for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) {
300         if (i == ts2) {
301             return true;
302         }
303     }
304 
305     return false;
306 }
307 
308 static bool args_are_copies(TCGArg arg1, TCGArg arg2)
309 {
310     return ts_are_copies(arg_temp(arg1), arg_temp(arg2));
311 }
312 
313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s)
314 {
315     MemCopyInfo *mc;
316 
317     for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) {
318         if (mc->itree.start == s && mc->type == type) {
319             return find_better_copy(mc->ts);
320         }
321     }
322     return NULL;
323 }
324 
325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val)
326 {
327     TCGType type = ctx->type;
328     TCGTemp *ts;
329 
330     if (type == TCG_TYPE_I32) {
331         val = (int32_t)val;
332     }
333 
334     ts = tcg_constant_internal(type, val);
335     init_ts_info(ctx, ts);
336 
337     return temp_arg(ts);
338 }
339 
340 static TCGArg arg_new_temp(OptContext *ctx)
341 {
342     TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB);
343     init_ts_info(ctx, ts);
344     return temp_arg(ts);
345 }
346 
347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op,
348                                TCGOpcode opc, unsigned narg)
349 {
350     return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg);
351 }
352 
353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op,
354                                 TCGOpcode opc, unsigned narg)
355 {
356     return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg);
357 }
358 
359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src)
360 {
361     TCGTemp *dst_ts = arg_temp(dst);
362     TCGTemp *src_ts = arg_temp(src);
363     TempOptInfo *di;
364     TempOptInfo *si;
365     TCGOpcode new_op;
366 
367     if (ts_are_copies(dst_ts, src_ts)) {
368         tcg_op_remove(ctx->tcg, op);
369         return true;
370     }
371 
372     reset_ts(ctx, dst_ts);
373     di = ts_info(dst_ts);
374     si = ts_info(src_ts);
375 
376     switch (ctx->type) {
377     case TCG_TYPE_I32:
378     case TCG_TYPE_I64:
379         new_op = INDEX_op_mov;
380         break;
381     case TCG_TYPE_V64:
382     case TCG_TYPE_V128:
383     case TCG_TYPE_V256:
384         /* TCGOP_TYPE and TCGOP_VECE remain unchanged.  */
385         new_op = INDEX_op_mov_vec;
386         break;
387     default:
388         g_assert_not_reached();
389     }
390     op->opc = new_op;
391     op->args[0] = dst;
392     op->args[1] = src;
393 
394     di->z_mask = si->z_mask;
395     di->s_mask = si->s_mask;
396 
397     if (src_ts->type == dst_ts->type) {
398         TempOptInfo *ni = ts_info(si->next_copy);
399 
400         di->next_copy = si->next_copy;
401         di->prev_copy = src_ts;
402         ni->prev_copy = dst_ts;
403         si->next_copy = dst_ts;
404         di->is_const = si->is_const;
405         di->val = si->val;
406 
407         if (!QSIMPLEQ_EMPTY(&si->mem_copy)
408             && cmp_better_copy(src_ts, dst_ts) == dst_ts) {
409             move_mem_copies(dst_ts, src_ts);
410         }
411     }
412     return true;
413 }
414 
415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op,
416                              TCGArg dst, uint64_t val)
417 {
418     /* Convert movi to mov with constant temp. */
419     return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val));
420 }
421 
422 static uint64_t do_constant_folding_2(TCGOpcode op, TCGType type,
423                                       uint64_t x, uint64_t y)
424 {
425     uint64_t l64, h64;
426 
427     switch (op) {
428     case INDEX_op_add:
429         return x + y;
430 
431     case INDEX_op_sub:
432         return x - y;
433 
434     case INDEX_op_mul:
435         return x * y;
436 
437     case INDEX_op_and:
438     case INDEX_op_and_vec:
439         return x & y;
440 
441     case INDEX_op_or:
442     case INDEX_op_or_vec:
443         return x | y;
444 
445     case INDEX_op_xor:
446     case INDEX_op_xor_vec:
447         return x ^ y;
448 
449     case INDEX_op_shl:
450         if (type == TCG_TYPE_I32) {
451             return (uint32_t)x << (y & 31);
452         }
453         return (uint64_t)x << (y & 63);
454 
455     case INDEX_op_shr:
456         if (type == TCG_TYPE_I32) {
457             return (uint32_t)x >> (y & 31);
458         }
459         return (uint64_t)x >> (y & 63);
460 
461     case INDEX_op_sar:
462         if (type == TCG_TYPE_I32) {
463             return (int32_t)x >> (y & 31);
464         }
465         return (int64_t)x >> (y & 63);
466 
467     case INDEX_op_rotr:
468         if (type == TCG_TYPE_I32) {
469             return ror32(x, y & 31);
470         }
471         return ror64(x, y & 63);
472 
473     case INDEX_op_rotl:
474         if (type == TCG_TYPE_I32) {
475             return rol32(x, y & 31);
476         }
477         return rol64(x, y & 63);
478 
479     case INDEX_op_not:
480     case INDEX_op_not_vec:
481         return ~x;
482 
483     case INDEX_op_neg:
484         return -x;
485 
486     case INDEX_op_andc:
487     case INDEX_op_andc_vec:
488         return x & ~y;
489 
490     case INDEX_op_orc:
491     case INDEX_op_orc_vec:
492         return x | ~y;
493 
494     case INDEX_op_eqv:
495     case INDEX_op_eqv_vec:
496         return ~(x ^ y);
497 
498     case INDEX_op_nand:
499     case INDEX_op_nand_vec:
500         return ~(x & y);
501 
502     case INDEX_op_nor:
503     case INDEX_op_nor_vec:
504         return ~(x | y);
505 
506     case INDEX_op_clz:
507         if (type == TCG_TYPE_I32) {
508             return (uint32_t)x ? clz32(x) : y;
509         }
510         return x ? clz64(x) : y;
511 
512     case INDEX_op_ctz:
513         if (type == TCG_TYPE_I32) {
514             return (uint32_t)x ? ctz32(x) : y;
515         }
516         return x ? ctz64(x) : y;
517 
518     case INDEX_op_ctpop:
519         return type == TCG_TYPE_I32 ? ctpop32(x) : ctpop64(x);
520 
521     CASE_OP_32_64(bswap16):
522         x = bswap16(x);
523         return y & TCG_BSWAP_OS ? (int16_t)x : x;
524 
525     CASE_OP_32_64(bswap32):
526         x = bswap32(x);
527         return y & TCG_BSWAP_OS ? (int32_t)x : x;
528 
529     case INDEX_op_bswap64_i64:
530         return bswap64(x);
531 
532     case INDEX_op_ext_i32_i64:
533         return (int32_t)x;
534 
535     case INDEX_op_extu_i32_i64:
536     case INDEX_op_extrl_i64_i32:
537         return (uint32_t)x;
538 
539     case INDEX_op_extrh_i64_i32:
540         return (uint64_t)x >> 32;
541 
542     case INDEX_op_muluh:
543         if (type == TCG_TYPE_I32) {
544             return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32;
545         }
546         mulu64(&l64, &h64, x, y);
547         return h64;
548 
549     case INDEX_op_mulsh:
550         if (type == TCG_TYPE_I32) {
551             return ((int64_t)(int32_t)x * (int32_t)y) >> 32;
552         }
553         muls64(&l64, &h64, x, y);
554         return h64;
555 
556     case INDEX_op_divs:
557         /* Avoid crashing on divide by zero, otherwise undefined.  */
558         if (type == TCG_TYPE_I32) {
559             return (int32_t)x / ((int32_t)y ? : 1);
560         }
561         return (int64_t)x / ((int64_t)y ? : 1);
562 
563     case INDEX_op_divu:
564         if (type == TCG_TYPE_I32) {
565             return (uint32_t)x / ((uint32_t)y ? : 1);
566         }
567         return (uint64_t)x / ((uint64_t)y ? : 1);
568 
569     case INDEX_op_rems:
570         if (type == TCG_TYPE_I32) {
571             return (int32_t)x % ((int32_t)y ? : 1);
572         }
573         return (int64_t)x % ((int64_t)y ? : 1);
574 
575     case INDEX_op_remu:
576         if (type == TCG_TYPE_I32) {
577             return (uint32_t)x % ((uint32_t)y ? : 1);
578         }
579         return (uint64_t)x % ((uint64_t)y ? : 1);
580 
581     default:
582         g_assert_not_reached();
583     }
584 }
585 
586 static uint64_t do_constant_folding(TCGOpcode op, TCGType type,
587                                     uint64_t x, uint64_t y)
588 {
589     uint64_t res = do_constant_folding_2(op, type, x, y);
590     if (type == TCG_TYPE_I32) {
591         res = (int32_t)res;
592     }
593     return res;
594 }
595 
596 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c)
597 {
598     switch (c) {
599     case TCG_COND_EQ:
600         return x == y;
601     case TCG_COND_NE:
602         return x != y;
603     case TCG_COND_LT:
604         return (int32_t)x < (int32_t)y;
605     case TCG_COND_GE:
606         return (int32_t)x >= (int32_t)y;
607     case TCG_COND_LE:
608         return (int32_t)x <= (int32_t)y;
609     case TCG_COND_GT:
610         return (int32_t)x > (int32_t)y;
611     case TCG_COND_LTU:
612         return x < y;
613     case TCG_COND_GEU:
614         return x >= y;
615     case TCG_COND_LEU:
616         return x <= y;
617     case TCG_COND_GTU:
618         return x > y;
619     case TCG_COND_TSTEQ:
620         return (x & y) == 0;
621     case TCG_COND_TSTNE:
622         return (x & y) != 0;
623     case TCG_COND_ALWAYS:
624     case TCG_COND_NEVER:
625         break;
626     }
627     g_assert_not_reached();
628 }
629 
630 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c)
631 {
632     switch (c) {
633     case TCG_COND_EQ:
634         return x == y;
635     case TCG_COND_NE:
636         return x != y;
637     case TCG_COND_LT:
638         return (int64_t)x < (int64_t)y;
639     case TCG_COND_GE:
640         return (int64_t)x >= (int64_t)y;
641     case TCG_COND_LE:
642         return (int64_t)x <= (int64_t)y;
643     case TCG_COND_GT:
644         return (int64_t)x > (int64_t)y;
645     case TCG_COND_LTU:
646         return x < y;
647     case TCG_COND_GEU:
648         return x >= y;
649     case TCG_COND_LEU:
650         return x <= y;
651     case TCG_COND_GTU:
652         return x > y;
653     case TCG_COND_TSTEQ:
654         return (x & y) == 0;
655     case TCG_COND_TSTNE:
656         return (x & y) != 0;
657     case TCG_COND_ALWAYS:
658     case TCG_COND_NEVER:
659         break;
660     }
661     g_assert_not_reached();
662 }
663 
664 static int do_constant_folding_cond_eq(TCGCond c)
665 {
666     switch (c) {
667     case TCG_COND_GT:
668     case TCG_COND_LTU:
669     case TCG_COND_LT:
670     case TCG_COND_GTU:
671     case TCG_COND_NE:
672         return 0;
673     case TCG_COND_GE:
674     case TCG_COND_GEU:
675     case TCG_COND_LE:
676     case TCG_COND_LEU:
677     case TCG_COND_EQ:
678         return 1;
679     case TCG_COND_TSTEQ:
680     case TCG_COND_TSTNE:
681         return -1;
682     case TCG_COND_ALWAYS:
683     case TCG_COND_NEVER:
684         break;
685     }
686     g_assert_not_reached();
687 }
688 
689 /*
690  * Return -1 if the condition can't be simplified,
691  * and the result of the condition (0 or 1) if it can.
