1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op, 348 TCGOpcode opc, unsigned narg) 349 { 350 return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg); 351 } 352 353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op, 354 TCGOpcode opc, unsigned narg) 355 { 356 return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg); 357 } 358 359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 360 { 361 TCGTemp *dst_ts = arg_temp(dst); 362 TCGTemp *src_ts = arg_temp(src); 363 TempOptInfo *di; 364 TempOptInfo *si; 365 TCGOpcode new_op; 366 367 if (ts_are_copies(dst_ts, src_ts)) { 368 tcg_op_remove(ctx->tcg, op); 369 return true; 370 } 371 372 reset_ts(ctx, dst_ts); 373 di = ts_info(dst_ts); 374 si = ts_info(src_ts); 375 376 switch (ctx->type) { 377 case TCG_TYPE_I32: 378 case TCG_TYPE_I64: 379 new_op = INDEX_op_mov; 380 break; 381 case TCG_TYPE_V64: 382 case TCG_TYPE_V128: 383 case TCG_TYPE_V256: 384 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 385 new_op = INDEX_op_mov_vec; 386 break; 387 default: 388 g_assert_not_reached(); 389 } 390 op->opc = new_op; 391 op->args[0] = dst; 392 op->args[1] = src; 393 394 di->z_mask = si->z_mask; 395 di->s_mask = si->s_mask; 396 397 if (src_ts->type == dst_ts->type) { 398 TempOptInfo *ni = ts_info(si->next_copy); 399 400 di->next_copy = si->next_copy; 401 di->prev_copy = src_ts; 402 ni->prev_copy = dst_ts; 403 si->next_copy = dst_ts; 404 di->is_const = si->is_const; 405 di->val = si->val; 406 407 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 408 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 409 move_mem_copies(dst_ts, src_ts); 410 } 411 } 412 return true; 413 } 414 415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 416 TCGArg dst, uint64_t val) 417 { 418 /* Convert movi to mov with constant temp. */ 419 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 420 } 421 422 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 423 { 424 uint64_t l64, h64; 425 426 switch (op) { 427 CASE_OP_32_64(add): 428 return x + y; 429 430 CASE_OP_32_64(sub): 431 return x - y; 432 433 CASE_OP_32_64(mul): 434 return x * y; 435 436 CASE_OP_32_64_VEC(and): 437 return x & y; 438 439 CASE_OP_32_64_VEC(or): 440 return x | y; 441 442 CASE_OP_32_64_VEC(xor): 443 return x ^ y; 444 445 case INDEX_op_shl_i32: 446 return (uint32_t)x << (y & 31); 447 448 case INDEX_op_shl_i64: 449 return (uint64_t)x << (y & 63); 450 451 case INDEX_op_shr_i32: 452 return (uint32_t)x >> (y & 31); 453 454 case INDEX_op_shr_i64: 455 return (uint64_t)x >> (y & 63); 456 457 case INDEX_op_sar_i32: 458 return (int32_t)x >> (y & 31); 459 460 case INDEX_op_sar_i64: 461 return (int64_t)x >> (y & 63); 462 463 case INDEX_op_rotr_i32: 464 return ror32(x, y & 31); 465 466 case INDEX_op_rotr_i64: 467 return ror64(x, y & 63); 468 469 case INDEX_op_rotl_i32: 470 return rol32(x, y & 31); 471 472 case INDEX_op_rotl_i64: 473 return rol64(x, y & 63); 474 475 CASE_OP_32_64_VEC(not): 476 return ~x; 477 478 CASE_OP_32_64(neg): 479 return -x; 480 481 CASE_OP_32_64_VEC(andc): 482 return x & ~y; 483 484 CASE_OP_32_64_VEC(orc): 485 return x | ~y; 486 487 CASE_OP_32_64_VEC(eqv): 488 return ~(x ^ y); 489 490 CASE_OP_32_64_VEC(nand): 491 return ~(x & y); 492 493 CASE_OP_32_64_VEC(nor): 494 return ~(x | y); 495 496 case INDEX_op_clz_i32: 497 return (uint32_t)x ? clz32(x) : y; 498 499 case INDEX_op_clz_i64: 500 return x ? clz64(x) : y; 501 502 case INDEX_op_ctz_i32: 503 return (uint32_t)x ? ctz32(x) : y; 504 505 case INDEX_op_ctz_i64: 506 return x ? ctz64(x) : y; 507 508 case INDEX_op_ctpop_i32: 509 return ctpop32(x); 510 511 case INDEX_op_ctpop_i64: 512 return ctpop64(x); 513 514 CASE_OP_32_64(bswap16): 515 x = bswap16(x); 516 return y & TCG_BSWAP_OS ? (int16_t)x : x; 517 518 CASE_OP_32_64(bswap32): 519 x = bswap32(x); 520 return y & TCG_BSWAP_OS ? (int32_t)x : x; 521 522 case INDEX_op_bswap64_i64: 523 return bswap64(x); 524 525 case INDEX_op_ext_i32_i64: 526 return (int32_t)x; 527 528 case INDEX_op_extu_i32_i64: 529 case INDEX_op_extrl_i64_i32: 530 return (uint32_t)x; 531 532 case INDEX_op_extrh_i64_i32: 533 return (uint64_t)x >> 32; 534 535 case INDEX_op_muluh_i32: 536 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 537 case INDEX_op_mulsh_i32: 538 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 539 540 case INDEX_op_muluh_i64: 541 mulu64(&l64, &h64, x, y); 542 return h64; 543 case INDEX_op_mulsh_i64: 544 muls64(&l64, &h64, x, y); 545 return h64; 546 547 case INDEX_op_div_i32: 548 /* Avoid crashing on divide by zero, otherwise undefined. */ 549 return (int32_t)x / ((int32_t)y ? : 1); 550 case INDEX_op_divu_i32: 551 return (uint32_t)x / ((uint32_t)y ? : 1); 552 case INDEX_op_div_i64: 553 return (int64_t)x / ((int64_t)y ? : 1); 554 case INDEX_op_divu_i64: 555 return (uint64_t)x / ((uint64_t)y ? : 1); 556 557 case INDEX_op_rem_i32: 558 return (int32_t)x % ((int32_t)y ? : 1); 559 case INDEX_op_remu_i32: 560 return (uint32_t)x % ((uint32_t)y ? : 1); 561 case INDEX_op_rem_i64: 562 return (int64_t)x % ((int64_t)y ? : 1); 563 case INDEX_op_remu_i64: 564 return (uint64_t)x % ((uint64_t)y ? : 1); 565 566 default: 567 g_assert_not_reached(); 568 } 569 } 570 571 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 572 uint64_t x, uint64_t y) 573 { 574 uint64_t res = do_constant_folding_2(op, x, y); 575 if (type == TCG_TYPE_I32) { 576 res = (int32_t)res; 577 } 578 return res; 579 } 580 581 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 582 { 583 switch (c) { 584 case TCG_COND_EQ: 585 return x == y; 586 case TCG_COND_NE: 587 return x != y; 588 case TCG_COND_LT: 589 return (int32_t)x < (int32_t)y; 590 case TCG_COND_GE: 591 return (int32_t)x >= (int32_t)y; 592 case TCG_COND_LE: 593 return (int32_t)x <= (int32_t)y; 594 case TCG_COND_GT: 595 return (int32_t)x > (int32_t)y; 596 case TCG_COND_LTU: 597 return x < y; 598 case TCG_COND_GEU: 599 return x >= y; 600 case TCG_COND_LEU: 601 return x <= y; 602 case TCG_COND_GTU: 603 return x > y; 604 case TCG_COND_TSTEQ: 605 return (x & y) == 0; 606 case TCG_COND_TSTNE: 607 return (x & y) != 0; 608 case TCG_COND_ALWAYS: 609 case TCG_COND_NEVER: 610 break; 611 } 612 g_assert_not_reached(); 613 } 614 615 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 616 { 617 switch (c) { 618 case TCG_COND_EQ: 619 return x == y; 620 case TCG_COND_NE: 621 return x != y; 622 case TCG_COND_LT: 623 return (int64_t)x < (int64_t)y; 624 case TCG_COND_GE: 625 return (int64_t)x >= (int64_t)y; 626 case TCG_COND_LE: 627 return (int64_t)x <= (int64_t)y; 628 case TCG_COND_GT: 629 return (int64_t)x > (int64_t)y; 630 case TCG_COND_LTU: 631 return x < y; 632 case TCG_COND_GEU: 633 return x >= y; 634 case TCG_COND_LEU: 635 return x <= y; 636 case TCG_COND_GTU: 637 return x > y; 638 case TCG_COND_TSTEQ: 639 return (x & y) == 0; 640 case TCG_COND_TSTNE: 641 return (x & y) != 0; 642 case TCG_COND_ALWAYS: 643 case TCG_COND_NEVER: 644 break; 645 } 646 g_assert_not_reached(); 647 } 648 649 static int do_constant_folding_cond_eq(TCGCond c) 650 { 651 switch (c) { 652 case TCG_COND_GT: 653 case TCG_COND_LTU: 654 case TCG_COND_LT: 655 case TCG_COND_GTU: 656 case TCG_COND_NE: 657 return 0; 658 case TCG_COND_GE: 659 case TCG_COND_GEU: 660 case TCG_COND_LE: 661 case TCG_COND_LEU: 662 case TCG_COND_EQ: 663 return 1; 664 case TCG_COND_TSTEQ: 665 case TCG_COND_TSTNE: 666 return -1; 667 case TCG_COND_ALWAYS: 668 case TCG_COND_NEVER: 669 break; 670 } 671 g_assert_not_reached(); 672 } 673 674 /* 675 * Return -1 if the condition can't be simplified, 676 * and the result of the condition (0 or 1) if it can. 677 */ 678 static int do_constant_folding_cond(TCGType type, TCGArg x, 679 TCGArg y, TCGCond c) 680 { 681 if (arg_is_const(x) && arg_is_const(y)) { 682 uint64_t xv = arg_info(x)->val; 683 uint64_t yv = arg_info(y)->val; 684 685 switch (type) { 686 case TCG_TYPE_I32: 687 return do_constant_folding_cond_32(xv, yv, c); 688 case TCG_TYPE_I64: 689 return do_constant_folding_cond_64(xv, yv, c); 690 default: 691 /* Only scalar comparisons are optimizable */ 692 return -1; 693 } 694 } else if (args_are_copies(x, y)) { 695 return do_constant_folding_cond_eq(c); 696 } else if (arg_is_const_val(y, 0)) { 697 switch (c) { 698 case TCG_COND_LTU: 699 case TCG_COND_TSTNE: 700 return 0; 701 case TCG_COND_GEU: 702 case TCG_COND_TSTEQ: 703 return 1; 704 default: 705 return -1; 706 } 707 } 708 return -1; 709 } 710 711 /** 712 * swap_commutative: 713 * @dest: TCGArg of the destination argument, or NO_DEST. 714 * @p1: first paired argument 715 * @p2: second paired argument 716 * 717 * If *@p1 is a constant and *@p2 is not, swap. 718 * If *@p2 matches @dest, swap. 719 * Return true if a swap was performed. 