1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op, 348 TCGOpcode opc, unsigned narg) 349 { 350 return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg); 351 } 352 353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op, 354 TCGOpcode opc, unsigned narg) 355 { 356 return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg); 357 } 358 359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 360 { 361 TCGTemp *dst_ts = arg_temp(dst); 362 TCGTemp *src_ts = arg_temp(src); 363 TempOptInfo *di; 364 TempOptInfo *si; 365 TCGOpcode new_op; 366 367 if (ts_are_copies(dst_ts, src_ts)) { 368 tcg_op_remove(ctx->tcg, op); 369 return true; 370 } 371 372 reset_ts(ctx, dst_ts); 373 di = ts_info(dst_ts); 374 si = ts_info(src_ts); 375 376 switch (ctx->type) { 377 case TCG_TYPE_I32: 378 case TCG_TYPE_I64: 379 new_op = INDEX_op_mov; 380 break; 381 case TCG_TYPE_V64: 382 case TCG_TYPE_V128: 383 case TCG_TYPE_V256: 384 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 385 new_op = INDEX_op_mov_vec; 386 break; 387 default: 388 g_assert_not_reached(); 389 } 390 op->opc = new_op; 391 op->args[0] = dst; 392 op->args[1] = src; 393 394 di->z_mask = si->z_mask; 395 di->s_mask = si->s_mask; 396 397 if (src_ts->type == dst_ts->type) { 398 TempOptInfo *ni = ts_info(si->next_copy); 399 400 di->next_copy = si->next_copy; 401 di->prev_copy = src_ts; 402 ni->prev_copy = dst_ts; 403 si->next_copy = dst_ts; 404 di->is_const = si->is_const; 405 di->val = si->val; 406 407 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 408 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 409 move_mem_copies(dst_ts, src_ts); 410 } 411 } 412 return true; 413 } 414 415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 416 TCGArg dst, uint64_t val) 417 { 418 /* Convert movi to mov with constant temp. */ 419 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 420 } 421 422 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 423 { 424 uint64_t l64, h64; 425 426 switch (op) { 427 case INDEX_op_add: 428 return x + y; 429 430 CASE_OP_32_64(sub): 431 return x - y; 432 433 CASE_OP_32_64(mul): 434 return x * y; 435 436 case INDEX_op_and: 437 case INDEX_op_and_vec: 438 return x & y; 439 440 case INDEX_op_or: 441 case INDEX_op_or_vec: 442 return x | y; 443 444 CASE_OP_32_64_VEC(xor): 445 return x ^ y; 446 447 case INDEX_op_shl_i32: 448 return (uint32_t)x << (y & 31); 449 450 case INDEX_op_shl_i64: 451 return (uint64_t)x << (y & 63); 452 453 case INDEX_op_shr_i32: 454 return (uint32_t)x >> (y & 31); 455 456 case INDEX_op_shr_i64: 457 return (uint64_t)x >> (y & 63); 458 459 case INDEX_op_sar_i32: 460 return (int32_t)x >> (y & 31); 461 462 case INDEX_op_sar_i64: 463 return (int64_t)x >> (y & 63); 464 465 case INDEX_op_rotr_i32: 466 return ror32(x, y & 31); 467 468 case INDEX_op_rotr_i64: 469 return ror64(x, y & 63); 470 471 case INDEX_op_rotl_i32: 472 return rol32(x, y & 31); 473 474 case INDEX_op_rotl_i64: 475 return rol64(x, y & 63); 476 477 CASE_OP_32_64_VEC(not): 478 return ~x; 479 480 CASE_OP_32_64(neg): 481 return -x; 482 483 case INDEX_op_andc: 484 case INDEX_op_andc_vec: 485 return x & ~y; 486 487 case INDEX_op_orc: 488 case INDEX_op_orc_vec: 489 return x | ~y; 490 491 CASE_OP_32_64_VEC(eqv): 492 return ~(x ^ y); 493 494 CASE_OP_32_64_VEC(nand): 495 return ~(x & y); 496 497 CASE_OP_32_64_VEC(nor): 498 return ~(x | y); 499 500 case INDEX_op_clz_i32: 501 return (uint32_t)x ? clz32(x) : y; 502 503 case INDEX_op_clz_i64: 504 return x ? clz64(x) : y; 505 506 case INDEX_op_ctz_i32: 507 return (uint32_t)x ? ctz32(x) : y; 508 509 case INDEX_op_ctz_i64: 510 return x ? ctz64(x) : y; 511 512 case INDEX_op_ctpop_i32: 513 return ctpop32(x); 514 515 case INDEX_op_ctpop_i64: 516 return ctpop64(x); 517 518 CASE_OP_32_64(bswap16): 519 x = bswap16(x); 520 return y & TCG_BSWAP_OS ? (int16_t)x : x; 521 522 CASE_OP_32_64(bswap32): 523 x = bswap32(x); 524 return y & TCG_BSWAP_OS ? (int32_t)x : x; 525 526 case INDEX_op_bswap64_i64: 527 return bswap64(x); 528 529 case INDEX_op_ext_i32_i64: 530 return (int32_t)x; 531 532 case INDEX_op_extu_i32_i64: 533 case INDEX_op_extrl_i64_i32: 534 return (uint32_t)x; 535 536 case INDEX_op_extrh_i64_i32: 537 return (uint64_t)x >> 32; 538 539 case INDEX_op_muluh_i32: 540 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 541 case INDEX_op_mulsh_i32: 542 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 543 544 case INDEX_op_muluh_i64: 545 mulu64(&l64, &h64, x, y); 546 return h64; 547 case INDEX_op_mulsh_i64: 548 muls64(&l64, &h64, x, y); 549 return h64; 550 551 case INDEX_op_div_i32: 552 /* Avoid crashing on divide by zero, otherwise undefined. */ 553 return (int32_t)x / ((int32_t)y ? : 1); 554 case INDEX_op_divu_i32: 555 return (uint32_t)x / ((uint32_t)y ? : 1); 556 case INDEX_op_div_i64: 557 return (int64_t)x / ((int64_t)y ? : 1); 558 case INDEX_op_divu_i64: 559 return (uint64_t)x / ((uint64_t)y ? : 1); 560 561 case INDEX_op_rem_i32: 562 return (int32_t)x % ((int32_t)y ? : 1); 563 case INDEX_op_remu_i32: 564 return (uint32_t)x % ((uint32_t)y ? : 1); 565 case INDEX_op_rem_i64: 566 return (int64_t)x % ((int64_t)y ? : 1); 567 case INDEX_op_remu_i64: 568 return (uint64_t)x % ((uint64_t)y ? : 1); 569 570 default: 571 g_assert_not_reached(); 572 } 573 } 574 575 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 576 uint64_t x, uint64_t y) 577 { 578 uint64_t res = do_constant_folding_2(op, x, y); 579 if (type == TCG_TYPE_I32) { 580 res = (int32_t)res; 581 } 582 return res; 583 } 584 585 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 586 { 587 switch (c) { 588 case TCG_COND_EQ: 589 return x == y; 590 case TCG_COND_NE: 591 return x != y; 592 case TCG_COND_LT: 593 return (int32_t)x < (int32_t)y; 594 case TCG_COND_GE: 595 return (int32_t)x >= (int32_t)y; 596 case TCG_COND_LE: 597 return (int32_t)x <= (int32_t)y; 598 case TCG_COND_GT: 599 return (int32_t)x > (int32_t)y; 600 case TCG_COND_LTU: 601 return x < y; 602 case TCG_COND_GEU: 603 return x >= y; 604 case TCG_COND_LEU: 605 return x <= y; 606 case TCG_COND_GTU: 607 return x > y; 608 case TCG_COND_TSTEQ: 609 return (x & y) == 0; 610 case TCG_COND_TSTNE: 611 return (x & y) != 0; 612 case TCG_COND_ALWAYS: 613 case TCG_COND_NEVER: 614 break; 615 } 616 g_assert_not_reached(); 617 } 618 619 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 620 { 621 switch (c) { 622 case TCG_COND_EQ: 623 return x == y; 624 case TCG_COND_NE: 625 return x != y; 626 case TCG_COND_LT: 627 return (int64_t)x < (int64_t)y; 628 case TCG_COND_GE: 629 return (int64_t)x >= (int64_t)y; 630 case TCG_COND_LE: 631 return (int64_t)x <= (int64_t)y; 632 case TCG_COND_GT: 633 return (int64_t)x > (int64_t)y; 634 case TCG_COND_LTU: 635 return x < y; 636 case TCG_COND_GEU: 637 return x >= y; 638 case TCG_COND_LEU: 639 return x <= y; 640 case TCG_COND_GTU: 641 return x > y; 642 case TCG_COND_TSTEQ: 643 return (x & y) == 0; 644 case TCG_COND_TSTNE: 645 return (x & y) != 0; 646 case TCG_COND_ALWAYS: 647 case TCG_COND_NEVER: 648 break; 649 } 650 g_assert_not_reached(); 651 } 652 653 static int do_constant_folding_cond_eq(TCGCond c) 654 { 655 switch (c) { 656 case TCG_COND_GT: 657 case TCG_COND_LTU: 658 case TCG_COND_LT: 659 case TCG_COND_GTU: 660 case TCG_COND_NE: 661 return 0; 662 case TCG_COND_GE: 663 case TCG_COND_GEU: 664 case TCG_COND_LE: 665 case TCG_COND_LEU: 666 case TCG_COND_EQ: 667 return 1; 668 case TCG_COND_TSTEQ: 669 case TCG_COND_TSTNE: 670 return -1; 671 case TCG_COND_ALWAYS: 672 case TCG_COND_NEVER: 673 break; 674 } 675 g_assert_not_reached(); 676 } 677 678 /* 679 * Return -1 if the condition can't be simplified, 680 * and the result of the condition (0 or 1) if it can. 681 */ 682 static int do_constant_folding_cond(TCGType type, TCGArg x, 683 TCGArg y, TCGCond c) 684 { 685 if (arg_is_const(x) && arg_is_const(y)) { 686 uint64_t xv = arg_info(x)->val; 687 uint64_t yv = arg_info(y)->val; 688 689 switch (type) { 690 case TCG_TYPE_I32: 691 return do_constant_folding_cond_32(xv, yv, c); 692 case TCG_TYPE_I64: 693 return do_constant_folding_cond_64(xv, yv, c); 694 default: 695 /* Only scalar comparisons are optimizable */ 696 return -1; 697 } 698 } else if (args_are_copies(x, y)) { 699 return do_constant_folding_cond_eq(c); 700 } else if (arg_is_const_val(y, 0)) { 701 switch (c) { 702 case TCG_COND_LTU: 703 case TCG_COND_TSTNE: 704 return 0; 705 case TCG_COND_GEU: 706 case TCG_COND_TSTEQ: 707 return 1; 708 default: 709 return -1; 710 } 711 } 712 return -1; 713 } 714 715 /** 716 * swap_commutative: 717 * @dest: TCGArg of the destination argument, or NO_DEST. 718 * @p1: first paired argument 719 * @p2: second paired argument 720 * 721 * If *@p1 is a constant and *@p2 is not, swap. 722 * If *@p2 matches @dest, swap. 723 * Return true if a swap was performed. 