1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op, 348 TCGOpcode opc, unsigned narg) 349 { 350 return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg); 351 } 352 353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op, 354 TCGOpcode opc, unsigned narg) 355 { 356 return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg); 357 } 358 359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 360 { 361 TCGTemp *dst_ts = arg_temp(dst); 362 TCGTemp *src_ts = arg_temp(src); 363 TempOptInfo *di; 364 TempOptInfo *si; 365 TCGOpcode new_op; 366 367 if (ts_are_copies(dst_ts, src_ts)) { 368 tcg_op_remove(ctx->tcg, op); 369 return true; 370 } 371 372 reset_ts(ctx, dst_ts); 373 di = ts_info(dst_ts); 374 si = ts_info(src_ts); 375 376 switch (ctx->type) { 377 case TCG_TYPE_I32: 378 case TCG_TYPE_I64: 379 new_op = INDEX_op_mov; 380 break; 381 case TCG_TYPE_V64: 382 case TCG_TYPE_V128: 383 case TCG_TYPE_V256: 384 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 385 new_op = INDEX_op_mov_vec; 386 break; 387 default: 388 g_assert_not_reached(); 389 } 390 op->opc = new_op; 391 op->args[0] = dst; 392 op->args[1] = src; 393 394 di->z_mask = si->z_mask; 395 di->s_mask = si->s_mask; 396 397 if (src_ts->type == dst_ts->type) { 398 TempOptInfo *ni = ts_info(si->next_copy); 399 400 di->next_copy = si->next_copy; 401 di->prev_copy = src_ts; 402 ni->prev_copy = dst_ts; 403 si->next_copy = dst_ts; 404 di->is_const = si->is_const; 405 di->val = si->val; 406 407 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 408 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 409 move_mem_copies(dst_ts, src_ts); 410 } 411 } 412 return true; 413 } 414 415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 416 TCGArg dst, uint64_t val) 417 { 418 /* Convert movi to mov with constant temp. */ 419 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 420 } 421 422 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 423 { 424 uint64_t l64, h64; 425 426 switch (op) { 427 case INDEX_op_add: 428 return x + y; 429 430 CASE_OP_32_64(sub): 431 return x - y; 432 433 CASE_OP_32_64(mul): 434 return x * y; 435 436 case INDEX_op_and: 437 case INDEX_op_and_vec: 438 return x & y; 439 440 case INDEX_op_or: 441 case INDEX_op_or_vec: 442 return x | y; 443 444 CASE_OP_32_64_VEC(xor): 445 return x ^ y; 446 447 case INDEX_op_shl_i32: 448 return (uint32_t)x << (y & 31); 449 450 case INDEX_op_shl_i64: 451 return (uint64_t)x << (y & 63); 452 453 case INDEX_op_shr_i32: 454 return (uint32_t)x >> (y & 31); 455 456 case INDEX_op_shr_i64: 457 return (uint64_t)x >> (y & 63); 458 459 case INDEX_op_sar_i32: 460 return (int32_t)x >> (y & 31); 461 462 case INDEX_op_sar_i64: 463 return (int64_t)x >> (y & 63); 464 465 case INDEX_op_rotr_i32: 466 return ror32(x, y & 31); 467 468 case INDEX_op_rotr_i64: 469 return ror64(x, y & 63); 470 471 case INDEX_op_rotl_i32: 472 return rol32(x, y & 31); 473 474 case INDEX_op_rotl_i64: 475 return rol64(x, y & 63); 476 477 CASE_OP_32_64_VEC(not): 478 return ~x; 479 480 CASE_OP_32_64(neg): 481 return -x; 482 483 case INDEX_op_andc: 484 case INDEX_op_andc_vec: 485 return x & ~y; 486 487 CASE_OP_32_64_VEC(orc): 488 return x | ~y; 489 490 CASE_OP_32_64_VEC(eqv): 491 return ~(x ^ y); 492 493 CASE_OP_32_64_VEC(nand): 494 return ~(x & y); 495 496 CASE_OP_32_64_VEC(nor): 497 return ~(x | y); 498 499 case INDEX_op_clz_i32: 500 return (uint32_t)x ? clz32(x) : y; 501 502 case INDEX_op_clz_i64: 503 return x ? clz64(x) : y; 504 505 case INDEX_op_ctz_i32: 506 return (uint32_t)x ? ctz32(x) : y; 507 508 case INDEX_op_ctz_i64: 509 return x ? ctz64(x) : y; 510 511 case INDEX_op_ctpop_i32: 512 return ctpop32(x); 513 514 case INDEX_op_ctpop_i64: 515 return ctpop64(x); 516 517 CASE_OP_32_64(bswap16): 518 x = bswap16(x); 519 return y & TCG_BSWAP_OS ? (int16_t)x : x; 520 521 CASE_OP_32_64(bswap32): 522 x = bswap32(x); 523 return y & TCG_BSWAP_OS ? (int32_t)x : x; 524 525 case INDEX_op_bswap64_i64: 526 return bswap64(x); 527 528 case INDEX_op_ext_i32_i64: 529 return (int32_t)x; 530 531 case INDEX_op_extu_i32_i64: 532 case INDEX_op_extrl_i64_i32: 533 return (uint32_t)x; 534 535 case INDEX_op_extrh_i64_i32: 536 return (uint64_t)x >> 32; 537 538 case INDEX_op_muluh_i32: 539 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 540 case INDEX_op_mulsh_i32: 541 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 542 543 case INDEX_op_muluh_i64: 544 mulu64(&l64, &h64, x, y); 545 return h64; 546 case INDEX_op_mulsh_i64: 547 muls64(&l64, &h64, x, y); 548 return h64; 549 550 case INDEX_op_div_i32: 551 /* Avoid crashing on divide by zero, otherwise undefined. */ 552 return (int32_t)x / ((int32_t)y ? : 1); 553 case INDEX_op_divu_i32: 554 return (uint32_t)x / ((uint32_t)y ? : 1); 555 case INDEX_op_div_i64: 556 return (int64_t)x / ((int64_t)y ? : 1); 557 case INDEX_op_divu_i64: 558 return (uint64_t)x / ((uint64_t)y ? : 1); 559 560 case INDEX_op_rem_i32: 561 return (int32_t)x % ((int32_t)y ? : 1); 562 case INDEX_op_remu_i32: 563 return (uint32_t)x % ((uint32_t)y ? : 1); 564 case INDEX_op_rem_i64: 565 return (int64_t)x % ((int64_t)y ? : 1); 566 case INDEX_op_remu_i64: 567 return (uint64_t)x % ((uint64_t)y ? : 1); 568 569 default: 570 g_assert_not_reached(); 571 } 572 } 573 574 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 575 uint64_t x, uint64_t y) 576 { 577 uint64_t res = do_constant_folding_2(op, x, y); 578 if (type == TCG_TYPE_I32) { 579 res = (int32_t)res; 580 } 581 return res; 582 } 583 584 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 585 { 586 switch (c) { 587 case TCG_COND_EQ: 588 return x == y; 589 case TCG_COND_NE: 590 return x != y; 591 case TCG_COND_LT: 592 return (int32_t)x < (int32_t)y; 593 case TCG_COND_GE: 594 return (int32_t)x >= (int32_t)y; 595 case TCG_COND_LE: 596 return (int32_t)x <= (int32_t)y; 597 case TCG_COND_GT: 598 return (int32_t)x > (int32_t)y; 599 case TCG_COND_LTU: 600 return x < y; 601 case TCG_COND_GEU: 602 return x >= y; 603 case TCG_COND_LEU: 604 return x <= y; 605 case TCG_COND_GTU: 606 return x > y; 607 case TCG_COND_TSTEQ: 608 return (x & y) == 0; 609 case TCG_COND_TSTNE: 610 return (x & y) != 0; 611 case TCG_COND_ALWAYS: 612 case TCG_COND_NEVER: 613 break; 614 } 615 g_assert_not_reached(); 616 } 617 618 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 619 { 620 switch (c) { 621 case TCG_COND_EQ: 622 return x == y; 623 case TCG_COND_NE: 624 return x != y; 625 case TCG_COND_LT: 626 return (int64_t)x < (int64_t)y; 627 case TCG_COND_GE: 628 return (int64_t)x >= (int64_t)y; 629 case TCG_COND_LE: 630 return (int64_t)x <= (int64_t)y; 631 case TCG_COND_GT: 632 return (int64_t)x > (int64_t)y; 633 case TCG_COND_LTU: 634 return x < y; 635 case TCG_COND_GEU: 636 return x >= y; 637 case TCG_COND_LEU: 638 return x <= y; 639 case TCG_COND_GTU: 640 return x > y; 641 case TCG_COND_TSTEQ: 642 return (x & y) == 0; 643 case TCG_COND_TSTNE: 644 return (x & y) != 0; 645 case TCG_COND_ALWAYS: 646 case TCG_COND_NEVER: 647 break; 648 } 649 g_assert_not_reached(); 650 } 651 652 static int do_constant_folding_cond_eq(TCGCond c) 653 { 654 switch (c) { 655 case TCG_COND_GT: 656 case TCG_COND_LTU: 657 case TCG_COND_LT: 658 case TCG_COND_GTU: 659 case TCG_COND_NE: 660 return 0; 661 case TCG_COND_GE: 662 case TCG_COND_GEU: 663 case TCG_COND_LE: 664 case TCG_COND_LEU: 665 case TCG_COND_EQ: 666 return 1; 667 case TCG_COND_TSTEQ: 668 case TCG_COND_TSTNE: 669 return -1; 670 case TCG_COND_ALWAYS: 671 case TCG_COND_NEVER: 672 break; 673 } 674 g_assert_not_reached(); 675 } 676 677 /* 678 * Return -1 if the condition can't be simplified, 679 * and the result of the condition (0 or 1) if it can. 680 */ 681 static int do_constant_folding_cond(TCGType type, TCGArg x, 682 TCGArg y, TCGCond c) 683 { 684 if (arg_is_const(x) && arg_is_const(y)) { 685 uint64_t xv = arg_info(x)->val; 686 uint64_t yv = arg_info(y)->val; 687 688 switch (type) { 689 case TCG_TYPE_I32: 690 return do_constant_folding_cond_32(xv, yv, c); 691 case TCG_TYPE_I64: 692 return do_constant_folding_cond_64(xv, yv, c); 693 default: 694 /* Only scalar comparisons are optimizable */ 695 return -1; 696 } 697 } else if (args_are_copies(x, y)) { 698 return do_constant_folding_cond_eq(c); 699 } else if (arg_is_const_val(y, 0)) { 700 switch (c) { 701 case TCG_COND_LTU: 702 case TCG_COND_TSTNE: 703 return 0; 704 case TCG_COND_GEU: 705 case TCG_COND_TSTEQ: 706 return 1; 707 default: 708 return -1; 709 } 710 } 711 return -1; 712 } 713 714 /** 715 * swap_commutative: 716 * @dest: TCGArg of the destination argument, or NO_DEST. 717 * @p1: first paired argument 718 * @p2: second paired argument 719 * 720 * If *@p1 is a constant and *@p2 is not, swap. 721 * If *@p2 matches @dest, swap. 722 * Return true if a swap was performed. 