1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op, 348 TCGOpcode opc, unsigned narg) 349 { 350 return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg); 351 } 352 353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op, 354 TCGOpcode opc, unsigned narg) 355 { 356 return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg); 357 } 358 359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 360 { 361 TCGTemp *dst_ts = arg_temp(dst); 362 TCGTemp *src_ts = arg_temp(src); 363 TempOptInfo *di; 364 TempOptInfo *si; 365 TCGOpcode new_op; 366 367 if (ts_are_copies(dst_ts, src_ts)) { 368 tcg_op_remove(ctx->tcg, op); 369 return true; 370 } 371 372 reset_ts(ctx, dst_ts); 373 di = ts_info(dst_ts); 374 si = ts_info(src_ts); 375 376 switch (ctx->type) { 377 case TCG_TYPE_I32: 378 case TCG_TYPE_I64: 379 new_op = INDEX_op_mov; 380 break; 381 case TCG_TYPE_V64: 382 case TCG_TYPE_V128: 383 case TCG_TYPE_V256: 384 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 385 new_op = INDEX_op_mov_vec; 386 break; 387 default: 388 g_assert_not_reached(); 389 } 390 op->opc = new_op; 391 op->args[0] = dst; 392 op->args[1] = src; 393 394 di->z_mask = si->z_mask; 395 di->s_mask = si->s_mask; 396 397 if (src_ts->type == dst_ts->type) { 398 TempOptInfo *ni = ts_info(si->next_copy); 399 400 di->next_copy = si->next_copy; 401 di->prev_copy = src_ts; 402 ni->prev_copy = dst_ts; 403 si->next_copy = dst_ts; 404 di->is_const = si->is_const; 405 di->val = si->val; 406 407 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 408 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 409 move_mem_copies(dst_ts, src_ts); 410 } 411 } 412 return true; 413 } 414 415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 416 TCGArg dst, uint64_t val) 417 { 418 /* Convert movi to mov with constant temp. */ 419 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 420 } 421 422 static uint64_t do_constant_folding_2(TCGOpcode op, TCGType type, 423 uint64_t x, uint64_t y) 424 { 425 uint64_t l64, h64; 426 427 switch (op) { 428 case INDEX_op_add: 429 return x + y; 430 431 case INDEX_op_sub: 432 return x - y; 433 434 case INDEX_op_mul: 435 return x * y; 436 437 case INDEX_op_and: 438 case INDEX_op_and_vec: 439 return x & y; 440 441 case INDEX_op_or: 442 case INDEX_op_or_vec: 443 return x | y; 444 445 case INDEX_op_xor: 446 case INDEX_op_xor_vec: 447 return x ^ y; 448 449 case INDEX_op_shl_i32: 450 return (uint32_t)x << (y & 31); 451 452 case INDEX_op_shl_i64: 453 return (uint64_t)x << (y & 63); 454 455 case INDEX_op_shr_i32: 456 return (uint32_t)x >> (y & 31); 457 458 case INDEX_op_shr_i64: 459 return (uint64_t)x >> (y & 63); 460 461 case INDEX_op_sar_i32: 462 return (int32_t)x >> (y & 31); 463 464 case INDEX_op_sar_i64: 465 return (int64_t)x >> (y & 63); 466 467 case INDEX_op_rotr_i32: 468 return ror32(x, y & 31); 469 470 case INDEX_op_rotr_i64: 471 return ror64(x, y & 63); 472 473 case INDEX_op_rotl_i32: 474 return rol32(x, y & 31); 475 476 case INDEX_op_rotl_i64: 477 return rol64(x, y & 63); 478 479 case INDEX_op_not: 480 case INDEX_op_not_vec: 481 return ~x; 482 483 case INDEX_op_neg: 484 return -x; 485 486 case INDEX_op_andc: 487 case INDEX_op_andc_vec: 488 return x & ~y; 489 490 case INDEX_op_orc: 491 case INDEX_op_orc_vec: 492 return x | ~y; 493 494 case INDEX_op_eqv: 495 case INDEX_op_eqv_vec: 496 return ~(x ^ y); 497 498 case INDEX_op_nand: 499 case INDEX_op_nand_vec: 500 return ~(x & y); 501 502 case INDEX_op_nor: 503 case INDEX_op_nor_vec: 504 return ~(x | y); 505 506 case INDEX_op_clz_i32: 507 return (uint32_t)x ? clz32(x) : y; 508 509 case INDEX_op_clz_i64: 510 return x ? clz64(x) : y; 511 512 case INDEX_op_ctz_i32: 513 return (uint32_t)x ? ctz32(x) : y; 514 515 case INDEX_op_ctz_i64: 516 return x ? ctz64(x) : y; 517 518 case INDEX_op_ctpop_i32: 519 return ctpop32(x); 520 521 case INDEX_op_ctpop_i64: 522 return ctpop64(x); 523 524 CASE_OP_32_64(bswap16): 525 x = bswap16(x); 526 return y & TCG_BSWAP_OS ? (int16_t)x : x; 527 528 CASE_OP_32_64(bswap32): 529 x = bswap32(x); 530 return y & TCG_BSWAP_OS ? (int32_t)x : x; 531 532 case INDEX_op_bswap64_i64: 533 return bswap64(x); 534 535 case INDEX_op_ext_i32_i64: 536 return (int32_t)x; 537 538 case INDEX_op_extu_i32_i64: 539 case INDEX_op_extrl_i64_i32: 540 return (uint32_t)x; 541 542 case INDEX_op_extrh_i64_i32: 543 return (uint64_t)x >> 32; 544 545 case INDEX_op_muluh: 546 if (type == TCG_TYPE_I32) { 547 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 548 } 549 mulu64(&l64, &h64, x, y); 550 return h64; 551 552 case INDEX_op_mulsh: 553 if (type == TCG_TYPE_I32) { 554 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 555 } 556 muls64(&l64, &h64, x, y); 557 return h64; 558 559 case INDEX_op_div_i32: 560 /* Avoid crashing on divide by zero, otherwise undefined. */ 561 return (int32_t)x / ((int32_t)y ? : 1); 562 case INDEX_op_divu_i32: 563 return (uint32_t)x / ((uint32_t)y ? : 1); 564 case INDEX_op_div_i64: 565 return (int64_t)x / ((int64_t)y ? : 1); 566 case INDEX_op_divu_i64: 567 return (uint64_t)x / ((uint64_t)y ? : 1); 568 569 case INDEX_op_rem_i32: 570 return (int32_t)x % ((int32_t)y ? : 1); 571 case INDEX_op_remu_i32: 572 return (uint32_t)x % ((uint32_t)y ? : 1); 573 case INDEX_op_rem_i64: 574 return (int64_t)x % ((int64_t)y ? : 1); 575 case INDEX_op_remu_i64: 576 return (uint64_t)x % ((uint64_t)y ? : 1); 577 578 default: 579 g_assert_not_reached(); 580 } 581 } 582 583 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 584 uint64_t x, uint64_t y) 585 { 586 uint64_t res = do_constant_folding_2(op, type, x, y); 587 if (type == TCG_TYPE_I32) { 588 res = (int32_t)res; 589 } 590 return res; 591 } 592 593 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 594 { 595 switch (c) { 596 case TCG_COND_EQ: 597 return x == y; 598 case TCG_COND_NE: 599 return x != y; 600 case TCG_COND_LT: 601 return (int32_t)x < (int32_t)y; 602 case TCG_COND_GE: 603 return (int32_t)x >= (int32_t)y; 604 case TCG_COND_LE: 605 return (int32_t)x <= (int32_t)y; 606 case TCG_COND_GT: 607 return (int32_t)x > (int32_t)y; 608 case TCG_COND_LTU: 609 return x < y; 610 case TCG_COND_GEU: 611 return x >= y; 612 case TCG_COND_LEU: 613 return x <= y; 614 case TCG_COND_GTU: 615 return x > y; 616 case TCG_COND_TSTEQ: 617 return (x & y) == 0; 618 case TCG_COND_TSTNE: 619 return (x & y) != 0; 620 case TCG_COND_ALWAYS: 621 case TCG_COND_NEVER: 622 break; 623 } 624 g_assert_not_reached(); 625 } 626 627 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 628 { 629 switch (c) { 630 case TCG_COND_EQ: 631 return x == y; 632 case TCG_COND_NE: 633 return x != y; 634 case TCG_COND_LT: 635 return (int64_t)x < (int64_t)y; 636 case TCG_COND_GE: 637 return (int64_t)x >= (int64_t)y; 638 case TCG_COND_LE: 639 return (int64_t)x <= (int64_t)y; 640 case TCG_COND_GT: 641 return (int64_t)x > (int64_t)y; 642 case TCG_COND_LTU: 643 return x < y; 644 case TCG_COND_GEU: 645 return x >= y; 646 case TCG_COND_LEU: 647 return x <= y; 648 case TCG_COND_GTU: 649 return x > y; 650 case TCG_COND_TSTEQ: 651 return (x & y) == 0; 652 case TCG_COND_TSTNE: 653 return (x & y) != 0; 654 case TCG_COND_ALWAYS: 655 case TCG_COND_NEVER: 656 break; 657 } 658 g_assert_not_reached(); 659 } 660 661 static int do_constant_folding_cond_eq(TCGCond c) 662 { 663 switch (c) { 664 case TCG_COND_GT: 665 case TCG_COND_LTU: 666 case TCG_COND_LT: 667 case TCG_COND_GTU: 668 case TCG_COND_NE: 669 return 0; 670 case TCG_COND_GE: 671 case TCG_COND_GEU: 672 case TCG_COND_LE: 673 case TCG_COND_LEU: 674 case TCG_COND_EQ: 675 return 1; 676 case TCG_COND_TSTEQ: 677 case TCG_COND_TSTNE: 678 return -1; 679 case TCG_COND_ALWAYS: 680 case TCG_COND_NEVER: 681 break; 682 } 683 g_assert_not_reached(); 684 } 685 686 /* 687 * Return -1 if the condition can't be simplified, 688 * and the result of the condition (0 or 1) if it can. 689 */ 690 static int do_constant_folding_cond(TCGType type, TCGArg x, 691 TCGArg y, TCGCond c) 692 { 693 if (arg_is_const(x) && arg_is_const(y)) { 694 uint64_t xv = arg_info(x)->val; 695 uint64_t yv = arg_info(y)->val; 696 697 switch (type) { 698 case TCG_TYPE_I32: 699 return do_constant_folding_cond_32(xv, yv, c); 700 case TCG_TYPE_I64: 701 return do_constant_folding_cond_64(xv, yv, c); 702 default: 703 /* Only scalar comparisons are optimizable */ 704 return -1; 705 } 706 } else if (args_are_copies(x, y)) { 707 return do_constant_folding_cond_eq(c); 708 } else if (arg_is_const_val(y, 0)) { 709 switch (c) { 710 case TCG_COND_LTU: 711 case TCG_COND_TSTNE: 712 return 0; 713 case TCG_COND_GEU: 714 case TCG_COND_TSTEQ: 715 return 1; 716 default: 717 return -1; 718 } 719 } 720 return -1; 721 } 722 723 /** 724 * swap_commutative: 725 * @dest: TCGArg of the destination argument, or NO_DEST. 726 * @p1: first paired argument 727 * @p2: second paired argument 728 * 729 * If *@p1 is a constant and *@p2 is not, swap. 730 * If *@p2 matches @dest, swap. 731 * Return true if a swap was performed. 