1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "tcg/tcg-op.h" 29 #include "tcg-internal.h" 30 31 #define CASE_OP_32_64(x) \ 32 glue(glue(case INDEX_op_, x), _i32): \ 33 glue(glue(case INDEX_op_, x), _i64) 34 35 #define CASE_OP_32_64_VEC(x) \ 36 glue(glue(case INDEX_op_, x), _i32): \ 37 glue(glue(case INDEX_op_, x), _i64): \ 38 glue(glue(case INDEX_op_, x), _vec) 39 40 typedef struct TempOptInfo { 41 bool is_const; 42 TCGTemp *prev_copy; 43 TCGTemp *next_copy; 44 uint64_t val; 45 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 46 uint64_t s_mask; /* a left-aligned mask of clrsb(value) bits. */ 47 } TempOptInfo; 48 49 typedef struct OptContext { 50 TCGContext *tcg; 51 TCGOp *prev_mb; 52 TCGTempSet temps_used; 53 54 /* In flight values from optimization. */ 55 uint64_t a_mask; /* mask bit is 0 iff value identical to first input */ 56 uint64_t z_mask; /* mask bit is 0 iff value bit is 0 */ 57 uint64_t s_mask; /* mask of clrsb(value) bits */ 58 TCGType type; 59 } OptContext; 60 61 /* Calculate the smask for a specific value. */ 62 static uint64_t smask_from_value(uint64_t value) 63 { 64 int rep = clrsb64(value); 65 return ~(~0ull >> rep); 66 } 67 68 /* 69 * Calculate the smask for a given set of known-zeros. 70 * If there are lots of zeros on the left, we can consider the remainder 71 * an unsigned field, and thus the corresponding signed field is one bit 72 * larger. 73 */ 74 static uint64_t smask_from_zmask(uint64_t zmask) 75 { 76 /* 77 * Only the 0 bits are significant for zmask, thus the msb itself 78 * must be zero, else we have no sign information. 79 */ 80 int rep = clz64(zmask); 81 if (rep == 0) { 82 return 0; 83 } 84 rep -= 1; 85 return ~(~0ull >> rep); 86 } 87 88 /* 89 * Recreate a properly left-aligned smask after manipulation. 90 * Some bit-shuffling, particularly shifts and rotates, may 91 * retain sign bits on the left, but may scatter disconnected 92 * sign bits on the right. Retain only what remains to the left. 93 */ 94 static uint64_t smask_from_smask(int64_t smask) 95 { 96 /* Only the 1 bits are significant for smask */ 97 return smask_from_zmask(~smask); 98 } 99 100 static inline TempOptInfo *ts_info(TCGTemp *ts) 101 { 102 return ts->state_ptr; 103 } 104 105 static inline TempOptInfo *arg_info(TCGArg arg) 106 { 107 return ts_info(arg_temp(arg)); 108 } 109 110 static inline bool ts_is_const(TCGTemp *ts) 111 { 112 return ts_info(ts)->is_const; 113 } 114 115 static inline bool arg_is_const(TCGArg arg) 116 { 117 return ts_is_const(arg_temp(arg)); 118 } 119 120 static inline bool ts_is_copy(TCGTemp *ts) 121 { 122 return ts_info(ts)->next_copy != ts; 123 } 124 125 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 126 static void reset_ts(TCGTemp *ts) 127 { 128 TempOptInfo *ti = ts_info(ts); 129 TempOptInfo *pi = ts_info(ti->prev_copy); 130 TempOptInfo *ni = ts_info(ti->next_copy); 131 132 ni->prev_copy = ti->prev_copy; 133 pi->next_copy = ti->next_copy; 134 ti->next_copy = ts; 135 ti->prev_copy = ts; 136 ti->is_const = false; 137 ti->z_mask = -1; 138 ti->s_mask = 0; 139 } 140 141 static void reset_temp(TCGArg arg) 142 { 143 reset_ts(arg_temp(arg)); 144 } 145 146 /* Initialize and activate a temporary. */ 147 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 148 { 149 size_t idx = temp_idx(ts); 150 TempOptInfo *ti; 151 152 if (test_bit(idx, ctx->temps_used.l)) { 153 return; 154 } 155 set_bit(idx, ctx->temps_used.l); 156 157 ti = ts->state_ptr; 158 if (ti == NULL) { 159 ti = tcg_malloc(sizeof(TempOptInfo)); 160 ts->state_ptr = ti; 161 } 162 163 ti->next_copy = ts; 164 ti->prev_copy = ts; 165 if (ts->kind == TEMP_CONST) { 166 ti->is_const = true; 167 ti->val = ts->val; 168 ti->z_mask = ts->val; 169 ti->s_mask = smask_from_value(ts->val); 170 } else { 171 ti->is_const = false; 172 ti->z_mask = -1; 173 ti->s_mask = 0; 174 } 175 } 176 177 static TCGTemp *find_better_copy(TCGContext *s, TCGTemp *ts) 178 { 179 TCGTemp *i, *g, *l; 180 181 /* If this is already readonly, we can't do better. */ 182 if (temp_readonly(ts)) { 183 return ts; 184 } 185 186 g = l = NULL; 187 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 188 if (temp_readonly(i)) { 189 return i; 190 } else if (i->kind > ts->kind) { 191 if (i->kind == TEMP_GLOBAL) { 192 g = i; 193 } else if (i->kind == TEMP_TB) { 194 l = i; 195 } 196 } 197 } 198 199 /* If we didn't find a better representation, return the same temp. */ 200 return g ? g : l ? l : ts; 201 } 202 203 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 204 { 205 TCGTemp *i; 206 207 if (ts1 == ts2) { 208 return true; 209 } 210 211 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 212 return false; 213 } 214 215 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 216 if (i == ts2) { 217 return true; 218 } 219 } 220 221 return false; 222 } 223 224 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 225 { 226 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 227 } 228 229 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 230 { 231 TCGTemp *dst_ts = arg_temp(dst); 232 TCGTemp *src_ts = arg_temp(src); 233 TempOptInfo *di; 234 TempOptInfo *si; 235 TCGOpcode new_op; 236 237 if (ts_are_copies(dst_ts, src_ts)) { 238 tcg_op_remove(ctx->tcg, op); 239 return true; 240 } 241 242 reset_ts(dst_ts); 243 di = ts_info(dst_ts); 244 si = ts_info(src_ts); 245 246 switch (ctx->type) { 247 case TCG_TYPE_I32: 248 new_op = INDEX_op_mov_i32; 249 break; 250 case TCG_TYPE_I64: 251 new_op = INDEX_op_mov_i64; 252 break; 253 case TCG_TYPE_V64: 254 case TCG_TYPE_V128: 255 case TCG_TYPE_V256: 256 /* TCGOP_VECL and TCGOP_VECE remain unchanged. */ 257 new_op = INDEX_op_mov_vec; 258 break; 259 default: 260 g_assert_not_reached(); 261 } 262 op->opc = new_op; 263 op->args[0] = dst; 264 op->args[1] = src; 265 266 di->z_mask = si->z_mask; 267 di->s_mask = si->s_mask; 268 269 if (src_ts->type == dst_ts->type) { 270 TempOptInfo *ni = ts_info(si->next_copy); 271 272 di->next_copy = si->next_copy; 273 di->prev_copy = src_ts; 274 ni->prev_copy = dst_ts; 275 si->next_copy = dst_ts; 276 di->is_const = si->is_const; 277 di->val = si->val; 278 } 279 return true; 280 } 281 282 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 283 TCGArg dst, uint64_t val) 284 { 285 TCGTemp *tv; 286 287 if (ctx->type == TCG_TYPE_I32) { 288 val = (int32_t)val; 289 } 290 291 /* Convert movi to mov with constant temp. */ 292 tv = tcg_constant_internal(ctx->type, val); 293 init_ts_info(ctx, tv); 294 return tcg_opt_gen_mov(ctx, op, dst, temp_arg(tv)); 295 } 296 297 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 298 { 299 uint64_t l64, h64; 300 301 switch (op) { 302 CASE_OP_32_64(add): 303 return x + y; 304 305 CASE_OP_32_64(sub): 306 return x - y; 307 308 CASE_OP_32_64(mul): 309 return x * y; 310 311 CASE_OP_32_64_VEC(and): 312 return x & y; 313 314 CASE_OP_32_64_VEC(or): 315 return x | y; 316 317 CASE_OP_32_64_VEC(xor): 318 return x ^ y; 319 320 case INDEX_op_shl_i32: 321 return (uint32_t)x << (y & 31); 322 