1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op, 348 TCGOpcode opc, unsigned narg) 349 { 350 return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg); 351 } 352 353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op, 354 TCGOpcode opc, unsigned narg) 355 { 356 return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg); 357 } 358 359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 360 { 361 TCGTemp *dst_ts = arg_temp(dst); 362 TCGTemp *src_ts = arg_temp(src); 363 TempOptInfo *di; 364 TempOptInfo *si; 365 TCGOpcode new_op; 366 367 if (ts_are_copies(dst_ts, src_ts)) { 368 tcg_op_remove(ctx->tcg, op); 369 return true; 370 } 371 372 reset_ts(ctx, dst_ts); 373 di = ts_info(dst_ts); 374 si = ts_info(src_ts); 375 376 switch (ctx->type) { 377 case TCG_TYPE_I32: 378 case TCG_TYPE_I64: 379 new_op = INDEX_op_mov; 380 break; 381 case TCG_TYPE_V64: 382 case TCG_TYPE_V128: 383 case TCG_TYPE_V256: 384 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 385 new_op = INDEX_op_mov_vec; 386 break; 387 default: 388 g_assert_not_reached(); 389 } 390 op->opc = new_op; 391 op->args[0] = dst; 392 op->args[1] = src; 393 394 di->z_mask = si->z_mask; 395 di->s_mask = si->s_mask; 396 397 if (src_ts->type == dst_ts->type) { 398 TempOptInfo *ni = ts_info(si->next_copy); 399 400 di->next_copy = si->next_copy; 401 di->prev_copy = src_ts; 402 ni->prev_copy = dst_ts; 403 si->next_copy = dst_ts; 404 di->is_const = si->is_const; 405 di->val = si->val; 406 407 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 408 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 409 move_mem_copies(dst_ts, src_ts); 410 } 411 } 412 return true; 413 } 414 415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 416 TCGArg dst, uint64_t val) 417 { 418 /* Convert movi to mov with constant temp. */ 419 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 420 } 421 422 static uint64_t do_constant_folding_2(TCGOpcode op, TCGType type, 423 uint64_t x, uint64_t y) 424 { 425 uint64_t l64, h64; 426 427 switch (op) { 428 case INDEX_op_add: 429 return x + y; 430 431 case INDEX_op_sub: 432 return x - y; 433 434 case INDEX_op_mul: 435 return x * y; 436 437 case INDEX_op_and: 438 case INDEX_op_and_vec: 439 return x & y; 440 441 case INDEX_op_or: 442 case INDEX_op_or_vec: 443 return x | y; 444 445 case INDEX_op_xor: 446 case INDEX_op_xor_vec: 447 return x ^ y; 448 449 case INDEX_op_shl: 450 if (type == TCG_TYPE_I32) { 451 return (uint32_t)x << (y & 31); 452 } 453 return (uint64_t)x << (y & 63); 454 455 case INDEX_op_shr: 456 if (type == TCG_TYPE_I32) { 457 return (uint32_t)x >> (y & 31); 458 } 459 return (uint64_t)x >> (y & 63); 460 461 case INDEX_op_sar: 462 if (type == TCG_TYPE_I32) { 463 return (int32_t)x >> (y & 31); 464 } 465 return (int64_t)x >> (y & 63); 466 467 case INDEX_op_rotr: 468 if (type == TCG_TYPE_I32) { 469 return ror32(x, y & 31); 470 } 471 return ror64(x, y & 63); 472 473 case INDEX_op_rotl: 474 if (type == TCG_TYPE_I32) { 475 return rol32(x, y & 31); 476 } 477 return rol64(x, y & 63); 478 479 case INDEX_op_not: 480 case INDEX_op_not_vec: 481 return ~x; 482 483 case INDEX_op_neg: 484 return -x; 485 486 case INDEX_op_andc: 487 case INDEX_op_andc_vec: 488 return x & ~y; 489 490 case INDEX_op_orc: 491 case INDEX_op_orc_vec: 492 return x | ~y; 493 494 case INDEX_op_eqv: 495 case INDEX_op_eqv_vec: 496 return ~(x ^ y); 497 498 case INDEX_op_nand: 499 case INDEX_op_nand_vec: 500 return ~(x & y); 501 502 case INDEX_op_nor: 503 case INDEX_op_nor_vec: 504 return ~(x | y); 505 506 case INDEX_op_clz: 507 if (type == TCG_TYPE_I32) { 508 return (uint32_t)x ? clz32(x) : y; 509 } 510 return x ? clz64(x) : y; 511 512 case INDEX_op_ctz: 513 if (type == TCG_TYPE_I32) { 514 return (uint32_t)x ? ctz32(x) : y; 515 } 516 return x ? ctz64(x) : y; 517 518 case INDEX_op_ctpop: 519 return type == TCG_TYPE_I32 ? ctpop32(x) : ctpop64(x); 520 521 case INDEX_op_bswap16: 522 x = bswap16(x); 523 return y & TCG_BSWAP_OS ? (int16_t)x : x; 524 525 case INDEX_op_bswap32: 526 x = bswap32(x); 527 return y & TCG_BSWAP_OS ? (int32_t)x : x; 528 529 case INDEX_op_bswap64: 530 return bswap64(x); 531 532 case INDEX_op_ext_i32_i64: 533 return (int32_t)x; 534 535 case INDEX_op_extu_i32_i64: 536 case INDEX_op_extrl_i64_i32: 537 return (uint32_t)x; 538 539 case INDEX_op_extrh_i64_i32: 540 return (uint64_t)x >> 32; 541 542 case INDEX_op_muluh: 543 if (type == TCG_TYPE_I32) { 544 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 545 } 546 mulu64(&l64, &h64, x, y); 547 return h64; 548 549 case INDEX_op_mulsh: 550 if (type == TCG_TYPE_I32) { 551 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 552 } 553 muls64(&l64, &h64, x, y); 554 return h64; 555 556 case INDEX_op_divs: 557 /* Avoid crashing on divide by zero, otherwise undefined. */ 558 if (type == TCG_TYPE_I32) { 559 return (int32_t)x / ((int32_t)y ? : 1); 560 } 561 return (int64_t)x / ((int64_t)y ? : 1); 562 563 case INDEX_op_divu: 564 if (type == TCG_TYPE_I32) { 565 return (uint32_t)x / ((uint32_t)y ? : 1); 566 } 567 return (uint64_t)x / ((uint64_t)y ? : 1); 568 569 case INDEX_op_rems: 570 if (type == TCG_TYPE_I32) { 571 return (int32_t)x % ((int32_t)y ? : 1); 572 } 573 return (int64_t)x % ((int64_t)y ? : 1); 574 575 case INDEX_op_remu: 576 if (type == TCG_TYPE_I32) { 577 return (uint32_t)x % ((uint32_t)y ? : 1); 578 } 579 return (uint64_t)x % ((uint64_t)y ? : 1); 580 581 default: 582 g_assert_not_reached(); 583 } 584 } 585 586 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 587 uint64_t x, uint64_t y) 588 { 589 uint64_t res = do_constant_folding_2(op, type, x, y); 590 if (type == TCG_TYPE_I32) { 591 res = (int32_t)res; 592 } 593 return res; 594 } 595 596 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 597 { 598 switch (c) { 599 case TCG_COND_EQ: 600 return x == y; 601 case TCG_COND_NE: 602 return x != y; 603 case TCG_COND_LT: 604 return (int32_t)x < (int32_t)y; 605 case TCG_COND_GE: 606 return (int32_t)x >= (int32_t)y; 607 case TCG_COND_LE: 608 return (int32_t)x <= (int32_t)y; 609 case TCG_COND_GT: 610 return (int32_t)x > (int32_t)y; 611 case TCG_COND_LTU: 612 return x < y; 613 case TCG_COND_GEU: 614 return x >= y; 615 case TCG_COND_LEU: 616 return x <= y; 617 case TCG_COND_GTU: 618 return x > y; 619 case TCG_COND_TSTEQ: 620 return (x & y) == 0; 621 case TCG_COND_TSTNE: 622 return (x & y) != 0; 623 case TCG_COND_ALWAYS: 624 case TCG_COND_NEVER: 625 break; 626 } 627 g_assert_not_reached(); 628 } 629 630 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 631 { 632 switch (c) { 633 case TCG_COND_EQ: 634 return x == y; 635 case TCG_COND_NE: 636 return x != y; 637 case TCG_COND_LT: 638 return (int64_t)x < (int64_t)y; 639 case TCG_COND_GE: 640 return (int64_t)x >= (int64_t)y; 641 case TCG_COND_LE: 642 return (int64_t)x <= (int64_t)y; 643 case TCG_COND_GT: 644 return (int64_t)x > (int64_t)y; 645 case TCG_COND_LTU: 646 return x < y; 647 case TCG_COND_GEU: 648 return x >= y; 649 case TCG_COND_LEU: 650 return x <= y; 651 case TCG_COND_GTU: 652 return x > y; 653 case TCG_COND_TSTEQ: 654 return (x & y) == 0; 655 case TCG_COND_TSTNE: 656 return (x & y) != 0; 657 case TCG_COND_ALWAYS: 658 case TCG_COND_NEVER: 659 break; 660 } 661 g_assert_not_reached(); 662 } 663 664 static int do_constant_folding_cond_eq(TCGCond c) 665 { 666 switch (c) { 667 case TCG_COND_GT: 668 case TCG_COND_LTU: 669 case TCG_COND_LT: 670 case TCG_COND_GTU: 671 case TCG_COND_NE: 672 return 0; 673 case TCG_COND_GE: 674 case TCG_COND_GEU: 675 case TCG_COND_LE: 676 case TCG_COND_LEU: 677 case TCG_COND_EQ: 678 return 1; 679 case TCG_COND_TSTEQ: 680 case TCG_COND_TSTNE: 681 return -1; 682 case TCG_COND_ALWAYS: 683 case TCG_COND_NEVER: 684 break; 685 } 686 g_assert_not_reached(); 687 } 688 689 /* 690 * Return -1 if the condition can't be simplified, 691 * and the result of the condition (0 or 1) if it can. 692 */ 693 static int do_constant_folding_cond(TCGType type, TCGArg x, 694 TCGArg y, TCGCond c) 695 { 696 if (arg_is_const(x) && arg_is_const(y)) { 697 uint64_t xv = arg_info(x)->val; 698 uint64_t yv = arg_info(y)->val; 699 700 switch (type) { 701 case TCG_TYPE_I32: 702 return do_constant_folding_cond_32(xv, yv, c); 703 case TCG_TYPE_I64: 704 return do_constant_folding_cond_64(xv, yv, c); 705 default: 706 /* Only scalar comparisons are optimizable */ 707 return -1; 708 } 709 } else if (args_are_copies(x, y)) { 710 return do_constant_folding_cond_eq(c); 711 } else if (arg_is_const_val(y, 0)) { 712 switch (c) { 713 case TCG_COND_LTU: 714 case TCG_COND_TSTNE: 715 return 0; 716 case TCG_COND_GEU: 717 case TCG_COND_TSTEQ: 718 return 1; 719 default: 720 return -1; 721 } 722 } 723 return -1; 724 } 725 726 /** 727 * swap_commutative: 728 * @dest: TCGArg of the destination argument, or NO_DEST. 729 * @p1: first paired argument 730 * @p2: second paired argument 731 * 732 * If *@p1 is a constant and *@p2 is not, swap. 733 * If *@p2 matches @dest, swap. 734 * Return true if a swap was performed. 