723 */ 724 725 #define NO_DEST temp_arg(NULL) 726 727 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 728 { 729 TCGArg a1 = *p1, a2 = *p2; 730 int sum = 0; 731 sum += arg_is_const(a1); 732 sum -= arg_is_const(a2); 733 734 /* Prefer the constant in second argument, and then the form 735 op a, a, b, which is better handled on non-RISC hosts. */ 736 if (sum > 0 || (sum == 0 && dest == a2)) { 737 *p1 = a2; 738 *p2 = a1; 739 return true; 740 } 741 return false; 742 } 743 744 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 745 { 746 int sum = 0; 747 sum += arg_is_const(p1[0]); 748 sum += arg_is_const(p1[1]); 749 sum -= arg_is_const(p2[0]); 750 sum -= arg_is_const(p2[1]); 751 if (sum > 0) { 752 TCGArg t; 753 t = p1[0], p1[0] = p2[0], p2[0] = t; 754 t = p1[1], p1[1] = p2[1], p2[1] = t; 755 return true; 756 } 757 return false; 758 } 759 760 /* 761 * Return -1 if the condition can't be simplified, 762 * and the result of the condition (0 or 1) if it can. 763 */ 764 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 765 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 766 { 767 TCGCond cond; 768 TempOptInfo *i1; 769 bool swap; 770 int r; 771 772 swap = swap_commutative(dest, p1, p2); 773 cond = *pcond; 774 if (swap) { 775 *pcond = cond = tcg_swap_cond(cond); 776 } 777 778 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 779 if (r >= 0) { 780 return r; 781 } 782 if (!is_tst_cond(cond)) { 783 return -1; 784 } 785 786 i1 = arg_info(*p1); 787 788 /* 789 * TSTNE x,x -> NE x,0 790 * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x 791 */ 792 if (args_are_copies(*p1, *p2) || 793 (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) { 794 *p2 = arg_new_constant(ctx, 0); 795 *pcond = tcg_tst_eqne_cond(cond); 796 return -1; 797 } 798 799 /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */ 800 if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) { 801 *p2 = arg_new_constant(ctx, 0); 802 *pcond = tcg_tst_ltge_cond(cond); 803 return -1; 804 } 805 806 /* Expand to AND with a temporary if no backend support. */ 807 if (!TCG_TARGET_HAS_tst) { 808 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 809 TCGArg tmp = arg_new_temp(ctx); 810 811 op2->args[0] = tmp; 812 op2->args[1] = *p1; 813 op2->args[2] = *p2; 814 815 *p1 = tmp; 816 *p2 = arg_new_constant(ctx, 0); 817 *pcond = tcg_tst_eqne_cond(cond); 818 } 819 return -1; 820 } 821 822 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 823 { 824 TCGArg al, ah, bl, bh; 825 TCGCond c; 826 bool swap; 827 int r; 828 829 swap = swap_commutative2(args, args + 2); 830 c = args[4]; 831 if (swap) { 832 args[4] = c = tcg_swap_cond(c); 833 } 834 835 al = args[0]; 836 ah = args[1]; 837 bl = args[2]; 838 bh = args[3]; 839 840 if (arg_is_const(bl) && arg_is_const(bh)) { 841 tcg_target_ulong blv = arg_info(bl)->val; 842 tcg_target_ulong bhv = arg_info(bh)->val; 843 uint64_t b = deposit64(blv, 32, 32, bhv); 844 845 if (arg_is_const(al) && arg_is_const(ah)) { 846 tcg_target_ulong alv = arg_info(al)->val; 847 tcg_target_ulong ahv = arg_info(ah)->val; 848 uint64_t a = deposit64(alv, 32, 32, ahv); 849 850 r = do_constant_folding_cond_64(a, b, c); 851 if (r >= 0) { 852 return r; 853 } 854 } 855 856 if (b == 0) { 857 switch (c) { 858 case TCG_COND_LTU: 859 case TCG_COND_TSTNE: 860 return 0; 861 case TCG_COND_GEU: 862 case TCG_COND_TSTEQ: 863 return 1; 864 default: 865 break; 866 } 867 } 868 869 /* TSTNE x,-1 -> NE x,0 */ 870 if (b == -1 && is_tst_cond(c)) { 871 args[3] = args[2] = arg_new_constant(ctx, 0); 872 args[4] = tcg_tst_eqne_cond(c); 873 return -1; 874 } 875 876 /* TSTNE x,sign -> LT x,0 */ 877 if (b == INT64_MIN && is_tst_cond(c)) { 878 /* bl must be 0, so copy that to bh */ 879 args[3] = bl; 880 args[4] = tcg_tst_ltge_cond(c); 881 return -1; 882 } 883 } 884 885 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 886 r = do_constant_folding_cond_eq(c); 887 if (r >= 0) { 888 return r; 889 } 890 891 /* TSTNE x,x -> NE x,0 */ 892 if (is_tst_cond(c)) { 893 args[3] = args[2] = arg_new_constant(ctx, 0); 894 args[4] = tcg_tst_eqne_cond(c); 895 return -1; 896 } 897 } 898 899 /* Expand to AND with a temporary if no backend support. */ 900 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 901 TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and, 3); 902 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 903 TCGArg t1 = arg_new_temp(ctx); 904 TCGArg t2 = arg_new_temp(ctx); 905 906 op1->args[0] = t1; 907 op1->args[1] = al; 908 op1->args[2] = bl; 909 op2->args[0] = t2; 910 op2->args[1] = ah; 911 op2->args[2] = bh; 912 913 args[0] = t1; 914 args[1] = t2; 915 args[3] = args[2] = arg_new_constant(ctx, 0); 916 args[4] = tcg_tst_eqne_cond(c); 917 } 918 return -1; 919 } 920 921 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 922 { 923 for (int i = 0; i < nb_args; i++) { 924 TCGTemp *ts = arg_temp(op->args[i]); 925 init_ts_info(ctx, ts); 926 } 927 } 928 929 static void copy_propagate(OptContext *ctx, TCGOp *op, 930 int nb_oargs, int nb_iargs) 931 { 932 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 933 TCGTemp *ts = arg_temp(op->args[i]); 934 if (ts_is_copy(ts)) { 935 op->args[i] = temp_arg(find_better_copy(ts)); 936 } 937 } 938 } 939 940 static void finish_bb(OptContext *ctx) 941 { 942 /* We only optimize memory barriers across basic blocks. */ 943 ctx->prev_mb = NULL; 944 } 945 946 static void finish_ebb(OptContext *ctx) 947 { 948 finish_bb(ctx); 949 /* We only optimize across extended basic blocks. */ 950 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 951 remove_mem_copy_all(ctx); 952 } 953 954 static bool finish_folding(OptContext *ctx, TCGOp *op) 955 { 956 const TCGOpDef *def = &tcg_op_defs[op->opc]; 957 int i, nb_oargs; 958 959 nb_oargs = def->nb_oargs; 960 for (i = 0; i < nb_oargs; i++) { 961 TCGTemp *ts = arg_temp(op->args[i]); 962 reset_ts(ctx, ts); 963 } 964 return true; 965 } 966 967 /* 968 * The fold_* functions return true when processing is complete, 969 * usually by folding the operation to a constant or to a copy, 970 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 971 * like collect information about the value produced, for use in 972 * optimizing a subsequent operation. 973 * 974 * These first fold_* functions are all helpers, used by other 975 * folders for more specific operations. 976 */ 977 978 static bool fold_const1(OptContext *ctx, TCGOp *op) 979 { 980 if (arg_is_const(op->args[1])) { 981 uint64_t t; 982 983 t = arg_info(op->args[1])->val; 984 t = do_constant_folding(op->opc, ctx->type, t, 0); 985 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 986 } 987 return false; 988 } 989 990 static bool fold_const2(OptContext *ctx, TCGOp *op) 991 { 992 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 993 uint64_t t1 = arg_info(op->args[1])->val; 994 uint64_t t2 = arg_info(op->args[2])->val; 995 996 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 997 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 998 } 999 return false; 1000 } 1001 1002 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1003 { 1004 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1005 return false; 1006 } 1007 1008 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1009 { 1010 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1011 return fold_const2(ctx, op); 1012 } 1013 1014 /* 1015 * Record "zero" and "sign" masks for the single output of @op. 1016 * See TempOptInfo definition of z_mask and s_mask. 1017 * If z_mask allows, fold the output to constant zero. 1018 * The passed s_mask may be augmented by z_mask. 1019 */ 1020 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1021 uint64_t z_mask, int64_t s_mask) 1022 { 1023 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1024 TCGTemp *ts; 1025 TempOptInfo *ti; 1026 int rep; 1027 1028 /* Only single-output opcodes are supported here. */ 1029 tcg_debug_assert(def->nb_oargs == 1); 1030 1031 /* 1032 * 32-bit ops generate 32-bit results, which for the purpose of 1033 * simplifying tcg are sign-extended. Certainly that's how we 1034 * represent our constants elsewhere. Note that the bits will 1035 * be reset properly for a 64-bit value when encountering the 1036 * type changing opcodes. 