720 */ 721 722 #define NO_DEST temp_arg(NULL) 723 724 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 725 { 726 TCGArg a1 = *p1, a2 = *p2; 727 int sum = 0; 728 sum += arg_is_const(a1); 729 sum -= arg_is_const(a2); 730 731 /* Prefer the constant in second argument, and then the form 732 op a, a, b, which is better handled on non-RISC hosts. */ 733 if (sum > 0 || (sum == 0 && dest == a2)) { 734 *p1 = a2; 735 *p2 = a1; 736 return true; 737 } 738 return false; 739 } 740 741 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 742 { 743 int sum = 0; 744 sum += arg_is_const(p1[0]); 745 sum += arg_is_const(p1[1]); 746 sum -= arg_is_const(p2[0]); 747 sum -= arg_is_const(p2[1]); 748 if (sum > 0) { 749 TCGArg t; 750 t = p1[0], p1[0] = p2[0], p2[0] = t; 751 t = p1[1], p1[1] = p2[1], p2[1] = t; 752 return true; 753 } 754 return false; 755 } 756 757 /* 758 * Return -1 if the condition can't be simplified, 759 * and the result of the condition (0 or 1) if it can. 760 */ 761 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 762 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 763 { 764 TCGCond cond; 765 TempOptInfo *i1; 766 bool swap; 767 int r; 768 769 swap = swap_commutative(dest, p1, p2); 770 cond = *pcond; 771 if (swap) { 772 *pcond = cond = tcg_swap_cond(cond); 773 } 774 775 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 776 if (r >= 0) { 777 return r; 778 } 779 if (!is_tst_cond(cond)) { 780 return -1; 781 } 782 783 i1 = arg_info(*p1); 784 785 /* 786 * TSTNE x,x -> NE x,0 787 * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x 788 */ 789 if (args_are_copies(*p1, *p2) || 790 (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) { 791 *p2 = arg_new_constant(ctx, 0); 792 *pcond = tcg_tst_eqne_cond(cond); 793 return -1; 794 } 795 796 /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */ 797 if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) { 798 *p2 = arg_new_constant(ctx, 0); 799 *pcond = tcg_tst_ltge_cond(cond); 800 return -1; 801 } 802 803 /* Expand to AND with a temporary if no backend support. */ 804 if (!TCG_TARGET_HAS_tst) { 805 TCGOpcode and_opc = (ctx->type == TCG_TYPE_I32 806 ? INDEX_op_and_i32 : INDEX_op_and_i64); 807 TCGOp *op2 = opt_insert_before(ctx, op, and_opc, 3); 808 TCGArg tmp = arg_new_temp(ctx); 809 810 op2->args[0] = tmp; 811 op2->args[1] = *p1; 812 op2->args[2] = *p2; 813 814 *p1 = tmp; 815 *p2 = arg_new_constant(ctx, 0); 816 *pcond = tcg_tst_eqne_cond(cond); 817 } 818 return -1; 819 } 820 821 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 822 { 823 TCGArg al, ah, bl, bh; 824 TCGCond c; 825 bool swap; 826 int r; 827 828 swap = swap_commutative2(args, args + 2); 829 c = args[4]; 830 if (swap) { 831 args[4] = c = tcg_swap_cond(c); 832 } 833 834 al = args[0]; 835 ah = args[1]; 836 bl = args[2]; 837 bh = args[3]; 838 839 if (arg_is_const(bl) && arg_is_const(bh)) { 840 tcg_target_ulong blv = arg_info(bl)->val; 841 tcg_target_ulong bhv = arg_info(bh)->val; 842 uint64_t b = deposit64(blv, 32, 32, bhv); 843 844 if (arg_is_const(al) && arg_is_const(ah)) { 845 tcg_target_ulong alv = arg_info(al)->val; 846 tcg_target_ulong ahv = arg_info(ah)->val; 847 uint64_t a = deposit64(alv, 32, 32, ahv); 848 849 r = do_constant_folding_cond_64(a, b, c); 850 if (r >= 0) { 851 return r; 852 } 853 } 854 855 if (b == 0) { 856 switch (c) { 857 case TCG_COND_LTU: 858 case TCG_COND_TSTNE: 859 return 0; 860 case TCG_COND_GEU: 861 case TCG_COND_TSTEQ: 862 return 1; 863 default: 864 break; 865 } 866 } 867 868 /* TSTNE x,-1 -> NE x,0 */ 869 if (b == -1 && is_tst_cond(c)) { 870 args[3] = args[2] = arg_new_constant(ctx, 0); 871 args[4] = tcg_tst_eqne_cond(c); 872 return -1; 873 } 874 875 /* TSTNE x,sign -> LT x,0 */ 876 if (b == INT64_MIN && is_tst_cond(c)) { 877 /* bl must be 0, so copy that to bh */ 878 args[3] = bl; 879 args[4] = tcg_tst_ltge_cond(c); 880 return -1; 881 } 882 } 883 884 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 885 r = do_constant_folding_cond_eq(c); 886 if (r >= 0) { 887 return r; 888 } 889 890 /* TSTNE x,x -> NE x,0 */ 891 if (is_tst_cond(c)) { 892 args[3] = args[2] = arg_new_constant(ctx, 0); 893 args[4] = tcg_tst_eqne_cond(c); 894 return -1; 895 } 896 } 897 898 /* Expand to AND with a temporary if no backend support. */ 899 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 900 TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and_i32, 3); 901 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and_i32, 3); 902 TCGArg t1 = arg_new_temp(ctx); 903 TCGArg t2 = arg_new_temp(ctx); 904 905 op1->args[0] = t1; 906 op1->args[1] = al; 907 op1->args[2] = bl; 908 op2->args[0] = t2; 909 op2->args[1] = ah; 910 op2->args[2] = bh; 911 912 args[0] = t1; 913 args[1] = t2; 914 args[3] = args[2] = arg_new_constant(ctx, 0); 915 args[4] = tcg_tst_eqne_cond(c); 916 } 917 return -1; 918 } 919 920 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 921 { 922 for (int i = 0; i < nb_args; i++) { 923 TCGTemp *ts = arg_temp(op->args[i]); 924 init_ts_info(ctx, ts); 925 } 926 } 927 928 static void copy_propagate(OptContext *ctx, TCGOp *op, 929 int nb_oargs, int nb_iargs) 930 { 931 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 932 TCGTemp *ts = arg_temp(op->args[i]); 933 if (ts_is_copy(ts)) { 934 op->args[i] = temp_arg(find_better_copy(ts)); 935 } 936 } 937 } 938 939 static void finish_bb(OptContext *ctx) 940 { 941 /* We only optimize memory barriers across basic blocks. */ 942 ctx->prev_mb = NULL; 943 } 944 945 static void finish_ebb(OptContext *ctx) 946 { 947 finish_bb(ctx); 948 /* We only optimize across extended basic blocks. */ 949 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 950 remove_mem_copy_all(ctx); 951 } 952 953 static bool finish_folding(OptContext *ctx, TCGOp *op) 954 { 955 const TCGOpDef *def = &tcg_op_defs[op->opc]; 956 int i, nb_oargs; 957 958 nb_oargs = def->nb_oargs; 959 for (i = 0; i < nb_oargs; i++) { 960 TCGTemp *ts = arg_temp(op->args[i]); 961 reset_ts(ctx, ts); 962 } 963 return true; 964 } 965 966 /* 967 * The fold_* functions return true when processing is complete, 968 * usually by folding the operation to a constant or to a copy, 969 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 970 * like collect information about the value produced, for use in 971 * optimizing a subsequent operation. 972 * 973 * These first fold_* functions are all helpers, used by other 974 * folders for more specific operations. 975 */ 976 977 static bool fold_const1(OptContext *ctx, TCGOp *op) 978 { 979 if (arg_is_const(op->args[1])) { 980 uint64_t t; 981 982 t = arg_info(op->args[1])->val; 983 t = do_constant_folding(op->opc, ctx->type, t, 0); 984 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 985 } 986 return false; 987 } 988 989 static bool fold_const2(OptContext *ctx, TCGOp *op) 990 { 991 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 992 uint64_t t1 = arg_info(op->args[1])->val; 993 uint64_t t2 = arg_info(op->args[2])->val; 994 995 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 996 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 997 } 998 return false; 999 } 1000 1001 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1002 { 1003 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1004 return false; 1005 } 1006 1007 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1008 { 1009 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1010 return fold_const2(ctx, op); 1011 } 1012 1013 /* 1014 * Record "zero" and "sign" masks for the single output of @op. 1015 * See TempOptInfo definition of z_mask and s_mask. 1016 * If z_mask allows, fold the output to constant zero. 1017 * The passed s_mask may be augmented by z_mask. 1018 */ 1019 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1020 uint64_t z_mask, int64_t s_mask) 1021 { 1022 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1023 TCGTemp *ts; 1024 TempOptInfo *ti; 1025 int rep; 1026 1027 /* Only single-output opcodes are supported here. */ 1028 tcg_debug_assert(def->nb_oargs == 1); 1029 1030 /* 1031 * 32-bit ops generate 32-bit results, which for the purpose of 1032 * simplifying tcg are sign-extended. Certainly that's how we 1033 * represent our constants elsewhere. Note that the bits will 1034 * be reset properly for a 64-bit value when encountering the 1035 * type changing opcodes. 