735 */ 736 737 #define NO_DEST temp_arg(NULL) 738 739 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 740 { 741 TCGArg a1 = *p1, a2 = *p2; 742 int sum = 0; 743 sum += arg_is_const(a1); 744 sum -= arg_is_const(a2); 745 746 /* Prefer the constant in second argument, and then the form 747 op a, a, b, which is better handled on non-RISC hosts. */ 748 if (sum > 0 || (sum == 0 && dest == a2)) { 749 *p1 = a2; 750 *p2 = a1; 751 return true; 752 } 753 return false; 754 } 755 756 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 757 { 758 int sum = 0; 759 sum += arg_is_const(p1[0]); 760 sum += arg_is_const(p1[1]); 761 sum -= arg_is_const(p2[0]); 762 sum -= arg_is_const(p2[1]); 763 if (sum > 0) { 764 TCGArg t; 765 t = p1[0], p1[0] = p2[0], p2[0] = t; 766 t = p1[1], p1[1] = p2[1], p2[1] = t; 767 return true; 768 } 769 return false; 770 } 771 772 /* 773 * Return -1 if the condition can't be simplified, 774 * and the result of the condition (0 or 1) if it can. 775 */ 776 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 777 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 778 { 779 TCGCond cond; 780 TempOptInfo *i1; 781 bool swap; 782 int r; 783 784 swap = swap_commutative(dest, p1, p2); 785 cond = *pcond; 786 if (swap) { 787 *pcond = cond = tcg_swap_cond(cond); 788 } 789 790 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 791 if (r >= 0) { 792 return r; 793 } 794 if (!is_tst_cond(cond)) { 795 return -1; 796 } 797 798 i1 = arg_info(*p1); 799 800 /* 801 * TSTNE x,x -> NE x,0 802 * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x 803 */ 804 if (args_are_copies(*p1, *p2) || 805 (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) { 806 *p2 = arg_new_constant(ctx, 0); 807 *pcond = tcg_tst_eqne_cond(cond); 808 return -1; 809 } 810 811 /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */ 812 if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) { 813 *p2 = arg_new_constant(ctx, 0); 814 *pcond = tcg_tst_ltge_cond(cond); 815 return -1; 816 } 817 818 /* Expand to AND with a temporary if no backend support. */ 819 if (!TCG_TARGET_HAS_tst) { 820 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 821 TCGArg tmp = arg_new_temp(ctx); 822 823 op2->args[0] = tmp; 824 op2->args[1] = *p1; 825 op2->args[2] = *p2; 826 827 *p1 = tmp; 828 *p2 = arg_new_constant(ctx, 0); 829 *pcond = tcg_tst_eqne_cond(cond); 830 } 831 return -1; 832 } 833 834 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 835 { 836 TCGArg al, ah, bl, bh; 837 TCGCond c; 838 bool swap; 839 int r; 840 841 swap = swap_commutative2(args, args + 2); 842 c = args[4]; 843 if (swap) { 844 args[4] = c = tcg_swap_cond(c); 845 } 846 847 al = args[0]; 848 ah = args[1]; 849 bl = args[2]; 850 bh = args[3]; 851 852 if (arg_is_const(bl) && arg_is_const(bh)) { 853 tcg_target_ulong blv = arg_info(bl)->val; 854 tcg_target_ulong bhv = arg_info(bh)->val; 855 uint64_t b = deposit64(blv, 32, 32, bhv); 856 857 if (arg_is_const(al) && arg_is_const(ah)) { 858 tcg_target_ulong alv = arg_info(al)->val; 859 tcg_target_ulong ahv = arg_info(ah)->val; 860 uint64_t a = deposit64(alv, 32, 32, ahv); 861 862 r = do_constant_folding_cond_64(a, b, c); 863 if (r >= 0) { 864 return r; 865 } 866 } 867 868 if (b == 0) { 869 switch (c) { 870 case TCG_COND_LTU: 871 case TCG_COND_TSTNE: 872 return 0; 873 case TCG_COND_GEU: 874 case TCG_COND_TSTEQ: 875 return 1; 876 default: 877 break; 878 } 879 } 880 881 /* TSTNE x,-1 -> NE x,0 */ 882 if (b == -1 && is_tst_cond(c)) { 883 args[3] = args[2] = arg_new_constant(ctx, 0); 884 args[4] = tcg_tst_eqne_cond(c); 885 return -1; 886 } 887 888 /* TSTNE x,sign -> LT x,0 */ 889 if (b == INT64_MIN && is_tst_cond(c)) { 890 /* bl must be 0, so copy that to bh */ 891 args[3] = bl; 892 args[4] = tcg_tst_ltge_cond(c); 893 return -1; 894 } 895 } 896 897 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 898 r = do_constant_folding_cond_eq(c); 899 if (r >= 0) { 900 return r; 901 } 902 903 /* TSTNE x,x -> NE x,0 */ 904 if (is_tst_cond(c)) { 905 args[3] = args[2] = arg_new_constant(ctx, 0); 906 args[4] = tcg_tst_eqne_cond(c); 907 return -1; 908 } 909 } 910 911 /* Expand to AND with a temporary if no backend support. */ 912 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 913 TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and, 3); 914 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 915 TCGArg t1 = arg_new_temp(ctx); 916 TCGArg t2 = arg_new_temp(ctx); 917 918 op1->args[0] = t1; 919 op1->args[1] = al; 920 op1->args[2] = bl; 921 op2->args[0] = t2; 922 op2->args[1] = ah; 923 op2->args[2] = bh; 924 925 args[0] = t1; 926 args[1] = t2; 927 args[3] = args[2] = arg_new_constant(ctx, 0); 928 args[4] = tcg_tst_eqne_cond(c); 929 } 930 return -1; 931 } 932 933 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 934 { 935 for (int i = 0; i < nb_args; i++) { 936 TCGTemp *ts = arg_temp(op->args[i]); 937 init_ts_info(ctx, ts); 938 } 939 } 940 941 static void copy_propagate(OptContext *ctx, TCGOp *op, 942 int nb_oargs, int nb_iargs) 943 { 944 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 945 TCGTemp *ts = arg_temp(op->args[i]); 946 if (ts_is_copy(ts)) { 947 op->args[i] = temp_arg(find_better_copy(ts)); 948 } 949 } 950 } 951 952 static void finish_bb(OptContext *ctx) 953 { 954 /* We only optimize memory barriers across basic blocks. */ 955 ctx->prev_mb = NULL; 956 } 957 958 static void finish_ebb(OptContext *ctx) 959 { 960 finish_bb(ctx); 961 /* We only optimize across extended basic blocks. */ 962 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 963 remove_mem_copy_all(ctx); 964 } 965 966 static bool finish_folding(OptContext *ctx, TCGOp *op) 967 { 968 const TCGOpDef *def = &tcg_op_defs[op->opc]; 969 int i, nb_oargs; 970 971 nb_oargs = def->nb_oargs; 972 for (i = 0; i < nb_oargs; i++) { 973 TCGTemp *ts = arg_temp(op->args[i]); 974 reset_ts(ctx, ts); 975 } 976 return true; 977 } 978 979 /* 980 * The fold_* functions return true when processing is complete, 981 * usually by folding the operation to a constant or to a copy, 982 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 983 * like collect information about the value produced, for use in 984 * optimizing a subsequent operation. 985 * 986 * These first fold_* functions are all helpers, used by other 987 * folders for more specific operations. 988 */ 989 990 static bool fold_const1(OptContext *ctx, TCGOp *op) 991 { 992 if (arg_is_const(op->args[1])) { 993 uint64_t t; 994 995 t = arg_info(op->args[1])->val; 996 t = do_constant_folding(op->opc, ctx->type, t, 0); 997 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 998 } 999 return false; 1000 } 1001 1002 static bool fold_const2(OptContext *ctx, TCGOp *op) 1003 { 1004 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1005 uint64_t t1 = arg_info(op->args[1])->val; 1006 uint64_t t2 = arg_info(op->args[2])->val; 1007 1008 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 1009 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 1010 } 1011 return false; 1012 } 1013 1014 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1015 { 1016 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1017 return false; 1018 } 1019 1020 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1021 { 1022 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1023 return fold_const2(ctx, op); 1024 } 1025 1026 /* 1027 * Record "zero" and "sign" masks for the single output of @op. 1028 * See TempOptInfo definition of z_mask and s_mask. 1029 * If z_mask allows, fold the output to constant zero. 1030 * The passed s_mask may be augmented by z_mask. 1031 */ 1032 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1033 uint64_t z_mask, int64_t s_mask) 1034 { 1035 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1036 TCGTemp *ts; 1037 TempOptInfo *ti; 1038 int rep; 1039 1040 /* Only single-output opcodes are supported here. */ 1041 tcg_debug_assert(def->nb_oargs == 1); 1042 1043 /* 1044 * 32-bit ops generate 32-bit results, which for the purpose of 1045 * simplifying tcg are sign-extended. Certainly that's how we 1046 * represent our constants elsewhere. Note that the bits will 1047 * be reset properly for a 64-bit value when encountering the 1048 * type changing opcodes. 