1037 */ 1038 if (ctx->type == TCG_TYPE_I32) { 1039 z_mask = (int32_t)z_mask; 1040 s_mask |= INT32_MIN; 1041 } 1042 1043 if (z_mask == 0) { 1044 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1045 } 1046 1047 ts = arg_temp(op->args[0]); 1048 reset_ts(ctx, ts); 1049 1050 ti = ts_info(ts); 1051 ti->z_mask = z_mask; 1052 1053 /* Canonicalize s_mask and incorporate data from z_mask. */ 1054 rep = clz64(~s_mask); 1055 rep = MAX(rep, clz64(z_mask)); 1056 rep = MAX(rep - 1, 0); 1057 ti->s_mask = INT64_MIN >> rep; 1058 1059 return true; 1060 } 1061 1062 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1063 { 1064 return fold_masks_zs(ctx, op, z_mask, 0); 1065 } 1066 1067 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1068 { 1069 return fold_masks_zs(ctx, op, -1, s_mask); 1070 } 1071 1072 /* 1073 * An "affected" mask bit is 0 if and only if the result is identical 1074 * to the first input. Thus if the entire mask is 0, the operation 1075 * is equivalent to a copy. 1076 */ 1077 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1078 { 1079 if (ctx->type == TCG_TYPE_I32) { 1080 a_mask = (uint32_t)a_mask; 1081 } 1082 if (a_mask == 0) { 1083 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1084 } 1085 return false; 1086 } 1087 1088 /* 1089 * Convert @op to NOT, if NOT is supported by the host. 1090 * Return true f the conversion is successful, which will still 1091 * indicate that the processing is complete. 1092 */ 1093 static bool fold_not(OptContext *ctx, TCGOp *op); 1094 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1095 { 1096 TCGOpcode not_op; 1097 bool have_not; 1098 1099 switch (ctx->type) { 1100 case TCG_TYPE_I32: 1101 not_op = INDEX_op_not_i32; 1102 have_not = TCG_TARGET_HAS_not_i32; 1103 break; 1104 case TCG_TYPE_I64: 1105 not_op = INDEX_op_not_i64; 1106 have_not = TCG_TARGET_HAS_not_i64; 1107 break; 1108 case TCG_TYPE_V64: 1109 case TCG_TYPE_V128: 1110 case TCG_TYPE_V256: 1111 not_op = INDEX_op_not_vec; 1112 have_not = TCG_TARGET_HAS_not_vec; 1113 break; 1114 default: 1115 g_assert_not_reached(); 1116 } 1117 if (have_not) { 1118 op->opc = not_op; 1119 op->args[1] = op->args[idx]; 1120 return fold_not(ctx, op); 1121 } 1122 return false; 1123 } 1124 1125 /* If the binary operation has first argument @i, fold to @i. */ 1126 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1127 { 1128 if (arg_is_const_val(op->args[1], i)) { 1129 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1130 } 1131 return false; 1132 } 1133 1134 /* If the binary operation has first argument @i, fold to NOT. */ 1135 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1136 { 1137 if (arg_is_const_val(op->args[1], i)) { 1138 return fold_to_not(ctx, op, 2); 1139 } 1140 return false; 1141 } 1142 1143 /* If the binary operation has second argument @i, fold to @i. */ 1144 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1145 { 1146 if (arg_is_const_val(op->args[2], i)) { 1147 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1148 } 1149 return false; 1150 } 1151 1152 /* If the binary operation has second argument @i, fold to identity. */ 1153 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1154 { 1155 if (arg_is_const_val(op->args[2], i)) { 1156 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1157 } 1158 return false; 1159 } 1160 1161 /* If the binary operation has second argument @i, fold to NOT. */ 1162 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1163 { 1164 if (arg_is_const_val(op->args[2], i)) { 1165 return fold_to_not(ctx, op, 1); 1166 } 1167 return false; 1168 } 1169 1170 /* If the binary operation has both arguments equal, fold to @i. */ 1171 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1172 { 1173 if (args_are_copies(op->args[1], op->args[2])) { 1174 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1175 } 1176 return false; 1177 } 1178 1179 /* If the binary operation has both arguments equal, fold to identity. */ 1180 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1181 { 1182 if (args_are_copies(op->args[1], op->args[2])) { 1183 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1184 } 1185 return false; 1186 } 1187 1188 /* 1189 * These outermost fold_<op> functions are sorted alphabetically. 1190 * 1191 * The ordering of the transformations should be: 1192 * 1) those that produce a constant 1193 * 2) those that produce a copy 1194 * 3) those that produce information about the result value. 1195 */ 1196 1197 static bool fold_or(OptContext *ctx, TCGOp *op); 1198 static bool fold_orc(OptContext *ctx, TCGOp *op); 1199 static bool fold_xor(OptContext *ctx, TCGOp *op); 1200 1201 static bool fold_add(OptContext *ctx, TCGOp *op) 1202 { 1203 if (fold_const2_commutative(ctx, op) || 1204 fold_xi_to_x(ctx, op, 0)) { 1205 return true; 1206 } 1207 return finish_folding(ctx, op); 1208 } 1209 1210 /* We cannot as yet do_constant_folding with vectors. */ 1211 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1212 { 1213 if (fold_commutative(ctx, op) || 1214 fold_xi_to_x(ctx, op, 0)) { 1215 return true; 1216 } 1217 return finish_folding(ctx, op); 1218 } 1219 1220 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1221 { 1222 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1223 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1224 1225 if (a_const && b_const) { 1226 uint64_t al = arg_info(op->args[2])->val; 1227 uint64_t ah = arg_info(op->args[3])->val; 1228 uint64_t bl = arg_info(op->args[4])->val; 1229 uint64_t bh = arg_info(op->args[5])->val; 1230 TCGArg rl, rh; 1231 TCGOp *op2; 1232 1233 if (ctx->type == TCG_TYPE_I32) { 1234 uint64_t a = deposit64(al, 32, 32, ah); 1235 uint64_t b = deposit64(bl, 32, 32, bh); 1236 1237 if (add) { 1238 a += b; 1239 } else { 1240 a -= b; 1241 } 1242 1243 al = sextract64(a, 0, 32); 1244 ah = sextract64(a, 32, 32); 1245 } else { 1246 Int128 a = int128_make128(al, ah); 1247 Int128 b = int128_make128(bl, bh); 1248 1249 if (add) { 1250 a = int128_add(a, b); 1251 } else { 1252 a = int128_sub(a, b); 1253 } 1254 1255 al = int128_getlo(a); 1256 ah = int128_gethi(a); 1257 } 1258 1259 rl = op->args[0]; 1260 rh = op->args[1]; 1261 1262 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1263 op2 = opt_insert_before(ctx, op, 0, 2); 1264 1265 tcg_opt_gen_movi(ctx, op, rl, al); 1266 tcg_opt_gen_movi(ctx, op2, rh, ah); 1267 return true; 1268 } 1269 1270 /* Fold sub2 r,x,i to add2 r,x,-i */ 1271 if (!add && b_const) { 1272 uint64_t bl = arg_info(op->args[4])->val; 1273 uint64_t bh = arg_info(op->args[5])->val; 1274 1275 /* Negate the two parts without assembling and disassembling. */ 1276 bl = -bl; 1277 bh = ~bh + !bl; 1278 1279 op->opc = (ctx->type == TCG_TYPE_I32 1280 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1281 op->args[4] = arg_new_constant(ctx, bl); 1282 op->args[5] = arg_new_constant(ctx, bh); 1283 } 1284 return finish_folding(ctx, op); 1285 } 1286 1287 static bool fold_add2(OptContext *ctx, TCGOp *op) 1288 { 1289 /* Note that the high and low parts may be independently swapped. */ 1290 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1291 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1292 1293 return fold_addsub2(ctx, op, true); 1294 } 1295 1296 static bool fold_and(OptContext *ctx, TCGOp *op) 1297 { 1298 uint64_t z1, z2, z_mask, s_mask; 1299 TempOptInfo *t1, *t2; 1300 1301 if (fold_const2_commutative(ctx, op) || 1302 fold_xi_to_i(ctx, op, 0) || 1303 fold_xi_to_x(ctx, op, -1) || 1304 fold_xx_to_x(ctx, op)) { 1305 return true; 1306 } 1307 1308 t1 = arg_info(op->args[1]); 1309 t2 = arg_info(op->args[2]); 1310 z1 = t1->z_mask; 1311 z2 = t2->z_mask; 1312 1313 /* 1314 * Known-zeros does not imply known-ones. Therefore unless 1315 * arg2 is constant, we can't infer affected bits from it. 1316 */ 1317 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1318 return true; 1319 } 1320 1321 z_mask = z1 & z2; 1322 1323 /* 1324 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1325 * Bitwise operations preserve the relative quantity of the repetitions. 