1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op, 348 TCGOpcode opc, unsigned narg) 349 { 350 return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg); 351 } 352 353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op, 354 TCGOpcode opc, unsigned narg) 355 { 356 return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg); 357 } 358 359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 360 { 361 TCGTemp *dst_ts = arg_temp(dst); 362 TCGTemp *src_ts = arg_temp(src); 363 TempOptInfo *di; 364 TempOptInfo *si; 365 TCGOpcode new_op; 366 367 if (ts_are_copies(dst_ts, src_ts)) { 368 tcg_op_remove(ctx->tcg, op); 369 return true; 370 } 371 372 reset_ts(ctx, dst_ts); 373 di = ts_info(dst_ts); 374 si = ts_info(src_ts); 375 376 switch (ctx->type) { 377 case TCG_TYPE_I32: 378 case TCG_TYPE_I64: 379 new_op = INDEX_op_mov; 380 break; 381 case TCG_TYPE_V64: 382 case TCG_TYPE_V128: 383 case TCG_TYPE_V256: 384 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 385 new_op = INDEX_op_mov_vec; 386 break; 387 default: 388 g_assert_not_reached(); 389 } 390 op->opc = new_op; 391 op->args[0] = dst; 392 op->args[1] = src; 393 394 di->z_mask = si->z_mask; 395 di->s_mask = si->s_mask; 396 397 if (src_ts->type == dst_ts->type) { 398 TempOptInfo *ni = ts_info(si->next_copy); 399 400 di->next_copy = si->next_copy; 401 di->prev_copy = src_ts; 402 ni->prev_copy = dst_ts; 403 si->next_copy = dst_ts; 404 di->is_const = si->is_const; 405 di->val = si->val; 406 407 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 408 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 409 move_mem_copies(dst_ts, src_ts); 410 } 411 } 412 return true; 413 } 414 415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 416 TCGArg dst, uint64_t val) 417 { 418 /* Convert movi to mov with constant temp. */ 419 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 420 } 421 422 static uint64_t do_constant_folding_2(TCGOpcode op, TCGType type, 423 uint64_t x, uint64_t y) 424 { 425 uint64_t l64, h64; 426 427 switch (op) { 428 case INDEX_op_add: 429 return x + y; 430 431 case INDEX_op_sub: 432 return x - y; 433 434 case INDEX_op_mul: 435 return x * y; 436 437 case INDEX_op_and: 438 case INDEX_op_and_vec: 439 return x & y; 440 441 case INDEX_op_or: 442 case INDEX_op_or_vec: 443 return x | y; 444 445 case INDEX_op_xor: 446 case INDEX_op_xor_vec: 447 return x ^ y; 448 449 case INDEX_op_shl_i32: 450 return (uint32_t)x << (y & 31); 451 452 case INDEX_op_shl_i64: 453 return (uint64_t)x << (y & 63); 454 455 case INDEX_op_shr_i32: 456 return (uint32_t)x >> (y & 31); 457 458 case INDEX_op_shr_i64: 459 return (uint64_t)x >> (y & 63); 460 461 case INDEX_op_sar_i32: 462 return (int32_t)x >> (y & 31); 463 464 case INDEX_op_sar_i64: 465 return (int64_t)x >> (y & 63); 466 467 case INDEX_op_rotr_i32: 468 return ror32(x, y & 31); 469 470 case INDEX_op_rotr_i64: 471 return ror64(x, y & 63); 472 473 case INDEX_op_rotl_i32: 474 return rol32(x, y & 31); 475 476 case INDEX_op_rotl_i64: 477 return rol64(x, y & 63); 478 479 case INDEX_op_not: 480 case INDEX_op_not_vec: 481 return ~x; 482 483 case INDEX_op_neg: 484 return -x; 485 486 case INDEX_op_andc: 487 case INDEX_op_andc_vec: 488 return x & ~y; 489 490 case INDEX_op_orc: 491 case INDEX_op_orc_vec: 492 return x | ~y; 493 494 case INDEX_op_eqv: 495 case INDEX_op_eqv_vec: 496 return ~(x ^ y); 497 498 case INDEX_op_nand: 499 case INDEX_op_nand_vec: 500 return ~(x & y); 501 502 case INDEX_op_nor: 503 case INDEX_op_nor_vec: 504 return ~(x | y); 505 506 case INDEX_op_clz_i32: 507 return (uint32_t)x ? clz32(x) : y; 508 509 case INDEX_op_clz_i64: 510 return x ? clz64(x) : y; 511 512 case INDEX_op_ctz_i32: 513 return (uint32_t)x ? ctz32(x) : y; 514 515 case INDEX_op_ctz_i64: 516 return x ? ctz64(x) : y; 517 518 case INDEX_op_ctpop_i32: 519 return ctpop32(x); 520 521 case INDEX_op_ctpop_i64: 522 return ctpop64(x); 523 524 CASE_OP_32_64(bswap16): 525 x = bswap16(x); 526 return y & TCG_BSWAP_OS ? (int16_t)x : x; 527 528 CASE_OP_32_64(bswap32): 529 x = bswap32(x); 530 return y & TCG_BSWAP_OS ? (int32_t)x : x; 531 532 case INDEX_op_bswap64_i64: 533 return bswap64(x); 534 535 case INDEX_op_ext_i32_i64: 536 return (int32_t)x; 537 538 case INDEX_op_extu_i32_i64: 539 case INDEX_op_extrl_i64_i32: 540 return (uint32_t)x; 541 542 case INDEX_op_extrh_i64_i32: 543 return (uint64_t)x >> 32; 544 545 case INDEX_op_muluh: 546 if (type == TCG_TYPE_I32) { 547 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 548 } 549 mulu64(&l64, &h64, x, y); 550 return h64; 551 552 case INDEX_op_mulsh: 553 if (type == TCG_TYPE_I32) { 554 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 555 } 556 muls64(&l64, &h64, x, y); 557 return h64; 558 559 case INDEX_op_divs: 560 /* Avoid crashing on divide by zero, otherwise undefined. */ 561 if (type == TCG_TYPE_I32) { 562 return (int32_t)x / ((int32_t)y ? : 1); 563 } 564 return (int64_t)x / ((int64_t)y ? : 1); 565 566 case INDEX_op_divu: 567 if (type == TCG_TYPE_I32) { 568 return (uint32_t)x / ((uint32_t)y ? : 1); 569 } 570 return (uint64_t)x / ((uint64_t)y ? : 1); 571 572 case INDEX_op_rems: 573 if (type == TCG_TYPE_I32) { 574 return (int32_t)x % ((int32_t)y ? : 1); 575 } 576 return (int64_t)x % ((int64_t)y ? : 1); 577 578 case INDEX_op_remu_i32: 579 return (uint32_t)x % ((uint32_t)y ? : 1); 580 case INDEX_op_remu_i64: 581 return (uint64_t)x % ((uint64_t)y ? : 1); 582 583 default: 584 g_assert_not_reached(); 585 } 586 } 587 588 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 589 uint64_t x, uint64_t y) 590 { 591 uint64_t res = do_constant_folding_2(op, type, x, y); 592 if (type == TCG_TYPE_I32) { 593 res = (int32_t)res; 594 } 595 return res; 596 } 597 598 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 599 { 600 switch (c) { 601 case TCG_COND_EQ: 602 return x == y; 603 case TCG_COND_NE: 604 return x != y; 605 case TCG_COND_LT: 606 return (int32_t)x < (int32_t)y; 607 case TCG_COND_GE: 608 return (int32_t)x >= (int32_t)y; 609 case TCG_COND_LE: 610 return (int32_t)x <= (int32_t)y; 611 case TCG_COND_GT: 612 return (int32_t)x > (int32_t)y; 613 case TCG_COND_LTU: 614 return x < y; 615 case TCG_COND_GEU: 616 return x >= y; 617 case TCG_COND_LEU: 618 return x <= y; 619 case TCG_COND_GTU: 620 return x > y; 621 case TCG_COND_TSTEQ: 622 return (x & y) == 0; 623 case TCG_COND_TSTNE: 624 return (x & y) != 0; 625 case TCG_COND_ALWAYS: 626 case TCG_COND_NEVER: 627 break; 628 } 629 g_assert_not_reached(); 630 } 631 632 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 633 { 634 switch (c) { 635 case TCG_COND_EQ: 636 return x == y; 637 case TCG_COND_NE: 638 return x != y; 639 case TCG_COND_LT: 640 return (int64_t)x < (int64_t)y; 641 case TCG_COND_GE: 642 return (int64_t)x >= (int64_t)y; 643 case TCG_COND_LE: 644 return (int64_t)x <= (int64_t)y; 645 case TCG_COND_GT: 646 return (int64_t)x > (int64_t)y; 647 case TCG_COND_LTU: 648 return x < y; 649 case TCG_COND_GEU: 650 return x >= y; 651 case TCG_COND_LEU: 652 return x <= y; 653 case TCG_COND_GTU: 654 return x > y; 655 case TCG_COND_TSTEQ: 656 return (x & y) == 0; 657 case TCG_COND_TSTNE: 658 return (x & y) != 0; 659 case TCG_COND_ALWAYS: 660 case TCG_COND_NEVER: 661 break; 662 } 663 g_assert_not_reached(); 664 } 665 666 static int do_constant_folding_cond_eq(TCGCond c) 667 { 668 switch (c) { 669 case TCG_COND_GT: 670 case TCG_COND_LTU: 671 case TCG_COND_LT: 672 case TCG_COND_GTU: 673 case TCG_COND_NE: 674 return 0; 675 case TCG_COND_GE: 676 case TCG_COND_GEU: 677 case TCG_COND_LE: 678 case TCG_COND_LEU: 679 case TCG_COND_EQ: 680 return 1; 681 case TCG_COND_TSTEQ: 682 case TCG_COND_TSTNE: 683 return -1; 684 case TCG_COND_ALWAYS: 685 case TCG_COND_NEVER: 686 break; 687 } 688 g_assert_not_reached(); 689 } 690 691 /* 692 * Return -1 if the condition can't be simplified, 693 * and the result of the condition (0 or 1) if it can. 694 */ 695 static int do_constant_folding_cond(TCGType type, TCGArg x, 696 TCGArg y, TCGCond c) 697 { 698 if (arg_is_const(x) && arg_is_const(y)) { 699 uint64_t xv = arg_info(x)->val; 700 uint64_t yv = arg_info(y)->val; 701 702 switch (type) { 703 case TCG_TYPE_I32: 704 return do_constant_folding_cond_32(xv, yv, c); 705 case TCG_TYPE_I64: 706 return do_constant_folding_cond_64(xv, yv, c); 707 default: 708 /* Only scalar comparisons are optimizable */ 709 return -1; 710 } 711 } else if (args_are_copies(x, y)) { 712 return do_constant_folding_cond_eq(c); 713 } else if (arg_is_const_val(y, 0)) { 714 switch (c) { 715 case TCG_COND_LTU: 716 case TCG_COND_TSTNE: 717 return 0; 718 case TCG_COND_GEU: 719 case TCG_COND_TSTEQ: 720 return 1; 721 default: 722 return -1; 723 } 724 } 725 return -1; 726 } 727 728 /** 729 * swap_commutative: 730 * @dest: TCGArg of the destination argument, or NO_DEST. 731 * @p1: first paired argument 732 * @p2: second paired argument 733 * 734 * If *@p1 is a constant and *@p2 is not, swap. 735 * If *@p2 matches @dest, swap. 736 * Return true if a swap was performed. 