1049 */ 1050 if (ctx->type == TCG_TYPE_I32) { 1051 z_mask = (int32_t)z_mask; 1052 s_mask |= INT32_MIN; 1053 } 1054 1055 if (z_mask == 0) { 1056 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1057 } 1058 1059 ts = arg_temp(op->args[0]); 1060 reset_ts(ctx, ts); 1061 1062 ti = ts_info(ts); 1063 ti->z_mask = z_mask; 1064 1065 /* Canonicalize s_mask and incorporate data from z_mask. */ 1066 rep = clz64(~s_mask); 1067 rep = MAX(rep, clz64(z_mask)); 1068 rep = MAX(rep - 1, 0); 1069 ti->s_mask = INT64_MIN >> rep; 1070 1071 return true; 1072 } 1073 1074 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1075 { 1076 return fold_masks_zs(ctx, op, z_mask, 0); 1077 } 1078 1079 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1080 { 1081 return fold_masks_zs(ctx, op, -1, s_mask); 1082 } 1083 1084 /* 1085 * An "affected" mask bit is 0 if and only if the result is identical 1086 * to the first input. Thus if the entire mask is 0, the operation 1087 * is equivalent to a copy. 1088 */ 1089 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1090 { 1091 if (ctx->type == TCG_TYPE_I32) { 1092 a_mask = (uint32_t)a_mask; 1093 } 1094 if (a_mask == 0) { 1095 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1096 } 1097 return false; 1098 } 1099 1100 /* 1101 * Convert @op to NOT, if NOT is supported by the host. 1102 * Return true f the conversion is successful, which will still 1103 * indicate that the processing is complete. 1104 */ 1105 static bool fold_not(OptContext *ctx, TCGOp *op); 1106 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1107 { 1108 TCGOpcode not_op; 1109 bool have_not; 1110 1111 switch (ctx->type) { 1112 case TCG_TYPE_I32: 1113 case TCG_TYPE_I64: 1114 not_op = INDEX_op_not; 1115 have_not = tcg_op_supported(INDEX_op_not, ctx->type, 0); 1116 break; 1117 case TCG_TYPE_V64: 1118 case TCG_TYPE_V128: 1119 case TCG_TYPE_V256: 1120 not_op = INDEX_op_not_vec; 1121 have_not = TCG_TARGET_HAS_not_vec; 1122 break; 1123 default: 1124 g_assert_not_reached(); 1125 } 1126 if (have_not) { 1127 op->opc = not_op; 1128 op->args[1] = op->args[idx]; 1129 return fold_not(ctx, op); 1130 } 1131 return false; 1132 } 1133 1134 /* If the binary operation has first argument @i, fold to @i. */ 1135 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1136 { 1137 if (arg_is_const_val(op->args[1], i)) { 1138 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1139 } 1140 return false; 1141 } 1142 1143 /* If the binary operation has first argument @i, fold to NOT. */ 1144 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1145 { 1146 if (arg_is_const_val(op->args[1], i)) { 1147 return fold_to_not(ctx, op, 2); 1148 } 1149 return false; 1150 } 1151 1152 /* If the binary operation has second argument @i, fold to @i. */ 1153 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1154 { 1155 if (arg_is_const_val(op->args[2], i)) { 1156 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1157 } 1158 return false; 1159 } 1160 1161 /* If the binary operation has second argument @i, fold to identity. */ 1162 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1163 { 1164 if (arg_is_const_val(op->args[2], i)) { 1165 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1166 } 1167 return false; 1168 } 1169 1170 /* If the binary operation has second argument @i, fold to NOT. */ 1171 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1172 { 1173 if (arg_is_const_val(op->args[2], i)) { 1174 return fold_to_not(ctx, op, 1); 1175 } 1176 return false; 1177 } 1178 1179 /* If the binary operation has both arguments equal, fold to @i. */ 1180 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1181 { 1182 if (args_are_copies(op->args[1], op->args[2])) { 1183 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1184 } 1185 return false; 1186 } 1187 1188 /* If the binary operation has both arguments equal, fold to identity. */ 1189 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1190 { 1191 if (args_are_copies(op->args[1], op->args[2])) { 1192 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1193 } 1194 return false; 1195 } 1196 1197 /* 1198 * These outermost fold_<op> functions are sorted alphabetically. 1199 * 1200 * The ordering of the transformations should be: 1201 * 1) those that produce a constant 1202 * 2) those that produce a copy 1203 * 3) those that produce information about the result value. 1204 */ 1205 1206 static bool fold_or(OptContext *ctx, TCGOp *op); 1207 static bool fold_orc(OptContext *ctx, TCGOp *op); 1208 static bool fold_xor(OptContext *ctx, TCGOp *op); 1209 1210 static bool fold_add(OptContext *ctx, TCGOp *op) 1211 { 1212 if (fold_const2_commutative(ctx, op) || 1213 fold_xi_to_x(ctx, op, 0)) { 1214 return true; 1215 } 1216 return finish_folding(ctx, op); 1217 } 1218 1219 /* We cannot as yet do_constant_folding with vectors. */ 1220 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1221 { 1222 if (fold_commutative(ctx, op) || 1223 fold_xi_to_x(ctx, op, 0)) { 1224 return true; 1225 } 1226 return finish_folding(ctx, op); 1227 } 1228 1229 static bool fold_add_carry(OptContext *ctx, TCGOp *op) 1230 { 1231 fold_commutative(ctx, op); 1232 return finish_folding(ctx, op); 1233 } 1234 1235 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1236 { 1237 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1238 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1239 1240 if (a_const && b_const) { 1241 uint64_t al = arg_info(op->args[2])->val; 1242 uint64_t ah = arg_info(op->args[3])->val; 1243 uint64_t bl = arg_info(op->args[4])->val; 1244 uint64_t bh = arg_info(op->args[5])->val; 1245 TCGArg rl, rh; 1246 TCGOp *op2; 1247 1248 if (ctx->type == TCG_TYPE_I32) { 1249 uint64_t a = deposit64(al, 32, 32, ah); 1250 uint64_t b = deposit64(bl, 32, 32, bh); 1251 1252 if (add) { 1253 a += b; 1254 } else { 1255 a -= b; 1256 } 1257 1258 al = sextract64(a, 0, 32); 1259 ah = sextract64(a, 32, 32); 1260 } else { 1261 Int128 a = int128_make128(al, ah); 1262 Int128 b = int128_make128(bl, bh); 1263 1264 if (add) { 1265 a = int128_add(a, b); 1266 } else { 1267 a = int128_sub(a, b); 1268 } 1269 1270 al = int128_getlo(a); 1271 ah = int128_gethi(a); 1272 } 1273 1274 rl = op->args[0]; 1275 rh = op->args[1]; 1276 1277 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1278 op2 = opt_insert_before(ctx, op, 0, 2); 1279 1280 tcg_opt_gen_movi(ctx, op, rl, al); 1281 tcg_opt_gen_movi(ctx, op2, rh, ah); 1282 return true; 1283 } 1284 1285 /* Fold sub2 r,x,i to add2 r,x,-i */ 1286 if (!add && b_const) { 1287 uint64_t bl = arg_info(op->args[4])->val; 1288 uint64_t bh = arg_info(op->args[5])->val; 1289 1290 /* Negate the two parts without assembling and disassembling. */ 1291 bl = -bl; 1292 bh = ~bh + !bl; 1293 1294 op->opc = (ctx->type == TCG_TYPE_I32 1295 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1296 op->args[4] = arg_new_constant(ctx, bl); 1297 op->args[5] = arg_new_constant(ctx, bh); 1298 } 1299 return finish_folding(ctx, op); 1300 } 1301 1302 static bool fold_add2(OptContext *ctx, TCGOp *op) 1303 { 1304 /* Note that the high and low parts may be independently swapped. */ 1305 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1306 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1307 1308 return fold_addsub2(ctx, op, true); 1309 } 1310 1311 static bool fold_and(OptContext *ctx, TCGOp *op) 1312 { 1313 uint64_t z1, z2, z_mask, s_mask; 1314 TempOptInfo *t1, *t2; 1315 1316 if (fold_const2_commutative(ctx, op) || 1317 fold_xi_to_i(ctx, op, 0) || 1318 fold_xi_to_x(ctx, op, -1) || 1319 fold_xx_to_x(ctx, op)) { 1320 return true; 1321 } 1322 1323 t1 = arg_info(op->args[1]); 1324 t2 = arg_info(op->args[2]); 1325 z1 = t1->z_mask; 1326 z2 = t2->z_mask; 1327 1328 /* 1329 * Known-zeros does not imply known-ones. Therefore unless 1330 * arg2 is constant, we can't infer affected bits from it. 1331 */ 1332 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1333 return true; 1334 } 1335 1336 z_mask = z1 & z2; 1337 1338 /* 1339 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1340 * Bitwise operations preserve the relative quantity of the repetitions. 