1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op, 348 TCGOpcode opc, unsigned narg) 349 { 350 return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg); 351 } 352 353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op, 354 TCGOpcode opc, unsigned narg) 355 { 356 return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg); 357 } 358 359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 360 { 361 TCGTemp *dst_ts = arg_temp(dst); 362 TCGTemp *src_ts = arg_temp(src); 363 TempOptInfo *di; 364 TempOptInfo *si; 365 TCGOpcode new_op; 366 367 if (ts_are_copies(dst_ts, src_ts)) { 368 tcg_op_remove(ctx->tcg, op); 369 return true; 370 } 371 372 reset_ts(ctx, dst_ts); 373 di = ts_info(dst_ts); 374 si = ts_info(src_ts); 375 376 switch (ctx->type) { 377 case TCG_TYPE_I32: 378 new_op = INDEX_op_mov_i32; 379 break; 380 case TCG_TYPE_I64: 381 new_op = INDEX_op_mov_i64; 382 break; 383 case TCG_TYPE_V64: 384 case TCG_TYPE_V128: 385 case TCG_TYPE_V256: 386 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 387 new_op = INDEX_op_mov_vec; 388 break; 389 default: 390 g_assert_not_reached(); 391 } 392 op->opc = new_op; 393 op->args[0] = dst; 394 op->args[1] = src; 395 396 di->z_mask = si->z_mask; 397 di->s_mask = si->s_mask; 398 399 if (src_ts->type == dst_ts->type) { 400 TempOptInfo *ni = ts_info(si->next_copy); 401 402 di->next_copy = si->next_copy; 403 di->prev_copy = src_ts; 404 ni->prev_copy = dst_ts; 405 si->next_copy = dst_ts; 406 di->is_const = si->is_const; 407 di->val = si->val; 408 409 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 410 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 411 move_mem_copies(dst_ts, src_ts); 412 } 413 } 414 return true; 415 } 416 417 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 418 TCGArg dst, uint64_t val) 419 { 420 /* Convert movi to mov with constant temp. */ 421 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 422 } 423 424 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 425 { 426 uint64_t l64, h64; 427 428 switch (op) { 429 CASE_OP_32_64(add): 430 return x + y; 431 432 CASE_OP_32_64(sub): 433 return x - y; 434 435 CASE_OP_32_64(mul): 436 return x * y; 437 438 CASE_OP_32_64_VEC(and): 439 return x & y; 440 441 CASE_OP_32_64_VEC(or): 442 return x | y; 443 444 CASE_OP_32_64_VEC(xor): 445 return x ^ y; 446 447 case INDEX_op_shl_i32: 448 return (uint32_t)x << (y & 31); 449 450 case INDEX_op_shl_i64: 451 return (uint64_t)x << (y & 63); 452 453 case INDEX_op_shr_i32: 454 return (uint32_t)x >> (y & 31); 455 456 case INDEX_op_shr_i64: 457 return (uint64_t)x >> (y & 63); 458 459 case INDEX_op_sar_i32: 460 return (int32_t)x >> (y & 31); 461 462 case INDEX_op_sar_i64: 463 return (int64_t)x >> (y & 63); 464 465 case INDEX_op_rotr_i32: 466 return ror32(x, y & 31); 467 468 case INDEX_op_rotr_i64: 469 return ror64(x, y & 63); 470 471 case INDEX_op_rotl_i32: 472 return rol32(x, y & 31); 473 474 case INDEX_op_rotl_i64: 475 return rol64(x, y & 63); 476 477 CASE_OP_32_64_VEC(not): 478 return ~x; 479 480 CASE_OP_32_64(neg): 481 return -x; 482 483 CASE_OP_32_64_VEC(andc): 484 return x & ~y; 485 486 CASE_OP_32_64_VEC(orc): 487 return x | ~y; 488 489 CASE_OP_32_64_VEC(eqv): 490 return ~(x ^ y); 491 492 CASE_OP_32_64_VEC(nand): 493 return ~(x & y); 494 495 CASE_OP_32_64_VEC(nor): 496 return ~(x | y); 497 498 case INDEX_op_clz_i32: 499 return (uint32_t)x ? clz32(x) : y; 500 501 case INDEX_op_clz_i64: 502 return x ? clz64(x) : y; 503 504 case INDEX_op_ctz_i32: 505 return (uint32_t)x ? ctz32(x) : y; 506 507 case INDEX_op_ctz_i64: 508 return x ? ctz64(x) : y; 509 510 case INDEX_op_ctpop_i32: 511 return ctpop32(x); 512 513 case