1326 */ 1327 s_mask = t1->s_mask & t2->s_mask; 1328 1329 return fold_masks_zs(ctx, op, z_mask, s_mask); 1330 } 1331 1332 static bool fold_andc(OptContext *ctx, TCGOp *op) 1333 { 1334 uint64_t z_mask, s_mask; 1335 TempOptInfo *t1, *t2; 1336 1337 if (fold_const2(ctx, op) || 1338 fold_xx_to_i(ctx, op, 0) || 1339 fold_xi_to_x(ctx, op, 0) || 1340 fold_ix_to_not(ctx, op, -1)) { 1341 return true; 1342 } 1343 1344 t1 = arg_info(op->args[1]); 1345 t2 = arg_info(op->args[2]); 1346 z_mask = t1->z_mask; 1347 1348 if (ti_is_const(t2)) { 1349 /* Fold andc r,x,i to and r,x,~i. */ 1350 switch (ctx->type) { 1351 case TCG_TYPE_I32: 1352 case TCG_TYPE_I64: 1353 op->opc = INDEX_op_and; 1354 break; 1355 case TCG_TYPE_V64: 1356 case TCG_TYPE_V128: 1357 case TCG_TYPE_V256: 1358 op->opc = INDEX_op_and_vec; 1359 break; 1360 default: 1361 g_assert_not_reached(); 1362 } 1363 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 1364 return fold_and(ctx, op); 1365 } 1366 1367 /* 1368 * Known-zeros does not imply known-ones. Therefore unless 1369 * arg2 is constant, we can't infer anything from it. 1370 */ 1371 if (ti_is_const(t2)) { 1372 uint64_t v2 = ti_const_val(t2); 1373 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1374 return true; 1375 } 1376 z_mask &= ~v2; 1377 } 1378 1379 s_mask = t1->s_mask & t2->s_mask; 1380 return fold_masks_zs(ctx, op, z_mask, s_mask); 1381 } 1382 1383 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1384 { 1385 /* If true and false values are the same, eliminate the cmp. */ 1386 if (args_are_copies(op->args[2], op->args[3])) { 1387 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1388 } 1389 1390 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1391 uint64_t tv = arg_info(op->args[2])->val; 1392 uint64_t fv = arg_info(op->args[3])->val; 1393 1394 if (tv == -1 && fv == 0) { 1395 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1396 } 1397 if (tv == 0 && fv == -1) { 1398 if (TCG_TARGET_HAS_not_vec) { 1399 op->opc = INDEX_op_not_vec; 1400 return fold_not(ctx, op); 1401 } else { 1402 op->opc = INDEX_op_xor_vec; 1403 op->args[2] = arg_new_constant(ctx, -1); 1404 return fold_xor(ctx, op); 1405 } 1406 } 1407 } 1408 if (arg_is_const(op->args[2])) { 1409 uint64_t tv = arg_info(op->args[2])->val; 1410 if (tv == -1) { 1411 op->opc = INDEX_op_or_vec; 1412 op->args[2] = op->args[3]; 1413 return fold_or(ctx, op); 1414 } 1415 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1416 op->opc = INDEX_op_andc_vec; 1417 op->args[2] = op->args[1]; 1418 op->args[1] = op->args[3]; 1419 return fold_andc(ctx, op); 1420 } 1421 } 1422 if (arg_is_const(op->args[3])) { 1423 uint64_t fv = arg_info(op->args[3])->val; 1424 if (fv == 0) { 1425 op->opc = INDEX_op_and_vec; 1426 return fold_and(ctx, op); 1427 } 1428 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1429 op->opc = INDEX_op_orc_vec; 1430 op->args[2] = op->args[1]; 1431 op->args[1] = op->args[3]; 1432 return fold_orc(ctx, op); 1433 } 1434 } 1435 return finish_folding(ctx, op); 1436 } 1437 1438 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1439 { 1440 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1441 &op->args[1], &op->args[2]); 1442 if (i == 0) { 1443 tcg_op_remove(ctx->tcg, op); 1444 return true; 1445 } 1446 if (i > 0) { 1447 op->opc = INDEX_op_br; 1448 op->args[0] = op->args[3]; 1449 finish_ebb(ctx); 1450 } else { 1451 finish_bb(ctx); 1452 } 1453 return true; 1454 } 1455 1456 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1457 { 1458 TCGCond cond; 1459 TCGArg label; 1460 int i, inv = 0; 1461 1462 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1463 cond = op->args[4]; 1464 label = op->args[5]; 1465 if (i >= 0) { 1466 goto do_brcond_const; 1467 } 1468 1469 switch (cond) { 1470 case TCG_COND_LT: 1471 case TCG_COND_GE: 1472 /* 1473 * Simplify LT/GE comparisons vs zero to a single compare 1474 * vs the high word of the input. 1475 */ 1476 if (arg_is_const_val(op->args[2], 0) && 1477 arg_is_const_val(op->args[3], 0)) { 1478 goto do_brcond_high; 1479 } 1480 break; 1481 1482 case TCG_COND_NE: 1483 inv = 1; 1484 QEMU_FALLTHROUGH; 1485 case TCG_COND_EQ: 1486 /* 1487 * Simplify EQ/NE comparisons where one of the pairs 1488 * can be simplified. 1489 */ 1490 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1491 op->args[2], cond); 1492 switch (i ^ inv) { 1493 case 0: 1494 goto do_brcond_const; 1495 case 1: 1496 goto do_brcond_high; 1497 } 1498 1499 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1500 op->args[3], cond); 1501 switch (i ^ inv) { 1502 case 0: 1503 goto do_brcond_const; 1504 case 1: 1505 goto do_brcond_low; 1506 } 1507 break; 1508 1509 case TCG_COND_TSTEQ: 1510 case TCG_COND_TSTNE: 1511 if (arg_is_const_val(op->args[2], 0)) { 1512 goto do_brcond_high; 1513 } 1514 if (arg_is_const_val(op->args[3], 0)) { 1515 goto do_brcond_low; 1516 } 1517 break; 1518 1519 default: 1520 break; 1521 1522 do_brcond_low: 1523 op->opc = INDEX_op_brcond_i32; 1524 op->args[1] = op->args[2]; 1525 op->args[2] = cond; 1526 op->args[3] = label; 1527 return fold_brcond(ctx, op); 1528 1529 do_brcond_high: 1530 op->opc = INDEX_op_brcond_i32; 1531 op->args[0] = op->args[1]; 1532 op->args[1] = op->args[3]; 1533 op->args[2] = cond; 1534 op->args[3] = label; 1535 return fold_brcond(ctx, op); 1536 1537 do_brcond_const: 1538 if (i == 0) { 1539 tcg_op_remove(ctx->tcg, op); 1540 return true; 1541 } 1542 op->opc = INDEX_op_br; 1543 op->args[0] = label; 1544 finish_ebb(ctx); 1545 return true; 1546 } 1547 1548 finish_bb(ctx); 1549 return true; 1550 } 1551 1552 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1553 { 1554 uint64_t z_mask, s_mask, sign; 1555 TempOptInfo *t1 = arg_info(op->args[1]); 1556 1557 if (ti_is_const(t1)) { 1558 return tcg_opt_gen_movi(ctx, op, op->args[0], 1559 do_constant_folding(op->opc, ctx->type, 1560 ti_const_val(t1), 1561 op->args[2])); 1562 } 1563 1564 z_mask = t1->z_mask; 1565 switch (op->opc) { 1566 case INDEX_op_bswap16_i32: 1567 case INDEX_op_bswap16_i64: 1568 z_mask = bswap16(z_mask); 1569 sign = INT16_MIN; 1570 break; 1571 case INDEX_op_bswap32_i32: 1572 case INDEX_op_bswap32_i64: 1573 z_mask = bswap32(z_mask); 1574 sign = INT32_MIN; 1575 break; 1576 case INDEX_op_bswap64_i64: 1577 z_mask = bswap64(z_mask); 1578 sign = INT64_MIN; 1579 break; 1580 default: 1581 g_assert_not_reached(); 1582 } 1583 1584 s_mask = 0; 1585 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1586 case TCG_BSWAP_OZ: 1587 break; 1588 case TCG_BSWAP_OS: 1589 /* If the sign bit may be 1, force all the bits above to 1. */ 1590 if (z_mask & sign) { 1591 z_mask |= sign; 1592 } 1593 /* The value and therefore s_mask is explicitly sign-extended. */ 1594 s_mask = sign; 1595 break; 1596 default: 1597 /* The high bits are undefined: force all bits above the sign to 1. */ 1598 z_mask |= sign << 1; 1599 break; 1600 } 1601 1602 return fold_masks_zs(ctx, op, z_mask, s_mask); 1603 } 1604 1605 static bool fold_call(OptContext *ctx, TCGOp *op) 1606 { 1607 TCGContext *s = ctx->tcg; 1608 int nb_oargs = TCGOP_CALLO(op); 1609 int nb_iargs = TCGOP_CALLI(op); 1610 int flags, i; 1611 1612 init_arguments(ctx, op, nb_oargs + nb_iargs); 1613 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1614 1615 /* If the function reads or writes globals, reset temp data. */ 1616 flags = tcg_call_flags(op); 1617 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1618 int nb_globals = s->nb_globals; 1619 1620 for (i = 0; i < nb_globals; i++) { 1621 if (test_bit(i, ctx->temps_used.l)) { 1622 reset_ts(ctx, &ctx->tcg->temps[i]); 1623 } 1624 } 1625 } 1626 1627 /* If the function has side effects, reset mem data. */ 1628 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1629 remove_mem_copy_all(ctx); 1630 } 1631 1632 /* Reset temp data for outputs. */ 1633 for (i = 0; i < nb_oargs; i++) { 1634 reset_temp(ctx, op->args[i]); 1635 } 1636 1637 /* Stop optimizing MB across calls. */ 1638 ctx->prev_mb = NULL; 1639 return true; 1640 } 1641 1642 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1643 { 1644 /* Canonicalize the comparison to put immediate second. */ 1645 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1646 op->args[3] = tcg_swap_cond(op->args[3]); 1647 } 1648 return finish_folding(ctx, op); 1649 } 1650 1651 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1652 { 1653 /* If true and false values are the same, eliminate the cmp. */ 1654 if (args_are_copies(op->args[3], op->args[4])) { 1655 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1656 } 1657 1658 /* Canonicalize the comparison to put immediate second. */ 1659 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1660 op->args[5] = tcg_swap_cond(op->args[5]); 1661 } 1662 /* 1663 * Canonicalize the "false" input reg to match the destination, 1664 * so that the tcg backend can implement "move if true". 