1341 */ 1342 s_mask = t1->s_mask & t2->s_mask; 1343 1344 return fold_masks_zs(ctx, op, z_mask, s_mask); 1345 } 1346 1347 static bool fold_andc(OptContext *ctx, TCGOp *op) 1348 { 1349 uint64_t z_mask, s_mask; 1350 TempOptInfo *t1, *t2; 1351 1352 if (fold_const2(ctx, op) || 1353 fold_xx_to_i(ctx, op, 0) || 1354 fold_xi_to_x(ctx, op, 0) || 1355 fold_ix_to_not(ctx, op, -1)) { 1356 return true; 1357 } 1358 1359 t1 = arg_info(op->args[1]); 1360 t2 = arg_info(op->args[2]); 1361 z_mask = t1->z_mask; 1362 1363 if (ti_is_const(t2)) { 1364 /* Fold andc r,x,i to and r,x,~i. */ 1365 switch (ctx->type) { 1366 case TCG_TYPE_I32: 1367 case TCG_TYPE_I64: 1368 op->opc = INDEX_op_and; 1369 break; 1370 case TCG_TYPE_V64: 1371 case TCG_TYPE_V128: 1372 case TCG_TYPE_V256: 1373 op->opc = INDEX_op_and_vec; 1374 break; 1375 default: 1376 g_assert_not_reached(); 1377 } 1378 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 1379 return fold_and(ctx, op); 1380 } 1381 1382 /* 1383 * Known-zeros does not imply known-ones. Therefore unless 1384 * arg2 is constant, we can't infer anything from it. 1385 */ 1386 if (ti_is_const(t2)) { 1387 uint64_t v2 = ti_const_val(t2); 1388 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1389 return true; 1390 } 1391 z_mask &= ~v2; 1392 } 1393 1394 s_mask = t1->s_mask & t2->s_mask; 1395 return fold_masks_zs(ctx, op, z_mask, s_mask); 1396 } 1397 1398 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1399 { 1400 /* If true and false values are the same, eliminate the cmp. */ 1401 if (args_are_copies(op->args[2], op->args[3])) { 1402 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1403 } 1404 1405 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1406 uint64_t tv = arg_info(op->args[2])->val; 1407 uint64_t fv = arg_info(op->args[3])->val; 1408 1409 if (tv == -1 && fv == 0) { 1410 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1411 } 1412 if (tv == 0 && fv == -1) { 1413 if (TCG_TARGET_HAS_not_vec) { 1414 op->opc = INDEX_op_not_vec; 1415 return fold_not(ctx, op); 1416 } else { 1417 op->opc = INDEX_op_xor_vec; 1418 op->args[2] = arg_new_constant(ctx, -1); 1419 return fold_xor(ctx, op); 1420 } 1421 } 1422 } 1423 if (arg_is_const(op->args[2])) { 1424 uint64_t tv = arg_info(op->args[2])->val; 1425 if (tv == -1) { 1426 op->opc = INDEX_op_or_vec; 1427 op->args[2] = op->args[3]; 1428 return fold_or(ctx, op); 1429 } 1430 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1431 op->opc = INDEX_op_andc_vec; 1432 op->args[2] = op->args[1]; 1433 op->args[1] = op->args[3]; 1434 return fold_andc(ctx, op); 1435 } 1436 } 1437 if (arg_is_const(op->args[3])) { 1438 uint64_t fv = arg_info(op->args[3])->val; 1439 if (fv == 0) { 1440 op->opc = INDEX_op_and_vec; 1441 return fold_and(ctx, op); 1442 } 1443 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1444 op->opc = INDEX_op_orc_vec; 1445 op->args[2] = op->args[1]; 1446 op->args[1] = op->args[3]; 1447 return fold_orc(ctx, op); 1448 } 1449 } 1450 return finish_folding(ctx, op); 1451 } 1452 1453 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1454 { 1455 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1456 &op->args[1], &op->args[2]); 1457 if (i == 0) { 1458 tcg_op_remove(ctx->tcg, op); 1459 return true; 1460 } 1461 if (i > 0) { 1462 op->opc = INDEX_op_br; 1463 op->args[0] = op->args[3]; 1464 finish_ebb(ctx); 1465 } else { 1466 finish_bb(ctx); 1467 } 1468 return true; 1469 } 1470 1471 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1472 { 1473 TCGCond cond; 1474 TCGArg label; 1475 int i, inv = 0; 1476 1477 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1478 cond = op->args[4]; 1479 label = op->args[5]; 1480 if (i >= 0) { 1481 goto do_brcond_const; 1482 } 1483 1484 switch (cond) { 1485 case TCG_COND_LT: 1486 case TCG_COND_GE: 1487 /* 1488 * Simplify LT/GE comparisons vs zero to a single compare 1489 * vs the high word of the input. 1490 */ 1491 if (arg_is_const_val(op->args[2], 0) && 1492 arg_is_const_val(op->args[3], 0)) { 1493 goto do_brcond_high; 1494 } 1495 break; 1496 1497 case TCG_COND_NE: 1498 inv = 1; 1499 QEMU_FALLTHROUGH; 1500 case TCG_COND_EQ: 1501 /* 1502 * Simplify EQ/NE comparisons where one of the pairs 1503 * can be simplified. 1504 */ 1505 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1506 op->args[2], cond); 1507 switch (i ^ inv) { 1508 case 0: 1509 goto do_brcond_const; 1510 case 1: 1511 goto do_brcond_high; 1512 } 1513 1514 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1515 op->args[3], cond); 1516 switch (i ^ inv) { 1517 case 0: 1518 goto do_brcond_const; 1519 case 1: 1520 goto do_brcond_low; 1521 } 1522 break; 1523 1524 case TCG_COND_TSTEQ: 1525 case TCG_COND_TSTNE: 1526 if (arg_is_const_val(op->args[2], 0)) { 1527 goto do_brcond_high; 1528 } 1529 if (arg_is_const_val(op->args[3], 0)) { 1530 goto do_brcond_low; 1531 } 1532 break; 1533 1534 default: 1535 break; 1536 1537 do_brcond_low: 1538 op->opc = INDEX_op_brcond; 1539 op->args[1] = op->args[2]; 1540 op->args[2] = cond; 1541 op->args[3] = label; 1542 return fold_brcond(ctx, op); 1543 1544 do_brcond_high: 1545 op->opc = INDEX_op_brcond; 1546 op->args[0] = op->args[1]; 1547 op->args[1] = op->args[3]; 1548 op->args[2] = cond; 1549 op->args[3] = label; 1550 return fold_brcond(ctx, op); 1551 1552 do_brcond_const: 1553 if (i == 0) { 1554 tcg_op_remove(ctx->tcg, op); 1555 return true; 1556 } 1557 op->opc = INDEX_op_br; 1558 op->args[0] = label; 1559 finish_ebb(ctx); 1560 return true; 1561 } 1562 1563 finish_bb(ctx); 1564 return true; 1565 } 1566 1567 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1568 { 1569 uint64_t z_mask, s_mask, sign; 1570 TempOptInfo *t1 = arg_info(op->args[1]); 1571 1572 if (ti_is_const(t1)) { 1573 return tcg_opt_gen_movi(ctx, op, op->args[0], 1574 do_constant_folding(op->opc, ctx->type, 1575 ti_const_val(t1), 1576 op->args[2])); 1577 } 1578 1579 z_mask = t1->z_mask; 1580 switch (op->opc) { 1581 case INDEX_op_bswap16: 1582 z_mask = bswap16(z_mask); 1583 sign = INT16_MIN; 1584 break; 1585 case INDEX_op_bswap32: 1586 z_mask = bswap32(z_mask); 1587 sign = INT32_MIN; 1588 break; 1589 case INDEX_op_bswap64: 1590 z_mask = bswap64(z_mask); 1591 sign = INT64_MIN; 1592 break; 1593 default: 1594 g_assert_not_reached(); 1595 } 1596 1597 s_mask = 0; 1598 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1599 case TCG_BSWAP_OZ: 1600 break; 1601 case TCG_BSWAP_OS: 1602 /* If the sign bit may be 1, force all the bits above to 1. */ 1603 if (z_mask & sign) { 1604 z_mask |= sign; 1605 } 1606 /* The value and therefore s_mask is explicitly sign-extended. */ 1607 s_mask = sign; 1608 break; 1609 default: 1610 /* The high bits are undefined: force all bits above the sign to 1. */ 1611 z_mask |= sign << 1; 1612 break; 1613 } 1614 1615 return fold_masks_zs(ctx, op, z_mask, s_mask); 1616 } 1617 1618 static bool fold_call(OptContext *ctx, TCGOp *op) 1619 { 1620 TCGContext *s = ctx->tcg; 1621 int nb_oargs = TCGOP_CALLO(op); 1622 int nb_iargs = TCGOP_CALLI(op); 1623 int flags, i; 1624 1625 init_arguments(ctx, op, nb_oargs + nb_iargs); 1626 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1627 1628 /* If the function reads or writes globals, reset temp data. */ 1629 flags = tcg_call_flags(op); 1630 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1631 int nb_globals = s->nb_globals; 1632 1633 for (i = 0; i < nb_globals; i++) { 1634 if (test_bit(i, ctx->temps_used.l)) { 1635 reset_ts(ctx, &ctx->tcg->temps[i]); 1636 } 1637 } 1638 } 1639 1640 /* If the function has side effects, reset mem data. */ 1641 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1642 remove_mem_copy_all(ctx); 1643 } 1644 1645 /* Reset temp data for outputs. */ 1646 for (i = 0; i < nb_oargs; i++) { 1647 reset_temp(ctx, op->args[i]); 1648 } 1649 1650 /* Stop optimizing MB across calls. */ 1651 ctx->prev_mb = NULL; 1652 return true; 1653 } 1654 1655 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1656 { 1657 /* Canonicalize the comparison to put immediate second. */ 1658 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1659 op->args[3] = tcg_swap_cond(op->args[3]); 1660 } 1661 return finish_folding(ctx, op); 1662 } 1663 1664 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1665 { 1666 /* If true and false values are the same, eliminate the cmp. */ 1667 if (args_are_copies(op->args[3], op->args[4])) { 1668 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1669 } 1670 1671 /* Canonicalize the comparison to put immediate second. */ 1672 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1673 op->args[5] = tcg_swap_cond(op->args[5]); 1674 } 1675 /* 1676 * Canonicalize the "false" input reg to match the destination, 1677 * so that the tcg backend can implement "move if true". 