1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op, 348 TCGOpcode opc, unsigned narg) 349 { 350 return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg); 351 } 352 353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op, 354 TCGOpcode opc, unsigned narg) 355 { 356 return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg); 357 } 358 359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 360 { 361 TCGTemp *dst_ts = arg_temp(dst); 362 TCGTemp *src_ts = arg_temp(src); 363 TempOptInfo *di; 364 TempOptInfo *si; 365 TCGOpcode new_op; 366 367 if (ts_are_copies(dst_ts, src_ts)) { 368 tcg_op_remove(ctx->tcg, op); 369 return true; 370 } 371 372 reset_ts(ctx, dst_ts); 373 di = ts_info(dst_ts); 374 si = ts_info(src_ts); 375 376 switch (ctx->type) { 377 case TCG_TYPE_I32: 378 case TCG_TYPE_I64: 379 new_op = INDEX_op_mov; 380 break; 381 case TCG_TYPE_V64: 382 case TCG_TYPE_V128: 383 case TCG_TYPE_V256: 384 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 385 new_op = INDEX_op_mov_vec; 386 break; 387 default: 388 g_assert_not_reached(); 389 } 390 op->opc = new_op; 391 op->args[0] = dst; 392 op->args[1] = src; 393 394 di->z_mask = si->z_mask; 395 di->s_mask = si->s_mask; 396 397 if (src_ts->type == dst_ts->type) { 398 TempOptInfo *ni = ts_info(si->next_copy); 399 400 di->next_copy = si->next_copy; 401 di->prev_copy = src_ts; 402 ni->prev_copy = dst_ts; 403 si->next_copy = dst_ts; 404 di->is_const = si->is_const; 405 di->val = si->val; 406 407 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 408 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 409 move_mem_copies(dst_ts, src_ts); 410 } 411 } 412 return true; 413 } 414 415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 416 TCGArg dst, uint64_t val) 417 { 418 /* Convert movi to mov with constant temp. */ 419 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 420 } 421 422 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 423 { 424 uint64_t l64, h64; 425 426 switch (op) { 427 case INDEX_op_add: 428 return x + y; 429 430 CASE_OP_32_64(sub): 431 return x - y; 432 433 CASE_OP_32_64(mul): 434 return x * y; 435 436 case INDEX_op_and: 437 case INDEX_op_and_vec: 438 return x & y; 439 440 CASE_OP_32_64_VEC(or): 441 return x | y; 442 443 CASE_OP_32_64_VEC(xor): 444 return x ^ y; 445 446 case INDEX_op_shl_i32: 447 return (uint32_t)x << (y & 31); 448 449 case INDEX_op_shl_i64: 450 return (uint64_t)x << (y & 63); 451 452 case INDEX_op_shr_i32: 453 return (uint32_t)x >> (y & 31); 454 455 case INDEX_op_shr_i64: 456 return (uint64_t)x >> (y & 63); 457 458 case INDEX_op_sar_i32: 459 return (int32_t)x >> (y & 31); 460 461 case INDEX_op_sar_i64: 462 return (int64_t)x >> (y & 63); 463 464 case INDEX_op_rotr_i32: 465 return ror32(x, y & 31); 466 467 case INDEX_op_rotr_i64: 468 return ror64(x, y & 63); 469 470 case INDEX_op_rotl_i32: 471 return rol32(x, y & 31); 472 473 case INDEX_op_rotl_i64: 474 return rol64(x, y & 63); 475 476 CASE_OP_32_64_VEC(not): 477 return ~x; 478 479 CASE_OP_32_64(neg): 480 return -x; 481 482 CASE_OP_32_64_VEC(andc): 483 return x & ~y; 484 485 CASE_OP_32_64_VEC(orc): 486 return x | ~y; 487 488 CASE_OP_32_64_VEC(eqv): 489 return ~(x ^ y); 490 491 CASE_OP_32_64_VEC(nand): 492 return ~(x & y); 493 494 CASE_OP_32_64_VEC(nor): 495 return ~(x | y); 496 497 case INDEX_op_clz_i32: 498 return (uint32_t)x ? clz32(x) : y; 499 500 case INDEX_op_clz_i64: 501 return x ? clz64(x) : y; 502 503 case INDEX_op_ctz_i32: 504 return (uint32_t)x ? ctz32(x) : y; 505 506 case INDEX_op_ctz_i64: 507 return x ? ctz64(x) : y; 508 509 case INDEX_op_ctpop_i32: 510 return ctpop32(x); 511 512 case INDEX_op_ctpop_i64: 513 return ctpop64(x); 514 515 CASE_OP_32_64(bswap16): 516 x = bswap16(x); 517 return y & TCG_BSWAP_OS ? (int16_t)x : x; 518 519 CASE_OP_32_64(bswap32): 520 x = bswap32(x); 521 return y & TCG_BSWAP_OS ? (int32_t)x : x; 522 523 case INDEX_op_bswap64_i64: 524 return bswap64(x); 525 526 case INDEX_op_ext_i32_i64: 527 return (int32_t)x; 528 529 case INDEX_op_extu_i32_i64: 530 case INDEX_op_extrl_i64_i32: 531 return (uint32_t)x; 532 533 case INDEX_op_extrh_i64_i32: 534 return (uint64_t)x >> 32; 535 536 case INDEX_op_muluh_i32: 537 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 538 case INDEX_op_mulsh_i32: 539 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 540 541 case INDEX_op_muluh_i64: 542 mulu64(&l64, &h64, x, y); 543 return h64; 544 case INDEX_op_mulsh_i64: 545 muls64(&l64, &h64, x, y); 546 return h64; 547 548 case INDEX_op_div_i32: 549 /* Avoid crashing on divide by zero, otherwise undefined. */ 550 return (int32_t)x / ((int32_t)y ? : 1); 551 case INDEX_op_divu_i32: 552 return (uint32_t)x / ((uint32_t)y ? : 1); 553 case INDEX_op_div_i64: 554 return (int64_t)x / ((int64_t)y ? : 1); 555 case INDEX_op_divu_i64: 556 return (uint64_t)x / ((uint64_t)y ? : 1); 557 558 case INDEX_op_rem_i32: 559 return (int32_t)x % ((int32_t)y ? : 1); 560 case INDEX_op_remu_i32: 561 return (uint32_t)x % ((uint32_t)y ? : 1); 562 case INDEX_op_rem_i64: 563 return (int64_t)x % ((int64_t)y ? : 1); 564 case INDEX_op_remu_i64: 565 return (uint64_t)x % ((uint64_t)y ? : 1); 566 567 default: 568 g_assert_not_reached(); 569 } 570 } 571 572 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 573 uint64_t x, uint64_t y) 574 { 575 uint64_t res = do_constant_folding_2(op, x, y); 576 if (type == TCG_TYPE_I32) { 577 res = (int32_t)res; 578 } 579 return res; 580 } 581 582 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 583 { 584 switch (c) { 585 case TCG_COND_EQ: 586 return x == y; 587 case TCG_COND_NE: 588 return x != y; 589 case TCG_COND_LT: 590 return (int32_t)x < (int32_t)y; 591 case TCG_COND_GE: 592 return (int32_t)x >= (int32_t)y; 593 case TCG_COND_LE: 594 return (int32_t)x <= (int32_t)y; 595 case TCG_COND_GT: 596 return (int32_t)x > (int32_t)y; 597 case TCG_COND_LTU: 598 return x < y; 599 case TCG_COND_GEU: 600 return x >= y; 601 case TCG_COND_LEU: 602 return x <= y; 603 case TCG_COND_GTU: 604 return x > y; 605 case TCG_COND_TSTEQ: 606 return (x & y) == 0; 607 case TCG_COND_TSTNE: 608 return (x & y) != 0; 609 case TCG_COND_ALWAYS: 610 case TCG_COND_NEVER: 611 break; 612 } 613 g_assert_not_reached(); 614 } 615 616 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 617 { 618 switch (c) { 619 case TCG_COND_EQ: 620 return x == y; 621 case TCG_COND_NE: 622 return x != y; 623 case TCG_COND_LT: 624 return (int64_t)x < (int64_t)y; 625 case TCG_COND_GE: 626 return (int64_t)x >= (int64_t)y; 627 case TCG_COND_LE: 628 return (int64_t)x <= (int64_t)y; 629 case TCG_COND_GT: 630 return (int64_t)x > (int64_t)y; 631 case TCG_COND_LTU: 632 return x < y; 633 case TCG_COND_GEU: 634 return x >= y; 635 case TCG_COND_LEU: 636 return x <= y; 637 case TCG_COND_GTU: 638 return x > y; 639 case TCG_COND_TSTEQ: 640 return (x & y) == 0; 641 case TCG_COND_TSTNE: 642 return (x & y) != 0; 643 case TCG_COND_ALWAYS: 644 case TCG_COND_NEVER: 645 break; 646 } 647 g_assert_not_reached(); 648 } 649 650 static int do_constant_folding_cond_eq(TCGCond c) 651 { 652 switch (c) { 653 case TCG_COND_GT: 654 case TCG_COND_LTU: 655 case TCG_COND_LT: 656 case TCG_COND_GTU: 657 case TCG_COND_NE: 658 return 0; 659 case TCG_COND_GE: 660 case TCG_COND_GEU: 661 case TCG_COND_LE: 662 case TCG_COND_LEU: 663 case TCG_COND_EQ: 664 return 1; 665 case TCG_COND_TSTEQ: 666 case TCG_COND_TSTNE: 667 return -1; 668 case TCG_COND_ALWAYS: 669 case TCG_COND_NEVER: 670 break; 671 } 672 g_assert_not_reached(); 673 } 674 675 /* 676 * Return -1 if the condition can't be simplified, 677 * and the result of the condition (0 or 1) if it can. 678 */ 679 static int do_constant_folding_cond(TCGType type, TCGArg x, 680 TCGArg y, TCGCond c) 681 { 682 if (arg_is_const(x) && arg_is_const(y)) { 683 uint64_t xv = arg_info(x)->val; 684 uint64_t yv = arg_info(y)->val; 685 686 switch (type) { 687 case TCG_TYPE_I32: 688 return do_constant_folding_cond_32(xv, yv, c); 689 case TCG_TYPE_I64: 690 return do_constant_folding_cond_64(xv, yv, c); 691 default: 692 /* Only scalar comparisons are optimizable */ 693 return -1; 694 } 695 } else if (args_are_copies(x, y)) { 696 return do_constant_folding_cond_eq(c); 697 } else if (arg_is_const_val(y, 0)) { 698 switch (c) { 699 case TCG_COND_LTU: 700 case TCG_COND_TSTNE: 701 return 0; 702 case TCG_COND_GEU: 703 case TCG_COND_TSTEQ: 704 return 1; 705 default: 706 return -1; 707 } 708 } 709 return -1; 710 } 711 712 /** 713 * swap_commutative: 714 * @dest: TCGArg of the destination argument, or NO_DEST. 715 * @p1: first paired argument 716 * @p2: second paired argument 717 * 718 * If *@p1 is a constant and *@p2 is not, swap. 719 * If *@p2 matches @dest, swap. 720 * Return true if a swap was performed. 