692  */
693 static int do_constant_folding_cond(TCGType type, TCGArg x,
694                                     TCGArg y, TCGCond c)
695 {
696     if (arg_is_const(x) && arg_is_const(y)) {
697         uint64_t xv = arg_info(x)->val;
698         uint64_t yv = arg_info(y)->val;
699 
700         switch (type) {
701         case TCG_TYPE_I32:
702             return do_constant_folding_cond_32(xv, yv, c);
703         case TCG_TYPE_I64:
704             return do_constant_folding_cond_64(xv, yv, c);
705         default:
706             /* Only scalar comparisons are optimizable */
707             return -1;
708         }
709     } else if (args_are_copies(x, y)) {
710         return do_constant_folding_cond_eq(c);
711     } else if (arg_is_const_val(y, 0)) {
712         switch (c) {
713         case TCG_COND_LTU:
714         case TCG_COND_TSTNE:
715             return 0;
716         case TCG_COND_GEU:
717         case TCG_COND_TSTEQ:
718             return 1;
719         default:
720             return -1;
721         }
722     }
723     return -1;
724 }
725 
726 /**
727  * swap_commutative:
728  * @dest: TCGArg of the destination argument, or NO_DEST.
729  * @p1: first paired argument
730  * @p2: second paired argument
731  *
732  * If *@p1 is a constant and *@p2 is not, swap.
733  * If *@p2 matches @dest, swap.
734  * Return true if a swap was performed.
735  */
736 
737 #define NO_DEST  temp_arg(NULL)
738 
739 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2)
740 {
741     TCGArg a1 = *p1, a2 = *p2;
742     int sum = 0;
743     sum += arg_is_const(a1);
744     sum -= arg_is_const(a2);
745 
746     /* Prefer the constant in second argument, and then the form
747        op a, a, b, which is better handled on non-RISC hosts. */
748     if (sum > 0 || (sum == 0 && dest == a2)) {
749         *p1 = a2;
750         *p2 = a1;
751         return true;
752     }
753     return false;
754 }
755 
756 static bool swap_commutative2(TCGArg *p1, TCGArg *p2)
757 {
758     int sum = 0;
759     sum += arg_is_const(p1[0]);
760     sum += arg_is_const(p1[1]);
761     sum -= arg_is_const(p2[0]);
762     sum -= arg_is_const(p2[1]);
763     if (sum > 0) {
764         TCGArg t;
765         t = p1[0], p1[0] = p2[0], p2[0] = t;
766         t = p1[1], p1[1] = p2[1], p2[1] = t;
767         return true;
768     }
769     return false;
770 }
771 
772 /*
773  * Return -1 if the condition can't be simplified,
774  * and the result of the condition (0 or 1) if it can.
775  */
776 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest,
777                                      TCGArg *p1, TCGArg *p2, TCGArg *pcond)
778 {
779     TCGCond cond;
780     TempOptInfo *i1;
781     bool swap;
782     int r;
783 
784     swap = swap_commutative(dest, p1, p2);
785     cond = *pcond;
786     if (swap) {
787         *pcond = cond = tcg_swap_cond(cond);
788     }
789 
790     r = do_constant_folding_cond(ctx->type, *p1, *p2, cond);
791     if (r >= 0) {
792         return r;
793     }
794     if (!is_tst_cond(cond)) {
795         return -1;
796     }
797 
798     i1 = arg_info(*p1);
799 
800     /*
801      * TSTNE x,x -> NE x,0
802      * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x
803      */
804     if (args_are_copies(*p1, *p2) ||
805         (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) {
806         *p2 = arg_new_constant(ctx, 0);
807         *pcond = tcg_tst_eqne_cond(cond);
808         return -1;
809     }
810 
811     /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */
812     if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) {
813         *p2 = arg_new_constant(ctx, 0);
814         *pcond = tcg_tst_ltge_cond(cond);
815         return -1;
816     }
817 
818     /* Expand to AND with a temporary if no backend support. */
819     if (!TCG_TARGET_HAS_tst) {
820         TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3);
821         TCGArg tmp = arg_new_temp(ctx);
822 
823         op2->args[0] = tmp;
824         op2->args[1] = *p1;
825         op2->args[2] = *p2;
826 
827         *p1 = tmp;
828         *p2 = arg_new_constant(ctx, 0);
829         *pcond = tcg_tst_eqne_cond(cond);
830     }
831     return -1;
832 }
833 
834 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args)
835 {
836     TCGArg al, ah, bl, bh;
837     TCGCond c;
838     bool swap;
839     int r;
840 
841     swap = swap_commutative2(args, args + 2);
842     c = args[4];
843     if (swap) {
844         args[4] = c = tcg_swap_cond(c);
845     }
846 
847     al = args[0];
848     ah = args[1];
849     bl = args[2];
850     bh = args[3];
851 
852     if (arg_is_const(bl) && arg_is_const(bh)) {
853         tcg_target_ulong blv = arg_info(bl)->val;
854         tcg_target_ulong bhv = arg_info(bh)->val;
855         uint64_t b = deposit64(blv, 32, 32, bhv);
856 
857         if (arg_is_const(al) && arg_is_const(ah)) {
858             tcg_target_ulong alv = arg_info(al)->val;
859             tcg_target_ulong ahv = arg_info(ah)->val;
860             uint64_t a = deposit64(alv, 32, 32, ahv);
861 
862             r = do_constant_folding_cond_64(a, b, c);
863             if (r >= 0) {
864                 return r;
865             }
866         }
867 
868         if (b == 0) {
869             switch (c) {
870             case TCG_COND_LTU:
871             case TCG_COND_TSTNE:
872                 return 0;
873             case TCG_COND_GEU:
874             case TCG_COND_TSTEQ:
875                 return 1;
876             default:
877                 break;
878             }
879         }
880 
881         /* TSTNE x,-1 -> NE x,0 */
882         if (b == -1 && is_tst_cond(c)) {
883             args[3] = args[2] = arg_new_constant(ctx, 0);
884             args[4] = tcg_tst_eqne_cond(c);
885             return -1;
886         }
887 
888         /* TSTNE x,sign -> LT x,0 */
889         if (b == INT64_MIN && is_tst_cond(c)) {
890             /* bl must be 0, so copy that to bh */
891             args[3] = bl;
892             args[4] = tcg_tst_ltge_cond(c);
893             return -1;
894         }
895     }
896 
897     if (args_are_copies(al, bl) && args_are_copies(ah, bh)) {
898         r = do_constant_folding_cond_eq(c);
899         if (r >= 0) {
900             return r;
901         }
902 
903         /* TSTNE x,x -> NE x,0 */
904         if (is_tst_cond(c)) {
905             args[3] = args[2] = arg_new_constant(ctx, 0);
906             args[4] = tcg_tst_eqne_cond(c);
907             return -1;
908         }
909     }
910 
911     /* Expand to AND with a temporary if no backend support. */
912     if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) {
913         TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and, 3);
914         TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3);
915         TCGArg t1 = arg_new_temp(ctx);
916         TCGArg t2 = arg_new_temp(ctx);
917 
918         op1->args[0] = t1;
919         op1->args[1] = al;
920         op1->args[2] = bl;
921         op2->args[0] = t2;
922         op2->args[1] = ah;
923         op2->args[2] = bh;
924 
925         args[0] = t1;
926         args[1] = t2;
927         args[3] = args[2] = arg_new_constant(ctx, 0);
928         args[4] = tcg_tst_eqne_cond(c);
929     }
930     return -1;
931 }
932 
933 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args)
934 {
935     for (int i = 0; i < nb_args; i++) {
936         TCGTemp *ts = arg_temp(op->args[i]);
937         init_ts_info(ctx, ts);
938     }
939 }
940 
941 static void copy_propagate(OptContext *ctx, TCGOp *op,
942                            int nb_oargs, int nb_iargs)
943 {
944     for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
945         TCGTemp *ts = arg_temp(op->args[i]);
946         if (ts_is_copy(ts)) {
947             op->args[i] = temp_arg(find_better_copy(ts));
948         }
949     }
950 }
951 
952 static void finish_bb(OptContext *ctx)
953 {
954     /* We only optimize memory barriers across basic blocks. */
955     ctx->prev_mb = NULL;
956 }
957 
958 static void finish_ebb(OptContext *ctx)
959 {
960     finish_bb(ctx);
961     /* We only optimize across extended basic blocks. */
962     memset(&ctx->temps_used, 0, sizeof(ctx->temps_used));
963     remove_mem_copy_all(ctx);
964 }
965 
966 static bool finish_folding(OptContext *ctx, TCGOp *op)
967 {
968     const TCGOpDef *def = &tcg_op_defs[op->opc];
969     int i, nb_oargs;
970 
971     nb_oargs = def->nb_oargs;
972     for (i = 0; i < nb_oargs; i++) {
973         TCGTemp *ts = arg_temp(op->args[i]);
974         reset_ts(ctx, ts);
975     }
976     return true;
977 }
978 
979 /*
980  * The fold_* functions return true when processing is complete,
981  * usually by folding the operation to a constant or to a copy,
982  * and calling tcg_opt_gen_{mov,movi}.  They may do other things,
983  * like collect information about the value produced, for use in
984  * optimizing a subsequent operation.
985  *
986  * These first fold_* functions are all helpers, used by other
987  * folders for more specific operations.
988  */
989 
990 static bool fold_const1(OptContext *ctx, TCGOp *op)
991 {
992     if (arg_is_const(op->args[1])) {
993         uint64_t t;
994 
995         t = arg_info(op->args[1])->val;
996         t = do_constant_folding(op->opc, ctx->type, t, 0);
997         return tcg_opt_gen_movi(ctx, op, op->args[0], t);
998     }
999     return false;
1000 }
1001 
1002 static bool fold_const2(OptContext *ctx, TCGOp *op)
1003 {
1004     if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1005         uint64_t t1 = arg_info(op->args[1])->val;
1006         uint64_t t2 = arg_info(op->args[2])->val;
1007 
1008         t1 = do_constant_folding(op->opc, ctx->type, t1, t2);
1009         return tcg_opt_gen_movi(ctx, op, op->args[0], t1);
1010     }
1011     return false;
1012 }
1013 
1014 static bool fold_commutative(OptContext *ctx, TCGOp *op)
1015 {
1016     swap_commutative(op->args[0], &op->args[1], &op->args[2]);
1017     return false;
1018 }
1019 
1020 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op)
1021 {
1022     swap_commutative(op->args[0], &op->args[1], &op->args[2]);
1023     return fold_const2(ctx, op);
1024 }
1025 
1026 /*
1027  * Record "zero" and "sign" masks for the single output of @op.
1028  * See TempOptInfo definition of z_mask and s_mask.
1029  * If z_mask allows, fold the output to constant zero.
1030  * The passed s_mask may be augmented by z_mask.