1678 */ 1679 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1680 op->args[5] = tcg_invert_cond(op->args[5]); 1681 } 1682 return finish_folding(ctx, op); 1683 } 1684 1685 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1686 { 1687 uint64_t z_mask, s_mask; 1688 TempOptInfo *t1 = arg_info(op->args[1]); 1689 TempOptInfo *t2 = arg_info(op->args[2]); 1690 1691 if (ti_is_const(t1)) { 1692 uint64_t t = ti_const_val(t1); 1693 1694 if (t != 0) { 1695 t = do_constant_folding(op->opc, ctx->type, t, 0); 1696 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1697 } 1698 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1699 } 1700 1701 switch (ctx->type) { 1702 case TCG_TYPE_I32: 1703 z_mask = 31; 1704 break; 1705 case TCG_TYPE_I64: 1706 z_mask = 63; 1707 break; 1708 default: 1709 g_assert_not_reached(); 1710 } 1711 s_mask = ~z_mask; 1712 z_mask |= t2->z_mask; 1713 s_mask &= t2->s_mask; 1714 1715 return fold_masks_zs(ctx, op, z_mask, s_mask); 1716 } 1717 1718 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1719 { 1720 uint64_t z_mask; 1721 1722 if (fold_const1(ctx, op)) { 1723 return true; 1724 } 1725 1726 switch (ctx->type) { 1727 case TCG_TYPE_I32: 1728 z_mask = 32 | 31; 1729 break; 1730 case TCG_TYPE_I64: 1731 z_mask = 64 | 63; 1732 break; 1733 default: 1734 g_assert_not_reached(); 1735 } 1736 return fold_masks_z(ctx, op, z_mask); 1737 } 1738 1739 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1740 { 1741 TempOptInfo *t1 = arg_info(op->args[1]); 1742 TempOptInfo *t2 = arg_info(op->args[2]); 1743 int ofs = op->args[3]; 1744 int len = op->args[4]; 1745 int width = 8 * tcg_type_size(ctx->type); 1746 uint64_t z_mask, s_mask; 1747 1748 if (ti_is_const(t1) && ti_is_const(t2)) { 1749 return tcg_opt_gen_movi(ctx, op, op->args[0], 1750 deposit64(ti_const_val(t1), ofs, len, 1751 ti_const_val(t2))); 1752 } 1753 1754 /* Inserting a value into zero at offset 0. */ 1755 if (ti_is_const_val(t1, 0) && ofs == 0) { 1756 uint64_t mask = MAKE_64BIT_MASK(0, len); 1757 1758 op->opc = INDEX_op_and; 1759 op->args[1] = op->args[2]; 1760 op->args[2] = arg_new_constant(ctx, mask); 1761 return fold_and(ctx, op); 1762 } 1763 1764 /* Inserting zero into a value. */ 1765 if (ti_is_const_val(t2, 0)) { 1766 uint64_t mask = deposit64(-1, ofs, len, 0); 1767 1768 op->opc = INDEX_op_and; 1769 op->args[2] = arg_new_constant(ctx, mask); 1770 return fold_and(ctx, op); 1771 } 1772 1773 /* The s_mask from the top portion of the deposit is still valid. */ 1774 if (ofs + len == width) { 1775 s_mask = t2->s_mask << ofs; 1776 } else { 1777 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1778 } 1779 1780 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1781 return fold_masks_zs(ctx, op, z_mask, s_mask); 1782 } 1783 1784 static bool fold_divide(OptContext *ctx, TCGOp *op) 1785 { 1786 if (fold_const2(ctx, op) || 1787 fold_xi_to_x(ctx, op, 1)) { 1788 return true; 1789 } 1790 return finish_folding(ctx, op); 1791 } 1792 1793 static bool fold_dup(OptContext *ctx, TCGOp *op) 1794 { 1795 if (arg_is_const(op->args[1])) { 1796 uint64_t t = arg_info(op->args[1])->val; 1797 t = dup_const(TCGOP_VECE(op), t); 1798 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1799 } 1800 return finish_folding(ctx, op); 1801 } 1802 1803 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1804 { 1805 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1806 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1807 arg_info(op->args[2])->val); 1808 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1809 } 1810 1811 if (args_are_copies(op->args[1], op->args[2])) { 1812 op->opc = INDEX_op_dup_vec; 1813 TCGOP_VECE(op) = MO_32; 1814 } 1815 return finish_folding(ctx, op); 1816 } 1817 1818 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1819 { 1820 uint64_t s_mask; 1821 TempOptInfo *t1, *t2; 1822 1823 if (fold_const2_commutative(ctx, op) || 1824 fold_xi_to_x(ctx, op, -1) || 1825 fold_xi_to_not(ctx, op, 0)) { 1826 return true; 1827 } 1828 1829 t2 = arg_info(op->args[2]); 1830 if (ti_is_const(t2)) { 1831 /* Fold eqv r,x,i to xor r,x,~i. */ 1832 switch (ctx->type) { 1833 case TCG_TYPE_I32: 1834 case TCG_TYPE_I64: 1835 op->opc = INDEX_op_xor; 1836 break; 1837 case TCG_TYPE_V64: 1838 case TCG_TYPE_V128: 1839 case TCG_TYPE_V256: 1840 op->opc = INDEX_op_xor_vec; 1841 break; 1842 default: 1843 g_assert_not_reached(); 1844 } 1845 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 1846 return fold_xor(ctx, op); 1847 } 1848 1849 t1 = arg_info(op->args[1]); 1850 s_mask = t1->s_mask & t2->s_mask; 1851 return fold_masks_s(ctx, op, s_mask); 1852 } 1853 1854 static bool fold_extract(OptContext *ctx, TCGOp *op) 1855 { 1856 uint64_t z_mask_old, z_mask; 1857 TempOptInfo *t1 = arg_info(op->args[1]); 1858 int pos = op->args[2]; 1859 int len = op->args[3]; 1860 1861 if (ti_is_const(t1)) { 1862 return tcg_opt_gen_movi(ctx, op, op->args[0], 1863 extract64(ti_const_val(t1), pos, len)); 1864 } 1865 1866 z_mask_old = t1->z_mask; 1867 z_mask = extract64(z_mask_old, pos, len); 1868 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1869 return true; 1870 } 1871 1872 return fold_masks_z(ctx, op, z_mask); 1873 } 1874 1875 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1876 { 1877 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1878 uint64_t v1 = arg_info(op->args[1])->val; 1879 uint64_t v2 = arg_info(op->args[2])->val; 1880 int shr = op->args[3]; 1881 1882 if (ctx->type == TCG_TYPE_I32) { 1883 v1 = (uint32_t)v1 >> shr; 1884 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1885 } else { 1886 v1 >>= shr; 1887 v2 <<= 64 - shr; 1888 } 1889 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1890 } 1891 return finish_folding(ctx, op); 1892 } 1893 1894 static bool fold_exts(OptContext *ctx, TCGOp *op) 1895 { 1896 uint64_t s_mask, z_mask; 1897 TempOptInfo *t1; 1898 1899 if (fold_const1(ctx, op)) { 1900 return true; 1901 } 1902 1903 t1 = arg_info(op->args[1]); 1904 z_mask = t1->z_mask; 1905 s_mask = t1->s_mask; 1906 1907 switch (op->opc) { 1908 case INDEX_op_ext_i32_i64: 1909 s_mask |= INT32_MIN; 1910 z_mask = (int32_t)z_mask; 1911 break; 1912 default: 1913 g_assert_not_reached(); 1914 } 1915 return fold_masks_zs(ctx, op, z_mask, s_mask); 1916 } 1917 1918 static bool fold_extu(OptContext *ctx, TCGOp *op) 1919 { 1920 uint64_t z_mask; 1921 1922 if (fold_const1(ctx, op)) { 1923 return true; 1924 } 1925 1926 z_mask = arg_info(op->args[1])->z_mask; 1927 switch (op->opc) { 1928 case INDEX_op_extrl_i64_i32: 1929 case INDEX_op_extu_i32_i64: 1930 z_mask = (uint32_t)z_mask; 1931 break; 1932 case INDEX_op_extrh_i64_i32: 1933 z_mask >>= 32; 1934 break; 1935 default: 1936 g_assert_not_reached(); 1937 } 1938 return fold_masks_z(ctx, op, z_mask); 1939 } 1940 1941 static bool fold_mb(OptContext *ctx, TCGOp *op) 1942 { 1943 /* Eliminate duplicate and redundant fence instructions. */ 1944 if (ctx->prev_mb) { 1945 /* 1946 * Merge two barriers of the same type into one, 1947 * or a weaker barrier into a stronger one, 1948 * or two weaker barriers into a stronger one. 1949 * mb X; mb Y => mb X|Y 1950 * mb; strl => mb; st 1951 * ldaq; mb => ld; mb 1952 * ldaq; strl => ld; mb; st 1953 * Other combinations are also merged into a strong 1954 * barrier. This is stricter than specified but for 1955 * the purposes of TCG is better than not optimizing. 1956 */ 1957 ctx->prev_mb->args[0] |= op->args[0]; 1958 tcg_op_remove(ctx->tcg, op); 1959 } else { 1960 ctx->prev_mb = op; 1961 } 1962 return true; 1963 } 1964 1965 static bool fold_mov(OptContext *ctx, TCGOp *op) 1966 { 1967 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1968 } 1969 1970 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1971 { 1972 uint64_t z_mask, s_mask; 1973 TempOptInfo *tt, *ft; 1974 int i; 1975 1976 /* If true and false values are the same, eliminate the cmp. */ 1977 if (args_are_copies(op->args[3], op->args[4])) { 1978 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1979 } 1980 1981 /* 1982 * Canonicalize the "false" input reg to match the destination reg so 1983 * that the tcg backend can implement a "move if true" operation. 