732 */ 733 734 #define NO_DEST temp_arg(NULL) 735 736 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 737 { 738 TCGArg a1 = *p1, a2 = *p2; 739 int sum = 0; 740 sum += arg_is_const(a1); 741 sum -= arg_is_const(a2); 742 743 /* Prefer the constant in second argument, and then the form 744 op a, a, b, which is better handled on non-RISC hosts. */ 745 if (sum > 0 || (sum == 0 && dest == a2)) { 746 *p1 = a2; 747 *p2 = a1; 748 return true; 749 } 750 return false; 751 } 752 753 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 754 { 755 int sum = 0; 756 sum += arg_is_const(p1[0]); 757 sum += arg_is_const(p1[1]); 758 sum -= arg_is_const(p2[0]); 759 sum -= arg_is_const(p2[1]); 760 if (sum > 0) { 761 TCGArg t; 762 t = p1[0], p1[0] = p2[0], p2[0] = t; 763 t = p1[1], p1[1] = p2[1], p2[1] = t; 764 return true; 765 } 766 return false; 767 } 768 769 /* 770 * Return -1 if the condition can't be simplified, 771 * and the result of the condition (0 or 1) if it can. 772 */ 773 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 774 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 775 { 776 TCGCond cond; 777 TempOptInfo *i1; 778 bool swap; 779 int r; 780 781 swap = swap_commutative(dest, p1, p2); 782 cond = *pcond; 783 if (swap) { 784 *pcond = cond = tcg_swap_cond(cond); 785 } 786 787 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 788 if (r >= 0) { 789 return r; 790 } 791 if (!is_tst_cond(cond)) { 792 return -1; 793 } 794 795 i1 = arg_info(*p1); 796 797 /* 798 * TSTNE x,x -> NE x,0 799 * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x 800 */ 801 if (args_are_copies(*p1, *p2) || 802 (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) { 803 *p2 = arg_new_constant(ctx, 0); 804 *pcond = tcg_tst_eqne_cond(cond); 805 return -1; 806 } 807 808 /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */ 809 if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) { 810 *p2 = arg_new_constant(ctx, 0); 811 *pcond = tcg_tst_ltge_cond(cond); 812 return -1; 813 } 814 815 /* Expand to AND with a temporary if no backend support. */ 816 if (!TCG_TARGET_HAS_tst) { 817 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 818 TCGArg tmp = arg_new_temp(ctx); 819 820 op2->args[0] = tmp; 821 op2->args[1] = *p1; 822 op2->args[2] = *p2; 823 824 *p1 = tmp; 825 *p2 = arg_new_constant(ctx, 0); 826 *pcond = tcg_tst_eqne_cond(cond); 827 } 828 return -1; 829 } 830 831 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 832 { 833 TCGArg al, ah, bl, bh; 834 TCGCond c; 835 bool swap; 836 int r; 837 838 swap = swap_commutative2(args, args + 2); 839 c = args[4]; 840 if (swap) { 841 args[4] = c = tcg_swap_cond(c); 842 } 843 844 al = args[0]; 845 ah = args[1]; 846 bl = args[2]; 847 bh = args[3]; 848 849 if (arg_is_const(bl) && arg_is_const(bh)) { 850 tcg_target_ulong blv = arg_info(bl)->val; 851 tcg_target_ulong bhv = arg_info(bh)->val; 852 uint64_t b = deposit64(blv, 32, 32, bhv); 853 854 if (arg_is_const(al) && arg_is_const(ah)) { 855 tcg_target_ulong alv = arg_info(al)->val; 856 tcg_target_ulong ahv = arg_info(ah)->val; 857 uint64_t a = deposit64(alv, 32, 32, ahv); 858 859 r = do_constant_folding_cond_64(a, b, c); 860 if (r >= 0) { 861 return r; 862 } 863 } 864 865 if (b == 0) { 866 switch (c) { 867 case TCG_COND_LTU: 868 case TCG_COND_TSTNE: 869 return 0; 870 case TCG_COND_GEU: 871 case TCG_COND_TSTEQ: 872 return 1; 873 default: 874 break; 875 } 876 } 877 878 /* TSTNE x,-1 -> NE x,0 */ 879 if (b == -1 && is_tst_cond(c)) { 880 args[3] = args[2] = arg_new_constant(ctx, 0); 881 args[4] = tcg_tst_eqne_cond(c); 882 return -1; 883 } 884 885 /* TSTNE x,sign -> LT x,0 */ 886 if (b == INT64_MIN && is_tst_cond(c)) { 887 /* bl must be 0, so copy that to bh */ 888 args[3] = bl; 889 args[4] = tcg_tst_ltge_cond(c); 890 return -1; 891 } 892 } 893 894 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 895 r = do_constant_folding_cond_eq(c); 896 if (r >= 0) { 897 return r; 898 } 899 900 /* TSTNE x,x -> NE x,0 */ 901 if (is_tst_cond(c)) { 902 args[3] = args[2] = arg_new_constant(ctx, 0); 903 args[4] = tcg_tst_eqne_cond(c); 904 return -1; 905 } 906 } 907 908 /* Expand to AND with a temporary if no backend support. */ 909 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 910 TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and, 3); 911 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 912 TCGArg t1 = arg_new_temp(ctx); 913 TCGArg t2 = arg_new_temp(ctx); 914 915 op1->args[0] = t1; 916 op1->args[1] = al; 917 op1->args[2] = bl; 918 op2->args[0] = t2; 919 op2->args[1] = ah; 920 op2->args[2] = bh; 921 922 args[0] = t1; 923 args[1] = t2; 924 args[3] = args[2] = arg_new_constant(ctx, 0); 925 args[4] = tcg_tst_eqne_cond(c); 926 } 927 return -1; 928 } 929 930 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 931 { 932 for (int i = 0; i < nb_args; i++) { 933 TCGTemp *ts = arg_temp(op->args[i]); 934 init_ts_info(ctx, ts); 935 } 936 } 937 938 static void copy_propagate(OptContext *ctx, TCGOp *op, 939 int nb_oargs, int nb_iargs) 940 { 941 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 942 TCGTemp *ts = arg_temp(op->args[i]); 943 if (ts_is_copy(ts)) { 944 op->args[i] = temp_arg(find_better_copy(ts)); 945 } 946 } 947 } 948 949 static void finish_bb(OptContext *ctx) 950 { 951 /* We only optimize memory barriers across basic blocks. */ 952 ctx->prev_mb = NULL; 953 } 954 955 static void finish_ebb(OptContext *ctx) 956 { 957 finish_bb(ctx); 958 /* We only optimize across extended basic blocks. */ 959 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 960 remove_mem_copy_all(ctx); 961 } 962 963 static bool finish_folding(OptContext *ctx, TCGOp *op) 964 { 965 const TCGOpDef *def = &tcg_op_defs[op->opc]; 966 int i, nb_oargs; 967 968 nb_oargs = def->nb_oargs; 969 for (i = 0; i < nb_oargs; i++) { 970 TCGTemp *ts = arg_temp(op->args[i]); 971 reset_ts(ctx, ts); 972 } 973 return true; 974 } 975 976 /* 977 * The fold_* functions return true when processing is complete, 978 * usually by folding the operation to a constant or to a copy, 979 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 980 * like collect information about the value produced, for use in 981 * optimizing a subsequent operation. 982 * 983 * These first fold_* functions are all helpers, used by other 984 * folders for more specific operations. 985 */ 986 987 static bool fold_const1(OptContext *ctx, TCGOp *op) 988 { 989 if (arg_is_const(op->args[1])) { 990 uint64_t t; 991 992 t = arg_info(op->args[1])->val; 993 t = do_constant_folding(op->opc, ctx->type, t, 0); 994 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 995 } 996 return false; 997 } 998 999 static bool fold_const2(OptContext *ctx, TCGOp *op) 1000 { 1001 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1002 uint64_t t1 = arg_info(op->args[1])->val; 1003 uint64_t t2 = arg_info(op->args[2])->val; 1004 1005 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 1006 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 1007 } 1008 return false; 1009 } 1010 1011 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1012 { 1013 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1014 return false; 1015 } 1016 1017 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1018 { 1019 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1020 return fold_const2(ctx, op); 1021 } 1022 1023 /* 1024 * Record "zero" and "sign" masks for the single output of @op. 1025 * See TempOptInfo definition of z_mask and s_mask. 1026 * If z_mask allows, fold the output to constant zero. 1027 * The passed s_mask may be augmented by z_mask. 1028 */ 1029 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1030 uint64_t z_mask, int64_t s_mask) 1031 { 1032 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1033 TCGTemp *ts; 1034 TempOptInfo *ti; 1035 int rep; 1036 1037 /* Only single-output opcodes are supported here. */ 1038 tcg_debug_assert(def->nb_oargs == 1); 1039 1040 /* 1041 * 32-bit ops generate 32-bit results, which for the purpose of 1042 * simplifying tcg are sign-extended. Certainly that's how we 1043 * represent our constants elsewhere. Note that the bits will 1044 * be reset properly for a 64-bit value when encountering the 1045 * type changing opcodes. 