1031  */
1032 static bool fold_masks_zs(OptContext *ctx, TCGOp *op,
1033                           uint64_t z_mask, int64_t s_mask)
1034 {
1035     const TCGOpDef *def = &tcg_op_defs[op->opc];
1036     TCGTemp *ts;
1037     TempOptInfo *ti;
1038     int rep;
1039 
1040     /* Only single-output opcodes are supported here. */
1041     tcg_debug_assert(def->nb_oargs == 1);
1042 
1043     /*
1044      * 32-bit ops generate 32-bit results, which for the purpose of
1045      * simplifying tcg are sign-extended.  Certainly that's how we
1046      * represent our constants elsewhere.  Note that the bits will
1047      * be reset properly for a 64-bit value when encountering the
1048      * type changing opcodes.
1049      */
1050     if (ctx->type == TCG_TYPE_I32) {
1051         z_mask = (int32_t)z_mask;
1052         s_mask |= INT32_MIN;
1053     }
1054 
1055     if (z_mask == 0) {
1056         return tcg_opt_gen_movi(ctx, op, op->args[0], 0);
1057     }
1058 
1059     ts = arg_temp(op->args[0]);
1060     reset_ts(ctx, ts);
1061 
1062     ti = ts_info(ts);
1063     ti->z_mask = z_mask;
1064 
1065     /* Canonicalize s_mask and incorporate data from z_mask. */
1066     rep = clz64(~s_mask);
1067     rep = MAX(rep, clz64(z_mask));
1068     rep = MAX(rep - 1, 0);
1069     ti->s_mask = INT64_MIN >> rep;
1070 
1071     return true;
1072 }
1073 
1074 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask)
1075 {
1076     return fold_masks_zs(ctx, op, z_mask, 0);
1077 }
1078 
1079 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask)
1080 {
1081     return fold_masks_zs(ctx, op, -1, s_mask);
1082 }
1083 
1084 /*
1085  * An "affected" mask bit is 0 if and only if the result is identical
1086  * to the first input.  Thus if the entire mask is 0, the operation
1087  * is equivalent to a copy.
1088  */
1089 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask)
1090 {
1091     if (ctx->type == TCG_TYPE_I32) {
1092         a_mask = (uint32_t)a_mask;
1093     }
1094     if (a_mask == 0) {
1095         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1096     }
1097     return false;
1098 }
1099 
1100 /*
1101  * Convert @op to NOT, if NOT is supported by the host.
1102  * Return true f the conversion is successful, which will still
1103  * indicate that the processing is complete.
1104  */
1105 static bool fold_not(OptContext *ctx, TCGOp *op);
1106 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx)
1107 {
1108     TCGOpcode not_op;
1109     bool have_not;
1110 
1111     switch (ctx->type) {
1112     case TCG_TYPE_I32:
1113     case TCG_TYPE_I64:
1114         not_op = INDEX_op_not;
1115         have_not = tcg_op_supported(INDEX_op_not, ctx->type, 0);
1116         break;
1117     case TCG_TYPE_V64:
1118     case TCG_TYPE_V128:
1119     case TCG_TYPE_V256:
1120         not_op = INDEX_op_not_vec;
1121         have_not = TCG_TARGET_HAS_not_vec;
1122         break;
1123     default:
1124         g_assert_not_reached();
1125     }
1126     if (have_not) {
1127         op->opc = not_op;
1128         op->args[1] = op->args[idx];
1129         return fold_not(ctx, op);
1130     }
1131     return false;
1132 }
1133 
1134 /* If the binary operation has first argument @i, fold to @i. */
1135 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
1136 {
1137     if (arg_is_const_val(op->args[1], i)) {
1138         return tcg_opt_gen_movi(ctx, op, op->args[0], i);
1139     }
1140     return false;
1141 }
1142 
1143 /* If the binary operation has first argument @i, fold to NOT. */
1144 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i)
1145 {
1146     if (arg_is_const_val(op->args[1], i)) {
1147         return fold_to_not(ctx, op, 2);
1148     }
1149     return false;
1150 }
1151 
1152 /* If the binary operation has second argument @i, fold to @i. */
1153 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
1154 {
1155     if (arg_is_const_val(op->args[2], i)) {
1156         return tcg_opt_gen_movi(ctx, op, op->args[0], i);
1157     }
1158     return false;
1159 }
1160 
1161 /* If the binary operation has second argument @i, fold to identity. */
1162 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i)
1163 {
1164     if (arg_is_const_val(op->args[2], i)) {
1165         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1166     }
1167     return false;
1168 }
1169 
1170 /* If the binary operation has second argument @i, fold to NOT. */
1171 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i)
1172 {
1173     if (arg_is_const_val(op->args[2], i)) {
1174         return fold_to_not(ctx, op, 1);
1175     }
1176     return false;
1177 }
1178 
1179 /* If the binary operation has both arguments equal, fold to @i. */
1180 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
1181 {
1182     if (args_are_copies(op->args[1], op->args[2])) {
1183         return tcg_opt_gen_movi(ctx, op, op->args[0], i);
1184     }
1185     return false;
1186 }
1187 
1188 /* If the binary operation has both arguments equal, fold to identity. */
1189 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op)
1190 {
1191     if (args_are_copies(op->args[1], op->args[2])) {
1192         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1193     }
1194     return false;
1195 }
1196 
1197 /*
1198  * These outermost fold_<op> functions are sorted alphabetically.
1199  *
1200  * The ordering of the transformations should be:
1201  *   1) those that produce a constant
1202  *   2) those that produce a copy
1203  *   3) those that produce information about the result value.
1204  */
1205 
1206 static bool fold_or(OptContext *ctx, TCGOp *op);
1207 static bool fold_orc(OptContext *ctx, TCGOp *op);
1208 static bool fold_xor(OptContext *ctx, TCGOp *op);
1209 
1210 static bool fold_add(OptContext *ctx, TCGOp *op)
1211 {
1212     if (fold_const2_commutative(ctx, op) ||
1213         fold_xi_to_x(ctx, op, 0)) {
1214         return true;
1215     }
1216     return finish_folding(ctx, op);
1217 }
1218 
1219 /* We cannot as yet do_constant_folding with vectors. */
1220 static bool fold_add_vec(OptContext *ctx, TCGOp *op)
1221 {
1222     if (fold_commutative(ctx, op) ||
1223         fold_xi_to_x(ctx, op, 0)) {
1224         return true;
1225     }
1226     return finish_folding(ctx, op);
1227 }
1228 
1229 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add)
1230 {
1231     bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]);
1232     bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]);
1233 
1234     if (a_const && b_const) {
1235         uint64_t al = arg_info(op->args[2])->val;
1236         uint64_t ah = arg_info(op->args[3])->val;
1237         uint64_t bl = arg_info(op->args[4])->val;
1238         uint64_t bh = arg_info(op->args[5])->val;
1239         TCGArg rl, rh;
1240         TCGOp *op2;
1241 
1242         if (ctx->type == TCG_TYPE_I32) {
1243             uint64_t a = deposit64(al, 32, 32, ah);
1244             uint64_t b = deposit64(bl, 32, 32, bh);
1245 
1246             if (add) {
1247                 a += b;
1248             } else {
1249                 a -= b;
1250             }
1251 
1252             al = sextract64(a, 0, 32);
1253             ah = sextract64(a, 32, 32);
1254         } else {
1255             Int128 a = int128_make128(al, ah);
1256             Int128 b = int128_make128(bl, bh);
1257 
1258             if (add) {
1259                 a = int128_add(a, b);
1260             } else {
1261                 a = int128_sub(a, b);
1262             }
1263 
1264             al = int128_getlo(a);
1265             ah = int128_gethi(a);
1266         }
1267 
1268         rl = op->args[0];
1269         rh = op->args[1];
1270 
1271         /* The proper opcode is supplied by tcg_opt_gen_mov. */
1272         op2 = opt_insert_before(ctx, op, 0, 2);
1273 
1274         tcg_opt_gen_movi(ctx, op, rl, al);
1275         tcg_opt_gen_movi(ctx, op2, rh, ah);
1276         return true;
1277     }
1278 
1279     /* Fold sub2 r,x,i to add2 r,x,-i */
1280     if (!add && b_const) {
1281         uint64_t bl = arg_info(op->args[4])->val;
1282         uint64_t bh = arg_info(op->args[5])->val;
1283 
1284         /* Negate the two parts without assembling and disassembling. */
1285         bl = -bl;
1286         bh = ~bh + !bl;
1287 
1288         op->opc = (ctx->type == TCG_TYPE_I32
1289                    ? INDEX_op_add2_i32 : INDEX_op_add2_i64);
1290         op->args[4] = arg_new_constant(ctx, bl);
1291         op->args[5] = arg_new_constant(ctx, bh);
1292     }
1293     return finish_folding(ctx, op);
1294 }
1295 
1296 static bool fold_add2(OptContext *ctx, TCGOp *op)
1297 {
1298     /* Note that the high and low parts may be independently swapped. */
1299     swap_commutative(op->args[0], &op->args[2], &op->args[4]);
1300     swap_commutative(op->args[1], &op->args[3], &op->args[5]);
1301 
1302     return fold_addsub2(ctx, op, true);
1303 }
1304 
1305 static bool fold_and(OptContext *ctx, TCGOp *op)
1306 {
1307     uint64_t z1, z2, z_mask, s_mask;
1308     TempOptInfo *t1, *t2;
1309 
1310     if (fold_const2_commutative(ctx, op) ||
1311         fold_xi_to_i(ctx, op, 0) ||
1312         fold_xi_to_x(ctx, op, -1) ||
1313         fold_xx_to_x(ctx, op)) {
1314         return true;
1315     }
1316 
1317     t1 = arg_info(op->args[1]);
1318     t2 = arg_info(op->args[2]);
1319     z1 = t1->z_mask;
1320     z2 = t2->z_mask;
1321 
1322     /*
1323      * Known-zeros does not imply known-ones.  Therefore unless
1324      * arg2 is constant, we can't infer affected bits from it.
1325      */
1326     if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) {
1327         return true;
1328     }
1329 
1330     z_mask = z1 & z2;
1331 
1332     /*
1333      * Sign repetitions are perforce all identical, whether they are 1 or 0.
1334      * Bitwise operations preserve the relative quantity of the repetitions.
1335      */
1336     s_mask = t1->s_mask & t2->s_mask;
1337 
1338     return fold_masks_zs(ctx, op, z_mask, s_mask);
1339 }
1340 
1341 static bool fold_andc(OptContext *ctx, TCGOp *op)
1342 {
1343     uint64_t z_mask, s_mask;
1344     TempOptInfo *t1, *t2;
1345 
1346     if (fold_const2(ctx, op) ||
1347         fold_xx_to_i(ctx, op, 0) ||
1348         fold_xi_to_x(ctx, op, 0) ||
1349         fold_ix_to_not(ctx, op, -1)) {
1350         return true;
1351     }
1352 
1353     t1 = arg_info(op->args[1]);
1354     t2 = arg_info(op->args[2]);
1355     z_mask = t1->z_mask;
1356 
1357     if (ti_is_const(t2)) {
1358         /* Fold andc r,x,i to and r,x,~i. */
1359         switch (ctx->type) {
1360         case TCG_TYPE_I32:
1361         case TCG_TYPE_I64:
1362             op->opc = INDEX_op_and;
1363             break;
1364         case TCG_TYPE_V64:
1365         case TCG_TYPE_V128:
1366         case TCG_TYPE_V256:
1367             op->opc = INDEX_op_and_vec;
1368             break;
1369         default:
1370             g_assert_not_reached();
1371         }
1372         op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2));
1373         return fold_and(ctx, op);
1374     }
1375 
1376     /*
1377      * Known-zeros does not imply known-ones.  Therefore unless
1378      * arg2 is constant, we can't infer anything from it.