1984 */ 1985 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1986 op->args[5] = tcg_invert_cond(op->args[5]); 1987 } 1988 1989 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1990 &op->args[2], &op->args[5]); 1991 if (i >= 0) { 1992 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1993 } 1994 1995 tt = arg_info(op->args[3]); 1996 ft = arg_info(op->args[4]); 1997 z_mask = tt->z_mask | ft->z_mask; 1998 s_mask = tt->s_mask & ft->s_mask; 1999 2000 if (ti_is_const(tt) && ti_is_const(ft)) { 2001 uint64_t tv = ti_const_val(tt); 2002 uint64_t fv = ti_const_val(ft); 2003 TCGCond cond = op->args[5]; 2004 2005 if (tv == 1 && fv == 0) { 2006 op->opc = INDEX_op_setcond; 2007 op->args[3] = cond; 2008 } else if (fv == 1 && tv == 0) { 2009 op->opc = INDEX_op_setcond; 2010 op->args[3] = tcg_invert_cond(cond); 2011 } else if (tv == -1 && fv == 0) { 2012 op->opc = INDEX_op_negsetcond; 2013 op->args[3] = cond; 2014 } else if (fv == -1 && tv == 0) { 2015 op->opc = INDEX_op_negsetcond; 2016 op->args[3] = tcg_invert_cond(cond); 2017 } 2018 } 2019 2020 return fold_masks_zs(ctx, op, z_mask, s_mask); 2021 } 2022 2023 static bool fold_mul(OptContext *ctx, TCGOp *op) 2024 { 2025 if (fold_const2(ctx, op) || 2026 fold_xi_to_i(ctx, op, 0) || 2027 fold_xi_to_x(ctx, op, 1)) { 2028 return true; 2029 } 2030 return finish_folding(ctx, op); 2031 } 2032 2033 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2034 { 2035 if (fold_const2_commutative(ctx, op) || 2036 fold_xi_to_i(ctx, op, 0)) { 2037 return true; 2038 } 2039 return finish_folding(ctx, op); 2040 } 2041 2042 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2043 { 2044 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2045 2046 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2047 uint64_t a = arg_info(op->args[2])->val; 2048 uint64_t b = arg_info(op->args[3])->val; 2049 uint64_t h, l; 2050 TCGArg rl, rh; 2051 TCGOp *op2; 2052 2053 switch (op->opc) { 2054 case INDEX_op_mulu2: 2055 if (ctx->type == TCG_TYPE_I32) { 2056 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2057 h = (int32_t)(l >> 32); 2058 l = (int32_t)l; 2059 } else { 2060 mulu64(&l, &h, a, b); 2061 } 2062 break; 2063 case INDEX_op_muls2: 2064 if (ctx->type == TCG_TYPE_I32) { 2065 l = (int64_t)(int32_t)a * (int32_t)b; 2066 h = l >> 32; 2067 l = (int32_t)l; 2068 } else { 2069 muls64(&l, &h, a, b); 2070 } 2071 break; 2072 default: 2073 g_assert_not_reached(); 2074 } 2075 2076 rl = op->args[0]; 2077 rh = op->args[1]; 2078 2079 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2080 op2 = opt_insert_before(ctx, op, 0, 2); 2081 2082 tcg_opt_gen_movi(ctx, op, rl, l); 2083 tcg_opt_gen_movi(ctx, op2, rh, h); 2084 return true; 2085 } 2086 return finish_folding(ctx, op); 2087 } 2088 2089 static bool fold_nand(OptContext *ctx, TCGOp *op) 2090 { 2091 uint64_t s_mask; 2092 2093 if (fold_const2_commutative(ctx, op) || 2094 fold_xi_to_not(ctx, op, -1)) { 2095 return true; 2096 } 2097 2098 s_mask = arg_info(op->args[1])->s_mask 2099 & arg_info(op->args[2])->s_mask; 2100 return fold_masks_s(ctx, op, s_mask); 2101 } 2102 2103 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2104 { 2105 /* Set to 1 all bits to the left of the rightmost. */ 2106 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2107 z_mask = -(z_mask & -z_mask); 2108 2109 return fold_masks_z(ctx, op, z_mask); 2110 } 2111 2112 static bool fold_neg(OptContext *ctx, TCGOp *op) 2113 { 2114 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2115 } 2116 2117 static bool fold_nor(OptContext *ctx, TCGOp *op) 2118 { 2119 uint64_t s_mask; 2120 2121 if (fold_const2_commutative(ctx, op) || 2122 fold_xi_to_not(ctx, op, 0)) { 2123 return true; 2124 } 2125 2126 s_mask = arg_info(op->args[1])->s_mask 2127 & arg_info(op->args[2])->s_mask; 2128 return fold_masks_s(ctx, op, s_mask); 2129 } 2130 2131 static bool fold_not(OptContext *ctx, TCGOp *op) 2132 { 2133 if (fold_const1(ctx, op)) { 2134 return true; 2135 } 2136 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2137 } 2138 2139 static bool fold_or(OptContext *ctx, TCGOp *op) 2140 { 2141 uint64_t z_mask, s_mask; 2142 TempOptInfo *t1, *t2; 2143 2144 if (fold_const2_commutative(ctx, op) || 2145 fold_xi_to_x(ctx, op, 0) || 2146 fold_xx_to_x(ctx, op)) { 2147 return true; 2148 } 2149 2150 t1 = arg_info(op->args[1]); 2151 t2 = arg_info(op->args[2]); 2152 z_mask = t1->z_mask | t2->z_mask; 2153 s_mask = t1->s_mask & t2->s_mask; 2154 return fold_masks_zs(ctx, op, z_mask, s_mask); 2155 } 2156 2157 static bool fold_orc(OptContext *ctx, TCGOp *op) 2158 { 2159 uint64_t s_mask; 2160 TempOptInfo *t1, *t2; 2161 2162 if (fold_const2(ctx, op) || 2163 fold_xx_to_i(ctx, op, -1) || 2164 fold_xi_to_x(ctx, op, -1) || 2165 fold_ix_to_not(ctx, op, 0)) { 2166 return true; 2167 } 2168 2169 t2 = arg_info(op->args[2]); 2170 if (ti_is_const(t2)) { 2171 /* Fold orc r,x,i to or r,x,~i. */ 2172 switch (ctx->type) { 2173 case TCG_TYPE_I32: 2174 case TCG_TYPE_I64: 2175 op->opc = INDEX_op_or; 2176 break; 2177 case TCG_TYPE_V64: 2178 case TCG_TYPE_V128: 2179 case TCG_TYPE_V256: 2180 op->opc = INDEX_op_or_vec; 2181 break; 2182 default: 2183 g_assert_not_reached(); 2184 } 2185 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 2186 return fold_or(ctx, op); 2187 } 2188 2189 t1 = arg_info(op->args[1]); 2190 s_mask = t1->s_mask & t2->s_mask; 2191 return fold_masks_s(ctx, op, s_mask); 2192 } 2193 2194 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2195 { 2196 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2197 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2198 MemOp mop = get_memop(oi); 2199 int width = 8 * memop_size(mop); 2200 uint64_t z_mask = -1, s_mask = 0; 2201 2202 if (width < 64) { 2203 if (mop & MO_SIGN) { 2204 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2205 } else { 2206 z_mask = MAKE_64BIT_MASK(0, width); 2207 } 2208 } 2209 2210 /* Opcodes that touch guest memory stop the mb optimization. */ 2211 ctx->prev_mb = NULL; 2212 2213 return fold_masks_zs(ctx, op, z_mask, s_mask); 2214 } 2215 2216 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2217 { 2218 /* Opcodes that touch guest memory stop the mb optimization. */ 2219 ctx->prev_mb = NULL; 2220 return finish_folding(ctx, op); 2221 } 2222 2223 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2224 { 2225 /* Opcodes that touch guest memory stop the mb optimization. */ 2226 ctx->prev_mb = NULL; 2227 return true; 2228 } 2229 2230 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2231 { 2232 if (fold_const2(ctx, op) || 2233 fold_xx_to_i(ctx, op, 0)) { 2234 return true; 2235 } 2236 return finish_folding(ctx, op); 2237 } 2238 2239 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2240 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2241 { 2242 uint64_t a_zmask, b_val; 2243 TCGCond cond; 2244 2245 if (!arg_is_const(op->args[2])) { 2246 return false; 2247 } 2248 2249 a_zmask = arg_info(op->args[1])->z_mask; 2250 b_val = arg_info(op->args[2])->val; 2251 cond = op->args[3]; 2252 2253 if (ctx->type == TCG_TYPE_I32) { 2254 a_zmask = (uint32_t)a_zmask; 2255 b_val = (uint32_t)b_val; 2256 } 2257 2258 /* 2259 * A with only low bits set vs B with high bits set means that A < B. 2260 */ 2261 if (a_zmask < b_val) { 2262 bool inv = false; 2263 2264 switch (cond) { 2265 case TCG_COND_NE: 2266 case TCG_COND_LEU: 2267 case TCG_COND_LTU: 2268 inv = true; 2269 /* fall through */ 2270 case TCG_COND_GTU: 2271 case TCG_COND_GEU: 2272 case TCG_COND_EQ: 2273 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2274 default: 2275 break; 2276 } 2277 } 2278 2279 /* 2280 * A with only lsb set is already boolean. 2281 */ 2282 if (a_zmask <= 1) { 2283 bool convert = false; 2284 bool inv = false; 2285 2286 switch (cond) { 2287 case TCG_COND_EQ: 2288 inv = true; 2289 /* fall through */ 2290 case TCG_COND_NE: 2291 convert = (b_val == 0); 2292 break; 2293 case TCG_COND_LTU: 2294 case TCG_COND_TSTEQ: 2295 inv = true; 2296 /* fall through */ 2297 case TCG_COND_GEU: 2298 case TCG_COND_TSTNE: 2299 convert = (b_val == 1); 2300 break; 2301 default: 2302 break; 2303 } 2304 if (convert) { 2305 if (!inv && !neg) { 2306 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2307 } 2308 2309 if (!inv) { 2310 op->opc = INDEX_op_neg; 2311 } else if (neg) { 2312 op->opc = INDEX_op_add; 2313 op->args[2] = arg_new_constant(ctx, -1); 2314 } else { 2315 op->opc = INDEX_op_xor; 2316 op->args[2] = arg_new_constant(ctx, 1); 2317 } 2318 return -1; 2319 } 2320 } 2321 return 0; 2322 } 2323 2324 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2325 { 2326 TCGCond cond = op->args[3]; 2327 TCGArg ret, src1, src2; 2328 TCGOp *op2; 2329 uint64_t val; 2330 int sh; 2331 bool inv; 2332 2333 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2334 return; 2335 } 2336 2337 src2 = op->args[2]; 2338 val = arg_info(src2)->val; 2339 if (!is_power_of_2(val)) { 2340 return; 2341 } 2342 sh = ctz64(val); 2343 2344 ret = op->args[0]; 2345 src1 = op->args[1]; 2346 inv = cond == TCG_COND_TSTEQ; 2347 2348 if (sh && neg && !inv && TCG_TARGET_sextract_valid(ctx->type, sh, 1)) { 2349 op->opc = INDEX_op_sextract; 2350 op->args[1] = src1; 2351 op->args[2] = sh; 2352 op->args[3] = 1; 2353 return; 2354 } else if (sh && TCG_TARGET_extract_valid(ctx->type, sh, 1)) { 2355 op->opc = INDEX_op_extract; 2356 op->args[1] = src1; 2357 op->args[2] = sh; 2358 op->args[3] = 1; 2359 } else { 2360 if (sh) { 2361 op2 = opt_insert_before(ctx, op, INDEX_op_shr, 