724 */ 725 726 #define NO_DEST temp_arg(NULL) 727 728 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 729 { 730 TCGArg a1 = *p1, a2 = *p2; 731 int sum = 0; 732 sum += arg_is_const(a1); 733 sum -= arg_is_const(a2); 734 735 /* Prefer the constant in second argument, and then the form 736 op a, a, b, which is better handled on non-RISC hosts. */ 737 if (sum > 0 || (sum == 0 && dest == a2)) { 738 *p1 = a2; 739 *p2 = a1; 740 return true; 741 } 742 return false; 743 } 744 745 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 746 { 747 int sum = 0; 748 sum += arg_is_const(p1[0]); 749 sum += arg_is_const(p1[1]); 750 sum -= arg_is_const(p2[0]); 751 sum -= arg_is_const(p2[1]); 752 if (sum > 0) { 753 TCGArg t; 754 t = p1[0], p1[0] = p2[0], p2[0] = t; 755 t = p1[1], p1[1] = p2[1], p2[1] = t; 756 return true; 757 } 758 return false; 759 } 760 761 /* 762 * Return -1 if the condition can't be simplified, 763 * and the result of the condition (0 or 1) if it can. 764 */ 765 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 766 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 767 { 768 TCGCond cond; 769 TempOptInfo *i1; 770 bool swap; 771 int r; 772 773 swap = swap_commutative(dest, p1, p2); 774 cond = *pcond; 775 if (swap) { 776 *pcond = cond = tcg_swap_cond(cond); 777 } 778 779 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 780 if (r >= 0) { 781 return r; 782 } 783 if (!is_tst_cond(cond)) { 784 return -1; 785 } 786 787 i1 = arg_info(*p1); 788 789 /* 790 * TSTNE x,x -> NE x,0 791 * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x 792 */ 793 if (args_are_copies(*p1, *p2) || 794 (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) { 795 *p2 = arg_new_constant(ctx, 0); 796 *pcond = tcg_tst_eqne_cond(cond); 797 return -1; 798 } 799 800 /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */ 801 if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) { 802 *p2 = arg_new_constant(ctx, 0); 803 *pcond = tcg_tst_ltge_cond(cond); 804 return -1; 805 } 806 807 /* Expand to AND with a temporary if no backend support. */ 808 if (!TCG_TARGET_HAS_tst) { 809 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 810 TCGArg tmp = arg_new_temp(ctx); 811 812 op2->args[0] = tmp; 813 op2->args[1] = *p1; 814 op2->args[2] = *p2; 815 816 *p1 = tmp; 817 *p2 = arg_new_constant(ctx, 0); 818 *pcond = tcg_tst_eqne_cond(cond); 819 } 820 return -1; 821 } 822 823 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 824 { 825 TCGArg al, ah, bl, bh; 826 TCGCond c; 827 bool swap; 828 int r; 829 830 swap = swap_commutative2(args, args + 2); 831 c = args[4]; 832 if (swap) { 833 args[4] = c = tcg_swap_cond(c); 834 } 835 836 al = args[0]; 837 ah = args[1]; 838 bl = args[2]; 839 bh = args[3]; 840 841 if (arg_is_const(bl) && arg_is_const(bh)) { 842 tcg_target_ulong blv = arg_info(bl)->val; 843 tcg_target_ulong bhv = arg_info(bh)->val; 844 uint64_t b = deposit64(blv, 32, 32, bhv); 845 846 if (arg_is_const(al) && arg_is_const(ah)) { 847 tcg_target_ulong alv = arg_info(al)->val; 848 tcg_target_ulong ahv = arg_info(ah)->val; 849 uint64_t a = deposit64(alv, 32, 32, ahv); 850 851 r = do_constant_folding_cond_64(a, b, c); 852 if (r >= 0) { 853 return r; 854 } 855 } 856 857 if (b == 0) { 858 switch (c) { 859 case TCG_COND_LTU: 860 case TCG_COND_TSTNE: 861 return 0; 862 case TCG_COND_GEU: 863 case TCG_COND_TSTEQ: 864 return 1; 865 default: 866 break; 867 } 868 } 869 870 /* TSTNE x,-1 -> NE x,0 */ 871 if (b == -1 && is_tst_cond(c)) { 872 args[3] = args[2] = arg_new_constant(ctx, 0); 873 args[4] = tcg_tst_eqne_cond(c); 874 return -1; 875 } 876 877 /* TSTNE x,sign -> LT x,0 */ 878 if (b == INT64_MIN && is_tst_cond(c)) { 879 /* bl must be 0, so copy that to bh */ 880 args[3] = bl; 881 args[4] = tcg_tst_ltge_cond(c); 882 return -1; 883 } 884 } 885 886 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 887 r = do_constant_folding_cond_eq(c); 888 if (r >= 0) { 889 return r; 890 } 891 892 /* TSTNE x,x -> NE x,0 */ 893 if (is_tst_cond(c)) { 894 args[3] = args[2] = arg_new_constant(ctx, 0); 895 args[4] = tcg_tst_eqne_cond(c); 896 return -1; 897 } 898 } 899 900 /* Expand to AND with a temporary if no backend support. */ 901 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 902 TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and, 3); 903 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 904 TCGArg t1 = arg_new_temp(ctx); 905 TCGArg t2 = arg_new_temp(ctx); 906 907 op1->args[0] = t1; 908 op1->args[1] = al; 909 op1->args[2] = bl; 910 op2->args[0] = t2; 911 op2->args[1] = ah; 912 op2->args[2] = bh; 913 914 args[0] = t1; 915 args[1] = t2; 916 args[3] = args[2] = arg_new_constant(ctx, 0); 917 args[4] = tcg_tst_eqne_cond(c); 918 } 919 return -1; 920 } 921 922 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 923 { 924 for (int i = 0; i < nb_args; i++) { 925 TCGTemp *ts = arg_temp(op->args[i]); 926 init_ts_info(ctx, ts); 927 } 928 } 929 930 static void copy_propagate(OptContext *ctx, TCGOp *op, 931 int nb_oargs, int nb_iargs) 932 { 933 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 934 TCGTemp *ts = arg_temp(op->args[i]); 935 if (ts_is_copy(ts)) { 936 op->args[i] = temp_arg(find_better_copy(ts)); 937 } 938 } 939 } 940 941 static void finish_bb(OptContext *ctx) 942 { 943 /* We only optimize memory barriers across basic blocks. */ 944 ctx->prev_mb = NULL; 945 } 946 947 static void finish_ebb(OptContext *ctx) 948 { 949 finish_bb(ctx); 950 /* We only optimize across extended basic blocks. */ 951 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 952 remove_mem_copy_all(ctx); 953 } 954 955 static bool finish_folding(OptContext *ctx, TCGOp *op) 956 { 957 const TCGOpDef *def = &tcg_op_defs[op->opc]; 958 int i, nb_oargs; 959 960 nb_oargs = def->nb_oargs; 961 for (i = 0; i < nb_oargs; i++) { 962 TCGTemp *ts = arg_temp(op->args[i]); 963 reset_ts(ctx, ts); 964 } 965 return true; 966 } 967 968 /* 969 * The fold_* functions return true when processing is complete, 970 * usually by folding the operation to a constant or to a copy, 971 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 972 * like collect information about the value produced, for use in 973 * optimizing a subsequent operation. 974 * 975 * These first fold_* functions are all helpers, used by other 976 * folders for more specific operations. 977 */ 978 979 static bool fold_const1(OptContext *ctx, TCGOp *op) 980 { 981 if (arg_is_const(op->args[1])) { 982 uint64_t t; 983 984 t = arg_info(op->args[1])->val; 985 t = do_constant_folding(op->opc, ctx->type, t, 0); 986 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 987 } 988 return false; 989 } 990 991 static bool fold_const2(OptContext *ctx, TCGOp *op) 992 { 993 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 994 uint64_t t1 = arg_info(op->args[1])->val; 995 uint64_t t2 = arg_info(op->args[2])->val; 996 997 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 998 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 999 } 1000 return false; 1001 } 1002 1003 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1004 { 1005 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1006 return false; 1007 } 1008 1009 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1010 { 1011 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1012 return fold_const2(ctx, op); 1013 } 1014 1015 /* 1016 * Record "zero" and "sign" masks for the single output of @op. 1017 * See TempOptInfo definition of z_mask and s_mask. 1018 * If z_mask allows, fold the output to constant zero. 1019 * The passed s_mask may be augmented by z_mask. 1020 */ 1021 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1022 uint64_t z_mask, int64_t s_mask) 1023 { 1024 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1025 TCGTemp *ts; 1026 TempOptInfo *ti; 1027 int rep; 1028 1029 /* Only single-output opcodes are supported here. */ 1030 tcg_debug_assert(def->nb_oargs == 1); 1031 1032 /* 1033 * 32-bit ops generate 32-bit results, which for the purpose of 1034 * simplifying tcg are sign-extended. Certainly that's how we 1035 * represent our constants elsewhere. Note that the bits will 1036 * be reset properly for a 64-bit value when encountering the 1037 * type changing opcodes. 