721 */ 722 723 #define NO_DEST temp_arg(NULL) 724 725 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 726 { 727 TCGArg a1 = *p1, a2 = *p2; 728 int sum = 0; 729 sum += arg_is_const(a1); 730 sum -= arg_is_const(a2); 731 732 /* Prefer the constant in second argument, and then the form 733 op a, a, b, which is better handled on non-RISC hosts. */ 734 if (sum > 0 || (sum == 0 && dest == a2)) { 735 *p1 = a2; 736 *p2 = a1; 737 return true; 738 } 739 return false; 740 } 741 742 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 743 { 744 int sum = 0; 745 sum += arg_is_const(p1[0]); 746 sum += arg_is_const(p1[1]); 747 sum -= arg_is_const(p2[0]); 748 sum -= arg_is_const(p2[1]); 749 if (sum > 0) { 750 TCGArg t; 751 t = p1[0], p1[0] = p2[0], p2[0] = t; 752 t = p1[1], p1[1] = p2[1], p2[1] = t; 753 return true; 754 } 755 return false; 756 } 757 758 /* 759 * Return -1 if the condition can't be simplified, 760 * and the result of the condition (0 or 1) if it can. 761 */ 762 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 763 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 764 { 765 TCGCond cond; 766 TempOptInfo *i1; 767 bool swap; 768 int r; 769 770 swap = swap_commutative(dest, p1, p2); 771 cond = *pcond; 772 if (swap) { 773 *pcond = cond = tcg_swap_cond(cond); 774 } 775 776 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 777 if (r >= 0) { 778 return r; 779 } 780 if (!is_tst_cond(cond)) { 781 return -1; 782 } 783 784 i1 = arg_info(*p1); 785 786 /* 787 * TSTNE x,x -> NE x,0 788 * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x 789 */ 790 if (args_are_copies(*p1, *p2) || 791 (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) { 792 *p2 = arg_new_constant(ctx, 0); 793 *pcond = tcg_tst_eqne_cond(cond); 794 return -1; 795 } 796 797 /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */ 798 if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) { 799 *p2 = arg_new_constant(ctx, 0); 800 *pcond = tcg_tst_ltge_cond(cond); 801 return -1; 802 } 803 804 /* Expand to AND with a temporary if no backend support. */ 805 if (!TCG_TARGET_HAS_tst) { 806 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 807 TCGArg tmp = arg_new_temp(ctx); 808 809 op2->args[0] = tmp; 810 op2->args[1] = *p1; 811 op2->args[2] = *p2; 812 813 *p1 = tmp; 814 *p2 = arg_new_constant(ctx, 0); 815 *pcond = tcg_tst_eqne_cond(cond); 816 } 817 return -1; 818 } 819 820 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 821 { 822 TCGArg al, ah, bl, bh; 823 TCGCond c; 824 bool swap; 825 int r; 826 827 swap = swap_commutative2(args, args + 2); 828 c = args[4]; 829 if (swap) { 830 args[4] = c = tcg_swap_cond(c); 831 } 832 833 al = args[0]; 834 ah = args[1]; 835 bl = args[2]; 836 bh = args[3]; 837 838 if (arg_is_const(bl) && arg_is_const(bh)) { 839 tcg_target_ulong blv = arg_info(bl)->val; 840 tcg_target_ulong bhv = arg_info(bh)->val; 841 uint64_t b = deposit64(blv, 32, 32, bhv); 842 843 if (arg_is_const(al) && arg_is_const(ah)) { 844 tcg_target_ulong alv = arg_info(al)->val; 845 tcg_target_ulong ahv = arg_info(ah)->val; 846 uint64_t a = deposit64(alv, 32, 32, ahv); 847 848 r = do_constant_folding_cond_64(a, b, c); 849 if (r >= 0) { 850 return r; 851 } 852 } 853 854 if (b == 0) { 855 switch (c) { 856 case TCG_COND_LTU: 857 case TCG_COND_TSTNE: 858 return 0; 859 case TCG_COND_GEU: 860 case TCG_COND_TSTEQ: 861 return 1; 862 default: 863 break; 864 } 865 } 866 867 /* TSTNE x,-1 -> NE x,0 */ 868 if (b == -1 && is_tst_cond(c)) { 869 args[3] = args[2] = arg_new_constant(ctx, 0); 870 args[4] = tcg_tst_eqne_cond(c); 871 return -1; 872 } 873 874 /* TSTNE x,sign -> LT x,0 */ 875 if (b == INT64_MIN && is_tst_cond(c)) { 876 /* bl must be 0, so copy that to bh */ 877 args[3] = bl; 878 args[4] = tcg_tst_ltge_cond(c); 879 return -1; 880 } 881 } 882 883 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 884 r = do_constant_folding_cond_eq(c); 885 if (r >= 0) { 886 return r; 887 } 888 889 /* TSTNE x,x -> NE x,0 */ 890 if (is_tst_cond(c)) { 891 args[3] = args[2] = arg_new_constant(ctx, 0); 892 args[4] = tcg_tst_eqne_cond(c); 893 return -1; 894 } 895 } 896 897 /* Expand to AND with a temporary if no backend support. */ 898 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 899 TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and, 3); 900 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 901 TCGArg t1 = arg_new_temp(ctx); 902 TCGArg t2 = arg_new_temp(ctx); 903 904 op1->args[0] = t1; 905 op1->args[1] = al; 906 op1->args[2] = bl; 907 op2->args[0] = t2; 908 op2->args[1] = ah; 909 op2->args[2] = bh; 910 911 args[0] = t1; 912 args[1] = t2; 913 args[3] = args[2] = arg_new_constant(ctx, 0); 914 args[4] = tcg_tst_eqne_cond(c); 915 } 916 return -1; 917 } 918 919 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 920 { 921 for (int i = 0; i < nb_args; i++) { 922 TCGTemp *ts = arg_temp(op->args[i]); 923 init_ts_info(ctx, ts); 924 } 925 } 926 927 static void copy_propagate(OptContext *ctx, TCGOp *op, 928 int nb_oargs, int nb_iargs) 929 { 930 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 931 TCGTemp *ts = arg_temp(op->args[i]); 932 if (ts_is_copy(ts)) { 933 op->args[i] = temp_arg(find_better_copy(ts)); 934 } 935 } 936 } 937 938 static void finish_bb(OptContext *ctx) 939 { 940 /* We only optimize memory barriers across basic blocks. */ 941 ctx->prev_mb = NULL; 942 } 943 944 static void finish_ebb(OptContext *ctx) 945 { 946 finish_bb(ctx); 947 /* We only optimize across extended basic blocks. */ 948 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 949 remove_mem_copy_all(ctx); 950 } 951 952 static bool finish_folding(OptContext *ctx, TCGOp *op) 953 { 954 const TCGOpDef *def = &tcg_op_defs[op->opc]; 955 int i, nb_oargs; 956 957 nb_oargs = def->nb_oargs; 958 for (i = 0; i < nb_oargs; i++) { 959 TCGTemp *ts = arg_temp(op->args[i]); 960 reset_ts(ctx, ts); 961 } 962 return true; 963 } 964 965 /* 966 * The fold_* functions return true when processing is complete, 967 * usually by folding the operation to a constant or to a copy, 968 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 969 * like collect information about the value produced, for use in 970 * optimizing a subsequent operation. 971 * 972 * These first fold_* functions are all helpers, used by other 973 * folders for more specific operations. 974 */ 975 976 static bool fold_const1(OptContext *ctx, TCGOp *op) 977 { 978 if (arg_is_const(op->args[1])) { 979 uint64_t t; 980 981 t = arg_info(op->args[1])->val; 982 t = do_constant_folding(op->opc, ctx->type, t, 0); 983 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 984 } 985 return false; 986 } 987 988 static bool fold_const2(OptContext *ctx, TCGOp *op) 989 { 990 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 991 uint64_t t1 = arg_info(op->args[1])->val; 992 uint64_t t2 = arg_info(op->args[2])->val; 993 994 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 995 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 996 } 997 return false; 998 } 999 1000 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1001 { 1002 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1003 return false; 1004 } 1005 1006 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1007 { 1008 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1009 return fold_const2(ctx, op); 1010 } 1011 1012 /* 1013 * Record "zero" and "sign" masks for the single output of @op. 1014 * See TempOptInfo definition of z_mask and s_mask. 1015 * If z_mask allows, fold the output to constant zero. 1016 * The passed s_mask may be augmented by z_mask. 1017 */ 1018 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1019 uint64_t z_mask, int64_t s_mask) 1020 { 1021 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1022 TCGTemp *ts; 1023 TempOptInfo *ti; 1024 int rep; 1025 1026 /* Only single-output opcodes are supported here. */ 1027 tcg_debug_assert(def->nb_oargs == 1); 1028 1029 /* 1030 * 32-bit ops generate 32-bit results, which for the purpose of 1031 * simplifying tcg are sign-extended. Certainly that's how we 1032 * represent our constants elsewhere. Note that the bits will 1033 * be reset properly for a 64-bit value when encountering the 1034 * type changing opcodes. 