INDEX_op_ctpop_i64: 514 return ctpop64(x); 515 516 CASE_OP_32_64(bswap16): 517 x = bswap16(x); 518 return y & TCG_BSWAP_OS ? (int16_t)x : x; 519 520 CASE_OP_32_64(bswap32): 521 x = bswap32(x); 522 return y & TCG_BSWAP_OS ? (int32_t)x : x; 523 524 case INDEX_op_bswap64_i64: 525 return bswap64(x); 526 527 case INDEX_op_ext_i32_i64: 528 return (int32_t)x; 529 530 case INDEX_op_extu_i32_i64: 531 case INDEX_op_extrl_i64_i32: 532 return (uint32_t)x; 533 534 case INDEX_op_extrh_i64_i32: 535 return (uint64_t)x >> 32; 536 537 case INDEX_op_muluh_i32: 538 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 539 case INDEX_op_mulsh_i32: 540 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 541 542 case INDEX_op_muluh_i64: 543 mulu64(&l64, &h64, x, y); 544 return h64; 545 case INDEX_op_mulsh_i64: 546 muls64(&l64, &h64, x, y); 547 return h64; 548 549 case INDEX_op_div_i32: 550 /* Avoid crashing on divide by zero, otherwise undefined. */ 551 return (int32_t)x / ((int32_t)y ? : 1); 552 case INDEX_op_divu_i32: 553 return (uint32_t)x / ((uint32_t)y ? : 1); 554 case INDEX_op_div_i64: 555 return (int64_t)x / ((int64_t)y ? : 1); 556 case INDEX_op_divu_i64: 557 return (uint64_t)x / ((uint64_t)y ? : 1); 558 559 case INDEX_op_rem_i32: 560 return (int32_t)x % ((int32_t)y ? : 1); 561 case INDEX_op_remu_i32: 562 return (uint32_t)x % ((uint32_t)y ? : 1); 563 case INDEX_op_rem_i64: 564 return (int64_t)x % ((int64_t)y ? : 1); 565 case INDEX_op_remu_i64: 566 return (uint64_t)x % ((uint64_t)y ? : 1); 567 568 default: 569 g_assert_not_reached(); 570 } 571 } 572 573 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 574 uint64_t x, uint64_t y) 575 { 576 uint64_t res = do_constant_folding_2(op, x, y); 577 if (type == TCG_TYPE_I32) { 578 res = (int32_t)res; 579 } 580 return res; 581 } 582 583 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 584 { 585 switch (c) { 586 case TCG_COND_EQ: 587 return x == y; 588 case TCG_COND_NE: 589 return x != y; 590 case TCG_COND_LT: 591 return (int32_t)x < (int32_t)y; 592 case TCG_COND_GE: 593 return (int32_t)x >= (int32_t)y; 594 case TCG_COND_LE: 595 return (int32_t)x <= (int32_t)y; 596 case TCG_COND_GT: 597 return (int32_t)x > (int32_t)y; 598 case TCG_COND_LTU: 599 return x < y; 600 case TCG_COND_GEU: 601 return x >= y; 602 case TCG_COND_LEU: 603 return x <= y; 604 case TCG_COND_GTU: 605 return x > y; 606 case TCG_COND_TSTEQ: 607 return (x & y) == 0; 608 case TCG_COND_TSTNE: 609 return (x & y) != 0; 610 case TCG_COND_ALWAYS: 611 case TCG_COND_NEVER: 612 break; 613 } 614 g_assert_not_reached(); 615 } 616 617 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 618 { 619 switch (c) { 620 case TCG_COND_EQ: 621 return x == y; 622 case TCG_COND_NE: 623 return x != y; 624 case TCG_COND_LT: 625 return (int64_t)x < (int64_t)y; 626 case TCG_COND_GE: 627 return (int64_t)x >= (int64_t)y; 628 case TCG_COND_LE: 629 return (int64_t)x <= (int64_t)y; 630 case TCG_COND_GT: 631 return (int64_t)x > (int64_t)y; 632 case TCG_COND_LTU: 633 return x < y; 634 case TCG_COND_GEU: 635 return x >= y; 636 case TCG_COND_LEU: 637 return x <= y; 638 case TCG_COND_GTU: 639 return x > y; 640 case TCG_COND_TSTEQ: 641 return (x & y) == 0; 642 case TCG_COND_TSTNE: 643 return (x & y) != 0; 644 case TCG_COND_ALWAYS: 645 case TCG_COND_NEVER: 646 break; 647 } 648 g_assert_not_reached(); 649 } 650 651 static int do_constant_folding_cond_eq(TCGCond c) 652 { 653 switch (c) { 654 case TCG_COND_GT: 655 case TCG_COND_LTU: 656 case TCG_COND_LT: 657 case TCG_COND_GTU: 658 case TCG_COND_NE: 659 return 0; 660 case TCG_COND_GE: 661 case TCG_COND_GEU: 662 case TCG_COND_LE: 663 case TCG_COND_LEU: 664 case TCG_COND_EQ: 