323 case INDEX_op_shl_i64: 324 return (uint64_t)x << (y & 63); 325 326 case INDEX_op_shr_i32: 327 return (uint32_t)x >> (y & 31); 328 329 case INDEX_op_shr_i64: 330 return (uint64_t)x >> (y & 63); 331 332 case INDEX_op_sar_i32: 333 return (int32_t)x >> (y & 31); 334 335 case INDEX_op_sar_i64: 336 return (int64_t)x >> (y & 63); 337 338 case INDEX_op_rotr_i32: 339 return ror32(x, y & 31); 340 341 case INDEX_op_rotr_i64: 342 return ror64(x, y & 63); 343 344 case INDEX_op_rotl_i32: 345 return rol32(x, y & 31); 346 347 case INDEX_op_rotl_i64: 348 return rol64(x, y & 63); 349 350 CASE_OP_32_64_VEC(not): 351 return ~x; 352 353 CASE_OP_32_64(neg): 354 return -x; 355 356 CASE_OP_32_64_VEC(andc): 357 return x & ~y; 358 359 CASE_OP_32_64_VEC(orc): 360 return x | ~y; 361 362 CASE_OP_32_64_VEC(eqv): 363 return ~(x ^ y); 364 365 CASE_OP_32_64_VEC(nand): 366 return ~(x & y); 367 368 CASE_OP_32_64_VEC(nor): 369 return ~(x | y); 370 371 case INDEX_op_clz_i32: 372 return (uint32_t)x ? clz32(x) : y; 373 374 case INDEX_op_clz_i64: 375 return x ? clz64(x) : y; 376 377 case INDEX_op_ctz_i32: 378 return (uint32_t)x ? ctz32(x) : y; 379 380 case INDEX_op_ctz_i64: 381 return x ? ctz64(x) : y; 382 383 case INDEX_op_ctpop_i32: 384 return ctpop32(x); 385 386 case INDEX_op_ctpop_i64: 387 return ctpop64(x); 388 389 CASE_OP_32_64(ext8s): 390 return (int8_t)x; 391 392 CASE_OP_32_64(ext16s): 393 return (int16_t)x; 394 395 CASE_OP_32_64(ext8u): 396 return (uint8_t)x; 397 398 CASE_OP_32_64(ext16u): 399 return (uint16_t)x; 400 401 CASE_OP_32_64(bswap16): 402 x = bswap16(x); 403 return y & TCG_BSWAP_OS ? (int16_t)x : x; 404 405 CASE_OP_32_64(bswap32): 406 x = bswap32(x); 407 return y & TCG_BSWAP_OS ? (int32_t)x : x; 408 409 case INDEX_op_bswap64_i64: 410 return bswap64(x); 411 412 case INDEX_op_ext_i32_i64: 413 case INDEX_op_ext32s_i64: 414 return (int32_t)x; 415 416 case INDEX_op_extu_i32_i64: 417 case INDEX_op_extrl_i64_i32: 418 case INDEX_op_ext32u_i64: 419 return (uint32_t)x; 420 421 case INDEX_op_extrh_i64_i32: 422 return (uint64_t)x >> 32; 423 424 case INDEX_op_muluh_i32: 425 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 426 case INDEX_op_mulsh_i32: 427 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 428 429 case INDEX_op_muluh_i64: 430 mulu64(&l64, &h64, x, y); 431 return h64; 432 case INDEX_op_mulsh_i64: 433 muls64(&l64, &h64, x, y); 434 return h64; 435 436 case INDEX_op_div_i32: 437 /* Avoid crashing on divide by zero, otherwise undefined. */ 438 return (int32_t)x / ((int32_t)y ? : 1); 439 case INDEX_op_divu_i32: 440 return (uint32_t)x / ((uint32_t)y ? : 1); 441 case INDEX_op_div_i64: 442 return (int64_t)x / ((int64_t)y ? : 1); 443 case INDEX_op_divu_i64: 444 return (uint64_t)x / ((uint64_t)y ? : 1); 445 446 case INDEX_op_rem_i32: 447 return (int32_t)x % ((int32_t)y ? : 1); 448 case INDEX_op_remu_i32: 449 return (uint32_t)x % ((uint32_t)y ? : 1); 450 case INDEX_op_rem_i64: 451 return (int64_t)x % ((int64_t)y ? : 1); 452 case INDEX_op_remu_i64: 453 return (uint64_t)x % ((uint64_t)y ? : 1); 454 455 default: 456 fprintf(stderr, 457 "Unrecognized operation %d in do_constant_folding.\n", op); 458 tcg_abort(); 459 } 460 } 461 462 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 463 uint64_t x, uint64_t y) 464 { 465 uint64_t res = do_constant_folding_2(op, x, y); 466 if (type == TCG_TYPE_I32) { 467 res = (int32_t)res; 468 } 469 return res; 470 } 471 472 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 473 { 474 switch (c) { 475 case TCG_COND_EQ: 476 return x == y; 477 case TCG_COND_NE: 478 return x != y; 479 case TCG_COND_LT: 480 return (int32_t)x < (int32_t)y; 481 case TCG_COND_GE: 482 return (int32_t)x >= (int32_t)y; 483 case TCG_COND_LE: 484 return (int32_t)x <= (int32_t)y; 485 case TCG_COND_GT: 486 return (int32_t)x > (int32_t)y; 487 case TCG_COND_LTU: 488 return x < y; 489 case TCG_COND_GEU: 490 return x >= y; 491 case TCG_COND_LEU: 492 return x <= y; 493 case TCG_COND_GTU: 494 return x > y; 495 default: 496 tcg_abort(); 497 } 498 } 499 500 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 501 { 502 switch (c) { 503 case TCG_COND_EQ: 504 return x == y; 505 case TCG_COND_NE: 506 return x != y; 507 case TCG_COND_LT: 508 return (int64_t)x < (int64_t)y; 509 case TCG_COND_GE: 510 return (int64_t)x >= (int64_t)y; 511 case TCG_COND_LE: 512 return (int64_t)x <= (int64_t)y; 513 case TCG_COND_GT: 514 return (int64_t)x > (int64_t)y; 515 case TCG_COND_LTU: 516 return x < y; 517 case TCG_COND_GEU: 518 return x >= y; 519 case TCG_COND_LEU: 520 return x <= y; 521 case TCG_COND_GTU: 522 return x > y; 523 default: 524 tcg_abort(); 525 } 526 } 527 528 static bool do_constant_folding_cond_eq(TCGCond c) 529 { 530 switch (c) { 531 case TCG_COND_GT: 532 case TCG_COND_LTU: 533 case TCG_COND_LT: 534 case TCG_COND_GTU: 535 case TCG_COND_NE: 536 return 0; 537 case TCG_COND_GE: 538 case TCG_COND_GEU: 539 case TCG_COND_LE: 540 case TCG_COND_LEU: 541 case TCG_COND_EQ: 542 return 1; 543 default: 544 tcg_abort(); 545 } 546 } 547 548 /* 549 * Return -1 if the condition can't be simplified, 550 * and the result of the condition (0 or 1) if it can. 551 */ 552 static int do_constant_folding_cond(TCGType type, TCGArg x, 553 TCGArg y, TCGCond c) 554 { 555 if (arg_is_const(x) && arg_is_const(y)) { 556 uint64_t xv = arg_info(x)->val; 557 uint64_t yv = arg_info(y)->val; 558 559 switch (type) { 560 case TCG_TYPE_I32: 561 return do_constant_folding_cond_32(xv, yv, c); 562 case TCG_TYPE_I64: 563 return do_constant_folding_cond_64(xv, yv, c); 564 default: 565 /* Only scalar comparisons are optimizable */ 566 return -1; 567 } 568 } else if (args_are_copies(x, y)) { 569 return do_constant_folding_cond_eq(c); 570 } else if (arg_is_const(y) && arg_info(y)->val == 0) { 571 switch (c) { 572 case TCG_COND_LTU: 573 return 0; 574 case TCG_COND_GEU: 575 return 1; 576 default: 577 return -1; 578 } 579 } 580 return -1; 581 } 582 583 /* 584 * Return -1 if the condition can't be simplified, 585 * and the result of the condition (0 or 1) if it can. 586 */ 587 static int do_constant_folding_cond2(TCGArg *p1, TCGArg *p2, TCGCond c) 588 { 589 TCGArg al = p1[0], ah = p1[1]; 590 TCGArg bl = p2[0], bh = p2[1]; 591 592 if (arg_is_const(bl) && arg_is_const(bh)) { 593 tcg_target_ulong blv = arg_info(bl)->val; 594 tcg_target_ulong bhv = arg_info(bh)->val; 595 uint64_t b = deposit64(blv, 32, 32, bhv); 596 597 if (arg_is_const(al) && arg_is_const(ah)) { 598 tcg_target_ulong alv = arg_info(al)->val; 599 tcg_target_ulong ahv = arg_info(ah)->val; 600 uint64_t a = deposit64(alv, 32, 32, ahv); 601 return do_constant_folding_cond_64(a, b, c); 602 } 603 if (b == 0) { 604 switch (c) { 605 case TCG_COND_LTU: 606 return 0; 607 case TCG_COND_GEU: 608 return 1; 609 default: 610 break; 611 } 612 } 613 } 614 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 615 return do_constant_folding_cond_eq(c); 616 } 617 return -1; 618 } 619 620 /** 621 * swap_commutative: 622 * @dest: TCGArg of the destination argument, or NO_DEST. 623 * @p1: first paired argument 624 * @p2: second paired argument 625 * 626 * If *@p1 is a constant and *@p2 is not, swap. 627 * If *@p2 matches @dest, swap. 628 * Return true if a swap was performed. 