1035 */ 1036 if (ctx->type == TCG_TYPE_I32) { 1037 z_mask = (int32_t)z_mask; 1038 s_mask |= INT32_MIN; 1039 } 1040 1041 if (z_mask == 0) { 1042 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1043 } 1044 1045 ts = arg_temp(op->args[0]); 1046 reset_ts(ctx, ts); 1047 1048 ti = ts_info(ts); 1049 ti->z_mask = z_mask; 1050 1051 /* Canonicalize s_mask and incorporate data from z_mask. */ 1052 rep = clz64(~s_mask); 1053 rep = MAX(rep, clz64(z_mask)); 1054 rep = MAX(rep - 1, 0); 1055 ti->s_mask = INT64_MIN >> rep; 1056 1057 return true; 1058 } 1059 1060 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1061 { 1062 return fold_masks_zs(ctx, op, z_mask, 0); 1063 } 1064 1065 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1066 { 1067 return fold_masks_zs(ctx, op, -1, s_mask); 1068 } 1069 1070 /* 1071 * An "affected" mask bit is 0 if and only if the result is identical 1072 * to the first input. Thus if the entire mask is 0, the operation 1073 * is equivalent to a copy. 1074 */ 1075 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1076 { 1077 if (ctx->type == TCG_TYPE_I32) { 1078 a_mask = (uint32_t)a_mask; 1079 } 1080 if (a_mask == 0) { 1081 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1082 } 1083 return false; 1084 } 1085 1086 /* 1087 * Convert @op to NOT, if NOT is supported by the host. 1088 * Return true f the conversion is successful, which will still 1089 * indicate that the processing is complete. 1090 */ 1091 static bool fold_not(OptContext *ctx, TCGOp *op); 1092 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1093 { 1094 TCGOpcode not_op; 1095 bool have_not; 1096 1097 switch (ctx->type) { 1098 case TCG_TYPE_I32: 1099 not_op = INDEX_op_not_i32; 1100 have_not = TCG_TARGET_HAS_not_i32; 1101 break; 1102 case TCG_TYPE_I64: 1103 not_op = INDEX_op_not_i64; 1104 have_not = TCG_TARGET_HAS_not_i64; 1105 break; 1106 case TCG_TYPE_V64: 1107 case TCG_TYPE_V128: 1108 case TCG_TYPE_V256: 1109 not_op = INDEX_op_not_vec; 1110 have_not = TCG_TARGET_HAS_not_vec; 1111 break; 1112 default: 1113 g_assert_not_reached(); 1114 } 1115 if (have_not) { 1116 op->opc = not_op; 1117 op->args[1] = op->args[idx]; 1118 return fold_not(ctx, op); 1119 } 1120 return false; 1121 } 1122 1123 /* If the binary operation has first argument @i, fold to @i. */ 1124 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1125 { 1126 if (arg_is_const_val(op->args[1], i)) { 1127 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1128 } 1129 return false; 1130 } 1131 1132 /* If the binary operation has first argument @i, fold to NOT. */ 1133 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1134 { 1135 if (arg_is_const_val(op->args[1], i)) { 1136 return fold_to_not(ctx, op, 2); 1137 } 1138 return false; 1139 } 1140 1141 /* If the binary operation has second argument @i, fold to @i. */ 1142 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1143 { 1144 if (arg_is_const_val(op->args[2], i)) { 1145 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1146 } 1147 return false; 1148 } 1149 1150 /* If the binary operation has second argument @i, fold to identity. */ 1151 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1152 { 1153 if (arg_is_const_val(op->args[2], i)) { 1154 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1155 } 1156 return false; 1157 } 1158 1159 /* If the binary operation has second argument @i, fold to NOT. */ 1160 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1161 { 1162 if (arg_is_const_val(op->args[2], i)) { 1163 return fold_to_not(ctx, op, 1); 1164 } 1165 return false; 1166 } 1167 1168 /* If the binary operation has both arguments equal, fold to @i. */ 1169 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1170 { 1171 if (args_are_copies(op->args[1], op->args[2])) { 1172 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1173 } 1174 return false; 1175 } 1176 1177 /* If the binary operation has both arguments equal, fold to identity. */ 1178 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1179 { 1180 if (args_are_copies(op->args[1], op->args[2])) { 1181 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1182 } 1183 return false; 1184 } 1185 1186 /* 1187 * These outermost fold_<op> functions are sorted alphabetically. 1188 * 1189 * The ordering of the transformations should be: 1190 * 1) those that produce a constant 1191 * 2) those that produce a copy 1192 * 3) those that produce information about the result value. 1193 */ 1194 1195 static bool fold_or(OptContext *ctx, TCGOp *op); 1196 static bool fold_orc(OptContext *ctx, TCGOp *op); 1197 static bool fold_xor(OptContext *ctx, TCGOp *op); 1198 1199 static bool fold_add(OptContext *ctx, TCGOp *op) 1200 { 1201 if (fold_const2_commutative(ctx, op) || 1202 fold_xi_to_x(ctx, op, 0)) { 1203 return true; 1204 } 1205 return finish_folding(ctx, op); 1206 } 1207 1208 /* We cannot as yet do_constant_folding with vectors. */ 1209 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1210 { 1211 if (fold_commutative(ctx, op) || 1212 fold_xi_to_x(ctx, op, 0)) { 1213 return true; 1214 } 1215 return finish_folding(ctx, op); 1216 } 1217 1218 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1219 { 1220 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1221 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1222 1223 if (a_const && b_const) { 1224 uint64_t al = arg_info(op->args[2])->val; 1225 uint64_t ah = arg_info(op->args[3])->val; 1226 uint64_t bl = arg_info(op->args[4])->val; 1227 uint64_t bh = arg_info(op->args[5])->val; 1228 TCGArg rl, rh; 1229 TCGOp *op2; 1230 1231 if (ctx->type == TCG_TYPE_I32) { 1232 uint64_t a = deposit64(al, 32, 32, ah); 1233 uint64_t b = deposit64(bl, 32, 32, bh); 1234 1235 if (add) { 1236 a += b; 1237 } else { 1238 a -= b; 1239 } 1240 1241 al = sextract64(a, 0, 32); 1242 ah = sextract64(a, 32, 32); 1243 } else { 1244 Int128 a = int128_make128(al, ah); 1245 Int128 b = int128_make128(bl, bh); 1246 1247 if (add) { 1248 a = int128_add(a, b); 1249 } else { 1250 a = int128_sub(a, b); 1251 } 1252 1253 al = int128_getlo(a); 1254 ah = int128_gethi(a); 1255 } 1256 1257 rl = op->args[0]; 1258 rh = op->args[1]; 1259 1260 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1261 op2 = opt_insert_before(ctx, op, 0, 2); 1262 1263 tcg_opt_gen_movi(ctx, op, rl, al); 1264 tcg_opt_gen_movi(ctx, op2, rh, ah); 1265 return true; 1266 } 1267 1268 /* Fold sub2 r,x,i to add2 r,x,-i */ 1269 if (!add && b_const) { 1270 uint64_t bl = arg_info(op->args[4])->val; 1271 uint64_t bh = arg_info(op->args[5])->val; 1272 1273 /* Negate the two parts without assembling and disassembling. */ 1274 bl = -bl; 1275 bh = ~bh + !bl; 1276 1277 op->opc = (ctx->type == TCG_TYPE_I32 1278 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1279 op->args[4] = arg_new_constant(ctx, bl); 1280 op->args[5] = arg_new_constant(ctx, bh); 1281 } 1282 return finish_folding(ctx, op); 1283 } 1284 1285 static bool fold_add2(OptContext *ctx, TCGOp *op) 1286 { 1287 /* Note that the high and low parts may be independently swapped. */ 1288 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1289 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1290 1291 return fold_addsub2(ctx, op, true); 1292 } 1293 1294 static bool fold_and(OptContext *ctx, TCGOp *op) 1295 { 1296 uint64_t z1, z2, z_mask, s_mask; 1297 TempOptInfo *t1, *t2; 1298 1299 if (fold_const2_commutative(ctx, op) || 1300 fold_xi_to_i(ctx, op, 0) || 1301 fold_xi_to_x(ctx, op, -1) || 1302 fold_xx_to_x(ctx, op)) { 1303 return true; 1304 } 1305 1306 t1 = arg_info(op->args[1]); 1307 t2 = arg_info(op->args[2]); 1308 z1 = t1->z_mask; 1309 z2 = t2->z_mask; 1310 1311 /* 1312 * Known-zeros does not imply known-ones. Therefore unless 1313 * arg2 is constant, we can't infer affected bits from it. 1314 */ 1315 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1316 return true; 1317 } 1318 1319 z_mask = z1 & z2; 1320 1321 /* 1322 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1323 * Bitwise operations preserve the relative quantity of the repetitions. 