737 */ 738 739 #define NO_DEST temp_arg(NULL) 740 741 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 742 { 743 TCGArg a1 = *p1, a2 = *p2; 744 int sum = 0; 745 sum += arg_is_const(a1); 746 sum -= arg_is_const(a2); 747 748 /* Prefer the constant in second argument, and then the form 749 op a, a, b, which is better handled on non-RISC hosts. */ 750 if (sum > 0 || (sum == 0 && dest == a2)) { 751 *p1 = a2; 752 *p2 = a1; 753 return true; 754 } 755 return false; 756 } 757 758 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 759 { 760 int sum = 0; 761 sum += arg_is_const(p1[0]); 762 sum += arg_is_const(p1[1]); 763 sum -= arg_is_const(p2[0]); 764 sum -= arg_is_const(p2[1]); 765 if (sum > 0) { 766 TCGArg t; 767 t = p1[0], p1[0] = p2[0], p2[0] = t; 768 t = p1[1], p1[1] = p2[1], p2[1] = t; 769 return true; 770 } 771 return false; 772 } 773 774 /* 775 * Return -1 if the condition can't be simplified, 776 * and the result of the condition (0 or 1) if it can. 777 */ 778 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 779 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 780 { 781 TCGCond cond; 782 TempOptInfo *i1; 783 bool swap; 784 int r; 785 786 swap = swap_commutative(dest, p1, p2); 787 cond = *pcond; 788 if (swap) { 789 *pcond = cond = tcg_swap_cond(cond); 790 } 791 792 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 793 if (r >= 0) { 794 return r; 795 } 796 if (!is_tst_cond(cond)) { 797 return -1; 798 } 799 800 i1 = arg_info(*p1); 801 802 /* 803 * TSTNE x,x -> NE x,0 804 * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x 805 */ 806 if (args_are_copies(*p1, *p2) || 807 (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) { 808 *p2 = arg_new_constant(ctx, 0); 809 *pcond = tcg_tst_eqne_cond(cond); 810 return -1; 811 } 812 813 /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */ 814 if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) { 815 *p2 = arg_new_constant(ctx, 0); 816 *pcond = tcg_tst_ltge_cond(cond); 817 return -1; 818 } 819 820 /* Expand to AND with a temporary if no backend support. */ 821 if (!TCG_TARGET_HAS_tst) { 822 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 823 TCGArg tmp = arg_new_temp(ctx); 824 825 op2->args[0] = tmp; 826 op2->args[1] = *p1; 827 op2->args[2] = *p2; 828 829 *p1 = tmp; 830 *p2 = arg_new_constant(ctx, 0); 831 *pcond = tcg_tst_eqne_cond(cond); 832 } 833 return -1; 834 } 835 836 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 837 { 838 TCGArg al, ah, bl, bh; 839 TCGCond c; 840 bool swap; 841 int r; 842 843 swap = swap_commutative2(args, args + 2); 844 c = args[4]; 845 if (swap) { 846 args[4] = c = tcg_swap_cond(c); 847 } 848 849 al = args[0]; 850 ah = args[1]; 851 bl = args[2]; 852 bh = args[3]; 853 854 if (arg_is_const(bl) && arg_is_const(bh)) { 855 tcg_target_ulong blv = arg_info(bl)->val; 856 tcg_target_ulong bhv = arg_info(bh)->val; 857 uint64_t b = deposit64(blv, 32, 32, bhv); 858 859 if (arg_is_const(al) && arg_is_const(ah)) { 860 tcg_target_ulong alv = arg_info(al)->val; 861 tcg_target_ulong ahv = arg_info(ah)->val; 862 uint64_t a = deposit64(alv, 32, 32, ahv); 863 864 r = do_constant_folding_cond_64(a, b, c); 865 if (r >= 0) { 866 return r; 867 } 868 } 869 870 if (b == 0) { 871 switch (c) { 872 case TCG_COND_LTU: 873 case TCG_COND_TSTNE: 874 return 0; 875 case TCG_COND_GEU: 876 case TCG_COND_TSTEQ: 877 return 1; 878 default: 879 break; 880 } 881 } 882 883 /* TSTNE x,-1 -> NE x,0 */ 884 if (b == -1 && is_tst_cond(c)) { 885 args[3] = args[2] = arg_new_constant(ctx, 0); 886 args[4] = tcg_tst_eqne_cond(c); 887 return -1; 888 } 889 890 /* TSTNE x,sign -> LT x,0 */ 891 if (b == INT64_MIN && is_tst_cond(c)) { 892 /* bl must be 0, so copy that to bh */ 893 args[3] = bl; 894 args[4] = tcg_tst_ltge_cond(c); 895 return -1; 896 } 897 } 898 899 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 900 r = do_constant_folding_cond_eq(c); 901 if (r >= 0) { 902 return r; 903 } 904 905 /* TSTNE x,x -> NE x,0 */ 906 if (is_tst_cond(c)) { 907 args[3] = args[2] = arg_new_constant(ctx, 0); 908 args[4] = tcg_tst_eqne_cond(c); 909 return -1; 910 } 911 } 912 913 /* Expand to AND with a temporary if no backend support. */ 914 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 915 TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and, 3); 916 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 917 TCGArg t1 = arg_new_temp(ctx); 918 TCGArg t2 = arg_new_temp(ctx); 919 920 op1->args[0] = t1; 921 op1->args[1] = al; 922 op1->args[2] = bl; 923 op2->args[0] = t2; 924 op2->args[1] = ah; 925 op2->args[2] = bh; 926 927 args[0] = t1; 928 args[1] = t2; 929 args[3] = args[2] = arg_new_constant(ctx, 0); 930 args[4] = tcg_tst_eqne_cond(c); 931 } 932 return -1; 933 } 934 935 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 936 { 937 for (int i = 0; i < nb_args; i++) { 938 TCGTemp *ts = arg_temp(op->args[i]); 939 init_ts_info(ctx, ts); 940 } 941 } 942 943 static void copy_propagate(OptContext *ctx, TCGOp *op, 944 int nb_oargs, int nb_iargs) 945 { 946 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 947 TCGTemp *ts = arg_temp(op->args[i]); 948 if (ts_is_copy(ts)) { 949 op->args[i] = temp_arg(find_better_copy(ts)); 950 } 951 } 952 } 953 954 static void finish_bb(OptContext *ctx) 955 { 956 /* We only optimize memory barriers across basic blocks. */ 957 ctx->prev_mb = NULL; 958 } 959 960 static void finish_ebb(OptContext *ctx) 961 { 962 finish_bb(ctx); 963 /* We only optimize across extended basic blocks. */ 964 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 965 remove_mem_copy_all(ctx); 966 } 967 968 static bool finish_folding(OptContext *ctx, TCGOp *op) 969 { 970 const TCGOpDef *def = &tcg_op_defs[op->opc]; 971 int i, nb_oargs; 972 973 nb_oargs = def->nb_oargs; 974 for (i = 0; i < nb_oargs; i++) { 975 TCGTemp *ts = arg_temp(op->args[i]); 976 reset_ts(ctx, ts); 977 } 978 return true; 979 } 980 981 /* 982 * The fold_* functions return true when processing is complete, 983 * usually by folding the operation to a constant or to a copy, 984 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 985 * like collect information about the value produced, for use in 986 * optimizing a subsequent operation. 987 * 988 * These first fold_* functions are all helpers, used by other 989 * folders for more specific operations. 990 */ 991 992 static bool fold_const1(OptContext *ctx, TCGOp *op) 993 { 994 if (arg_is_const(op->args[1])) { 995 uint64_t t; 996 997 t = arg_info(op->args[1])->val; 998 t = do_constant_folding(op->opc, ctx->type, t, 0); 999 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1000 } 1001 return false; 1002 } 1003 1004 static bool fold_const2(OptContext *ctx, TCGOp *op) 1005 { 1006 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1007 uint64_t t1 = arg_info(op->args[1])->val; 1008 uint64_t t2 = arg_info(op->args[2])->val; 1009 1010 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 1011 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 1012 } 1013 return false; 1014 } 1015 1016 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1017 { 1018 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1019 return false; 1020 } 1021 1022 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1023 { 1024 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1025 return fold_const2(ctx, op); 1026 } 1027 1028 /* 1029 * Record "zero" and "sign" masks for the single output of @op. 1030 * See TempOptInfo definition of z_mask and s_mask. 1031 * If z_mask allows, fold the output to constant zero. 1032 * The passed s_mask may be augmented by z_mask. 1033 */ 1034 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1035 uint64_t z_mask, int64_t s_mask) 1036 { 1037 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1038 TCGTemp *ts; 1039 TempOptInfo *ti; 1040 int rep; 1041 1042 /* Only single-output opcodes are supported here. */ 1043 tcg_debug_assert(def->nb_oargs == 1); 1044 1045 /* 1046 * 32-bit ops generate 32-bit results, which for the purpose of 1047 * simplifying tcg are sign-extended. Certainly that's how we 1048 * represent our constants elsewhere. Note that the bits will 1049 * be reset properly for a 64-bit value when encountering the 1050 * type changing opcodes. 