665 return 1; 666 case TCG_COND_TSTEQ: 667 case TCG_COND_TSTNE: 668 return -1; 669 case TCG_COND_ALWAYS: 670 case TCG_COND_NEVER: 671 break; 672 } 673 g_assert_not_reached(); 674 } 675 676 /* 677 * Return -1 if the condition can't be simplified, 678 * and the result of the condition (0 or 1) if it can. 679 */ 680 static int do_constant_folding_cond(TCGType type, TCGArg x, 681 TCGArg y, TCGCond c) 682 { 683 if (arg_is_const(x) && arg_is_const(y)) { 684 uint64_t xv = arg_info(x)->val; 685 uint64_t yv = arg_info(y)->val; 686 687 switch (type) { 688 case TCG_TYPE_I32: 689 return do_constant_folding_cond_32(xv, yv, c); 690 case TCG_TYPE_I64: 691 return do_constant_folding_cond_64(xv, yv, c); 692 default: 693 /* Only scalar comparisons are optimizable */ 694 return -1; 695 } 696 } else if (args_are_copies(x, y)) { 697 return do_constant_folding_cond_eq(c); 698 } else if (arg_is_const_val(y, 0)) { 699 switch (c) { 700 case TCG_COND_LTU: 701 case TCG_COND_TSTNE: 702 return 0; 703 case TCG_COND_GEU: 704 case TCG_COND_TSTEQ: 705 return 1; 706 default: 707 return -1; 708 } 709 } 710 return -1; 711 } 712 713 /** 714 * swap_commutative: 715 * @dest: TCGArg of the destination argument, or NO_DEST. 716 * @p1: first paired argument 717 * @p2: second paired argument 718 * 719 * If *@p1 is a constant and *@p2 is not, swap. 720 * If *@p2 matches @dest, swap. 721 * Return true if a swap was performed. 722 */ 723 724 #define NO_DEST temp_arg(NULL) 725 726 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 727 { 728 TCGArg a1 = *p1, a2 = *p2; 729 int sum = 0; 730 sum += arg_is_const(a1); 731 sum -= arg_is_const(a2); 732 733 /* Prefer the constant in second argument, and then the form 734 op a, a, b, which is better handled on non-RISC hosts. */ 735 if (sum > 0 || (sum == 0 && dest == a2)) { 736 *p1 = a2; 737 *p2 = a1; 738 return true; 739 } 740 return false; 741 } 742 743 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 744 { 745 int sum = 0; 746 sum += arg_is_const(p1[0]); 747 sum += arg_is_const(p1[1]); 748 sum -= arg_is_const(p2[0]); 749 sum -= arg_is_const(p2[1]); 750 if (sum > 0) { 751 TCGArg t; 752 t = p1[0], p1[0] = p2[0], p2[0] = t; 753 t = p1[1], p1[1] = p2[1], p2[1] = t; 754 return true; 755 } 756 return false; 757 } 758 759 /* 760 * Return -1 if the condition can't be simplified, 761 * and the result of the condition (0 or 1) if it can. 762 */ 763 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 764 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 765 { 766 TCGCond cond; 767 TempOptInfo *i1; 768 bool swap; 769 int r; 770 771 swap = swap_commutative(dest, p1, p2); 772 cond = *pcond; 773 if (swap) { 774 *pcond = cond = tcg_swap_cond(cond); 775 } 776 777 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 778 if (r >= 0) { 779 return r; 780 } 781 if (!is_tst_cond(cond)) { 782 return -1; 783 } 784 785 i1 = arg_info(*p1); 786 787 /* 788 * TSTNE x,x -> NE x,0 789 * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x 790 */ 791 if (args_are_copies(*p1, *p2) || 792 (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) { 793 *p2 = arg_new_constant(ctx, 0); 794 *pcond = tcg_tst_eqne_cond(cond); 795 return -1; 796 } 797 798 /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */ 799 if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) { 800 *p2 = arg_new_constant(ctx, 0); 801 *pcond = tcg_tst_ltge_cond(cond); 802 return -1; 803 } 804 805 /* Expand to AND with a temporary if no backend support. */ 806 if (!TCG_TARGET_HAS_tst) { 807 TCGOpcode and_opc = (ctx->type == TCG_TYPE_I32 808 ? INDEX_op_and_i32 : INDEX_op_and_i64); 809 TCGOp *op2 = opt_insert_before(ctx, op, and_opc, 