1046 */ 1047 if (ctx->type == TCG_TYPE_I32) { 1048 z_mask = (int32_t)z_mask; 1049 s_mask |= INT32_MIN; 1050 } 1051 1052 if (z_mask == 0) { 1053 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1054 } 1055 1056 ts = arg_temp(op->args[0]); 1057 reset_ts(ctx, ts); 1058 1059 ti = ts_info(ts); 1060 ti->z_mask = z_mask; 1061 1062 /* Canonicalize s_mask and incorporate data from z_mask. */ 1063 rep = clz64(~s_mask); 1064 rep = MAX(rep, clz64(z_mask)); 1065 rep = MAX(rep - 1, 0); 1066 ti->s_mask = INT64_MIN >> rep; 1067 1068 return true; 1069 } 1070 1071 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1072 { 1073 return fold_masks_zs(ctx, op, z_mask, 0); 1074 } 1075 1076 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1077 { 1078 return fold_masks_zs(ctx, op, -1, s_mask); 1079 } 1080 1081 /* 1082 * An "affected" mask bit is 0 if and only if the result is identical 1083 * to the first input. Thus if the entire mask is 0, the operation 1084 * is equivalent to a copy. 1085 */ 1086 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1087 { 1088 if (ctx->type == TCG_TYPE_I32) { 1089 a_mask = (uint32_t)a_mask; 1090 } 1091 if (a_mask == 0) { 1092 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1093 } 1094 return false; 1095 } 1096 1097 /* 1098 * Convert @op to NOT, if NOT is supported by the host. 1099 * Return true f the conversion is successful, which will still 1100 * indicate that the processing is complete. 1101 */ 1102 static bool fold_not(OptContext *ctx, TCGOp *op); 1103 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1104 { 1105 TCGOpcode not_op; 1106 bool have_not; 1107 1108 switch (ctx->type) { 1109 case TCG_TYPE_I32: 1110 case TCG_TYPE_I64: 1111 not_op = INDEX_op_not; 1112 have_not = tcg_op_supported(INDEX_op_not, ctx->type, 0); 1113 break; 1114 case TCG_TYPE_V64: 1115 case TCG_TYPE_V128: 1116 case TCG_TYPE_V256: 1117 not_op = INDEX_op_not_vec; 1118 have_not = TCG_TARGET_HAS_not_vec; 1119 break; 1120 default: 1121 g_assert_not_reached(); 1122 } 1123 if (have_not) { 1124 op->opc = not_op; 1125 op->args[1] = op->args[idx]; 1126 return fold_not(ctx, op); 1127 } 1128 return false; 1129 } 1130 1131 /* If the binary operation has first argument @i, fold to @i. */ 1132 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1133 { 1134 if (arg_is_const_val(op->args[1], i)) { 1135 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1136 } 1137 return false; 1138 } 1139 1140 /* If the binary operation has first argument @i, fold to NOT. */ 1141 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1142 { 1143 if (arg_is_const_val(op->args[1], i)) { 1144 return fold_to_not(ctx, op, 2); 1145 } 1146 return false; 1147 } 1148 1149 /* If the binary operation has second argument @i, fold to @i. */ 1150 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1151 { 1152 if (arg_is_const_val(op->args[2], i)) { 1153 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1154 } 1155 return false; 1156 } 1157 1158 /* If the binary operation has second argument @i, fold to identity. */ 1159 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1160 { 1161 if (arg_is_const_val(op->args[2], i)) { 1162 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1163 } 1164 return false; 1165 } 1166 1167 /* If the binary operation has second argument @i, fold to NOT. */ 1168 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1169 { 1170 if (arg_is_const_val(op->args[2], i)) { 1171 return fold_to_not(ctx, op, 1); 1172 } 1173 return false; 1174 } 1175 1176 /* If the binary operation has both arguments equal, fold to @i. */ 1177 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1178 { 1179 if (args_are_copies(op->args[1], op->args[2])) { 1180 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1181 } 1182 return false; 1183 } 1184 1185 /* If the binary operation has both arguments equal, fold to identity. */ 1186 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1187 { 1188 if (args_are_copies(op->args[1], op->args[2])) { 1189 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1190 } 1191 return false; 1192 } 1193 1194 /* 1195 * These outermost fold_<op> functions are sorted alphabetically. 1196 * 1197 * The ordering of the transformations should be: 1198 * 1) those that produce a constant 1199 * 2) those that produce a copy 1200 * 3) those that produce information about the result value. 1201 */ 1202 1203 static bool fold_or(OptContext *ctx, TCGOp *op); 1204 static bool fold_orc(OptContext *ctx, TCGOp *op); 1205 static bool fold_xor(OptContext *ctx, TCGOp *op); 1206 1207 static bool fold_add(OptContext *ctx, TCGOp *op) 1208 { 1209 if (fold_const2_commutative(ctx, op) || 1210 fold_xi_to_x(ctx, op, 0)) { 1211 return true; 1212 } 1213 return finish_folding(ctx, op); 1214 } 1215 1216 /* We cannot as yet do_constant_folding with vectors. */ 1217 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1218 { 1219 if (fold_commutative(ctx, op) || 1220 fold_xi_to_x(ctx, op, 0)) { 1221 return true; 1222 } 1223 return finish_folding(ctx, op); 1224 } 1225 1226 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1227 { 1228 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1229 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1230 1231 if (a_const && b_const) { 1232 uint64_t al = arg_info(op->args[2])->val; 1233 uint64_t ah = arg_info(op->args[3])->val; 1234 uint64_t bl = arg_info(op->args[4])->val; 1235 uint64_t bh = arg_info(op->args[5])->val; 1236 TCGArg rl, rh; 1237 TCGOp *op2; 1238 1239 if (ctx->type == TCG_TYPE_I32) { 1240 uint64_t a = deposit64(al, 32, 32, ah); 1241 uint64_t b = deposit64(bl, 32, 32, bh); 1242 1243 if (add) { 1244 a += b; 1245 } else { 1246 a -= b; 1247 } 1248 1249 al = sextract64(a, 0, 32); 1250 ah = sextract64(a, 32, 32); 1251 } else { 1252 Int128 a = int128_make128(al, ah); 1253 Int128 b = int128_make128(bl, bh); 1254 1255 if (add) { 1256 a = int128_add(a, b); 1257 } else { 1258 a = int128_sub(a, b); 1259 } 1260 1261 al = int128_getlo(a); 1262 ah = int128_gethi(a); 1263 } 1264 1265 rl = op->args[0]; 1266 rh = op->args[1]; 1267 1268 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1269 op2 = opt_insert_before(ctx, op, 0, 2); 1270 1271 tcg_opt_gen_movi(ctx, op, rl, al); 1272 tcg_opt_gen_movi(ctx, op2, rh, ah); 1273 return true; 1274 } 1275 1276 /* Fold sub2 r,x,i to add2 r,x,-i */ 1277 if (!add && b_const) { 1278 uint64_t bl = arg_info(op->args[4])->val; 1279 uint64_t bh = arg_info(op->args[5])->val; 1280 1281 /* Negate the two parts without assembling and disassembling. */ 1282 bl = -bl; 1283 bh = ~bh + !bl; 1284 1285 op->opc = (ctx->type == TCG_TYPE_I32 1286 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1287 op->args[4] = arg_new_constant(ctx, bl); 1288 op->args[5] = arg_new_constant(ctx, bh); 1289 } 1290 return finish_folding(ctx, op); 1291 } 1292 1293 static bool fold_add2(OptContext *ctx, TCGOp *op) 1294 { 1295 /* Note that the high and low parts may be independently swapped. */ 1296 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1297 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1298 1299 return fold_addsub2(ctx, op, true); 1300 } 1301 1302 static bool fold_and(OptContext *ctx, TCGOp *op) 1303 { 1304 uint64_t z1, z2, z_mask, s_mask; 1305 TempOptInfo *t1, *t2; 1306 1307 if (fold_const2_commutative(ctx, op) || 1308 fold_xi_to_i(ctx, op, 0) || 1309 fold_xi_to_x(ctx, op, -1) || 1310 fold_xx_to_x(ctx, op)) { 1311 return true; 1312 } 1313 1314 t1 = arg_info(op->args[1]); 1315 t2 = arg_info(op->args[2]); 1316 z1 = t1->z_mask; 1317 z2 = t2->z_mask; 1318 1319 /* 1320 * Known-zeros does not imply known-ones. Therefore unless 1321 * arg2 is constant, we can't infer affected bits from it. 1322 */ 1323 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1324 return true; 1325 } 1326 1327 z_mask = z1 & z2; 1328 1329 /* 1330 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1331 * Bitwise operations preserve the relative quantity of the repetitions. 