629 */ 630 631 #define NO_DEST temp_arg(NULL) 632 633 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 634 { 635 TCGArg a1 = *p1, a2 = *p2; 636 int sum = 0; 637 sum += arg_is_const(a1); 638 sum -= arg_is_const(a2); 639 640 /* Prefer the constant in second argument, and then the form 641 op a, a, b, which is better handled on non-RISC hosts. */ 642 if (sum > 0 || (sum == 0 && dest == a2)) { 643 *p1 = a2; 644 *p2 = a1; 645 return true; 646 } 647 return false; 648 } 649 650 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 651 { 652 int sum = 0; 653 sum += arg_is_const(p1[0]); 654 sum += arg_is_const(p1[1]); 655 sum -= arg_is_const(p2[0]); 656 sum -= arg_is_const(p2[1]); 657 if (sum > 0) { 658 TCGArg t; 659 t = p1[0], p1[0] = p2[0], p2[0] = t; 660 t = p1[1], p1[1] = p2[1], p2[1] = t; 661 return true; 662 } 663 return false; 664 } 665 666 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 667 { 668 for (int i = 0; i < nb_args; i++) { 669 TCGTemp *ts = arg_temp(op->args[i]); 670 init_ts_info(ctx, ts); 671 } 672 } 673 674 static void copy_propagate(OptContext *ctx, TCGOp *op, 675 int nb_oargs, int nb_iargs) 676 { 677 TCGContext *s = ctx->tcg; 678 679 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 680 TCGTemp *ts = arg_temp(op->args[i]); 681 if (ts_is_copy(ts)) { 682 op->args[i] = temp_arg(find_better_copy(s, ts)); 683 } 684 } 685 } 686 687 static void finish_folding(OptContext *ctx, TCGOp *op) 688 { 689 const TCGOpDef *def = &tcg_op_defs[op->opc]; 690 int i, nb_oargs; 691 692 /* 693 * For an opcode that ends a BB, reset all temp data. 694 * We do no cross-BB optimization. 695 */ 696 if (def->flags & TCG_OPF_BB_END) { 697 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 698 ctx->prev_mb = NULL; 699 return; 700 } 701 702 nb_oargs = def->nb_oargs; 703 for (i = 0; i < nb_oargs; i++) { 704 TCGTemp *ts = arg_temp(op->args[i]); 705 reset_ts(ts); 706 /* 707 * Save the corresponding known-zero/sign bits mask for the 708 * first output argument (only one supported so far). 709 */ 710 if (i == 0) { 711 ts_info(ts)->z_mask = ctx->z_mask; 712 ts_info(ts)->s_mask = ctx->s_mask; 713 } 714 } 715 } 716 717 /* 718 * The fold_* functions return true when processing is complete, 719 * usually by folding the operation to a constant or to a copy, 720 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 721 * like collect information about the value produced, for use in 722 * optimizing a subsequent operation. 723 * 724 * These first fold_* functions are all helpers, used by other 725 * folders for more specific operations. 726 */ 727 728 static bool fold_const1(OptContext *ctx, TCGOp *op) 729 { 730 if (arg_is_const(op->args[1])) { 731 uint64_t t; 732 733 t = arg_info(op->args[1])->val; 734 t = do_constant_folding(op->opc, ctx->type, t, 0); 735 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 736 } 737 return false; 738 } 739 740 static bool fold_const2(OptContext *ctx, TCGOp *op) 741 { 742 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 743 uint64_t t1 = arg_info(op->args[1])->val; 744 uint64_t t2 = arg_info(op->args[2])->val; 745 746 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 747 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 748 } 749 return false; 750 } 751 752 static bool fold_commutative(OptContext *ctx, TCGOp *op) 753 { 754 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 755 return false; 756 } 757 758 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 759 { 760 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 761 return fold_const2(ctx, op); 762 } 763 764 static bool fold_masks(OptContext *ctx, TCGOp *op) 765 { 766 uint64_t a_mask = ctx->a_mask; 767 uint64_t z_mask = ctx->z_mask; 768 uint64_t s_mask = ctx->s_mask; 769 770 /* 771 * 32-bit ops generate 32-bit results, which for the purpose of 772 * simplifying tcg are sign-extended. Certainly that's how we 773 * represent our constants elsewhere. Note that the bits will 774 * be reset properly for a 64-bit value when encountering the 775 * type changing opcodes. 776 */ 777 if (ctx->type == TCG_TYPE_I32) { 778 a_mask = (int32_t)a_mask; 779 z_mask = (int32_t)z_mask; 780 s_mask |= MAKE_64BIT_MASK(32, 32); 781 ctx->z_mask = z_mask; 782 ctx->s_mask = s_mask; 783 } 784 785 if (z_mask == 0) { 786 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 787 } 788 if (a_mask == 0) { 789 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 790 } 791 return false; 792 } 793 794 /* 795 * Convert @op to NOT, if NOT is supported by the host. 796 * Return true f the conversion is successful, which will still 797 * indicate that the processing is complete. 798 */ 799 static bool fold_not(OptContext *ctx, TCGOp *op); 800 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 801 { 802 TCGOpcode not_op; 803 bool have_not; 804 805 switch (ctx->type) { 806 case TCG_TYPE_I32: 807 not_op = INDEX_op_not_i32; 808 have_not = TCG_TARGET_HAS_not_i32; 809 break; 810 case TCG_TYPE_I64: 811 not_op = INDEX_op_not_i64; 812 have_not = TCG_TARGET_HAS_not_i64; 813 break; 814 case TCG_TYPE_V64: 815 case TCG_TYPE_V128: 816 case TCG_TYPE_V256: 817 not_op = INDEX_op_not_vec; 818 have_not = TCG_TARGET_HAS_not_vec; 819 break; 820 default: 821 g_assert_not_reached(); 822 } 823 if (have_not) { 824 op->opc = not_op; 825 op->args[1] = op->args[idx]; 826 return fold_not(ctx, op); 827 } 828 return false; 829 } 830 831 /* If the binary operation has first argument @i, fold to @i. */ 832 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 833 { 834 if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) { 835 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 836 } 837 return false; 838 } 839 840 /* If the binary operation has first argument @i, fold to NOT. */ 841 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 842 { 843 if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) { 844 return fold_to_not(ctx, op, 2); 845 } 846 return false; 847 } 848 849 /* If the binary operation has second argument @i, fold to @i. */ 850 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 851 { 852 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { 853 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 854 } 855 return false; 856 } 857 858 /* If the binary operation has second argument @i, fold to identity. */ 859 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 860 { 861 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { 862 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 863 } 864 return false; 865 } 866 867 /* If the binary operation has second argument @i, fold to NOT. */ 868 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 869 { 870 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { 871 return fold_to_not(ctx, op, 1); 872 } 873 return false; 874 } 875 876 /* If the binary operation has both arguments equal, fold to @i. */ 877 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 878 { 879 if (args_are_copies(op->args[1], op->args[2])) { 880 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 881 } 882 return false; 883 } 884 885 /* If the binary operation has both arguments equal, fold to identity. */ 886 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 887 { 888 if (args_are_copies(op->args[1], op->args[2])) { 889 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 890 } 891 return false; 892 } 893 894 /* 895 * These outermost fold_<op> functions are sorted alphabetically. 