1038 */ 1039 if (ctx->type == TCG_TYPE_I32) { 1040 z_mask = (int32_t)z_mask; 1041 s_mask |= INT32_MIN; 1042 } 1043 1044 if (z_mask == 0) { 1045 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1046 } 1047 1048 ts = arg_temp(op->args[0]); 1049 reset_ts(ctx, ts); 1050 1051 ti = ts_info(ts); 1052 ti->z_mask = z_mask; 1053 1054 /* Canonicalize s_mask and incorporate data from z_mask. */ 1055 rep = clz64(~s_mask); 1056 rep = MAX(rep, clz64(z_mask)); 1057 rep = MAX(rep - 1, 0); 1058 ti->s_mask = INT64_MIN >> rep; 1059 1060 return true; 1061 } 1062 1063 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1064 { 1065 return fold_masks_zs(ctx, op, z_mask, 0); 1066 } 1067 1068 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1069 { 1070 return fold_masks_zs(ctx, op, -1, s_mask); 1071 } 1072 1073 /* 1074 * An "affected" mask bit is 0 if and only if the result is identical 1075 * to the first input. Thus if the entire mask is 0, the operation 1076 * is equivalent to a copy. 1077 */ 1078 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1079 { 1080 if (ctx->type == TCG_TYPE_I32) { 1081 a_mask = (uint32_t)a_mask; 1082 } 1083 if (a_mask == 0) { 1084 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1085 } 1086 return false; 1087 } 1088 1089 /* 1090 * Convert @op to NOT, if NOT is supported by the host. 1091 * Return true f the conversion is successful, which will still 1092 * indicate that the processing is complete. 1093 */ 1094 static bool fold_not(OptContext *ctx, TCGOp *op); 1095 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1096 { 1097 TCGOpcode not_op; 1098 bool have_not; 1099 1100 switch (ctx->type) { 1101 case TCG_TYPE_I32: 1102 not_op = INDEX_op_not_i32; 1103 have_not = TCG_TARGET_HAS_not_i32; 1104 break; 1105 case TCG_TYPE_I64: 1106 not_op = INDEX_op_not_i64; 1107 have_not = TCG_TARGET_HAS_not_i64; 1108 break; 1109 case TCG_TYPE_V64: 1110 case TCG_TYPE_V128: 1111 case TCG_TYPE_V256: 1112 not_op = INDEX_op_not_vec; 1113 have_not = TCG_TARGET_HAS_not_vec; 1114 break; 1115 default: 1116 g_assert_not_reached(); 1117 } 1118 if (have_not) { 1119 op->opc = not_op; 1120 op->args[1] = op->args[idx]; 1121 return fold_not(ctx, op); 1122 } 1123 return false; 1124 } 1125 1126 /* If the binary operation has first argument @i, fold to @i. */ 1127 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1128 { 1129 if (arg_is_const_val(op->args[1], i)) { 1130 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1131 } 1132 return false; 1133 } 1134 1135 /* If the binary operation has first argument @i, fold to NOT. */ 1136 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1137 { 1138 if (arg_is_const_val(op->args[1], i)) { 1139 return fold_to_not(ctx, op, 2); 1140 } 1141 return false; 1142 } 1143 1144 /* If the binary operation has second argument @i, fold to @i. */ 1145 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1146 { 1147 if (arg_is_const_val(op->args[2], i)) { 1148 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1149 } 1150 return false; 1151 } 1152 1153 /* If the binary operation has second argument @i, fold to identity. */ 1154 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1155 { 1156 if (arg_is_const_val(op->args[2], i)) { 1157 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1158 } 1159 return false; 1160 } 1161 1162 /* If the binary operation has second argument @i, fold to NOT. */ 1163 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1164 { 1165 if (arg_is_const_val(op->args[2], i)) { 1166 return fold_to_not(ctx, op, 1); 1167 } 1168 return false; 1169 } 1170 1171 /* If the binary operation has both arguments equal, fold to @i. */ 1172 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1173 { 1174 if (args_are_copies(op->args[1], op->args[2])) { 1175 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1176 } 1177 return false; 1178 } 1179 1180 /* If the binary operation has both arguments equal, fold to identity. */ 1181 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1182 { 1183 if (args_are_copies(op->args[1], op->args[2])) { 1184 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1185 } 1186 return false; 1187 } 1188 1189 /* 1190 * These outermost fold_<op> functions are sorted alphabetically. 1191 * 1192 * The ordering of the transformations should be: 1193 * 1) those that produce a constant 1194 * 2) those that produce a copy 1195 * 3) those that produce information about the result value. 1196 */ 1197 1198 static bool fold_or(OptContext *ctx, TCGOp *op); 1199 static bool fold_orc(OptContext *ctx, TCGOp *op); 1200 static bool fold_xor(OptContext *ctx, TCGOp *op); 1201 1202 static bool fold_add(OptContext *ctx, TCGOp *op) 1203 { 1204 if (fold_const2_commutative(ctx, op) || 1205 fold_xi_to_x(ctx, op, 0)) { 1206 return true; 1207 } 1208 return finish_folding(ctx, op); 1209 } 1210 1211 /* We cannot as yet do_constant_folding with vectors. */ 1212 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1213 { 1214 if (fold_commutative(ctx, op) || 1215 fold_xi_to_x(ctx, op, 0)) { 1216 return true; 1217 } 1218 return finish_folding(ctx, op); 1219 } 1220 1221 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1222 { 1223 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1224 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1225 1226 if (a_const && b_const) { 1227 uint64_t al = arg_info(op->args[2])->val; 1228 uint64_t ah = arg_info(op->args[3])->val; 1229 uint64_t bl = arg_info(op->args[4])->val; 1230 uint64_t bh = arg_info(op->args[5])->val; 1231 TCGArg rl, rh; 1232 TCGOp *op2; 1233 1234 if (ctx->type == TCG_TYPE_I32) { 1235 uint64_t a = deposit64(al, 32, 32, ah); 1236 uint64_t b = deposit64(bl, 32, 32, bh); 1237 1238 if (add) { 1239 a += b; 1240 } else { 1241 a -= b; 1242 } 1243 1244 al = sextract64(a, 0, 32); 1245 ah = sextract64(a, 32, 32); 1246 } else { 1247 Int128 a = int128_make128(al, ah); 1248 Int128 b = int128_make128(bl, bh); 1249 1250 if (add) { 1251 a = int128_add(a, b); 1252 } else { 1253 a = int128_sub(a, b); 1254 } 1255 1256 al = int128_getlo(a); 1257 ah = int128_gethi(a); 1258 } 1259 1260 rl = op->args[0]; 1261 rh = op->args[1]; 1262 1263 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1264 op2 = opt_insert_before(ctx, op, 0, 2); 1265 1266 tcg_opt_gen_movi(ctx, op, rl, al); 1267 tcg_opt_gen_movi(ctx, op2, rh, ah); 1268 return true; 1269 } 1270 1271 /* Fold sub2 r,x,i to add2 r,x,-i */ 1272 if (!add && b_const) { 1273 uint64_t bl = arg_info(op->args[4])->val; 1274 uint64_t bh = arg_info(op->args[5])->val; 1275 1276 /* Negate the two parts without assembling and disassembling. */ 1277 bl = -bl; 1278 bh = ~bh + !bl; 1279 1280 op->opc = (ctx->type == TCG_TYPE_I32 1281 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1282 op->args[4] = arg_new_constant(ctx, bl); 1283 op->args[5] = arg_new_constant(ctx, bh); 1284 } 1285 return finish_folding(ctx, op); 1286 } 1287 1288 static bool fold_add2(OptContext *ctx, TCGOp *op) 1289 { 1290 /* Note that the high and low parts may be independently swapped. */ 1291 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1292 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1293 1294 return fold_addsub2(ctx, op, true); 1295 } 1296 1297 static bool fold_and(OptContext *ctx, TCGOp *op) 1298 { 1299 uint64_t z1, z2, z_mask, s_mask; 1300 TempOptInfo *t1, *t2; 1301 1302 if (fold_const2_commutative(ctx, op) || 1303 fold_xi_to_i(ctx, op, 0) || 1304 fold_xi_to_x(ctx, op, -1) || 1305 fold_xx_to_x(ctx, op)) { 1306 return true; 1307 } 1308 1309 t1 = arg_info(op->args[1]); 1310 t2 = arg_info(op->args[2]); 1311 z1 = t1->z_mask; 1312 z2 = t2->z_mask; 1313 1314 /* 1315 * Known-zeros does not imply known-ones. Therefore unless 1316 * arg2 is constant, we can't infer affected bits from it. 1317 */ 1318 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1319 return true; 1320 } 1321 1322 z_mask = z1 & z2; 1323 1324 /* 1325 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1326 * Bitwise operations preserve the relative quantity of the repetitions. 