1379      */
1380     if (ti_is_const(t2)) {
1381         uint64_t v2 = ti_const_val(t2);
1382         if (fold_affected_mask(ctx, op, z_mask & v2)) {
1383             return true;
1384         }
1385         z_mask &= ~v2;
1386     }
1387 
1388     s_mask = t1->s_mask & t2->s_mask;
1389     return fold_masks_zs(ctx, op, z_mask, s_mask);
1390 }
1391 
1392 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op)
1393 {
1394     /* If true and false values are the same, eliminate the cmp. */
1395     if (args_are_copies(op->args[2], op->args[3])) {
1396         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]);
1397     }
1398 
1399     if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) {
1400         uint64_t tv = arg_info(op->args[2])->val;
1401         uint64_t fv = arg_info(op->args[3])->val;
1402 
1403         if (tv == -1 && fv == 0) {
1404             return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1405         }
1406         if (tv == 0 && fv == -1) {
1407             if (TCG_TARGET_HAS_not_vec) {
1408                 op->opc = INDEX_op_not_vec;
1409                 return fold_not(ctx, op);
1410             } else {
1411                 op->opc = INDEX_op_xor_vec;
1412                 op->args[2] = arg_new_constant(ctx, -1);
1413                 return fold_xor(ctx, op);
1414             }
1415         }
1416     }
1417     if (arg_is_const(op->args[2])) {
1418         uint64_t tv = arg_info(op->args[2])->val;
1419         if (tv == -1) {
1420             op->opc = INDEX_op_or_vec;
1421             op->args[2] = op->args[3];
1422             return fold_or(ctx, op);
1423         }
1424         if (tv == 0 && TCG_TARGET_HAS_andc_vec) {
1425             op->opc = INDEX_op_andc_vec;
1426             op->args[2] = op->args[1];
1427             op->args[1] = op->args[3];
1428             return fold_andc(ctx, op);
1429         }
1430     }
1431     if (arg_is_const(op->args[3])) {
1432         uint64_t fv = arg_info(op->args[3])->val;
1433         if (fv == 0) {
1434             op->opc = INDEX_op_and_vec;
1435             return fold_and(ctx, op);
1436         }
1437         if (fv == -1 && TCG_TARGET_HAS_orc_vec) {
1438             op->opc = INDEX_op_orc_vec;
1439             op->args[2] = op->args[1];
1440             op->args[1] = op->args[3];
1441             return fold_orc(ctx, op);
1442         }
1443     }
1444     return finish_folding(ctx, op);
1445 }
1446 
1447 static bool fold_brcond(OptContext *ctx, TCGOp *op)
1448 {
1449     int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0],
1450                                       &op->args[1], &op->args[2]);
1451     if (i == 0) {
1452         tcg_op_remove(ctx->tcg, op);
1453         return true;
1454     }
1455     if (i > 0) {
1456         op->opc = INDEX_op_br;
1457         op->args[0] = op->args[3];
1458         finish_ebb(ctx);
1459     } else {
1460         finish_bb(ctx);
1461     }
1462     return true;
1463 }
1464 
1465 static bool fold_brcond2(OptContext *ctx, TCGOp *op)
1466 {
1467     TCGCond cond;
1468     TCGArg label;
1469     int i, inv = 0;
1470 
1471     i = do_constant_folding_cond2(ctx, op, &op->args[0]);
1472     cond = op->args[4];
1473     label = op->args[5];
1474     if (i >= 0) {
1475         goto do_brcond_const;
1476     }
1477 
1478     switch (cond) {
1479     case TCG_COND_LT:
1480     case TCG_COND_GE:
1481         /*
1482          * Simplify LT/GE comparisons vs zero to a single compare
1483          * vs the high word of the input.
1484          */
1485         if (arg_is_const_val(op->args[2], 0) &&
1486             arg_is_const_val(op->args[3], 0)) {
1487             goto do_brcond_high;
1488         }
1489         break;
1490 
1491     case TCG_COND_NE:
1492         inv = 1;
1493         QEMU_FALLTHROUGH;
1494     case TCG_COND_EQ:
1495         /*
1496          * Simplify EQ/NE comparisons where one of the pairs
1497          * can be simplified.
1498          */
1499         i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0],
1500                                      op->args[2], cond);
1501         switch (i ^ inv) {
1502         case 0:
1503             goto do_brcond_const;
1504         case 1:
1505             goto do_brcond_high;
1506         }
1507 
1508         i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1],
1509                                      op->args[3], cond);
1510         switch (i ^ inv) {
1511         case 0:
1512             goto do_brcond_const;
1513         case 1:
1514             goto do_brcond_low;
1515         }
1516         break;
1517 
1518     case TCG_COND_TSTEQ:
1519     case TCG_COND_TSTNE:
1520         if (arg_is_const_val(op->args[2], 0)) {
1521             goto do_brcond_high;
1522         }
1523         if (arg_is_const_val(op->args[3], 0)) {
1524             goto do_brcond_low;
1525         }
1526         break;
1527 
1528     default:
1529         break;
1530 
1531     do_brcond_low:
1532         op->opc = INDEX_op_brcond;
1533         op->args[1] = op->args[2];
1534         op->args[2] = cond;
1535         op->args[3] = label;
1536         return fold_brcond(ctx, op);
1537 
1538     do_brcond_high:
1539         op->opc = INDEX_op_brcond;
1540         op->args[0] = op->args[1];
1541         op->args[1] = op->args[3];
1542         op->args[2] = cond;
1543         op->args[3] = label;
1544         return fold_brcond(ctx, op);
1545 
1546     do_brcond_const:
1547         if (i == 0) {
1548             tcg_op_remove(ctx->tcg, op);
1549             return true;
1550         }
1551         op->opc = INDEX_op_br;
1552         op->args[0] = label;
1553         finish_ebb(ctx);
1554         return true;
1555     }
1556 
1557     finish_bb(ctx);
1558     return true;
1559 }
1560 
1561 static bool fold_bswap(OptContext *ctx, TCGOp *op)
1562 {
1563     uint64_t z_mask, s_mask, sign;
1564     TempOptInfo *t1 = arg_info(op->args[1]);
1565 
1566     if (ti_is_const(t1)) {
1567         return tcg_opt_gen_movi(ctx, op, op->args[0],
1568                                 do_constant_folding(op->opc, ctx->type,
1569                                                     ti_const_val(t1),
1570                                                     op->args[2]));
1571     }
1572 
1573     z_mask = t1->z_mask;
1574     switch (op->opc) {
1575     case INDEX_op_bswap16_i32:
1576     case INDEX_op_bswap16_i64:
1577         z_mask = bswap16(z_mask);
1578         sign = INT16_MIN;
1579         break;
1580     case INDEX_op_bswap32_i32:
1581     case INDEX_op_bswap32_i64:
1582         z_mask = bswap32(z_mask);
1583         sign = INT32_MIN;
1584         break;
1585     case INDEX_op_bswap64_i64:
1586         z_mask = bswap64(z_mask);
1587         sign = INT64_MIN;
1588         break;
1589     default:
1590         g_assert_not_reached();
1591     }
1592 
1593     s_mask = 0;
1594     switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) {
1595     case TCG_BSWAP_OZ:
1596         break;
1597     case TCG_BSWAP_OS:
1598         /* If the sign bit may be 1, force all the bits above to 1. */
1599         if (z_mask & sign) {
1600             z_mask |= sign;
1601         }
1602         /* The value and therefore s_mask is explicitly sign-extended. */
1603         s_mask = sign;
1604         break;
1605     default:
1606         /* The high bits are undefined: force all bits above the sign to 1. */
1607         z_mask |= sign << 1;
1608         break;
1609     }
1610 
1611     return fold_masks_zs(ctx, op, z_mask, s_mask);
1612 }
1613 
1614 static bool fold_call(OptContext *ctx, TCGOp *op)
1615 {
1616     TCGContext *s = ctx->tcg;
1617     int nb_oargs = TCGOP_CALLO(op);
1618     int nb_iargs = TCGOP_CALLI(op);
1619     int flags, i;
1620 
1621     init_arguments(ctx, op, nb_oargs + nb_iargs);
1622     copy_propagate(ctx, op, nb_oargs, nb_iargs);
1623 
1624     /* If the function reads or writes globals, reset temp data. */
1625     flags = tcg_call_flags(op);
1626     if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) {
1627         int nb_globals = s->nb_globals;
1628 
1629         for (i = 0; i < nb_globals; i++) {
1630             if (test_bit(i, ctx->temps_used.l)) {
1631                 reset_ts(ctx, &ctx->tcg->temps[i]);
1632             }
1633         }
1634     }
1635 
1636     /* If the function has side effects, reset mem data. */
1637     if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) {
1638         remove_mem_copy_all(ctx);
1639     }
1640 
1641     /* Reset temp data for outputs. */
1642     for (i = 0; i < nb_oargs; i++) {
1643         reset_temp(ctx, op->args[i]);
1644     }
1645 
1646     /* Stop optimizing MB across calls. */
1647     ctx->prev_mb = NULL;
1648     return true;
1649 }
1650 
1651 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op)
1652 {
1653     /* Canonicalize the comparison to put immediate second. */
1654     if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) {
1655         op->args[3] = tcg_swap_cond(op->args[3]);
1656     }
1657     return finish_folding(ctx, op);
1658 }
1659 
1660 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op)
1661 {
1662     /* If true and false values are the same, eliminate the cmp. */
1663     if (args_are_copies(op->args[3], op->args[4])) {
1664         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]);
1665     }
1666 
1667     /* Canonicalize the comparison to put immediate second. */
1668     if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) {
1669         op->args[5] = tcg_swap_cond(op->args[5]);
1670     }
1671     /*
1672      * Canonicalize the "false" input reg to match the destination,
1673      * so that the tcg backend can implement "move if true".