3); 810 TCGArg tmp = arg_new_temp(ctx); 811 812 op2->args[0] = tmp; 813 op2->args[1] = *p1; 814 op2->args[2] = *p2; 815 816 *p1 = tmp; 817 *p2 = arg_new_constant(ctx, 0); 818 *pcond = tcg_tst_eqne_cond(cond); 819 } 820 return -1; 821 } 822 823 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 824 { 825 TCGArg al, ah, bl, bh; 826 TCGCond c; 827 bool swap; 828 int r; 829 830 swap = swap_commutative2(args, args + 2); 831 c = args[4]; 832 if (swap) { 833 args[4] = c = tcg_swap_cond(c); 834 } 835 836 al = args[0]; 837 ah = args[1]; 838 bl = args[2]; 839 bh = args[3]; 840 841 if (arg_is_const(bl) && arg_is_const(bh)) { 842 tcg_target_ulong blv = arg_info(bl)->val; 843 tcg_target_ulong bhv = arg_info(bh)->val; 844 uint64_t b = deposit64(blv, 32, 32, bhv); 845 846 if (arg_is_const(al) && arg_is_const(ah)) { 847 tcg_target_ulong alv = arg_info(al)->val; 848 tcg_target_ulong ahv = arg_info(ah)->val; 849 uint64_t a = deposit64(alv, 32, 32, ahv); 850 851 r = do_constant_folding_cond_64(a, b, c); 852 if (r >= 0) { 853 return r; 854 } 855 } 856 857 if (b == 0) { 858 switch (c) { 859 case TCG_COND_LTU: 860 case TCG_COND_TSTNE: 861 return 0; 862 case TCG_COND_GEU: 863 case TCG_COND_TSTEQ: 864 return 1; 865 default: 866 break; 867 } 868 } 869 870 /* TSTNE x,-1 -> NE x,0 */ 871 if (b == -1 && is_tst_cond(c)) { 872 args[3] = args[2] = arg_new_constant(ctx, 0); 873 args[4] = tcg_tst_eqne_cond(c); 874 return -1; 875 } 876 877 /* TSTNE x,sign -> LT x,0 */ 878 if (b == INT64_MIN && is_tst_cond(c)) { 879 /* bl must be 0, so copy that to bh */ 880 args[3] = bl; 881 args[4] = tcg_tst_ltge_cond(c); 882 return -1; 883 } 884 } 885 886 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 887 r = do_constant_folding_cond_eq(c); 888 if (r >= 0) { 889 return r; 890 } 891 892 /* TSTNE x,x -> NE x,0 */ 893 if (is_tst_cond(c)) { 894 args[3] = args[2] = arg_new_constant(ctx, 0); 895 args[4] = tcg_tst_eqne_cond(c); 896 return -1; 897 } 898 } 899 900 /* Expand to AND with a temporary if no backend support. */ 901 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 902 TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and_i32, 3); 903 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and_i32, 3); 904 TCGArg t1 = arg_new_temp(ctx); 905 TCGArg t2 = arg_new_temp(ctx); 906 907 op1->args[0] = t1; 908 op1->args[1] = al; 909 op1->args[2] = bl; 910 op2->args[0] = t2; 911 op2->args[1] = ah; 912 op2->args[2] = bh; 913 914 args[0] = t1; 915 args[1] = t2; 916 args[3] = args[2] = arg_new_constant(ctx, 0); 917 args[4] = tcg_tst_eqne_cond(c); 918 } 919 return -1; 920 } 921 922 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 923 { 924 for (int i = 0; i < nb_args; i++) { 925 TCGTemp *ts = arg_temp(op->args[i]); 926 init_ts_info(ctx, ts); 927 } 928 } 929 930 static void copy_propagate(OptContext *ctx, TCGOp *op, 931 int nb_oargs, int nb_iargs) 932 { 933 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 934 TCGTemp *ts = arg_temp(op->args[i]); 935 if (ts_is_copy(ts)) { 936 op->args[i] = temp_arg(find_better_copy(ts)); 937 } 938 } 939 } 940 941 static void finish_bb(OptContext *ctx) 942 { 943 /* We only optimize memory barriers across basic blocks. */ 944 ctx->prev_mb = NULL; 945 } 946 947 static void finish_ebb(OptContext *ctx) 948 { 949 finish_bb(ctx); 950 /* We only optimize across extended basic blocks. */ 951 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 952 remove_mem_copy_all(ctx); 953 } 954 955 static bool finish_folding(OptContext *ctx, TCGOp *op) 956 { 957 const TCGOpDef *def = &tcg_op_defs[op->opc]; 958 int i, nb_oargs; 959 960 nb_oargs = def->nb_oargs; 961 for (i = 0; i < nb_oargs; i++) { 962 TCGTemp *ts = arg_temp(op->args[i]); 963 reset_ts(ctx, ts); 964 } 965 return true; 966 } 967 968 /* 969 * The fold_* functions return true when processing is complete, 970 * usually by folding the operation to a constant or to a copy, 971 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 972 * like collect information about the value produced, for use in 973 * optimizing a subsequent operation. 