1332 */ 1333 s_mask = t1->s_mask & t2->s_mask; 1334 1335 return fold_masks_zs(ctx, op, z_mask, s_mask); 1336 } 1337 1338 static bool fold_andc(OptContext *ctx, TCGOp *op) 1339 { 1340 uint64_t z_mask, s_mask; 1341 TempOptInfo *t1, *t2; 1342 1343 if (fold_const2(ctx, op) || 1344 fold_xx_to_i(ctx, op, 0) || 1345 fold_xi_to_x(ctx, op, 0) || 1346 fold_ix_to_not(ctx, op, -1)) { 1347 return true; 1348 } 1349 1350 t1 = arg_info(op->args[1]); 1351 t2 = arg_info(op->args[2]); 1352 z_mask = t1->z_mask; 1353 1354 if (ti_is_const(t2)) { 1355 /* Fold andc r,x,i to and r,x,~i. */ 1356 switch (ctx->type) { 1357 case TCG_TYPE_I32: 1358 case TCG_TYPE_I64: 1359 op->opc = INDEX_op_and; 1360 break; 1361 case TCG_TYPE_V64: 1362 case TCG_TYPE_V128: 1363 case TCG_TYPE_V256: 1364 op->opc = INDEX_op_and_vec; 1365 break; 1366 default: 1367 g_assert_not_reached(); 1368 } 1369 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 1370 return fold_and(ctx, op); 1371 } 1372 1373 /* 1374 * Known-zeros does not imply known-ones. Therefore unless 1375 * arg2 is constant, we can't infer anything from it. 1376 */ 1377 if (ti_is_const(t2)) { 1378 uint64_t v2 = ti_const_val(t2); 1379 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1380 return true; 1381 } 1382 z_mask &= ~v2; 1383 } 1384 1385 s_mask = t1->s_mask & t2->s_mask; 1386 return fold_masks_zs(ctx, op, z_mask, s_mask); 1387 } 1388 1389 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1390 { 1391 /* If true and false values are the same, eliminate the cmp. */ 1392 if (args_are_copies(op->args[2], op->args[3])) { 1393 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1394 } 1395 1396 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1397 uint64_t tv = arg_info(op->args[2])->val; 1398 uint64_t fv = arg_info(op->args[3])->val; 1399 1400 if (tv == -1 && fv == 0) { 1401 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1402 } 1403 if (tv == 0 && fv == -1) { 1404 if (TCG_TARGET_HAS_not_vec) { 1405 op->opc = INDEX_op_not_vec; 1406 return fold_not(ctx, op); 1407 } else { 1408 op->opc = INDEX_op_xor_vec; 1409 op->args[2] = arg_new_constant(ctx, -1); 1410 return fold_xor(ctx, op); 1411 } 1412 } 1413 } 1414 if (arg_is_const(op->args[2])) { 1415 uint64_t tv = arg_info(op->args[2])->val; 1416 if (tv == -1) { 1417 op->opc = INDEX_op_or_vec; 1418 op->args[2] = op->args[3]; 1419 return fold_or(ctx, op); 1420 } 1421 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1422 op->opc = INDEX_op_andc_vec; 1423 op->args[2] = op->args[1]; 1424 op->args[1] = op->args[3]; 1425 return fold_andc(ctx, op); 1426 } 1427 } 1428 if (arg_is_const(op->args[3])) { 1429 uint64_t fv = arg_info(op->args[3])->val; 1430 if (fv == 0) { 1431 op->opc = INDEX_op_and_vec; 1432 return fold_and(ctx, op); 1433 } 1434 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1435 op->opc = INDEX_op_orc_vec; 1436 op->args[2] = op->args[1]; 1437 op->args[1] = op->args[3]; 1438 return fold_orc(ctx, op); 1439 } 1440 } 1441 return finish_folding(ctx, op); 1442 } 1443 1444 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1445 { 1446 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1447 &op->args[1], &op->args[2]); 1448 if (i == 0) { 1449 tcg_op_remove(ctx->tcg, op); 1450 return true; 1451 } 1452 if (i > 0) { 1453 op->opc = INDEX_op_br; 1454 op->args[0] = op->args[3]; 1455 finish_ebb(ctx); 1456 } else { 1457 finish_bb(ctx); 1458 } 1459 return true; 1460 } 1461 1462 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1463 { 1464 TCGCond cond; 1465 TCGArg label; 1466 int i, inv = 0; 1467 1468 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1469 cond = op->args[4]; 1470 label = op->args[5]; 1471 if (i >= 0) { 1472 goto do_brcond_const; 1473 } 1474 1475 switch (cond) { 1476 case TCG_COND_LT: 1477 case TCG_COND_GE: 1478 /* 1479 * Simplify LT/GE comparisons vs zero to a single compare 1480 * vs the high word of the input. 1481 */ 1482 if (arg_is_const_val(op->args[2], 0) && 1483 arg_is_const_val(op->args[3], 0)) { 1484 goto do_brcond_high; 1485 } 1486 break; 1487 1488 case TCG_COND_NE: 1489 inv = 1; 1490 QEMU_FALLTHROUGH; 1491 case TCG_COND_EQ: 1492 /* 1493 * Simplify EQ/NE comparisons where one of the pairs 1494 * can be simplified. 1495 */ 1496 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1497 op->args[2], cond); 1498 switch (i ^ inv) { 1499 case 0: 1500 goto do_brcond_const; 1501 case 1: 1502 goto do_brcond_high; 1503 } 1504 1505 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1506 op->args[3], cond); 1507 switch (i ^ inv) { 1508 case 0: 1509 goto do_brcond_const; 1510 case 1: 1511 goto do_brcond_low; 1512 } 1513 break; 1514 1515 case TCG_COND_TSTEQ: 1516 case TCG_COND_TSTNE: 1517 if (arg_is_const_val(op->args[2], 0)) { 1518 goto do_brcond_high; 1519 } 1520 if (arg_is_const_val(op->args[3], 0)) { 1521 goto do_brcond_low; 1522 } 1523 break; 1524 1525 default: 1526 break; 1527 1528 do_brcond_low: 1529 op->opc = INDEX_op_brcond_i32; 1530 op->args[1] = op->args[2]; 1531 op->args[2] = cond; 1532 op->args[3] = label; 1533 return fold_brcond(ctx, op); 1534 1535 do_brcond_high: 1536 op->opc = INDEX_op_brcond_i32; 1537 op->args[0] = op->args[1]; 1538 op->args[1] = op->args[3]; 1539 op->args[2] = cond; 1540 op->args[3] = label; 1541 return fold_brcond(ctx, op); 1542 1543 do_brcond_const: 1544 if (i == 0) { 1545 tcg_op_remove(ctx->tcg, op); 1546 return true; 1547 } 1548 op->opc = INDEX_op_br; 1549 op->args[0] = label; 1550 finish_ebb(ctx); 1551 return true; 1552 } 1553 1554 finish_bb(ctx); 1555 return true; 1556 } 1557 1558 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1559 { 1560 uint64_t z_mask, s_mask, sign; 1561 TempOptInfo *t1 = arg_info(op->args[1]); 1562 1563 if (ti_is_const(t1)) { 1564 return tcg_opt_gen_movi(ctx, op, op->args[0], 1565 do_constant_folding(op->opc, ctx->type, 1566 ti_const_val(t1), 1567 op->args[2])); 1568 } 1569 1570 z_mask = t1->z_mask; 1571 switch (op->opc) { 1572 case INDEX_op_bswap16_i32: 1573 case INDEX_op_bswap16_i64: 1574 z_mask = bswap16(z_mask); 1575 sign = INT16_MIN; 1576 break; 1577 case INDEX_op_bswap32_i32: 1578 case INDEX_op_bswap32_i64: 1579 z_mask = bswap32(z_mask); 1580 sign = INT32_MIN; 1581 break; 1582 case INDEX_op_bswap64_i64: 1583 z_mask = bswap64(z_mask); 1584 sign = INT64_MIN; 1585 break; 1586 default: 1587 g_assert_not_reached(); 1588 } 1589 1590 s_mask = 0; 1591 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1592 case TCG_BSWAP_OZ: 1593 break; 1594 case TCG_BSWAP_OS: 1595 /* If the sign bit may be 1, force all the bits above to 1. */ 1596 if (z_mask & sign) { 1597 z_mask |= sign; 1598 } 1599 /* The value and therefore s_mask is explicitly sign-extended. */ 1600 s_mask = sign; 1601 break; 1602 default: 1603 /* The high bits are undefined: force all bits above the sign to 1. */ 1604 z_mask |= sign << 1; 1605 break; 1606 } 1607 1608 return fold_masks_zs(ctx, op, z_mask, s_mask); 1609 } 1610 1611 static bool fold_call(OptContext *ctx, TCGOp *op) 1612 { 1613 TCGContext *s = ctx->tcg; 1614 int nb_oargs = TCGOP_CALLO(op); 1615 int nb_iargs = TCGOP_CALLI(op); 1616 int flags, i; 1617 1618 init_arguments(ctx, op, nb_oargs + nb_iargs); 1619 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1620 1621 /* If the function reads or writes globals, reset temp data. */ 1622 flags = tcg_call_flags(op); 1623 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1624 int nb_globals = s->nb_globals; 1625 1626 for (i = 0; i < nb_globals; i++) { 1627 if (test_bit(i, ctx->temps_used.l)) { 1628 reset_ts(ctx, &ctx->tcg->temps[i]); 1629 } 1630 } 1631 } 1632 1633 /* If the function has side effects, reset mem data. */ 1634 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1635 remove_mem_copy_all(ctx); 1636 } 1637 1638 /* Reset temp data for outputs. */ 1639 for (i = 0; i < nb_oargs; i++) { 1640 reset_temp(ctx, op->args[i]); 1641 } 1642 1643 /* Stop optimizing MB across calls. */ 1644 ctx->prev_mb = NULL; 1645 return true; 1646 } 1647 1648 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1649 { 1650 /* Canonicalize the comparison to put immediate second. */ 1651 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1652 op->args[3] = tcg_swap_cond(op->args[3]); 1653 } 1654 return finish_folding(ctx, op); 1655 } 1656 1657 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1658 { 1659 /* If true and false values are the same, eliminate the cmp. */ 1660 if (args_are_copies(op->args[3], op->args[4])) { 1661 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1662 } 1663 1664 /* Canonicalize the comparison to put immediate second. */ 1665 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1666 op->args[5] = tcg_swap_cond(op->args[5]); 1667 } 1668 /* 1669 * Canonicalize the "false" input reg to match the destination, 1670 * so that the tcg backend can implement "move if true". 