896 * 897 * The ordering of the transformations should be: 898 * 1) those that produce a constant 899 * 2) those that produce a copy 900 * 3) those that produce information about the result value. 901 */ 902 903 static bool fold_add(OptContext *ctx, TCGOp *op) 904 { 905 if (fold_const2_commutative(ctx, op) || 906 fold_xi_to_x(ctx, op, 0)) { 907 return true; 908 } 909 return false; 910 } 911 912 /* We cannot as yet do_constant_folding with vectors. */ 913 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 914 { 915 if (fold_commutative(ctx, op) || 916 fold_xi_to_x(ctx, op, 0)) { 917 return true; 918 } 919 return false; 920 } 921 922 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 923 { 924 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3]) && 925 arg_is_const(op->args[4]) && arg_is_const(op->args[5])) { 926 uint64_t al = arg_info(op->args[2])->val; 927 uint64_t ah = arg_info(op->args[3])->val; 928 uint64_t bl = arg_info(op->args[4])->val; 929 uint64_t bh = arg_info(op->args[5])->val; 930 TCGArg rl, rh; 931 TCGOp *op2; 932 933 if (ctx->type == TCG_TYPE_I32) { 934 uint64_t a = deposit64(al, 32, 32, ah); 935 uint64_t b = deposit64(bl, 32, 32, bh); 936 937 if (add) { 938 a += b; 939 } else { 940 a -= b; 941 } 942 943 al = sextract64(a, 0, 32); 944 ah = sextract64(a, 32, 32); 945 } else { 946 Int128 a = int128_make128(al, ah); 947 Int128 b = int128_make128(bl, bh); 948 949 if (add) { 950 a = int128_add(a, b); 951 } else { 952 a = int128_sub(a, b); 953 } 954 955 al = int128_getlo(a); 956 ah = int128_gethi(a); 957 } 958 959 rl = op->args[0]; 960 rh = op->args[1]; 961 962 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 963 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); 964 965 tcg_opt_gen_movi(ctx, op, rl, al); 966 tcg_opt_gen_movi(ctx, op2, rh, ah); 967 return true; 968 } 969 return false; 970 } 971 972 static bool fold_add2(OptContext *ctx, TCGOp *op) 973 { 974 /* Note that the high and low parts may be independently swapped. */ 975 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 976 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 977 978 return fold_addsub2(ctx, op, true); 979 } 980 981 static bool fold_and(OptContext *ctx, TCGOp *op) 982 { 983 uint64_t z1, z2; 984 985 if (fold_const2_commutative(ctx, op) || 986 fold_xi_to_i(ctx, op, 0) || 987 fold_xi_to_x(ctx, op, -1) || 988 fold_xx_to_x(ctx, op)) { 989 return true; 990 } 991 992 z1 = arg_info(op->args[1])->z_mask; 993 z2 = arg_info(op->args[2])->z_mask; 994 ctx->z_mask = z1 & z2; 995 996 /* 997 * Sign repetitions are perforce all identical, whether they are 1 or 0. 998 * Bitwise operations preserve the relative quantity of the repetitions. 999 */ 1000 ctx->s_mask = arg_info(op->args[1])->s_mask 1001 & arg_info(op->args[2])->s_mask; 1002 1003 /* 1004 * Known-zeros does not imply known-ones. Therefore unless 1005 * arg2 is constant, we can't infer affected bits from it. 1006 */ 1007 if (arg_is_const(op->args[2])) { 1008 ctx->a_mask = z1 & ~z2; 1009 } 1010 1011 return fold_masks(ctx, op); 1012 } 1013 1014 static bool fold_andc(OptContext *ctx, TCGOp *op) 1015 { 1016 uint64_t z1; 1017 1018 if (fold_const2(ctx, op) || 1019 fold_xx_to_i(ctx, op, 0) || 1020 fold_xi_to_x(ctx, op, 0) || 1021 fold_ix_to_not(ctx, op, -1)) { 1022 return true; 1023 } 1024 1025 z1 = arg_info(op->args[1])->z_mask; 1026 1027 /* 1028 * Known-zeros does not imply known-ones. Therefore unless 1029 * arg2 is constant, we can't infer anything from it. 1030 */ 1031 if (arg_is_const(op->args[2])) { 1032 uint64_t z2 = ~arg_info(op->args[2])->z_mask; 1033 ctx->a_mask = z1 & ~z2; 1034 z1 &= z2; 1035 } 1036 ctx->z_mask = z1; 1037 1038 ctx->s_mask = arg_info(op->args[1])->s_mask 1039 & arg_info(op->args[2])->s_mask; 1040 return fold_masks(ctx, op); 1041 } 1042 1043 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1044 { 1045 TCGCond cond = op->args[2]; 1046 int i; 1047 1048 if (swap_commutative(NO_DEST, &op->args[0], &op->args[1])) { 1049 op->args[2] = cond = tcg_swap_cond(cond); 1050 } 1051 1052 i = do_constant_folding_cond(ctx->type, op->args[0], op->args[1], cond); 1053 if (i == 0) { 1054 tcg_op_remove(ctx->tcg, op); 1055 return true; 1056 } 1057 if (i > 0) { 1058 op->opc = INDEX_op_br; 1059 op->args[0] = op->args[3]; 1060 } 1061 return false; 1062 } 1063 1064 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1065 { 1066 TCGCond cond = op->args[4]; 1067 TCGArg label = op->args[5]; 1068 int i, inv = 0; 1069 1070 if (swap_commutative2(&op->args[0], &op->args[2])) { 1071 op->args[4] = cond = tcg_swap_cond(cond); 1072 } 1073 1074 i = do_constant_folding_cond2(&op->args[0], &op->args[2], cond); 1075 if (i >= 0) { 1076 goto do_brcond_const; 1077 } 1078 1079 switch (cond) { 1080 case TCG_COND_LT: 1081 case TCG_COND_GE: 1082 /* 1083 * Simplify LT/GE comparisons vs zero to a single compare 1084 * vs the high word of the input. 1085 */ 1086 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0 && 1087 arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0) { 1088 goto do_brcond_high; 1089 } 1090 break; 1091 1092 case TCG_COND_NE: 1093 inv = 1; 1094 QEMU_FALLTHROUGH; 1095 case TCG_COND_EQ: 1096 /* 1097 * Simplify EQ/NE comparisons where one of the pairs 1098 * can be simplified. 