1324 */ 1325 s_mask = t1->s_mask & t2->s_mask; 1326 1327 return fold_masks_zs(ctx, op, z_mask, s_mask); 1328 } 1329 1330 static bool fold_andc(OptContext *ctx, TCGOp *op) 1331 { 1332 uint64_t z_mask, s_mask; 1333 TempOptInfo *t1, *t2; 1334 1335 if (fold_const2(ctx, op) || 1336 fold_xx_to_i(ctx, op, 0) || 1337 fold_xi_to_x(ctx, op, 0) || 1338 fold_ix_to_not(ctx, op, -1)) { 1339 return true; 1340 } 1341 1342 t1 = arg_info(op->args[1]); 1343 t2 = arg_info(op->args[2]); 1344 z_mask = t1->z_mask; 1345 1346 /* 1347 * Known-zeros does not imply known-ones. Therefore unless 1348 * arg2 is constant, we can't infer anything from it. 1349 */ 1350 if (ti_is_const(t2)) { 1351 uint64_t v2 = ti_const_val(t2); 1352 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1353 return true; 1354 } 1355 z_mask &= ~v2; 1356 } 1357 1358 s_mask = t1->s_mask & t2->s_mask; 1359 return fold_masks_zs(ctx, op, z_mask, s_mask); 1360 } 1361 1362 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1363 { 1364 /* If true and false values are the same, eliminate the cmp. */ 1365 if (args_are_copies(op->args[2], op->args[3])) { 1366 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1367 } 1368 1369 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1370 uint64_t tv = arg_info(op->args[2])->val; 1371 uint64_t fv = arg_info(op->args[3])->val; 1372 1373 if (tv == -1 && fv == 0) { 1374 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1375 } 1376 if (tv == 0 && fv == -1) { 1377 if (TCG_TARGET_HAS_not_vec) { 1378 op->opc = INDEX_op_not_vec; 1379 return fold_not(ctx, op); 1380 } else { 1381 op->opc = INDEX_op_xor_vec; 1382 op->args[2] = arg_new_constant(ctx, -1); 1383 return fold_xor(ctx, op); 1384 } 1385 } 1386 } 1387 if (arg_is_const(op->args[2])) { 1388 uint64_t tv = arg_info(op->args[2])->val; 1389 if (tv == -1) { 1390 op->opc = INDEX_op_or_vec; 1391 op->args[2] = op->args[3]; 1392 return fold_or(ctx, op); 1393 } 1394 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1395 op->opc = INDEX_op_andc_vec; 1396 op->args[2] = op->args[1]; 1397 op->args[1] = op->args[3]; 1398 return fold_andc(ctx, op); 1399 } 1400 } 1401 if (arg_is_const(op->args[3])) { 1402 uint64_t fv = arg_info(op->args[3])->val; 1403 if (fv == 0) { 1404 op->opc = INDEX_op_and_vec; 1405 return fold_and(ctx, op); 1406 } 1407 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1408 op->opc = INDEX_op_orc_vec; 1409 op->args[2] = op->args[1]; 1410 op->args[1] = op->args[3]; 1411 return fold_orc(ctx, op); 1412 } 1413 } 1414 return finish_folding(ctx, op); 1415 } 1416 1417 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1418 { 1419 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1420 &op->args[1], &op->args[2]); 1421 if (i == 0) { 1422 tcg_op_remove(ctx->tcg, op); 1423 return true; 1424 } 1425 if (i > 0) { 1426 op->opc = INDEX_op_br; 1427 op->args[0] = op->args[3]; 1428 finish_ebb(ctx); 1429 } else { 1430 finish_bb(ctx); 1431 } 1432 return true; 1433 } 1434 1435 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1436 { 1437 TCGCond cond; 1438 TCGArg label; 1439 int i, inv = 0; 1440 1441 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1442 cond = op->args[4]; 1443 label = op->args[5]; 1444 if (i >= 0) { 1445 goto do_brcond_const; 1446 } 1447 1448 switch (cond) { 1449 case TCG_COND_LT: 1450 case TCG_COND_GE: 1451 /* 1452 * Simplify LT/GE comparisons vs zero to a single compare 1453 * vs the high word of the input. 1454 */ 1455 if (arg_is_const_val(op->args[2], 0) && 1456 arg_is_const_val(op->args[3], 0)) { 1457 goto do_brcond_high; 1458 } 1459 break; 1460 1461 case TCG_COND_NE: 1462 inv = 1; 1463 QEMU_FALLTHROUGH; 1464 case TCG_COND_EQ: 1465 /* 1466 * Simplify EQ/NE comparisons where one of the pairs 1467 * can be simplified. 1468 */ 1469 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1470 op->args[2], cond); 1471 switch (i ^ inv) { 1472 case 0: 1473 goto do_brcond_const; 1474 case 1: 1475 goto do_brcond_high; 1476 } 1477 1478 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1479 op->args[3], cond); 1480 switch (i ^ inv) { 1481 case 0: 1482 goto do_brcond_const; 1483 case 1: 1484 goto do_brcond_low; 1485 } 1486 break; 1487 1488 case TCG_COND_TSTEQ: 1489 case TCG_COND_TSTNE: 1490 if (arg_is_const_val(op->args[2], 0)) { 1491 goto do_brcond_high; 1492 } 1493 if (arg_is_const_val(op->args[3], 0)) { 1494 goto do_brcond_low; 1495 } 1496 break; 1497 1498 default: 1499 break; 1500 1501 do_brcond_low: 1502 op->opc = INDEX_op_brcond_i32; 1503 op->args[1] = op->args[2]; 1504 op->args[2] = cond; 1505 op->args[3] = label; 1506 return fold_brcond(ctx, op); 1507 1508 do_brcond_high: 1509 op->opc = INDEX_op_brcond_i32; 1510 op->args[0] = op->args[1]; 1511 op->args[1] = op->args[3]; 1512 op->args[2] = cond; 1513 op->args[3] = label; 1514 return fold_brcond(ctx, op); 1515 1516 do_brcond_const: 1517 if (i == 0) { 1518 tcg_op_remove(ctx->tcg, op); 1519 return true; 1520 } 1521 op->opc = INDEX_op_br; 1522 op->args[0] = label; 1523 finish_ebb(ctx); 1524 return true; 1525 } 1526 1527 finish_bb(ctx); 1528 return true; 1529 } 1530 1531 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1532 { 1533 uint64_t z_mask, s_mask, sign; 1534 TempOptInfo *t1 = arg_info(op->args[1]); 1535 1536 if (ti_is_const(t1)) { 1537 return tcg_opt_gen_movi(ctx, op, op->args[0], 1538 do_constant_folding(op->opc, ctx->type, 1539 ti_const_val(t1), 1540 op->args[2])); 1541 } 1542 1543 z_mask = t1->z_mask; 1544 switch (op->opc) { 1545 case INDEX_op_bswap16_i32: 1546 case INDEX_op_bswap16_i64: 1547 z_mask = bswap16(z_mask); 1548 sign = INT16_MIN; 1549 break; 1550 case INDEX_op_bswap32_i32: 1551 case INDEX_op_bswap32_i64: 1552 z_mask = bswap32(z_mask); 1553 sign = INT32_MIN; 1554 break; 1555 case INDEX_op_bswap64_i64: 1556 z_mask = bswap64(z_mask); 1557 sign = INT64_MIN; 1558 break; 1559 default: 1560 g_assert_not_reached(); 1561 } 1562 1563 s_mask = 0; 1564 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1565 case TCG_BSWAP_OZ: 1566 break; 1567 case TCG_BSWAP_OS: 1568 /* If the sign bit may be 1, force all the bits above to 1. */ 1569 if (z_mask & sign) { 1570 z_mask |= sign; 1571 } 1572 /* The value and therefore s_mask is explicitly sign-extended. */ 1573 s_mask = sign; 1574 break; 1575 default: 1576 /* The high bits are undefined: force all bits above the sign to 1. */ 1577 z_mask |= sign << 1; 1578 break; 1579 } 1580 1581 return fold_masks_zs(ctx, op, z_mask, s_mask); 1582 } 1583 1584 static bool fold_call(OptContext *ctx, TCGOp *op) 1585 { 1586 TCGContext *s = ctx->tcg; 1587 int nb_oargs = TCGOP_CALLO(op); 1588 int nb_iargs = TCGOP_CALLI(op); 1589 int flags, i; 1590 1591 init_arguments(ctx, op, nb_oargs + nb_iargs); 1592 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1593 1594 /* If the function reads or writes globals, reset temp data. */ 1595 flags = tcg_call_flags(op); 1596 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1597 int nb_globals = s->nb_globals; 1598 1599 for (i = 0; i < nb_globals; i++) { 1600 if (test_bit(i, ctx->temps_used.l)) { 1601 reset_ts(ctx, &ctx->tcg->temps[i]); 1602 } 1603 } 1604 } 1605 1606 /* If the function has side effects, reset mem data. */ 1607 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1608 remove_mem_copy_all(ctx); 1609 } 1610 1611 /* Reset temp data for outputs. */ 1612 for (i = 0; i < nb_oargs; i++) { 1613 reset_temp(ctx, op->args[i]); 1614 } 1615 1616 /* Stop optimizing MB across calls. */ 1617 ctx->prev_mb = NULL; 1618 return true; 1619 } 1620 1621 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1622 { 1623 /* Canonicalize the comparison to put immediate second. */ 1624 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1625 op->args[3] = tcg_swap_cond(op->args[3]); 1626 } 1627 return finish_folding(ctx, op); 1628 } 1629 1630 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1631 { 1632 /* If true and false values are the same, eliminate the cmp. */ 1633 if (args_are_copies(op->args[3], op->args[4])) { 1634 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1635 } 1636 1637 /* Canonicalize the comparison to put immediate second. */ 1638 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1639 op->args[5] = tcg_swap_cond(op->args[5]); 1640 } 1641 /* 1642 * Canonicalize the "false" input reg to match the destination, 1643 * so that the tcg backend can implement "move if true". 