1671 */ 1672 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1673 op->args[5] = tcg_invert_cond(op->args[5]); 1674 } 1675 return finish_folding(ctx, op); 1676 } 1677 1678 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1679 { 1680 uint64_t z_mask, s_mask; 1681 TempOptInfo *t1 = arg_info(op->args[1]); 1682 TempOptInfo *t2 = arg_info(op->args[2]); 1683 1684 if (ti_is_const(t1)) { 1685 uint64_t t = ti_const_val(t1); 1686 1687 if (t != 0) { 1688 t = do_constant_folding(op->opc, ctx->type, t, 0); 1689 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1690 } 1691 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1692 } 1693 1694 switch (ctx->type) { 1695 case TCG_TYPE_I32: 1696 z_mask = 31; 1697 break; 1698 case TCG_TYPE_I64: 1699 z_mask = 63; 1700 break; 1701 default: 1702 g_assert_not_reached(); 1703 } 1704 s_mask = ~z_mask; 1705 z_mask |= t2->z_mask; 1706 s_mask &= t2->s_mask; 1707 1708 return fold_masks_zs(ctx, op, z_mask, s_mask); 1709 } 1710 1711 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1712 { 1713 uint64_t z_mask; 1714 1715 if (fold_const1(ctx, op)) { 1716 return true; 1717 } 1718 1719 switch (ctx->type) { 1720 case TCG_TYPE_I32: 1721 z_mask = 32 | 31; 1722 break; 1723 case TCG_TYPE_I64: 1724 z_mask = 64 | 63; 1725 break; 1726 default: 1727 g_assert_not_reached(); 1728 } 1729 return fold_masks_z(ctx, op, z_mask); 1730 } 1731 1732 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1733 { 1734 TempOptInfo *t1 = arg_info(op->args[1]); 1735 TempOptInfo *t2 = arg_info(op->args[2]); 1736 int ofs = op->args[3]; 1737 int len = op->args[4]; 1738 int width = 8 * tcg_type_size(ctx->type); 1739 uint64_t z_mask, s_mask; 1740 1741 if (ti_is_const(t1) && ti_is_const(t2)) { 1742 return tcg_opt_gen_movi(ctx, op, op->args[0], 1743 deposit64(ti_const_val(t1), ofs, len, 1744 ti_const_val(t2))); 1745 } 1746 1747 /* Inserting a value into zero at offset 0. */ 1748 if (ti_is_const_val(t1, 0) && ofs == 0) { 1749 uint64_t mask = MAKE_64BIT_MASK(0, len); 1750 1751 op->opc = INDEX_op_and; 1752 op->args[1] = op->args[2]; 1753 op->args[2] = arg_new_constant(ctx, mask); 1754 return fold_and(ctx, op); 1755 } 1756 1757 /* Inserting zero into a value. */ 1758 if (ti_is_const_val(t2, 0)) { 1759 uint64_t mask = deposit64(-1, ofs, len, 0); 1760 1761 op->opc = INDEX_op_and; 1762 op->args[2] = arg_new_constant(ctx, mask); 1763 return fold_and(ctx, op); 1764 } 1765 1766 /* The s_mask from the top portion of the deposit is still valid. */ 1767 if (ofs + len == width) { 1768 s_mask = t2->s_mask << ofs; 1769 } else { 1770 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1771 } 1772 1773 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1774 return fold_masks_zs(ctx, op, z_mask, s_mask); 1775 } 1776 1777 static bool fold_divide(OptContext *ctx, TCGOp *op) 1778 { 1779 if (fold_const2(ctx, op) || 1780 fold_xi_to_x(ctx, op, 1)) { 1781 return true; 1782 } 1783 return finish_folding(ctx, op); 1784 } 1785 1786 static bool fold_dup(OptContext *ctx, TCGOp *op) 1787 { 1788 if (arg_is_const(op->args[1])) { 1789 uint64_t t = arg_info(op->args[1])->val; 1790 t = dup_const(TCGOP_VECE(op), t); 1791 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1792 } 1793 return finish_folding(ctx, op); 1794 } 1795 1796 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1797 { 1798 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1799 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1800 arg_info(op->args[2])->val); 1801 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1802 } 1803 1804 if (args_are_copies(op->args[1], op->args[2])) { 1805 op->opc = INDEX_op_dup_vec; 1806 TCGOP_VECE(op) = MO_32; 1807 } 1808 return finish_folding(ctx, op); 1809 } 1810 1811 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1812 { 1813 uint64_t s_mask; 1814 TempOptInfo *t1, *t2; 1815 1816 if (fold_const2_commutative(ctx, op) || 1817 fold_xi_to_x(ctx, op, -1) || 1818 fold_xi_to_not(ctx, op, 0)) { 1819 return true; 1820 } 1821 1822 t2 = arg_info(op->args[2]); 1823 if (ti_is_const(t2)) { 1824 /* Fold eqv r,x,i to xor r,x,~i. */ 1825 switch (ctx->type) { 1826 case TCG_TYPE_I32: 1827 case TCG_TYPE_I64: 1828 op->opc = INDEX_op_xor; 1829 break; 1830 case TCG_TYPE_V64: 1831 case TCG_TYPE_V128: 1832 case TCG_TYPE_V256: 1833 op->opc = INDEX_op_xor_vec; 1834 break; 1835 default: 1836 g_assert_not_reached(); 1837 } 1838 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 1839 return fold_xor(ctx, op); 1840 } 1841 1842 t1 = arg_info(op->args[1]); 1843 s_mask = t1->s_mask & t2->s_mask; 1844 return fold_masks_s(ctx, op, s_mask); 1845 } 1846 1847 static bool fold_extract(OptContext *ctx, TCGOp *op) 1848 { 1849 uint64_t z_mask_old, z_mask; 1850 TempOptInfo *t1 = arg_info(op->args[1]); 1851 int pos = op->args[2]; 1852 int len = op->args[3]; 1853 1854 if (ti_is_const(t1)) { 1855 return tcg_opt_gen_movi(ctx, op, op->args[0], 1856 extract64(ti_const_val(t1), pos, len)); 1857 } 1858 1859 z_mask_old = t1->z_mask; 1860 z_mask = extract64(z_mask_old, pos, len); 1861 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1862 return true; 1863 } 1864 1865 return fold_masks_z(ctx, op, z_mask); 1866 } 1867 1868 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1869 { 1870 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1871 uint64_t v1 = arg_info(op->args[1])->val; 1872 uint64_t v2 = arg_info(op->args[2])->val; 1873 int shr = op->args[3]; 1874 1875 if (op->opc == INDEX_op_extract2_i64) { 1876 v1 >>= shr; 1877 v2 <<= 64 - shr; 1878 } else { 1879 v1 = (uint32_t)v1 >> shr; 1880 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1881 } 1882 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1883 } 1884 return finish_folding(ctx, op); 1885 } 1886 1887 static bool fold_exts(OptContext *ctx, TCGOp *op) 1888 { 1889 uint64_t s_mask, z_mask; 1890 TempOptInfo *t1; 1891 1892 if (fold_const1(ctx, op)) { 1893 return true; 1894 } 1895 1896 t1 = arg_info(op->args[1]); 1897 z_mask = t1->z_mask; 1898 s_mask = t1->s_mask; 1899 1900 switch (op->opc) { 1901 case INDEX_op_ext_i32_i64: 1902 s_mask |= INT32_MIN; 1903 z_mask = (int32_t)z_mask; 1904 break; 1905 default: 1906 g_assert_not_reached(); 1907 } 1908 return fold_masks_zs(ctx, op, z_mask, s_mask); 1909 } 1910 1911 static bool fold_extu(OptContext *ctx, TCGOp *op) 1912 { 1913 uint64_t z_mask; 1914 1915 if (fold_const1(ctx, op)) { 1916 return true; 1917 } 1918 1919 z_mask = arg_info(op->args[1])->z_mask; 1920 switch (op->opc) { 1921 case INDEX_op_extrl_i64_i32: 1922 case INDEX_op_extu_i32_i64: 1923 z_mask = (uint32_t)z_mask; 1924 break; 1925 case INDEX_op_extrh_i64_i32: 1926 z_mask >>= 32; 1927 break; 1928 default: 1929 g_assert_not_reached(); 1930 } 1931 return fold_masks_z(ctx, op, z_mask); 1932 } 1933 1934 static bool fold_mb(OptContext *ctx, TCGOp *op) 1935 { 1936 /* Eliminate duplicate and redundant fence instructions. */ 1937 if (ctx->prev_mb) { 1938 /* 1939 * Merge two barriers of the same type into one, 1940 * or a weaker barrier into a stronger one, 1941 * or two weaker barriers into a stronger one. 1942 * mb X; mb Y => mb X|Y 1943 * mb; strl => mb; st 1944 * ldaq; mb => ld; mb 1945 * ldaq; strl => ld; mb; st 1946 * Other combinations are also merged into a strong 1947 * barrier. This is stricter than specified but for 1948 * the purposes of TCG is better than not optimizing. 1949 */ 1950 ctx->prev_mb->args[0] |= op->args[0]; 1951 tcg_op_remove(ctx->tcg, op); 1952 } else { 1953 ctx->prev_mb = op; 1954 } 1955 return true; 1956 } 1957 1958 static bool fold_mov(OptContext *ctx, TCGOp *op) 1959 { 1960 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1961 } 1962 1963 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1964 { 1965 uint64_t z_mask, s_mask; 1966 TempOptInfo *tt, *ft; 1967 int i; 1968 1969 /* If true and false values are the same, eliminate the cmp. */ 1970 if (args_are_copies(op->args[3], op->args[4])) { 1971 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1972 } 1973 1974 /* 1975 * Canonicalize the "false" input reg to match the destination reg so 1976 * that the tcg backend can implement a "move if true" operation. 1977 */ 1978 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1979 op->args[5] = tcg_invert_cond(op->args[5]); 1980 } 1981 1982 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1983 &op->args[2], &op->args[5]); 1984 if (i >= 0) { 1985 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1986 } 1987 1988 tt = arg_info(op->args[3]); 1989 ft = arg_info(op->args[4]); 1990 z_mask = tt->z_mask | ft->z_mask; 1991 s_mask = tt->s_mask & ft->s_mask; 1992 1993 if (ti_is_const(tt) && ti_is_const(ft)) { 1994 uint64_t tv = ti_const_val(tt); 1995 uint64_t fv = ti_const_val(ft); 1996 TCGOpcode opc, negopc = 0; 1997 TCGCond cond = op->args[5]; 1998 1999 switch (ctx->type) { 2000 case TCG_TYPE_I32: 2001 opc = INDEX_op_setcond_i32; 2002 if (TCG_TARGET_HAS_negsetcond_i32) { 2003 negopc = INDEX_op_negsetcond_i32; 2004 } 2005 tv = (int32_t)tv; 2006 fv = (int32_t)fv; 2007 break; 2008 case TCG_TYPE_I64: 2009 opc = INDEX_op_setcond_i64; 2010 if (TCG_TARGET_HAS_negsetcond_i64) { 2011 negopc = INDEX_op_negsetcond_i64; 2012 } 2013 break; 2014 default: 2015 g_assert_not_reached(); 2016 } 2017 2018 if (tv == 1 && fv == 0) { 2019 op->opc = opc; 2020 op->args[3] = cond; 2021 } else if (fv == 1 && tv == 0) { 2022 op->opc = opc; 2023 op->args[3] = tcg_invert_cond(cond); 2024 } else if (negopc) { 2025 if (tv == -1 && fv == 0) { 2026 op->opc = negopc; 2027 op->args[3] = cond; 2028 } else if (fv == -1 && tv == 0) { 2029 op->opc = negopc; 2030 op->args[3] = tcg_invert_cond(cond); 