1674      */
1675     if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) {
1676         op->args[5] = tcg_invert_cond(op->args[5]);
1677     }
1678     return finish_folding(ctx, op);
1679 }
1680 
1681 static bool fold_count_zeros(OptContext *ctx, TCGOp *op)
1682 {
1683     uint64_t z_mask, s_mask;
1684     TempOptInfo *t1 = arg_info(op->args[1]);
1685     TempOptInfo *t2 = arg_info(op->args[2]);
1686 
1687     if (ti_is_const(t1)) {
1688         uint64_t t = ti_const_val(t1);
1689 
1690         if (t != 0) {
1691             t = do_constant_folding(op->opc, ctx->type, t, 0);
1692             return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1693         }
1694         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]);
1695     }
1696 
1697     switch (ctx->type) {
1698     case TCG_TYPE_I32:
1699         z_mask = 31;
1700         break;
1701     case TCG_TYPE_I64:
1702         z_mask = 63;
1703         break;
1704     default:
1705         g_assert_not_reached();
1706     }
1707     s_mask = ~z_mask;
1708     z_mask |= t2->z_mask;
1709     s_mask &= t2->s_mask;
1710 
1711     return fold_masks_zs(ctx, op, z_mask, s_mask);
1712 }
1713 
1714 static bool fold_ctpop(OptContext *ctx, TCGOp *op)
1715 {
1716     uint64_t z_mask;
1717 
1718     if (fold_const1(ctx, op)) {
1719         return true;
1720     }
1721 
1722     switch (ctx->type) {
1723     case TCG_TYPE_I32:
1724         z_mask = 32 | 31;
1725         break;
1726     case TCG_TYPE_I64:
1727         z_mask = 64 | 63;
1728         break;
1729     default:
1730         g_assert_not_reached();
1731     }
1732     return fold_masks_z(ctx, op, z_mask);
1733 }
1734 
1735 static bool fold_deposit(OptContext *ctx, TCGOp *op)
1736 {
1737     TempOptInfo *t1 = arg_info(op->args[1]);
1738     TempOptInfo *t2 = arg_info(op->args[2]);
1739     int ofs = op->args[3];
1740     int len = op->args[4];
1741     int width = 8 * tcg_type_size(ctx->type);
1742     uint64_t z_mask, s_mask;
1743 
1744     if (ti_is_const(t1) && ti_is_const(t2)) {
1745         return tcg_opt_gen_movi(ctx, op, op->args[0],
1746                                 deposit64(ti_const_val(t1), ofs, len,
1747                                           ti_const_val(t2)));
1748     }
1749 
1750     /* Inserting a value into zero at offset 0. */
1751     if (ti_is_const_val(t1, 0) && ofs == 0) {
1752         uint64_t mask = MAKE_64BIT_MASK(0, len);
1753 
1754         op->opc = INDEX_op_and;
1755         op->args[1] = op->args[2];
1756         op->args[2] = arg_new_constant(ctx, mask);
1757         return fold_and(ctx, op);
1758     }
1759 
1760     /* Inserting zero into a value. */
1761     if (ti_is_const_val(t2, 0)) {
1762         uint64_t mask = deposit64(-1, ofs, len, 0);
1763 
1764         op->opc = INDEX_op_and;
1765         op->args[2] = arg_new_constant(ctx, mask);
1766         return fold_and(ctx, op);
1767     }
1768 
1769     /* The s_mask from the top portion of the deposit is still valid. */
1770     if (ofs + len == width) {
1771         s_mask = t2->s_mask << ofs;
1772     } else {
1773         s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len);
1774     }
1775 
1776     z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask);
1777     return fold_masks_zs(ctx, op, z_mask, s_mask);
1778 }
1779 
1780 static bool fold_divide(OptContext *ctx, TCGOp *op)
1781 {
1782     if (fold_const2(ctx, op) ||
1783         fold_xi_to_x(ctx, op, 1)) {
1784         return true;
1785     }
1786     return finish_folding(ctx, op);
1787 }
1788 
1789 static bool fold_dup(OptContext *ctx, TCGOp *op)
1790 {
1791     if (arg_is_const(op->args[1])) {
1792         uint64_t t = arg_info(op->args[1])->val;
1793         t = dup_const(TCGOP_VECE(op), t);
1794         return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1795     }
1796     return finish_folding(ctx, op);
1797 }
1798 
1799 static bool fold_dup2(OptContext *ctx, TCGOp *op)
1800 {
1801     if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1802         uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32,
1803                                arg_info(op->args[2])->val);
1804         return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1805     }
1806 
1807     if (args_are_copies(op->args[1], op->args[2])) {
1808         op->opc = INDEX_op_dup_vec;
1809         TCGOP_VECE(op) = MO_32;
1810     }
1811     return finish_folding(ctx, op);
1812 }
1813 
1814 static bool fold_eqv(OptContext *ctx, TCGOp *op)
1815 {
1816     uint64_t s_mask;
1817     TempOptInfo *t1, *t2;
1818 
1819     if (fold_const2_commutative(ctx, op) ||
1820         fold_xi_to_x(ctx, op, -1) ||
1821         fold_xi_to_not(ctx, op, 0)) {
1822         return true;
1823     }
1824 
1825     t2 = arg_info(op->args[2]);
1826     if (ti_is_const(t2)) {
1827         /* Fold eqv r,x,i to xor r,x,~i. */
1828         switch (ctx->type) {
1829         case TCG_TYPE_I32:
1830         case TCG_TYPE_I64:
1831             op->opc = INDEX_op_xor;
1832             break;
1833         case TCG_TYPE_V64:
1834         case TCG_TYPE_V128:
1835         case TCG_TYPE_V256:
1836             op->opc = INDEX_op_xor_vec;
1837             break;
1838         default:
1839             g_assert_not_reached();
1840         }
1841         op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2));
1842         return fold_xor(ctx, op);
1843     }
1844 
1845     t1 = arg_info(op->args[1]);
1846     s_mask = t1->s_mask & t2->s_mask;
1847     return fold_masks_s(ctx, op, s_mask);
1848 }
1849 
1850 static bool fold_extract(OptContext *ctx, TCGOp *op)
1851 {
1852     uint64_t z_mask_old, z_mask;
1853     TempOptInfo *t1 = arg_info(op->args[1]);
1854     int pos = op->args[2];
1855     int len = op->args[3];
1856 
1857     if (ti_is_const(t1)) {
1858         return tcg_opt_gen_movi(ctx, op, op->args[0],
1859                                 extract64(ti_const_val(t1), pos, len));
1860     }
1861 
1862     z_mask_old = t1->z_mask;
1863     z_mask = extract64(z_mask_old, pos, len);
1864     if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) {
1865         return true;
1866     }
1867 
1868     return fold_masks_z(ctx, op, z_mask);
1869 }
1870 
1871 static bool fold_extract2(OptContext *ctx, TCGOp *op)
1872 {
1873     if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1874         uint64_t v1 = arg_info(op->args[1])->val;
1875         uint64_t v2 = arg_info(op->args[2])->val;
1876         int shr = op->args[3];
1877 
1878         if (op->opc == INDEX_op_extract2_i64) {
1879             v1 >>= shr;
1880             v2 <<= 64 - shr;
1881         } else {
1882             v1 = (uint32_t)v1 >> shr;
1883             v2 = (uint64_t)((int32_t)v2 << (32 - shr));
1884         }
1885         return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2);
1886     }
1887     return finish_folding(ctx, op);
1888 }
1889 
1890 static bool fold_exts(OptContext *ctx, TCGOp *op)
1891 {
1892     uint64_t s_mask, z_mask;
1893     TempOptInfo *t1;
1894 
1895     if (fold_const1(ctx, op)) {
1896         return true;
1897     }
1898 
1899     t1 = arg_info(op->args[1]);
1900     z_mask = t1->z_mask;
1901     s_mask = t1->s_mask;
1902 
1903     switch (op->opc) {
1904     case INDEX_op_ext_i32_i64:
1905         s_mask |= INT32_MIN;
1906         z_mask = (int32_t)z_mask;
1907         break;
1908     default:
1909         g_assert_not_reached();
1910     }
1911     return fold_masks_zs(ctx, op, z_mask, s_mask);
1912 }
1913 
1914 static bool fold_extu(OptContext *ctx, TCGOp *op)
1915 {
1916     uint64_t z_mask;
1917 
1918     if (fold_const1(ctx, op)) {
1919         return true;
1920     }
1921 
1922     z_mask = arg_info(op->args[1])->z_mask;
1923     switch (op->opc) {
1924     case INDEX_op_extrl_i64_i32:
1925     case INDEX_op_extu_i32_i64:
1926         z_mask = (uint32_t)z_mask;
1927         break;
1928     case INDEX_op_extrh_i64_i32:
1929         z_mask >>= 32;
1930         break;
1931     default:
1932         g_assert_not_reached();
1933     }
1934     return fold_masks_z(ctx, op, z_mask);
1935 }
1936 
1937 static bool fold_mb(OptContext *ctx, TCGOp *op)
1938 {
1939     /* Eliminate duplicate and redundant fence instructions.  */
1940     if (ctx->prev_mb) {
1941         /*
1942          * Merge two barriers of the same type into one,
1943          * or a weaker barrier into a stronger one,
1944          * or two weaker barriers into a stronger one.
1945          *   mb X; mb Y => mb X|Y
1946          *   mb; strl => mb; st
1947          *   ldaq; mb => ld; mb
1948          *   ldaq; strl => ld; mb; st
1949          * Other combinations are also merged into a strong
1950          * barrier.  This is stricter than specified but for
1951          * the purposes of TCG is better than not optimizing.
1952          */
1953         ctx->prev_mb->args[0] |= op->args[0];
1954         tcg_op_remove(ctx->tcg, op);
1955     } else {
1956         ctx->prev_mb = op;
1957     }
1958     return true;
1959 }
1960 
1961 static bool fold_mov(OptContext *ctx, TCGOp *op)
1962 {
1963     return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1964 }
1965 
1966 static bool fold_movcond(OptContext *ctx, TCGOp *op)
1967 {
1968     uint64_t z_mask, s_mask;
1969     TempOptInfo *tt, *ft;
1970     int i;
1971 
1972     /* If true and false values are the same, eliminate the cmp. */
1973     if (args_are_copies(op->args[3], op->args[4])) {
1974         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]);
1975     }
1976 
1977     /*
1978      * Canonicalize the "false" input reg to match the destination reg so
1979      * that the tcg backend can implement a "move if true" operation.