1327 */ 1328 s_mask = t1->s_mask & t2->s_mask; 1329 1330 return fold_masks_zs(ctx, op, z_mask, s_mask); 1331 } 1332 1333 static bool fold_andc(OptContext *ctx, TCGOp *op) 1334 { 1335 uint64_t z_mask, s_mask; 1336 TempOptInfo *t1, *t2; 1337 1338 if (fold_const2(ctx, op) || 1339 fold_xx_to_i(ctx, op, 0) || 1340 fold_xi_to_x(ctx, op, 0) || 1341 fold_ix_to_not(ctx, op, -1)) { 1342 return true; 1343 } 1344 1345 t1 = arg_info(op->args[1]); 1346 t2 = arg_info(op->args[2]); 1347 z_mask = t1->z_mask; 1348 1349 if (ti_is_const(t2)) { 1350 /* Fold andc r,x,i to and r,x,~i. */ 1351 switch (ctx->type) { 1352 case TCG_TYPE_I32: 1353 case TCG_TYPE_I64: 1354 op->opc = INDEX_op_and; 1355 break; 1356 case TCG_TYPE_V64: 1357 case TCG_TYPE_V128: 1358 case TCG_TYPE_V256: 1359 op->opc = INDEX_op_and_vec; 1360 break; 1361 default: 1362 g_assert_not_reached(); 1363 } 1364 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 1365 return fold_and(ctx, op); 1366 } 1367 1368 /* 1369 * Known-zeros does not imply known-ones. Therefore unless 1370 * arg2 is constant, we can't infer anything from it. 1371 */ 1372 if (ti_is_const(t2)) { 1373 uint64_t v2 = ti_const_val(t2); 1374 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1375 return true; 1376 } 1377 z_mask &= ~v2; 1378 } 1379 1380 s_mask = t1->s_mask & t2->s_mask; 1381 return fold_masks_zs(ctx, op, z_mask, s_mask); 1382 } 1383 1384 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1385 { 1386 /* If true and false values are the same, eliminate the cmp. */ 1387 if (args_are_copies(op->args[2], op->args[3])) { 1388 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1389 } 1390 1391 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1392 uint64_t tv = arg_info(op->args[2])->val; 1393 uint64_t fv = arg_info(op->args[3])->val; 1394 1395 if (tv == -1 && fv == 0) { 1396 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1397 } 1398 if (tv == 0 && fv == -1) { 1399 if (TCG_TARGET_HAS_not_vec) { 1400 op->opc = INDEX_op_not_vec; 1401 return fold_not(ctx, op); 1402 } else { 1403 op->opc = INDEX_op_xor_vec; 1404 op->args[2] = arg_new_constant(ctx, -1); 1405 return fold_xor(ctx, op); 1406 } 1407 } 1408 } 1409 if (arg_is_const(op->args[2])) { 1410 uint64_t tv = arg_info(op->args[2])->val; 1411 if (tv == -1) { 1412 op->opc = INDEX_op_or_vec; 1413 op->args[2] = op->args[3]; 1414 return fold_or(ctx, op); 1415 } 1416 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1417 op->opc = INDEX_op_andc_vec; 1418 op->args[2] = op->args[1]; 1419 op->args[1] = op->args[3]; 1420 return fold_andc(ctx, op); 1421 } 1422 } 1423 if (arg_is_const(op->args[3])) { 1424 uint64_t fv = arg_info(op->args[3])->val; 1425 if (fv == 0) { 1426 op->opc = INDEX_op_and_vec; 1427 return fold_and(ctx, op); 1428 } 1429 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1430 op->opc = INDEX_op_orc_vec; 1431 op->args[2] = op->args[1]; 1432 op->args[1] = op->args[3]; 1433 return fold_orc(ctx, op); 1434 } 1435 } 1436 return finish_folding(ctx, op); 1437 } 1438 1439 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1440 { 1441 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1442 &op->args[1], &op->args[2]); 1443 if (i == 0) { 1444 tcg_op_remove(ctx->tcg, op); 1445 return true; 1446 } 1447 if (i > 0) { 1448 op->opc = INDEX_op_br; 1449 op->args[0] = op->args[3]; 1450 finish_ebb(ctx); 1451 } else { 1452 finish_bb(ctx); 1453 } 1454 return true; 1455 } 1456 1457 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1458 { 1459 TCGCond cond; 1460 TCGArg label; 1461 int i, inv = 0; 1462 1463 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1464 cond = op->args[4]; 1465 label = op->args[5]; 1466 if (i >= 0) { 1467 goto do_brcond_const; 1468 } 1469 1470 switch (cond) { 1471 case TCG_COND_LT: 1472 case TCG_COND_GE: 1473 /* 1474 * Simplify LT/GE comparisons vs zero to a single compare 1475 * vs the high word of the input. 1476 */ 1477 if (arg_is_const_val(op->args[2], 0) && 1478 arg_is_const_val(op->args[3], 0)) { 1479 goto do_brcond_high; 1480 } 1481 break; 1482 1483 case TCG_COND_NE: 1484 inv = 1; 1485 QEMU_FALLTHROUGH; 1486 case TCG_COND_EQ: 1487 /* 1488 * Simplify EQ/NE comparisons where one of the pairs 1489 * can be simplified. 1490 */ 1491 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1492 op->args[2], cond); 1493 switch (i ^ inv) { 1494 case 0: 1495 goto do_brcond_const; 1496 case 1: 1497 goto do_brcond_high; 1498 } 1499 1500 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1501 op->args[3], cond); 1502 switch (i ^ inv) { 1503 case 0: 1504 goto do_brcond_const; 1505 case 1: 1506 goto do_brcond_low; 1507 } 1508 break; 1509 1510 case TCG_COND_TSTEQ: 1511 case TCG_COND_TSTNE: 1512 if (arg_is_const_val(op->args[2], 0)) { 1513 goto do_brcond_high; 1514 } 1515 if (arg_is_const_val(op->args[3], 0)) { 1516 goto do_brcond_low; 1517 } 1518 break; 1519 1520 default: 1521 break; 1522 1523 do_brcond_low: 1524 op->opc = INDEX_op_brcond_i32; 1525 op->args[1] = op->args[2]; 1526 op->args[2] = cond; 1527 op->args[3] = label; 1528 return fold_brcond(ctx, op); 1529 1530 do_brcond_high: 1531 op->opc = INDEX_op_brcond_i32; 1532 op->args[0] = op->args[1]; 1533 op->args[1] = op->args[3]; 1534 op->args[2] = cond; 1535 op->args[3] = label; 1536 return fold_brcond(ctx, op); 1537 1538 do_brcond_const: 1539 if (i == 0) { 1540 tcg_op_remove(ctx->tcg, op); 1541 return true; 1542 } 1543 op->opc = INDEX_op_br; 1544 op->args[0] = label; 1545 finish_ebb(ctx); 1546 return true; 1547 } 1548 1549 finish_bb(ctx); 1550 return true; 1551 } 1552 1553 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1554 { 1555 uint64_t z_mask, s_mask, sign; 1556 TempOptInfo *t1 = arg_info(op->args[1]); 1557 1558 if (ti_is_const(t1)) { 1559 return tcg_opt_gen_movi(ctx, op, op->args[0], 1560 do_constant_folding(op->opc, ctx->type, 1561 ti_const_val(t1), 1562 op->args[2])); 1563 } 1564 1565 z_mask = t1->z_mask; 1566 switch (op->opc) { 1567 case INDEX_op_bswap16_i32: 1568 case INDEX_op_bswap16_i64: 1569 z_mask = bswap16(z_mask); 1570 sign = INT16_MIN; 1571 break; 1572 case INDEX_op_bswap32_i32: 1573 case INDEX_op_bswap32_i64: 1574 z_mask = bswap32(z_mask); 1575 sign = INT32_MIN; 1576 break; 1577 case INDEX_op_bswap64_i64: 1578 z_mask = bswap64(z_mask); 1579 sign = INT64_MIN; 1580 break; 1581 default: 1582 g_assert_not_reached(); 1583 } 1584 1585 s_mask = 0; 1586 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1587 case TCG_BSWAP_OZ: 1588 break; 1589 case TCG_BSWAP_OS: 1590 /* If the sign bit may be 1, force all the bits above to 1. */ 1591 if (z_mask & sign) { 1592 z_mask |= sign; 1593 } 1594 /* The value and therefore s_mask is explicitly sign-extended. */ 1595 s_mask = sign; 1596 break; 1597 default: 1598 /* The high bits are undefined: force all bits above the sign to 1. */ 1599 z_mask |= sign << 1; 1600 break; 1601 } 1602 1603 return fold_masks_zs(ctx, op, z_mask, s_mask); 1604 } 1605 1606 static bool fold_call(OptContext *ctx, TCGOp *op) 1607 { 1608 TCGContext *s = ctx->tcg; 1609 int nb_oargs = TCGOP_CALLO(op); 1610 int nb_iargs = TCGOP_CALLI(op); 1611 int flags, i; 1612 1613 init_arguments(ctx, op, nb_oargs + nb_iargs); 1614 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1615 1616 /* If the function reads or writes globals, reset temp data. */ 1617 flags = tcg_call_flags(op); 1618 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1619 int nb_globals = s->nb_globals; 1620 1621 for (i = 0; i < nb_globals; i++) { 1622 if (test_bit(i, ctx->temps_used.l)) { 1623 reset_ts(ctx, &ctx->tcg->temps[i]); 1624 } 1625 } 1626 } 1627 1628 /* If the function has side effects, reset mem data. */ 1629 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1630 remove_mem_copy_all(ctx); 1631 } 1632 1633 /* Reset temp data for outputs. */ 1634 for (i = 0; i < nb_oargs; i++) { 1635 reset_temp(ctx, op->args[i]); 1636 } 1637 1638 /* Stop optimizing MB across calls. */ 1639 ctx->prev_mb = NULL; 1640 return true; 1641 } 1642 1643 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1644 { 1645 /* Canonicalize the comparison to put immediate second. */ 1646 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1647 op->args[3] = tcg_swap_cond(op->args[3]); 1648 } 1649 return finish_folding(ctx, op); 1650 } 1651 1652 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1653 { 1654 /* If true and false values are the same, eliminate the cmp. */ 1655 if (args_are_copies(op->args[3], op->args[4])) { 1656 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1657 } 1658 1659 /* Canonicalize the comparison to put immediate second. */ 1660 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1661 op->args[5] = tcg_swap_cond(op->args[5]); 1662 } 1663 /* 1664 * Canonicalize the "false" input reg to match the destination, 1665 * so that the tcg backend can implement "move if true". 