1051 */ 1052 if (ctx->type == TCG_TYPE_I32) { 1053 z_mask = (int32_t)z_mask; 1054 s_mask |= INT32_MIN; 1055 } 1056 1057 if (z_mask == 0) { 1058 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1059 } 1060 1061 ts = arg_temp(op->args[0]); 1062 reset_ts(ctx, ts); 1063 1064 ti = ts_info(ts); 1065 ti->z_mask = z_mask; 1066 1067 /* Canonicalize s_mask and incorporate data from z_mask. */ 1068 rep = clz64(~s_mask); 1069 rep = MAX(rep, clz64(z_mask)); 1070 rep = MAX(rep - 1, 0); 1071 ti->s_mask = INT64_MIN >> rep; 1072 1073 return true; 1074 } 1075 1076 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1077 { 1078 return fold_masks_zs(ctx, op, z_mask, 0); 1079 } 1080 1081 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1082 { 1083 return fold_masks_zs(ctx, op, -1, s_mask); 1084 } 1085 1086 /* 1087 * An "affected" mask bit is 0 if and only if the result is identical 1088 * to the first input. Thus if the entire mask is 0, the operation 1089 * is equivalent to a copy. 1090 */ 1091 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1092 { 1093 if (ctx->type == TCG_TYPE_I32) { 1094 a_mask = (uint32_t)a_mask; 1095 } 1096 if (a_mask == 0) { 1097 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1098 } 1099 return false; 1100 } 1101 1102 /* 1103 * Convert @op to NOT, if NOT is supported by the host. 1104 * Return true f the conversion is successful, which will still 1105 * indicate that the processing is complete. 1106 */ 1107 static bool fold_not(OptContext *ctx, TCGOp *op); 1108 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1109 { 1110 TCGOpcode not_op; 1111 bool have_not; 1112 1113 switch (ctx->type) { 1114 case TCG_TYPE_I32: 1115 case TCG_TYPE_I64: 1116 not_op = INDEX_op_not; 1117 have_not = tcg_op_supported(INDEX_op_not, ctx->type, 0); 1118 break; 1119 case TCG_TYPE_V64: 1120 case TCG_TYPE_V128: 1121 case TCG_TYPE_V256: 1122 not_op = INDEX_op_not_vec; 1123 have_not = TCG_TARGET_HAS_not_vec; 1124 break; 1125 default: 1126 g_assert_not_reached(); 1127 } 1128 if (have_not) { 1129 op->opc = not_op; 1130 op->args[1] = op->args[idx]; 1131 return fold_not(ctx, op); 1132 } 1133 return false; 1134 } 1135 1136 /* If the binary operation has first argument @i, fold to @i. */ 1137 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1138 { 1139 if (arg_is_const_val(op->args[1], i)) { 1140 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1141 } 1142 return false; 1143 } 1144 1145 /* If the binary operation has first argument @i, fold to NOT. */ 1146 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1147 { 1148 if (arg_is_const_val(op->args[1], i)) { 1149 return fold_to_not(ctx, op, 2); 1150 } 1151 return false; 1152 } 1153 1154 /* If the binary operation has second argument @i, fold to @i. */ 1155 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1156 { 1157 if (arg_is_const_val(op->args[2], i)) { 1158 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1159 } 1160 return false; 1161 } 1162 1163 /* If the binary operation has second argument @i, fold to identity. */ 1164 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1165 { 1166 if (arg_is_const_val(op->args[2], i)) { 1167 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1168 } 1169 return false; 1170 } 1171 1172 /* If the binary operation has second argument @i, fold to NOT. */ 1173 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1174 { 1175 if (arg_is_const_val(op->args[2], i)) { 1176 return fold_to_not(ctx, op, 1); 1177 } 1178 return false; 1179 } 1180 1181 /* If the binary operation has both arguments equal, fold to @i. */ 1182 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1183 { 1184 if (args_are_copies(op->args[1], op->args[2])) { 1185 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1186 } 1187 return false; 1188 } 1189 1190 /* If the binary operation has both arguments equal, fold to identity. */ 1191 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1192 { 1193 if (args_are_copies(op->args[1], op->args[2])) { 1194 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1195 } 1196 return false; 1197 } 1198 1199 /* 1200 * These outermost fold_<op> functions are sorted alphabetically. 1201 * 1202 * The ordering of the transformations should be: 1203 * 1) those that produce a constant 1204 * 2) those that produce a copy 1205 * 3) those that produce information about the result value. 1206 */ 1207 1208 static bool fold_or(OptContext *ctx, TCGOp *op); 1209 static bool fold_orc(OptContext *ctx, TCGOp *op); 1210 static bool fold_xor(OptContext *ctx, TCGOp *op); 1211 1212 static bool fold_add(OptContext *ctx, TCGOp *op) 1213 { 1214 if (fold_const2_commutative(ctx, op) || 1215 fold_xi_to_x(ctx, op, 0)) { 1216 return true; 1217 } 1218 return finish_folding(ctx, op); 1219 } 1220 1221 /* We cannot as yet do_constant_folding with vectors. */ 1222 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1223 { 1224 if (fold_commutative(ctx, op) || 1225 fold_xi_to_x(ctx, op, 0)) { 1226 return true; 1227 } 1228 return finish_folding(ctx, op); 1229 } 1230 1231 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1232 { 1233 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1234 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1235 1236 if (a_const && b_const) { 1237 uint64_t al = arg_info(op->args[2])->val; 1238 uint64_t ah = arg_info(op->args[3])->val; 1239 uint64_t bl = arg_info(op->args[4])->val; 1240 uint64_t bh = arg_info(op->args[5])->val; 1241 TCGArg rl, rh; 1242 TCGOp *op2; 1243 1244 if (ctx->type == TCG_TYPE_I32) { 1245 uint64_t a = deposit64(al, 32, 32, ah); 1246 uint64_t b = deposit64(bl, 32, 32, bh); 1247 1248 if (add) { 1249 a += b; 1250 } else { 1251 a -= b; 1252 } 1253 1254 al = sextract64(a, 0, 32); 1255 ah = sextract64(a, 32, 32); 1256 } else { 1257 Int128 a = int128_make128(al, ah); 1258 Int128 b = int128_make128(bl, bh); 1259 1260 if (add) { 1261 a = int128_add(a, b); 1262 } else { 1263 a = int128_sub(a, b); 1264 } 1265 1266 al = int128_getlo(a); 1267 ah = int128_gethi(a); 1268 } 1269 1270 rl = op->args[0]; 1271 rh = op->args[1]; 1272 1273 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1274 op2 = opt_insert_before(ctx, op, 0, 2); 1275 1276 tcg_opt_gen_movi(ctx, op, rl, al); 1277 tcg_opt_gen_movi(ctx, op2, rh, ah); 1278 return true; 1279 } 1280 1281 /* Fold sub2 r,x,i to add2 r,x,-i */ 1282 if (!add && b_const) { 1283 uint64_t bl = arg_info(op->args[4])->val; 1284 uint64_t bh = arg_info(op->args[5])->val; 1285 1286 /* Negate the two parts without assembling and disassembling. */ 1287 bl = -bl; 1288 bh = ~bh + !bl; 1289 1290 op->opc = (ctx->type == TCG_TYPE_I32 1291 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1292 op->args[4] = arg_new_constant(ctx, bl); 1293 op->args[5] = arg_new_constant(ctx, bh); 1294 } 1295 return finish_folding(ctx, op); 1296 } 1297 1298 static bool fold_add2(OptContext *ctx, TCGOp *op) 1299 { 1300 /* Note that the high and low parts may be independently swapped. */ 1301 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1302 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1303 1304 return fold_addsub2(ctx, op, true); 1305 } 1306 1307 static bool fold_and(OptContext *ctx, TCGOp *op) 1308 { 1309 uint64_t z1, z2, z_mask, s_mask; 1310 TempOptInfo *t1, *t2; 1311 1312 if (fold_const2_commutative(ctx, op) || 1313 fold_xi_to_i(ctx, op, 0) || 1314 fold_xi_to_x(ctx, op, -1) || 1315 fold_xx_to_x(ctx, op)) { 1316 return true; 1317 } 1318 1319 t1 = arg_info(op->args[1]); 1320 t2 = arg_info(op->args[2]); 1321 z1 = t1->z_mask; 1322 z2 = t2->z_mask; 1323 1324 /* 1325 * Known-zeros does not imply known-ones. Therefore unless 1326 * arg2 is constant, we can't infer affected bits from it. 1327 */ 1328 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1329 return true; 1330 } 1331 1332 z_mask = z1 & z2; 1333 1334 /* 1335 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1336 * Bitwise operations preserve the relative quantity of the repetitions. 