1980      */
1981     if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) {
1982         op->args[5] = tcg_invert_cond(op->args[5]);
1983     }
1984 
1985     i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1],
1986                                   &op->args[2], &op->args[5]);
1987     if (i >= 0) {
1988         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]);
1989     }
1990 
1991     tt = arg_info(op->args[3]);
1992     ft = arg_info(op->args[4]);
1993     z_mask = tt->z_mask | ft->z_mask;
1994     s_mask = tt->s_mask & ft->s_mask;
1995 
1996     if (ti_is_const(tt) && ti_is_const(ft)) {
1997         uint64_t tv = ti_const_val(tt);
1998         uint64_t fv = ti_const_val(ft);
1999         TCGCond cond = op->args[5];
2000 
2001         if (tv == 1 && fv == 0) {
2002             op->opc = INDEX_op_setcond;
2003             op->args[3] = cond;
2004         } else if (fv == 1 && tv == 0) {
2005             op->opc = INDEX_op_setcond;
2006             op->args[3] = tcg_invert_cond(cond);
2007         } else if (tv == -1 && fv == 0) {
2008             op->opc = INDEX_op_negsetcond;
2009             op->args[3] = cond;
2010         } else if (fv == -1 && tv == 0) {
2011             op->opc = INDEX_op_negsetcond;
2012             op->args[3] = tcg_invert_cond(cond);
2013         }
2014     }
2015 
2016     return fold_masks_zs(ctx, op, z_mask, s_mask);
2017 }
2018 
2019 static bool fold_mul(OptContext *ctx, TCGOp *op)
2020 {
2021     if (fold_const2(ctx, op) ||
2022         fold_xi_to_i(ctx, op, 0) ||
2023         fold_xi_to_x(ctx, op, 1)) {
2024         return true;
2025     }
2026     return finish_folding(ctx, op);
2027 }
2028 
2029 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op)
2030 {
2031     if (fold_const2_commutative(ctx, op) ||
2032         fold_xi_to_i(ctx, op, 0)) {
2033         return true;
2034     }
2035     return finish_folding(ctx, op);
2036 }
2037 
2038 static bool fold_multiply2(OptContext *ctx, TCGOp *op)
2039 {
2040     swap_commutative(op->args[0], &op->args[2], &op->args[3]);
2041 
2042     if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) {
2043         uint64_t a = arg_info(op->args[2])->val;
2044         uint64_t b = arg_info(op->args[3])->val;
2045         uint64_t h, l;
2046         TCGArg rl, rh;
2047         TCGOp *op2;
2048 
2049         switch (op->opc) {
2050         case INDEX_op_mulu2:
2051             if (ctx->type == TCG_TYPE_I32) {
2052                 l = (uint64_t)(uint32_t)a * (uint32_t)b;
2053                 h = (int32_t)(l >> 32);
2054                 l = (int32_t)l;
2055             } else {
2056                 mulu64(&l, &h, a, b);
2057             }
2058             break;
2059         case INDEX_op_muls2:
2060             if (ctx->type == TCG_TYPE_I32) {
2061                 l = (int64_t)(int32_t)a * (int32_t)b;
2062                 h = l >> 32;
2063                 l = (int32_t)l;
2064             } else {
2065                 muls64(&l, &h, a, b);
2066             }
2067             break;
2068         default:
2069             g_assert_not_reached();
2070         }
2071 
2072         rl = op->args[0];
2073         rh = op->args[1];
2074 
2075         /* The proper opcode is supplied by tcg_opt_gen_mov. */
2076         op2 = opt_insert_before(ctx, op, 0, 2);
2077 
2078         tcg_opt_gen_movi(ctx, op, rl, l);
2079         tcg_opt_gen_movi(ctx, op2, rh, h);
2080         return true;
2081     }
2082     return finish_folding(ctx, op);
2083 }
2084 
2085 static bool fold_nand(OptContext *ctx, TCGOp *op)
2086 {
2087     uint64_t s_mask;
2088 
2089     if (fold_const2_commutative(ctx, op) ||
2090         fold_xi_to_not(ctx, op, -1)) {
2091         return true;
2092     }
2093 
2094     s_mask = arg_info(op->args[1])->s_mask
2095            & arg_info(op->args[2])->s_mask;
2096     return fold_masks_s(ctx, op, s_mask);
2097 }
2098 
2099 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op)
2100 {
2101     /* Set to 1 all bits to the left of the rightmost.  */
2102     uint64_t z_mask = arg_info(op->args[1])->z_mask;
2103     z_mask = -(z_mask & -z_mask);
2104 
2105     return fold_masks_z(ctx, op, z_mask);
2106 }
2107 
2108 static bool fold_neg(OptContext *ctx, TCGOp *op)
2109 {
2110     return fold_const1(ctx, op) || fold_neg_no_const(ctx, op);
2111 }
2112 
2113 static bool fold_nor(OptContext *ctx, TCGOp *op)
2114 {
2115     uint64_t s_mask;
2116 
2117     if (fold_const2_commutative(ctx, op) ||
2118         fold_xi_to_not(ctx, op, 0)) {
2119         return true;
2120     }
2121 
2122     s_mask = arg_info(op->args[1])->s_mask
2123            & arg_info(op->args[2])->s_mask;
2124     return fold_masks_s(ctx, op, s_mask);
2125 }
2126 
2127 static bool fold_not(OptContext *ctx, TCGOp *op)
2128 {
2129     if (fold_const1(ctx, op)) {
2130         return true;
2131     }
2132     return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask);
2133 }
2134 
2135 static bool fold_or(OptContext *ctx, TCGOp *op)
2136 {
2137     uint64_t z_mask, s_mask;
2138     TempOptInfo *t1, *t2;
2139 
2140     if (fold_const2_commutative(ctx, op) ||
2141         fold_xi_to_x(ctx, op, 0) ||
2142         fold_xx_to_x(ctx, op)) {
2143         return true;
2144     }
2145 
2146     t1 = arg_info(op->args[1]);
2147     t2 = arg_info(op->args[2]);
2148     z_mask = t1->z_mask | t2->z_mask;
2149     s_mask = t1->s_mask & t2->s_mask;
2150     return fold_masks_zs(ctx, op, z_mask, s_mask);
2151 }
2152 
2153 static bool fold_orc(OptContext *ctx, TCGOp *op)
2154 {
2155     uint64_t s_mask;
2156     TempOptInfo *t1, *t2;
2157 
2158     if (fold_const2(ctx, op) ||
2159         fold_xx_to_i(ctx, op, -1) ||
2160         fold_xi_to_x(ctx, op, -1) ||
2161         fold_ix_to_not(ctx, op, 0)) {
2162         return true;
2163     }
2164 
2165     t2 = arg_info(op->args[2]);
2166     if (ti_is_const(t2)) {
2167         /* Fold orc r,x,i to or r,x,~i. */
2168         switch (ctx->type) {
2169         case TCG_TYPE_I32:
2170         case TCG_TYPE_I64:
2171             op->opc = INDEX_op_or;
2172             break;
2173         case TCG_TYPE_V64:
2174         case TCG_TYPE_V128:
2175         case TCG_TYPE_V256:
2176             op->opc = INDEX_op_or_vec;
2177             break;
2178         default:
2179             g_assert_not_reached();
2180         }
2181         op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2));
2182         return fold_or(ctx, op);
2183     }
2184 
2185     t1 = arg_info(op->args[1]);
2186     s_mask = t1->s_mask & t2->s_mask;
2187     return fold_masks_s(ctx, op, s_mask);
2188 }
2189 
2190 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op)
2191 {
2192     const TCGOpDef *def = &tcg_op_defs[op->opc];
2193     MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs];
2194     MemOp mop = get_memop(oi);
2195     int width = 8 * memop_size(mop);
2196     uint64_t z_mask = -1, s_mask = 0;
2197 
2198     if (width < 64) {
2199         if (mop & MO_SIGN) {
2200             s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1));
2201         } else {
2202             z_mask = MAKE_64BIT_MASK(0, width);
2203         }
2204     }
2205 
2206     /* Opcodes that touch guest memory stop the mb optimization.  */
2207     ctx->prev_mb = NULL;
2208 
2209     return fold_masks_zs(ctx, op, z_mask, s_mask);
2210 }
2211 
2212 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op)
2213 {
2214     /* Opcodes that touch guest memory stop the mb optimization.  */
2215     ctx->prev_mb = NULL;
2216     return finish_folding(ctx, op);
2217 }
2218 
2219 static bool fold_qemu_st(OptContext *ctx, TCGOp *op)
2220 {
2221     /* Opcodes that touch guest memory stop the mb optimization.  */
2222     ctx->prev_mb = NULL;
2223     return true;
2224 }
2225 
2226 static bool fold_remainder(OptContext *ctx, TCGOp *op)
2227 {
2228     if (fold_const2(ctx, op) ||
2229         fold_xx_to_i(ctx, op, 0)) {
2230         return true;
2231     }
2232     return finish_folding(ctx, op);
2233 }
2234 
2235 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */
2236 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg)
2237 {
2238     uint64_t a_zmask, b_val;
2239     TCGCond cond;
2240 
2241     if (!arg_is_const(op->args[2])) {
2242         return false;
2243     }
2244 
2245     a_zmask = arg_info(op->args[1])->z_mask;
2246     b_val = arg_info(op->args[2])->val;
2247     cond = op->args[3];
2248 
2249     if (ctx->type == TCG_TYPE_I32) {
2250         a_zmask = (uint32_t)a_zmask;
2251         b_val = (uint32_t)b_val;
2252     }
2253 
2254     /*
2255      * A with only low bits set vs B with high bits set means that A < B.
2256      */
2257     if (a_zmask < b_val) {
2258         bool inv = false;
2259 
2260         switch (cond) {
2261         case TCG_COND_NE:
2262         case TCG_COND_LEU:
2263         case TCG_COND_LTU:
2264             inv = true;
2265             /* fall through */
2266         case TCG_COND_GTU:
2267         case TCG_COND_GEU:
2268         case TCG_COND_EQ:
2269             return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv);
2270         default:
2271             break;
2272         }
2273     }
2274 
2275     /*
2276      * A with only lsb set is already boolean.
2277      */
2278     if (a_zmask <= 1) {
2279         bool convert = false;
2280         bool inv = false;
2281 
2282         switch (cond) {
2283         case TCG_COND_EQ:
2284             inv = true;
2285             /* fall through */
2286         case TCG_COND_NE:
2287             convert = (b_val == 0);
2288             break;
2289         case TCG_COND_LTU:
2290         case TCG_COND_TSTEQ:
2291             inv = true;
2292             /* fall through */
2293         case TCG_COND_GEU:
2294         case TCG_COND_TSTNE:
2295             convert = (b_val == 1);
2296             break;
2297         default:
2298             break;
2299         }
2300         if (convert) {
2301             if (!inv && !neg) {
2302                 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
2303             }
2304 
2305             if (!inv) {
2306                 op->opc = INDEX_op_neg;
2307             } else if (neg) {
2308                 op->opc = INDEX_op_add;
2309                 op->args[2] = arg_new_constant(ctx, -1);
2310             } else {
2311                 op->opc = INDEX_op_xor;
2312                 op->args[2] = arg_new_constant(ctx, 1);
2313             }
2314             return -1;
2315         }
2316     }
2317     return 0;
2318 }
2319 
2320 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg)
2321 {
2322     TCGOpcode uext_opc = 0, sext_opc = 0;
2323     TCGCond cond = op->args[3];
2324     TCGArg ret, src1, src2;
2325     TCGOp *op2;
2326     uint64_t val;
2327     int sh;
2328     bool inv;
2329 
2330     if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) {
2331         return;
2332     }
2333 
2334     src2 = op->args[2];
2335     val = arg_info(src2)->val;
2336     if (!is_power_of_2(val)) {
2337         return;
2338     }
2339     sh = ctz64(val);
2340 
2341     switch (ctx->type) {
2342     case TCG_TYPE_I32:
2343         if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) {
2344             uext_opc = INDEX_op_extract_i32;
2345         }
2346         if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) {
2347             sext_opc = INDEX_op_sextract_i32;
2348         }
2349         break;
2350     case TCG_TYPE_I64:
2351         if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) {
2352             uext_opc = INDEX_op_extract_i64;
2353         }
2354         if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) {
2355             sext_opc = INDEX_op_sextract_i64;
2356         }
2357         break;
2358     default:
2359         g_assert_not_reached();
2360     }
2361 
2362     ret = op->args[0];
2363     src1 = op->args[1];
2364     inv = cond == TCG_COND_TSTEQ;
2365 
2366     if (sh && sext_opc && neg && !inv) {
2367         op->opc = sext_opc;
2368         op->args[1] = src1;
2369         op->args[2] = sh;
2370         op->args[3] = 1;
2371         return;
2372     } else if (sh && uext_opc) {
2373         op->opc = uext_opc;
2374         op->args[1] = src1;
2375         op->args[2] = sh;
2376         op->args[3] = 1;
2377     } else {
2378         if (sh) {
2379             op2 = opt_insert_before(ctx, op, INDEX_op_shr, 3);
2380             op2->args[0] = ret;
2381             op2->args[1] = src1;
2382             op2->args[2] = arg_new_constant(ctx, sh);
2383             src1 = ret;
2384         }
2385         op->opc = INDEX_op_and;
2386         op->args[1] = src1;
2387         op->args[2] = arg_new_constant(ctx, 1);
2388     }
2389 
2390     if (neg && inv) {
2391         op2 = opt_insert_after(ctx, op, INDEX_op_add, 3);
2392         op2->args[0] = ret;
2393         op2->args[1] = ret;
2394         op2->args[2] = arg_new_constant(ctx, -1);
2395     } else if (inv) {
2396         op2 = opt_insert_after(ctx, op, INDEX_op_xor, 3);
2397         op2->args[0] = ret;
2398         op2->args[1] = ret;
2399         op2->args[2] = arg_new_constant(ctx, 1);
2400     } else if (neg) {
2401         op2 = opt_insert_after(ctx, op, INDEX_op_neg, 2);
2402         op2->args[0] = ret;
2403         op2->args[1] = ret;
2404     }
2405 }
2406 
2407 static bool fold_setcond(OptContext *ctx, TCGOp *op)
2408 {
2409     int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1],
2410                                       &op->args[2], &op->args[3]);
2411     if (i >= 0) {
2412         return tcg_opt_gen_movi(ctx, op, op->args[0], i);
2413     }
2414 
2415     i = fold_setcond_zmask(ctx, op, false);
2416     if (i > 0) {
2417         return true;
2418     }
2419     if (i == 0) {
2420         fold_setcond_tst_pow2(ctx, op, false);
2421     }
2422 
2423     return fold_masks_z(ctx, op, 1);
2424 }
2425 
2426 static bool fold_negsetcond(OptContext *ctx, TCGOp *op)
2427 {
2428     int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1],
2429                                       &op->args[2], &op->args[3]);
2430     if (i >= 0) {
2431         return tcg_opt_gen_movi(ctx, op, op->args[0], -i);
2432     }
2433 
2434     i = fold_setcond_zmask(ctx, op, true);
2435     if (i > 0) {
2436         return true;
2437     }
2438     if (i == 0) {
2439         fold_setcond_tst_pow2(ctx, op, true);
2440     }
2441 
2442     /* Value is {0,-1} so all bits are repetitions of the sign. */
2443     return fold_masks_s(ctx, op, -1);
2444 }
2445 
2446 static bool fold_setcond2(OptContext *ctx, TCGOp *op)
2447 {
2448     TCGCond cond;
2449     int i, inv = 0;
2450 
2451     i = do_constant_folding_cond2(ctx, op, &op->args[1]);
2452     cond = op->args[5];
2453     if (i >= 0) {
2454         goto do_setcond_const;
2455     }
2456 
2457     switch (cond) {
2458     case TCG_COND_LT:
2459     case TCG_COND_GE:
2460         /*
2461          * Simplify LT/GE comparisons vs zero to a single compare
2462          * vs the high word of the input.