974 * 975 * These first fold_* functions are all helpers, used by other 976 * folders for more specific operations. 977 */ 978 979 static bool fold_const1(OptContext *ctx, TCGOp *op) 980 { 981 if (arg_is_const(op->args[1])) { 982 uint64_t t; 983 984 t = arg_info(op->args[1])->val; 985 t = do_constant_folding(op->opc, ctx->type, t, 0); 986 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 987 } 988 return false; 989 } 990 991 static bool fold_const2(OptContext *ctx, TCGOp *op) 992 { 993 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 994 uint64_t t1 = arg_info(op->args[1])->val; 995 uint64_t t2 = arg_info(op->args[2])->val; 996 997 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 998 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 999 } 1000 return false; 1001 } 1002 1003 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1004 { 1005 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1006 return false; 1007 } 1008 1009 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1010 { 1011 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1012 return fold_const2(ctx, op); 1013 } 1014 1015 /* 1016 * Record "zero" and "sign" masks for the single output of @op. 1017 * See TempOptInfo definition of z_mask and s_mask. 1018 * If z_mask allows, fold the output to constant zero. 1019 * The passed s_mask may be augmented by z_mask. 1020 */ 1021 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1022 uint64_t z_mask, int64_t s_mask) 1023 { 1024 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1025 TCGTemp *ts; 1026 TempOptInfo *ti; 1027 int rep; 1028 1029 /* Only single-output opcodes are supported here. */ 1030 tcg_debug_assert(def->nb_oargs == 1); 1031 1032 /* 1033 * 32-bit ops generate 32-bit results, which for the purpose of 1034 * simplifying tcg are sign-extended. Certainly that's how we 1035 * represent our constants elsewhere. Note that the bits will 1036 * be reset properly for a 64-bit value when encountering the 1037 * type changing opcodes. 1038 */ 1039 if (ctx->type == TCG_TYPE_I32) { 1040 z_mask = (int32_t)z_mask; 1041 s_mask |= INT32_MIN; 1042 } 1043 1044 if (z_mask == 0) { 1045 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1046 } 1047 1048 ts = arg_temp(op->args[0]); 1049 reset_ts(ctx, ts); 1050 1051 ti = ts_info(ts); 1052 ti->z_mask = z_mask; 1053 1054 /* Canonicalize s_mask and incorporate data from z_mask. */ 1055 rep = clz64(~s_mask); 1056 rep = MAX(rep, clz64(z_mask)); 1057 rep = MAX(rep - 1, 0); 1058 ti->s_mask = INT64_MIN >> rep; 1059 1060 return true; 1061 } 1062 1063 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1064 { 1065 return fold_masks_zs(ctx, op, z_mask, 0); 1066 } 1067 1068 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1069 { 1070 return fold_masks_zs(ctx, op, -1, s_mask); 1071 } 1072 1073 /* 1074 * An "affected" mask bit is 0 if and only if the result is identical 1075 * to the first input. Thus if the entire mask is 0, the operation 1076 * is equivalent to a copy. 1077 */ 1078 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1079 { 1080 if (ctx->type == TCG_TYPE_I32) { 1081 a_mask = (uint32_t)a_mask; 1082 } 1083 if (a_mask == 0) { 1084 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1085 } 1086 return false; 1087 } 1088 1089 /* 1090 * Convert @op to NOT, if NOT is supported by the host. 1091 * Return true f the conversion is successful, which will still 1092 * indicate that the processing is complete. 