1666 */ 1667 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1668 op->args[5] = tcg_invert_cond(op->args[5]); 1669 } 1670 return finish_folding(ctx, op); 1671 } 1672 1673 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1674 { 1675 uint64_t z_mask, s_mask; 1676 TempOptInfo *t1 = arg_info(op->args[1]); 1677 TempOptInfo *t2 = arg_info(op->args[2]); 1678 1679 if (ti_is_const(t1)) { 1680 uint64_t t = ti_const_val(t1); 1681 1682 if (t != 0) { 1683 t = do_constant_folding(op->opc, ctx->type, t, 0); 1684 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1685 } 1686 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1687 } 1688 1689 switch (ctx->type) { 1690 case TCG_TYPE_I32: 1691 z_mask = 31; 1692 break; 1693 case TCG_TYPE_I64: 1694 z_mask = 63; 1695 break; 1696 default: 1697 g_assert_not_reached(); 1698 } 1699 s_mask = ~z_mask; 1700 z_mask |= t2->z_mask; 1701 s_mask &= t2->s_mask; 1702 1703 return fold_masks_zs(ctx, op, z_mask, s_mask); 1704 } 1705 1706 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1707 { 1708 uint64_t z_mask; 1709 1710 if (fold_const1(ctx, op)) { 1711 return true; 1712 } 1713 1714 switch (ctx->type) { 1715 case TCG_TYPE_I32: 1716 z_mask = 32 | 31; 1717 break; 1718 case TCG_TYPE_I64: 1719 z_mask = 64 | 63; 1720 break; 1721 default: 1722 g_assert_not_reached(); 1723 } 1724 return fold_masks_z(ctx, op, z_mask); 1725 } 1726 1727 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1728 { 1729 TempOptInfo *t1 = arg_info(op->args[1]); 1730 TempOptInfo *t2 = arg_info(op->args[2]); 1731 int ofs = op->args[3]; 1732 int len = op->args[4]; 1733 int width = 8 * tcg_type_size(ctx->type); 1734 uint64_t z_mask, s_mask; 1735 1736 if (ti_is_const(t1) && ti_is_const(t2)) { 1737 return tcg_opt_gen_movi(ctx, op, op->args[0], 1738 deposit64(ti_const_val(t1), ofs, len, 1739 ti_const_val(t2))); 1740 } 1741 1742 /* Inserting a value into zero at offset 0. */ 1743 if (ti_is_const_val(t1, 0) && ofs == 0) { 1744 uint64_t mask = MAKE_64BIT_MASK(0, len); 1745 1746 op->opc = INDEX_op_and; 1747 op->args[1] = op->args[2]; 1748 op->args[2] = arg_new_constant(ctx, mask); 1749 return fold_and(ctx, op); 1750 } 1751 1752 /* Inserting zero into a value. */ 1753 if (ti_is_const_val(t2, 0)) { 1754 uint64_t mask = deposit64(-1, ofs, len, 0); 1755 1756 op->opc = INDEX_op_and; 1757 op->args[2] = arg_new_constant(ctx, mask); 1758 return fold_and(ctx, op); 1759 } 1760 1761 /* The s_mask from the top portion of the deposit is still valid. */ 1762 if (ofs + len == width) { 1763 s_mask = t2->s_mask << ofs; 1764 } else { 1765 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1766 } 1767 1768 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1769 return fold_masks_zs(ctx, op, z_mask, s_mask); 1770 } 1771 1772 static bool fold_divide(OptContext *ctx, TCGOp *op) 1773 { 1774 if (fold_const2(ctx, op) || 1775 fold_xi_to_x(ctx, op, 1)) { 1776 return true; 1777 } 1778 return finish_folding(ctx, op); 1779 } 1780 1781 static bool fold_dup(OptContext *ctx, TCGOp *op) 1782 { 1783 if (arg_is_const(op->args[1])) { 1784 uint64_t t = arg_info(op->args[1])->val; 1785 t = dup_const(TCGOP_VECE(op), t); 1786 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1787 } 1788 return finish_folding(ctx, op); 1789 } 1790 1791 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1792 { 1793 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1794 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1795 arg_info(op->args[2])->val); 1796 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1797 } 1798 1799 if (args_are_copies(op->args[1], op->args[2])) { 1800 op->opc = INDEX_op_dup_vec; 1801 TCGOP_VECE(op) = MO_32; 1802 } 1803 return finish_folding(ctx, op); 1804 } 1805 1806 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1807 { 1808 uint64_t s_mask; 1809 1810 if (fold_const2_commutative(ctx, op) || 1811 fold_xi_to_x(ctx, op, -1) || 1812 fold_xi_to_not(ctx, op, 0)) { 1813 return true; 1814 } 1815 1816 s_mask = arg_info(op->args[1])->s_mask 1817 & arg_info(op->args[2])->s_mask; 1818 return fold_masks_s(ctx, op, s_mask); 1819 } 1820 1821 static bool fold_extract(OptContext *ctx, TCGOp *op) 1822 { 1823 uint64_t z_mask_old, z_mask; 1824 TempOptInfo *t1 = arg_info(op->args[1]); 1825 int pos = op->args[2]; 1826 int len = op->args[3]; 1827 1828 if (ti_is_const(t1)) { 1829 return tcg_opt_gen_movi(ctx, op, op->args[0], 1830 extract64(ti_const_val(t1), pos, len)); 1831 } 1832 1833 z_mask_old = t1->z_mask; 1834 z_mask = extract64(z_mask_old, pos, len); 1835 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1836 return true; 1837 } 1838 1839 return fold_masks_z(ctx, op, z_mask); 1840 } 1841 1842 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1843 { 1844 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1845 uint64_t v1 = arg_info(op->args[1])->val; 1846 uint64_t v2 = arg_info(op->args[2])->val; 1847 int shr = op->args[3]; 1848 1849 if (op->opc == INDEX_op_extract2_i64) { 1850 v1 >>= shr; 1851 v2 <<= 64 - shr; 1852 } else { 1853 v1 = (uint32_t)v1 >> shr; 1854 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1855 } 1856 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1857 } 1858 return finish_folding(ctx, op); 1859 } 1860 1861 static bool fold_exts(OptContext *ctx, TCGOp *op) 1862 { 1863 uint64_t s_mask, z_mask; 1864 TempOptInfo *t1; 1865 1866 if (fold_const1(ctx, op)) { 1867 return true; 1868 } 1869 1870 t1 = arg_info(op->args[1]); 1871 z_mask = t1->z_mask; 1872 s_mask = t1->s_mask; 1873 1874 switch (op->opc) { 1875 case INDEX_op_ext_i32_i64: 1876 s_mask |= INT32_MIN; 1877 z_mask = (int32_t)z_mask; 1878 break; 1879 default: 1880 g_assert_not_reached(); 1881 } 1882 return fold_masks_zs(ctx, op, z_mask, s_mask); 1883 } 1884 1885 static bool fold_extu(OptContext *ctx, TCGOp *op) 1886 { 1887 uint64_t z_mask; 1888 1889 if (fold_const1(ctx, op)) { 1890 return true; 1891 } 1892 1893 z_mask = arg_info(op->args[1])->z_mask; 1894 switch (op->opc) { 1895 case INDEX_op_extrl_i64_i32: 1896 case INDEX_op_extu_i32_i64: 1897 z_mask = (uint32_t)z_mask; 1898 break; 1899 case INDEX_op_extrh_i64_i32: 1900 z_mask >>= 32; 1901 break; 1902 default: 1903 g_assert_not_reached(); 1904 } 1905 return fold_masks_z(ctx, op, z_mask); 1906 } 1907 1908 static bool fold_mb(OptContext *ctx, TCGOp *op) 1909 { 1910 /* Eliminate duplicate and redundant fence instructions. */ 1911 if (ctx->prev_mb) { 1912 /* 1913 * Merge two barriers of the same type into one, 1914 * or a weaker barrier into a stronger one, 1915 * or two weaker barriers into a stronger one. 1916 * mb X; mb Y => mb X|Y 1917 * mb; strl => mb; st 1918 * ldaq; mb => ld; mb 1919 * ldaq; strl => ld; mb; st 1920 * Other combinations are also merged into a strong 1921 * barrier. This is stricter than specified but for 1922 * the purposes of TCG is better than not optimizing. 1923 */ 1924 ctx->prev_mb->args[0] |= op->args[0]; 1925 tcg_op_remove(ctx->tcg, op); 1926 } else { 1927 ctx->prev_mb = op; 1928 } 1929 return true; 1930 } 1931 1932 static bool fold_mov(OptContext *ctx, TCGOp *op) 1933 { 1934 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1935 } 1936 1937 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1938 { 1939 uint64_t z_mask, s_mask; 1940 TempOptInfo *tt, *ft; 1941 int i; 1942 1943 /* If true and false values are the same, eliminate the cmp. */ 1944 if (args_are_copies(op->args[3], op->args[4])) { 1945 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1946 } 1947 1948 /* 1949 * Canonicalize the "false" input reg to match the destination reg so 1950 * that the tcg backend can implement a "move if true" operation. 1951 */ 1952 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1953 op->args[5] = tcg_invert_cond(op->args[5]); 1954 } 1955 1956 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1957 &op->args[2], &op->args[5]); 1958 if (i >= 0) { 1959 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1960 } 1961 1962 tt = arg_info(op->args[3]); 1963 ft = arg_info(op->args[4]); 1964 z_mask = tt->z_mask | ft->z_mask; 1965 s_mask = tt->s_mask & ft->s_mask; 1966 1967 if (ti_is_const(tt) && ti_is_const(ft)) { 1968 uint64_t tv = ti_const_val(tt); 1969 uint64_t fv = ti_const_val(ft); 1970 TCGOpcode opc, negopc = 0; 1971 TCGCond cond = op->args[5]; 1972 1973 switch (ctx->type) { 1974 case TCG_TYPE_I32: 1975 opc = INDEX_op_setcond_i32; 1976 if (TCG_TARGET_HAS_negsetcond_i32) { 1977 negopc = INDEX_op_negsetcond_i32; 1978 } 1979 tv = (int32_t)tv; 1980 fv = (int32_t)fv; 1981 break; 1982 case TCG_TYPE_I64: 1983 opc = INDEX_op_setcond_i64; 1984 if (TCG_TARGET_HAS_negsetcond_i64) { 1985 negopc = INDEX_op_negsetcond_i64; 1986 } 1987 break; 1988 default: 1989 g_assert_not_reached(); 1990 } 1991 1992 if (tv == 1 && fv == 0) { 1993 op->opc = opc; 1994 op->args[3] = cond; 1995 } else if (fv == 1 && tv == 0) { 1996 op->opc = opc; 1997 op->args[3] = tcg_invert_cond(cond); 1998 } else if (negopc) { 1999 if (tv == -1 && fv == 0) { 2000 op->opc = negopc; 2001 op->args[3] = cond; 2002 } else if (fv == -1 && tv == 0) { 2003 op->opc = negopc; 2004 op->args[3] = tcg_invert_cond(cond); 2005 } 2006 } 2007 } 2008 2009 return fold_masks_zs(ctx, op, z_mask, s_mask); 2010 } 2011 2012 static bool fold_mul(OptContext *ctx, TCGOp *op) 2013 { 2014 if (fold_const2(ctx, op) || 2015 fold_xi_to_i(ctx, op, 0) || 2016 fold_xi_to_x(ctx, op, 1)) { 2017 return true; 2018 } 2019 return finish_folding(ctx, op); 2020 } 2021 2022 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2023 { 2024 if (fold_const2_commutative(ctx, op) || 2025 fold_xi_to_i(ctx, op, 0)) { 2026 return true; 