3); 2362 op2->args[0] = ret; 2363 op2->args[1] = src1; 2364 op2->args[2] = arg_new_constant(ctx, sh); 2365 src1 = ret; 2366 } 2367 op->opc = INDEX_op_and; 2368 op->args[1] = src1; 2369 op->args[2] = arg_new_constant(ctx, 1); 2370 } 2371 2372 if (neg && inv) { 2373 op2 = opt_insert_after(ctx, op, INDEX_op_add, 3); 2374 op2->args[0] = ret; 2375 op2->args[1] = ret; 2376 op2->args[2] = arg_new_constant(ctx, -1); 2377 } else if (inv) { 2378 op2 = opt_insert_after(ctx, op, INDEX_op_xor, 3); 2379 op2->args[0] = ret; 2380 op2->args[1] = ret; 2381 op2->args[2] = arg_new_constant(ctx, 1); 2382 } else if (neg) { 2383 op2 = opt_insert_after(ctx, op, INDEX_op_neg, 2); 2384 op2->args[0] = ret; 2385 op2->args[1] = ret; 2386 } 2387 } 2388 2389 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2390 { 2391 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2392 &op->args[2], &op->args[3]); 2393 if (i >= 0) { 2394 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2395 } 2396 2397 i = fold_setcond_zmask(ctx, op, false); 2398 if (i > 0) { 2399 return true; 2400 } 2401 if (i == 0) { 2402 fold_setcond_tst_pow2(ctx, op, false); 2403 } 2404 2405 return fold_masks_z(ctx, op, 1); 2406 } 2407 2408 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2409 { 2410 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2411 &op->args[2], &op->args[3]); 2412 if (i >= 0) { 2413 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2414 } 2415 2416 i = fold_setcond_zmask(ctx, op, true); 2417 if (i > 0) { 2418 return true; 2419 } 2420 if (i == 0) { 2421 fold_setcond_tst_pow2(ctx, op, true); 2422 } 2423 2424 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2425 return fold_masks_s(ctx, op, -1); 2426 } 2427 2428 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2429 { 2430 TCGCond cond; 2431 int i, inv = 0; 2432 2433 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2434 cond = op->args[5]; 2435 if (i >= 0) { 2436 goto do_setcond_const; 2437 } 2438 2439 switch (cond) { 2440 case TCG_COND_LT: 2441 case TCG_COND_GE: 2442 /* 2443 * Simplify LT/GE comparisons vs zero to a single compare 2444 * vs the high word of the input. 2445 */ 2446 if (arg_is_const_val(op->args[3], 0) && 2447 arg_is_const_val(op->args[4], 0)) { 2448 goto do_setcond_high; 2449 } 2450 break; 2451 2452 case TCG_COND_NE: 2453 inv = 1; 2454 QEMU_FALLTHROUGH; 2455 case TCG_COND_EQ: 2456 /* 2457 * Simplify EQ/NE comparisons where one of the pairs 2458 * can be simplified. 2459 */ 2460 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2461 op->args[3], cond); 2462 switch (i ^ inv) { 2463 case 0: 2464 goto do_setcond_const; 2465 case 1: 2466 goto do_setcond_high; 2467 } 2468 2469 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2470 op->args[4], cond); 2471 switch (i ^ inv) { 2472 case 0: 2473 goto do_setcond_const; 2474 case 1: 2475 goto do_setcond_low; 2476 } 2477 break; 2478 2479 case TCG_COND_TSTEQ: 2480 case TCG_COND_TSTNE: 2481 if (arg_is_const_val(op->args[3], 0)) { 2482 goto do_setcond_high; 2483 } 2484 if (arg_is_const_val(op->args[4], 0)) { 2485 goto do_setcond_low; 2486 } 2487 break; 2488 2489 default: 2490 break; 2491 2492 do_setcond_low: 2493 op->args[2] = op->args[3]; 2494 op->args[3] = cond; 2495 op->opc = INDEX_op_setcond; 2496 return fold_setcond(ctx, op); 2497 2498 do_setcond_high: 2499 op->args[1] = op->args[2]; 2500 op->args[2] = op->args[4]; 2501 op->args[3] = cond; 2502 op->opc = INDEX_op_setcond; 2503 return fold_setcond(ctx, op); 2504 } 2505 2506 return fold_masks_z(ctx, op, 1); 2507 2508 do_setcond_const: 2509 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2510 } 2511 2512 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2513 { 2514 uint64_t z_mask, s_mask, s_mask_old; 2515 TempOptInfo *t1 = arg_info(op->args[1]); 2516 int pos = op->args[2]; 2517 int len = op->args[3]; 2518 2519 if (ti_is_const(t1)) { 2520 return tcg_opt_gen_movi(ctx, op, op->args[0], 2521 sextract64(ti_const_val(t1), pos, len)); 2522 } 2523 2524 s_mask_old = t1->s_mask; 2525 s_mask = s_mask_old >> pos; 2526 s_mask |= -1ull << (len - 1); 2527 2528 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2529 return true; 2530 } 2531 2532 z_mask = sextract64(t1->z_mask, pos, len); 2533 return fold_masks_zs(ctx, op, z_mask, s_mask); 2534 } 2535 2536 static bool fold_shift(OptContext *ctx, TCGOp *op) 2537 { 2538 uint64_t s_mask, z_mask; 2539 TempOptInfo *t1, *t2; 2540 2541 if (fold_const2(ctx, op) || 2542 fold_ix_to_i(ctx, op, 0) || 2543 fold_xi_to_x(ctx, op, 0)) { 2544 return true; 2545 } 2546 2547 t1 = arg_info(op->args[1]); 2548 t2 = arg_info(op->args[2]); 2549 s_mask = t1->s_mask; 2550 z_mask = t1->z_mask; 2551 2552 if (ti_is_const(t2)) { 2553 int sh = ti_const_val(t2); 2554 2555 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2556 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2557 2558 return fold_masks_zs(ctx, op, z_mask, s_mask); 2559 } 2560 2561 switch (op->opc) { 2562 case INDEX_op_sar: 2563 /* 2564 * Arithmetic right shift will not reduce the number of 2565 * input sign repetitions. 2566 */ 2567 return fold_masks_s(ctx, op, s_mask); 2568 case INDEX_op_shr: 2569 /* 2570 * If the sign bit is known zero, then logical right shift 2571 * will not reduce the number of input sign repetitions. 2572 */ 2573 if (~z_mask & -s_mask) { 2574 return fold_masks_s(ctx, op, s_mask); 2575 } 2576 break; 2577 default: 2578 break; 2579 } 2580 2581 return finish_folding(ctx, op); 2582 } 2583 2584 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2585 { 2586 TCGOpcode neg_op; 2587 bool have_neg; 2588 2589 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2590 return false; 2591 } 2592 2593 switch (ctx->type) { 2594 case TCG_TYPE_I32: 2595 case TCG_TYPE_I64: 2596 neg_op = INDEX_op_neg; 2597 have_neg = true; 2598 break; 2599 case TCG_TYPE_V64: 2600 case TCG_TYPE_V128: 2601 case TCG_TYPE_V256: 2602 neg_op = INDEX_op_neg_vec; 2603 have_neg = (TCG_TARGET_HAS_neg_vec && 2604 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2605 break; 2606 default: 2607 g_assert_not_reached(); 2608 } 2609 if (have_neg) { 2610 op->opc = neg_op; 2611 op->args[1] = op->args[2]; 2612 return fold_neg_no_const(ctx, op); 2613 } 2614 return false; 2615 } 2616 2617 /* We cannot as yet do_constant_folding with vectors. */ 2618 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2619 { 2620 if (fold_xx_to_i(ctx, op, 0) || 2621 fold_xi_to_x(ctx, op, 0) || 2622 fold_sub_to_neg(ctx, op)) { 2623 return true; 2624 } 2625 return finish_folding(ctx, op); 2626 } 2627 2628 static bool fold_sub(OptContext *ctx, TCGOp *op) 2629 { 2630 if (fold_const2(ctx, op) || 2631 fold_xx_to_i(ctx, op, 0) || 2632 fold_xi_to_x(ctx, op, 0) || 2633 fold_sub_to_neg(ctx, op)) { 2634 return true; 2635 } 2636 2637 /* Fold sub r,x,i to add r,x,-i */ 2638 if (arg_is_const(op->args[2])) { 2639 uint64_t val = arg_info(op->args[2])->val; 2640 2641 op->opc = INDEX_op_add; 2642 op->args[2] = arg_new_constant(ctx, -val); 2643 } 2644 return finish_folding(ctx, op); 2645 } 2646 2647 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2648 { 2649 return fold_addsub2(ctx, op, false); 2650 } 2651 2652 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2653 { 2654 uint64_t z_mask = -1, s_mask = 0; 2655 2656 /* We can't do any folding with a load, but we can record bits. */ 2657 switch (op->opc) { 2658 CASE_OP_32_64(ld8s): 2659 s_mask = INT8_MIN; 2660 break; 2661 CASE_OP_32_64(ld8u): 2662 z_mask = MAKE_64BIT_MASK(0, 8); 2663 break; 2664 CASE_OP_32_64(ld16s): 2665 s_mask = INT16_MIN; 2666 break; 2667 CASE_OP_32_64(ld16u): 2668 z_mask = MAKE_64BIT_MASK(0, 16); 2669 break; 2670 case INDEX_op_ld32s_i64: 2671 s_mask = INT32_MIN; 2672 break; 2673 case INDEX_op_ld32u_i64: 2674 z_mask = MAKE_64BIT_MASK(0, 32); 2675 break; 2676 default: 2677 g_assert_not_reached(); 2678 } 2679 return fold_masks_zs(ctx, op, z_mask, s_mask); 2680 } 2681 2682 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2683 { 2684 TCGTemp *dst, *src; 2685 intptr_t ofs; 2686 TCGType type; 2687 2688 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2689 return finish_folding(ctx, op); 2690 } 2691 2692 type = ctx->type; 2693 ofs = op->args[2]; 2694 dst = arg_temp(op->args[0]); 2695 src = find_mem_copy_for(ctx, type, ofs); 2696 if (src && src->base_type == type) { 2697 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2698 } 2699 2700 reset_ts(ctx, dst); 2701 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2702 return true; 2703 } 2704 2705 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2706 { 2707 intptr_t ofs = op->args[2]; 2708 intptr_t lm1; 2709 2710 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2711 remove_mem_copy_all(ctx); 2712 return true; 2713 } 2714 2715 switch (op->opc) { 2716 CASE_OP_32_64(st8): 2717 lm1 = 0; 2718 break; 2719 CASE_OP_32_64(st16): 2720 lm1 = 1; 2721 break; 2722 case INDEX_op_st32_i64: 2723 case INDEX_op_st_i32: 2724 lm1 = 3; 2725 break; 2726 case INDEX_op_st_i64: 2727 lm1 = 7; 2728 break; 2729 case INDEX_op_st_vec: 2730 lm1 = tcg_type_size(ctx->type) - 1; 2731 break; 2732 default: 2733 g_assert_not_reached(); 2734 } 2735 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2736 return true; 2737 } 2738 2739 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2740 { 2741 TCGTemp *src; 2742 intptr_t ofs, last; 2743 TCGType type; 2744 2745 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2746 return fold_tcg_st(ctx, op); 2747 } 2748 2749 src = arg_temp(op->args[0]); 2750 ofs = op->args[2]; 2751 type = ctx->type; 2752 2753 /* 2754 * Eliminate duplicate stores of a constant. 