1644 */ 1645 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1646 op->args[5] = tcg_invert_cond(op->args[5]); 1647 } 1648 return finish_folding(ctx, op); 1649 } 1650 1651 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1652 { 1653 uint64_t z_mask, s_mask; 1654 TempOptInfo *t1 = arg_info(op->args[1]); 1655 TempOptInfo *t2 = arg_info(op->args[2]); 1656 1657 if (ti_is_const(t1)) { 1658 uint64_t t = ti_const_val(t1); 1659 1660 if (t != 0) { 1661 t = do_constant_folding(op->opc, ctx->type, t, 0); 1662 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1663 } 1664 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1665 } 1666 1667 switch (ctx->type) { 1668 case TCG_TYPE_I32: 1669 z_mask = 31; 1670 break; 1671 case TCG_TYPE_I64: 1672 z_mask = 63; 1673 break; 1674 default: 1675 g_assert_not_reached(); 1676 } 1677 s_mask = ~z_mask; 1678 z_mask |= t2->z_mask; 1679 s_mask &= t2->s_mask; 1680 1681 return fold_masks_zs(ctx, op, z_mask, s_mask); 1682 } 1683 1684 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1685 { 1686 uint64_t z_mask; 1687 1688 if (fold_const1(ctx, op)) { 1689 return true; 1690 } 1691 1692 switch (ctx->type) { 1693 case TCG_TYPE_I32: 1694 z_mask = 32 | 31; 1695 break; 1696 case TCG_TYPE_I64: 1697 z_mask = 64 | 63; 1698 break; 1699 default: 1700 g_assert_not_reached(); 1701 } 1702 return fold_masks_z(ctx, op, z_mask); 1703 } 1704 1705 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1706 { 1707 TempOptInfo *t1 = arg_info(op->args[1]); 1708 TempOptInfo *t2 = arg_info(op->args[2]); 1709 int ofs = op->args[3]; 1710 int len = op->args[4]; 1711 int width = 8 * tcg_type_size(ctx->type); 1712 uint64_t z_mask, s_mask; 1713 1714 if (ti_is_const(t1) && ti_is_const(t2)) { 1715 return tcg_opt_gen_movi(ctx, op, op->args[0], 1716 deposit64(ti_const_val(t1), ofs, len, 1717 ti_const_val(t2))); 1718 } 1719 1720 /* Inserting a value into zero at offset 0. */ 1721 if (ti_is_const_val(t1, 0) && ofs == 0) { 1722 uint64_t mask = MAKE_64BIT_MASK(0, len); 1723 1724 op->opc = INDEX_op_and; 1725 op->args[1] = op->args[2]; 1726 op->args[2] = arg_new_constant(ctx, mask); 1727 return fold_and(ctx, op); 1728 } 1729 1730 /* Inserting zero into a value. */ 1731 if (ti_is_const_val(t2, 0)) { 1732 uint64_t mask = deposit64(-1, ofs, len, 0); 1733 1734 op->opc = INDEX_op_and; 1735 op->args[2] = arg_new_constant(ctx, mask); 1736 return fold_and(ctx, op); 1737 } 1738 1739 /* The s_mask from the top portion of the deposit is still valid. */ 1740 if (ofs + len == width) { 1741 s_mask = t2->s_mask << ofs; 1742 } else { 1743 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1744 } 1745 1746 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1747 return fold_masks_zs(ctx, op, z_mask, s_mask); 1748 } 1749 1750 static bool fold_divide(OptContext *ctx, TCGOp *op) 1751 { 1752 if (fold_const2(ctx, op) || 1753 fold_xi_to_x(ctx, op, 1)) { 1754 return true; 1755 } 1756 return finish_folding(ctx, op); 1757 } 1758 1759 static bool fold_dup(OptContext *ctx, TCGOp *op) 1760 { 1761 if (arg_is_const(op->args[1])) { 1762 uint64_t t = arg_info(op->args[1])->val; 1763 t = dup_const(TCGOP_VECE(op), t); 1764 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1765 } 1766 return finish_folding(ctx, op); 1767 } 1768 1769 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1770 { 1771 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1772 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1773 arg_info(op->args[2])->val); 1774 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1775 } 1776 1777 if (args_are_copies(op->args[1], op->args[2])) { 1778 op->opc = INDEX_op_dup_vec; 1779 TCGOP_VECE(op) = MO_32; 1780 } 1781 return finish_folding(ctx, op); 1782 } 1783 1784 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1785 { 1786 uint64_t s_mask; 1787 1788 if (fold_const2_commutative(ctx, op) || 1789 fold_xi_to_x(ctx, op, -1) || 1790 fold_xi_to_not(ctx, op, 0)) { 1791 return true; 1792 } 1793 1794 s_mask = arg_info(op->args[1])->s_mask 1795 & arg_info(op->args[2])->s_mask; 1796 return fold_masks_s(ctx, op, s_mask); 1797 } 1798 1799 static bool fold_extract(OptContext *ctx, TCGOp *op) 1800 { 1801 uint64_t z_mask_old, z_mask; 1802 TempOptInfo *t1 = arg_info(op->args[1]); 1803 int pos = op->args[2]; 1804 int len = op->args[3]; 1805 1806 if (ti_is_const(t1)) { 1807 return tcg_opt_gen_movi(ctx, op, op->args[0], 1808 extract64(ti_const_val(t1), pos, len)); 1809 } 1810 1811 z_mask_old = t1->z_mask; 1812 z_mask = extract64(z_mask_old, pos, len); 1813 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1814 return true; 1815 } 1816 1817 return fold_masks_z(ctx, op, z_mask); 1818 } 1819 1820 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1821 { 1822 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1823 uint64_t v1 = arg_info(op->args[1])->val; 1824 uint64_t v2 = arg_info(op->args[2])->val; 1825 int shr = op->args[3]; 1826 1827 if (op->opc == INDEX_op_extract2_i64) { 1828 v1 >>= shr; 1829 v2 <<= 64 - shr; 1830 } else { 1831 v1 = (uint32_t)v1 >> shr; 1832 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1833 } 1834 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1835 } 1836 return finish_folding(ctx, op); 1837 } 1838 1839 static bool fold_exts(OptContext *ctx, TCGOp *op) 1840 { 1841 uint64_t s_mask, z_mask; 1842 TempOptInfo *t1; 1843 1844 if (fold_const1(ctx, op)) { 1845 return true; 1846 } 1847 1848 t1 = arg_info(op->args[1]); 1849 z_mask = t1->z_mask; 1850 s_mask = t1->s_mask; 1851 1852 switch (op->opc) { 1853 case INDEX_op_ext_i32_i64: 1854 s_mask |= INT32_MIN; 1855 z_mask = (int32_t)z_mask; 1856 break; 1857 default: 1858 g_assert_not_reached(); 1859 } 1860 return fold_masks_zs(ctx, op, z_mask, s_mask); 1861 } 1862 1863 static bool fold_extu(OptContext *ctx, TCGOp *op) 1864 { 1865 uint64_t z_mask; 1866 1867 if (fold_const1(ctx, op)) { 1868 return true; 1869 } 1870 1871 z_mask = arg_info(op->args[1])->z_mask; 1872 switch (op->opc) { 1873 case INDEX_op_extrl_i64_i32: 1874 case INDEX_op_extu_i32_i64: 1875 z_mask = (uint32_t)z_mask; 1876 break; 1877 case INDEX_op_extrh_i64_i32: 1878 z_mask >>= 32; 1879 break; 1880 default: 1881 g_assert_not_reached(); 1882 } 1883 return fold_masks_z(ctx, op, z_mask); 1884 } 1885 1886 static bool fold_mb(OptContext *ctx, TCGOp *op) 1887 { 1888 /* Eliminate duplicate and redundant fence instructions. */ 1889 if (ctx->prev_mb) { 1890 /* 1891 * Merge two barriers of the same type into one, 1892 * or a weaker barrier into a stronger one, 1893 * or two weaker barriers into a stronger one. 1894 * mb X; mb Y => mb X|Y 1895 * mb; strl => mb; st 1896 * ldaq; mb => ld; mb 1897 * ldaq; strl => ld; mb; st 1898 * Other combinations are also merged into a strong 1899 * barrier. This is stricter than specified but for 1900 * the purposes of TCG is better than not optimizing. 1901 */ 1902 ctx->prev_mb->args[0] |= op->args[0]; 1903 tcg_op_remove(ctx->tcg, op); 1904 } else { 1905 ctx->prev_mb = op; 1906 } 1907 return true; 1908 } 1909 1910 static bool fold_mov(OptContext *ctx, TCGOp *op) 1911 { 1912 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1913 } 1914 1915 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1916 { 1917 uint64_t z_mask, s_mask; 1918 TempOptInfo *tt, *ft; 1919 int i; 1920 1921 /* If true and false values are the same, eliminate the cmp. */ 1922 if (args_are_copies(op->args[3], op->args[4])) { 1923 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1924 } 1925 1926 /* 1927 * Canonicalize the "false" input reg to match the destination reg so 1928 * that the tcg backend can implement a "move if true" operation. 1929 */ 1930 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1931 op->args[5] = tcg_invert_cond(op->args[5]); 1932 } 1933 1934 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1935 &op->args[2], &op->args[5]); 1936 if (i >= 0) { 1937 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1938 } 1939 1940 tt = arg_info(op->args[3]); 1941 ft = arg_info(op->args[4]); 1942 z_mask = tt->z_mask | ft->z_mask; 1943 s_mask = tt->s_mask & ft->s_mask; 1944 1945 if (ti_is_const(tt) && ti_is_const(ft)) { 1946 uint64_t tv = ti_const_val(tt); 1947 uint64_t fv = ti_const_val(ft); 1948 TCGOpcode opc, negopc = 0; 1949 TCGCond cond = op->args[5]; 1950 1951 switch (ctx->type) { 1952 case TCG_TYPE_I32: 1953 opc = INDEX_op_setcond_i32; 1954 if (TCG_TARGET_HAS_negsetcond_i32) { 1955 negopc = INDEX_op_negsetcond_i32; 1956 } 1957 tv = (int32_t)tv; 1958 fv = (int32_t)fv; 1959 break; 1960 case TCG_TYPE_I64: 1961 opc = INDEX_op_setcond_i64; 1962 if (TCG_TARGET_HAS_negsetcond_i64) { 1963 negopc = INDEX_op_negsetcond_i64; 1964 } 1965 break; 1966 default: 1967 g_assert_not_reached(); 1968 } 1969 1970 if (tv == 1 && fv == 0) { 1971 op->opc = opc; 1972 op->args[3] = cond; 1973 } else if (fv == 1 && tv == 0) { 1974 op->opc = opc; 1975 op->args[3] = tcg_invert_cond(cond); 1976 } else if (negopc) { 1977 if (tv == -1 && fv == 0) { 1978 op->opc = negopc; 1979 op->args[3] = cond; 1980 } else if (fv == -1 && tv == 0) { 1981 op->opc = negopc; 1982 op->args[3] = tcg_invert_cond(cond); 1983 } 1984 } 1985 } 1986 1987 return fold_masks_zs(ctx, op, z_mask, s_mask); 1988 } 1989 1990 static bool fold_mul(OptContext *ctx, TCGOp *op) 1991 { 1992 if (fold_const2(ctx, op) || 1993 fold_xi_to_i(ctx, op, 0) || 1994 fold_xi_to_x(ctx, op, 1)) { 1995 return true; 1996 } 1997 return finish_folding(ctx, op); 1998 } 1999 2000 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2001 { 2002 if (fold_const2_commutative(ctx, op) || 2003 fold_xi_to_i(ctx, op, 0)) { 2004 return true; 2005 } 2006 return finish_folding(ctx, op); 2007 } 2008 2009 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2010 { 2011 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2012 2013 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2014 uint64_t a = arg_info(op->args[2])->val; 2015 uint64_t b = arg_info(op->args[3])->val; 2016 uint64_t h, l; 2017 TCGArg rl, rh; 2018 TCGOp *op2; 2019 2020 switch (op->opc) { 2021 case INDEX_op_mulu2_i32: 2022 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2023 h = (int32_t)(l >> 32); 2024 l = (int32_t)l; 2025 break; 2026 case INDEX_op_muls2_i32: 2027 l = (int64_t)(int32_t)a * (int32_t)b; 2028 h = l >> 32; 2029 l = (int32_t)l; 2030 break; 2031 case INDEX_op_mulu2_i64: 2032 mulu64(&l, &h, a, b); 2033 break; 2034 case INDEX_op_muls2_i64: 2035 muls64(&l, &h, a, b); 2036 break; 2037 default: 2038 g_assert_not_reached(); 2039 } 2040 2041 rl = op->args[0]; 2042 rh = op->args[1]; 2043 2044 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2045 op2 = opt_insert_before(ctx, op, 0, 2); 2046 2047 tcg_opt_gen_movi(ctx, op, rl, l); 2048 tcg_opt_gen_movi(ctx, op2, rh, h); 2049 return true; 2050 } 2051 return finish_folding(ctx, op); 2052 } 2053 2054 static bool fold_nand(OptContext *ctx, TCGOp *op) 2055 { 2056 uint64_t s_mask; 2057 2058 if (fold_const2_commutative(ctx, op) || 2059 fold_xi_to_not(ctx, op, -1)) { 2060 return true; 2061 } 2062 2063 s_mask = arg_info(op->args[1])->s_mask 2064 & arg_info(op->args[2])->s_mask; 2065 return fold_masks_s(ctx, op, s_mask); 2066 } 2067 2068 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2069 { 2070 /* Set to 1 all bits to the left of the rightmost. */ 2071 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2072 z_mask = -(z_mask & -z_mask); 2073 2074 return fold_masks_z(ctx, op, z_mask); 2075 } 2076 2077 static bool fold_neg(OptContext *ctx, TCGOp *op) 2078 { 2079 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2080 } 2081 2082 static bool fold_nor(OptContext *ctx, TCGOp *op) 2083 { 2084 uint64_t s_mask; 2085 2086 if (fold_const2_commutative(ctx, op) || 2087 fold_xi_to_not(ctx, op, 0)) { 2088 return true; 2089 } 2090 2091 s_mask = arg_info(op->args[1])->s_mask 2092 & arg_info(op->args[2])->s_mask; 2093 return fold_masks_s(ctx, op, s_mask); 2094 } 2095 2096 static bool fold_not(OptContext *ctx, TCGOp *op) 2097 { 2098 if (fold_const1(ctx, op)) { 2099 return true; 2100 } 2101 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2102 } 2103 2104 static bool fold_or(OptContext *ctx, TCGOp *op) 2105 { 2106 uint64_t z_mask, s_mask; 2107 TempOptInfo *t1, *t2; 2108 2109 if (fold_const2_commutative(ctx, op) || 2110 fold_xi_to_x(ctx, op, 0) || 2111 fold_xx_to_x(ctx, op)) { 2112 return true; 2113 } 2114 2115 t1 = arg_info(op->args[1]); 2116 t2 = arg_info(op->args[2]); 2117 z_mask = t1->z_mask | t2->z_mask; 2118 s_mask = t1->s_mask & t2->s_mask; 2119 return fold_masks_zs(ctx, op, z_mask, s_mask); 2120 } 2121 2122 static bool fold_orc(OptContext *ctx, TCGOp *op) 2123 { 2124 uint64_t s_mask; 2125 2126 if (fold_const2(ctx, op) || 2127 fold_xx_to_i(ctx, op, -1) || 2128 fold_xi_to_x(ctx, op, -1) || 2129 fold_ix_to_not(ctx, op, 0)) { 2130 return true; 2131 } 2132 2133 s_mask = arg_info(op->args[1])->s_mask 2134 & arg_info(op->args[2])->s_mask; 2135 return fold_masks_s(ctx, op, s_mask); 2136 } 2137 2138 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2139 { 2140 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2141 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2142 MemOp mop = get_memop(oi); 2143 int width = 8 * memop_size(mop); 2144 uint64_t z_mask = -1, s_mask = 0; 2145 2146 if (width < 64) { 2147 if (mop & MO_SIGN) { 2148 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2149 } else { 2150 z_mask = MAKE_64BIT_MASK(0, width); 2151 } 2152 } 2153 2154 /* Opcodes that touch guest memory stop the mb optimization. */ 2155 ctx->prev_mb = NULL; 2156 2157 return fold_masks_zs(ctx, op, z_mask, s_mask); 2158 } 2159 2160 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2161 { 2162 /* Opcodes that touch guest memory stop the mb optimization. */ 2163 ctx->prev_mb = NULL; 2164 return finish_folding(ctx, op); 2165 } 2166 2167 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2168 { 2169 /* Opcodes that touch guest memory stop the mb optimization. */ 2170 ctx->prev_mb = NULL; 2171 return true; 2172 } 2173 2174 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2175 { 2176 if (fold_const2(ctx, op) || 2177 fold_xx_to_i(ctx, op, 0)) { 2178 return true; 2179 } 2180 return finish_folding(ctx, op); 2181 } 2182 2183 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2184 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2185 { 2186 uint64_t a_zmask, b_val; 2187 TCGCond cond; 2188 2189 if (!arg_is_const(op->args[2])) { 2190 return false; 2191 } 2192 2193 a_zmask = arg_info(op->args[1])->z_mask; 2194 b_val = arg_info(op->args[2])->val; 2195 cond = op->args[3]; 2196 2197 if (ctx->type == TCG_TYPE_I32) { 2198 a_zmask = (uint32_t)a_zmask; 2199 b_val = (uint32_t)b_val; 2200 } 2201 2202 /* 2203 * A with only low bits set vs B with high bits set means that A < B. 2204 */ 2205 if (a_zmask < b_val) { 2206 bool inv = false; 2207 2208 switch (cond) { 2209 case TCG_COND_NE: 2210 case TCG_COND_LEU: 2211 case TCG_COND_LTU: 2212 inv = true; 2213 /* fall through */ 2214 case TCG_COND_GTU: 2215 case TCG_COND_GEU: 2216 case TCG_COND_EQ: 2217 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2218 default: 2219 break; 2220 } 2221 } 2222 2223 /* 2224 * A with only lsb set is already boolean. 2225 */ 2226 if (a_zmask <= 1) { 2227 bool convert = false; 2228 bool inv = false; 2229 2230 switch (cond) { 2231 case TCG_COND_EQ: 2232 inv = true; 2233 /* fall through */ 2234 case TCG_COND_NE: 2235 convert = (b_val == 0); 2236 break; 2237 case TCG_COND_LTU: 2238 case TCG_COND_TSTEQ: 2239 inv = true; 2240 /* fall through */ 2241 case TCG_COND_GEU: 2242 case TCG_COND_TSTNE: 2243 convert = (b_val == 1); 2244 break; 2245 default: 2246 break; 2247 } 2248 if (convert) { 2249 TCGOpcode xor_opc, neg_opc; 2250 2251 if (!inv && !neg) { 2252 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2253 } 2254 2255 switch (ctx->type) { 2256 case TCG_TYPE_I32: 2257 neg_opc = INDEX_op_neg_i32; 2258 xor_opc = INDEX_op_xor_i32; 2259 break; 2260 case TCG_TYPE_I64: 2261 neg_opc = INDEX_op_neg_i64; 2262 xor_opc = INDEX_op_xor_i64; 2263 break; 2264 default: 2265 g_assert_not_reached(); 2266 } 2267 2268 if (!inv) { 2269 op->opc = neg_opc; 2270 } else if (neg) { 2271 op->opc = INDEX_op_add; 2272 op->args[2] = arg_new_constant(ctx, -1); 2273 } else { 2274 op->opc = xor_opc; 2275 op->args[2] = arg_new_constant(ctx, 1); 2276 } 2277 return -1; 2278 } 2279 } 2280 return 0; 2281 } 2282 2283 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2284 { 2285 TCGOpcode sub_opc, xor_opc, neg_opc, shr_opc; 2286 TCGOpcode uext_opc = 0, sext_opc = 0; 2287 TCGCond cond = op->args[3]; 2288 TCGArg ret, src1, src2; 2289 TCGOp *op2; 2290 uint64_t val; 2291 int sh; 2292 bool inv; 2293 2294 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2295 return; 2296 } 2297 2298 src2 = op->args[2]; 2299 val = arg_info(src2)->val; 2300 if (!is_power_of_2(val)) { 2301 return; 2302 } 2303 sh = ctz64(val); 2304 2305 switch (ctx->type) { 2306 case TCG_TYPE_I32: 2307 sub_opc = INDEX_op_sub_i32; 2308 xor_opc = INDEX_op_xor_i32; 2309 shr_opc = INDEX_op_shr_i32; 2310 neg_opc = INDEX_op_neg_i32; 2311 if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) { 2312 uext_opc = INDEX_op_extract_i32; 2313 } 2314 if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) { 2315 sext_opc = INDEX_op_sextract_i32; 2316 } 2317 break; 2318 case TCG_TYPE_I64: 2319 sub_opc = INDEX_op_sub_i64; 2320 xor_opc = INDEX_op_xor_i64; 2321 shr_opc = INDEX_op_shr_i64; 2322 neg_opc = INDEX_op_neg_i64; 2323 if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) { 2324 uext_opc = INDEX_op_extract_i64; 2325 } 2326 if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) { 2327 sext_opc = INDEX_op_sextract_i64; 2328 } 2329 break; 2330 default: 2331 g_assert_not_reached(); 2332 } 2333 2334 ret = op->args[0]; 2335 src1 = op->args[1]; 2336 inv = cond == TCG_COND_TSTEQ; 2337 2338 if (sh && sext_opc && neg && !inv) { 2339 op->opc = sext_opc; 2340 op->args[1] = src1; 2341 op->args[2] = sh; 2342 op->args[3] = 1; 2343 return; 2344 } else if (sh && uext_opc) { 2345 op->opc = uext_opc; 2346 