1665 */ 1666 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1667 op->args[5] = tcg_invert_cond(op->args[5]); 1668 } 1669 return finish_folding(ctx, op); 1670 } 1671 1672 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1673 { 1674 uint64_t z_mask, s_mask; 1675 TempOptInfo *t1 = arg_info(op->args[1]); 1676 TempOptInfo *t2 = arg_info(op->args[2]); 1677 1678 if (ti_is_const(t1)) { 1679 uint64_t t = ti_const_val(t1); 1680 1681 if (t != 0) { 1682 t = do_constant_folding(op->opc, ctx->type, t, 0); 1683 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1684 } 1685 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1686 } 1687 1688 switch (ctx->type) { 1689 case TCG_TYPE_I32: 1690 z_mask = 31; 1691 break; 1692 case TCG_TYPE_I64: 1693 z_mask = 63; 1694 break; 1695 default: 1696 g_assert_not_reached(); 1697 } 1698 s_mask = ~z_mask; 1699 z_mask |= t2->z_mask; 1700 s_mask &= t2->s_mask; 1701 1702 return fold_masks_zs(ctx, op, z_mask, s_mask); 1703 } 1704 1705 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1706 { 1707 uint64_t z_mask; 1708 1709 if (fold_const1(ctx, op)) { 1710 return true; 1711 } 1712 1713 switch (ctx->type) { 1714 case TCG_TYPE_I32: 1715 z_mask = 32 | 31; 1716 break; 1717 case TCG_TYPE_I64: 1718 z_mask = 64 | 63; 1719 break; 1720 default: 1721 g_assert_not_reached(); 1722 } 1723 return fold_masks_z(ctx, op, z_mask); 1724 } 1725 1726 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1727 { 1728 TempOptInfo *t1 = arg_info(op->args[1]); 1729 TempOptInfo *t2 = arg_info(op->args[2]); 1730 int ofs = op->args[3]; 1731 int len = op->args[4]; 1732 int width = 8 * tcg_type_size(ctx->type); 1733 uint64_t z_mask, s_mask; 1734 1735 if (ti_is_const(t1) && ti_is_const(t2)) { 1736 return tcg_opt_gen_movi(ctx, op, op->args[0], 1737 deposit64(ti_const_val(t1), ofs, len, 1738 ti_const_val(t2))); 1739 } 1740 1741 /* Inserting a value into zero at offset 0. */ 1742 if (ti_is_const_val(t1, 0) && ofs == 0) { 1743 uint64_t mask = MAKE_64BIT_MASK(0, len); 1744 1745 op->opc = INDEX_op_and; 1746 op->args[1] = op->args[2]; 1747 op->args[2] = arg_new_constant(ctx, mask); 1748 return fold_and(ctx, op); 1749 } 1750 1751 /* Inserting zero into a value. */ 1752 if (ti_is_const_val(t2, 0)) { 1753 uint64_t mask = deposit64(-1, ofs, len, 0); 1754 1755 op->opc = INDEX_op_and; 1756 op->args[2] = arg_new_constant(ctx, mask); 1757 return fold_and(ctx, op); 1758 } 1759 1760 /* The s_mask from the top portion of the deposit is still valid. */ 1761 if (ofs + len == width) { 1762 s_mask = t2->s_mask << ofs; 1763 } else { 1764 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1765 } 1766 1767 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1768 return fold_masks_zs(ctx, op, z_mask, s_mask); 1769 } 1770 1771 static bool fold_divide(OptContext *ctx, TCGOp *op) 1772 { 1773 if (fold_const2(ctx, op) || 1774 fold_xi_to_x(ctx, op, 1)) { 1775 return true; 1776 } 1777 return finish_folding(ctx, op); 1778 } 1779 1780 static bool fold_dup(OptContext *ctx, TCGOp *op) 1781 { 1782 if (arg_is_const(op->args[1])) { 1783 uint64_t t = arg_info(op->args[1])->val; 1784 t = dup_const(TCGOP_VECE(op), t); 1785 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1786 } 1787 return finish_folding(ctx, op); 1788 } 1789 1790 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1791 { 1792 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1793 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1794 arg_info(op->args[2])->val); 1795 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1796 } 1797 1798 if (args_are_copies(op->args[1], op->args[2])) { 1799 op->opc = INDEX_op_dup_vec; 1800 TCGOP_VECE(op) = MO_32; 1801 } 1802 return finish_folding(ctx, op); 1803 } 1804 1805 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1806 { 1807 uint64_t s_mask; 1808 1809 if (fold_const2_commutative(ctx, op) || 1810 fold_xi_to_x(ctx, op, -1) || 1811 fold_xi_to_not(ctx, op, 0)) { 1812 return true; 1813 } 1814 1815 s_mask = arg_info(op->args[1])->s_mask 1816 & arg_info(op->args[2])->s_mask; 1817 return fold_masks_s(ctx, op, s_mask); 1818 } 1819 1820 static bool fold_extract(OptContext *ctx, TCGOp *op) 1821 { 1822 uint64_t z_mask_old, z_mask; 1823 TempOptInfo *t1 = arg_info(op->args[1]); 1824 int pos = op->args[2]; 1825 int len = op->args[3]; 1826 1827 if (ti_is_const(t1)) { 1828 return tcg_opt_gen_movi(ctx, op, op->args[0], 1829 extract64(ti_const_val(t1), pos, len)); 1830 } 1831 1832 z_mask_old = t1->z_mask; 1833 z_mask = extract64(z_mask_old, pos, len); 1834 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1835 return true; 1836 } 1837 1838 return fold_masks_z(ctx, op, z_mask); 1839 } 1840 1841 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1842 { 1843 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1844 uint64_t v1 = arg_info(op->args[1])->val; 1845 uint64_t v2 = arg_info(op->args[2])->val; 1846 int shr = op->args[3]; 1847 1848 if (op->opc == INDEX_op_extract2_i64) { 1849 v1 >>= shr; 1850 v2 <<= 64 - shr; 1851 } else { 1852 v1 = (uint32_t)v1 >> shr; 1853 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1854 } 1855 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1856 } 1857 return finish_folding(ctx, op); 1858 } 1859 1860 static bool fold_exts(OptContext *ctx, TCGOp *op) 1861 { 1862 uint64_t s_mask, z_mask; 1863 TempOptInfo *t1; 1864 1865 if (fold_const1(ctx, op)) { 1866 return true; 1867 } 1868 1869 t1 = arg_info(op->args[1]); 1870 z_mask = t1->z_mask; 1871 s_mask = t1->s_mask; 1872 1873 switch (op->opc) { 1874 case INDEX_op_ext_i32_i64: 1875 s_mask |= INT32_MIN; 1876 z_mask = (int32_t)z_mask; 1877 break; 1878 default: 1879 g_assert_not_reached(); 1880 } 1881 return fold_masks_zs(ctx, op, z_mask, s_mask); 1882 } 1883 1884 static bool fold_extu(OptContext *ctx, TCGOp *op) 1885 { 1886 uint64_t z_mask; 1887 1888 if (fold_const1(ctx, op)) { 1889 return true; 1890 } 1891 1892 z_mask = arg_info(op->args[1])->z_mask; 1893 switch (op->opc) { 1894 case INDEX_op_extrl_i64_i32: 1895 case INDEX_op_extu_i32_i64: 1896 z_mask = (uint32_t)z_mask; 1897 break; 1898 case INDEX_op_extrh_i64_i32: 1899 z_mask >>= 32; 1900 break; 1901 default: 1902 g_assert_not_reached(); 1903 } 1904 return fold_masks_z(ctx, op, z_mask); 1905 } 1906 1907 static bool fold_mb(OptContext *ctx, TCGOp *op) 1908 { 1909 /* Eliminate duplicate and redundant fence instructions. */ 1910 if (ctx->prev_mb) { 1911 /* 1912 * Merge two barriers of the same type into one, 1913 * or a weaker barrier into a stronger one, 1914 * or two weaker barriers into a stronger one. 1915 * mb X; mb Y => mb X|Y 1916 * mb; strl => mb; st 1917 * ldaq; mb => ld; mb 1918 * ldaq; strl => ld; mb; st 1919 * Other combinations are also merged into a strong 1920 * barrier. This is stricter than specified but for 1921 * the purposes of TCG is better than not optimizing. 1922 */ 1923 ctx->prev_mb->args[0] |= op->args[0]; 1924 tcg_op_remove(ctx->tcg, op); 1925 } else { 1926 ctx->prev_mb = op; 1927 } 1928 return true; 1929 } 1930 1931 static bool fold_mov(OptContext *ctx, TCGOp *op) 1932 { 1933 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1934 } 1935 1936 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1937 { 1938 uint64_t z_mask, s_mask; 1939 TempOptInfo *tt, *ft; 1940 int i; 1941 1942 /* If true and false values are the same, eliminate the cmp. */ 1943 if (args_are_copies(op->args[3], op->args[4])) { 1944 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1945 } 1946 1947 /* 1948 * Canonicalize the "false" input reg to match the destination reg so 1949 * that the tcg backend can implement a "move if true" operation. 1950 */ 1951 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1952 op->args[5] = tcg_invert_cond(op->args[5]); 1953 } 1954 1955 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1956 &op->args[2], &op->args[5]); 1957 if (i >= 0) { 1958 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1959 } 1960 1961 tt = arg_info(op->args[3]); 1962 ft = arg_info(op->args[4]); 1963 z_mask = tt->z_mask | ft->z_mask; 1964 s_mask = tt->s_mask & ft->s_mask; 1965 1966 if (ti_is_const(tt) && ti_is_const(ft)) { 1967 uint64_t tv = ti_const_val(tt); 1968 uint64_t fv = ti_const_val(ft); 1969 TCGOpcode opc, negopc = 0; 1970 TCGCond cond = op->args[5]; 1971 1972 switch (ctx->type) { 1973 case TCG_TYPE_I32: 1974 opc = INDEX_op_setcond_i32; 1975 if (TCG_TARGET_HAS_negsetcond_i32) { 1976 negopc = INDEX_op_negsetcond_i32; 1977 } 1978 tv = (int32_t)tv; 1979 fv = (int32_t)fv; 1980 break; 1981 case TCG_TYPE_I64: 1982 opc = INDEX_op_setcond_i64; 1983 if (TCG_TARGET_HAS_negsetcond_i64) { 1984 negopc = INDEX_op_negsetcond_i64; 1985 } 1986 break; 1987 default: 1988 g_assert_not_reached(); 1989 } 1990 1991 if (tv == 1 && fv == 0) { 1992 op->opc = opc; 1993 op->args[3] = cond; 1994 } else if (fv == 1 && tv == 0) { 1995 op->opc = opc; 1996 op->args[3] = tcg_invert_cond(cond); 1997 } else if (negopc) { 1998 if (tv == -1 && fv == 0) { 1999 op->opc = negopc; 2000 op->args[3] = cond; 2001 } else if (fv == -1 && tv == 0) { 2002 op->opc = negopc; 2003 op->args[3] = tcg_invert_cond(cond); 2004 } 2005 } 2006 } 2007 2008 return fold_masks_zs(ctx, op, z_mask, s_mask); 2009 } 2010 2011 static bool fold_mul(OptContext *ctx, TCGOp *op) 2012 { 2013 if (fold_const2(ctx, op) || 2014 fold_xi_to_i(ctx, op, 0) || 2015 fold_xi_to_x(ctx, op, 1)) { 2016 return true; 2017 } 2018 return finish_folding(ctx, op); 2019 } 2020 2021 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2022 { 2023 if (fold_const2_commutative(ctx, op) || 2024 fold_xi_to_i(ctx, op, 0)) { 2025 return true; 2026 } 2027 return finish_folding(ctx, op); 2028 } 2029 2030 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2031 { 2032 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2033 2034 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2035 uint64_t a = arg_info(op->args[2])->val; 2036 uint64_t b = arg_info(op->args[3])->val; 2037 uint64_t h, l; 2038 TCGArg rl, rh; 2039 TCGOp *op2; 2040 2041 switch (op->opc) { 2042 case INDEX_op_mulu2_i32: 2043 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2044 h = (int32_t)(l >> 32); 2045 l = (int32_t)l; 2046 break; 2047 case INDEX_op_muls2_i32: 2048 l = (int64_t)(int32_t)a * (int32_t)b; 2049 h = l >> 32; 2050 l = (int32_t)l; 2051 break; 2052 case INDEX_op_mulu2_i64: 2053 mulu64(&l, &h, a, b); 2054 break; 2055 case INDEX_op_muls2_i64: 2056 muls64(&l, &h, a, b); 2057 break; 2058 default: 2059 g_assert_not_reached(); 2060 } 2061 2062 rl = op->args[0]; 2063 rh = op->args[1]; 2064 2065 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2066 op2 = opt_insert_before(ctx, op, 0, 2); 2067 2068 tcg_opt_gen_movi(ctx, op, rl, l); 2069 tcg_opt_gen_movi(ctx, op2, rh, h); 2070 return true; 2071 } 2072 return finish_folding(ctx, op); 2073 } 2074 2075 static bool fold_nand(OptContext *ctx, TCGOp *op) 2076 { 2077 uint64_t s_mask; 2078 2079 if (fold_const2_commutative(ctx, op) || 2080 fold_xi_to_not(ctx, op, -1)) { 2081 return true; 2082 } 2083 2084 s_mask = arg_info(op->args[1])->s_mask 2085 & arg_info(op->args[2])->s_mask; 2086 return fold_masks_s(ctx, op, s_mask); 2087 } 2088 2089 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2090 { 2091 /* Set to 1 all bits to the left of the rightmost. */ 2092 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2093 z_mask = -(z_mask & -z_mask); 2094 2095 return fold_masks_z(ctx, op, z_mask); 2096 } 2097 2098 static bool fold_neg(OptContext *ctx, TCGOp *op) 2099 { 2100 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2101 } 2102 2103 static bool fold_nor(OptContext *ctx, TCGOp *op) 2104 { 2105 uint64_t s_mask; 2106 2107 if (fold_const2_commutative(ctx, op) || 2108 fold_xi_to_not(ctx, op, 0)) { 2109 return true; 2110 } 2111 2112 s_mask = arg_info(op->args[1])->s_mask 2113 & arg_info(op->args[2])->s_mask; 2114 return fold_masks_s(ctx, op, s_mask); 2115 } 2116 2117 static bool fold_not(OptContext *ctx, TCGOp *op) 2118 { 2119 if (fold_const1(ctx, op)) { 2120 return true; 2121 } 2122 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2123 } 2124 2125 static bool fold_or(OptContext *ctx, TCGOp *op) 2126 { 2127 uint64_t z_mask, s_mask; 2128 TempOptInfo *t1, *t2; 2129 2130 if (fold_const2_commutative(ctx, op) || 2131 fold_xi_to_x(ctx, op, 0) || 2132 fold_xx_to_x(ctx, op)) { 2133 return true; 2134 } 2135 2136 t1 = arg_info(op->args[1]); 2137 t2 = arg_info(op->args[2]); 2138 z_mask = t1->z_mask | t2->z_mask; 2139 s_mask = t1->s_mask & t2->s_mask; 2140 return fold_masks_zs(ctx, op, z_mask, s_mask); 2141 } 2142 2143 static bool fold_orc(OptContext *ctx, TCGOp *op) 2144 { 2145 uint64_t s_mask; 2146 2147 if (fold_const2(ctx, op) || 2148 fold_xx_to_i(ctx, op, -1) || 2149 fold_xi_to_x(ctx, op, -1) || 2150 fold_ix_to_not(ctx, op, 0)) { 2151 return true; 2152 } 2153 2154 s_mask = arg_info(op->args[1])->s_mask 2155 & arg_info(op->args[2])->s_mask; 2156 return fold_masks_s(ctx, op, s_mask); 2157 } 2158 2159 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2160 { 2161 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2162 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2163 MemOp mop = get_memop(oi); 2164 int width = 8 * memop_size(mop); 2165 uint64_t z_mask = -1, s_mask = 0; 2166 2167 if (width < 64) { 2168 if (mop & MO_SIGN) { 2169 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2170 } else { 2171 z_mask = MAKE_64BIT_MASK(0, width); 2172 } 2173 } 2174 2175 /* Opcodes that touch guest memory stop the mb optimization. */ 2176 ctx->prev_mb = NULL; 2177 2178 return fold_masks_zs(ctx, op, z_mask, s_mask); 2179 } 2180 2181 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2182 { 2183 /* Opcodes that touch guest memory stop the mb optimization. */ 2184 ctx->prev_mb = NULL; 2185 return finish_folding(ctx, op); 2186 } 2187 2188 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2189 { 2190 /* Opcodes that touch guest memory stop the mb optimization. */ 2191 ctx->prev_mb = NULL; 2192 return true; 2193 } 2194 2195 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2196 { 2197 if (fold_const2(ctx, op) || 2198 fold_xx_to_i(ctx, op, 0)) { 2199 return true; 2200 } 2201 return finish_folding(ctx, op); 2202 } 2203 2204 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2205 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2206 { 2207 uint64_t a_zmask, b_val; 2208 TCGCond cond; 2209 2210 if (!arg_is_const(op->args[2])) { 2211 return false; 2212 } 2213 2214 a_zmask = arg_info(op->args[1])->z_mask; 2215 b_val = arg_info(op->args[2])->val; 2216 cond = op->args[3]; 2217 2218 if (ctx->type == TCG_TYPE_I32) { 2219 a_zmask = (uint32_t)a_zmask; 2220 b_val = (uint32_t)b_val; 2221 } 2222 2223 /* 2224 * A with only low bits set vs B with high bits set means that A < B. 2225 */ 2226 if (a_zmask < b_val) { 2227 bool inv = false; 2228 2229 switch (cond) { 2230 case TCG_COND_NE: 2231 case TCG_COND_LEU: 2232 case TCG_COND_LTU: 2233 inv = true; 2234 /* fall through */ 2235 case TCG_COND_GTU: 2236 case TCG_COND_GEU: 2237 case TCG_COND_EQ: 2238 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2239 default: 2240 break; 2241 } 2242 } 2243 2244 /* 2245 * A with only lsb set is already boolean. 2246 */ 2247 if (a_zmask <= 1) { 2248 bool convert = false; 2249 bool inv = false; 2250 2251 switch (cond) { 2252 case TCG_COND_EQ: 2253 inv = true; 2254 /* fall through */ 2255 case TCG_COND_NE: 2256 convert = (b_val == 0); 2257 break; 2258 case TCG_COND_LTU: 2259 case TCG_COND_TSTEQ: 2260 inv = true; 2261 /* fall through */ 2262 case TCG_COND_GEU: 2263 case TCG_COND_TSTNE: 2264 convert = (b_val == 1); 2265 break; 2266 default: 2267 break; 2268 } 2269 if (convert) { 2270 TCGOpcode xor_opc, neg_opc; 2271 2272 if (!inv && !neg) { 2273 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2274 } 2275 2276 switch (ctx->type) { 2277 case TCG_TYPE_I32: 2278 neg_opc = INDEX_op_neg_i32; 2279 xor_opc = INDEX_op_xor_i32; 2280 break; 2281 case TCG_TYPE_I64: 2282 neg_opc = INDEX_op_neg_i64; 2283 xor_opc = INDEX_op_xor_i64; 2284 break; 2285 default: 2286 g_assert_not_reached(); 2287 } 2288 2289 if (!inv) { 2290 op->opc = neg_opc; 2291 } else if (neg) { 2292 op->opc = INDEX_op_add; 2293 op->args[2] = arg_new_constant(ctx, -1); 2294 } else { 2295 op->opc = xor_opc; 2296 op->args[2] = arg_new_constant(ctx, 1); 2297 } 2298 return -1; 2299 } 2300 } 2301 return 0; 2302 } 2303 2304 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2305 { 2306 TCGOpcode xor_opc, neg_opc, shr_opc; 2307 TCGOpcode uext_opc = 0, sext_opc = 0; 2308 TCGCond cond = op->args[3]; 2309 TCGArg ret, src1, src2; 2310 TCGOp *op2; 2311 uint64_t val; 2312 int sh; 2313 bool inv; 2314 2315 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2316 return; 2317 } 2318 2319 src2 = op->args[2]; 2320 val = arg_info(src2)->val; 2321 if (!is_power_of_2(val)) { 2322 return; 2323 } 2324 sh = ctz64(val); 2325 2326 switch (ctx->type) { 2327 case TCG_TYPE_I32: 2328 xor_opc = INDEX_op_xor_i32; 2329 shr_opc = INDEX_op_shr_i32; 2330 neg_opc = INDEX_op_neg_i32; 2331 if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) { 2332 uext_opc = INDEX_op_extract_i32; 2333 } 2334 if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) { 2335 sext_opc = INDEX_op_sextract_i32; 2336 } 2337 break; 2338 case TCG_TYPE_I64: 2339 xor_opc = INDEX_op_xor_i64; 2340 shr_opc = INDEX_op_shr_i64; 2341 neg_opc = INDEX_op_neg_i64; 2342 if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) { 2343 uext_opc = INDEX_op_extract_i64; 2344 } 2345 if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) { 2346 sext_opc = INDEX_op_sextract_i64; 2347 } 2348 break; 2349 default: 2350 g_assert_not_reached(); 2351 } 2352 2353 ret = op->args[0]; 2354 src1 = op->args[1]; 2355 inv = cond == TCG_COND_TSTEQ; 2356 2357 if (sh && sext_opc && neg && !inv) { 2358 op->opc = sext_opc; 2359 op->args[1] = src1; 2360 op->args[2] = sh; 2361 op->args[3] = 1; 2362 return; 