2755 * This happens frequently when the target ISA zero-extends. 2756 */ 2757 if (ts_is_const(src)) { 2758 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2759 if (src == prev) { 2760 tcg_op_remove(ctx->tcg, op); 2761 return true; 2762 } 2763 } 2764 2765 last = ofs + tcg_type_size(type) - 1; 2766 remove_mem_copy_in(ctx, ofs, last); 2767 record_mem_copy(ctx, type, src, ofs, last); 2768 return true; 2769 } 2770 2771 static bool fold_xor(OptContext *ctx, TCGOp *op) 2772 { 2773 uint64_t z_mask, s_mask; 2774 TempOptInfo *t1, *t2; 2775 2776 if (fold_const2_commutative(ctx, op) || 2777 fold_xx_to_i(ctx, op, 0) || 2778 fold_xi_to_x(ctx, op, 0) || 2779 fold_xi_to_not(ctx, op, -1)) { 2780 return true; 2781 } 2782 2783 t1 = arg_info(op->args[1]); 2784 t2 = arg_info(op->args[2]); 2785 z_mask = t1->z_mask | t2->z_mask; 2786 s_mask = t1->s_mask & t2->s_mask; 2787 return fold_masks_zs(ctx, op, z_mask, s_mask); 2788 } 2789 2790 /* Propagate constants and copies, fold constant expressions. */ 2791 void tcg_optimize(TCGContext *s) 2792 { 2793 int nb_temps, i; 2794 TCGOp *op, *op_next; 2795 OptContext ctx = { .tcg = s }; 2796 2797 QSIMPLEQ_INIT(&ctx.mem_free); 2798 2799 /* Array VALS has an element for each temp. 2800 If this temp holds a constant then its value is kept in VALS' element. 2801 If this temp is a copy of other ones then the other copies are 2802 available through the doubly linked circular list. */ 2803 2804 nb_temps = s->nb_temps; 2805 for (i = 0; i < nb_temps; ++i) { 2806 s->temps[i].state_ptr = NULL; 2807 } 2808 2809 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2810 TCGOpcode opc = op->opc; 2811 const TCGOpDef *def; 2812 bool done = false; 2813 2814 /* Calls are special. */ 2815 if (opc == INDEX_op_call) { 2816 fold_call(&ctx, op); 2817 continue; 2818 } 2819 2820 def = &tcg_op_defs[opc]; 2821 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2822 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2823 2824 /* Pre-compute the type of the operation. */ 2825 ctx.type = TCGOP_TYPE(op); 2826 2827 /* 2828 * Process each opcode. 2829 * Sorted alphabetically by opcode as much as possible. 2830 */ 2831 switch (opc) { 2832 case INDEX_op_add: 2833 done = fold_add(&ctx, op); 2834 break; 2835 case INDEX_op_add_vec: 2836 done = fold_add_vec(&ctx, op); 2837 break; 2838 case INDEX_op_addci: 2839 case INDEX_op_addco: 2840 case INDEX_op_addcio: 2841 done = fold_add_carry(&ctx, op); 2842 break; 2843 CASE_OP_32_64(add2): 2844 done = fold_add2(&ctx, op); 2845 break; 2846 case INDEX_op_and: 2847 case INDEX_op_and_vec: 2848 done = fold_and(&ctx, op); 2849 break; 2850 case INDEX_op_andc: 2851 case INDEX_op_andc_vec: 2852 done = fold_andc(&ctx, op); 2853 break; 2854 case INDEX_op_brcond: 2855 done = fold_brcond(&ctx, op); 2856 break; 2857 case INDEX_op_brcond2_i32: 2858 done = fold_brcond2(&ctx, op); 2859 break; 2860 case INDEX_op_bswap16: 2861 case INDEX_op_bswap32: 2862 case INDEX_op_bswap64: 2863 done = fold_bswap(&ctx, op); 2864 break; 2865 case INDEX_op_clz: 2866 case INDEX_op_ctz: 2867 done = fold_count_zeros(&ctx, op); 2868 break; 2869 case INDEX_op_ctpop: 2870 done = fold_ctpop(&ctx, op); 2871 break; 2872 case INDEX_op_deposit: 2873 done = fold_deposit(&ctx, op); 2874 break; 2875 case INDEX_op_divs: 2876 case INDEX_op_divu: 2877 done = fold_divide(&ctx, op); 2878 break; 2879 case INDEX_op_dup_vec: 2880 done = fold_dup(&ctx, op); 2881 break; 2882 case INDEX_op_dup2_vec: 2883 done = fold_dup2(&ctx, op); 2884 break; 2885 case INDEX_op_eqv: 2886 case INDEX_op_eqv_vec: 2887 done = fold_eqv(&ctx, op); 2888 break; 2889 case INDEX_op_extract: 2890 done = fold_extract(&ctx, op); 2891 break; 2892 case INDEX_op_extract2: 2893 done = fold_extract2(&ctx, op); 2894 break; 2895 case INDEX_op_ext_i32_i64: 2896 done = fold_exts(&ctx, op); 2897 break; 2898 case INDEX_op_extu_i32_i64: 2899 case INDEX_op_extrl_i64_i32: 2900 case INDEX_op_extrh_i64_i32: 2901 done = fold_extu(&ctx, op); 2902 break; 2903 CASE_OP_32_64(ld8s): 2904 CASE_OP_32_64(ld8u): 2905 CASE_OP_32_64(ld16s): 2906 CASE_OP_32_64(ld16u): 2907 case INDEX_op_ld32s_i64: 2908 case INDEX_op_ld32u_i64: 2909 done = fold_tcg_ld(&ctx, op); 2910 break; 2911 case INDEX_op_ld_i32: 2912 case INDEX_op_ld_i64: 2913 case INDEX_op_ld_vec: 2914 done = fold_tcg_ld_memcopy(&ctx, op); 2915 break; 2916 CASE_OP_32_64(st8): 2917 CASE_OP_32_64(st16): 2918 case INDEX_op_st32_i64: 2919 done = fold_tcg_st(&ctx, op); 2920 break; 2921 case INDEX_op_st_i32: 2922 case INDEX_op_st_i64: 2923 case INDEX_op_st_vec: 2924 done = fold_tcg_st_memcopy(&ctx, op); 2925 break; 2926 case INDEX_op_mb: 2927 done = fold_mb(&ctx, op); 2928 break; 2929 case INDEX_op_mov: 2930 case INDEX_op_mov_vec: 2931 done = fold_mov(&ctx, op); 2932 break; 2933 case INDEX_op_movcond: 2934 done = fold_movcond(&ctx, op); 2935 break; 2936 case INDEX_op_mul: 2937 done = fold_mul(&ctx, op); 2938 break; 2939 case INDEX_op_mulsh: 2940 case INDEX_op_muluh: 2941 done = fold_mul_highpart(&ctx, op); 2942 break; 2943 case INDEX_op_muls2: 2944 case INDEX_op_mulu2: 2945 done = fold_multiply2(&ctx, op); 2946 break; 2947 case INDEX_op_nand: 2948 case INDEX_op_nand_vec: 2949 done = fold_nand(&ctx, op); 2950 break; 2951 case INDEX_op_neg: 2952 done = fold_neg(&ctx, op); 2953 break; 2954 case INDEX_op_nor: 2955 case INDEX_op_nor_vec: 2956 done = fold_nor(&ctx, op); 2957 break; 2958 case INDEX_op_not: 2959 case INDEX_op_not_vec: 2960 done = fold_not(&ctx, op); 2961 break; 2962 case INDEX_op_or: 2963 case INDEX_op_or_vec: 2964 done = fold_or(&ctx, op); 2965 break; 2966 case INDEX_op_orc: 2967 case INDEX_op_orc_vec: 2968 done = fold_orc(&ctx, op); 2969 break; 2970 case INDEX_op_qemu_ld_i32: 2971 done = fold_qemu_ld_1reg(&ctx, op); 2972 break; 2973 case INDEX_op_qemu_ld_i64: 2974 if (TCG_TARGET_REG_BITS == 64) { 2975 done = fold_qemu_ld_1reg(&ctx, op); 2976 break; 2977 } 2978 QEMU_FALLTHROUGH; 2979 case INDEX_op_qemu_ld_i128: 2980 done = fold_qemu_ld_2reg(&ctx, op); 2981 break; 2982 case INDEX_op_qemu_st8_i32: 2983 case INDEX_op_qemu_st_i32: 2984 case INDEX_op_qemu_st_i64: 2985 case INDEX_op_qemu_st_i128: 2986 done = fold_qemu_st(&ctx, op); 2987 break; 2988 case INDEX_op_rems: 2989 case INDEX_op_remu: 2990 done = fold_remainder(&ctx, op); 2991 break; 2992 case INDEX_op_rotl: 2993 case INDEX_op_rotr: 2994 case INDEX_op_sar: 2995 case INDEX_op_shl: 2996 case INDEX_op_shr: 2997 done = fold_shift(&ctx, op); 2998 break; 2999 case INDEX_op_setcond: 3000 done = fold_setcond(&ctx, op); 3001 break; 3002 case INDEX_op_negsetcond: 3003 done = fold_negsetcond(&ctx, op); 3004 break; 3005 case INDEX_op_setcond2_i32: 3006 done = fold_setcond2(&ctx, op); 3007 break; 3008 case INDEX_op_cmp_vec: 3009 done = fold_cmp_vec(&ctx, op); 3010 break; 3011 case INDEX_op_cmpsel_vec: 3012 done = fold_cmpsel_vec(&ctx, op); 3013 break; 3014 case INDEX_op_bitsel_vec: 3015 done = fold_bitsel_vec(&ctx, op); 3016 break; 3017 case INDEX_op_sextract: 3018 done = fold_sextract(&ctx, op); 3019 break; 3020 case INDEX_op_sub: 3021 done = fold_sub(&ctx, op); 3022 break; 3023 case INDEX_op_sub_vec: 3024 done = fold_sub_vec(&ctx, op); 3025 break; 3026 CASE_OP_32_64(sub2): 3027 done = fold_sub2(&ctx, op); 3028 break; 3029 case INDEX_op_xor: 3030 case INDEX_op_xor_vec: 3031 done = fold_xor(&ctx, op); 3032 break; 3033 case INDEX_op_set_label: 3034 case INDEX_op_br: 3035 case INDEX_op_exit_tb: 3036 case INDEX_op_goto_tb: 3037 case INDEX_op_goto_ptr: 3038 finish_ebb(&ctx); 3039 done = true; 3040 break; 3041 default: 3042 done = finish_folding(&ctx, op); 3043 break; 3044 } 3045 tcg_debug_assert(done); 3046 } 3047 } 3048