1093 */ 1094 static bool fold_not(OptContext *ctx, TCGOp *op); 1095 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1096 { 1097 TCGOpcode not_op; 1098 bool have_not; 1099 1100 switch (ctx->type) { 1101 case TCG_TYPE_I32: 1102 not_op = INDEX_op_not_i32; 1103 have_not = TCG_TARGET_HAS_not_i32; 1104 break; 1105 case TCG_TYPE_I64: 1106 not_op = INDEX_op_not_i64; 1107 have_not = TCG_TARGET_HAS_not_i64; 1108 break; 1109 case TCG_TYPE_V64: 1110 case TCG_TYPE_V128: 1111 case TCG_TYPE_V256: 1112 not_op = INDEX_op_not_vec; 1113 have_not = TCG_TARGET_HAS_not_vec; 1114 break; 1115 default: 1116 g_assert_not_reached(); 1117 } 1118 if (have_not) { 1119 op->opc = not_op; 1120 op->args[1] = op->args[idx]; 1121 return fold_not(ctx, op); 1122 } 1123 return false; 1124 } 1125 1126 /* If the binary operation has first argument @i, fold to @i. */ 1127 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1128 { 1129 if (arg_is_const_val(op->args[1], i)) { 1130 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1131 } 1132 return false; 1133 } 1134 1135 /* If the binary operation has first argument @i, fold to NOT. */ 1136 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1137 { 1138 if (arg_is_const_val(op->args[1], i)) { 1139 return fold_to_not(ctx, op, 2); 1140 } 1141 return false; 1142 } 1143 1144 /* If the binary operation has second argument @i, fold to @i. */ 1145 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1146 { 1147 if (arg_is_const_val(op->args[2], i)) { 1148 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1149 } 1150 return false; 1151 } 1152 1153 /* If the binary operation has second argument @i, fold to identity. */ 1154 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1155 { 1156 if (arg_is_const_val(op->args[2], i)) { 1157 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1158 } 1159 return false; 1160 } 1161 1162 /* If the binary operation has second argument @i, fold to NOT. */ 1163 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1164 { 1165 if (arg_is_const_val(op->args[2], i)) { 1166 return fold_to_not(ctx, op, 1); 1167 } 1168 return false; 1169 } 1170 1171 /* If the binary operation has both arguments equal, fold to @i. */ 1172 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1173 { 1174 if (args_are_copies(op->args[1], op->args[2])) { 1175 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1176 } 1177 return false; 1178 } 1179 1180 /* If the binary operation has both arguments equal, fold to identity. */ 1181 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1182 { 1183 if (args_are_copies(op->args[1], op->args[2])) { 1184 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1185 } 1186 return false; 1187 } 1188 1189 /* 1190 * These outermost fold_<op> functions are sorted alphabetically. 1191 * 1192 * The ordering of the transformations should be: 1193 * 1) those that produce a constant 1194 * 2) those that produce a copy 1195 * 3) those that produce information about the result value. 