2463          */
2464         if (arg_is_const_val(op->args[3], 0) &&
2465             arg_is_const_val(op->args[4], 0)) {
2466             goto do_setcond_high;
2467         }
2468         break;
2469 
2470     case TCG_COND_NE:
2471         inv = 1;
2472         QEMU_FALLTHROUGH;
2473     case TCG_COND_EQ:
2474         /*
2475          * Simplify EQ/NE comparisons where one of the pairs
2476          * can be simplified.
2477          */
2478         i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1],
2479                                      op->args[3], cond);
2480         switch (i ^ inv) {
2481         case 0:
2482             goto do_setcond_const;
2483         case 1:
2484             goto do_setcond_high;
2485         }
2486 
2487         i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2],
2488                                      op->args[4], cond);
2489         switch (i ^ inv) {
2490         case 0:
2491             goto do_setcond_const;
2492         case 1:
2493             goto do_setcond_low;
2494         }
2495         break;
2496 
2497     case TCG_COND_TSTEQ:
2498     case TCG_COND_TSTNE:
2499         if (arg_is_const_val(op->args[3], 0)) {
2500             goto do_setcond_high;
2501         }
2502         if (arg_is_const_val(op->args[4], 0)) {
2503             goto do_setcond_low;
2504         }
2505         break;
2506 
2507     default:
2508         break;
2509 
2510     do_setcond_low:
2511         op->args[2] = op->args[3];
2512         op->args[3] = cond;
2513         op->opc = INDEX_op_setcond;
2514         return fold_setcond(ctx, op);
2515 
2516     do_setcond_high:
2517         op->args[1] = op->args[2];
2518         op->args[2] = op->args[4];
2519         op->args[3] = cond;
2520         op->opc = INDEX_op_setcond;
2521         return fold_setcond(ctx, op);
2522     }
2523 
2524     return fold_masks_z(ctx, op, 1);
2525 
2526  do_setcond_const:
2527     return tcg_opt_gen_movi(ctx, op, op->args[0], i);
2528 }
2529 
2530 static bool fold_sextract(OptContext *ctx, TCGOp *op)
2531 {
2532     uint64_t z_mask, s_mask, s_mask_old;
2533     TempOptInfo *t1 = arg_info(op->args[1]);
2534     int pos = op->args[2];
2535     int len = op->args[3];
2536 
2537     if (ti_is_const(t1)) {
2538         return tcg_opt_gen_movi(ctx, op, op->args[0],
2539                                 sextract64(ti_const_val(t1), pos, len));
2540     }
2541 
2542     s_mask_old = t1->s_mask;
2543     s_mask = s_mask_old >> pos;
2544     s_mask |= -1ull << (len - 1);
2545 
2546     if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) {
2547         return true;
2548     }
2549 
2550     z_mask = sextract64(t1->z_mask, pos, len);
2551     return fold_masks_zs(ctx, op, z_mask, s_mask);
2552 }
2553 
2554 static bool fold_shift(OptContext *ctx, TCGOp *op)
2555 {
2556     uint64_t s_mask, z_mask;
2557     TempOptInfo *t1, *t2;
2558 
2559     if (fold_const2(ctx, op) ||
2560         fold_ix_to_i(ctx, op, 0) ||
2561         fold_xi_to_x(ctx, op, 0)) {
2562         return true;
2563     }
2564 
2565     t1 = arg_info(op->args[1]);
2566     t2 = arg_info(op->args[2]);
2567     s_mask = t1->s_mask;
2568     z_mask = t1->z_mask;
2569 
2570     if (ti_is_const(t2)) {
2571         int sh = ti_const_val(t2);
2572 
2573         z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh);
2574         s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh);
2575 
2576         return fold_masks_zs(ctx, op, z_mask, s_mask);
2577     }
2578 
2579     switch (op->opc) {
2580     case INDEX_op_sar:
2581         /*
2582          * Arithmetic right shift will not reduce the number of
2583          * input sign repetitions.
2584          */
2585         return fold_masks_s(ctx, op, s_mask);
2586     case INDEX_op_shr:
2587         /*
2588          * If the sign bit is known zero, then logical right shift
2589          * will not reduce the number of input sign repetitions.
2590          */
2591         if (~z_mask & -s_mask) {
2592             return fold_masks_s(ctx, op, s_mask);
2593         }
2594         break;
2595     default:
2596         break;
2597     }
2598 
2599     return finish_folding(ctx, op);
2600 }
2601 
2602 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op)
2603 {
2604     TCGOpcode neg_op;
2605     bool have_neg;
2606 
2607     if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) {
2608         return false;
2609     }
2610 
2611     switch (ctx->type) {
2612     case TCG_TYPE_I32:
2613     case TCG_TYPE_I64:
2614         neg_op = INDEX_op_neg;
2615         have_neg = true;
2616         break;
2617     case TCG_TYPE_V64:
2618     case TCG_TYPE_V128:
2619     case TCG_TYPE_V256:
2620         neg_op = INDEX_op_neg_vec;
2621         have_neg = (TCG_TARGET_HAS_neg_vec &&
2622                     tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0);
2623         break;
2624     default:
2625         g_assert_not_reached();
2626     }
2627     if (have_neg) {
2628         op->opc = neg_op;
2629         op->args[1] = op->args[2];
2630         return fold_neg_no_const(ctx, op);
2631     }
2632     return false;
2633 }
2634 
2635 /* We cannot as yet do_constant_folding with vectors. */
2636 static bool fold_sub_vec(OptContext *ctx, TCGOp *op)
2637 {
2638     if (fold_xx_to_i(ctx, op, 0) ||
2639         fold_xi_to_x(ctx, op, 0) ||
2640         fold_sub_to_neg(ctx, op)) {
2641         return true;
2642     }
2643     return finish_folding(ctx, op);
2644 }
2645 
2646 static bool fold_sub(OptContext *ctx, TCGOp *op)
2647 {
2648     if (fold_const2(ctx, op) ||
2649         fold_xx_to_i(ctx, op, 0) ||
2650         fold_xi_to_x(ctx, op, 0) ||
2651         fold_sub_to_neg(ctx, op)) {
2652         return true;
2653     }
2654 
2655     /* Fold sub r,x,i to add r,x,-i */
2656     if (arg_is_const(op->args[2])) {
2657         uint64_t val = arg_info(op->args[2])->val;
2658 
2659         op->opc = INDEX_op_add;
2660         op->args[2] = arg_new_constant(ctx, -val);
2661     }
2662     return finish_folding(ctx, op);
2663 }
2664 
2665 static bool fold_sub2(OptContext *ctx, TCGOp *op)
2666 {
2667     return fold_addsub2(ctx, op, false);
2668 }
2669 
2670 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op)
2671 {
2672     uint64_t z_mask = -1, s_mask = 0;
2673 
2674     /* We can't do any folding with a load, but we can record bits. */
2675     switch (op->opc) {
2676     CASE_OP_32_64(ld8s):
2677         s_mask = INT8_MIN;
2678         break;
2679     CASE_OP_32_64(ld8u):
2680         z_mask = MAKE_64BIT_MASK(0, 8);
2681         break;
2682     CASE_OP_32_64(ld16s):
2683         s_mask = INT16_MIN;
2684         break;
2685     CASE_OP_32_64(ld16u):
2686         z_mask = MAKE_64BIT_MASK(0, 16);
2687         break;
2688     case INDEX_op_ld32s_i64:
2689         s_mask = INT32_MIN;
2690         break;
2691     case INDEX_op_ld32u_i64:
2692         z_mask = MAKE_64BIT_MASK(0, 32);
2693         break;
2694     default:
2695         g_assert_not_reached();
2696     }
2697     return fold_masks_zs(ctx, op, z_mask, s_mask);
2698 }
2699 
2700 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op)
2701 {
2702     TCGTemp *dst, *src;
2703     intptr_t ofs;
2704     TCGType type;
2705 
2706     if (op->args[1] != tcgv_ptr_arg(tcg_env)) {
2707         return finish_folding(ctx, op);
2708     }
2709 
2710     type = ctx->type;
2711     ofs = op->args[2];
2712     dst = arg_temp(op->args[0]);
2713     src = find_mem_copy_for(ctx, type, ofs);
2714     if (src && src->base_type == type) {
2715         return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src));
2716     }
2717 
2718     reset_ts(ctx, dst);
2719     record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1);
2720     return true;
2721 }
2722 
2723 static bool fold_tcg_st(OptContext *ctx, TCGOp *op)
2724 {
2725     intptr_t ofs = op->args[2];
2726     intptr_t lm1;
2727 
2728     if (op->args[1] != tcgv_ptr_arg(tcg_env)) {
2729         remove_mem_copy_all(ctx);
2730         return true;
2731     }
2732 
2733     switch (op->opc) {
2734     CASE_OP_32_64(st8):
2735         lm1 = 0;
2736         break;
2737     CASE_OP_32_64(st16):
2738         lm1 = 1;
2739         break;
2740     case INDEX_op_st32_i64:
2741     case INDEX_op_st_i32:
2742         lm1 = 3;
2743         break;
2744     case INDEX_op_st_i64:
2745         lm1 = 7;
2746         break;
2747     case INDEX_op_st_vec:
2748         lm1 = tcg_type_size(ctx->type) - 1;
2749         break;
2750     default:
2751         g_assert_not_reached();
2752     }
2753     remove_mem_copy_in(ctx, ofs, ofs + lm1);
2754     return true;
2755 }
2756 
2757 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op)
2758 {
2759     TCGTemp *src;
2760     intptr_t ofs, last;
2761     TCGType type;
2762 
2763     if (op->args[1] != tcgv_ptr_arg(tcg_env)) {
2764         return fold_tcg_st(ctx, op);
2765     }
2766 
2767     src = arg_temp(op->args[0]);
2768     ofs = op->args[2];
2769     type = ctx->type;
2770 
2771     /*
2772      * Eliminate duplicate stores of a constant.