1337 */ 1338 s_mask = t1->s_mask & t2->s_mask; 1339 1340 return fold_masks_zs(ctx, op, z_mask, s_mask); 1341 } 1342 1343 static bool fold_andc(OptContext *ctx, TCGOp *op) 1344 { 1345 uint64_t z_mask, s_mask; 1346 TempOptInfo *t1, *t2; 1347 1348 if (fold_const2(ctx, op) || 1349 fold_xx_to_i(ctx, op, 0) || 1350 fold_xi_to_x(ctx, op, 0) || 1351 fold_ix_to_not(ctx, op, -1)) { 1352 return true; 1353 } 1354 1355 t1 = arg_info(op->args[1]); 1356 t2 = arg_info(op->args[2]); 1357 z_mask = t1->z_mask; 1358 1359 if (ti_is_const(t2)) { 1360 /* Fold andc r,x,i to and r,x,~i. */ 1361 switch (ctx->type) { 1362 case TCG_TYPE_I32: 1363 case TCG_TYPE_I64: 1364 op->opc = INDEX_op_and; 1365 break; 1366 case TCG_TYPE_V64: 1367 case TCG_TYPE_V128: 1368 case TCG_TYPE_V256: 1369 op->opc = INDEX_op_and_vec; 1370 break; 1371 default: 1372 g_assert_not_reached(); 1373 } 1374 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 1375 return fold_and(ctx, op); 1376 } 1377 1378 /* 1379 * Known-zeros does not imply known-ones. Therefore unless 1380 * arg2 is constant, we can't infer anything from it. 1381 */ 1382 if (ti_is_const(t2)) { 1383 uint64_t v2 = ti_const_val(t2); 1384 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1385 return true; 1386 } 1387 z_mask &= ~v2; 1388 } 1389 1390 s_mask = t1->s_mask & t2->s_mask; 1391 return fold_masks_zs(ctx, op, z_mask, s_mask); 1392 } 1393 1394 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1395 { 1396 /* If true and false values are the same, eliminate the cmp. */ 1397 if (args_are_copies(op->args[2], op->args[3])) { 1398 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1399 } 1400 1401 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1402 uint64_t tv = arg_info(op->args[2])->val; 1403 uint64_t fv = arg_info(op->args[3])->val; 1404 1405 if (tv == -1 && fv == 0) { 1406 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1407 } 1408 if (tv == 0 && fv == -1) { 1409 if (TCG_TARGET_HAS_not_vec) { 1410 op->opc = INDEX_op_not_vec; 1411 return fold_not(ctx, op); 1412 } else { 1413 op->opc = INDEX_op_xor_vec; 1414 op->args[2] = arg_new_constant(ctx, -1); 1415 return fold_xor(ctx, op); 1416 } 1417 } 1418 } 1419 if (arg_is_const(op->args[2])) { 1420 uint64_t tv = arg_info(op->args[2])->val; 1421 if (tv == -1) { 1422 op->opc = INDEX_op_or_vec; 1423 op->args[2] = op->args[3]; 1424 return fold_or(ctx, op); 1425 } 1426 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1427 op->opc = INDEX_op_andc_vec; 1428 op->args[2] = op->args[1]; 1429 op->args[1] = op->args[3]; 1430 return fold_andc(ctx, op); 1431 } 1432 } 1433 if (arg_is_const(op->args[3])) { 1434 uint64_t fv = arg_info(op->args[3])->val; 1435 if (fv == 0) { 1436 op->opc = INDEX_op_and_vec; 1437 return fold_and(ctx, op); 1438 } 1439 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1440 op->opc = INDEX_op_orc_vec; 1441 op->args[2] = op->args[1]; 1442 op->args[1] = op->args[3]; 1443 return fold_orc(ctx, op); 1444 } 1445 } 1446 return finish_folding(ctx, op); 1447 } 1448 1449 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1450 { 1451 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1452 &op->args[1], &op->args[2]); 1453 if (i == 0) { 1454 tcg_op_remove(ctx->tcg, op); 1455 return true; 1456 } 1457 if (i > 0) { 1458 op->opc = INDEX_op_br; 1459 op->args[0] = op->args[3]; 1460 finish_ebb(ctx); 1461 } else { 1462 finish_bb(ctx); 1463 } 1464 return true; 1465 } 1466 1467 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1468 { 1469 TCGCond cond; 1470 TCGArg label; 1471 int i, inv = 0; 1472 1473 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1474 cond = op->args[4]; 1475 label = op->args[5]; 1476 if (i >= 0) { 1477 goto do_brcond_const; 1478 } 1479 1480 switch (cond) { 1481 case TCG_COND_LT: 1482 case TCG_COND_GE: 1483 /* 1484 * Simplify LT/GE comparisons vs zero to a single compare 1485 * vs the high word of the input. 1486 */ 1487 if (arg_is_const_val(op->args[2], 0) && 1488 arg_is_const_val(op->args[3], 0)) { 1489 goto do_brcond_high; 1490 } 1491 break; 1492 1493 case TCG_COND_NE: 1494 inv = 1; 1495 QEMU_FALLTHROUGH; 1496 case TCG_COND_EQ: 1497 /* 1498 * Simplify EQ/NE comparisons where one of the pairs 1499 * can be simplified. 1500 */ 1501 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1502 op->args[2], cond); 1503 switch (i ^ inv) { 1504 case 0: 1505 goto do_brcond_const; 1506 case 1: 1507 goto do_brcond_high; 1508 } 1509 1510 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1511 op->args[3], cond); 1512 switch (i ^ inv) { 1513 case 0: 1514 goto do_brcond_const; 1515 case 1: 1516 goto do_brcond_low; 1517 } 1518 break; 1519 1520 case TCG_COND_TSTEQ: 1521 case TCG_COND_TSTNE: 1522 if (arg_is_const_val(op->args[2], 0)) { 1523 goto do_brcond_high; 1524 } 1525 if (arg_is_const_val(op->args[3], 0)) { 1526 goto do_brcond_low; 1527 } 1528 break; 1529 1530 default: 1531 break; 1532 1533 do_brcond_low: 1534 op->opc = INDEX_op_brcond_i32; 1535 op->args[1] = op->args[2]; 1536 op->args[2] = cond; 1537 op->args[3] = label; 1538 return fold_brcond(ctx, op); 1539 1540 do_brcond_high: 1541 op->opc = INDEX_op_brcond_i32; 1542 op->args[0] = op->args[1]; 1543 op->args[1] = op->args[3]; 1544 op->args[2] = cond; 1545 op->args[3] = label; 1546 return fold_brcond(ctx, op); 1547 1548 do_brcond_const: 1549 if (i == 0) { 1550 tcg_op_remove(ctx->tcg, op); 1551 return true; 1552 } 1553 op->opc = INDEX_op_br; 1554 op->args[0] = label; 1555 finish_ebb(ctx); 1556 return true; 1557 } 1558 1559 finish_bb(ctx); 1560 return true; 1561 } 1562 1563 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1564 { 1565 uint64_t z_mask, s_mask, sign; 1566 TempOptInfo *t1 = arg_info(op->args[1]); 1567 1568 if (ti_is_const(t1)) { 1569 return tcg_opt_gen_movi(ctx, op, op->args[0], 1570 do_constant_folding(op->opc, ctx->type, 1571 ti_const_val(t1), 1572 op->args[2])); 1573 } 1574 1575 z_mask = t1->z_mask; 1576 switch (op->opc) { 1577 case INDEX_op_bswap16_i32: 1578 case INDEX_op_bswap16_i64: 1579 z_mask = bswap16(z_mask); 1580 sign = INT16_MIN; 1581 break; 1582 case INDEX_op_bswap32_i32: 1583 case INDEX_op_bswap32_i64: 1584 z_mask = bswap32(z_mask); 1585 sign = INT32_MIN; 1586 break; 1587 case INDEX_op_bswap64_i64: 1588 z_mask = bswap64(z_mask); 1589 sign = INT64_MIN; 1590 break; 1591 default: 1592 g_assert_not_reached(); 1593 } 1594 1595 s_mask = 0; 1596 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1597 case TCG_BSWAP_OZ: 1598 break; 1599 case TCG_BSWAP_OS: 1600 /* If the sign bit may be 1, force all the bits above to 1. */ 1601 if (z_mask & sign) { 1602 z_mask |= sign; 1603 } 1604 /* The value and therefore s_mask is explicitly sign-extended. */ 1605 s_mask = sign; 1606 break; 1607 default: 1608 /* The high bits are undefined: force all bits above the sign to 1. */ 1609 z_mask |= sign << 1; 1610 break; 1611 } 1612 1613 return fold_masks_zs(ctx, op, z_mask, s_mask); 1614 } 1615 1616 static bool fold_call(OptContext *ctx, TCGOp *op) 1617 { 1618 TCGContext *s = ctx->tcg; 1619 int nb_oargs = TCGOP_CALLO(op); 1620 int nb_iargs = TCGOP_CALLI(op); 1621 int flags, i; 1622 1623 init_arguments(ctx, op, nb_oargs + nb_iargs); 1624 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1625 1626 /* If the function reads or writes globals, reset temp data. */ 1627 flags = tcg_call_flags(op); 1628 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1629 int nb_globals = s->nb_globals; 1630 1631 for (i = 0; i < nb_globals; i++) { 1632 if (test_bit(i, ctx->temps_used.l)) { 1633 reset_ts(ctx, &ctx->tcg->temps[i]); 1634 } 1635 } 1636 } 1637 1638 /* If the function has side effects, reset mem data. */ 1639 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1640 remove_mem_copy_all(ctx); 1641 } 1642 1643 /* Reset temp data for outputs. */ 1644 for (i = 0; i < nb_oargs; i++) { 1645 reset_temp(ctx, op->args[i]); 1646 } 1647 1648 /* Stop optimizing MB across calls. */ 1649 ctx->prev_mb = NULL; 1650 return true; 1651 } 1652 1653 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1654 { 1655 /* Canonicalize the comparison to put immediate second. */ 1656 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1657 op->args[3] = tcg_swap_cond(op->args[3]); 1658 } 1659 return finish_folding(ctx, op); 1660 } 1661 1662 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1663 { 1664 /* If true and false values are the same, eliminate the cmp. */ 1665 if (args_are_copies(op->args[3], op->args[4])) { 1666 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1667 } 1668 1669 /* Canonicalize the comparison to put immediate second. */ 1670 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1671 op->args[5] = tcg_swap_cond(op->args[5]); 1672 } 1673 /* 1674 * Canonicalize the "false" input reg to match the destination, 1675 * so that the tcg backend can implement "move if true". 