2031 } 2032 } 2033 } 2034 2035 return fold_masks_zs(ctx, op, z_mask, s_mask); 2036 } 2037 2038 static bool fold_mul(OptContext *ctx, TCGOp *op) 2039 { 2040 if (fold_const2(ctx, op) || 2041 fold_xi_to_i(ctx, op, 0) || 2042 fold_xi_to_x(ctx, op, 1)) { 2043 return true; 2044 } 2045 return finish_folding(ctx, op); 2046 } 2047 2048 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2049 { 2050 if (fold_const2_commutative(ctx, op) || 2051 fold_xi_to_i(ctx, op, 0)) { 2052 return true; 2053 } 2054 return finish_folding(ctx, op); 2055 } 2056 2057 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2058 { 2059 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2060 2061 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2062 uint64_t a = arg_info(op->args[2])->val; 2063 uint64_t b = arg_info(op->args[3])->val; 2064 uint64_t h, l; 2065 TCGArg rl, rh; 2066 TCGOp *op2; 2067 2068 switch (op->opc) { 2069 case INDEX_op_mulu2_i32: 2070 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2071 h = (int32_t)(l >> 32); 2072 l = (int32_t)l; 2073 break; 2074 case INDEX_op_muls2_i32: 2075 l = (int64_t)(int32_t)a * (int32_t)b; 2076 h = l >> 32; 2077 l = (int32_t)l; 2078 break; 2079 case INDEX_op_mulu2_i64: 2080 mulu64(&l, &h, a, b); 2081 break; 2082 case INDEX_op_muls2_i64: 2083 muls64(&l, &h, a, b); 2084 break; 2085 default: 2086 g_assert_not_reached(); 2087 } 2088 2089 rl = op->args[0]; 2090 rh = op->args[1]; 2091 2092 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2093 op2 = opt_insert_before(ctx, op, 0, 2); 2094 2095 tcg_opt_gen_movi(ctx, op, rl, l); 2096 tcg_opt_gen_movi(ctx, op2, rh, h); 2097 return true; 2098 } 2099 return finish_folding(ctx, op); 2100 } 2101 2102 static bool fold_nand(OptContext *ctx, TCGOp *op) 2103 { 2104 uint64_t s_mask; 2105 2106 if (fold_const2_commutative(ctx, op) || 2107 fold_xi_to_not(ctx, op, -1)) { 2108 return true; 2109 } 2110 2111 s_mask = arg_info(op->args[1])->s_mask 2112 & arg_info(op->args[2])->s_mask; 2113 return fold_masks_s(ctx, op, s_mask); 2114 } 2115 2116 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2117 { 2118 /* Set to 1 all bits to the left of the rightmost. */ 2119 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2120 z_mask = -(z_mask & -z_mask); 2121 2122 return fold_masks_z(ctx, op, z_mask); 2123 } 2124 2125 static bool fold_neg(OptContext *ctx, TCGOp *op) 2126 { 2127 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2128 } 2129 2130 static bool fold_nor(OptContext *ctx, TCGOp *op) 2131 { 2132 uint64_t s_mask; 2133 2134 if (fold_const2_commutative(ctx, op) || 2135 fold_xi_to_not(ctx, op, 0)) { 2136 return true; 2137 } 2138 2139 s_mask = arg_info(op->args[1])->s_mask 2140 & arg_info(op->args[2])->s_mask; 2141 return fold_masks_s(ctx, op, s_mask); 2142 } 2143 2144 static bool fold_not(OptContext *ctx, TCGOp *op) 2145 { 2146 if (fold_const1(ctx, op)) { 2147 return true; 2148 } 2149 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2150 } 2151 2152 static bool fold_or(OptContext *ctx, TCGOp *op) 2153 { 2154 uint64_t z_mask, s_mask; 2155 TempOptInfo *t1, *t2; 2156 2157 if (fold_const2_commutative(ctx, op) || 2158 fold_xi_to_x(ctx, op, 0) || 2159 fold_xx_to_x(ctx, op)) { 2160 return true; 2161 } 2162 2163 t1 = arg_info(op->args[1]); 2164 t2 = arg_info(op->args[2]); 2165 z_mask = t1->z_mask | t2->z_mask; 2166 s_mask = t1->s_mask & t2->s_mask; 2167 return fold_masks_zs(ctx, op, z_mask, s_mask); 2168 } 2169 2170 static bool fold_orc(OptContext *ctx, TCGOp *op) 2171 { 2172 uint64_t s_mask; 2173 TempOptInfo *t1, *t2; 2174 2175 if (fold_const2(ctx, op) || 2176 fold_xx_to_i(ctx, op, -1) || 2177 fold_xi_to_x(ctx, op, -1) || 2178 fold_ix_to_not(ctx, op, 0)) { 2179 return true; 2180 } 2181 2182 t2 = arg_info(op->args[2]); 2183 if (ti_is_const(t2)) { 2184 /* Fold orc r,x,i to or r,x,~i. */ 2185 switch (ctx->type) { 2186 case TCG_TYPE_I32: 2187 case TCG_TYPE_I64: 2188 op->opc = INDEX_op_or; 2189 break; 2190 case TCG_TYPE_V64: 2191 case TCG_TYPE_V128: 2192 case TCG_TYPE_V256: 2193 op->opc = INDEX_op_or_vec; 2194 break; 2195 default: 2196 g_assert_not_reached(); 2197 } 2198 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 2199 return fold_or(ctx, op); 2200 } 2201 2202 t1 = arg_info(op->args[1]); 2203 s_mask = t1->s_mask & t2->s_mask; 2204 return fold_masks_s(ctx, op, s_mask); 2205 } 2206 2207 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2208 { 2209 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2210 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2211 MemOp mop = get_memop(oi); 2212 int width = 8 * memop_size(mop); 2213 uint64_t z_mask = -1, s_mask = 0; 2214 2215 if (width < 64) { 2216 if (mop & MO_SIGN) { 2217 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2218 } else { 2219 z_mask = MAKE_64BIT_MASK(0, width); 2220 } 2221 } 2222 2223 /* Opcodes that touch guest memory stop the mb optimization. */ 2224 ctx->prev_mb = NULL; 2225 2226 return fold_masks_zs(ctx, op, z_mask, s_mask); 2227 } 2228 2229 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2230 { 2231 /* Opcodes that touch guest memory stop the mb optimization. */ 2232 ctx->prev_mb = NULL; 2233 return finish_folding(ctx, op); 2234 } 2235 2236 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2237 { 2238 /* Opcodes that touch guest memory stop the mb optimization. */ 2239 ctx->prev_mb = NULL; 2240 return true; 2241 } 2242 2243 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2244 { 2245 if (fold_const2(ctx, op) || 2246 fold_xx_to_i(ctx, op, 0)) { 2247 return true; 2248 } 2249 return finish_folding(ctx, op); 2250 } 2251 2252 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2253 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2254 { 2255 uint64_t a_zmask, b_val; 2256 TCGCond cond; 2257 2258 if (!arg_is_const(op->args[2])) { 2259 return false; 2260 } 2261 2262 a_zmask = arg_info(op->args[1])->z_mask; 2263 b_val = arg_info(op->args[2])->val; 2264 cond = op->args[3]; 2265 2266 if (ctx->type == TCG_TYPE_I32) { 2267 a_zmask = (uint32_t)a_zmask; 2268 b_val = (uint32_t)b_val; 2269 } 2270 2271 /* 2272 * A with only low bits set vs B with high bits set means that A < B. 2273 */ 2274 if (a_zmask < b_val) { 2275 bool inv = false; 2276 2277 switch (cond) { 2278 case TCG_COND_NE: 2279 case TCG_COND_LEU: 2280 case TCG_COND_LTU: 2281 inv = true; 2282 /* fall through */ 2283 case TCG_COND_GTU: 2284 case TCG_COND_GEU: 2285 case TCG_COND_EQ: 2286 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2287 default: 2288 break; 2289 } 2290 } 2291 2292 /* 2293 * A with only lsb set is already boolean. 2294 */ 2295 if (a_zmask <= 1) { 2296 bool convert = false; 2297 bool inv = false; 2298 2299 switch (cond) { 2300 case TCG_COND_EQ: 2301 inv = true; 2302 /* fall through */ 2303 case TCG_COND_NE: 2304 convert = (b_val == 0); 2305 break; 2306 case TCG_COND_LTU: 2307 case TCG_COND_TSTEQ: 2308 inv = true; 2309 /* fall through */ 2310 case TCG_COND_GEU: 2311 case TCG_COND_TSTNE: 2312 convert = (b_val == 1); 2313 break; 2314 default: 2315 break; 2316 } 2317 if (convert) { 2318 if (!inv && !neg) { 2319 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2320 } 2321 2322 if (!inv) { 2323 op->opc = INDEX_op_neg; 2324 } else if (neg) { 2325 op->opc = INDEX_op_add; 2326 op->args[2] = arg_new_constant(ctx, -1); 2327 } else { 2328 op->opc = INDEX_op_xor; 2329 op->args[2] = arg_new_constant(ctx, 1); 2330 } 2331 return -1; 2332 } 2333 } 2334 return 0; 2335 } 2336 2337 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2338 { 2339 TCGOpcode shr_opc; 2340 TCGOpcode uext_opc = 0, sext_opc = 0; 2341 TCGCond cond = op->args[3]; 2342 TCGArg ret, src1, src2; 2343 TCGOp *op2; 2344 uint64_t val; 2345 int sh; 2346 bool inv; 2347 2348 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2349 return; 2350 } 2351 2352 src2 = op->args[2]; 2353 val = arg_info(src2)->val; 2354 if (!is_power_of_2(val)) { 2355 return; 2356 } 2357 sh = ctz64(val); 2358 2359 switch (ctx->type) { 2360 case TCG_TYPE_I32: 2361 shr_opc = INDEX_op_shr_i32; 2362 if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) { 2363 uext_opc = INDEX_op_extract_i32; 2364 } 2365 if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) { 2366 sext_opc = INDEX_op_sextract_i32; 2367 } 2368 break; 2369 case TCG_TYPE_I64: 2370 shr_opc = INDEX_op_shr_i64; 2371 if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) { 2372 uext_opc = INDEX_op_extract_i64; 2373 } 2374 if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) { 2375 sext_opc = INDEX_op_sextract_i64; 2376 } 2377 break; 2378 default: 2379 g_assert_not_reached(); 2380 } 2381 2382 ret = op->args[0]; 2383 src1 = op->args[1]; 2384 inv = cond == TCG_COND_TSTEQ; 2385 2386 if (sh && sext_opc && neg && !inv) { 2387 op->opc = sext_opc; 2388 op->args[1] = src1; 2389 op->args[2] = sh; 2390 op->args[3] = 1; 2391 return; 2392 } else if (sh && uext_opc) { 2393 op->opc = uext_opc; 2394 op->args[1] = src1; 2395 op->args[2] = sh; 2396 op->args[3] = 1; 2397 } else { 2398 if (sh) { 2399 op2 = opt_insert_before(ctx, op, shr_opc, 3); 2400 op2->args[0] = ret; 2401 op2->args[1] = src1; 2402 op2->args[2] = arg_new_constant(ctx, sh); 2403 src1 = ret; 2404 } 2405 op->opc = INDEX_op_and; 2406 op->args[1] = src1; 2407 op->args[2] = arg_new_constant(ctx, 1); 2408 } 2409 2410 if (neg && inv) { 2411 op2 = opt_insert_after(ctx, op, INDEX_op_add, 3); 2412 op2->args[0] = ret; 2413 op2->args[1] = ret; 2414 op2->args[2] = arg_new_constant(ctx, -1); 2415 } else if (inv) { 2416 op2 = opt_insert_after(ctx, op, INDEX_op_xor, 3); 2417 op2->args[0] = ret; 2418 op2->args[1] = ret; 2419 op2->args[2] = arg_new_constant(ctx, 1); 2420 } else if (neg) { 2421 op2 = opt_insert_after(ctx, op, INDEX_op_neg, 2); 2422 op2->args[0] = ret; 2423 op2->args[1] = ret; 2424 } 2425 } 2426 2427 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2428 { 2429 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2430 &op->args[2], &op->args[3]); 2431 if (i >= 0) { 2432 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2433 } 2434 2435 i = fold_setcond_zmask(ctx, op, false); 2436 if (i > 0) { 2437 return true; 2438 } 2439 if (i == 0) { 2440 fold_setcond_tst_pow2(ctx, op, false); 2441 } 2442 2443 return fold_masks_z(ctx, op, 1); 2444 } 2445 2446 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2447 { 2448 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2449 &op->args[2], &op->args[3]); 2450 if (i >= 0) { 2451 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2452 } 2453 2454 i = fold_setcond_zmask(ctx, op, true); 2455 if (i > 0) { 2456 return true; 2457 } 2458 if (i == 0) { 2459 fold_setcond_tst_pow2(ctx, op, true); 2460 } 2461 2462 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2463 return fold_masks_s(ctx, op, -1); 2464 } 2465 2466 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2467 { 2468 TCGCond cond; 2469 int i, inv = 0; 2470 2471 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2472 cond = op->args[5]; 2473 if (i >= 0) { 2474 goto do_setcond_const; 2475 } 2476 2477 switch (cond) { 2478 case TCG_COND_LT: 2479 case TCG_COND_GE: 2480 /* 2481 * Simplify LT/GE comparisons vs zero to a single compare 2482 * vs the high word of the input. 2483 */ 2484 if (arg_is_const_val(op->args[3], 0) && 2485 arg_is_const_val(op->args[4], 0)) { 2486 goto do_setcond_high; 2487 } 2488 break; 2489 2490 case TCG_COND_NE: 2491 inv = 1; 2492 QEMU_FALLTHROUGH; 2493 case TCG_COND_EQ: 2494 /* 2495 * Simplify EQ/NE comparisons where one of the pairs 2496 * can be simplified. 2497 */ 2498 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2499 op->args[3], cond); 2500 switch (i ^ inv) { 2501 case 0: 2502 goto do_setcond_const; 2503 case 1: 2504 goto do_setcond_high; 2505 } 2506 2507 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2508 op->args[4], cond); 2509 switch (i ^ inv) { 2510 case 0: 2511 goto do_setcond_const; 2512 case 1: 2513 goto do_setcond_low; 2514 } 2515 break; 2516 2517 case TCG_COND_TSTEQ: 2518 case TCG_COND_TSTNE: 2519 if (arg_is_const_val(op->args[3], 0)) { 2520 goto do_setcond_high; 2521 } 2522 if (arg_is_const_val(op->args[4], 0)) { 2523 goto do_setcond_low; 2524 } 2525 break; 2526 2527 default: 2528 break; 2529 2530 do_setcond_low: 2531 op->args[2] = op->args[3]; 2532 op->args[3] = cond; 2533 op->opc = INDEX_op_setcond_i32; 2534 return fold_setcond(ctx, op); 2535 2536 do_setcond_high: 2537 op->args[1] = op->args[2]; 2538 op->args[2] = op->args[4]; 2539 op->args[3] = cond; 2540 op->opc = INDEX_op_setcond_i32; 2541 return fold_setcond(ctx, op); 2542 } 2543 2544 return fold_masks_z(ctx, op, 1); 2545 2546 do_setcond_const: 2547 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2548 } 2549 2550 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2551 { 2552 uint64_t z_mask, s_mask, s_mask_old; 2553 TempOptInfo *t1 = arg_info(op->args[1]); 2554 int pos = op->args[2]; 2555 int len = op->args[3]; 2556 2557 if (ti_is_const(t1)) { 2558 return tcg_opt_gen_movi(ctx, op, op->args[0], 2559 sextract64(ti_const_val(t1), pos, len)); 2560 } 2561 2562 s_mask_old = t1->s_mask; 2563 s_mask = s_mask_old >> pos; 2564 s_mask |= -1ull << (len - 1); 2565 2566 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2567 return true; 2568 } 2569 2570 z_mask = sextract64(t1->z_mask, pos, len); 2571 return fold_masks_zs(ctx, op, z_mask, s_mask); 2572 } 2573 2574 static bool fold_shift(OptContext *ctx, TCGOp *op) 2575 { 2576 uint64_t s_mask, z_mask; 2577 TempOptInfo *t1, *t2; 2578 2579 if (fold_const2(ctx, op) || 2580 fold_ix_to_i(ctx, op, 0) || 2581 fold_xi_to_x(ctx, op, 0)) { 2582 return true; 2583 } 2584 2585 t1 = arg_info(op->args[1]); 2586 t2 = arg_info(op->args[2]); 2587 s_mask = t1->s_mask; 2588 z_mask = t1->z_mask; 2589 2590 if (ti_is_const(t2)) { 2591 int sh = ti_const_val(t2); 2592 2593 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2594 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2595 2596 return fold_masks_zs(ctx, op, z_mask, s_mask); 2597 } 2598 2599 switch (op->opc) { 2600 CASE_OP_32_64(sar): 2601 /* 2602 * Arithmetic right shift will not reduce the number of 2603 * input sign repetitions. 2604 */ 2605 return fold_masks_s(ctx, op, s_mask); 2606 CASE_OP_32_64(shr): 2607 /* 2608 * If the sign bit is known zero, then logical right shift 2609 * will not reduce the number of input sign repetitions. 2610 */ 2611 if (~z_mask & -s_mask) { 2612 return fold_masks_s(ctx, op, s_mask); 2613 } 2614 break; 2615 default: 2616 break; 2617 } 2618 2619 return finish_folding(ctx, op); 2620 } 2621 2622 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2623 { 2624 TCGOpcode neg_op; 2625 bool have_neg; 2626 2627 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2628 return false; 2629 } 2630 2631 switch (ctx->type) { 2632 case TCG_TYPE_I32: 2633 case TCG_TYPE_I64: 2634 neg_op = INDEX_op_neg; 2635 have_neg = true; 2636 break; 2637 case TCG_TYPE_V64: 2638 case TCG_TYPE_V128: 2639 case TCG_TYPE_V256: 2640 neg_op = INDEX_op_neg_vec; 2641 have_neg = (TCG_TARGET_HAS_neg_vec && 2642 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2643 break; 2644 default: 2645 g_assert_not_reached(); 2646 } 2647 if (have_neg) { 2648 op->opc = neg_op; 2649 op->args[1] = op->args[2]; 2650 return fold_neg_no_const(ctx, op); 2651 } 2652 return false; 2653 } 2654 2655 /* We cannot as yet do_constant_folding with vectors. */ 2656 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2657 { 2658 if (fold_xx_to_i(ctx, op, 0) || 2659 fold_xi_to_x(ctx, op, 0) || 2660 fold_sub_to_neg(ctx, op)) { 2661 return true; 2662 } 2663 return finish_folding(ctx, op); 2664 } 2665 2666 static bool fold_sub(OptContext *ctx, TCGOp *op) 2667 { 2668 if (fold_const2(ctx, op) || 2669 fold_xx_to_i(ctx, op, 0) || 2670 fold_xi_to_x(ctx, op, 0) || 2671 fold_sub_to_neg(ctx, op)) { 2672 return true; 2673 } 2674 2675 /* Fold sub r,x,i to add r,x,-i */ 2676 if (arg_is_const(op->args[2])) { 2677 uint64_t val = arg_info(op->args[2])->val; 2678 2679 op->opc = INDEX_op_add; 2680 op->args[2] = arg_new_constant(ctx, -val); 2681 } 2682 return finish_folding(ctx, op); 2683 } 2684 2685 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2686 { 2687 return fold_addsub2(ctx, op, false); 2688 } 2689 2690 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2691 { 2692 uint64_t z_mask = -1, s_mask = 0; 2693 2694 /* We can't do any folding with a load, but we can record bits. */ 2695 switch (op->opc) { 2696 CASE_OP_32_64(ld8s): 2697 s_mask = INT8_MIN; 2698 break; 2699 CASE_OP_32_64(ld8u): 2700 z_mask = MAKE_64BIT_MASK(0, 8); 2701 break; 2702 CASE_OP_32_64(ld16s): 2703 s_mask = INT16_MIN; 2704 break; 2705 CASE_OP_32_64(ld16u): 2706 z_mask = MAKE_64BIT_MASK(0, 16); 2707 break; 2708 case INDEX_op_ld32s_i64: 2709 s_mask = INT32_MIN; 2710 break; 2711 case INDEX_op_ld32u_i64: 2712 z_mask = MAKE_64BIT_MASK(0, 32); 2713 break; 2714 default: 2715 g_assert_not_reached(); 2716 } 2717 return fold_masks_zs(ctx, op, z_mask, s_mask); 2718 } 2719 2720 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2721 { 2722 TCGTemp *dst, *src; 2723 intptr_t ofs; 2724 TCGType type; 2725 2726 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2727 return finish_folding(ctx, op); 2728 } 2729 2730 type = ctx->type; 2731 ofs = op->args[2]; 2732 dst = arg_temp(op->args[0]); 2733 src = find_mem_copy_for(ctx, type, ofs); 2734 if (src && src->base_type == type) { 2735 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2736 } 2737 2738 reset_ts(ctx, dst); 2739 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2740 return true; 2741 } 2742 2743 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2744 { 2745 intptr_t ofs = op->args[2]; 2746 intptr_t lm1; 2747 2748 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2749 remove_mem_copy_all(ctx); 2750 return true; 2751 } 2752 2753 switch (op->opc) { 2754 CASE_OP_32_64(st8): 2755 lm1 = 0; 2756 break; 2757 CASE_OP_32_64(st16): 2758 lm1 = 1; 2759 break; 2760 case INDEX_op_st32_i64: 2761 case INDEX_op_st_i32: 2762 lm1 = 3; 2763 break; 2764 case INDEX_op_st_i64: 2765 lm1 = 7; 2766 break; 2767 case INDEX_op_st_vec: 2768 lm1 = tcg_type_size(ctx->type) - 1; 2769 break; 2770 default: 2771 g_assert_not_reached(); 2772 } 2773 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2774 return true; 2775 } 2776 2777 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2778 { 2779 TCGTemp *src; 2780 intptr_t ofs, last; 2781 TCGType type; 2782 2783 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2784 return fold_tcg_st(ctx, op); 2785 } 2786 2787 src = arg_temp(op->args[0]); 2788 ofs = op->args[2]; 2789 type = ctx->type; 2790 2791 /* 2792 * Eliminate duplicate stores of a constant. 