2027 } 2028 return finish_folding(ctx, op); 2029 } 2030 2031 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2032 { 2033 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2034 2035 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2036 uint64_t a = arg_info(op->args[2])->val; 2037 uint64_t b = arg_info(op->args[3])->val; 2038 uint64_t h, l; 2039 TCGArg rl, rh; 2040 TCGOp *op2; 2041 2042 switch (op->opc) { 2043 case INDEX_op_mulu2_i32: 2044 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2045 h = (int32_t)(l >> 32); 2046 l = (int32_t)l; 2047 break; 2048 case INDEX_op_muls2_i32: 2049 l = (int64_t)(int32_t)a * (int32_t)b; 2050 h = l >> 32; 2051 l = (int32_t)l; 2052 break; 2053 case INDEX_op_mulu2_i64: 2054 mulu64(&l, &h, a, b); 2055 break; 2056 case INDEX_op_muls2_i64: 2057 muls64(&l, &h, a, b); 2058 break; 2059 default: 2060 g_assert_not_reached(); 2061 } 2062 2063 rl = op->args[0]; 2064 rh = op->args[1]; 2065 2066 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2067 op2 = opt_insert_before(ctx, op, 0, 2); 2068 2069 tcg_opt_gen_movi(ctx, op, rl, l); 2070 tcg_opt_gen_movi(ctx, op2, rh, h); 2071 return true; 2072 } 2073 return finish_folding(ctx, op); 2074 } 2075 2076 static bool fold_nand(OptContext *ctx, TCGOp *op) 2077 { 2078 uint64_t s_mask; 2079 2080 if (fold_const2_commutative(ctx, op) || 2081 fold_xi_to_not(ctx, op, -1)) { 2082 return true; 2083 } 2084 2085 s_mask = arg_info(op->args[1])->s_mask 2086 & arg_info(op->args[2])->s_mask; 2087 return fold_masks_s(ctx, op, s_mask); 2088 } 2089 2090 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2091 { 2092 /* Set to 1 all bits to the left of the rightmost. */ 2093 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2094 z_mask = -(z_mask & -z_mask); 2095 2096 return fold_masks_z(ctx, op, z_mask); 2097 } 2098 2099 static bool fold_neg(OptContext *ctx, TCGOp *op) 2100 { 2101 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2102 } 2103 2104 static bool fold_nor(OptContext *ctx, TCGOp *op) 2105 { 2106 uint64_t s_mask; 2107 2108 if (fold_const2_commutative(ctx, op) || 2109 fold_xi_to_not(ctx, op, 0)) { 2110 return true; 2111 } 2112 2113 s_mask = arg_info(op->args[1])->s_mask 2114 & arg_info(op->args[2])->s_mask; 2115 return fold_masks_s(ctx, op, s_mask); 2116 } 2117 2118 static bool fold_not(OptContext *ctx, TCGOp *op) 2119 { 2120 if (fold_const1(ctx, op)) { 2121 return true; 2122 } 2123 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2124 } 2125 2126 static bool fold_or(OptContext *ctx, TCGOp *op) 2127 { 2128 uint64_t z_mask, s_mask; 2129 TempOptInfo *t1, *t2; 2130 2131 if (fold_const2_commutative(ctx, op) || 2132 fold_xi_to_x(ctx, op, 0) || 2133 fold_xx_to_x(ctx, op)) { 2134 return true; 2135 } 2136 2137 t1 = arg_info(op->args[1]); 2138 t2 = arg_info(op->args[2]); 2139 z_mask = t1->z_mask | t2->z_mask; 2140 s_mask = t1->s_mask & t2->s_mask; 2141 return fold_masks_zs(ctx, op, z_mask, s_mask); 2142 } 2143 2144 static bool fold_orc(OptContext *ctx, TCGOp *op) 2145 { 2146 uint64_t s_mask; 2147 TempOptInfo *t1, *t2; 2148 2149 if (fold_const2(ctx, op) || 2150 fold_xx_to_i(ctx, op, -1) || 2151 fold_xi_to_x(ctx, op, -1) || 2152 fold_ix_to_not(ctx, op, 0)) { 2153 return true; 2154 } 2155 2156 t2 = arg_info(op->args[2]); 2157 if (ti_is_const(t2)) { 2158 /* Fold orc r,x,i to or r,x,~i. */ 2159 switch (ctx->type) { 2160 case TCG_TYPE_I32: 2161 case TCG_TYPE_I64: 2162 op->opc = INDEX_op_or; 2163 break; 2164 case TCG_TYPE_V64: 2165 case TCG_TYPE_V128: 2166 case TCG_TYPE_V256: 2167 op->opc = INDEX_op_or_vec; 2168 break; 2169 default: 2170 g_assert_not_reached(); 2171 } 2172 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 2173 return fold_or(ctx, op); 2174 } 2175 2176 t1 = arg_info(op->args[1]); 2177 s_mask = t1->s_mask & t2->s_mask; 2178 return fold_masks_s(ctx, op, s_mask); 2179 } 2180 2181 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2182 { 2183 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2184 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2185 MemOp mop = get_memop(oi); 2186 int width = 8 * memop_size(mop); 2187 uint64_t z_mask = -1, s_mask = 0; 2188 2189 if (width < 64) { 2190 if (mop & MO_SIGN) { 2191 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2192 } else { 2193 z_mask = MAKE_64BIT_MASK(0, width); 2194 } 2195 } 2196 2197 /* Opcodes that touch guest memory stop the mb optimization. */ 2198 ctx->prev_mb = NULL; 2199 2200 return fold_masks_zs(ctx, op, z_mask, s_mask); 2201 } 2202 2203 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2204 { 2205 /* Opcodes that touch guest memory stop the mb optimization. */ 2206 ctx->prev_mb = NULL; 2207 return finish_folding(ctx, op); 2208 } 2209 2210 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2211 { 2212 /* Opcodes that touch guest memory stop the mb optimization. */ 2213 ctx->prev_mb = NULL; 2214 return true; 2215 } 2216 2217 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2218 { 2219 if (fold_const2(ctx, op) || 2220 fold_xx_to_i(ctx, op, 0)) { 2221 return true; 2222 } 2223 return finish_folding(ctx, op); 2224 } 2225 2226 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2227 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2228 { 2229 uint64_t a_zmask, b_val; 2230 TCGCond cond; 2231 2232 if (!arg_is_const(op->args[2])) { 2233 return false; 2234 } 2235 2236 a_zmask = arg_info(op->args[1])->z_mask; 2237 b_val = arg_info(op->args[2])->val; 2238 cond = op->args[3]; 2239 2240 if (ctx->type == TCG_TYPE_I32) { 2241 a_zmask = (uint32_t)a_zmask; 2242 b_val = (uint32_t)b_val; 2243 } 2244 2245 /* 2246 * A with only low bits set vs B with high bits set means that A < B. 2247 */ 2248 if (a_zmask < b_val) { 2249 bool inv = false; 2250 2251 switch (cond) { 2252 case TCG_COND_NE: 2253 case TCG_COND_LEU: 2254 case TCG_COND_LTU: 2255 inv = true; 2256 /* fall through */ 2257 case TCG_COND_GTU: 2258 case TCG_COND_GEU: 2259 case TCG_COND_EQ: 2260 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2261 default: 2262 break; 2263 } 2264 } 2265 2266 /* 2267 * A with only lsb set is already boolean. 2268 */ 2269 if (a_zmask <= 1) { 2270 bool convert = false; 2271 bool inv = false; 2272 2273 switch (cond) { 2274 case TCG_COND_EQ: 2275 inv = true; 2276 /* fall through */ 2277 case TCG_COND_NE: 2278 convert = (b_val == 0); 2279 break; 2280 case TCG_COND_LTU: 2281 case TCG_COND_TSTEQ: 2282 inv = true; 2283 /* fall through */ 2284 case TCG_COND_GEU: 2285 case TCG_COND_TSTNE: 2286 convert = (b_val == 1); 2287 break; 2288 default: 2289 break; 2290 } 2291 if (convert) { 2292 TCGOpcode xor_opc, neg_opc; 2293 2294 if (!inv && !neg) { 2295 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2296 } 2297 2298 switch (ctx->type) { 2299 case TCG_TYPE_I32: 2300 neg_opc = INDEX_op_neg_i32; 2301 xor_opc = INDEX_op_xor_i32; 2302 break; 2303 case TCG_TYPE_I64: 2304 neg_opc = INDEX_op_neg_i64; 2305 xor_opc = INDEX_op_xor_i64; 2306 break; 2307 default: 2308 g_assert_not_reached(); 2309 } 2310 2311 if (!inv) { 2312 op->opc = neg_opc; 2313 } else if (neg) { 2314 op->opc = INDEX_op_add; 2315 op->args[2] = arg_new_constant(ctx, -1); 2316 } else { 2317 op->opc = xor_opc; 2318 op->args[2] = arg_new_constant(ctx, 1); 2319 } 2320 return -1; 2321 } 2322 } 2323 return 0; 2324 } 2325 2326 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2327 { 2328 TCGOpcode xor_opc, neg_opc, shr_opc; 2329 TCGOpcode uext_opc = 0, sext_opc = 0; 2330 TCGCond cond = op->args[3]; 2331 TCGArg ret, src1, src2; 2332 TCGOp *op2; 2333 uint64_t val; 2334 int sh; 2335 bool inv; 2336 2337 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2338 return; 2339 } 2340 2341 src2 = op->args[2]; 2342 val = arg_info(src2)->val; 2343 if (!is_power_of_2(val)) { 2344 return; 2345 } 2346 sh = ctz64(val); 2347 2348 switch (ctx->type) { 2349 case TCG_TYPE_I32: 2350 xor_opc = INDEX_op_xor_i32; 2351 shr_opc = INDEX_op_shr_i32; 2352 neg_opc = INDEX_op_neg_i32; 2353 if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) { 2354 uext_opc = INDEX_op_extract_i32; 2355 } 2356 if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) { 2357 sext_opc = INDEX_op_sextract_i32; 2358 } 2359 break; 2360 case TCG_TYPE_I64: 2361 xor_opc = INDEX_op_xor_i64; 2362 shr_opc = INDEX_op_shr_i64; 2363 neg_opc = INDEX_op_neg_i64; 2364 if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) { 2365 uext_opc = INDEX_op_extract_i64; 2366 } 2367 if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) { 2368 sext_opc = INDEX_op_sextract_i64; 2369 } 2370 break; 2371 default: 2372 g_assert_not_reached(); 2373 } 2374 2375 ret = op->args[0]; 2376 src1 = op->args[1]; 2377 inv = cond == TCG_COND_TSTEQ; 2378 2379 if (sh && sext_opc && neg && !inv) { 2380 op->opc = sext_opc; 2381 op->args[1] = src1; 2382 op->args[2] = sh; 2383 op->args[3] = 1; 2384 return; 2385 } else if (sh && uext_opc) { 2386 op->opc = uext_opc; 2387 op->args[1] = src1; 2388 op->args[2] = sh; 2389 op->args[3] = 1; 2390 } else { 2391 if (sh) { 2392 op2 = opt_insert_before(ctx, op, shr_opc, 3); 2393 op2->args[0] = ret; 2394 op2->args[1] = src1; 2395 op2->args[2] = arg_new_constant(ctx, sh); 2396 src1 = ret; 2397 } 2398 op->opc = INDEX_op_and; 2399 op->args[1] = src1; 2400 op->args[2] = arg_new_constant(ctx, 1); 2401 } 2402 2403 if (neg && inv) { 2404 op2 = opt_insert_after(ctx, op, INDEX_op_add, 3); 2405 op2->args[0] = ret; 2406 op2->args[1] = ret; 2407 op2->args[2] = arg_new_constant(ctx, -1); 2408 } else if (inv) { 2409 op2 = opt_insert_after(ctx, op, xor_opc, 3); 2410 op2->args[0] = ret; 2411 op2->args[1] = ret; 2412 op2->args[2] = arg_new_constant(ctx, 1); 2413 } else if (neg) { 2414 op2 = opt_insert_after(ctx, op, neg_opc, 2); 2415 op2->args[0] = ret; 2416 op2->args[1] = ret; 2417 } 2418 } 2419 2420 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2421 { 2422 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2423 &op->args[2], &op->args[3]); 2424 if (i >= 0) { 2425 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2426 } 2427 2428 i = fold_setcond_zmask(ctx, op, false); 2429 if (i > 0) { 2430 return true; 2431 } 2432 if (i == 0) { 2433 fold_setcond_tst_pow2(ctx, op, false); 2434 } 2435 2436 return fold_masks_z(ctx, op, 1); 2437 } 2438 2439 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2440 { 2441 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2442 &op->args[2], &op->args[3]); 2443 if (i >= 0) { 2444 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2445 } 2446 2447 i = fold_setcond_zmask(ctx, op, true); 2448 if (i > 0) { 2449 return true; 2450 } 2451 if (i == 0) { 2452 fold_setcond_tst_pow2(ctx, op, true); 2453 } 2454 2455 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2456 return fold_masks_s(ctx, op, -1); 2457 } 2458 2459 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2460 { 2461 TCGCond cond; 2462 int i, inv = 0; 2463 2464 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2465 cond = op->args[5]; 2466 if (i >= 0) { 2467 goto do_setcond_const; 2468 } 2469 2470 switch (cond) { 2471 case TCG_COND_LT: 2472 case TCG_COND_GE: 2473 /* 2474 * Simplify LT/GE comparisons vs zero to a single compare 2475 * vs the high word of the input. 2476 */ 2477 if (arg_is_const_val(op->args[3], 0) && 2478 arg_is_const_val(op->args[4], 0)) { 2479 goto do_setcond_high; 2480 } 2481 break; 2482 2483 case TCG_COND_NE: 2484 inv = 1; 2485 QEMU_FALLTHROUGH; 2486 case TCG_COND_EQ: 2487 /* 2488 * Simplify EQ/NE comparisons where one of the pairs 2489 * can be simplified. 2490 */ 2491 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2492 op->args[3], cond); 2493 switch (i ^ inv) { 2494 case 0: 2495 goto do_setcond_const; 2496 case 1: 2497 goto do_setcond_high; 2498 } 2499 2500 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2501 op->args[4], cond); 2502 switch (i ^ inv) { 2503 case 0: 2504 goto do_setcond_const; 2505 case 1: 2506 goto do_setcond_low; 2507 } 2508 break; 2509 2510 case TCG_COND_TSTEQ: 2511 case TCG_COND_TSTNE: 2512 if (arg_is_const_val(op->args[3], 0)) { 2513 goto do_setcond_high; 2514 } 2515 if (arg_is_const_val(op->args[4], 0)) { 2516 goto do_setcond_low; 2517 } 2518 break; 2519 2520 default: 2521 break; 2522 2523 do_setcond_low: 2524 op->args[2] = op->args[3]; 2525 op->args[3] = cond; 2526 op->opc = INDEX_op_setcond_i32; 2527 return fold_setcond(ctx, op); 2528 2529 do_setcond_high: 2530 op->args[1] = op->args[2]; 2531 op->args[2] = op->args[4]; 2532 op->args[3] = cond; 2533 op->opc = INDEX_op_setcond_i32; 2534 return fold_setcond(ctx, op); 2535 } 2536 2537 return fold_masks_z(ctx, op, 1); 2538 2539 do_setcond_const: 2540 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2541 } 2542 2543 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2544 { 2545 uint64_t z_mask, s_mask, s_mask_old; 2546 TempOptInfo *t1 = arg_info(op->args[1]); 2547 int pos = op->args[2]; 2548 int len = op->args[3]; 2549 2550 if (ti_is_const(t1)) { 2551 return tcg_opt_gen_movi(ctx, op, op->args[0], 2552 sextract64(ti_const_val(t1), pos, len)); 2553 } 2554 2555 s_mask_old = t1->s_mask; 2556 s_mask = s_mask_old >> pos; 2557 s_mask |= -1ull << (len - 1); 2558 2559 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2560 return true; 2561 } 2562 2563 z_mask = sextract64(t1->z_mask, pos, len); 2564 return fold_masks_zs(ctx, op, z_mask, s_mask); 2565 } 2566 2567 static bool fold_shift(OptContext *ctx, TCGOp *op) 2568 { 2569 uint64_t s_mask, z_mask; 2570 TempOptInfo *t1, *t2; 2571 2572 if (fold_const2(ctx, op) || 2573 fold_ix_to_i(ctx, op, 0) || 2574 fold_xi_to_x(ctx, op, 0)) { 2575 return true; 2576 } 2577 2578 t1 = arg_info(op->args[1]); 2579 t2 = arg_info(op->args[2]); 2580 s_mask = t1->s_mask; 2581 z_mask = t1->z_mask; 2582 2583 if (ti_is_const(t2)) { 2584 int sh = ti_const_val(t2); 2585 2586 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2587 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2588 2589 return fold_masks_zs(ctx, op, z_mask, s_mask); 2590 } 2591 2592 switch (op->opc) { 2593 CASE_OP_32_64(sar): 2594 /* 2595 * Arithmetic right shift will not reduce the number of 2596 * input sign repetitions. 2597 */ 2598 return fold_masks_s(ctx, op, s_mask); 2599 CASE_OP_32_64(shr): 2600 /* 2601 * If the sign bit is known zero, then logical right shift 2602 * will not reduce the number of input sign repetitions. 2603 */ 2604 if (~z_mask & -s_mask) { 2605 return fold_masks_s(ctx, op, s_mask); 2606 } 2607 break; 2608 default: 2609 break; 2610 } 2611 2612 return finish_folding(ctx, op); 2613 } 2614 2615 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2616 { 2617 TCGOpcode neg_op; 2618 bool have_neg; 2619 2620 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2621 return false; 2622 } 2623 2624 switch (ctx->type) { 2625 case TCG_TYPE_I32: 2626 neg_op = INDEX_op_neg_i32; 2627 have_neg = true; 2628 break; 2629 case TCG_TYPE_I64: 2630 neg_op = INDEX_op_neg_i64; 2631 have_neg = true; 2632 break; 2633 case TCG_TYPE_V64: 2634 case TCG_TYPE_V128: 2635 case TCG_TYPE_V256: 2636 neg_op = INDEX_op_neg_vec; 2637 have_neg = (TCG_TARGET_HAS_neg_vec && 2638 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2639 break; 2640 default: 2641 g_assert_not_reached(); 2642 } 2643 if (have_neg) { 2644 op->opc = neg_op; 2645 op->args[1] = op->args[2]; 2646 return fold_neg_no_const(ctx, op); 2647 } 2648 return false; 2649 } 2650 2651 /* We cannot as yet do_constant_folding with vectors. */ 2652 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2653 { 2654 if (fold_xx_to_i(ctx, op, 0) || 2655 fold_xi_to_x(ctx, op, 0) || 2656 fold_sub_to_neg(ctx, op)) { 2657 return true; 2658 } 2659 return finish_folding(ctx, op); 2660 } 2661 2662 static bool fold_sub(OptContext *ctx, TCGOp *op) 2663 { 2664 if (fold_const2(ctx, op) || 2665 fold_xx_to_i(ctx, op, 0) || 2666 fold_xi_to_x(ctx, op, 0) || 2667 fold_sub_to_neg(ctx, op)) { 2668 return true; 2669 } 2670 2671 /* Fold sub r,x,i to add r,x,-i */ 2672 if (arg_is_const(op->args[2])) { 2673 uint64_t val = arg_info(op->args[2])->val; 2674 2675 op->opc = INDEX_op_add; 2676 op->args[2] = arg_new_constant(ctx, -val); 2677 } 2678 return finish_folding(ctx, op); 2679 } 2680 2681 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2682 { 2683 return fold_addsub2(ctx, op, false); 2684 } 2685 2686 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2687 { 2688 uint64_t z_mask = -1, s_mask = 0; 2689 2690 /* We can't do any folding with a load, but we can record bits. */ 2691 switch (op->opc) { 2692 CASE_OP_32_64(ld8s): 2693 s_mask = INT8_MIN; 2694 break; 2695 CASE_OP_32_64(ld8u): 2696 z_mask = MAKE_64BIT_MASK(0, 8); 2697 break; 2698 CASE_OP_32_64(ld16s): 2699 s_mask = INT16_MIN; 2700 break; 2701 CASE_OP_32_64(ld16u): 2702 z_mask = MAKE_64BIT_MASK(0, 16); 2703 break; 2704 case INDEX_op_ld32s_i64: 2705 s_mask = INT32_MIN; 2706 break; 2707 case INDEX_op_ld32u_i64: 2708 z_mask = MAKE_64BIT_MASK(0, 32); 2709 break; 2710 default: 2711 g_assert_not_reached(); 2712 } 2713 return fold_masks_zs(ctx, op, z_mask, s_mask); 2714 } 2715 2716 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2717 { 2718 TCGTemp *dst, *src; 2719 intptr_t ofs; 2720 TCGType type; 2721 2722 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2723 return finish_folding(ctx, op); 2724 } 2725 2726 type = ctx->type; 2727 ofs = op->args[2]; 2728 dst = arg_temp(op->args[0]); 2729 src = find_mem_copy_for(ctx, type, ofs); 2730 if (src && src->base_type == type) { 2731 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2732 } 2733 2734 reset_ts(ctx, dst); 2735 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2736 return true; 2737 } 2738 2739 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2740 { 2741 intptr_t ofs = op->args[2]; 2742 intptr_t lm1; 2743 2744 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2745 remove_mem_copy_all(ctx); 2746 return true; 2747 } 2748 2749 switch (op->opc) { 2750 CASE_OP_32_64(st8): 2751 lm1 = 0; 2752 break; 2753 CASE_OP_32_64(st16): 2754 lm1 = 1; 2755 break; 2756 case INDEX_op_st32_i64: 2757 case INDEX_op_st_i32: 2758 lm1 = 3; 2759 break; 2760 case INDEX_op_st_i64: 2761 lm1 = 7; 2762 break; 2763 case INDEX_op_st_vec: 2764 lm1 = tcg_type_size(ctx->type) - 1; 2765 break; 2766 default: 2767 g_assert_not_reached(); 2768 } 2769 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2770 return true; 2771 } 2772 2773 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2774 { 2775 TCGTemp *src; 2776 intptr_t ofs, last; 2777 TCGType type; 2778 2779 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2780 return fold_tcg_st(ctx, op); 2781 } 2782 2783 src = arg_temp(op->args[0]); 2784 ofs = op->args[2]; 2785 type = ctx->type; 2786 2787 /* 2788 * Eliminate duplicate stores of a constant. 