1676 */ 1677 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1678 op->args[5] = tcg_invert_cond(op->args[5]); 1679 } 1680 return finish_folding(ctx, op); 1681 } 1682 1683 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1684 { 1685 uint64_t z_mask, s_mask; 1686 TempOptInfo *t1 = arg_info(op->args[1]); 1687 TempOptInfo *t2 = arg_info(op->args[2]); 1688 1689 if (ti_is_const(t1)) { 1690 uint64_t t = ti_const_val(t1); 1691 1692 if (t != 0) { 1693 t = do_constant_folding(op->opc, ctx->type, t, 0); 1694 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1695 } 1696 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1697 } 1698 1699 switch (ctx->type) { 1700 case TCG_TYPE_I32: 1701 z_mask = 31; 1702 break; 1703 case TCG_TYPE_I64: 1704 z_mask = 63; 1705 break; 1706 default: 1707 g_assert_not_reached(); 1708 } 1709 s_mask = ~z_mask; 1710 z_mask |= t2->z_mask; 1711 s_mask &= t2->s_mask; 1712 1713 return fold_masks_zs(ctx, op, z_mask, s_mask); 1714 } 1715 1716 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1717 { 1718 uint64_t z_mask; 1719 1720 if (fold_const1(ctx, op)) { 1721 return true; 1722 } 1723 1724 switch (ctx->type) { 1725 case TCG_TYPE_I32: 1726 z_mask = 32 | 31; 1727 break; 1728 case TCG_TYPE_I64: 1729 z_mask = 64 | 63; 1730 break; 1731 default: 1732 g_assert_not_reached(); 1733 } 1734 return fold_masks_z(ctx, op, z_mask); 1735 } 1736 1737 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1738 { 1739 TempOptInfo *t1 = arg_info(op->args[1]); 1740 TempOptInfo *t2 = arg_info(op->args[2]); 1741 int ofs = op->args[3]; 1742 int len = op->args[4]; 1743 int width = 8 * tcg_type_size(ctx->type); 1744 uint64_t z_mask, s_mask; 1745 1746 if (ti_is_const(t1) && ti_is_const(t2)) { 1747 return tcg_opt_gen_movi(ctx, op, op->args[0], 1748 deposit64(ti_const_val(t1), ofs, len, 1749 ti_const_val(t2))); 1750 } 1751 1752 /* Inserting a value into zero at offset 0. */ 1753 if (ti_is_const_val(t1, 0) && ofs == 0) { 1754 uint64_t mask = MAKE_64BIT_MASK(0, len); 1755 1756 op->opc = INDEX_op_and; 1757 op->args[1] = op->args[2]; 1758 op->args[2] = arg_new_constant(ctx, mask); 1759 return fold_and(ctx, op); 1760 } 1761 1762 /* Inserting zero into a value. */ 1763 if (ti_is_const_val(t2, 0)) { 1764 uint64_t mask = deposit64(-1, ofs, len, 0); 1765 1766 op->opc = INDEX_op_and; 1767 op->args[2] = arg_new_constant(ctx, mask); 1768 return fold_and(ctx, op); 1769 } 1770 1771 /* The s_mask from the top portion of the deposit is still valid. */ 1772 if (ofs + len == width) { 1773 s_mask = t2->s_mask << ofs; 1774 } else { 1775 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1776 } 1777 1778 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1779 return fold_masks_zs(ctx, op, z_mask, s_mask); 1780 } 1781 1782 static bool fold_divide(OptContext *ctx, TCGOp *op) 1783 { 1784 if (fold_const2(ctx, op) || 1785 fold_xi_to_x(ctx, op, 1)) { 1786 return true; 1787 } 1788 return finish_folding(ctx, op); 1789 } 1790 1791 static bool fold_dup(OptContext *ctx, TCGOp *op) 1792 { 1793 if (arg_is_const(op->args[1])) { 1794 uint64_t t = arg_info(op->args[1])->val; 1795 t = dup_const(TCGOP_VECE(op), t); 1796 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1797 } 1798 return finish_folding(ctx, op); 1799 } 1800 1801 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1802 { 1803 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1804 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1805 arg_info(op->args[2])->val); 1806 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1807 } 1808 1809 if (args_are_copies(op->args[1], op->args[2])) { 1810 op->opc = INDEX_op_dup_vec; 1811 TCGOP_VECE(op) = MO_32; 1812 } 1813 return finish_folding(ctx, op); 1814 } 1815 1816 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1817 { 1818 uint64_t s_mask; 1819 TempOptInfo *t1, *t2; 1820 1821 if (fold_const2_commutative(ctx, op) || 1822 fold_xi_to_x(ctx, op, -1) || 1823 fold_xi_to_not(ctx, op, 0)) { 1824 return true; 1825 } 1826 1827 t2 = arg_info(op->args[2]); 1828 if (ti_is_const(t2)) { 1829 /* Fold eqv r,x,i to xor r,x,~i. */ 1830 switch (ctx->type) { 1831 case TCG_TYPE_I32: 1832 case TCG_TYPE_I64: 1833 op->opc = INDEX_op_xor; 1834 break; 1835 case TCG_TYPE_V64: 1836 case TCG_TYPE_V128: 1837 case TCG_TYPE_V256: 1838 op->opc = INDEX_op_xor_vec; 1839 break; 1840 default: 1841 g_assert_not_reached(); 1842 } 1843 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 1844 return fold_xor(ctx, op); 1845 } 1846 1847 t1 = arg_info(op->args[1]); 1848 s_mask = t1->s_mask & t2->s_mask; 1849 return fold_masks_s(ctx, op, s_mask); 1850 } 1851 1852 static bool fold_extract(OptContext *ctx, TCGOp *op) 1853 { 1854 uint64_t z_mask_old, z_mask; 1855 TempOptInfo *t1 = arg_info(op->args[1]); 1856 int pos = op->args[2]; 1857 int len = op->args[3]; 1858 1859 if (ti_is_const(t1)) { 1860 return tcg_opt_gen_movi(ctx, op, op->args[0], 1861 extract64(ti_const_val(t1), pos, len)); 1862 } 1863 1864 z_mask_old = t1->z_mask; 1865 z_mask = extract64(z_mask_old, pos, len); 1866 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1867 return true; 1868 } 1869 1870 return fold_masks_z(ctx, op, z_mask); 1871 } 1872 1873 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1874 { 1875 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1876 uint64_t v1 = arg_info(op->args[1])->val; 1877 uint64_t v2 = arg_info(op->args[2])->val; 1878 int shr = op->args[3]; 1879 1880 if (op->opc == INDEX_op_extract2_i64) { 1881 v1 >>= shr; 1882 v2 <<= 64 - shr; 1883 } else { 1884 v1 = (uint32_t)v1 >> shr; 1885 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1886 } 1887 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1888 } 1889 return finish_folding(ctx, op); 1890 } 1891 1892 static bool fold_exts(OptContext *ctx, TCGOp *op) 1893 { 1894 uint64_t s_mask, z_mask; 1895 TempOptInfo *t1; 1896 1897 if (fold_const1(ctx, op)) { 1898 return true; 1899 } 1900 1901 t1 = arg_info(op->args[1]); 1902 z_mask = t1->z_mask; 1903 s_mask = t1->s_mask; 1904 1905 switch (op->opc) { 1906 case INDEX_op_ext_i32_i64: 1907 s_mask |= INT32_MIN; 1908 z_mask = (int32_t)z_mask; 1909 break; 1910 default: 1911 g_assert_not_reached(); 1912 } 1913 return fold_masks_zs(ctx, op, z_mask, s_mask); 1914 } 1915 1916 static bool fold_extu(OptContext *ctx, TCGOp *op) 1917 { 1918 uint64_t z_mask; 1919 1920 if (fold_const1(ctx, op)) { 1921 return true; 1922 } 1923 1924 z_mask = arg_info(op->args[1])->z_mask; 1925 switch (op->opc) { 1926 case INDEX_op_extrl_i64_i32: 1927 case INDEX_op_extu_i32_i64: 1928 z_mask = (uint32_t)z_mask; 1929 break; 1930 case INDEX_op_extrh_i64_i32: 1931 z_mask >>= 32; 1932 break; 1933 default: 1934 g_assert_not_reached(); 1935 } 1936 return fold_masks_z(ctx, op, z_mask); 1937 } 1938 1939 static bool fold_mb(OptContext *ctx, TCGOp *op) 1940 { 1941 /* Eliminate duplicate and redundant fence instructions. */ 1942 if (ctx->prev_mb) { 1943 /* 1944 * Merge two barriers of the same type into one, 1945 * or a weaker barrier into a stronger one, 1946 * or two weaker barriers into a stronger one. 1947 * mb X; mb Y => mb X|Y 1948 * mb; strl => mb; st 1949 * ldaq; mb => ld; mb 1950 * ldaq; strl => ld; mb; st 1951 * Other combinations are also merged into a strong 1952 * barrier. This is stricter than specified but for 1953 * the purposes of TCG is better than not optimizing. 1954 */ 1955 ctx->prev_mb->args[0] |= op->args[0]; 1956 tcg_op_remove(ctx->tcg, op); 1957 } else { 1958 ctx->prev_mb = op; 1959 } 1960 return true; 1961 } 1962 1963 static bool fold_mov(OptContext *ctx, TCGOp *op) 1964 { 1965 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1966 } 1967 1968 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1969 { 1970 uint64_t z_mask, s_mask; 1971 TempOptInfo *tt, *ft; 1972 int i; 1973 1974 /* If true and false values are the same, eliminate the cmp. */ 1975 if (args_are_copies(op->args[3], op->args[4])) { 1976 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1977 } 1978 1979 /* 1980 * Canonicalize the "false" input reg to match the destination reg so 1981 * that the tcg backend can implement a "move if true" operation. 1982 */ 1983 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1984 op->args[5] = tcg_invert_cond(op->args[5]); 1985 } 1986 1987 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1988 &op->args[2], &op->args[5]); 1989 if (i >= 0) { 1990 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1991 } 1992 1993 tt = arg_info(op->args[3]); 1994 ft = arg_info(op->args[4]); 1995 z_mask = tt->z_mask | ft->z_mask; 1996 s_mask = tt->s_mask & ft->s_mask; 1997 1998 if (ti_is_const(tt) && ti_is_const(ft)) { 1999 uint64_t tv = ti_const_val(tt); 2000 uint64_t fv = ti_const_val(ft); 2001 TCGOpcode opc, negopc = 0; 2002 TCGCond cond = op->args[5]; 2003 2004 switch (ctx->type) { 2005 case TCG_TYPE_I32: 2006 opc = INDEX_op_setcond_i32; 2007 if (TCG_TARGET_HAS_negsetcond_i32) { 2008 negopc = INDEX_op_negsetcond_i32; 2009 } 2010 tv = (int32_t)tv; 2011 fv = (int32_t)fv; 2012 break; 2013 case TCG_TYPE_I64: 2014 opc = INDEX_op_setcond_i64; 2015 if (TCG_TARGET_HAS_negsetcond_i64) { 2016 negopc = INDEX_op_negsetcond_i64; 2017 } 2018 break; 2019 default: 2020 g_assert_not_reached(); 2021 } 2022 2023 if (tv == 1 && fv == 0) { 2024 op->opc = opc; 2025 op->args[3] = cond; 2026 } else if (fv == 1 && tv == 0) { 2027 op->opc = opc; 2028 op->args[3] = tcg_invert_cond(cond); 2029 } else if (negopc) { 2030 if (tv == -1 && fv == 0) { 2031 op->opc = negopc; 2032 op->args[3] = cond; 2033 } else if (fv == -1 && tv == 0) { 2034 op->opc = negopc; 2035 op->args[3] = tcg_invert_cond(cond); 