1099 */ 1100 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1101 op->args[2], cond); 1102 switch (i ^ inv) { 1103 case 0: 1104 goto do_brcond_const; 1105 case 1: 1106 goto do_brcond_high; 1107 } 1108 1109 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1110 op->args[3], cond); 1111 switch (i ^ inv) { 1112 case 0: 1113 goto do_brcond_const; 1114 case 1: 1115 op->opc = INDEX_op_brcond_i32; 1116 op->args[1] = op->args[2]; 1117 op->args[2] = cond; 1118 op->args[3] = label; 1119 break; 1120 } 1121 break; 1122 1123 default: 1124 break; 1125 1126 do_brcond_high: 1127 op->opc = INDEX_op_brcond_i32; 1128 op->args[0] = op->args[1]; 1129 op->args[1] = op->args[3]; 1130 op->args[2] = cond; 1131 op->args[3] = label; 1132 break; 1133 1134 do_brcond_const: 1135 if (i == 0) { 1136 tcg_op_remove(ctx->tcg, op); 1137 return true; 1138 } 1139 op->opc = INDEX_op_br; 1140 op->args[0] = label; 1141 break; 1142 } 1143 return false; 1144 } 1145 1146 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1147 { 1148 uint64_t z_mask, s_mask, sign; 1149 1150 if (arg_is_const(op->args[1])) { 1151 uint64_t t = arg_info(op->args[1])->val; 1152 1153 t = do_constant_folding(op->opc, ctx->type, t, op->args[2]); 1154 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1155 } 1156 1157 z_mask = arg_info(op->args[1])->z_mask; 1158 1159 switch (op->opc) { 1160 case INDEX_op_bswap16_i32: 1161 case INDEX_op_bswap16_i64: 1162 z_mask = bswap16(z_mask); 1163 sign = INT16_MIN; 1164 break; 1165 case INDEX_op_bswap32_i32: 1166 case INDEX_op_bswap32_i64: 1167 z_mask = bswap32(z_mask); 1168 sign = INT32_MIN; 1169 break; 1170 case INDEX_op_bswap64_i64: 1171 z_mask = bswap64(z_mask); 1172 sign = INT64_MIN; 1173 break; 1174 default: 1175 g_assert_not_reached(); 1176 } 1177 s_mask = smask_from_zmask(z_mask); 1178 1179 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1180 case TCG_BSWAP_OZ: 1181 break; 1182 case TCG_BSWAP_OS: 1183 /* If the sign bit may be 1, force all the bits above to 1. */ 1184 if (z_mask & sign) { 1185 z_mask |= sign; 1186 s_mask = sign << 1; 1187 } 1188 break; 1189 default: 1190 /* The high bits are undefined: force all bits above the sign to 1. */ 1191 z_mask |= sign << 1; 1192 s_mask = 0; 1193 break; 1194 } 1195 ctx->z_mask = z_mask; 1196 ctx->s_mask = s_mask; 1197 1198 return fold_masks(ctx, op); 1199 } 1200 1201 static bool fold_call(OptContext *ctx, TCGOp *op) 1202 { 1203 TCGContext *s = ctx->tcg; 1204 int nb_oargs = TCGOP_CALLO(op); 1205 int nb_iargs = TCGOP_CALLI(op); 1206 int flags, i; 1207 1208 init_arguments(ctx, op, nb_oargs + nb_iargs); 1209 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1210 1211 /* If the function reads or writes globals, reset temp data. */ 1212 flags = tcg_call_flags(op); 1213 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1214 int nb_globals = s->nb_globals; 1215 1216 for (i = 0; i < nb_globals; i++) { 1217 if (test_bit(i, ctx->temps_used.l)) { 1218 reset_ts(&ctx->tcg->temps[i]); 1219 } 1220 } 1221 } 1222 1223 /* Reset temp data for outputs. */ 1224 for (i = 0; i < nb_oargs; i++) { 1225 reset_temp(op->args[i]); 1226 } 1227 1228 /* Stop optimizing MB across calls. */ 1229 ctx->prev_mb = NULL; 1230 return true; 1231 } 1232 1233 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1234 { 1235 uint64_t z_mask; 1236 1237 if (arg_is_const(op->args[1])) { 1238 uint64_t t = arg_info(op->args[1])->val; 1239 1240 if (t != 0) { 1241 t = do_constant_folding(op->opc, ctx->type, t, 0); 1242 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1243 } 1244 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1245 } 1246 1247 switch (ctx->type) { 1248 case TCG_TYPE_I32: 1249 z_mask = 31; 1250 break; 1251 case TCG_TYPE_I64: 1252 z_mask = 63; 1253 break; 1254 default: 1255 g_assert_not_reached(); 1256 } 1257 ctx->z_mask = arg_info(op->args[2])->z_mask | z_mask; 1258 ctx->s_mask = smask_from_zmask(ctx->z_mask); 1259 return false; 1260 } 1261 1262 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1263 { 1264 if (fold_const1(ctx, op)) { 1265 return true; 1266 } 1267 1268 switch (ctx->type) { 1269 case TCG_TYPE_I32: 1270 ctx->z_mask = 32 | 31; 1271 break; 1272 case TCG_TYPE_I64: 1273 ctx->z_mask = 64 | 63; 1274 break; 1275 default: 1276 g_assert_not_reached(); 1277 } 1278 ctx->s_mask = smask_from_zmask(ctx->z_mask); 1279 return false; 1280 } 1281 1282 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1283 { 1284 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1285 uint64_t t1 = arg_info(op->args[1])->val; 1286 uint64_t t2 = arg_info(op->args[2])->val; 1287 1288 t1 = deposit64(t1, op->args[3], op->args[4], t2); 1289 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 1290 } 1291 1292 ctx->z_mask = deposit64(arg_info(op->args[1])->z_mask, 1293 op->args[3], op->args[4], 1294 arg_info(op->args[2])->z_mask); 1295 return false; 1296 } 1297 1298 static bool fold_divide(OptContext *ctx, TCGOp *op) 1299 { 1300 if (fold_const2(ctx, op) || 1301 fold_xi_to_x(ctx, op, 1)) { 1302 return true; 1303 } 1304 return false; 1305 } 1306 1307 static bool fold_dup(OptContext *ctx, TCGOp *op) 1308 { 1309 if (arg_is_const(op->args[1])) { 1310 uint64_t t = arg_info(op->args[1])->val; 1311 t = dup_const(TCGOP_VECE(op), t); 1312 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1313 } 1314 return false; 1315 } 1316 1317 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1318 { 1319 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1320 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1321 arg_info(op->args[2])->val); 1322 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1323 } 1324 1325 if (args_are_copies(op->args[1], op->args[2])) { 1326 op->opc = INDEX_op_dup_vec; 1327 TCGOP_VECE(op) = MO_32; 1328 } 1329 return false; 1330 } 1331 1332 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1333 { 1334 if (fold_const2_commutative(ctx, op) || 1335 fold_xi_to_x(ctx, op, -1) || 1336 fold_xi_to_not(ctx, op, 0)) { 1337 return true; 1338 } 1339 1340 ctx->s_mask = arg_info(op->args[1])->s_mask 1341 & arg_info(op->args[2])->s_mask; 1342 return false; 1343 } 1344 1345 static bool fold_extract(OptContext *ctx, TCGOp *op) 1346 { 1347 uint64_t z_mask_old, z_mask; 1348 int pos = op->args[2]; 1349 int len = op->args[3]; 1350 1351 if (arg_is_const(op->args[1])) { 1352 uint64_t t; 1353 1354 t = arg_info(op->args[1])->val; 1355 t = extract64(t, pos, len); 1356 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1357 } 1358 1359 z_mask_old = arg_info(op->args[1])->z_mask; 1360 z_mask = extract64(z_mask_old, pos, len); 1361 if (pos == 0) { 1362 ctx->a_mask = z_mask_old ^ z_mask; 1363 } 1364 ctx->z_mask = z_mask; 1365 ctx->s_mask = smask_from_zmask(z_mask); 1366 1367 return fold_masks(ctx, op); 1368 } 1369 1370 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1371 { 1372 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1373 uint64_t v1 = arg_info(op->args[1])->val; 1374 uint64_t v2 = arg_info(op->args[2])->val; 1375 int shr = op->args[3]; 1376 1377 if (op->opc == INDEX_op_extract2_i64) { 1378 v1 >>= shr; 1379 v2 <<= 64 - shr; 1380 } else { 1381 v1 = (uint32_t)v1 >> shr; 1382 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1383 } 1384 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1385 } 1386 return false; 1387 } 1388 1389 static bool fold_exts(OptContext *ctx, TCGOp *op) 1390 { 1391 uint64_t s_mask_old, s_mask, z_mask, sign; 1392 bool type_change = false; 1393 1394 if (fold_const1(ctx, op)) { 1395 return true; 1396 } 1397 1398 z_mask = arg_info(op->args[1])->z_mask; 1399 s_mask = arg_info(op->args[1])->s_mask; 1400 s_mask_old = s_mask; 1401 1402 switch (op->opc) { 1403 CASE_OP_32_64(ext8s): 1404 sign = INT8_MIN; 1405 z_mask = (uint8_t)z_mask; 1406 break; 1407 CASE_OP_32_64(ext16s): 1408 sign = INT16_MIN; 1409 z_mask = (uint16_t)z_mask; 1410 break; 1411 case INDEX_op_ext_i32_i64: 1412 type_change = true; 1413 QEMU_FALLTHROUGH; 1414 case INDEX_op_ext32s_i64: 1415 sign = INT32_MIN; 1416 z_mask = (uint32_t)z_mask; 1417 