1196 */ 1197 1198 static bool fold_or(OptContext *ctx, TCGOp *op); 1199 static bool fold_orc(OptContext *ctx, TCGOp *op); 1200 static bool fold_xor(OptContext *ctx, TCGOp *op); 1201 1202 static bool fold_add(OptContext *ctx, TCGOp *op) 1203 { 1204 if (fold_const2_commutative(ctx, op) || 1205 fold_xi_to_x(ctx, op, 0)) { 1206 return true; 1207 } 1208 return finish_folding(ctx, op); 1209 } 1210 1211 /* We cannot as yet do_constant_folding with vectors. */ 1212 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1213 { 1214 if (fold_commutative(ctx, op) || 1215 fold_xi_to_x(ctx, op, 0)) { 1216 return true; 1217 } 1218 return finish_folding(ctx, op); 1219 } 1220 1221 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1222 { 1223 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1224 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1225 1226 if (a_const && b_const) { 1227 uint64_t al = arg_info(op->args[2])->val; 1228 uint64_t ah = arg_info(op->args[3])->val; 1229 uint64_t bl = arg_info(op->args[4])->val; 1230 uint64_t bh = arg_info(op->args[5])->val; 1231 TCGArg rl, rh; 1232 TCGOp *op2; 1233 1234 if (ctx->type == TCG_TYPE_I32) { 1235 uint64_t a = deposit64(al, 32, 32, ah); 1236 uint64_t b = deposit64(bl, 32, 32, bh); 1237 1238 if (add) { 1239 a += b; 1240 } else { 1241 a -= b; 1242 } 1243 1244 al = sextract64(a, 0, 32); 1245 ah = sextract64(a, 32, 32); 1246 } else { 1247 Int128 a = int128_make128(al, ah); 1248 Int128 b = int128_make128(bl, bh); 1249 1250 if (add) { 1251 a = int128_add(a, b); 1252 } else { 1253 a = int128_sub(a, b); 1254 } 1255 1256 al = int128_getlo(a); 1257 ah = int128_gethi(a); 1258 } 1259 1260 rl = op->args[0]; 1261 rh = op->args[1]; 1262 1263 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1264 op2 = opt_insert_before(ctx, op, 0, 2); 1265 1266 tcg_opt_gen_movi(ctx, op, rl, al); 1267 tcg_opt_gen_movi(ctx, op2, rh, ah); 1268 return true; 1269 } 1270 1271 /* Fold sub2 r,x,i to add2 r,x,-i */ 1272 if (!add && b_const) { 1273 uint64_t bl = arg_info(op->args[4])->val; 1274 uint64_t bh = arg_info(op->args[5])->val; 1275 1276 /* Negate the two parts without assembling and disassembling. */ 1277 bl = -bl; 1278 bh = ~bh + !bl; 1279 1280 op->opc = (ctx->type == TCG_TYPE_I32 1281 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1282 op->args[4] = arg_new_constant(ctx, bl); 1283 op->args[5] = arg_new_constant(ctx, bh); 1284 } 1285 return finish_folding(ctx, op); 1286 } 1287 1288 static bool fold_add2(OptContext *ctx, TCGOp *op) 1289 { 1290 /* Note that the high and low parts may be independently swapped. */ 1291 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1292 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1293 1294 return fold_addsub2(ctx, op, true); 1295 } 1296 1297 static bool fold_and(OptContext *ctx, TCGOp *op) 1298 { 1299 uint64_t z1, z2, z_mask, s_mask; 1300 TempOptInfo *t1, *t2; 1301 1302 if (fold_const2_commutative(ctx, op) || 1303 fold_xi_to_i(ctx, op, 0) || 1304 fold_xi_to_x(ctx, op, -1) || 1305 fold_xx_to_x(ctx, op)) { 1306 return true; 1307 } 1308 1309 t1 = arg_info(op->args[1]); 1310 t2 = arg_info(op->args[2]); 1311 z1 = t1->z_mask; 1312 z2 = t2->z_mask; 1313 1314 /* 1315 * Known-zeros does not imply known-ones. Therefore unless 1316 * arg2 is constant, we can't infer affected bits from it. 1317 */ 1318 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1319 return true; 1320 } 1321 1322 z_mask = z1 & z2; 1323 1324 /* 1325 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1326 * Bitwise operations preserve the relative quantity of the repetitions. 