2363 } else if (sh && uext_opc) { 2364 op->opc = uext_opc; 2365 op->args[1] = src1; 2366 op->args[2] = sh; 2367 op->args[3] = 1; 2368 } else { 2369 if (sh) { 2370 op2 = opt_insert_before(ctx, op, shr_opc, 3); 2371 op2->args[0] = ret; 2372 op2->args[1] = src1; 2373 op2->args[2] = arg_new_constant(ctx, sh); 2374 src1 = ret; 2375 } 2376 op->opc = INDEX_op_and; 2377 op->args[1] = src1; 2378 op->args[2] = arg_new_constant(ctx, 1); 2379 } 2380 2381 if (neg && inv) { 2382 op2 = opt_insert_after(ctx, op, INDEX_op_add, 3); 2383 op2->args[0] = ret; 2384 op2->args[1] = ret; 2385 op2->args[2] = arg_new_constant(ctx, -1); 2386 } else if (inv) { 2387 op2 = opt_insert_after(ctx, op, xor_opc, 3); 2388 op2->args[0] = ret; 2389 op2->args[1] = ret; 2390 op2->args[2] = arg_new_constant(ctx, 1); 2391 } else if (neg) { 2392 op2 = opt_insert_after(ctx, op, neg_opc, 2); 2393 op2->args[0] = ret; 2394 op2->args[1] = ret; 2395 } 2396 } 2397 2398 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2399 { 2400 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2401 &op->args[2], &op->args[3]); 2402 if (i >= 0) { 2403 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2404 } 2405 2406 i = fold_setcond_zmask(ctx, op, false); 2407 if (i > 0) { 2408 return true; 2409 } 2410 if (i == 0) { 2411 fold_setcond_tst_pow2(ctx, op, false); 2412 } 2413 2414 return fold_masks_z(ctx, op, 1); 2415 } 2416 2417 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2418 { 2419 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2420 &op->args[2], &op->args[3]); 2421 if (i >= 0) { 2422 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2423 } 2424 2425 i = fold_setcond_zmask(ctx, op, true); 2426 if (i > 0) { 2427 return true; 2428 } 2429 if (i == 0) { 2430 fold_setcond_tst_pow2(ctx, op, true); 2431 } 2432 2433 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2434 return fold_masks_s(ctx, op, -1); 2435 } 2436 2437 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2438 { 2439 TCGCond cond; 2440 int i, inv = 0; 2441 2442 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2443 cond = op->args[5]; 2444 if (i >= 0) { 2445 goto do_setcond_const; 2446 } 2447 2448 switch (cond) { 2449 case TCG_COND_LT: 2450 case TCG_COND_GE: 2451 /* 2452 * Simplify LT/GE comparisons vs zero to a single compare 2453 * vs the high word of the input. 2454 */ 2455 if (arg_is_const_val(op->args[3], 0) && 2456 arg_is_const_val(op->args[4], 0)) { 2457 goto do_setcond_high; 2458 } 2459 break; 2460 2461 case TCG_COND_NE: 2462 inv = 1; 2463 QEMU_FALLTHROUGH; 2464 case TCG_COND_EQ: 2465 /* 2466 * Simplify EQ/NE comparisons where one of the pairs 2467 * can be simplified. 2468 */ 2469 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2470 op->args[3], cond); 2471 switch (i ^ inv) { 2472 case 0: 2473 goto do_setcond_const; 2474 case 1: 2475 goto do_setcond_high; 2476 } 2477 2478 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2479 op->args[4], cond); 2480 switch (i ^ inv) { 2481 case 0: 2482 goto do_setcond_const; 2483 case 1: 2484 goto do_setcond_low; 2485 } 2486 break; 2487 2488 case TCG_COND_TSTEQ: 2489 case TCG_COND_TSTNE: 2490 if (arg_is_const_val(op->args[3], 0)) { 2491 goto do_setcond_high; 2492 } 2493 if (arg_is_const_val(op->args[4], 0)) { 2494 goto do_setcond_low; 2495 } 2496 break; 2497 2498 default: 2499 break; 2500 2501 do_setcond_low: 2502 op->args[2] = op->args[3]; 2503 op->args[3] = cond; 2504 op->opc = INDEX_op_setcond_i32; 2505 return fold_setcond(ctx, op); 2506 2507 do_setcond_high: 2508 op->args[1] = op->args[2]; 2509 op->args[2] = op->args[4]; 2510 op->args[3] = cond; 2511 op->opc = INDEX_op_setcond_i32; 2512 return fold_setcond(ctx, op); 2513 } 2514 2515 return fold_masks_z(ctx, op, 1); 2516 2517 do_setcond_const: 2518 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2519 } 2520 2521 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2522 { 2523 uint64_t z_mask, s_mask, s_mask_old; 2524 TempOptInfo *t1 = arg_info(op->args[1]); 2525 int pos = op->args[2]; 2526 int len = op->args[3]; 2527 2528 if (ti_is_const(t1)) { 2529 return tcg_opt_gen_movi(ctx, op, op->args[0], 2530 sextract64(ti_const_val(t1), pos, len)); 2531 } 2532 2533 s_mask_old = t1->s_mask; 2534 s_mask = s_mask_old >> pos; 2535 s_mask |= -1ull << (len - 1); 2536 2537 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2538 return true; 2539 } 2540 2541 z_mask = sextract64(t1->z_mask, pos, len); 2542 return fold_masks_zs(ctx, op, z_mask, s_mask); 2543 } 2544 2545 static bool fold_shift(OptContext *ctx, TCGOp *op) 2546 { 2547 uint64_t s_mask, z_mask; 2548 TempOptInfo *t1, *t2; 2549 2550 if (fold_const2(ctx, op) || 2551 fold_ix_to_i(ctx, op, 0) || 2552 fold_xi_to_x(ctx, op, 0)) { 2553 return true; 2554 } 2555 2556 t1 = arg_info(op->args[1]); 2557 t2 = arg_info(op->args[2]); 2558 s_mask = t1->s_mask; 2559 z_mask = t1->z_mask; 2560 2561 if (ti_is_const(t2)) { 2562 int sh = ti_const_val(t2); 2563 2564 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2565 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2566 2567 return fold_masks_zs(ctx, op, z_mask, s_mask); 2568 } 2569 2570 switch (op->opc) { 2571 CASE_OP_32_64(sar): 2572 /* 2573 * Arithmetic right shift will not reduce the number of 2574 * input sign repetitions. 2575 */ 2576 return fold_masks_s(ctx, op, s_mask); 2577 CASE_OP_32_64(shr): 2578 /* 2579 * If the sign bit is known zero, then logical right shift 2580 * will not reduce the number of input sign repetitions. 2581 */ 2582 if (~z_mask & -s_mask) { 2583 return fold_masks_s(ctx, op, s_mask); 2584 } 2585 break; 2586 default: 2587 break; 2588 } 2589 2590 return finish_folding(ctx, op); 2591 } 2592 2593 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2594 { 2595 TCGOpcode neg_op; 2596 bool have_neg; 2597 2598 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2599 return false; 2600 } 2601 2602 switch (ctx->type) { 2603 case TCG_TYPE_I32: 2604 neg_op = INDEX_op_neg_i32; 2605 have_neg = true; 2606 break; 2607 case TCG_TYPE_I64: 2608 neg_op = INDEX_op_neg_i64; 2609 have_neg = true; 2610 break; 2611 case TCG_TYPE_V64: 2612 case TCG_TYPE_V128: 2613 case TCG_TYPE_V256: 2614 neg_op = INDEX_op_neg_vec; 2615 have_neg = (TCG_TARGET_HAS_neg_vec && 2616 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2617 break; 2618 default: 2619 g_assert_not_reached(); 2620 } 2621 if (have_neg) { 2622 op->opc = neg_op; 2623 op->args[1] = op->args[2]; 2624 return fold_neg_no_const(ctx, op); 2625 } 2626 return false; 2627 } 2628 2629 /* We cannot as yet do_constant_folding with vectors. */ 2630 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2631 { 2632 if (fold_xx_to_i(ctx, op, 0) || 2633 fold_xi_to_x(ctx, op, 0) || 2634 fold_sub_to_neg(ctx, op)) { 2635 return true; 2636 } 2637 return finish_folding(ctx, op); 2638 } 2639 2640 static bool fold_sub(OptContext *ctx, TCGOp *op) 2641 { 2642 if (fold_const2(ctx, op) || 2643 fold_xx_to_i(ctx, op, 0) || 2644 fold_xi_to_x(ctx, op, 0) || 2645 fold_sub_to_neg(ctx, op)) { 2646 return true; 2647 } 2648 2649 /* Fold sub r,x,i to add r,x,-i */ 2650 if (arg_is_const(op->args[2])) { 2651 uint64_t val = arg_info(op->args[2])->val; 2652 2653 op->opc = INDEX_op_add; 2654 op->args[2] = arg_new_constant(ctx, -val); 2655 } 2656 return finish_folding(ctx, op); 2657 } 2658 2659 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2660 { 2661 return fold_addsub2(ctx, op, false); 2662 } 2663 2664 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2665 { 2666 uint64_t z_mask = -1, s_mask = 0; 2667 2668 /* We can't do any folding with a load, but we can record bits. */ 2669 switch (op->opc) { 2670 CASE_OP_32_64(ld8s): 2671 s_mask = INT8_MIN; 2672 break; 2673 CASE_OP_32_64(ld8u): 2674 z_mask = MAKE_64BIT_MASK(0, 8); 2675 break; 2676 CASE_OP_32_64(ld16s): 2677 s_mask = INT16_MIN; 2678 break; 2679 CASE_OP_32_64(ld16u): 2680 z_mask = MAKE_64BIT_MASK(0, 16); 2681 break; 2682 case INDEX_op_ld32s_i64: 2683 s_mask = INT32_MIN; 2684 break; 2685 case INDEX_op_ld32u_i64: 2686 z_mask = MAKE_64BIT_MASK(0, 32); 2687 break; 2688 default: 2689 g_assert_not_reached(); 2690 } 2691 return fold_masks_zs(ctx, op, z_mask, s_mask); 2692 } 2693 2694 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2695 { 2696 TCGTemp *dst, *src; 2697 intptr_t ofs; 2698 TCGType type; 2699 2700 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2701 return finish_folding(ctx, op); 2702 } 2703 2704 type = ctx->type; 2705 ofs = op->args[2]; 2706 dst = arg_temp(op->args[0]); 2707 src = find_mem_copy_for(ctx, type, ofs); 2708 if (src && src->base_type == type) { 2709 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2710 } 2711 2712 reset_ts(ctx, dst); 2713 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2714 return true; 2715 } 2716 2717 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2718 { 2719 intptr_t ofs = op->args[2]; 2720 intptr_t lm1; 2721 2722 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2723 remove_mem_copy_all(ctx); 2724 return true; 2725 } 2726 2727 switch (op->opc) { 2728 CASE_OP_32_64(st8): 2729 lm1 = 0; 2730 break; 2731 CASE_OP_32_64(st16): 2732 lm1 = 1; 2733 break; 2734 case INDEX_op_st32_i64: 2735 case INDEX_op_st_i32: 2736 lm1 = 3; 2737 break; 2738 case INDEX_op_st_i64: 2739 lm1 = 7; 2740 break; 2741 case INDEX_op_st_vec: 2742 lm1 = tcg_type_size(ctx->type) - 1; 2743 break; 2744 default: 2745 g_assert_not_reached(); 2746 } 2747 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2748 return true; 2749 } 2750 2751 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2752 { 2753 TCGTemp *src; 2754 intptr_t ofs, last; 2755 TCGType type; 2756 2757 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2758 return fold_tcg_st(ctx, op); 2759 } 2760 2761 src = arg_temp(op->args[0]); 2762 ofs = op->args[2]; 2763 type = ctx->type; 2764 2765 /* 2766 * Eliminate duplicate stores of a constant. 