2773      * This happens frequently when the target ISA zero-extends.
2774      */
2775     if (ts_is_const(src)) {
2776         TCGTemp *prev = find_mem_copy_for(ctx, type, ofs);
2777         if (src == prev) {
2778             tcg_op_remove(ctx->tcg, op);
2779             return true;
2780         }
2781     }
2782 
2783     last = ofs + tcg_type_size(type) - 1;
2784     remove_mem_copy_in(ctx, ofs, last);
2785     record_mem_copy(ctx, type, src, ofs, last);
2786     return true;
2787 }
2788 
2789 static bool fold_xor(OptContext *ctx, TCGOp *op)
2790 {
2791     uint64_t z_mask, s_mask;
2792     TempOptInfo *t1, *t2;
2793 
2794     if (fold_const2_commutative(ctx, op) ||
2795         fold_xx_to_i(ctx, op, 0) ||
2796         fold_xi_to_x(ctx, op, 0) ||
2797         fold_xi_to_not(ctx, op, -1)) {
2798         return true;
2799     }
2800 
2801     t1 = arg_info(op->args[1]);
2802     t2 = arg_info(op->args[2]);
2803     z_mask = t1->z_mask | t2->z_mask;
2804     s_mask = t1->s_mask & t2->s_mask;
2805     return fold_masks_zs(ctx, op, z_mask, s_mask);
2806 }
2807 
2808 /* Propagate constants and copies, fold constant expressions. */
2809 void tcg_optimize(TCGContext *s)
2810 {
2811     int nb_temps, i;
2812     TCGOp *op, *op_next;
2813     OptContext ctx = { .tcg = s };
2814 
2815     QSIMPLEQ_INIT(&ctx.mem_free);
2816 
2817     /* Array VALS has an element for each temp.
2818        If this temp holds a constant then its value is kept in VALS' element.
2819        If this temp is a copy of other ones then the other copies are
2820        available through the doubly linked circular list. */
2821 
2822     nb_temps = s->nb_temps;
2823     for (i = 0; i < nb_temps; ++i) {
2824         s->temps[i].state_ptr = NULL;
2825     }
2826 
2827     QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2828         TCGOpcode opc = op->opc;
2829         const TCGOpDef *def;
2830         bool done = false;
2831 
2832         /* Calls are special. */
2833         if (opc == INDEX_op_call) {
2834             fold_call(&ctx, op);
2835             continue;
2836         }
2837 
2838         def = &tcg_op_defs[opc];
2839         init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs);
2840         copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs);
2841 
2842         /* Pre-compute the type of the operation. */
2843         ctx.type = TCGOP_TYPE(op);
2844 
2845         /*
2846          * Process each opcode.
2847          * Sorted alphabetically by opcode as much as possible.
2848          */
2849         switch (opc) {
2850         case INDEX_op_add:
2851             done = fold_add(&ctx, op);
2852             break;
2853         case INDEX_op_add_vec:
2854             done = fold_add_vec(&ctx, op);
2855             break;
2856         CASE_OP_32_64(add2):
2857             done = fold_add2(&ctx, op);
2858             break;
2859         case INDEX_op_and:
2860         case INDEX_op_and_vec:
2861             done = fold_and(&ctx, op);
2862             break;
2863         case INDEX_op_andc:
2864         case INDEX_op_andc_vec:
2865             done = fold_andc(&ctx, op);
2866             break;
2867         case INDEX_op_brcond:
2868             done = fold_brcond(&ctx, op);
2869             break;
2870         case INDEX_op_brcond2_i32:
2871             done = fold_brcond2(&ctx, op);
2872             break;
2873         CASE_OP_32_64(bswap16):
2874         CASE_OP_32_64(bswap32):
2875         case INDEX_op_bswap64_i64:
2876             done = fold_bswap(&ctx, op);
2877             break;
2878         case INDEX_op_clz:
2879         case INDEX_op_ctz:
2880             done = fold_count_zeros(&ctx, op);
2881             break;
2882         case INDEX_op_ctpop:
2883             done = fold_ctpop(&ctx, op);
2884             break;
2885         CASE_OP_32_64(deposit):
2886             done = fold_deposit(&ctx, op);
2887             break;
2888         case INDEX_op_divs:
2889         case INDEX_op_divu:
2890             done = fold_divide(&ctx, op);
2891             break;
2892         case INDEX_op_dup_vec:
2893             done = fold_dup(&ctx, op);
2894             break;
2895         case INDEX_op_dup2_vec:
2896             done = fold_dup2(&ctx, op);
2897             break;
2898         case INDEX_op_eqv:
2899         case INDEX_op_eqv_vec:
2900             done = fold_eqv(&ctx, op);
2901             break;
2902         CASE_OP_32_64(extract):
2903             done = fold_extract(&ctx, op);
2904             break;
2905         CASE_OP_32_64(extract2):
2906             done = fold_extract2(&ctx, op);
2907             break;
2908         case INDEX_op_ext_i32_i64:
2909             done = fold_exts(&ctx, op);
2910             break;
2911         case INDEX_op_extu_i32_i64:
2912         case INDEX_op_extrl_i64_i32:
2913         case INDEX_op_extrh_i64_i32:
2914             done = fold_extu(&ctx, op);
2915             break;
2916         CASE_OP_32_64(ld8s):
2917         CASE_OP_32_64(ld8u):
2918         CASE_OP_32_64(ld16s):
2919         CASE_OP_32_64(ld16u):
2920         case INDEX_op_ld32s_i64:
2921         case INDEX_op_ld32u_i64:
2922             done = fold_tcg_ld(&ctx, op);
2923             break;
2924         case INDEX_op_ld_i32:
2925         case INDEX_op_ld_i64:
2926         case INDEX_op_ld_vec:
2927             done = fold_tcg_ld_memcopy(&ctx, op);
2928             break;
2929         CASE_OP_32_64(st8):
2930         CASE_OP_32_64(st16):
2931         case INDEX_op_st32_i64:
2932             done = fold_tcg_st(&ctx, op);
2933             break;
2934         case INDEX_op_st_i32:
2935         case INDEX_op_st_i64:
2936         case INDEX_op_st_vec:
2937             done = fold_tcg_st_memcopy(&ctx, op);
2938             break;
2939         case INDEX_op_mb:
2940             done = fold_mb(&ctx, op);
2941             break;
2942         case INDEX_op_mov:
2943         case INDEX_op_mov_vec:
2944             done = fold_mov(&ctx, op);
2945             break;
2946         case INDEX_op_movcond:
2947             done = fold_movcond(&ctx, op);
2948             break;
2949         case INDEX_op_mul:
2950             done = fold_mul(&ctx, op);
2951             break;
2952         case INDEX_op_mulsh:
2953         case INDEX_op_muluh:
2954             done = fold_mul_highpart(&ctx, op);
2955             break;
2956         case INDEX_op_muls2:
2957         case INDEX_op_mulu2:
2958             done = fold_multiply2(&ctx, op);
2959             break;
2960         case INDEX_op_nand:
2961         case INDEX_op_nand_vec:
2962             done = fold_nand(&ctx, op);
2963             break;
2964         case INDEX_op_neg:
2965             done = fold_neg(&ctx, op);
2966             break;
2967         case INDEX_op_nor:
2968         case INDEX_op_nor_vec:
2969             done = fold_nor(&ctx, op);
2970             break;
2971         case INDEX_op_not:
2972         case INDEX_op_not_vec:
2973             done = fold_not(&ctx, op);
2974             break;
2975         case INDEX_op_or:
2976         case INDEX_op_or_vec:
2977             done = fold_or(&ctx, op);
2978             break;
2979         case INDEX_op_orc:
2980         case INDEX_op_orc_vec:
2981             done = fold_orc(&ctx, op);
2982             break;
2983         case INDEX_op_qemu_ld_i32:
2984             done = fold_qemu_ld_1reg(&ctx, op);
2985             break;
2986         case INDEX_op_qemu_ld_i64:
2987             if (TCG_TARGET_REG_BITS == 64) {
2988                 done = fold_qemu_ld_1reg(&ctx, op);
2989                 break;
2990             }
2991             QEMU_FALLTHROUGH;
2992         case INDEX_op_qemu_ld_i128:
2993             done = fold_qemu_ld_2reg(&ctx, op);
2994             break;
2995         case INDEX_op_qemu_st8_i32:
2996         case INDEX_op_qemu_st_i32:
2997         case INDEX_op_qemu_st_i64:
2998         case INDEX_op_qemu_st_i128:
2999             done = fold_qemu_st(&ctx, op);
3000             break;
3001         case INDEX_op_rems:
3002         case INDEX_op_remu:
3003             done = fold_remainder(&ctx, op);
3004             break;
3005         case INDEX_op_rotl:
3006         case INDEX_op_rotr:
3007         case INDEX_op_sar:
3008         case INDEX_op_shl:
3009         case INDEX_op_shr:
3010             done = fold_shift(&ctx, op);
3011             break;
3012         case INDEX_op_setcond:
3013             done = fold_setcond(&ctx, op);
3014             break;
3015         case INDEX_op_negsetcond:
3016             done = fold_negsetcond(&ctx, op);
3017             break;
3018         case INDEX_op_setcond2_i32:
3019             done = fold_setcond2(&ctx, op);
3020             break;
3021         case INDEX_op_cmp_vec:
3022             done = fold_cmp_vec(&ctx, op);
3023             break;
3024         case INDEX_op_cmpsel_vec:
3025             done = fold_cmpsel_vec(&ctx, op);
3026             break;
3027         case INDEX_op_bitsel_vec:
3028             done = fold_bitsel_vec(&ctx, op);
3029             break;
3030         CASE_OP_32_64(sextract):
3031             done = fold_sextract(&ctx, op);
3032             break;
3033         case INDEX_op_sub:
3034             done = fold_sub(&ctx, op);
3035             break;
3036         case INDEX_op_sub_vec:
3037             done = fold_sub_vec(&ctx, op);
3038             break;
3039         CASE_OP_32_64(sub2):
3040             done = fold_sub2(&ctx, op);
3041             break;
3042         case INDEX_op_xor:
3043         case INDEX_op_xor_vec:
3044             done = fold_xor(&ctx, op);
3045             break;
3046         case INDEX_op_set_label:
3047         case INDEX_op_br:
3048         case INDEX_op_exit_tb:
3049         case INDEX_op_goto_tb:
3050         case INDEX_op_goto_ptr:
3051             finish_ebb(&ctx);
3052             done = true;
3053             break;
3054         default:
3055             done = finish_folding(&ctx, op);
3056             break;
3057         }
3058         tcg_debug_assert(done);
3059     }
3060 }
3061