break; 1418 default: 1419 g_assert_not_reached(); 1420 } 1421 1422 if (z_mask & sign) { 1423 z_mask |= sign; 1424 } 1425 s_mask |= sign << 1; 1426 1427 ctx->z_mask = z_mask; 1428 ctx->s_mask = s_mask; 1429 if (!type_change) { 1430 ctx->a_mask = s_mask & ~s_mask_old; 1431 } 1432 1433 return fold_masks(ctx, op); 1434 } 1435 1436 static bool fold_extu(OptContext *ctx, TCGOp *op) 1437 { 1438 uint64_t z_mask_old, z_mask; 1439 bool type_change = false; 1440 1441 if (fold_const1(ctx, op)) { 1442 return true; 1443 } 1444 1445 z_mask_old = z_mask = arg_info(op->args[1])->z_mask; 1446 1447 switch (op->opc) { 1448 CASE_OP_32_64(ext8u): 1449 z_mask = (uint8_t)z_mask; 1450 break; 1451 CASE_OP_32_64(ext16u): 1452 z_mask = (uint16_t)z_mask; 1453 break; 1454 case INDEX_op_extrl_i64_i32: 1455 case INDEX_op_extu_i32_i64: 1456 type_change = true; 1457 QEMU_FALLTHROUGH; 1458 case INDEX_op_ext32u_i64: 1459 z_mask = (uint32_t)z_mask; 1460 break; 1461 case INDEX_op_extrh_i64_i32: 1462 type_change = true; 1463 z_mask >>= 32; 1464 break; 1465 default: 1466 g_assert_not_reached(); 1467 } 1468 1469 ctx->z_mask = z_mask; 1470 ctx->s_mask = smask_from_zmask(z_mask); 1471 if (!type_change) { 1472 ctx->a_mask = z_mask_old ^ z_mask; 1473 } 1474 return fold_masks(ctx, op); 1475 } 1476 1477 static bool fold_mb(OptContext *ctx, TCGOp *op) 1478 { 1479 /* Eliminate duplicate and redundant fence instructions. */ 1480 if (ctx->prev_mb) { 1481 /* 1482 * Merge two barriers of the same type into one, 1483 * or a weaker barrier into a stronger one, 1484 * or two weaker barriers into a stronger one. 1485 * mb X; mb Y => mb X|Y 1486 * mb; strl => mb; st 1487 * ldaq; mb => ld; mb 1488 * ldaq; strl => ld; mb; st 1489 * Other combinations are also merged into a strong 1490 * barrier. This is stricter than specified but for 1491 * the purposes of TCG is better than not optimizing. 1492 */ 1493 ctx->prev_mb->args[0] |= op->args[0]; 1494 tcg_op_remove(ctx->tcg, op); 1495 } else { 1496 ctx->prev_mb = op; 1497 } 1498 return true; 1499 } 1500 1501 static bool fold_mov(OptContext *ctx, TCGOp *op) 1502 { 1503 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1504 } 1505 1506 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1507 { 1508 TCGCond cond = op->args[5]; 1509 int i; 1510 1511 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1512 op->args[5] = cond = tcg_swap_cond(cond); 1513 } 1514 /* 1515 * Canonicalize the "false" input reg to match the destination reg so 1516 * that the tcg backend can implement a "move if true" operation. 1517 */ 1518 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1519 op->args[5] = cond = tcg_invert_cond(cond); 1520 } 1521 1522 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); 1523 if (i >= 0) { 1524 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1525 } 1526 1527 ctx->z_mask = arg_info(op->args[3])->z_mask 1528 | arg_info(op->args[4])->z_mask; 1529 ctx->s_mask = arg_info(op->args[3])->s_mask 1530 & arg_info(op->args[4])->s_mask; 1531 1532 if (arg_is_const(op->args[3]) && arg_is_const(op->args[4])) { 1533 uint64_t tv = arg_info(op->args[3])->val; 1534 uint64_t fv = arg_info(op->args[4])->val; 1535 TCGOpcode opc; 1536 1537 switch (ctx->type) { 1538 case TCG_TYPE_I32: 1539 opc = INDEX_op_setcond_i32; 1540 break; 1541 case TCG_TYPE_I64: 1542 opc = INDEX_op_setcond_i64; 1543 break; 1544 default: 1545 g_assert_not_reached(); 1546 } 1547 1548 if (tv == 1 && fv == 0) { 1549 op->opc = opc; 1550 op->args[3] = cond; 1551 } else if (fv == 1 && tv == 0) { 1552 op->opc = opc; 1553 op->args[3] = tcg_invert_cond(cond); 1554 } 1555 } 1556 return false; 1557 } 1558 1559 static bool fold_mul(OptContext *ctx, TCGOp *op) 1560 { 1561 if (fold_const2(ctx, op) || 1562 fold_xi_to_i(ctx, op, 0) || 1563 fold_xi_to_x(ctx, op, 1)) { 1564 return true; 1565 } 1566 return false; 1567 } 1568 1569 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 1570 { 1571 if (fold_const2_commutative(ctx, op) || 1572 fold_xi_to_i(ctx, op, 0)) { 1573 return true; 1574 } 1575 return false; 1576 } 1577 1578 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 1579 { 1580 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 1581 1582 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1583 uint64_t a = arg_info(op->args[2])->val; 1584 uint64_t b = arg_info(op->args[3])->val; 1585 uint64_t h, l; 1586 TCGArg rl, rh; 1587 TCGOp *op2; 1588 1589 switch (op->opc) { 1590 case INDEX_op_mulu2_i32: 1591 l = (uint64_t)(uint32_t)a * (uint32_t)b; 1592 h = (int32_t)(l >> 32); 1593 l = (int32_t)l; 1594 break; 1595 case INDEX_op_muls2_i32: 1596 l = (int64_t)(int32_t)a * (int32_t)b; 1597 h = l >> 32; 1598 l = (int32_t)l; 1599 break; 1600 case INDEX_op_mulu2_i64: 1601 mulu64(&l, &h, a, b); 1602 break; 1603 case INDEX_op_muls2_i64: 1604 muls64(&l, &h, a, b); 1605 break; 1606 default: 1607 g_assert_not_reached(); 1608 } 1609 1610 rl = op->args[0]; 1611 rh = op->args[1]; 1612 1613 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1614 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); 1615 1616 tcg_opt_gen_movi(ctx, op, rl, l); 1617 tcg_opt_gen_movi(ctx, op2, rh, h); 1618 return true; 1619 } 1620 return false; 1621 } 1622 1623 static bool fold_nand(OptContext *ctx, TCGOp *op) 1624 { 1625 if (fold_const2_commutative(ctx, op) || 1626 fold_xi_to_not(ctx, op, -1)) { 1627 return true; 1628 } 1629 1630 ctx->s_mask = arg_info(op->args[1])->s_mask 1631 & arg_info(op->args[2])->s_mask; 1632 return false; 1633 } 1634 1635 static bool fold_neg(OptContext *ctx, TCGOp *op) 1636 { 1637 uint64_t z_mask; 1638 1639 if (fold_const1(ctx, op)) { 1640 return true; 1641 } 1642 1643 /* Set to 1 all bits to the left of the rightmost. */ 1644 z_mask = arg_info(op->args[1])->z_mask; 1645 ctx->z_mask = -(z_mask & -z_mask); 1646 1647 /* 1648 * Because of fold_sub_to_neg, we want to always return true, 1649 * via finish_folding. 1650 */ 1651 finish_folding(ctx, op); 1652 return true; 1653 } 1654 1655 static bool fold_nor(OptContext *ctx, TCGOp *op) 1656 { 1657 if (fold_const2_commutative(ctx, op) || 1658 fold_xi_to_not(ctx, op, 0)) { 1659 return true; 1660 } 1661 1662 ctx->s_mask = arg_info(op->args[1])->s_mask 1663 & arg_info(op->args[2])->s_mask; 1664 return false; 1665 } 1666 1667 static bool fold_not(OptContext *ctx, TCGOp *op) 1668 { 1669 if (fold_const1(ctx, op)) { 1670 return true; 1671 } 1672 1673 ctx->s_mask = arg_info(op->args[1])->s_mask; 1674 1675 /* Because of fold_to_not, we want to always return true, via finish. */ 1676 finish_folding(ctx, op); 1677 return true; 1678 } 1679 1680 static bool fold_or(OptContext *ctx, TCGOp *op) 1681 { 1682 if (fold_const2_commutative(ctx, op) || 1683 fold_xi_to_x(ctx, op, 0) || 1684 fold_xx_to_x(ctx, op)) { 1685 return true; 1686 } 1687 1688 ctx->z_mask = arg_info(op->args[1])->z_mask 1689 | arg_info(op->args[2])->z_mask; 1690 ctx->s_mask = arg_info(op->args[1])->s_mask 1691 & arg_info(op->args[2])->s_mask; 1692 return fold_masks(ctx, op); 1693 } 1694 1695 static bool fold_orc(OptContext *ctx, TCGOp *op) 1696 { 1697 if (fold_const2(ctx, op) || 1698 fold_xx_to_i(ctx, op, -1) || 1699 fold_xi_to_x(ctx, op, -1) || 1700 fold_ix_to_not(ctx, op, 0)) { 1701 return true; 1702 } 1703 1704 ctx->s_mask = arg_info(op->args[1])->s_mask 1705 & arg_info(op->args[2])->s_mask; 1706 return false; 1707 } 1708 1709 static bool fold_qemu_ld(OptContext *ctx, TCGOp *op) 1710 { 1711 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1712 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 1713 MemOp mop = get_memop(oi); 1714 int width = 8 * memop_size(mop); 1715 1716 if (width < 64) { 1717 ctx->s_mask = MAKE_64BIT_MASK(width, 64 - width); 1718 if (!