2793 * This happens frequently when the target ISA zero-extends. 2794 */ 2795 if (ts_is_const(src)) { 2796 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2797 if (src == prev) { 2798 tcg_op_remove(ctx->tcg, op); 2799 return true; 2800 } 2801 } 2802 2803 last = ofs + tcg_type_size(type) - 1; 2804 remove_mem_copy_in(ctx, ofs, last); 2805 record_mem_copy(ctx, type, src, ofs, last); 2806 return true; 2807 } 2808 2809 static bool fold_xor(OptContext *ctx, TCGOp *op) 2810 { 2811 uint64_t z_mask, s_mask; 2812 TempOptInfo *t1, *t2; 2813 2814 if (fold_const2_commutative(ctx, op) || 2815 fold_xx_to_i(ctx, op, 0) || 2816 fold_xi_to_x(ctx, op, 0) || 2817 fold_xi_to_not(ctx, op, -1)) { 2818 return true; 2819 } 2820 2821 t1 = arg_info(op->args[1]); 2822 t2 = arg_info(op->args[2]); 2823 z_mask = t1->z_mask | t2->z_mask; 2824 s_mask = t1->s_mask & t2->s_mask; 2825 return fold_masks_zs(ctx, op, z_mask, s_mask); 2826 } 2827 2828 /* Propagate constants and copies, fold constant expressions. */ 2829 void tcg_optimize(TCGContext *s) 2830 { 2831 int nb_temps, i; 2832 TCGOp *op, *op_next; 2833 OptContext ctx = { .tcg = s }; 2834 2835 QSIMPLEQ_INIT(&ctx.mem_free); 2836 2837 /* Array VALS has an element for each temp. 2838 If this temp holds a constant then its value is kept in VALS' element. 2839 If this temp is a copy of other ones then the other copies are 2840 available through the doubly linked circular list. */ 2841 2842 nb_temps = s->nb_temps; 2843 for (i = 0; i < nb_temps; ++i) { 2844 s->temps[i].state_ptr = NULL; 2845 } 2846 2847 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2848 TCGOpcode opc = op->opc; 2849 const TCGOpDef *def; 2850 bool done = false; 2851 2852 /* Calls are special. */ 2853 if (opc == INDEX_op_call) { 2854 fold_call(&ctx, op); 2855 continue; 2856 } 2857 2858 def = &tcg_op_defs[opc]; 2859 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2860 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2861 2862 /* Pre-compute the type of the operation. */ 2863 ctx.type = TCGOP_TYPE(op); 2864 2865 /* 2866 * Process each opcode. 2867 * Sorted alphabetically by opcode as much as possible. 2868 */ 2869 switch (opc) { 2870 case INDEX_op_add: 2871 done = fold_add(&ctx, op); 2872 break; 2873 case INDEX_op_add_vec: 2874 done = fold_add_vec(&ctx, op); 2875 break; 2876 CASE_OP_32_64(add2): 2877 done = fold_add2(&ctx, op); 2878 break; 2879 case INDEX_op_and: 2880 case INDEX_op_and_vec: 2881 done = fold_and(&ctx, op); 2882 break; 2883 case INDEX_op_andc: 2884 case INDEX_op_andc_vec: 2885 done = fold_andc(&ctx, op); 2886 break; 2887 CASE_OP_32_64(brcond): 2888 done = fold_brcond(&ctx, op); 2889 break; 2890 case INDEX_op_brcond2_i32: 2891 done = fold_brcond2(&ctx, op); 2892 break; 2893 CASE_OP_32_64(bswap16): 2894 CASE_OP_32_64(bswap32): 2895 case INDEX_op_bswap64_i64: 2896 done = fold_bswap(&ctx, op); 2897 break; 2898 CASE_OP_32_64(clz): 2899 CASE_OP_32_64(ctz): 2900 done = fold_count_zeros(&ctx, op); 2901 break; 2902 CASE_OP_32_64(ctpop): 2903 done = fold_ctpop(&ctx, op); 2904 break; 2905 CASE_OP_32_64(deposit): 2906 done = fold_deposit(&ctx, op); 2907 break; 2908 CASE_OP_32_64(div): 2909 CASE_OP_32_64(divu): 2910 done = fold_divide(&ctx, op); 2911 break; 2912 case INDEX_op_dup_vec: 2913 done = fold_dup(&ctx, op); 2914 break; 2915 case INDEX_op_dup2_vec: 2916 done = fold_dup2(&ctx, op); 2917 break; 2918 case INDEX_op_eqv: 2919 case INDEX_op_eqv_vec: 2920 done = fold_eqv(&ctx, op); 2921 break; 2922 CASE_OP_32_64(extract): 2923 done = fold_extract(&ctx, op); 2924 break; 2925 CASE_OP_32_64(extract2): 2926 done = fold_extract2(&ctx, op); 2927 break; 2928 case INDEX_op_ext_i32_i64: 2929 done = fold_exts(&ctx, op); 2930 break; 2931 case INDEX_op_extu_i32_i64: 2932 case INDEX_op_extrl_i64_i32: 2933 case INDEX_op_extrh_i64_i32: 2934 done = fold_extu(&ctx, op); 2935 break; 2936 CASE_OP_32_64(ld8s): 2937 CASE_OP_32_64(ld8u): 2938 CASE_OP_32_64(ld16s): 2939 CASE_OP_32_64(ld16u): 2940 case INDEX_op_ld32s_i64: 2941 case INDEX_op_ld32u_i64: 2942 done = fold_tcg_ld(&ctx, op); 2943 break; 2944 case INDEX_op_ld_i32: 2945 case INDEX_op_ld_i64: 2946 case INDEX_op_ld_vec: 2947 done = fold_tcg_ld_memcopy(&ctx, op); 2948 break; 2949 CASE_OP_32_64(st8): 2950 CASE_OP_32_64(st16): 2951 case INDEX_op_st32_i64: 2952 done = fold_tcg_st(&ctx, op); 2953 break; 2954 case INDEX_op_st_i32: 2955 case INDEX_op_st_i64: 2956 case INDEX_op_st_vec: 2957 done = fold_tcg_st_memcopy(&ctx, op); 2958 break; 2959 case INDEX_op_mb: 2960 done = fold_mb(&ctx, op); 2961 break; 2962 case INDEX_op_mov: 2963 case INDEX_op_mov_vec: 2964 done = fold_mov(&ctx, op); 2965 break; 2966 CASE_OP_32_64(movcond): 2967 done = fold_movcond(&ctx, op); 2968 break; 2969 case INDEX_op_mul: 2970 done = fold_mul(&ctx, op); 2971 break; 2972 case INDEX_op_mulsh: 2973 case INDEX_op_muluh: 2974 done = fold_mul_highpart(&ctx, op); 2975 break; 2976 CASE_OP_32_64(muls2): 2977 CASE_OP_32_64(mulu2): 2978 done = fold_multiply2(&ctx, op); 2979 break; 2980 case INDEX_op_nand: 2981 case INDEX_op_nand_vec: 2982 done = fold_nand(&ctx, op); 2983 break; 2984 case INDEX_op_neg: 2985 done = fold_neg(&ctx, op); 2986 break; 2987 case INDEX_op_nor: 2988 case INDEX_op_nor_vec: 2989 done = fold_nor(&ctx, op); 2990 break; 2991 case INDEX_op_not: 2992 case INDEX_op_not_vec: 2993 done = fold_not(&ctx, op); 2994 break; 2995 case INDEX_op_or: 2996 case INDEX_op_or_vec: 2997 done = fold_or(&ctx, op); 2998 break; 2999 case INDEX_op_orc: 3000 case INDEX_op_orc_vec: 3001 done = fold_orc(&ctx, op); 3002 break; 3003 case INDEX_op_qemu_ld_i32: 3004 done = fold_qemu_ld_1reg(&ctx, op); 3005 break; 3006 case INDEX_op_qemu_ld_i64: 3007 if (TCG_TARGET_REG_BITS == 64) { 3008 done = fold_qemu_ld_1reg(&ctx, op); 3009 break; 3010 } 3011 QEMU_FALLTHROUGH; 3012 case INDEX_op_qemu_ld_i128: 3013 done = fold_qemu_ld_2reg(&ctx, op); 3014 break; 3015 case INDEX_op_qemu_st8_i32: 3016 case INDEX_op_qemu_st_i32: 3017 case INDEX_op_qemu_st_i64: 3018 case INDEX_op_qemu_st_i128: 3019 done = fold_qemu_st(&ctx, op); 3020 break; 3021 CASE_OP_32_64(rem): 3022 CASE_OP_32_64(remu): 3023 done = fold_remainder(&ctx, op); 3024 break; 3025 CASE_OP_32_64(rotl): 3026 CASE_OP_32_64(rotr): 3027 CASE_OP_32_64(sar): 3028 CASE_OP_32_64(shl): 3029 CASE_OP_32_64(shr): 3030 done = fold_shift(&ctx, op); 3031 break; 3032 CASE_OP_32_64(setcond): 3033 done = fold_setcond(&ctx, op); 3034 break; 3035 CASE_OP_32_64(negsetcond): 3036 done = fold_negsetcond(&ctx, op); 3037 break; 3038 case INDEX_op_setcond2_i32: 3039 done = fold_setcond2(&ctx, op); 3040 break; 3041 case INDEX_op_cmp_vec: 3042 done = fold_cmp_vec(&ctx, op); 3043 break; 3044 case INDEX_op_cmpsel_vec: 3045 done = fold_cmpsel_vec(&ctx, op); 3046 break; 3047 case INDEX_op_bitsel_vec: 3048 done = fold_bitsel_vec(&ctx, op); 3049 break; 3050 CASE_OP_32_64(sextract): 3051 done = fold_sextract(&ctx, op); 3052 break; 3053 case INDEX_op_sub: 3054 done = fold_sub(&ctx, op); 3055 break; 3056 case INDEX_op_sub_vec: 3057 done = fold_sub_vec(&ctx, op); 3058 break; 3059 CASE_OP_32_64(sub2): 3060 done = fold_sub2(&ctx, op); 3061 break; 3062 case INDEX_op_xor: 3063 case INDEX_op_xor_vec: 3064 done = fold_xor(&ctx, op); 3065 break; 3066 case INDEX_op_set_label: 3067 case INDEX_op_br: 3068 case INDEX_op_exit_tb: 3069 case INDEX_op_goto_tb: 3070 case INDEX_op_goto_ptr: 3071 finish_ebb(&ctx); 3072 done = true; 3073 break; 3074 default: 3075 done = finish_folding(&ctx, op); 3076 break; 3077 } 3078 tcg_debug_assert(done); 3079 } 3080 } 3081