2036 } 2037 } 2038 } 2039 2040 return fold_masks_zs(ctx, op, z_mask, s_mask); 2041 } 2042 2043 static bool fold_mul(OptContext *ctx, TCGOp *op) 2044 { 2045 if (fold_const2(ctx, op) || 2046 fold_xi_to_i(ctx, op, 0) || 2047 fold_xi_to_x(ctx, op, 1)) { 2048 return true; 2049 } 2050 return finish_folding(ctx, op); 2051 } 2052 2053 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2054 { 2055 if (fold_const2_commutative(ctx, op) || 2056 fold_xi_to_i(ctx, op, 0)) { 2057 return true; 2058 } 2059 return finish_folding(ctx, op); 2060 } 2061 2062 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2063 { 2064 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2065 2066 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2067 uint64_t a = arg_info(op->args[2])->val; 2068 uint64_t b = arg_info(op->args[3])->val; 2069 uint64_t h, l; 2070 TCGArg rl, rh; 2071 TCGOp *op2; 2072 2073 switch (op->opc) { 2074 case INDEX_op_mulu2_i32: 2075 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2076 h = (int32_t)(l >> 32); 2077 l = (int32_t)l; 2078 break; 2079 case INDEX_op_muls2_i32: 2080 l = (int64_t)(int32_t)a * (int32_t)b; 2081 h = l >> 32; 2082 l = (int32_t)l; 2083 break; 2084 case INDEX_op_mulu2_i64: 2085 mulu64(&l, &h, a, b); 2086 break; 2087 case INDEX_op_muls2_i64: 2088 muls64(&l, &h, a, b); 2089 break; 2090 default: 2091 g_assert_not_reached(); 2092 } 2093 2094 rl = op->args[0]; 2095 rh = op->args[1]; 2096 2097 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2098 op2 = opt_insert_before(ctx, op, 0, 2); 2099 2100 tcg_opt_gen_movi(ctx, op, rl, l); 2101 tcg_opt_gen_movi(ctx, op2, rh, h); 2102 return true; 2103 } 2104 return finish_folding(ctx, op); 2105 } 2106 2107 static bool fold_nand(OptContext *ctx, TCGOp *op) 2108 { 2109 uint64_t s_mask; 2110 2111 if (fold_const2_commutative(ctx, op) || 2112 fold_xi_to_not(ctx, op, -1)) { 2113 return true; 2114 } 2115 2116 s_mask = arg_info(op->args[1])->s_mask 2117 & arg_info(op->args[2])->s_mask; 2118 return fold_masks_s(ctx, op, s_mask); 2119 } 2120 2121 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2122 { 2123 /* Set to 1 all bits to the left of the rightmost. */ 2124 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2125 z_mask = -(z_mask & -z_mask); 2126 2127 return fold_masks_z(ctx, op, z_mask); 2128 } 2129 2130 static bool fold_neg(OptContext *ctx, TCGOp *op) 2131 { 2132 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2133 } 2134 2135 static bool fold_nor(OptContext *ctx, TCGOp *op) 2136 { 2137 uint64_t s_mask; 2138 2139 if (fold_const2_commutative(ctx, op) || 2140 fold_xi_to_not(ctx, op, 0)) { 2141 return true; 2142 } 2143 2144 s_mask = arg_info(op->args[1])->s_mask 2145 & arg_info(op->args[2])->s_mask; 2146 return fold_masks_s(ctx, op, s_mask); 2147 } 2148 2149 static bool fold_not(OptContext *ctx, TCGOp *op) 2150 { 2151 if (fold_const1(ctx, op)) { 2152 return true; 2153 } 2154 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2155 } 2156 2157 static bool fold_or(OptContext *ctx, TCGOp *op) 2158 { 2159 uint64_t z_mask, s_mask; 2160 TempOptInfo *t1, *t2; 2161 2162 if (fold_const2_commutative(ctx, op) || 2163 fold_xi_to_x(ctx, op, 0) || 2164 fold_xx_to_x(ctx, op)) { 2165 return true; 2166 } 2167 2168 t1 = arg_info(op->args[1]); 2169 t2 = arg_info(op->args[2]); 2170 z_mask = t1->z_mask | t2->z_mask; 2171 s_mask = t1->s_mask & t2->s_mask; 2172 return fold_masks_zs(ctx, op, z_mask, s_mask); 2173 } 2174 2175 static bool fold_orc(OptContext *ctx, TCGOp *op) 2176 { 2177 uint64_t s_mask; 2178 TempOptInfo *t1, *t2; 2179 2180 if (fold_const2(ctx, op) || 2181 fold_xx_to_i(ctx, op, -1) || 2182 fold_xi_to_x(ctx, op, -1) || 2183 fold_ix_to_not(ctx, op, 0)) { 2184 return true; 2185 } 2186 2187 t2 = arg_info(op->args[2]); 2188 if (ti_is_const(t2)) { 2189 /* Fold orc r,x,i to or r,x,~i. */ 2190 switch (ctx->type) { 2191 case TCG_TYPE_I32: 2192 case TCG_TYPE_I64: 2193 op->opc = INDEX_op_or; 2194 break; 2195 case TCG_TYPE_V64: 2196 case TCG_TYPE_V128: 2197 case TCG_TYPE_V256: 2198 op->opc = INDEX_op_or_vec; 2199 break; 2200 default: 2201 g_assert_not_reached(); 2202 } 2203 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 2204 return fold_or(ctx, op); 2205 } 2206 2207 t1 = arg_info(op->args[1]); 2208 s_mask = t1->s_mask & t2->s_mask; 2209 return fold_masks_s(ctx, op, s_mask); 2210 } 2211 2212 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2213 { 2214 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2215 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2216 MemOp mop = get_memop(oi); 2217 int width = 8 * memop_size(mop); 2218 uint64_t z_mask = -1, s_mask = 0; 2219 2220 if (width < 64) { 2221 if (mop & MO_SIGN) { 2222 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2223 } else { 2224 z_mask = MAKE_64BIT_MASK(0, width); 2225 } 2226 } 2227 2228 /* Opcodes that touch guest memory stop the mb optimization. */ 2229 ctx->prev_mb = NULL; 2230 2231 return fold_masks_zs(ctx, op, z_mask, s_mask); 2232 } 2233 2234 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2235 { 2236 /* Opcodes that touch guest memory stop the mb optimization. */ 2237 ctx->prev_mb = NULL; 2238 return finish_folding(ctx, op); 2239 } 2240 2241 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2242 { 2243 /* Opcodes that touch guest memory stop the mb optimization. */ 2244 ctx->prev_mb = NULL; 2245 return true; 2246 } 2247 2248 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2249 { 2250 if (fold_const2(ctx, op) || 2251 fold_xx_to_i(ctx, op, 0)) { 2252 return true; 2253 } 2254 return finish_folding(ctx, op); 2255 } 2256 2257 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2258 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2259 { 2260 uint64_t a_zmask, b_val; 2261 TCGCond cond; 2262 2263 if (!arg_is_const(op->args[2])) { 2264 return false; 2265 } 2266 2267 a_zmask = arg_info(op->args[1])->z_mask; 2268 b_val = arg_info(op->args[2])->val; 2269 cond = op->args[3]; 2270 2271 if (ctx->type == TCG_TYPE_I32) { 2272 a_zmask = (uint32_t)a_zmask; 2273 b_val = (uint32_t)b_val; 2274 } 2275 2276 /* 2277 * A with only low bits set vs B with high bits set means that A < B. 2278 */ 2279 if (a_zmask < b_val) { 2280 bool inv = false; 2281 2282 switch (cond) { 2283 case TCG_COND_NE: 2284 case TCG_COND_LEU: 2285 case TCG_COND_LTU: 2286 inv = true; 2287 /* fall through */ 2288 case TCG_COND_GTU: 2289 case TCG_COND_GEU: 2290 case TCG_COND_EQ: 2291 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2292 default: 2293 break; 2294 } 2295 } 2296 2297 /* 2298 * A with only lsb set is already boolean. 2299 */ 2300 if (a_zmask <= 1) { 2301 bool convert = false; 2302 bool inv = false; 2303 2304 switch (cond) { 2305 case TCG_COND_EQ: 2306 inv = true; 2307 /* fall through */ 2308 case TCG_COND_NE: 2309 convert = (b_val == 0); 2310 break; 2311 case TCG_COND_LTU: 2312 case TCG_COND_TSTEQ: 2313 inv = true; 2314 /* fall through */ 2315 case TCG_COND_GEU: 2316 case TCG_COND_TSTNE: 2317 convert = (b_val == 1); 2318 break; 2319 default: 2320 break; 2321 } 2322 if (convert) { 2323 if (!inv && !neg) { 2324 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2325 } 2326 2327 if (!inv) { 2328 op->opc = INDEX_op_neg; 2329 } else if (neg) { 2330 op->opc = INDEX_op_add; 2331 op->args[2] = arg_new_constant(ctx, -1); 2332 } else { 2333 op->opc = INDEX_op_xor; 2334 op->args[2] = arg_new_constant(ctx, 1); 2335 } 2336 return -1; 2337 } 2338 } 2339 return 0; 2340 } 2341 2342 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2343 { 2344 TCGOpcode shr_opc; 2345 TCGOpcode uext_opc = 0, sext_opc = 0; 2346 TCGCond cond = op->args[3]; 2347 TCGArg ret, src1, src2; 2348 TCGOp *op2; 2349 uint64_t val; 2350 int sh; 2351 bool inv; 2352 2353 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2354 return; 2355 } 2356 2357 src2 = op->args[2]; 2358 val = arg_info(src2)->val; 2359 if (!is_power_of_2(val)) { 2360 return; 2361 } 2362 sh = ctz64(val); 2363 2364 switch (ctx->type) { 2365 case TCG_TYPE_I32: 2366 shr_opc = INDEX_op_shr_i32; 2367 if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) { 2368 uext_opc = INDEX_op_extract_i32; 2369 } 2370 if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) { 2371 sext_opc = INDEX_op_sextract_i32; 2372 } 2373 break; 2374 case TCG_TYPE_I64: 2375 shr_opc = INDEX_op_shr_i64; 2376 if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) { 2377 uext_opc = INDEX_op_extract_i64; 2378 } 2379 if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) { 2380 sext_opc = INDEX_op_sextract_i64; 2381 } 2382 break; 2383 default: 2384 g_assert_not_reached(); 2385 } 2386 2387 ret = op->args[0]; 2388 src1 = op->args[1]; 2389 inv = cond == TCG_COND_TSTEQ; 2390 2391 if (sh && sext_opc && neg && !inv) { 2392 op->opc = sext_opc; 2393 op->args[1] = src1; 2394 op->args[2] = sh; 2395 op->args[3] = 1; 2396 return; 2397 } else if (sh && uext_opc) { 2398 op->opc = uext_opc; 2399 op->args[1] = src1; 2400 op->args[2] = sh; 2401 op->args[3] = 1; 2402 } else { 2403 if (sh) { 2404 op2 = opt_insert_before(ctx, op, shr_opc, 3); 2405 op2->args[0] = ret; 2406 op2->args[1] = src1; 2407 op2->args[2] = arg_new_constant(ctx, sh); 2408 src1 = ret; 2409 } 2410 op->opc = INDEX_op_and; 2411 op->args[1] = src1; 2412 op->args[2] = arg_new_constant(ctx, 1); 2413 } 2414 2415 if (neg && inv) { 2416 op2 = opt_insert_after(ctx, op, INDEX_op_add, 3); 2417 op2->args[0] = ret; 2418 op2->args[1] = ret; 2419 op2->args[2] = arg_new_constant(ctx, -1); 2420 } else if (inv) { 2421 op2 = opt_insert_after(ctx, op, INDEX_op_xor, 3); 2422 op2->args[0] = ret; 2423 op2->args[1] = ret; 2424 op2->args[2] = arg_new_constant(ctx, 1); 2425 } else if (neg) { 2426 op2 = opt_insert_after(ctx, op, INDEX_op_neg, 2); 2427 op2->args[0] = ret; 2428 op2->args[1] = ret; 2429 } 2430 } 2431 2432 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2433 { 2434 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2435 &op->args[2], &op->args[3]); 2436 if (i >= 0) { 2437 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2438 } 2439 2440 i = fold_setcond_zmask(ctx, op, false); 2441 if (i > 0) { 2442 return true; 2443 } 2444 if (i == 0) { 2445 fold_setcond_tst_pow2(ctx, op, false); 2446 } 2447 2448 return fold_masks_z(ctx, op, 1); 2449 } 2450 2451 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2452 { 2453 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2454 &op->args[2], &op->args[3]); 2455 if (i >= 0) { 2456 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2457 } 2458 2459 i = fold_setcond_zmask(ctx, op, true); 2460 if (i > 0) { 2461 return true; 2462 } 2463 if (i == 0) { 2464 fold_setcond_tst_pow2(ctx, op, true); 2465 } 2466 2467 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2468 return fold_masks_s(ctx, op, -1); 2469 } 2470 2471 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2472 { 2473 TCGCond cond; 2474 int i, inv = 0; 2475 2476 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2477 cond = op->args[5]; 2478 if (i >= 0) { 2479 goto do_setcond_const; 2480 } 2481 2482 switch (cond) { 2483 case TCG_COND_LT: 2484 case TCG_COND_GE: 2485 /* 2486 * Simplify LT/GE comparisons vs zero to a single compare 2487 * vs the high word of the input. 2488 */ 2489 if (arg_is_const_val(op->args[3], 0) && 2490 arg_is_const_val(op->args[4], 0)) { 2491 goto do_setcond_high; 2492 } 2493 break; 2494 2495 case TCG_COND_NE: 2496 inv = 1; 2497 QEMU_FALLTHROUGH; 2498 case TCG_COND_EQ: 2499 /* 2500 * Simplify EQ/NE comparisons where one of the pairs 2501 * can be simplified. 2502 */ 2503 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2504 op->args[3], cond); 2505 switch (i ^ inv) { 2506 case 0: 2507 goto do_setcond_const; 2508 case 1: 2509 goto do_setcond_high; 2510 } 2511 2512 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2513 op->args[4], cond); 2514 switch (i ^ inv) { 2515 case 0: 2516 goto do_setcond_const; 2517 case 1: 2518 goto do_setcond_low; 2519 } 2520 break; 2521 2522 case TCG_COND_TSTEQ: 2523 case TCG_COND_TSTNE: 2524 if (arg_is_const_val(op->args[3], 0)) { 2525 goto do_setcond_high; 2526 } 2527 if (arg_is_const_val(op->args[4], 0)) { 2528 goto do_setcond_low; 2529 } 2530 break; 2531 2532 default: 2533 break; 2534 2535 do_setcond_low: 2536 op->args[2] = op->args[3]; 2537 op->args[3] = cond; 2538 op->opc = INDEX_op_setcond_i32; 2539 return fold_setcond(ctx, op); 2540 2541 do_setcond_high: 2542 op->args[1] = op->args[2]; 2543 op->args[2] = op->args[4]; 2544 op->args[3] = cond; 2545 op->opc = INDEX_op_setcond_i32; 2546 return fold_setcond(ctx, op); 2547 } 2548 2549 return fold_masks_z(ctx, op, 1); 2550 2551 do_setcond_const: 2552 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2553 } 2554 2555 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2556 { 2557 uint64_t z_mask, s_mask, s_mask_old; 2558 TempOptInfo *t1 = arg_info(op->args[1]); 2559 int pos = op->args[2]; 2560 int len = op->args[3]; 2561 2562 if (ti_is_const(t1)) { 2563 return tcg_opt_gen_movi(ctx, op, op->args[0], 2564 sextract64(ti_const_val(t1), pos, len)); 2565 } 2566 2567 s_mask_old = t1->s_mask; 2568 s_mask = s_mask_old >> pos; 2569 s_mask |= -1ull << (len - 1); 2570 2571 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2572 return true; 2573 } 2574 2575 z_mask = sextract64(t1->z_mask, pos, len); 2576 return fold_masks_zs(ctx, op, z_mask, s_mask); 2577 } 2578 2579 static bool fold_shift(OptContext *ctx, TCGOp *op) 2580 { 2581 uint64_t s_mask, z_mask; 2582 TempOptInfo *t1, *t2; 2583 2584 if (fold_const2(ctx, op) || 2585 fold_ix_to_i(ctx, op, 0) || 2586 fold_xi_to_x(ctx, op, 0)) { 2587 return true; 2588 } 2589 2590 t1 = arg_info(op->args[1]); 2591 t2 = arg_info(op->args[2]); 2592 s_mask = t1->s_mask; 2593 z_mask = t1->z_mask; 2594 2595 if (ti_is_const(t2)) { 2596 int sh = ti_const_val(t2); 2597 2598 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2599 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2600 2601 return fold_masks_zs(ctx, op, z_mask, s_mask); 2602 } 2603 2604 switch (op->opc) { 2605 CASE_OP_32_64(sar): 2606 /* 2607 * Arithmetic right shift will not reduce the number of 2608 * input sign repetitions. 2609 */ 2610 return fold_masks_s(ctx, op, s_mask); 2611 CASE_OP_32_64(shr): 2612 /* 2613 * If the sign bit is known zero, then logical right shift 2614 * will not reduce the number of input sign repetitions. 2615 */ 2616 if (~z_mask & -s_mask) { 2617 return fold_masks_s(ctx, op, s_mask); 2618 } 2619 break; 2620 default: 2621 break; 2622 } 2623 2624 return finish_folding(ctx, op); 2625 } 2626 2627 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2628 { 2629 TCGOpcode neg_op; 2630 bool have_neg; 2631 2632 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2633 return false; 2634 } 2635 2636 switch (ctx->type) { 2637 case TCG_TYPE_I32: 2638 case TCG_TYPE_I64: 2639 neg_op = INDEX_op_neg; 2640 have_neg = true; 2641 break; 2642 case TCG_TYPE_V64: 2643 case TCG_TYPE_V128: 2644 case TCG_TYPE_V256: 2645 neg_op = INDEX_op_neg_vec; 2646 have_neg = (TCG_TARGET_HAS_neg_vec && 2647 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2648 break; 2649 default: 2650 g_assert_not_reached(); 2651 } 2652 if (have_neg) { 2653 op->opc = neg_op; 2654 op->args[1] = op->args[2]; 2655 return fold_neg_no_const(ctx, op); 2656 } 2657 return false; 2658 } 2659 2660 /* We cannot as yet do_constant_folding with vectors. */ 2661 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2662 { 2663 if (fold_xx_to_i(ctx, op, 0) || 2664 fold_xi_to_x(ctx, op, 0) || 2665 fold_sub_to_neg(ctx, op)) { 2666 return true; 2667 } 2668 return finish_folding(ctx, op); 2669 } 2670 2671 static bool fold_sub(OptContext *ctx, TCGOp *op) 2672 { 2673 if (fold_const2(ctx, op) || 2674 fold_xx_to_i(ctx, op, 0) || 2675 fold_xi_to_x(ctx, op, 0) || 2676 fold_sub_to_neg(ctx, op)) { 2677 return true; 2678 } 2679 2680 /* Fold sub r,x,i to add r,x,-i */ 2681 if (arg_is_const(op->args[2])) { 2682 uint64_t val = arg_info(op->args[2])->val; 2683 2684 op->opc = INDEX_op_add; 2685 op->args[2] = arg_new_constant(ctx, -val); 2686 } 2687 return finish_folding(ctx, op); 2688 } 2689 2690 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2691 { 2692 return fold_addsub2(ctx, op, false); 2693 } 2694 2695 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2696 { 2697 uint64_t z_mask = -1, s_mask = 0; 2698 2699 /* We can't do any folding with a load, but we can record bits. */ 2700 switch (op->opc) { 2701 CASE_OP_32_64(ld8s): 2702 s_mask = INT8_MIN; 2703 break; 2704 CASE_OP_32_64(ld8u): 2705 z_mask = MAKE_64BIT_MASK(0, 8); 2706 break; 2707 CASE_OP_32_64(ld16s): 2708 s_mask = INT16_MIN; 2709 break; 2710 CASE_OP_32_64(ld16u): 2711 z_mask = MAKE_64BIT_MASK(0, 16); 2712 break; 2713 case INDEX_op_ld32s_i64: 2714 s_mask = INT32_MIN; 2715 break; 2716 case INDEX_op_ld32u_i64: 2717 z_mask = MAKE_64BIT_MASK(0, 32); 2718 break; 2719 default: 2720 g_assert_not_reached(); 2721 } 2722 return fold_masks_zs(ctx, op, z_mask, s_mask); 2723 } 2724 2725 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2726 { 2727 TCGTemp *dst, *src; 2728 intptr_t ofs; 2729 TCGType type; 2730 2731 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2732 return finish_folding(ctx, op); 2733 } 2734 2735 type = ctx->type; 2736 ofs = op->args[2]; 2737 dst = arg_temp(op->args[0]); 2738 src = find_mem_copy_for(ctx, type, ofs); 2739 if (src && src->base_type == type) { 2740 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2741 } 2742 2743 reset_ts(ctx, dst); 2744 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2745 return true; 2746 } 2747 2748 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2749 { 2750 intptr_t ofs = op->args[2]; 2751 intptr_t lm1; 2752 2753 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2754 remove_mem_copy_all(ctx); 2755 return true; 2756 } 2757 2758 switch (op->opc) { 2759 CASE_OP_32_64(st8): 2760 lm1 = 0; 2761 break; 2762 CASE_OP_32_64(st16): 2763 lm1 = 1; 2764 break; 2765 case INDEX_op_st32_i64: 2766 case INDEX_op_st_i32: 2767 lm1 = 3; 2768 break; 2769 case INDEX_op_st_i64: 2770 lm1 = 7; 2771 break; 2772 case INDEX_op_st_vec: 2773 lm1 = tcg_type_size(ctx->type) - 1; 2774 break; 2775 default: 2776 g_assert_not_reached(); 2777 } 2778 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2779 return true; 2780 } 2781 2782 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2783 { 2784 TCGTemp *src; 2785 intptr_t ofs, last; 2786 TCGType type; 2787 2788 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2789 return fold_tcg_st(ctx, op); 2790 } 2791 2792 src = arg_temp(op->args[0]); 2793 ofs = op->args[2]; 2794 type = ctx->type; 2795 2796 /* 2797 * Eliminate duplicate stores of a constant. 