1036 */ 1037 if (ctx->type == TCG_TYPE_I32) { 1038 z_mask = (int32_t)z_mask; 1039 s_mask |= INT32_MIN; 1040 } 1041 1042 if (z_mask == 0) { 1043 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1044 } 1045 1046 ts = arg_temp(op->args[0]); 1047 reset_ts(ctx, ts); 1048 1049 ti = ts_info(ts); 1050 ti->z_mask = z_mask; 1051 1052 /* Canonicalize s_mask and incorporate data from z_mask. */ 1053 rep = clz64(~s_mask); 1054 rep = MAX(rep, clz64(z_mask)); 1055 rep = MAX(rep - 1, 0); 1056 ti->s_mask = INT64_MIN >> rep; 1057 1058 return true; 1059 } 1060 1061 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1062 { 1063 return fold_masks_zs(ctx, op, z_mask, 0); 1064 } 1065 1066 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1067 { 1068 return fold_masks_zs(ctx, op, -1, s_mask); 1069 } 1070 1071 /* 1072 * An "affected" mask bit is 0 if and only if the result is identical 1073 * to the first input. Thus if the entire mask is 0, the operation 1074 * is equivalent to a copy. 1075 */ 1076 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1077 { 1078 if (ctx->type == TCG_TYPE_I32) { 1079 a_mask = (uint32_t)a_mask; 1080 } 1081 if (a_mask == 0) { 1082 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1083 } 1084 return false; 1085 } 1086 1087 /* 1088 * Convert @op to NOT, if NOT is supported by the host. 1089 * Return true f the conversion is successful, which will still 1090 * indicate that the processing is complete. 1091 */ 1092 static bool fold_not(OptContext *ctx, TCGOp *op); 1093 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1094 { 1095 TCGOpcode not_op; 1096 bool have_not; 1097 1098 switch (ctx->type) { 1099 case TCG_TYPE_I32: 1100 not_op = INDEX_op_not_i32; 1101 have_not = TCG_TARGET_HAS_not_i32; 1102 break; 1103 case TCG_TYPE_I64: 1104 not_op = INDEX_op_not_i64; 1105 have_not = TCG_TARGET_HAS_not_i64; 1106 break; 1107 case TCG_TYPE_V64: 1108 case TCG_TYPE_V128: 1109 case TCG_TYPE_V256: 1110 not_op = INDEX_op_not_vec; 1111 have_not = TCG_TARGET_HAS_not_vec; 1112 break; 1113 default: 1114 g_assert_not_reached(); 1115 } 1116 if (have_not) { 1117 op->opc = not_op; 1118 op->args[1] = op->args[idx]; 1119 return fold_not(ctx, op); 1120 } 1121 return false; 1122 } 1123 1124 /* If the binary operation has first argument @i, fold to @i. */ 1125 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1126 { 1127 if (arg_is_const_val(op->args[1], i)) { 1128 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1129 } 1130 return false; 1131 } 1132 1133 /* If the binary operation has first argument @i, fold to NOT. */ 1134 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1135 { 1136 if (arg_is_const_val(op->args[1], i)) { 1137 return fold_to_not(ctx, op, 2); 1138 } 1139 return false; 1140 } 1141 1142 /* If the binary operation has second argument @i, fold to @i. */ 1143 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1144 { 1145 if (arg_is_const_val(op->args[2], i)) { 1146 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1147 } 1148 return false; 1149 } 1150 1151 /* If the binary operation has second argument @i, fold to identity. */ 1152 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1153 { 1154 if (arg_is_const_val(op->args[2], i)) { 1155 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1156 } 1157 return false; 1158 } 1159 1160 /* If the binary operation has second argument @i, fold to NOT. */ 1161 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1162 { 1163 if (arg_is_const_val(op->args[2], i)) { 1164 return fold_to_not(ctx, op, 1); 1165 } 1166 return false; 1167 } 1168 1169 /* If the binary operation has both arguments equal, fold to @i. */ 1170 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1171 { 1172 if (args_are_copies(op->args[1], op->args[2])) { 1173 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1174 } 1175 return false; 1176 } 1177 1178 /* If the binary operation has both arguments equal, fold to identity. */ 1179 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1180 { 1181 if (args_are_copies(op->args[1], op->args[2])) { 1182 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1183 } 1184 return false; 1185 } 1186 1187 /* 1188 * These outermost fold_<op> functions are sorted alphabetically. 1189 * 1190 * The ordering of the transformations should be: 1191 * 1) those that produce a constant 1192 * 2) those that produce a copy 1193 * 3) those that produce information about the result value. 1194 */ 1195 1196 static bool fold_or(OptContext *ctx, TCGOp *op); 1197 static bool fold_orc(OptContext *ctx, TCGOp *op); 1198 static bool fold_xor(OptContext *ctx, TCGOp *op); 1199 1200 static bool fold_add(OptContext *ctx, TCGOp *op) 1201 { 1202 if (fold_const2_commutative(ctx, op) || 1203 fold_xi_to_x(ctx, op, 0)) { 1204 return true; 1205 } 1206 return finish_folding(ctx, op); 1207 } 1208 1209 /* We cannot as yet do_constant_folding with vectors. */ 1210 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1211 { 1212 if (fold_commutative(ctx, op) || 1213 fold_xi_to_x(ctx, op, 0)) { 1214 return true; 1215 } 1216 return finish_folding(ctx, op); 1217 } 1218 1219 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1220 { 1221 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1222 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1223 1224 if (a_const && b_const) { 1225 uint64_t al = arg_info(op->args[2])->val; 1226 uint64_t ah = arg_info(op->args[3])->val; 1227 uint64_t bl = arg_info(op->args[4])->val; 1228 uint64_t bh = arg_info(op->args[5])->val; 1229 TCGArg rl, rh; 1230 TCGOp *op2; 1231 1232 if (ctx->type == TCG_TYPE_I32) { 1233 uint64_t a = deposit64(al, 32, 32, ah); 1234 uint64_t b = deposit64(bl, 32, 32, bh); 1235 1236 if (add) { 1237 a += b; 1238 } else { 1239 a -= b; 1240 } 1241 1242 al = sextract64(a, 0, 32); 1243 ah = sextract64(a, 32, 32); 1244 } else { 1245 Int128 a = int128_make128(al, ah); 1246 Int128 b = int128_make128(bl, bh); 1247 1248 if (add) { 1249 a = int128_add(a, b); 1250 } else { 1251 a = int128_sub(a, b); 1252 } 1253 1254 al = int128_getlo(a); 1255 ah = int128_gethi(a); 1256 } 1257 1258 rl = op->args[0]; 1259 rh = op->args[1]; 1260 1261 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1262 op2 = opt_insert_before(ctx, op, 0, 2); 1263 1264 tcg_opt_gen_movi(ctx, op, rl, al); 1265 tcg_opt_gen_movi(ctx, op2, rh, ah); 1266 return true; 1267 } 1268 1269 /* Fold sub2 r,x,i to add2 r,x,-i */ 1270 if (!add && b_const) { 1271 uint64_t bl = arg_info(op->args[4])->val; 1272 uint64_t bh = arg_info(op->args[5])->val; 1273 1274 /* Negate the two parts without assembling and disassembling. */ 1275 bl = -bl; 1276 bh = ~bh + !bl; 1277 1278 op->opc = (ctx->type == TCG_TYPE_I32 1279 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1280 op->args[4] = arg_new_constant(ctx, bl); 1281 op->args[5] = arg_new_constant(ctx, bh); 1282 } 1283 return finish_folding(ctx, op); 1284 } 1285 1286 static bool fold_add2(OptContext *ctx, TCGOp *op) 1287 { 1288 /* Note that the high and low parts may be independently swapped. */ 1289 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1290 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1291 1292 return fold_addsub2(ctx, op, true); 1293 } 1294 1295 static bool fold_and(OptContext *ctx, TCGOp *op) 1296 { 1297 uint64_t z1, z2, z_mask, s_mask; 1298 TempOptInfo *t1, *t2; 1299 1300 if (fold_const2_commutative(ctx, op) || 1301 fold_xi_to_i(ctx, op, 0) || 1302 fold_xi_to_x(ctx, op, -1) || 1303 fold_xx_to_x(ctx, op)) { 1304 return true; 1305 } 1306 1307 t1 = arg_info(op->args[1]); 1308 t2 = arg_info(op->args[2]); 1309 z1 = t1->z_mask; 1310 z2 = t2->z_mask; 1311 1312 /* 1313 * Known-zeros does not imply known-ones. Therefore unless 1314 * arg2 is constant, we can't infer affected bits from it. 1315 */ 1316 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1317 return true; 1318 } 1319 1320 z_mask = z1 & z2; 1321 1322 /* 1323 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1324 * Bitwise operations preserve the relative quantity of the repetitions. 