2767 * This happens frequently when the target ISA zero-extends. 2768 */ 2769 if (ts_is_const(src)) { 2770 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2771 if (src == prev) { 2772 tcg_op_remove(ctx->tcg, op); 2773 return true; 2774 } 2775 } 2776 2777 last = ofs + tcg_type_size(type) - 1; 2778 remove_mem_copy_in(ctx, ofs, last); 2779 record_mem_copy(ctx, type, src, ofs, last); 2780 return true; 2781 } 2782 2783 static bool fold_xor(OptContext *ctx, TCGOp *op) 2784 { 2785 uint64_t z_mask, s_mask; 2786 TempOptInfo *t1, *t2; 2787 2788 if (fold_const2_commutative(ctx, op) || 2789 fold_xx_to_i(ctx, op, 0) || 2790 fold_xi_to_x(ctx, op, 0) || 2791 fold_xi_to_not(ctx, op, -1)) { 2792 return true; 2793 } 2794 2795 t1 = arg_info(op->args[1]); 2796 t2 = arg_info(op->args[2]); 2797 z_mask = t1->z_mask | t2->z_mask; 2798 s_mask = t1->s_mask & t2->s_mask; 2799 return fold_masks_zs(ctx, op, z_mask, s_mask); 2800 } 2801 2802 /* Propagate constants and copies, fold constant expressions. */ 2803 void tcg_optimize(TCGContext *s) 2804 { 2805 int nb_temps, i; 2806 TCGOp *op, *op_next; 2807 OptContext ctx = { .tcg = s }; 2808 2809 QSIMPLEQ_INIT(&ctx.mem_free); 2810 2811 /* Array VALS has an element for each temp. 2812 If this temp holds a constant then its value is kept in VALS' element. 2813 If this temp is a copy of other ones then the other copies are 2814 available through the doubly linked circular list. */ 2815 2816 nb_temps = s->nb_temps; 2817 for (i = 0; i < nb_temps; ++i) { 2818 s->temps[i].state_ptr = NULL; 2819 } 2820 2821 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2822 TCGOpcode opc = op->opc; 2823 const TCGOpDef *def; 2824 bool done = false; 2825 2826 /* Calls are special. */ 2827 if (opc == INDEX_op_call) { 2828 fold_call(&ctx, op); 2829 continue; 2830 } 2831 2832 def = &tcg_op_defs[opc]; 2833 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2834 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2835 2836 /* Pre-compute the type of the operation. */ 2837 ctx.type = TCGOP_TYPE(op); 2838 2839 /* 2840 * Process each opcode. 2841 * Sorted alphabetically by opcode as much as possible. 2842 */ 2843 switch (opc) { 2844 case INDEX_op_add: 2845 done = fold_add(&ctx, op); 2846 break; 2847 case INDEX_op_add_vec: 2848 done = fold_add_vec(&ctx, op); 2849 break; 2850 CASE_OP_32_64(add2): 2851 done = fold_add2(&ctx, op); 2852 break; 2853 case INDEX_op_and: 2854 case INDEX_op_and_vec: 2855 done = fold_and(&ctx, op); 2856 break; 2857 case INDEX_op_andc: 2858 case INDEX_op_andc_vec: 2859 done = fold_andc(&ctx, op); 2860 break; 2861 CASE_OP_32_64(brcond): 2862 done = fold_brcond(&ctx, op); 2863 break; 2864 case INDEX_op_brcond2_i32: 2865 done = fold_brcond2(&ctx, op); 2866 break; 2867 CASE_OP_32_64(bswap16): 2868 CASE_OP_32_64(bswap32): 2869 case INDEX_op_bswap64_i64: 2870 done = fold_bswap(&ctx, op); 2871 break; 2872 CASE_OP_32_64(clz): 2873 CASE_OP_32_64(ctz): 2874 done = fold_count_zeros(&ctx, op); 2875 break; 2876 CASE_OP_32_64(ctpop): 2877 done = fold_ctpop(&ctx, op); 2878 break; 2879 CASE_OP_32_64(deposit): 2880 done = fold_deposit(&ctx, op); 2881 break; 2882 CASE_OP_32_64(div): 2883 CASE_OP_32_64(divu): 2884 done = fold_divide(&ctx, op); 2885 break; 2886 case INDEX_op_dup_vec: 2887 done = fold_dup(&ctx, op); 2888 break; 2889 case INDEX_op_dup2_vec: 2890 done = fold_dup2(&ctx, op); 2891 break; 2892 CASE_OP_32_64_VEC(eqv): 2893 done = fold_eqv(&ctx, op); 2894 break; 2895 CASE_OP_32_64(extract): 2896 done = fold_extract(&ctx, op); 2897 break; 2898 CASE_OP_32_64(extract2): 2899 done = fold_extract2(&ctx, op); 2900 break; 2901 case INDEX_op_ext_i32_i64: 2902 done = fold_exts(&ctx, op); 2903 break; 2904 case INDEX_op_extu_i32_i64: 2905 case INDEX_op_extrl_i64_i32: 2906 case INDEX_op_extrh_i64_i32: 2907 done = fold_extu(&ctx, op); 2908 break; 2909 CASE_OP_32_64(ld8s): 2910 CASE_OP_32_64(ld8u): 2911 CASE_OP_32_64(ld16s): 2912 CASE_OP_32_64(ld16u): 2913 case INDEX_op_ld32s_i64: 2914 case INDEX_op_ld32u_i64: 2915 done = fold_tcg_ld(&ctx, op); 2916 break; 2917 case INDEX_op_ld_i32: 2918 case INDEX_op_ld_i64: 2919 case INDEX_op_ld_vec: 2920 done = fold_tcg_ld_memcopy(&ctx, op); 2921 break; 2922 CASE_OP_32_64(st8): 2923 CASE_OP_32_64(st16): 2924 case INDEX_op_st32_i64: 2925 done = fold_tcg_st(&ctx, op); 2926 break; 2927 case INDEX_op_st_i32: 2928 case INDEX_op_st_i64: 2929 case INDEX_op_st_vec: 2930 done = fold_tcg_st_memcopy(&ctx, op); 2931 break; 2932 case INDEX_op_mb: 2933 done = fold_mb(&ctx, op); 2934 break; 2935 case INDEX_op_mov: 2936 case INDEX_op_mov_vec: 2937 done = fold_mov(&ctx, op); 2938 break; 2939 CASE_OP_32_64(movcond): 2940 done = fold_movcond(&ctx, op); 2941 break; 2942 CASE_OP_32_64(mul): 2943 done = fold_mul(&ctx, op); 2944 break; 2945 CASE_OP_32_64(mulsh): 2946 CASE_OP_32_64(muluh): 2947 done = fold_mul_highpart(&ctx, op); 2948 break; 2949 CASE_OP_32_64(muls2): 2950 CASE_OP_32_64(mulu2): 2951 done = fold_multiply2(&ctx, op); 2952 break; 2953 CASE_OP_32_64_VEC(nand): 2954 done = fold_nand(&ctx, op); 2955 break; 2956 CASE_OP_32_64(neg): 2957 done = fold_neg(&ctx, op); 2958 break; 2959 CASE_OP_32_64_VEC(nor): 2960 done = fold_nor(&ctx, op); 2961 break; 2962 CASE_OP_32_64_VEC(not): 2963 done = fold_not(&ctx, op); 2964 break; 2965 case INDEX_op_or: 2966 case INDEX_op_or_vec: 2967 done = fold_or(&ctx, op); 2968 break; 2969 CASE_OP_32_64_VEC(orc): 2970 done = fold_orc(&ctx, op); 2971 break; 2972 case INDEX_op_qemu_ld_i32: 2973 done = fold_qemu_ld_1reg(&ctx, op); 2974 break; 2975 case INDEX_op_qemu_ld_i64: 2976 if (TCG_TARGET_REG_BITS == 64) { 2977 done = fold_qemu_ld_1reg(&ctx, op); 2978 break; 2979 } 2980 QEMU_FALLTHROUGH; 2981 case INDEX_op_qemu_ld_i128: 2982 done = fold_qemu_ld_2reg(&ctx, op); 2983 break; 2984 case INDEX_op_qemu_st8_i32: 2985 case INDEX_op_qemu_st_i32: 2986 case INDEX_op_qemu_st_i64: 2987 case INDEX_op_qemu_st_i128: 2988 done = fold_qemu_st(&ctx, op); 2989 break; 2990 CASE_OP_32_64(rem): 2991 CASE_OP_32_64(remu): 2992 done = fold_remainder(&ctx, op); 2993 break; 2994 CASE_OP_32_64(rotl): 2995 CASE_OP_32_64(rotr): 2996 CASE_OP_32_64(sar): 2997 CASE_OP_32_64(shl): 2998 CASE_OP_32_64(shr): 2999 done = fold_shift(&ctx, op); 3000 break; 3001 CASE_OP_32_64(setcond): 3002 done = fold_setcond(&ctx, op); 3003 break; 3004 CASE_OP_32_64(negsetcond): 3005 done = fold_negsetcond(&ctx, op); 3006 break; 3007 case INDEX_op_setcond2_i32: 3008 done = fold_setcond2(&ctx, op); 3009 break; 3010 case INDEX_op_cmp_vec: 3011 done = fold_cmp_vec(&ctx, op); 3012 break; 3013 case INDEX_op_cmpsel_vec: 3014 done = fold_cmpsel_vec(&ctx, op); 3015 break; 3016 case INDEX_op_bitsel_vec: 3017 done = fold_bitsel_vec(&ctx, op); 3018 break; 3019 CASE_OP_32_64(sextract): 3020 done = fold_sextract(&ctx, op); 3021 break; 3022 CASE_OP_32_64(sub): 3023 done = fold_sub(&ctx, op); 3024 break; 3025 case INDEX_op_sub_vec: 3026 done = fold_sub_vec(&ctx, op); 3027 break; 3028 CASE_OP_32_64(sub2): 3029 done = fold_sub2(&ctx, op); 3030 break; 3031 CASE_OP_32_64_VEC(xor): 3032 done = fold_xor(&ctx, op); 3033 break; 3034 case INDEX_op_set_label: 3035 case INDEX_op_br: 3036 case INDEX_op_exit_tb: 3037 case INDEX_op_goto_tb: 3038 case INDEX_op_goto_ptr: 3039 finish_ebb(&ctx); 3040 done = true; 3041 break; 3042 default: 3043 done = finish_folding(&ctx, op); 3044 break; 3045 } 3046 tcg_debug_assert(done); 3047 } 3048 } 3049