(mop & MO_SIGN)) { 1719 ctx->z_mask = MAKE_64BIT_MASK(0, width); 1720 ctx->s_mask <<= 1; 1721 } 1722 } 1723 1724 /* Opcodes that touch guest memory stop the mb optimization. */ 1725 ctx->prev_mb = NULL; 1726 return false; 1727 } 1728 1729 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 1730 { 1731 /* Opcodes that touch guest memory stop the mb optimization. */ 1732 ctx->prev_mb = NULL; 1733 return false; 1734 } 1735 1736 static bool fold_remainder(OptContext *ctx, TCGOp *op) 1737 { 1738 if (fold_const2(ctx, op) || 1739 fold_xx_to_i(ctx, op, 0)) { 1740 return true; 1741 } 1742 return false; 1743 } 1744 1745 static bool fold_setcond(OptContext *ctx, TCGOp *op) 1746 { 1747 TCGCond cond = op->args[3]; 1748 int i; 1749 1750 if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) { 1751 op->args[3] = cond = tcg_swap_cond(cond); 1752 } 1753 1754 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); 1755 if (i >= 0) { 1756 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1757 } 1758 1759 ctx->z_mask = 1; 1760 ctx->s_mask = smask_from_zmask(1); 1761 return false; 1762 } 1763 1764 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 1765 { 1766 TCGCond cond = op->args[5]; 1767 int i, inv = 0; 1768 1769 if (swap_commutative2(&op->args[1], &op->args[3])) { 1770 op->args[5] = cond = tcg_swap_cond(cond); 1771 } 1772 1773 i = do_constant_folding_cond2(&op->args[1], &op->args[3], cond); 1774 if (i >= 0) { 1775 goto do_setcond_const; 1776 } 1777 1778 switch (cond) { 1779 case TCG_COND_LT: 1780 case TCG_COND_GE: 1781 /* 1782 * Simplify LT/GE comparisons vs zero to a single compare 1783 * vs the high word of the input. 1784 */ 1785 if (arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0 && 1786 arg_is_const(op->args[4]) && arg_info(op->args[4])->val == 0) { 1787 goto do_setcond_high; 1788 } 1789 break; 1790 1791 case TCG_COND_NE: 1792 inv = 1; 1793 QEMU_FALLTHROUGH; 1794 case TCG_COND_EQ: 1795 /* 1796 * Simplify EQ/NE comparisons where one of the pairs 1797 * can be simplified. 1798 */ 1799 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1800 op->args[3], cond); 1801 switch (i ^ inv) { 1802 case 0: 1803 goto do_setcond_const; 1804 case 1: 1805 goto do_setcond_high; 1806 } 1807 1808 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 1809 op->args[4], cond); 1810 switch (i ^ inv) { 1811 case 0: 1812 goto do_setcond_const; 1813 case 1: 1814 op->args[2] = op->args[3]; 1815 op->args[3] = cond; 1816 op->opc = INDEX_op_setcond_i32; 1817 break; 1818 } 1819 break; 1820 1821 default: 1822 break; 1823 1824 do_setcond_high: 1825 op->args[1] = op->args[2]; 1826 op->args[2] = op->args[4]; 1827 op->args[3] = cond; 1828 op->opc = INDEX_op_setcond_i32; 1829 break; 1830 } 1831 1832 ctx->z_mask = 1; 1833 ctx->s_mask = smask_from_zmask(1); 1834 return false; 1835 1836 do_setcond_const: 1837 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1838 } 1839 1840 static bool fold_sextract(OptContext *ctx, TCGOp *op) 1841 { 1842 uint64_t z_mask, s_mask, s_mask_old; 1843 int pos = op->args[2]; 1844 int len = op->args[3]; 1845 1846 if (arg_is_const(op->args[1])) { 1847 uint64_t t; 1848 1849 t = arg_info(op->args[1])->val; 1850 t = sextract64(t, pos, len); 1851 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1852 } 1853 1854 z_mask = arg_info(op->args[1])->z_mask; 1855 z_mask = sextract64(z_mask, pos, len); 1856 ctx->z_mask = z_mask; 1857 1858 s_mask_old = arg_info(op->args[1])->s_mask; 1859 s_mask = sextract64(s_mask_old, pos, len); 1860 s_mask |= MAKE_64BIT_MASK(len, 64 - len); 1861 ctx->s_mask = s_mask; 1862 1863 if (pos == 0) { 1864 ctx->a_mask = s_mask & ~s_mask_old; 1865 } 1866 1867 return fold_masks(ctx, op); 1868 } 1869 1870 static bool fold_shift(OptContext *ctx, TCGOp *op) 1871 { 1872 uint64_t s_mask, z_mask, sign; 1873 1874 if (fold_const2(ctx, op) || 1875 fold_ix_to_i(ctx, op, 0) || 1876 fold_xi_to_x(ctx, op, 0)) { 1877 return true; 1878 } 1879 1880 s_mask = arg_info(op->args[1])->s_mask; 1881 z_mask = arg_info(op->args[1])->z_mask; 1882 1883 if (arg_is_const(op->args[2])) { 1884 int sh = arg_info(op->args[2])->val; 1885 1886 ctx->z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 1887 1888 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 1889 ctx->s_mask = smask_from_smask(s_mask); 1890 1891 return fold_masks(ctx, op); 1892 } 1893 1894 switch (op->opc) { 1895 CASE_OP_32_64(sar): 1896 /* 1897 * Arithmetic right shift will not reduce the number of 1898 * input sign repetitions. 1899 */ 1900 ctx->s_mask = s_mask; 1901 break; 1902 CASE_OP_32_64(shr): 1903 /* 1904 * If the sign bit is known zero, then logical right shift 1905 * will not reduced the number of input sign repetitions. 1906 */ 1907 sign = (s_mask & -s_mask) >> 1; 1908 if (!(z_mask & sign)) { 1909 ctx->s_mask = s_mask; 1910 } 1911 break; 1912 default: 1913 break; 1914 } 1915 1916 return false; 1917 } 1918 1919 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 1920 { 1921 TCGOpcode neg_op; 1922 bool have_neg; 1923 1924 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 1925 return false; 1926 } 1927 1928 switch (ctx->type) { 1929 case TCG_TYPE_I32: 1930 neg_op = INDEX_op_neg_i32; 1931 have_neg = TCG_TARGET_HAS_neg_i32; 1932 break; 1933 case TCG_TYPE_I64: 1934 neg_op = INDEX_op_neg_i64; 1935 have_neg = TCG_TARGET_HAS_neg_i64; 1936 break; 1937 case TCG_TYPE_V64: 1938 case TCG_TYPE_V128: 1939 case TCG_TYPE_V256: 1940 neg_op = INDEX_op_neg_vec; 1941 have_neg = (TCG_TARGET_HAS_neg_vec && 1942 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 1943 break; 1944 default: 1945 g_assert_not_reached(); 1946 } 1947 if (have_neg) { 1948 op->opc = neg_op; 1949 op->args[1] = op->args[2]; 1950 return fold_neg(ctx, op); 1951 } 1952 return false; 1953 } 1954 1955 /* We cannot as yet do_constant_folding with vectors. */ 1956 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 1957 { 1958 if (fold_xx_to_i(ctx, op, 0) || 1959 fold_xi_to_x(ctx, op, 0) || 1960 fold_sub_to_neg(ctx, op)) { 1961 return true; 1962 } 1963 return false; 1964 } 1965 1966 static bool fold_sub(OptContext *ctx, TCGOp *op) 1967 { 1968 return fold_const2(ctx, op) || fold_sub_vec(ctx, op); 1969 } 1970 1971 static bool fold_sub2(OptContext *ctx, TCGOp *op) 1972 { 1973 return fold_addsub2(ctx, op, false); 1974 } 1975 1976 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 1977 { 1978 /* We can't do any folding with a load, but we can record bits. */ 1979 switch (op->opc) { 1980 CASE_OP_32_64(ld8s): 1981 ctx->s_mask = MAKE_64BIT_MASK(8, 56); 1982 break; 1983 CASE_OP_32_64(ld8u): 1984 ctx->z_mask = MAKE_64BIT_MASK(0, 8); 1985 ctx->s_mask = MAKE_64BIT_MASK(9, 55); 1986 break; 1987 CASE_OP_32_64(ld16s): 1988 ctx->s_mask = MAKE_64BIT_MASK(16, 48); 1989 break; 1990 CASE_OP_32_64(ld16u): 1991 ctx->z_mask = MAKE_64BIT_MASK(0, 16); 1992 ctx->s_mask = MAKE_64BIT_MASK(17, 47); 1993 break; 1994 case INDEX_op_ld32s_i64: 1995 ctx->s_mask = MAKE_64BIT_MASK(32, 32); 1996 break; 1997 case INDEX_op_ld32u_i64: 1998 ctx->z_mask = MAKE_64BIT_MASK(0, 32); 1999 ctx->s_mask = MAKE_64BIT_MASK(33, 31); 2000 break; 2001 default: 2002 g_assert_not_reached(); 2003 } 2004 return false; 2005 } 2006 2007 static bool fold_xor(OptContext *ctx, TCGOp *op) 2008 { 2009 if (fold_const2_commutative(ctx, op) || 2010 fold_xx_to_i(ctx, op, 0) || 2011 fold_xi_to_x(ctx, op, 0) || 2012 fold_xi_to_not(ctx, op, -1)) { 2013 return true; 2014 } 2015 2016 ctx->z_mask = arg_info(op->args[1])->z_mask 2017 | arg_info(op->args[2])->z_mask; 2018 ctx->s_mask = arg_info(op->args[1])->s_mask 2019 & arg_info(op->args[2])->s_mask; 2020 return fold_masks(ctx, op); 2021 } 2022 2023 /* Propagate constants and copies, fold constant expressions. */ 2024 void tcg_optimize(TCGContext *s) 2025 { 2026 int nb_temps, i; 2027 TCGOp *op, *op_next; 2028 OptContext ctx = { .tcg = s }; 2029 2030 /* Array VALS has an element for each temp. 2031 If this temp holds a constant then its value is kept in VALS' element. 2032 If this temp is a copy of other ones then the other copies are 2033 available through the doubly linked circular list. */ 2034 2035 nb_temps = s->nb_temps; 2036 for (i = 0; i < nb_temps; ++i) { 2037 s->temps[i].state_ptr = NULL; 2038 } 2039 2040 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2041 TCGOpcode opc = op->opc; 2042 const TCGOpDef *def; 2043 bool done = false; 2044 2045 /* Calls are special. */ 2046 if (opc == INDEX_op_call) { 2047 fold_call(&ctx, op); 2048 continue; 2049 } 2050 2051 def = &tcg_op_defs[opc]; 2052 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2053 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2054 2055 /* Pre-compute the type of the operation. */ 2056 if (def->flags & TCG_OPF_VECTOR) { 2057 ctx.type = TCG_TYPE_V64 + TCGOP_VECL(op); 2058 } else if (def->flags & TCG_OPF_64BIT) { 2059 ctx.type = TCG_TYPE_I64; 2060 } else { 2061 ctx.type = TCG_TYPE_I32; 2062 } 2063 2064 /* Assume all bits affected, no bits known zero, no sign reps. */ 2065 ctx.a_mask = -1; 2066 ctx.z_mask = -1; 2067 ctx.s_mask = 0; 2068 2069 /* 2070 * Process each opcode. 2071 * Sorted alphabetically by opcode as much as possible. 2072 */ 2073 switch (opc) { 2074 CASE_OP_32_64(add): 2075 done = fold_add(&ctx, op); 2076 break; 2077 case INDEX_op_add_vec: 2078 done = fold_add_vec(&ctx, op); 2079 break; 2080 CASE_OP_32_64(add2): 2081 done = fold_add2(&ctx, op); 2082 break; 2083 CASE_OP_32_64_VEC(and): 2084 done = fold_and(&ctx, op); 2085 break; 2086 CASE_OP_32_64_VEC(andc): 2087 done = fold_andc(&ctx, op); 2088 break; 2089 CASE_OP_32_64(brcond): 2090 done = fold_brcond(&ctx, op); 2091 break; 2092 case INDEX_op_brcond2_i32: 2093 done = fold_brcond2(&ctx, op); 2094 break; 2095 CASE_OP_32_64(bswap16): 2096 CASE_OP_32_64(bswap32): 2097 case INDEX_op_bswap64_i64: 2098 done = fold_bswap(&ctx, op); 2099 break; 2100 CASE_OP_32_64(clz): 2101 CASE_OP_32_64(ctz): 2102 done = fold_count_zeros(&ctx, op); 2103 break; 2104 CASE_OP_32_64(ctpop): 2105 done = fold_ctpop(&ctx, op); 2106 break; 2107 CASE_OP_32_64(deposit): 2108 done = fold_deposit(&ctx, op); 2109 break; 2110 CASE_OP_32_64(div): 2111 CASE_OP_32_64(divu): 2112 done = fold_divide(&ctx, op); 2113 break; 2114 case INDEX_op_dup_vec: 2115 done = fold_dup(&ctx, op); 2116 break; 2117 case INDEX_op_dup2_vec: 2118 done = fold_dup2(&ctx, op); 2119 break; 2120 CASE_OP_32_64_VEC(eqv): 2121 done = fold_eqv(&ctx, op); 2122 break; 2123 CASE_OP_32_64(extract): 2124 done = fold_extract(&ctx, op); 2125 break; 2126 CASE_OP_32_64(extract2): 2127 done = fold_extract2(&ctx, op); 2128 break; 2129 CASE_OP_32_64(ext8s): 2130 CASE_OP_32_64(ext16s): 2131 case INDEX_op_ext32s_i64: 2132 case INDEX_op_ext_i32_i64: 2133 done = fold_exts(&ctx, op); 2134 break; 2135 CASE_OP_32_64(ext8u): 2136 CASE_OP_32_64(ext16u): 2137 case INDEX_op_ext32u_i64: 2138 case INDEX_op_extu_i32_i64: 2139 case INDEX_op_extrl_i64_i32: 2140 case INDEX_op_extrh_i64_i32: 2141 done = fold_extu(&ctx, op); 2142 break; 2143 CASE_OP_32_64(ld8s): 2144 CASE_OP_32_64(ld8u): 2145 CASE_OP_32_64(ld16s): 2146 CASE_OP_32_64(ld16u): 2147 case INDEX_op_ld32s_i64: 2148 case INDEX_op_ld32u_i64: 2149 done = fold_tcg_ld(&ctx, op); 2150 break; 2151 case INDEX_op_mb: 2152 done = fold_mb(&ctx, op); 2153 break; 2154 CASE_OP_32_64_VEC(mov): 2155 done = fold_mov(&ctx, op); 2156 break; 2157 CASE_OP_32_64(movcond): 2158 done = fold_movcond(&ctx, op); 2159 break; 2160 CASE_OP_32_64(mul): 2161 done = fold_mul(&ctx, op); 2162 break; 2163 CASE_OP_32_64(mulsh): 2164 CASE_OP_32_64(muluh): 2165 done = fold_mul_highpart(&ctx, op); 2166 break; 2167 CASE_OP_32_64(muls2): 2168 CASE_OP_32_64(mulu2): 2169 done = fold_multiply2(&ctx, op); 2170 break; 2171 CASE_OP_32_64_VEC(nand): 2172 done = fold_nand(&ctx, op); 2173 break; 2174 CASE_OP_32_64(neg): 2175 done = fold_neg(&ctx, op); 2176 break; 2177 CASE_OP_32_64_VEC(nor): 2178 done = fold_nor(&ctx, op); 2179 break; 2180 CASE_OP_32_64_VEC(not): 2181 done = fold_not(&ctx, op); 2182 break; 2183 CASE_OP_32_64_VEC(or): 2184 done = fold_or(&ctx, op); 2185 break; 2186 CASE_OP_32_64_VEC(orc): 2187 done = fold_orc(&ctx, op); 2188 break; 2189 case INDEX_op_qemu_ld_i32: 2190 case INDEX_op_qemu_ld_i64: 2191 done = fold_qemu_ld(&ctx, op); 2192 break; 2193 case INDEX_op_qemu_st_i32: 2194 case INDEX_op_qemu_st8_i32: 2195 case INDEX_op_qemu_st_i64: 2196 done = fold_qemu_st(&ctx, op); 2197 break; 2198 CASE_OP_32_64(rem): 2199 CASE_OP_32_64(remu): 2200 done = fold_remainder(&ctx, op); 2201 break; 2202 CASE_OP_32_64(rotl): 2203 CASE_OP_32_64(rotr): 2204 CASE_OP_32_64(sar): 2205 CASE_OP_32_64(shl): 2206 CASE_OP_32_64(shr): 2207 done = fold_shift(&ctx, op); 2208 break; 2209 CASE_OP_32_64(setcond): 2210 done = fold_setcond(&ctx, op); 2211 break; 2212 case INDEX_op_setcond2_i32: 2213 done = fold_setcond2(&ctx, op); 2214 break; 2215 CASE_OP_32_64(sextract): 2216 done = fold_sextract(&ctx, op); 2217 break; 2218 CASE_OP_32_64(sub): 2219 done = fold_sub(&ctx, op); 2220 break; 2221 case INDEX_op_sub_vec: 2222 done = fold_sub_vec(&ctx, op); 2223 break; 2224 CASE_OP_32_64(sub2): 2225 done = fold_sub2(&ctx, op); 2226 break; 2227 CASE_OP_32_64_VEC(xor): 2228 done = fold_xor(&ctx, op); 2229 break; 2230 default: 2231 break; 2232 } 2233 2234 if (!done) { 2235 finish_folding(&ctx, op); 2236 } 2237 } 2238 } 2239