1325 */ 1326 s_mask = t1->s_mask & t2->s_mask; 1327 1328 return fold_masks_zs(ctx, op, z_mask, s_mask); 1329 } 1330 1331 static bool fold_andc(OptContext *ctx, TCGOp *op) 1332 { 1333 uint64_t z_mask, s_mask; 1334 TempOptInfo *t1, *t2; 1335 1336 if (fold_const2(ctx, op) || 1337 fold_xx_to_i(ctx, op, 0) || 1338 fold_xi_to_x(ctx, op, 0) || 1339 fold_ix_to_not(ctx, op, -1)) { 1340 return true; 1341 } 1342 1343 t1 = arg_info(op->args[1]); 1344 t2 = arg_info(op->args[2]); 1345 z_mask = t1->z_mask; 1346 1347 /* 1348 * Known-zeros does not imply known-ones. Therefore unless 1349 * arg2 is constant, we can't infer anything from it. 1350 */ 1351 if (ti_is_const(t2)) { 1352 uint64_t v2 = ti_const_val(t2); 1353 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1354 return true; 1355 } 1356 z_mask &= ~v2; 1357 } 1358 1359 s_mask = t1->s_mask & t2->s_mask; 1360 return fold_masks_zs(ctx, op, z_mask, s_mask); 1361 } 1362 1363 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1364 { 1365 /* If true and false values are the same, eliminate the cmp. */ 1366 if (args_are_copies(op->args[2], op->args[3])) { 1367 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1368 } 1369 1370 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1371 uint64_t tv = arg_info(op->args[2])->val; 1372 uint64_t fv = arg_info(op->args[3])->val; 1373 1374 if (tv == -1 && fv == 0) { 1375 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1376 } 1377 if (tv == 0 && fv == -1) { 1378 if (TCG_TARGET_HAS_not_vec) { 1379 op->opc = INDEX_op_not_vec; 1380 return fold_not(ctx, op); 1381 } else { 1382 op->opc = INDEX_op_xor_vec; 1383 op->args[2] = arg_new_constant(ctx, -1); 1384 return fold_xor(ctx, op); 1385 } 1386 } 1387 } 1388 if (arg_is_const(op->args[2])) { 1389 uint64_t tv = arg_info(op->args[2])->val; 1390 if (tv == -1) { 1391 op->opc = INDEX_op_or_vec; 1392 op->args[2] = op->args[3]; 1393 return fold_or(ctx, op); 1394 } 1395 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1396 op->opc = INDEX_op_andc_vec; 1397 op->args[2] = op->args[1]; 1398 op->args[1] = op->args[3]; 1399 return fold_andc(ctx, op); 1400 } 1401 } 1402 if (arg_is_const(op->args[3])) { 1403 uint64_t fv = arg_info(op->args[3])->val; 1404 if (fv == 0) { 1405 op->opc = INDEX_op_and_vec; 1406 return fold_and(ctx, op); 1407 } 1408 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1409 op->opc = INDEX_op_orc_vec; 1410 op->args[2] = op->args[1]; 1411 op->args[1] = op->args[3]; 1412 return fold_orc(ctx, op); 1413 } 1414 } 1415 return finish_folding(ctx, op); 1416 } 1417 1418 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1419 { 1420 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1421 &op->args[1], &op->args[2]); 1422 if (i == 0) { 1423 tcg_op_remove(ctx->tcg, op); 1424 return true; 1425 } 1426 if (i > 0) { 1427 op->opc = INDEX_op_br; 1428 op->args[0] = op->args[3]; 1429 finish_ebb(ctx); 1430 } else { 1431 finish_bb(ctx); 1432 } 1433 return true; 1434 } 1435 1436 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1437 { 1438 TCGCond cond; 1439 TCGArg label; 1440 int i, inv = 0; 1441 1442 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1443 cond = op->args[4]; 1444 label = op->args[5]; 1445 if (i >= 0) { 1446 goto do_brcond_const; 1447 } 1448 1449 switch (cond) { 1450 case TCG_COND_LT: 1451 case TCG_COND_GE: 1452 /* 1453 * Simplify LT/GE comparisons vs zero to a single compare 1454 * vs the high word of the input. 1455 */ 1456 if (arg_is_const_val(op->args[2], 0) && 1457 arg_is_const_val(op->args[3], 0)) { 1458 goto do_brcond_high; 1459 } 1460 break; 1461 1462 case TCG_COND_NE: 1463 inv = 1; 1464 QEMU_FALLTHROUGH; 1465 case TCG_COND_EQ: 1466 /* 1467 * Simplify EQ/NE comparisons where one of the pairs 1468 * can be simplified. 1469 */ 1470 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1471 op->args[2], cond); 1472 switch (i ^ inv) { 1473 case 0: 1474 goto do_brcond_const; 1475 case 1: 1476 goto do_brcond_high; 1477 } 1478 1479 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1480 op->args[3], cond); 1481 switch (i ^ inv) { 1482 case 0: 1483 goto do_brcond_const; 1484 case 1: 1485 goto do_brcond_low; 1486 } 1487 break; 1488 1489 case TCG_COND_TSTEQ: 1490 case TCG_COND_TSTNE: 1491 if (arg_is_const_val(op->args[2], 0)) { 1492 goto do_brcond_high; 1493 } 1494 if (arg_is_const_val(op->args[3], 0)) { 1495 goto do_brcond_low; 1496 } 1497 break; 1498 1499 default: 1500 break; 1501 1502 do_brcond_low: 1503 op->opc = INDEX_op_brcond_i32; 1504 op->args[1] = op->args[2]; 1505 op->args[2] = cond; 1506 op->args[3] = label; 1507 return fold_brcond(ctx, op); 1508 1509 do_brcond_high: 1510 op->opc = INDEX_op_brcond_i32; 1511 op->args[0] = op->args[1]; 1512 op->args[1] = op->args[3]; 1513 op->args[2] = cond; 1514 op->args[3] = label; 1515 return fold_brcond(ctx, op); 1516 1517 do_brcond_const: 1518 if (i == 0) { 1519 tcg_op_remove(ctx->tcg, op); 1520 return true; 1521 } 1522 op->opc = INDEX_op_br; 1523 op->args[0] = label; 1524 finish_ebb(ctx); 1525 return true; 1526 } 1527 1528 finish_bb(ctx); 1529 return true; 1530 } 1531 1532 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1533 { 1534 uint64_t z_mask, s_mask, sign; 1535 TempOptInfo *t1 = arg_info(op->args[1]); 1536 1537 if (ti_is_const(t1)) { 1538 return tcg_opt_gen_movi(ctx, op, op->args[0], 1539 do_constant_folding(op->opc, ctx->type, 1540 ti_const_val(t1), 1541 op->args[2])); 1542 } 1543 1544 z_mask = t1->z_mask; 1545 switch (op->opc) { 1546 case INDEX_op_bswap16_i32: 1547 case INDEX_op_bswap16_i64: 1548 z_mask = bswap16(z_mask); 1549 sign = INT16_MIN; 1550 break; 1551 case INDEX_op_bswap32_i32: 1552 case INDEX_op_bswap32_i64: 1553 z_mask = bswap32(z_mask); 1554 sign = INT32_MIN; 1555 break; 1556 case INDEX_op_bswap64_i64: 1557 z_mask = bswap64(z_mask); 1558 sign = INT64_MIN; 1559 break; 1560 default: 1561 g_assert_not_reached(); 1562 } 1563 1564 s_mask = 0; 1565 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1566 case TCG_BSWAP_OZ: 1567 break; 1568 case TCG_BSWAP_OS: 1569 /* If the sign bit may be 1, force all the bits above to 1. */ 1570 if (z_mask & sign) { 1571 z_mask |= sign; 1572 } 1573 /* The value and therefore s_mask is explicitly sign-extended. */ 1574 s_mask = sign; 1575 break; 1576 default: 1577 /* The high bits are undefined: force all bits above the sign to 1. */ 1578 z_mask |= sign << 1; 1579 break; 1580 } 1581 1582 return fold_masks_zs(ctx, op, z_mask, s_mask); 1583 } 1584 1585 static bool fold_call(OptContext *ctx, TCGOp *op) 1586 { 1587 TCGContext *s = ctx->tcg; 1588 int nb_oargs = TCGOP_CALLO(op); 1589 int nb_iargs = TCGOP_CALLI(op); 1590 int flags, i; 1591 1592 init_arguments(ctx, op, nb_oargs + nb_iargs); 1593 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1594 1595 /* If the function reads or writes globals, reset temp data. */ 1596 flags = tcg_call_flags(op); 1597 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1598 int nb_globals = s->nb_globals; 1599 1600 for (i = 0; i < nb_globals; i++) { 1601 if (test_bit(i, ctx->temps_used.l)) { 1602 reset_ts(ctx, &ctx->tcg->temps[i]); 1603 } 1604 } 1605 } 1606 1607 /* If the function has side effects, reset mem data. */ 1608 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1609 remove_mem_copy_all(ctx); 1610 } 1611 1612 /* Reset temp data for outputs. */ 1613 for (i = 0; i < nb_oargs; i++) { 1614 reset_temp(ctx, op->args[i]); 1615 } 1616 1617 /* Stop optimizing MB across calls. */ 1618 ctx->prev_mb = NULL; 1619 return true; 1620 } 1621 1622 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1623 { 1624 /* Canonicalize the comparison to put immediate second. */ 1625 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1626 op->args[3] = tcg_swap_cond(op->args[3]); 1627 } 1628 return finish_folding(ctx, op); 1629 } 1630 1631 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1632 { 1633 /* If true and false values are the same, eliminate the cmp. */ 1634 if (args_are_copies(op->args[3], op->args[4])) { 1635 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1636 } 1637 1638 /* Canonicalize the comparison to put immediate second. */ 1639 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1640 op->args[5] = tcg_swap_cond(op->args[5]); 1641 } 1642 /* 1643 * Canonicalize the "false" input reg to match the destination, 1644 * so that the tcg backend can implement "move if true". 