op->args[1] = src1; 2347 op->args[2] = sh; 2348 op->args[3] = 1; 2349 } else { 2350 if (sh) { 2351 op2 = opt_insert_before(ctx, op, shr_opc, 3); 2352 op2->args[0] = ret; 2353 op2->args[1] = src1; 2354 op2->args[2] = arg_new_constant(ctx, sh); 2355 src1 = ret; 2356 } 2357 op->opc = INDEX_op_and; 2358 op->args[1] = src1; 2359 op->args[2] = arg_new_constant(ctx, 1); 2360 } 2361 2362 if (neg && inv) { 2363 op2 = opt_insert_after(ctx, op, sub_opc, 3); 2364 op2->args[0] = ret; 2365 op2->args[1] = ret; 2366 op2->args[2] = arg_new_constant(ctx, 1); 2367 } else if (inv) { 2368 op2 = opt_insert_after(ctx, op, xor_opc, 3); 2369 op2->args[0] = ret; 2370 op2->args[1] = ret; 2371 op2->args[2] = arg_new_constant(ctx, 1); 2372 } else if (neg) { 2373 op2 = opt_insert_after(ctx, op, neg_opc, 2); 2374 op2->args[0] = ret; 2375 op2->args[1] = ret; 2376 } 2377 } 2378 2379 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2380 { 2381 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2382 &op->args[2], &op->args[3]); 2383 if (i >= 0) { 2384 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2385 } 2386 2387 i = fold_setcond_zmask(ctx, op, false); 2388 if (i > 0) { 2389 return true; 2390 } 2391 if (i == 0) { 2392 fold_setcond_tst_pow2(ctx, op, false); 2393 } 2394 2395 return fold_masks_z(ctx, op, 1); 2396 } 2397 2398 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2399 { 2400 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2401 &op->args[2], &op->args[3]); 2402 if (i >= 0) { 2403 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2404 } 2405 2406 i = fold_setcond_zmask(ctx, op, true); 2407 if (i > 0) { 2408 return true; 2409 } 2410 if (i == 0) { 2411 fold_setcond_tst_pow2(ctx, op, true); 2412 } 2413 2414 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2415 return fold_masks_s(ctx, op, -1); 2416 } 2417 2418 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2419 { 2420 TCGCond cond; 2421 int i, inv = 0; 2422 2423 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2424 cond = op->args[5]; 2425 if (i >= 0) { 2426 goto do_setcond_const; 2427 } 2428 2429 switch (cond) { 2430 case TCG_COND_LT: 2431 case TCG_COND_GE: 2432 /* 2433 * Simplify LT/GE comparisons vs zero to a single compare 2434 * vs the high word of the input. 2435 */ 2436 if (arg_is_const_val(op->args[3], 0) && 2437 arg_is_const_val(op->args[4], 0)) { 2438 goto do_setcond_high; 2439 } 2440 break; 2441 2442 case TCG_COND_NE: 2443 inv = 1; 2444 QEMU_FALLTHROUGH; 2445 case TCG_COND_EQ: 2446 /* 2447 * Simplify EQ/NE comparisons where one of the pairs 2448 * can be simplified. 2449 */ 2450 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2451 op->args[3], cond); 2452 switch (i ^ inv) { 2453 case 0: 2454 goto do_setcond_const; 2455 case 1: 2456 goto do_setcond_high; 2457 } 2458 2459 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2460 op->args[4], cond); 2461 switch (i ^ inv) { 2462 case 0: 2463 goto do_setcond_const; 2464 case 1: 2465 goto do_setcond_low; 2466 } 2467 break; 2468 2469 case TCG_COND_TSTEQ: 2470 case TCG_COND_TSTNE: 2471 if (arg_is_const_val(op->args[3], 0)) { 2472 goto do_setcond_high; 2473 } 2474 if (arg_is_const_val(op->args[4], 0)) { 2475 goto do_setcond_low; 2476 } 2477 break; 2478 2479 default: 2480 break; 2481 2482 do_setcond_low: 2483 op->args[2] = op->args[3]; 2484 op->args[3] = cond; 2485 op->opc = INDEX_op_setcond_i32; 2486 return fold_setcond(ctx, op); 2487 2488 do_setcond_high: 2489 op->args[1] = op->args[2]; 2490 op->args[2] = op->args[4]; 2491 op->args[3] = cond; 2492 op->opc = INDEX_op_setcond_i32; 2493 return fold_setcond(ctx, op); 2494 } 2495 2496 return fold_masks_z(ctx, op, 1); 2497 2498 do_setcond_const: 2499 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2500 } 2501 2502 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2503 { 2504 uint64_t z_mask, s_mask, s_mask_old; 2505 TempOptInfo *t1 = arg_info(op->args[1]); 2506 int pos = op->args[2]; 2507 int len = op->args[3]; 2508 2509 if (ti_is_const(t1)) { 2510 return tcg_opt_gen_movi(ctx, op, op->args[0], 2511 sextract64(ti_const_val(t1), pos, len)); 2512 } 2513 2514 s_mask_old = t1->s_mask; 2515 s_mask = s_mask_old >> pos; 2516 s_mask |= -1ull << (len - 1); 2517 2518 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2519 return true; 2520 } 2521 2522 z_mask = sextract64(t1->z_mask, pos, len); 2523 return fold_masks_zs(ctx, op, z_mask, s_mask); 2524 } 2525 2526 static bool fold_shift(OptContext *ctx, TCGOp *op) 2527 { 2528 uint64_t s_mask, z_mask; 2529 TempOptInfo *t1, *t2; 2530 2531 if (fold_const2(ctx, op) || 2532 fold_ix_to_i(ctx, op, 0) || 2533 fold_xi_to_x(ctx, op, 0)) { 2534 return true; 2535 } 2536 2537 t1 = arg_info(op->args[1]); 2538 t2 = arg_info(op->args[2]); 2539 s_mask = t1->s_mask; 2540 z_mask = t1->z_mask; 2541 2542 if (ti_is_const(t2)) { 2543 int sh = ti_const_val(t2); 2544 2545 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2546 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2547 2548 return fold_masks_zs(ctx, op, z_mask, s_mask); 2549 } 2550 2551 switch (op->opc) { 2552 CASE_OP_32_64(sar): 2553 /* 2554 * Arithmetic right shift will not reduce the number of 2555 * input sign repetitions. 2556 */ 2557 return fold_masks_s(ctx, op, s_mask); 2558 CASE_OP_32_64(shr): 2559 /* 2560 * If the sign bit is known zero, then logical right shift 2561 * will not reduce the number of input sign repetitions. 2562 */ 2563 if (~z_mask & -s_mask) { 2564 return fold_masks_s(ctx, op, s_mask); 2565 } 2566 break; 2567 default: 2568 break; 2569 } 2570 2571 return finish_folding(ctx, op); 2572 } 2573 2574 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2575 { 2576 TCGOpcode neg_op; 2577 bool have_neg; 2578 2579 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2580 return false; 2581 } 2582 2583 switch (ctx->type) { 2584 case TCG_TYPE_I32: 2585 neg_op = INDEX_op_neg_i32; 2586 have_neg = true; 2587 break; 2588 case TCG_TYPE_I64: 2589 neg_op = INDEX_op_neg_i64; 2590 have_neg = true; 2591 break; 2592 case TCG_TYPE_V64: 2593 case TCG_TYPE_V128: 2594 case TCG_TYPE_V256: 2595 neg_op = INDEX_op_neg_vec; 2596 have_neg = (TCG_TARGET_HAS_neg_vec && 2597 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2598 break; 2599 default: 2600 g_assert_not_reached(); 2601 } 2602 if (have_neg) { 2603 op->opc = neg_op; 2604 op->args[1] = op->args[2]; 2605 return fold_neg_no_const(ctx, op); 2606 } 2607 return false; 2608 } 2609 2610 /* We cannot as yet do_constant_folding with vectors. */ 2611 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2612 { 2613 if (fold_xx_to_i(ctx, op, 0) || 2614 fold_xi_to_x(ctx, op, 0) || 2615 fold_sub_to_neg(ctx, op)) { 2616 return true; 2617 } 2618 return finish_folding(ctx, op); 2619 } 2620 2621 static bool fold_sub(OptContext *ctx, TCGOp *op) 2622 { 2623 if (fold_const2(ctx, op) || 2624 fold_xx_to_i(ctx, op, 0) || 2625 fold_xi_to_x(ctx, op, 0) || 2626 fold_sub_to_neg(ctx, op)) { 2627 return true; 2628 } 2629 2630 /* Fold sub r,x,i to add r,x,-i */ 2631 if (arg_is_const(op->args[2])) { 2632 uint64_t val = arg_info(op->args[2])->val; 2633 2634 op->opc = INDEX_op_add; 2635 op->args[2] = arg_new_constant(ctx, -val); 2636 } 2637 return finish_folding(ctx, op); 2638 } 2639 2640 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2641 { 2642 return fold_addsub2(ctx, op, false); 2643 } 2644 2645 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2646 { 2647 uint64_t z_mask = -1, s_mask = 0; 2648 2649 /* We can't do any folding with a load, but we can record bits. */ 2650 switch (op->opc) { 2651 CASE_OP_32_64(ld8s): 2652 s_mask = INT8_MIN; 2653 break; 2654 CASE_OP_32_64(ld8u): 2655 z_mask = MAKE_64BIT_MASK(0, 8); 2656 break; 2657 CASE_OP_32_64(ld16s): 2658 s_mask = INT16_MIN; 2659 break; 2660 CASE_OP_32_64(ld16u): 2661 z_mask = MAKE_64BIT_MASK(0, 16); 2662 break; 2663 case INDEX_op_ld32s_i64: 2664 s_mask = INT32_MIN; 2665 break; 2666 case INDEX_op_ld32u_i64: 2667 z_mask = MAKE_64BIT_MASK(0, 32); 2668 break; 2669 default: 2670 g_assert_not_reached(); 2671 } 2672 return fold_masks_zs(ctx, op, z_mask, s_mask); 2673 } 2674 2675 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2676 { 2677 TCGTemp *dst, *src; 2678 intptr_t ofs; 2679 TCGType type; 2680 2681 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2682 return finish_folding(ctx, op); 2683 } 2684 2685 type = ctx->type; 2686 ofs = op->args[2]; 2687 dst = arg_temp(op->args[0]); 2688 src = find_mem_copy_for(ctx, type, ofs); 2689 if (src && src->base_type == type) { 2690 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2691 } 2692 2693 reset_ts(ctx, dst); 2694 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2695 return true; 2696 } 2697 2698 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2699 { 2700 intptr_t ofs = op->args[2]; 2701 intptr_t lm1; 2702 2703 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2704 remove_mem_copy_all(ctx); 2705 return true; 2706 } 2707 2708 switch (op->opc) { 2709 CASE_OP_32_64(st8): 2710 lm1 = 0; 2711 break; 2712 CASE_OP_32_64(st16): 2713 lm1 = 1; 2714 break; 2715 case INDEX_op_st32_i64: 2716 case INDEX_op_st_i32: 2717 lm1 = 3; 2718 break; 2719 case INDEX_op_st_i64: 2720 lm1 = 7; 2721 break; 2722 case INDEX_op_st_vec: 2723 lm1 = tcg_type_size(ctx->type) - 1; 2724 break; 2725 default: 2726 g_assert_not_reached(); 2727 } 2728 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2729 return true; 2730 } 2731 2732 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2733 { 2734 TCGTemp *src; 2735 intptr_t ofs, last; 2736 TCGType type; 2737 2738 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2739 return fold_tcg_st(ctx, op); 2740 } 2741 2742 src = arg_temp(op->args[0]); 2743 ofs = op->args[2]; 2744 type = ctx->type; 2745 2746 /* 2747 * Eliminate duplicate stores of a constant. 