2798 * This happens frequently when the target ISA zero-extends. 2799 */ 2800 if (ts_is_const(src)) { 2801 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2802 if (src == prev) { 2803 tcg_op_remove(ctx->tcg, op); 2804 return true; 2805 } 2806 } 2807 2808 last = ofs + tcg_type_size(type) - 1; 2809 remove_mem_copy_in(ctx, ofs, last); 2810 record_mem_copy(ctx, type, src, ofs, last); 2811 return true; 2812 } 2813 2814 static bool fold_xor(OptContext *ctx, TCGOp *op) 2815 { 2816 uint64_t z_mask, s_mask; 2817 TempOptInfo *t1, *t2; 2818 2819 if (fold_const2_commutative(ctx, op) || 2820 fold_xx_to_i(ctx, op, 0) || 2821 fold_xi_to_x(ctx, op, 0) || 2822 fold_xi_to_not(ctx, op, -1)) { 2823 return true; 2824 } 2825 2826 t1 = arg_info(op->args[1]); 2827 t2 = arg_info(op->args[2]); 2828 z_mask = t1->z_mask | t2->z_mask; 2829 s_mask = t1->s_mask & t2->s_mask; 2830 return fold_masks_zs(ctx, op, z_mask, s_mask); 2831 } 2832 2833 /* Propagate constants and copies, fold constant expressions. */ 2834 void tcg_optimize(TCGContext *s) 2835 { 2836 int nb_temps, i; 2837 TCGOp *op, *op_next; 2838 OptContext ctx = { .tcg = s }; 2839 2840 QSIMPLEQ_INIT(&ctx.mem_free); 2841 2842 /* Array VALS has an element for each temp. 2843 If this temp holds a constant then its value is kept in VALS' element. 2844 If this temp is a copy of other ones then the other copies are 2845 available through the doubly linked circular list. */ 2846 2847 nb_temps = s->nb_temps; 2848 for (i = 0; i < nb_temps; ++i) { 2849 s->temps[i].state_ptr = NULL; 2850 } 2851 2852 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2853 TCGOpcode opc = op->opc; 2854 const TCGOpDef *def; 2855 bool done = false; 2856 2857 /* Calls are special. */ 2858 if (opc == INDEX_op_call) { 2859 fold_call(&ctx, op); 2860 continue; 2861 } 2862 2863 def = &tcg_op_defs[opc]; 2864 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2865 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2866 2867 /* Pre-compute the type of the operation. */ 2868 ctx.type = TCGOP_TYPE(op); 2869 2870 /* 2871 * Process each opcode. 2872 * Sorted alphabetically by opcode as much as possible. 2873 */ 2874 switch (opc) { 2875 case INDEX_op_add: 2876 done = fold_add(&ctx, op); 2877 break; 2878 case INDEX_op_add_vec: 2879 done = fold_add_vec(&ctx, op); 2880 break; 2881 CASE_OP_32_64(add2): 2882 done = fold_add2(&ctx, op); 2883 break; 2884 case INDEX_op_and: 2885 case INDEX_op_and_vec: 2886 done = fold_and(&ctx, op); 2887 break; 2888 case INDEX_op_andc: 2889 case INDEX_op_andc_vec: 2890 done = fold_andc(&ctx, op); 2891 break; 2892 CASE_OP_32_64(brcond): 2893 done = fold_brcond(&ctx, op); 2894 break; 2895 case INDEX_op_brcond2_i32: 2896 done = fold_brcond2(&ctx, op); 2897 break; 2898 CASE_OP_32_64(bswap16): 2899 CASE_OP_32_64(bswap32): 2900 case INDEX_op_bswap64_i64: 2901 done = fold_bswap(&ctx, op); 2902 break; 2903 CASE_OP_32_64(clz): 2904 CASE_OP_32_64(ctz): 2905 done = fold_count_zeros(&ctx, op); 2906 break; 2907 CASE_OP_32_64(ctpop): 2908 done = fold_ctpop(&ctx, op); 2909 break; 2910 CASE_OP_32_64(deposit): 2911 done = fold_deposit(&ctx, op); 2912 break; 2913 case INDEX_op_divs: 2914 case INDEX_op_divu: 2915 done = fold_divide(&ctx, op); 2916 break; 2917 case INDEX_op_dup_vec: 2918 done = fold_dup(&ctx, op); 2919 break; 2920 case INDEX_op_dup2_vec: 2921 done = fold_dup2(&ctx, op); 2922 break; 2923 case INDEX_op_eqv: 2924 case INDEX_op_eqv_vec: 2925 done = fold_eqv(&ctx, op); 2926 break; 2927 CASE_OP_32_64(extract): 2928 done = fold_extract(&ctx, op); 2929 break; 2930 CASE_OP_32_64(extract2): 2931 done = fold_extract2(&ctx, op); 2932 break; 2933 case INDEX_op_ext_i32_i64: 2934 done = fold_exts(&ctx, op); 2935 break; 2936 case INDEX_op_extu_i32_i64: 2937 case INDEX_op_extrl_i64_i32: 2938 case INDEX_op_extrh_i64_i32: 2939 done = fold_extu(&ctx, op); 2940 break; 2941 CASE_OP_32_64(ld8s): 2942 CASE_OP_32_64(ld8u): 2943 CASE_OP_32_64(ld16s): 2944 CASE_OP_32_64(ld16u): 2945 case INDEX_op_ld32s_i64: 2946 case INDEX_op_ld32u_i64: 2947 done = fold_tcg_ld(&ctx, op); 2948 break; 2949 case INDEX_op_ld_i32: 2950 case INDEX_op_ld_i64: 2951 case INDEX_op_ld_vec: 2952 done = fold_tcg_ld_memcopy(&ctx, op); 2953 break; 2954 CASE_OP_32_64(st8): 2955 CASE_OP_32_64(st16): 2956 case INDEX_op_st32_i64: 2957 done = fold_tcg_st(&ctx, op); 2958 break; 2959 case INDEX_op_st_i32: 2960 case INDEX_op_st_i64: 2961 case INDEX_op_st_vec: 2962 done = fold_tcg_st_memcopy(&ctx, op); 2963 break; 2964 case INDEX_op_mb: 2965 done = fold_mb(&ctx, op); 2966 break; 2967 case INDEX_op_mov: 2968 case INDEX_op_mov_vec: 2969 done = fold_mov(&ctx, op); 2970 break; 2971 CASE_OP_32_64(movcond): 2972 done = fold_movcond(&ctx, op); 2973 break; 2974 case INDEX_op_mul: 2975 done = fold_mul(&ctx, op); 2976 break; 2977 case INDEX_op_mulsh: 2978 case INDEX_op_muluh: 2979 done = fold_mul_highpart(&ctx, op); 2980 break; 2981 CASE_OP_32_64(muls2): 2982 CASE_OP_32_64(mulu2): 2983 done = fold_multiply2(&ctx, op); 2984 break; 2985 case INDEX_op_nand: 2986 case INDEX_op_nand_vec: 2987 done = fold_nand(&ctx, op); 2988 break; 2989 case INDEX_op_neg: 2990 done = fold_neg(&ctx, op); 2991 break; 2992 case INDEX_op_nor: 2993 case INDEX_op_nor_vec: 2994 done = fold_nor(&ctx, op); 2995 break; 2996 case INDEX_op_not: 2997 case INDEX_op_not_vec: 2998 done = fold_not(&ctx, op); 2999 break; 3000 case INDEX_op_or: 3001 case INDEX_op_or_vec: 3002 done = fold_or(&ctx, op); 3003 break; 3004 case INDEX_op_orc: 3005 case INDEX_op_orc_vec: 3006 done = fold_orc(&ctx, op); 3007 break; 3008 case INDEX_op_qemu_ld_i32: 3009 done = fold_qemu_ld_1reg(&ctx, op); 3010 break; 3011 case INDEX_op_qemu_ld_i64: 3012 if (TCG_TARGET_REG_BITS == 64) { 3013 done = fold_qemu_ld_1reg(&ctx, op); 3014 break; 3015 } 3016 QEMU_FALLTHROUGH; 3017 case INDEX_op_qemu_ld_i128: 3018 done = fold_qemu_ld_2reg(&ctx, op); 3019 break; 3020 case INDEX_op_qemu_st8_i32: 3021 case INDEX_op_qemu_st_i32: 3022 case INDEX_op_qemu_st_i64: 3023 case INDEX_op_qemu_st_i128: 3024 done = fold_qemu_st(&ctx, op); 3025 break; 3026 case INDEX_op_rems: 3027 CASE_OP_32_64(remu): 3028 done = fold_remainder(&ctx, op); 3029 break; 3030 CASE_OP_32_64(rotl): 3031 CASE_OP_32_64(rotr): 3032 CASE_OP_32_64(sar): 3033 CASE_OP_32_64(shl): 3034 CASE_OP_32_64(shr): 3035 done = fold_shift(&ctx, op); 3036 break; 3037 CASE_OP_32_64(setcond): 3038 done = fold_setcond(&ctx, op); 3039 break; 3040 CASE_OP_32_64(negsetcond): 3041 done = fold_negsetcond(&ctx, op); 3042 break; 3043 case INDEX_op_setcond2_i32: 3044 done = fold_setcond2(&ctx, op); 3045 break; 3046 case INDEX_op_cmp_vec: 3047 done = fold_cmp_vec(&ctx, op); 3048 break; 3049 case INDEX_op_cmpsel_vec: 3050 done = fold_cmpsel_vec(&ctx, op); 3051 break; 3052 case INDEX_op_bitsel_vec: 3053 done = fold_bitsel_vec(&ctx, op); 3054 break; 3055 CASE_OP_32_64(sextract): 3056 done = fold_sextract(&ctx, op); 3057 break; 3058 case INDEX_op_sub: 3059 done = fold_sub(&ctx, op); 3060 break; 3061 case INDEX_op_sub_vec: 3062 done = fold_sub_vec(&ctx, op); 3063 break; 3064 CASE_OP_32_64(sub2): 3065 done = fold_sub2(&ctx, op); 3066 break; 3067 case INDEX_op_xor: 3068 case INDEX_op_xor_vec: 3069 done = fold_xor(&ctx, op); 3070 break; 3071 case INDEX_op_set_label: 3072 case INDEX_op_br: 3073 case INDEX_op_exit_tb: 3074 case INDEX_op_goto_tb: 3075 case INDEX_op_goto_ptr: 3076 finish_ebb(&ctx); 3077 done = true; 3078 break; 3079 default: 3080 done = finish_folding(&ctx, op); 3081 break; 3082 } 3083 tcg_debug_assert(done); 3084 } 3085 } 3086