1645 */ 1646 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1647 op->args[5] = tcg_invert_cond(op->args[5]); 1648 } 1649 return finish_folding(ctx, op); 1650 } 1651 1652 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1653 { 1654 uint64_t z_mask, s_mask; 1655 TempOptInfo *t1 = arg_info(op->args[1]); 1656 TempOptInfo *t2 = arg_info(op->args[2]); 1657 1658 if (ti_is_const(t1)) { 1659 uint64_t t = ti_const_val(t1); 1660 1661 if (t != 0) { 1662 t = do_constant_folding(op->opc, ctx->type, t, 0); 1663 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1664 } 1665 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1666 } 1667 1668 switch (ctx->type) { 1669 case TCG_TYPE_I32: 1670 z_mask = 31; 1671 break; 1672 case TCG_TYPE_I64: 1673 z_mask = 63; 1674 break; 1675 default: 1676 g_assert_not_reached(); 1677 } 1678 s_mask = ~z_mask; 1679 z_mask |= t2->z_mask; 1680 s_mask &= t2->s_mask; 1681 1682 return fold_masks_zs(ctx, op, z_mask, s_mask); 1683 } 1684 1685 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1686 { 1687 uint64_t z_mask; 1688 1689 if (fold_const1(ctx, op)) { 1690 return true; 1691 } 1692 1693 switch (ctx->type) { 1694 case TCG_TYPE_I32: 1695 z_mask = 32 | 31; 1696 break; 1697 case TCG_TYPE_I64: 1698 z_mask = 64 | 63; 1699 break; 1700 default: 1701 g_assert_not_reached(); 1702 } 1703 return fold_masks_z(ctx, op, z_mask); 1704 } 1705 1706 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1707 { 1708 TempOptInfo *t1 = arg_info(op->args[1]); 1709 TempOptInfo *t2 = arg_info(op->args[2]); 1710 int ofs = op->args[3]; 1711 int len = op->args[4]; 1712 int width; 1713 TCGOpcode and_opc; 1714 uint64_t z_mask, s_mask; 1715 1716 if (ti_is_const(t1) && ti_is_const(t2)) { 1717 return tcg_opt_gen_movi(ctx, op, op->args[0], 1718 deposit64(ti_const_val(t1), ofs, len, 1719 ti_const_val(t2))); 1720 } 1721 1722 switch (ctx->type) { 1723 case TCG_TYPE_I32: 1724 and_opc = INDEX_op_and_i32; 1725 width = 32; 1726 break; 1727 case TCG_TYPE_I64: 1728 and_opc = INDEX_op_and_i64; 1729 width = 64; 1730 break; 1731 default: 1732 g_assert_not_reached(); 1733 } 1734 1735 /* Inserting a value into zero at offset 0. */ 1736 if (ti_is_const_val(t1, 0) && ofs == 0) { 1737 uint64_t mask = MAKE_64BIT_MASK(0, len); 1738 1739 op->opc = and_opc; 1740 op->args[1] = op->args[2]; 1741 op->args[2] = arg_new_constant(ctx, mask); 1742 return fold_and(ctx, op); 1743 } 1744 1745 /* Inserting zero into a value. */ 1746 if (ti_is_const_val(t2, 0)) { 1747 uint64_t mask = deposit64(-1, ofs, len, 0); 1748 1749 op->opc = and_opc; 1750 op->args[2] = arg_new_constant(ctx, mask); 1751 return fold_and(ctx, op); 1752 } 1753 1754 /* The s_mask from the top portion of the deposit is still valid. */ 1755 if (ofs + len == width) { 1756 s_mask = t2->s_mask << ofs; 1757 } else { 1758 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1759 } 1760 1761 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1762 return fold_masks_zs(ctx, op, z_mask, s_mask); 1763 } 1764 1765 static bool fold_divide(OptContext *ctx, TCGOp *op) 1766 { 1767 if (fold_const2(ctx, op) || 1768 fold_xi_to_x(ctx, op, 1)) { 1769 return true; 1770 } 1771 return finish_folding(ctx, op); 1772 } 1773 1774 static bool fold_dup(OptContext *ctx, TCGOp *op) 1775 { 1776 if (arg_is_const(op->args[1])) { 1777 uint64_t t = arg_info(op->args[1])->val; 1778 t = dup_const(TCGOP_VECE(op), t); 1779 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1780 } 1781 return finish_folding(ctx, op); 1782 } 1783 1784 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1785 { 1786 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1787 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1788 arg_info(op->args[2])->val); 1789 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1790 } 1791 1792 if (args_are_copies(op->args[1], op->args[2])) { 1793 op->opc = INDEX_op_dup_vec; 1794 TCGOP_VECE(op) = MO_32; 1795 } 1796 return finish_folding(ctx, op); 1797 } 1798 1799 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1800 { 1801 uint64_t s_mask; 1802 1803 if (fold_const2_commutative(ctx, op) || 1804 fold_xi_to_x(ctx, op, -1) || 1805 fold_xi_to_not(ctx, op, 0)) { 1806 return true; 1807 } 1808 1809 s_mask = arg_info(op->args[1])->s_mask 1810 & arg_info(op->args[2])->s_mask; 1811 return fold_masks_s(ctx, op, s_mask); 1812 } 1813 1814 static bool fold_extract(OptContext *ctx, TCGOp *op) 1815 { 1816 uint64_t z_mask_old, z_mask; 1817 TempOptInfo *t1 = arg_info(op->args[1]); 1818 int pos = op->args[2]; 1819 int len = op->args[3]; 1820 1821 if (ti_is_const(t1)) { 1822 return tcg_opt_gen_movi(ctx, op, op->args[0], 1823 extract64(ti_const_val(t1), pos, len)); 1824 } 1825 1826 z_mask_old = t1->z_mask; 1827 z_mask = extract64(z_mask_old, pos, len); 1828 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1829 return true; 1830 } 1831 1832 return fold_masks_z(ctx, op, z_mask); 1833 } 1834 1835 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1836 { 1837 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1838 uint64_t v1 = arg_info(op->args[1])->val; 1839 uint64_t v2 = arg_info(op->args[2])->val; 1840 int shr = op->args[3]; 1841 1842 if (op->opc == INDEX_op_extract2_i64) { 1843 v1 >>= shr; 1844 v2 <<= 64 - shr; 1845 } else { 1846 v1 = (uint32_t)v1 >> shr; 1847 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1848 } 1849 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1850 } 1851 return finish_folding(ctx, op); 1852 } 1853 1854 static bool fold_exts(OptContext *ctx, TCGOp *op) 1855 { 1856 uint64_t s_mask, z_mask; 1857 TempOptInfo *t1; 1858 1859 if (fold_const1(ctx, op)) { 1860 return true; 1861 } 1862 1863 t1 = arg_info(op->args[1]); 1864 z_mask = t1->z_mask; 1865 s_mask = t1->s_mask; 1866 1867 switch (op->opc) { 1868 case INDEX_op_ext_i32_i64: 1869 s_mask |= INT32_MIN; 1870 z_mask = (int32_t)z_mask; 1871 break; 1872 default: 1873 g_assert_not_reached(); 1874 } 1875 return fold_masks_zs(ctx, op, z_mask, s_mask); 1876 } 1877 1878 static bool fold_extu(OptContext *ctx, TCGOp *op) 1879 { 1880 uint64_t z_mask; 1881 1882 if (fold_const1(ctx, op)) { 1883 return true; 1884 } 1885 1886 z_mask = arg_info(op->args[1])->z_mask; 1887 switch (op->opc) { 1888 case INDEX_op_extrl_i64_i32: 1889 case INDEX_op_extu_i32_i64: 1890 z_mask = (uint32_t)z_mask; 1891 break; 1892 case INDEX_op_extrh_i64_i32: 1893 z_mask >>= 32; 1894 break; 1895 default: 1896 g_assert_not_reached(); 1897 } 1898 return fold_masks_z(ctx, op, z_mask); 1899 } 1900 1901 static bool fold_mb(OptContext *ctx, TCGOp *op) 1902 { 1903 /* Eliminate duplicate and redundant fence instructions. */ 1904 if (ctx->prev_mb) { 1905 /* 1906 * Merge two barriers of the same type into one, 1907 * or a weaker barrier into a stronger one, 1908 * or two weaker barriers into a stronger one. 1909 * mb X; mb Y => mb X|Y 1910 * mb; strl => mb; st 1911 * ldaq; mb => ld; mb 1912 * ldaq; strl => ld; mb; st 1913 * Other combinations are also merged into a strong 1914 * barrier. This is stricter than specified but for 1915 * the purposes of TCG is better than not optimizing. 1916 */ 1917 ctx->prev_mb->args[0] |= op->args[0]; 1918 tcg_op_remove(ctx->tcg, op); 1919 } else { 1920 ctx->prev_mb = op; 1921 } 1922 return true; 1923 } 1924 1925 static bool fold_mov(OptContext *ctx, TCGOp *op) 1926 { 1927 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1928 } 1929 1930 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1931 { 1932 uint64_t z_mask, s_mask; 1933 TempOptInfo *tt, *ft; 1934 int i; 1935 1936 /* If true and false values are the same, eliminate the cmp. */ 1937 if (args_are_copies(op->args[3], op->args[4])) { 1938 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1939 } 1940 1941 /* 1942 * Canonicalize the "false" input reg to match the destination reg so 1943 * that the tcg backend can implement a "move if true" operation. 1944 */ 1945 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1946 op->args[5] = tcg_invert_cond(op->args[5]); 1947 } 1948 1949 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1950 &op->args[2], &op->args[5]); 1951 if (i >= 0) { 1952 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1953 } 1954 1955 tt = arg_info(op->args[3]); 1956 ft = arg_info(op->args[4]); 1957 z_mask = tt->z_mask | ft->z_mask; 1958 s_mask = tt->s_mask & ft->s_mask; 1959 1960 if (ti_is_const(tt) && ti_is_const(ft)) { 1961 uint64_t tv = ti_const_val(tt); 1962 uint64_t fv = ti_const_val(ft); 1963 TCGOpcode opc, negopc = 0; 1964 TCGCond cond = op->args[5]; 1965 1966 switch (ctx->type) { 1967 case TCG_TYPE_I32: 1968 opc = INDEX_op_setcond_i32; 1969 if (TCG_TARGET_HAS_negsetcond_i32) { 1970 negopc = INDEX_op_negsetcond_i32; 1971 } 1972 tv = (int32_t)tv; 1973 fv = (int32_t)fv; 1974 break; 1975 case TCG_TYPE_I64: 1976 opc = INDEX_op_setcond_i64; 1977 if (TCG_TARGET_HAS_negsetcond_i64) { 1978 negopc = INDEX_op_negsetcond_i64; 1979 } 1980 break; 1981 default: 1982 g_assert_not_reached(); 1983 } 1984 1985 if (tv == 1 && fv == 0) { 1986 op->opc = opc; 1987 op->args[3] = cond; 1988 } else if (fv == 1 && tv == 0) { 1989 op->opc = opc; 1990 op->args[3] = tcg_invert_cond(cond); 1991 } else if (negopc) { 1992 if (tv == -1 && fv == 0) { 1993 op->opc = negopc; 1994 op->args[3] = cond; 1995 } else if (fv == -1 && tv == 0) { 1996 op->opc = negopc; 1997 op->args[3] = tcg_invert_cond(cond); 1998 } 1999 } 2000 } 2001 2002 return fold_masks_zs(ctx, op, z_mask, s_mask); 2003 } 2004 2005 static bool fold_mul(OptContext *ctx, TCGOp *op) 2006 { 2007 if (fold_const2(ctx, op) || 2008 fold_xi_to_i(ctx, op, 0) || 2009 fold_xi_to_x(ctx, op, 1)) { 2010 return true; 2011 } 2012 return finish_folding(ctx, op); 2013 } 2014 2015 