2789 * This happens frequently when the target ISA zero-extends. 2790 */ 2791 if (ts_is_const(src)) { 2792 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2793 if (src == prev) { 2794 tcg_op_remove(ctx->tcg, op); 2795 return true; 2796 } 2797 } 2798 2799 last = ofs + tcg_type_size(type) - 1; 2800 remove_mem_copy_in(ctx, ofs, last); 2801 record_mem_copy(ctx, type, src, ofs, last); 2802 return true; 2803 } 2804 2805 static bool fold_xor(OptContext *ctx, TCGOp *op) 2806 { 2807 uint64_t z_mask, s_mask; 2808 TempOptInfo *t1, *t2; 2809 2810 if (fold_const2_commutative(ctx, op) || 2811 fold_xx_to_i(ctx, op, 0) || 2812 fold_xi_to_x(ctx, op, 0) || 2813 fold_xi_to_not(ctx, op, -1)) { 2814 return true; 2815 } 2816 2817 t1 = arg_info(op->args[1]); 2818 t2 = arg_info(op->args[2]); 2819 z_mask = t1->z_mask | t2->z_mask; 2820 s_mask = t1->s_mask & t2->s_mask; 2821 return fold_masks_zs(ctx, op, z_mask, s_mask); 2822 } 2823 2824 /* Propagate constants and copies, fold constant expressions. */ 2825 void tcg_optimize(TCGContext *s) 2826 { 2827 int nb_temps, i; 2828 TCGOp *op, *op_next; 2829 OptContext ctx = { .tcg = s }; 2830 2831 QSIMPLEQ_INIT(&ctx.mem_free); 2832 2833 /* Array VALS has an element for each temp. 2834 If this temp holds a constant then its value is kept in VALS' element. 2835 If this temp is a copy of other ones then the other copies are 2836 available through the doubly linked circular list. */ 2837 2838 nb_temps = s->nb_temps; 2839 for (i = 0; i < nb_temps; ++i) { 2840 s->temps[i].state_ptr = NULL; 2841 } 2842 2843 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2844 TCGOpcode opc = op->opc; 2845 const TCGOpDef *def; 2846 bool done = false; 2847 2848 /* Calls are special. */ 2849 if (opc == INDEX_op_call) { 2850 fold_call(&ctx, op); 2851 continue; 2852 } 2853 2854 def = &tcg_op_defs[opc]; 2855 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2856 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2857 2858 /* Pre-compute the type of the operation. */ 2859 ctx.type = TCGOP_TYPE(op); 2860 2861 /* 2862 * Process each opcode. 2863 * Sorted alphabetically by opcode as much as possible. 2864 */ 2865 switch (opc) { 2866 case INDEX_op_add: 2867 done = fold_add(&ctx, op); 2868 break; 2869 case INDEX_op_add_vec: 2870 done = fold_add_vec(&ctx, op); 2871 break; 2872 CASE_OP_32_64(add2): 2873 done = fold_add2(&ctx, op); 2874 break; 2875 case INDEX_op_and: 2876 case INDEX_op_and_vec: 2877 done = fold_and(&ctx, op); 2878 break; 2879 case INDEX_op_andc: 2880 case INDEX_op_andc_vec: 2881 done = fold_andc(&ctx, op); 2882 break; 2883 CASE_OP_32_64(brcond): 2884 done = fold_brcond(&ctx, op); 2885 break; 2886 case INDEX_op_brcond2_i32: 2887 done = fold_brcond2(&ctx, op); 2888 break; 2889 CASE_OP_32_64(bswap16): 2890 CASE_OP_32_64(bswap32): 2891 case INDEX_op_bswap64_i64: 2892 done = fold_bswap(&ctx, op); 2893 break; 2894 CASE_OP_32_64(clz): 2895 CASE_OP_32_64(ctz): 2896 done = fold_count_zeros(&ctx, op); 2897 break; 2898 CASE_OP_32_64(ctpop): 2899 done = fold_ctpop(&ctx, op); 2900 break; 2901 CASE_OP_32_64(deposit): 2902 done = fold_deposit(&ctx, op); 2903 break; 2904 CASE_OP_32_64(div): 2905 CASE_OP_32_64(divu): 2906 done = fold_divide(&ctx, op); 2907 break; 2908 case INDEX_op_dup_vec: 2909 done = fold_dup(&ctx, op); 2910 break; 2911 case INDEX_op_dup2_vec: 2912 done = fold_dup2(&ctx, op); 2913 break; 2914 CASE_OP_32_64_VEC(eqv): 2915 done = fold_eqv(&ctx, op); 2916 break; 2917 CASE_OP_32_64(extract): 2918 done = fold_extract(&ctx, op); 2919 break; 2920 CASE_OP_32_64(extract2): 2921 done = fold_extract2(&ctx, op); 2922 break; 2923 case INDEX_op_ext_i32_i64: 2924 done = fold_exts(&ctx, op); 2925 break; 2926 case INDEX_op_extu_i32_i64: 2927 case INDEX_op_extrl_i64_i32: 2928 case INDEX_op_extrh_i64_i32: 2929 done = fold_extu(&ctx, op); 2930 break; 2931 CASE_OP_32_64(ld8s): 2932 CASE_OP_32_64(ld8u): 2933 CASE_OP_32_64(ld16s): 2934 CASE_OP_32_64(ld16u): 2935 case INDEX_op_ld32s_i64: 2936 case INDEX_op_ld32u_i64: 2937 done = fold_tcg_ld(&ctx, op); 2938 break; 2939 case INDEX_op_ld_i32: 2940 case INDEX_op_ld_i64: 2941 case INDEX_op_ld_vec: 2942 done = fold_tcg_ld_memcopy(&ctx, op); 2943 break; 2944 CASE_OP_32_64(st8): 2945 CASE_OP_32_64(st16): 2946 case INDEX_op_st32_i64: 2947 done = fold_tcg_st(&ctx, op); 2948 break; 2949 case INDEX_op_st_i32: 2950 case INDEX_op_st_i64: 2951 case INDEX_op_st_vec: 2952 done = fold_tcg_st_memcopy(&ctx, op); 2953 break; 2954 case INDEX_op_mb: 2955 done = fold_mb(&ctx, op); 2956 break; 2957 case INDEX_op_mov: 2958 case INDEX_op_mov_vec: 2959 done = fold_mov(&ctx, op); 2960 break; 2961 CASE_OP_32_64(movcond): 2962 done = fold_movcond(&ctx, op); 2963 break; 2964 CASE_OP_32_64(mul): 2965 done = fold_mul(&ctx, op); 2966 break; 2967 CASE_OP_32_64(mulsh): 2968 CASE_OP_32_64(muluh): 2969 done = fold_mul_highpart(&ctx, op); 2970 break; 2971 CASE_OP_32_64(muls2): 2972 CASE_OP_32_64(mulu2): 2973 done = fold_multiply2(&ctx, op); 2974 break; 2975 CASE_OP_32_64_VEC(nand): 2976 done = fold_nand(&ctx, op); 2977 break; 2978 CASE_OP_32_64(neg): 2979 done = fold_neg(&ctx, op); 2980 break; 2981 CASE_OP_32_64_VEC(nor): 2982 done = fold_nor(&ctx, op); 2983 break; 2984 CASE_OP_32_64_VEC(not): 2985 done = fold_not(&ctx, op); 2986 break; 2987 case INDEX_op_or: 2988 case INDEX_op_or_vec: 2989 done = fold_or(&ctx, op); 2990 break; 2991 case INDEX_op_orc: 2992 case INDEX_op_orc_vec: 2993 done = fold_orc(&ctx, op); 2994 break; 2995 case INDEX_op_qemu_ld_i32: 2996 done = fold_qemu_ld_1reg(&ctx, op); 2997 break; 2998 case INDEX_op_qemu_ld_i64: 2999 if (TCG_TARGET_REG_BITS == 64) { 3000 done = fold_qemu_ld_1reg(&ctx, op); 3001 break; 3002 } 3003 QEMU_FALLTHROUGH; 3004 case INDEX_op_qemu_ld_i128: 3005 done = fold_qemu_ld_2reg(&ctx, op); 3006 break; 3007 case INDEX_op_qemu_st8_i32: 3008 case INDEX_op_qemu_st_i32: 3009 case INDEX_op_qemu_st_i64: 3010 case INDEX_op_qemu_st_i128: 3011 done = fold_qemu_st(&ctx, op); 3012 break; 3013 CASE_OP_32_64(rem): 3014 CASE_OP_32_64(remu): 3015 done = fold_remainder(&ctx, op); 3016 break; 3017 CASE_OP_32_64(rotl): 3018 CASE_OP_32_64(rotr): 3019 CASE_OP_32_64(sar): 3020 CASE_OP_32_64(shl): 3021 CASE_OP_32_64(shr): 3022 done = fold_shift(&ctx, op); 3023 break; 3024 CASE_OP_32_64(setcond): 3025 done = fold_setcond(&ctx, op); 3026 break; 3027 CASE_OP_32_64(negsetcond): 3028 done = fold_negsetcond(&ctx, op); 3029 break; 3030 case INDEX_op_setcond2_i32: 3031 done = fold_setcond2(&ctx, op); 3032 break; 3033 case INDEX_op_cmp_vec: 3034 done = fold_cmp_vec(&ctx, op); 3035 break; 3036 case INDEX_op_cmpsel_vec: 3037 done = fold_cmpsel_vec(&ctx, op); 3038 break; 3039 case INDEX_op_bitsel_vec: 3040 done = fold_bitsel_vec(&ctx, op); 3041 break; 3042 CASE_OP_32_64(sextract): 3043 done = fold_sextract(&ctx, op); 3044 break; 3045 CASE_OP_32_64(sub): 3046 done = fold_sub(&ctx, op); 3047 break; 3048 case INDEX_op_sub_vec: 3049 done = fold_sub_vec(&ctx, op); 3050 break; 3051 CASE_OP_32_64(sub2): 3052 done = fold_sub2(&ctx, op); 3053 break; 3054 CASE_OP_32_64_VEC(xor): 3055 done = fold_xor(&ctx, op); 3056 break; 3057 case INDEX_op_set_label: 3058 case INDEX_op_br: 3059 case INDEX_op_exit_tb: 3060 case INDEX_op_goto_tb: 3061 case INDEX_op_goto_ptr: 3062 finish_ebb(&ctx); 3063 done = true; 3064 break; 3065 default: 3066 done = finish_folding(&ctx, op); 3067 break; 3068 } 3069 tcg_debug_assert(done); 3070 } 3071 } 3072