2748 * This happens frequently when the target ISA zero-extends. 2749 */ 2750 if (ts_is_const(src)) { 2751 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2752 if (src == prev) { 2753 tcg_op_remove(ctx->tcg, op); 2754 return true; 2755 } 2756 } 2757 2758 last = ofs + tcg_type_size(type) - 1; 2759 remove_mem_copy_in(ctx, ofs, last); 2760 record_mem_copy(ctx, type, src, ofs, last); 2761 return true; 2762 } 2763 2764 static bool fold_xor(OptContext *ctx, TCGOp *op) 2765 { 2766 uint64_t z_mask, s_mask; 2767 TempOptInfo *t1, *t2; 2768 2769 if (fold_const2_commutative(ctx, op) || 2770 fold_xx_to_i(ctx, op, 0) || 2771 fold_xi_to_x(ctx, op, 0) || 2772 fold_xi_to_not(ctx, op, -1)) { 2773 return true; 2774 } 2775 2776 t1 = arg_info(op->args[1]); 2777 t2 = arg_info(op->args[2]); 2778 z_mask = t1->z_mask | t2->z_mask; 2779 s_mask = t1->s_mask & t2->s_mask; 2780 return fold_masks_zs(ctx, op, z_mask, s_mask); 2781 } 2782 2783 /* Propagate constants and copies, fold constant expressions. */ 2784 void tcg_optimize(TCGContext *s) 2785 { 2786 int nb_temps, i; 2787 TCGOp *op, *op_next; 2788 OptContext ctx = { .tcg = s }; 2789 2790 QSIMPLEQ_INIT(&ctx.mem_free); 2791 2792 /* Array VALS has an element for each temp. 2793 If this temp holds a constant then its value is kept in VALS' element. 2794 If this temp is a copy of other ones then the other copies are 2795 available through the doubly linked circular list. */ 2796 2797 nb_temps = s->nb_temps; 2798 for (i = 0; i < nb_temps; ++i) { 2799 s->temps[i].state_ptr = NULL; 2800 } 2801 2802 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2803 TCGOpcode opc = op->opc; 2804 const TCGOpDef *def; 2805 bool done = false; 2806 2807 /* Calls are special. */ 2808 if (opc == INDEX_op_call) { 2809 fold_call(&ctx, op); 2810 continue; 2811 } 2812 2813 def = &tcg_op_defs[opc]; 2814 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2815 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2816 2817 /* Pre-compute the type of the operation. */ 2818 ctx.type = TCGOP_TYPE(op); 2819 2820 /* 2821 * Process each opcode. 2822 * Sorted alphabetically by opcode as much as possible. 2823 */ 2824 switch (opc) { 2825 case INDEX_op_add: 2826 done = fold_add(&ctx, op); 2827 break; 2828 case INDEX_op_add_vec: 2829 done = fold_add_vec(&ctx, op); 2830 break; 2831 CASE_OP_32_64(add2): 2832 done = fold_add2(&ctx, op); 2833 break; 2834 case INDEX_op_and: 2835 case INDEX_op_and_vec: 2836 done = fold_and(&ctx, op); 2837 break; 2838 CASE_OP_32_64_VEC(andc): 2839 done = fold_andc(&ctx, op); 2840 break; 2841 CASE_OP_32_64(brcond): 2842 done = fold_brcond(&ctx, op); 2843 break; 2844 case INDEX_op_brcond2_i32: 2845 done = fold_brcond2(&ctx, op); 2846 break; 2847 CASE_OP_32_64(bswap16): 2848 CASE_OP_32_64(bswap32): 2849 case INDEX_op_bswap64_i64: 2850 done = fold_bswap(&ctx, op); 2851 break; 2852 CASE_OP_32_64(clz): 2853 CASE_OP_32_64(ctz): 2854 done = fold_count_zeros(&ctx, op); 2855 break; 2856 CASE_OP_32_64(ctpop): 2857 done = fold_ctpop(&ctx, op); 2858 break; 2859 CASE_OP_32_64(deposit): 2860 done = fold_deposit(&ctx, op); 2861 break; 2862 CASE_OP_32_64(div): 2863 CASE_OP_32_64(divu): 2864 done = fold_divide(&ctx, op); 2865 break; 2866 case INDEX_op_dup_vec: 2867 done = fold_dup(&ctx, op); 2868 break; 2869 case INDEX_op_dup2_vec: 2870 done = fold_dup2(&ctx, op); 2871 break; 2872 CASE_OP_32_64_VEC(eqv): 2873 done = fold_eqv(&ctx, op); 2874 break; 2875 CASE_OP_32_64(extract): 2876 done = fold_extract(&ctx, op); 2877 break; 2878 CASE_OP_32_64(extract2): 2879 done = fold_extract2(&ctx, op); 2880 break; 2881 case INDEX_op_ext_i32_i64: 2882 done = fold_exts(&ctx, op); 2883 break; 2884 case INDEX_op_extu_i32_i64: 2885 case INDEX_op_extrl_i64_i32: 2886 case INDEX_op_extrh_i64_i32: 2887 done = fold_extu(&ctx, op); 2888 break; 2889 CASE_OP_32_64(ld8s): 2890 CASE_OP_32_64(ld8u): 2891 CASE_OP_32_64(ld16s): 2892 CASE_OP_32_64(ld16u): 2893 case INDEX_op_ld32s_i64: 2894 case INDEX_op_ld32u_i64: 2895 done = fold_tcg_ld(&ctx, op); 2896 break; 2897 case INDEX_op_ld_i32: 2898 case INDEX_op_ld_i64: 2899 case INDEX_op_ld_vec: 2900 done = fold_tcg_ld_memcopy(&ctx, op); 2901 break; 2902 CASE_OP_32_64(st8): 2903 CASE_OP_32_64(st16): 2904 case INDEX_op_st32_i64: 2905 done = fold_tcg_st(&ctx, op); 2906 break; 2907 case INDEX_op_st_i32: 2908 case INDEX_op_st_i64: 2909 case INDEX_op_st_vec: 2910 done = fold_tcg_st_memcopy(&ctx, op); 2911 break; 2912 case INDEX_op_mb: 2913 done = fold_mb(&ctx, op); 2914 break; 2915 case INDEX_op_mov: 2916 case INDEX_op_mov_vec: 2917 done = fold_mov(&ctx, op); 2918 break; 2919 CASE_OP_32_64(movcond): 2920 done = fold_movcond(&ctx, op); 2921 break; 2922 CASE_OP_32_64(mul): 2923 done = fold_mul(&ctx, op); 2924 break; 2925 CASE_OP_32_64(mulsh): 2926 CASE_OP_32_64(muluh): 2927 done = fold_mul_highpart(&ctx, op); 2928 break; 2929 CASE_OP_32_64(muls2): 2930 CASE_OP_32_64(mulu2): 2931 done = fold_multiply2(&ctx, op); 2932 break; 2933 CASE_OP_32_64_VEC(nand): 2934 done = fold_nand(&ctx, op); 2935 break; 2936 CASE_OP_32_64(neg): 2937 done = fold_neg(&ctx, op); 2938 break; 2939 CASE_OP_32_64_VEC(nor): 2940 done = fold_nor(&ctx, op); 2941 break; 2942 CASE_OP_32_64_VEC(not): 2943 done = fold_not(&ctx, op); 2944 break; 2945 CASE_OP_32_64_VEC(or): 2946 done = fold_or(&ctx, op); 2947 break; 2948 CASE_OP_32_64_VEC(orc): 2949 done = fold_orc(&ctx, op); 2950 break; 2951 case INDEX_op_qemu_ld_i32: 2952 done = fold_qemu_ld_1reg(&ctx, op); 2953 break; 2954 case INDEX_op_qemu_ld_i64: 2955 if (TCG_TARGET_REG_BITS == 64) { 2956 done = fold_qemu_ld_1reg(&ctx, op); 2957 break; 2958 } 2959 QEMU_FALLTHROUGH; 2960 case INDEX_op_qemu_ld_i128: 2961 done = fold_qemu_ld_2reg(&ctx, op); 2962 break; 2963 case INDEX_op_qemu_st8_i32: 2964 case INDEX_op_qemu_st_i32: 2965 case INDEX_op_qemu_st_i64: 2966 case INDEX_op_qemu_st_i128: 2967 done = fold_qemu_st(&ctx, op); 2968 break; 2969 CASE_OP_32_64(rem): 2970 CASE_OP_32_64(remu): 2971 done = fold_remainder(&ctx, op); 2972 break; 2973 CASE_OP_32_64(rotl): 2974 CASE_OP_32_64(rotr): 2975 CASE_OP_32_64(sar): 2976 CASE_OP_32_64(shl): 2977 CASE_OP_32_64(shr): 2978 done = fold_shift(&ctx, op); 2979 break; 2980 CASE_OP_32_64(setcond): 2981 done = fold_setcond(&ctx, op); 2982 break; 2983 CASE_OP_32_64(negsetcond): 2984 done = fold_negsetcond(&ctx, op); 2985 break; 2986 case INDEX_op_setcond2_i32: 2987 done = fold_setcond2(&ctx, op); 2988 break; 2989 case INDEX_op_cmp_vec: 2990 done = fold_cmp_vec(&ctx, op); 2991 break; 2992 case INDEX_op_cmpsel_vec: 2993 done = fold_cmpsel_vec(&ctx, op); 2994 break; 2995 case INDEX_op_bitsel_vec: 2996 done = fold_bitsel_vec(&ctx, op); 2997 break; 2998 CASE_OP_32_64(sextract): 2999 done = fold_sextract(&ctx, op); 3000 break; 3001 CASE_OP_32_64(sub): 3002 done = fold_sub(&ctx, op); 3003 break; 3004 case INDEX_op_sub_vec: 3005 done = fold_sub_vec(&ctx, op); 3006 break; 3007 CASE_OP_32_64(sub2): 3008 done = fold_sub2(&ctx, op); 3009 break; 3010 CASE_OP_32_64_VEC(xor): 3011 done = fold_xor(&ctx, op); 3012 break; 3013 case INDEX_op_set_label: 3014 case INDEX_op_br: 3015 case INDEX_op_exit_tb: 3016 case INDEX_op_goto_tb: 3017 case INDEX_op_goto_ptr: 3018 finish_ebb(&ctx); 3019 done = true; 3020 break; 3021 default: 3022 done = finish_folding(&ctx, op); 3023 break; 3024 } 3025 tcg_debug_assert(done); 3026 } 3027 } 3028