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2016 { 2017 if (fold_const2_commutative(ctx, op) || 2018 fold_xi_to_i(ctx, op, 0)) { 2019 return true; 2020 } 2021 return finish_folding(ctx, op); 2022 } 2023 2024 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2025 { 2026 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2027 2028 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2029 uint64_t a = arg_info(op->args[2])->val; 2030 uint64_t b = arg_info(op->args[3])->val; 2031 uint64_t h, l; 2032 TCGArg rl, rh; 2033 TCGOp *op2; 2034 2035 switch (op->opc) { 2036 case INDEX_op_mulu2_i32: 2037 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2038 h = (int32_t)(l >> 32); 2039 l = (int32_t)l; 2040 break; 2041 case INDEX_op_muls2_i32: 2042 l = (int64_t)(int32_t)a * (int32_t)b; 2043 h = l >> 32; 2044 l = (int32_t)l; 2045 break; 2046 case INDEX_op_mulu2_i64: 2047 mulu64(&l, &h, a, b); 2048 break; 2049 case INDEX_op_muls2_i64: 2050 muls64(&l, &h, a, b); 2051 break; 2052 default: 2053 g_assert_not_reached(); 2054 } 2055 2056 rl = op->args[0]; 2057 rh = op->args[1]; 2058 2059 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2060 op2 = opt_insert_before(ctx, op, 0, 2); 2061 2062 tcg_opt_gen_movi(ctx, op, rl, l); 2063 tcg_opt_gen_movi(ctx, op2, rh, h); 2064 return true; 2065 } 2066 return finish_folding(ctx, op); 2067 } 2068 2069 static bool fold_nand(OptContext *ctx, TCGOp *op) 2070 { 2071 uint64_t s_mask; 2072 2073 if (fold_const2_commutative(ctx, op) || 2074 fold_xi_to_not(ctx, op, -1)) { 2075 return true; 2076 } 2077 2078 s_mask = arg_info(op->args[1])->s_mask 2079 & arg_info(op->args[2])->s_mask; 2080 return fold_masks_s(ctx, op, s_mask); 2081 } 2082 2083 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2084 { 2085 /* Set to 1 all bits to the left of the rightmost. */ 2086 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2087 z_mask = -(z_mask & -z_mask); 2088 2089 return fold_masks_z(ctx, op, z_mask); 2090 } 2091 2092 static bool fold_neg(OptContext *ctx, TCGOp *op) 2093 { 2094 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2095 } 2096 2097 static bool fold_nor(OptContext *ctx, TCGOp *op) 2098 { 2099 uint64_t s_mask; 2100 2101 if (fold_const2_commutative(ctx, op) || 2102 fold_xi_to_not(ctx, op, 0)) { 2103 return true; 2104 } 2105 2106 s_mask = arg_info(op->args[1])->s_mask 2107 & arg_info(op->args[2])->s_mask; 2108 return fold_masks_s(ctx, op, s_mask); 2109 } 2110 2111 static bool fold_not(OptContext *ctx, TCGOp *op) 2112 { 2113 if (fold_const1(ctx, op)) { 2114 return true; 2115 } 2116 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2117 } 2118 2119 static bool fold_or(OptContext *ctx, TCGOp *op) 2120 { 2121 uint64_t z_mask, s_mask; 2122 TempOptInfo *t1, *t2; 2123 2124 if (fold_const2_commutative(ctx, op) || 2125 fold_xi_to_x(ctx, op, 0) || 2126 fold_xx_to_x(ctx, op)) { 2127 return true; 2128 } 2129 2130 t1 = arg_info(op->args[1]); 2131 t2 = arg_info(op->args[2]); 2132 z_mask = t1->z_mask | t2->z_mask; 2133 s_mask = t1->s_mask & t2->s_mask; 2134 return fold_masks_zs(ctx, op, z_mask, s_mask); 2135 } 2136 2137 static bool fold_orc(OptContext *ctx, TCGOp *op) 2138 { 2139 uint64_t s_mask; 2140 2141 if (fold_const2(ctx, op) || 2142 fold_xx_to_i(ctx, op, -1) || 2143 fold_xi_to_x(ctx, op, -1) || 2144 fold_ix_to_not(ctx, op, 0)) { 2145 return true; 2146 } 2147 2148 s_mask = arg_info(op->args[1])->s_mask 2149 & arg_info(op->args[2])->s_mask; 2150 return fold_masks_s(ctx, op, s_mask); 2151 } 2152 2153 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2154 { 2155 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2156 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2157 MemOp mop = get_memop(oi); 2158 int width = 8 * memop_size(mop); 2159 uint64_t z_mask = -1, s_mask = 0; 2160 2161 if (width < 64) { 2162 if (mop & MO_SIGN) { 2163 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2164 } else { 2165 z_mask = MAKE_64BIT_MASK(0, width); 2166 } 2167 } 2168 2169 /* Opcodes that touch guest memory stop the mb optimization. */ 2170 ctx->prev_mb = NULL; 2171 2172 return fold_masks_zs(ctx, op, z_mask, s_mask); 2173 } 2174 2175 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2176 { 2177 /* Opcodes that touch guest memory stop the mb optimization. */ 2178 ctx->prev_mb = NULL; 2179 return finish_folding(ctx, op); 2180 } 2181 2182 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2183 { 2184 /* Opcodes that touch guest memory stop the mb optimization. */ 2185 ctx->prev_mb = NULL; 2186 return true; 2187 } 2188 2189 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2190 { 2191 if (fold_const2(ctx, op) || 2192 fold_xx_to_i(ctx, op, 0)) { 2193 return true; 2194 } 2195 return finish_folding(ctx, op); 2196 } 2197 2198 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2199 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2200 { 2201 uint64_t a_zmask, b_val; 2202 TCGCond cond; 2203 2204 if (!arg_is_const(op->args[2])) { 2205 return false; 2206 } 2207 2208 a_zmask = arg_info(op->args[1])->z_mask; 2209 b_val = arg_info(op->args[2])->val; 2210 cond = op->args[3]; 2211 2212 if (ctx->type == TCG_TYPE_I32) { 2213 a_zmask = (uint32_t)a_zmask; 2214 b_val = (uint32_t)b_val; 2215 } 2216 2217 /* 2218 * A with only low bits set vs B with high bits set means that A < B. 2219 */ 2220 if (a_zmask < b_val) { 2221 bool inv = false; 2222 2223 switch (cond) { 2224 case TCG_COND_NE: 2225 case TCG_COND_LEU: 2226 case TCG_COND_LTU: 2227 inv = true; 2228 /* fall through */ 2229 case TCG_COND_GTU: 2230 case TCG_COND_GEU: 2231 case TCG_COND_EQ: 2232 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2233 default: 2234 break; 2235 } 2236 } 2237 2238 /* 2239 * A with only lsb set is already boolean. 2240 */ 2241 if (a_zmask <= 1) { 2242 bool convert = false; 2243 bool inv = false; 2244 2245 switch (cond) { 2246 case TCG_COND_EQ: 2247 inv = true; 2248 /* fall through */ 2249 case TCG_COND_NE: 2250 convert = (b_val == 0); 2251 break; 2252 case TCG_COND_LTU: 2253 case TCG_COND_TSTEQ: 2254 inv = true; 2255 /* fall through */ 2256 case TCG_COND_GEU: 2257 case TCG_COND_TSTNE: 2258 convert = (b_val == 1); 2259 break; 2260 default: 2261 break; 2262 } 2263 if (convert) { 2264 TCGOpcode add_opc, xor_opc, neg_opc; 2265 2266 if (!inv && !neg) { 2267 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2268 } 2269 2270 switch (ctx->type) { 2271 case TCG_TYPE_I32: 2272 add_opc = INDEX_op_add_i32; 2273 neg_opc = INDEX_op_neg_i32; 2274 xor_opc = INDEX_op_xor_i32; 2275 break; 2276 case TCG_TYPE_I64: 2277 add_opc = INDEX_op_add_i64; 2278 neg_opc = INDEX_op_neg_i64; 2279 xor_opc = INDEX_op_xor_i64; 2280 break; 2281 default: 2282 g_assert_not_reached(); 2283 } 2284 2285 if (!inv) { 2286 op->opc = neg_opc; 2287 } else if (neg) { 2288 op->opc = add_opc; 2289 op->args[2] = arg_new_constant(ctx, -1); 2290 } else { 2291 op->opc = xor_opc; 2292 op->args[2] = arg_new_constant(ctx, 1); 2293 } 2294 return -1; 2295 } 2296 } 2297 return 0; 2298 } 2299 2300 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2301 { 2302 TCGOpcode and_opc, sub_opc, xor_opc, neg_opc, shr_opc; 2303 TCGOpcode uext_opc = 0, sext_opc = 0; 2304 TCGCond cond = op->args[3]; 2305 TCGArg ret, src1, src2; 2306 TCGOp *op2; 2307 uint64_t val; 2308 int sh; 2309 bool inv; 2310 2311 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2312 return; 2313 } 2314 2315 src2 = op->args[2]; 2316 val = arg_info(src2)->val; 2317 if (!is_power_of_2(val)) { 2318 return; 2319 } 2320 sh = ctz64(val); 2321 2322 switch (ctx->type) { 2323 case TCG_TYPE_I32: 2324 and_opc = INDEX_op_and_i32; 2325 sub_opc = INDEX_op_sub_i32; 2326 xor_opc = INDEX_op_xor_i32; 2327 shr_opc = INDEX_op_shr_i32; 2328 neg_opc = INDEX_op_neg_i32; 2329 if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) { 2330 uext_opc = INDEX_op_extract_i32; 2331 } 2332 if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) { 2333 sext_opc = INDEX_op_sextract_i32; 2334 } 2335 break; 2336 case TCG_TYPE_I64: 2337 and_opc = INDEX_op_and_i64; 2338 sub_opc = INDEX_op_sub_i64; 2339 xor_opc = INDEX_op_xor_i64; 2340 shr_opc = INDEX_op_shr_i64; 2341 neg_opc = INDEX_op_neg_i64; 2342 if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) { 2343 uext_opc = INDEX_op_extract_i64; 2344 } 2345 if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) { 2346 sext_opc = INDEX_op_sextract_i64; 2347 } 2348 break; 2349 default: 2350 g_assert_not_reached(); 2351 } 2352 2353 ret = op->args[0]; 2354 src1 = op->args[1]; 2355 inv = cond == TCG_COND_TSTEQ; 2356 2357 if (sh && sext_opc && neg && !inv) { 2358 op->opc = sext_opc; 2359 op->args[1] = src1; 2360 op->args[2] = sh; 2361 op->args[3] = 1; 2362 return; 2363 } else if (sh && uext_opc) { 2364 op->opc = uext_opc; 2365 op->args[1] = src1; 2366 op->args[2] = sh; 2367 op->args[3] = 1; 2368 } else { 2369 if (sh) { 2370 op2 = opt_insert_before(ctx, op, shr_opc, 3); 2371 op2->args[0] = ret; 2372 op2->args[1] = src1; 2373 op2->args[2] = arg_new_constant(ctx, sh); 2374 src1 = ret; 2375 } 2376 op->opc = and_opc; 2377 op->args[1] = src1; 2378 op->args[2] = arg_new_constant(ctx, 1); 2379 } 2380 2381 if (neg && inv) { 2382 op2 = opt_insert_after(ctx, op, sub_opc, 3); 2383 op2->args[0] = ret; 2384 op2->args[1] = ret; 2385 op2->args[2] = arg_new_constant(ctx, 1); 2386 } else if (inv) { 2387 op2 = opt_insert_after(ctx, op, xor_opc, 3); 2388 op2->args[0] = ret; 2389 op2->args[1] = ret; 2390 op2->args[2] = arg_new_constant(ctx, 1); 2391 } else if (neg) { 2392 op2 = opt_insert_after(ctx, op, neg_opc, 2); 2393 op2->args[0] = ret; 2394 op2->args[1] = ret; 2395 } 2396 } 2397 2398 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2399 { 2400 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2401 &op->args[2], &op->args[3]); 2402 if (i >= 0) { 2403 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2404 } 2405 2406 i = fold_setcond_zmask(ctx, op, false); 2407 if (i > 0) { 2408 return true; 2409 } 2410 if (i == 0) { 2411 fold_setcond_tst_pow2(ctx, op, false); 2412 } 2413 2414 return fold_masks_z(ctx, op, 1); 2415 } 2416 2417 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2418 { 2419 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2420 &op->args[2], &op->args[3]); 2421 if (i >= 0) { 2422 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2423 } 2424 2425 i = fold_setcond_zmask(ctx, op, true); 2426 if (i > 0) { 2427 return true; 2428 } 2429 if (i == 0) { 2430 fold_setcond_tst_pow2(ctx, op, true); 2431 } 2432 2433 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2434 return fold_masks_s(ctx, op, -1); 2435 } 2436 2437 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2438 { 2439 TCGCond cond; 2440 int i, inv = 0; 2441 2442 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2443 cond = op->args[5]; 2444 if (i >= 0) { 2445 goto do_setcond_const; 2446 } 2447 2448 switch (cond) { 2449 case TCG_COND_LT: 2450 case TCG_COND_GE: 2451 /* 2452 * Simplify LT/GE comparisons vs zero to a single compare 2453 * vs the high word of the input. 2454 */ 2455 if (arg_is_const_val(op->args[3], 0) && 2456 arg_is_const_val(op->args[4], 0)) { 2457 goto do_setcond_high; 2458 } 2459 break; 2460 2461 case TCG_COND_NE: 2462 inv = 1; 2463 QEMU_FALLTHROUGH; 2464 case TCG_COND_EQ: 2465 /* 2466 * Simplify EQ/NE comparisons where one of the pairs 2467 * can be simplified. 2468 */ 2469 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2470 op->args[3], cond); 2471 switch (i ^ inv) { 2472 case 0: 2473 goto do_setcond_const; 2474 case 1: 2475 goto do_setcond_high; 2476 } 2477 2478 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2479 op->args[4], cond); 2480 switch (i ^ inv) { 2481 case 0: 2482 goto do_setcond_const; 2483 case 1: 2484 goto do_setcond_low; 2485 } 2486 break; 2487 2488 case TCG_COND_TSTEQ: 2489 case TCG_COND_TSTNE: 2490 if (arg_is_const_val(op->args[3], 0)) { 2491 goto do_setcond_high; 2492 } 2493 if (arg_is_const_val(op->args[4], 0)) { 2494 goto do_setcond_low; 2495 } 2496 break; 2497 2498 default: 2499 break; 2500 2501 do_setcond_low: 2502 op->args[2] = op->args[3]; 2503 op->args[3] = cond; 2504 op->opc = INDEX_op_setcond_i32; 2505 return fold_setcond(ctx, op); 2506 2507 do_setcond_high: 2508 op->args[1] = op->args[2]; 2509 op->args[2] = op->args[4]; 2510 op->args[3] = cond; 2511 op->opc = INDEX_op_setcond_i32; 2512 return fold_setcond(ctx, op); 2513 } 2514 2515 return fold_masks_z(ctx, op, 1); 2516 2517 do_setcond_const: 2518 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2519 } 2520 2521 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2522 { 2523 uint64_t z_mask, s_mask, s_mask_old; 2524 TempOptInfo *t1 = arg_info(op->args[1]); 2525 int pos = op->args[2]; 2526 int len = op->args[3]; 2527 2528 if (ti_is_const(t1)) { 2529 return tcg_opt_gen_movi(ctx, op, op->args[0], 2530 sextract64(ti_const_val(t1), pos, len)); 2531 } 2532 2533 s_mask_old = t1->s_mask; 2534 s_mask = s_mask_old >> pos; 2535 s_mask |= -1ull << (len - 1); 2536 2537 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2538 return true; 2539 } 2540 2541 z_mask = sextract64(t1->z_mask, pos, len); 2542 return fold_masks_zs(ctx, op, z_mask, s_mask); 2543 } 2544 2545 static bool fold_shift(OptContext *ctx, TCGOp *op) 2546 { 2547 uint64_t s_mask, z_mask; 2548 TempOptInfo *t1, *t2; 2549 2550 if (fold_const2(ctx, op) || 2551 fold_ix_to_i(ctx, op, 0) || 2552 fold_xi_to_x(ctx, op, 0)) { 2553 return true; 2554 } 2555 2556 t1 = arg_info(op->args[1]); 2557 t2 = arg_info(op->args[2]); 2558 s_mask = t1->s_mask; 2559 z_mask = t1->z_mask; 2560 2561 if (ti_is_const(t2)) { 2562 int sh = ti_const_val(t2); 2563 2564 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2565 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2566 2567 return fold_masks_zs(ctx, op, z_mask, s_mask); 2568 } 2569 2570 switch (op->opc) { 2571 CASE_OP_32_64(sar): 2572 /* 2573 * Arithmetic right shift will not reduce the number of 2574 * input sign repetitions. 2575 */ 2576 return fold_masks_s(ctx, op, s_mask); 2577 CASE_OP_32_64(shr): 2578 /* 2579 * If the sign bit is known zero, then logical right shift 2580 * will not reduce the number of input sign repetitions. 2581 */ 2582 if (~z_mask & -s_mask) { 2583 return fold_masks_s(ctx, op, s_mask); 2584 } 2585 break; 2586 default: 2587 break; 2588 } 2589 2590 return finish_folding(ctx, op); 2591 } 2592 2593 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2594 { 2595 TCGOpcode neg_op; 2596 bool have_neg; 2597 2598 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2599 return false; 2600 } 2601 2602 switch (ctx->type) { 2603 case TCG_TYPE_I32: 2604 neg_op = INDEX_op_neg_i32; 2605 have_neg = true; 2606 break; 2607 case TCG_TYPE_I64: 2608 neg_op = INDEX_op_neg_i64; 2609 have_neg = true; 2610 break; 2611 case TCG_TYPE_V64: 2612 case TCG_TYPE_V128: 2613 case TCG_TYPE_V256: 2614 neg_op = INDEX_op_neg_vec; 2615 have_neg = (TCG_TARGET_HAS_neg_vec && 2616 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2617 break; 2618 default: 2619 g_assert_not_reached(); 2620 } 2621 if (have_neg) { 2622 op->opc = neg_op; 2623 op->args[1] = op->args[2]; 2624 return fold_neg_no_const(ctx, op); 2625 } 2626 return false; 2627 } 2628 2629 /* We cannot as yet do_constant_folding with vectors. */ 2630 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2631 { 2632 if (fold_xx_to_i(ctx, op, 0) || 2633 fold_xi_to_x(ctx, op, 0) || 2634 fold_sub_to_neg(ctx, op)) { 2635 return true; 2636 } 2637 return finish_folding(ctx, op); 2638 } 2639 2640 static bool fold_sub(OptContext *ctx, TCGOp *op) 2641 { 2642 if (fold_const2(ctx, op) || 2643 fold_xx_to_i(ctx, op, 0) || 2644 fold_xi_to_x(ctx, op, 0) || 2645 fold_sub_to_neg(ctx, op)) { 2646 return true; 2647 } 2648 2649 /* Fold sub r,x,i to add r,x,-i */ 2650 if (arg_is_const(op->args[2])) { 2651 uint64_t val = arg_info(op->args[2])->val; 2652 2653 op->opc = (ctx->type == TCG_TYPE_I32 2654 ? INDEX_op_add_i32 : INDEX_op_add_i64); 2655 op->args[2] = arg_new_constant(ctx, -val); 2656 } 2657 return finish_folding(ctx, op); 2658 } 2659 2660 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2661 { 2662 return fold_addsub2(ctx, op, false); 2663 } 2664 2665 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2666 { 2667 uint64_t z_mask = -1, s_mask = 0; 2668 2669 /* We can't do any folding with a load, but we can record bits. */ 2670 switch (op->opc) { 2671 CASE_OP_32_64(ld8s): 2672 s_mask = INT8_MIN; 2673 break; 2674 CASE_OP_32_64(ld8u): 2675 z_mask = MAKE_64BIT_MASK(0, 8); 2676 break; 2677 CASE_OP_32_64(ld16s): 2678 s_mask = INT16_MIN; 2679 break; 2680 CASE_OP_32_64(ld16u): 2681 z_mask = MAKE_64BIT_MASK(0, 16); 2682 break; 2683 case INDEX_op_ld32s_i64: 2684 s_mask = INT32_MIN; 2685 break; 2686 case INDEX_op_ld32u_i64: 2687 z_mask = MAKE_64BIT_MASK(0, 32); 2688 break; 2689 default: 2690 g_assert_not_reached(); 2691 } 2692 return fold_masks_zs(ctx, op, z_mask, s_mask); 2693 } 2694 2695 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2696 { 2697 TCGTemp *dst, *src; 2698 intptr_t ofs; 2699 TCGType type; 2700 2701 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2702 return finish_folding(ctx, op); 2703 } 2704 2705 type = ctx->type; 2706 ofs = op->args[2]; 2707 dst = arg_temp(op->args[0]); 2708 src = find_mem_copy_for(ctx, type, ofs); 2709 if (src && src->base_type == type) { 2710 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2711 } 2712 2713 reset_ts(ctx, dst); 2714 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2715 return true; 2716 } 2717 2718 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2719 { 2720 intptr_t ofs = op->args[2]; 2721 intptr_t lm1; 2722 2723 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2724 remove_mem_copy_all(ctx); 2725 return true; 2726 } 2727 2728 switch (op->opc) { 2729 CASE_OP_32_64(st8): 2730 lm1 = 0; 2731 break; 2732 CASE_OP_32_64(st16): 2733 lm1 = 1; 2734 break; 2735 case INDEX_op_st32_i64: 2736 case INDEX_op_st_i32: 2737 lm1 = 3; 2738 break; 2739 case INDEX_op_st_i64: 2740 lm1 = 7; 2741 break; 2742 case INDEX_op_st_vec: 2743 lm1 = tcg_type_size(ctx->type) - 1; 2744 break; 2745 default: 2746 g_assert_not_reached(); 2747 } 2748 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2749 return true; 2750 } 2751 2752 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2753 { 2754 TCGTemp *src; 2755 intptr_t ofs, last; 2756 TCGType type; 2757 2758 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2759 return fold_tcg_st(ctx, op); 2760 } 2761 2762 src = arg_temp(op->args[0]); 2763 ofs = op->args[2]; 2764 type = ctx->type; 2765 2766 /* 2767 * Eliminate duplicate stores of a constant. 2768 * This happens frequently when the target ISA zero-extends. 2769 */ 2770 if (ts_is_const(src)) { 2771 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2772 if (src == prev) { 2773 tcg_op_remove(ctx->tcg, op); 2774 return true; 2775 } 2776 } 2777 2778 last = ofs + tcg_type_size(type) - 1; 2779 remove_mem_copy_in(ctx, ofs, last); 2780 record_mem_copy(ctx, type, src, ofs, last); 2781 return true; 2782 } 2783 2784 static bool fold_xor(OptContext *ctx, TCGOp *op) 2785 { 2786 uint64_t z_mask, s_mask; 2787 TempOptInfo *t1, *t2; 2788 2789 if (fold_const2_commutative(ctx, op) || 2790 fold_xx_to_i(ctx, op, 0) || 2791 fold_xi_to_x(ctx, op, 0) || 2792 fold_xi_to_not(ctx, op, -1)) { 2793 return true; 2794 } 2795 2796 t1 = arg_info(op->args[1]); 2797 t2 = arg_info(op->args[2]); 2798 z_mask = t1->z_mask | t2->z_mask; 2799 s_mask = t1->s_mask & t2->s_mask; 2800 return fold_masks_zs(ctx, op, z_mask, s_mask); 2801 } 2802 2803 /* Propagate constants and copies, fold constant expressions. */ 2804 void tcg_optimize(TCGContext *s) 2805 { 2806 int nb_temps, i; 2807 TCGOp *op, *op_next; 2808 OptContext ctx = { .tcg = s }; 2809 2810 QSIMPLEQ_INIT(&ctx.mem_free); 2811 2812 /* Array VALS has an element for each temp. 2813 If this temp holds a constant then its value is kept in VALS' element. 2814 If this temp is a copy of other ones then the other copies are 2815 available through the doubly linked circular list. */ 2816 2817 nb_temps = s->nb_temps; 2818 for (i = 0; i < nb_temps; ++i) { 2819 s->temps[i].state_ptr = NULL; 2820 } 2821 2822 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2823 TCGOpcode opc = op->opc; 2824 const TCGOpDef *def; 2825 bool done = false; 2826 2827 /* Calls are special. */ 2828 if (opc == INDEX_op_call) { 2829 fold_call(&ctx, op); 2830 continue; 2831 } 2832 2833 def = &tcg_op_defs[opc]; 2834 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2835 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2836 2837 /* Pre-compute the type of the operation. */ 2838 ctx.type = TCGOP_TYPE(op); 2839 2840 /* 2841 * Process each opcode. 2842 * Sorted alphabetically by opcode as much as possible. 2843 */ 2844 switch (opc) { 2845 CASE_OP_32_64(add): 2846 done = fold_add(&ctx, op); 2847 break; 2848 case INDEX_op_add_vec: 2849 done = fold_add_vec(&ctx, op); 2850 break; 2851 CASE_OP_32_64(add2): 2852 done = fold_add2(&ctx, op); 2853 break; 2854 CASE_OP_32_64_VEC(and): 2855 done = fold_and(&ctx, op); 2856 break; 2857 CASE_OP_32_64_VEC(andc): 2858 done = fold_andc(&ctx, op); 2859 break; 2860 CASE_OP_32_64(brcond): 2861 done = fold_brcond(&ctx, op); 2862 break; 2863 case INDEX_op_brcond2_i32: 2864 done = fold_brcond2(&ctx, op); 2865 break; 2866 CASE_OP_32_64(bswap16): 2867 CASE_OP_32_64(bswap32): 2868 case INDEX_op_bswap64_i64: 2869 done = fold_bswap(&ctx, op); 2870 break; 2871 CASE_OP_32_64(clz): 2872 CASE_OP_32_64(ctz): 2873 done = fold_count_zeros(&ctx, op); 2874 break; 2875 CASE_OP_32_64(ctpop): 2876 done = fold_ctpop(&ctx, op); 2877 break; 2878 CASE_OP_32_64(deposit): 2879 done = fold_deposit(&ctx, op); 2880 break; 2881 CASE_OP_32_64(div): 2882 CASE_OP_32_64(divu): 2883 done = fold_divide(&ctx, op); 2884 break; 2885 case INDEX_op_dup_vec: 2886 done = fold_dup(&ctx, op); 2887 break; 2888 case INDEX_op_dup2_vec: 2889 done = fold_dup2(&ctx, op); 2890 break; 2891 CASE_OP_32_64_VEC(eqv): 2892 done = fold_eqv(&ctx, op); 2893 break; 2894 CASE_OP_32_64(extract): 2895 done = fold_extract(&ctx, op); 2896 break; 2897 CASE_OP_32_64(extract2): 2898 done = fold_extract2(&ctx, op); 2899 break; 2900 case INDEX_op_ext_i32_i64: 2901 done = fold_exts(&ctx, op); 2902 break; 2903 case INDEX_op_extu_i32_i64: 2904 case INDEX_op_extrl_i64_i32: 2905 case INDEX_op_extrh_i64_i32: 2906 done = fold_extu(&ctx, op); 2907 break; 2908 CASE_OP_32_64(ld8s): 2909 CASE_OP_32_64(ld8u): 2910 CASE_OP_32_64(ld16s): 2911 CASE_OP_32_64(ld16u): 2912 case INDEX_op_ld32s_i64: 2913 case INDEX_op_ld32u_i64: 2914 done = fold_tcg_ld(&ctx, op); 2915 break; 2916 case INDEX_op_ld_i32: 2917 case INDEX_op_ld_i64: 2918 case INDEX_op_ld_vec: 2919 done = fold_tcg_ld_memcopy(&ctx, op); 2920 break; 2921 CASE_OP_32_64(st8): 2922 CASE_OP_32_64(st16): 2923 case INDEX_op_st32_i64: 2924 done = fold_tcg_st(&ctx, op); 2925 break; 2926 case INDEX_op_st_i32: 2927 case INDEX_op_st_i64: 2928 case INDEX_op_st_vec: 2929 done = fold_tcg_st_memcopy(&ctx, op); 2930 break; 2931 case INDEX_op_mb: 2932 done = fold_mb(&ctx, op); 2933 break; 2934 case INDEX_op_mov: 2935 case INDEX_op_mov_vec: 2936 done = fold_mov(&ctx, op); 2937 break; 2938 CASE_OP_32_64(movcond): 2939 done = fold_movcond(&ctx, op); 2940 break; 2941 CASE_OP_32_64(mul): 2942 done = fold_mul(&ctx, op); 2943 break; 2944 CASE_OP_32_64(mulsh): 2945 CASE_OP_32_64(muluh): 2946 done = fold_mul_highpart(&ctx, op); 2947 break; 2948 CASE_OP_32_64(muls2): 2949 CASE_OP_32_64(mulu2): 2950 done = fold_multiply2(&ctx, op); 2951 break; 2952 CASE_OP_32_64_VEC(nand): 2953 done = fold_nand(&ctx, op); 2954 break; 2955 CASE_OP_32_64(neg): 2956 done = fold_neg(&ctx, op); 2957 break; 2958 CASE_OP_32_64_VEC(nor): 2959 done = fold_nor(&ctx, op); 2960 break; 2961 CASE_OP_32_64_VEC(not): 2962 done = fold_not(&ctx, op); 2963 break; 2964 CASE_OP_32_64_VEC(or): 2965 done = fold_or(&ctx, op); 2966 break; 2967 CASE_OP_32_64_VEC(orc): 2968 done = fold_orc(&ctx, op); 2969 break; 2970 case INDEX_op_qemu_ld_i32: 2971 done = fold_qemu_ld_1reg(&ctx, op); 2972 break; 2973 case INDEX_op_qemu_ld_i64: 2974 if (TCG_TARGET_REG_BITS == 64) { 2975 done = fold_qemu_ld_1reg(&ctx, op); 2976 break; 2977 } 2978 QEMU_FALLTHROUGH; 2979 case INDEX_op_qemu_ld_i128: 2980 done = fold_qemu_ld_2reg(&ctx, op); 2981 break; 2982 case INDEX_op_qemu_st8_i32: 2983 case INDEX_op_qemu_st_i32: 2984 case INDEX_op_qemu_st_i64: 2985 case INDEX_op_qemu_st_i128: 2986 done = fold_qemu_st(&ctx, op); 2987 break; 2988 CASE_OP_32_64(rem): 2989 CASE_OP_32_64(remu): 2990 done = fold_remainder(&ctx, op); 2991 break; 2992 CASE_OP_32_64(rotl): 2993 CASE_OP_32_64(rotr): 2994 CASE_OP_32_64(sar): 2995 CASE_OP_32_64(shl): 2996 CASE_OP_32_64(shr): 2997 done = fold_shift(&ctx, op); 2998 break; 2999 CASE_OP_32_64(setcond): 3000 done = fold_setcond(&ctx, op); 3001 break; 3002 CASE_OP_32_64(negsetcond): 3003 done = fold_negsetcond(&ctx, op); 3004 break; 3005 case INDEX_op_setcond2_i32: 3006 done = fold_setcond2(&ctx, op); 3007 break; 3008 case INDEX_op_cmp_vec: 3009 done = fold_cmp_vec(&ctx, op); 3010 break; 3011 case INDEX_op_cmpsel_vec: 3012 done = fold_cmpsel_vec(&ctx, op); 3013 break; 3014 case INDEX_op_bitsel_vec: 3015 done = fold_bitsel_vec(&ctx, op); 3016 break; 3017 CASE_OP_32_64(sextract): 3018 done = fold_sextract(&ctx, op); 3019 break; 3020 CASE_OP_32_64(sub): 3021 done = fold_sub(&ctx, op); 3022 break; 3023 case INDEX_op_sub_vec: 3024 done = fold_sub_vec(&ctx, op); 3025 break; 3026 CASE_OP_32_64(sub2): 3027 done = fold_sub2(&ctx, op); 3028 break; 3029 CASE_OP_32_64_VEC(xor): 3030 done = fold_xor(&ctx, op); 3031 break; 3032 case INDEX_op_set_label: 3033 case INDEX_op_br: 3034 case INDEX_op_exit_tb: 3035 case INDEX_op_goto_tb: 3036 case INDEX_op_goto_ptr: 3037 finish_ebb(&ctx); 3038 done = true; 3039 break; 3040 default: 3041 done = finish_folding(&ctx, op); 3042 break; 3043 } 3044 tcg_debug_assert(done); 3045 } 3046 } 3047