1327 */ 1328 s_mask = t1->s_mask & t2->s_mask; 1329 1330 return fold_masks_zs(ctx, op, z_mask, s_mask); 1331 } 1332 1333 static bool fold_andc(OptContext *ctx, TCGOp *op) 1334 { 1335 uint64_t z_mask, s_mask; 1336 TempOptInfo *t1, *t2; 1337 1338 if (fold_const2(ctx, op) || 1339 fold_xx_to_i(ctx, op, 0) || 1340 fold_xi_to_x(ctx, op, 0) || 1341 fold_ix_to_not(ctx, op, -1)) { 1342 return true; 1343 } 1344 1345 t1 = arg_info(op->args[1]); 1346 t2 = arg_info(op->args[2]); 1347 z_mask = t1->z_mask; 1348 1349 /* 1350 * Known-zeros does not imply known-ones. Therefore unless 1351 * arg2 is constant, we can't infer anything from it. 1352 */ 1353 if (ti_is_const(t2)) { 1354 uint64_t v2 = ti_const_val(t2); 1355 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1356 return true; 1357 } 1358 z_mask &= ~v2; 1359 } 1360 1361 s_mask = t1->s_mask & t2->s_mask; 1362 return fold_masks_zs(ctx, op, z_mask, s_mask); 1363 } 1364 1365 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1366 { 1367 /* If true and false values are the same, eliminate the cmp. */ 1368 if (args_are_copies(op->args[2], op->args[3])) { 1369 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1370 } 1371 1372 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1373 uint64_t tv = arg_info(op->args[2])->val; 1374 uint64_t fv = arg_info(op->args[3])->val; 1375 1376 if (tv == -1 && fv == 0) { 1377 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1378 } 1379 if (tv == 0 && fv == -1) { 1380 if (TCG_TARGET_HAS_not_vec) { 1381 op->opc = INDEX_op_not_vec; 1382 return fold_not(ctx, op); 1383 } else { 1384 op->opc = INDEX_op_xor_vec; 1385 op->args[2] = arg_new_constant(ctx, -1); 1386 return fold_xor(ctx, op); 1387 } 1388 } 1389 } 1390 if (arg_is_const(op->args[2])) { 1391 uint64_t tv = arg_info(op->args[2])->val; 1392 if (tv == -1) { 1393 op->opc = INDEX_op_or_vec; 1394 op->args[2] = op->args[3]; 1395 return fold_or(ctx, op); 1396 } 1397 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1398 op->opc = INDEX_op_andc_vec; 1399 op->args[2] = op->args[1]; 1400 op->args[1] = op->args[3]; 1401 return fold_andc(ctx, op); 1402 } 1403 } 1404 if (arg_is_const(op->args[3])) { 1405 uint64_t fv = arg_info(op->args[3])->val; 1406 if (fv == 0) { 1407 op->opc = INDEX_op_and_vec; 1408 return fold_and(ctx, op); 1409 } 1410 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1411 op->opc = INDEX_op_orc_vec; 1412 op->args[2] = op->args[1]; 1413 op->args[1] = op->args[3]; 1414 return fold_orc(ctx, op); 1415 } 1416 } 1417 return finish_folding(ctx, op); 1418 } 1419 1420 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1421 { 1422 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1423 &op->args[1], &op->args[2]); 1424 if (i == 0) { 1425 tcg_op_remove(ctx->tcg, op); 1426 return true; 1427 } 1428 if (i > 0) { 1429 op->opc = INDEX_op_br; 1430 op->args[0] = op->args[3]; 1431 finish_ebb(ctx); 1432 } else { 1433 finish_bb(ctx); 1434 } 1435 return true; 1436 } 1437 1438 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1439 { 1440 TCGCond cond; 1441 TCGArg label; 1442 int i, inv = 0; 1443 1444 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1445 cond = op->args[4]; 1446 label = op->args[5]; 1447 if (i >= 0) { 1448 goto do_brcond_const; 1449 } 1450 1451 switch (cond) { 1452 case TCG_COND_LT: 1453 case TCG_COND_GE: 1454 /* 1455 * Simplify LT/GE comparisons vs zero to a single compare 1456 * vs the high word of the input. 1457 */ 1458 if (arg_is_const_val(op->args[2], 0) && 1459 arg_is_const_val(op->args[3], 0)) { 1460 goto do_brcond_high; 1461 } 1462 break; 1463 1464 case TCG_COND_NE: 1465 inv = 1; 1466 QEMU_FALLTHROUGH; 1467 case TCG_COND_EQ: 1468 /* 1469 * Simplify EQ/NE comparisons where one of the pairs 1470 * can be simplified. 1471 */ 1472 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1473 op->args[2], cond); 1474 switch (i ^ inv) { 1475 case 0: 1476 goto do_brcond_const; 1477 case 1: 1478 goto do_brcond_high; 1479 } 1480 1481 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1482 op->args[3], cond); 1483 switch (i ^ inv) { 1484 case 0: 1485 goto do_brcond_const; 1486 case 1: 1487 goto do_brcond_low; 1488 } 1489 break; 1490 1491 case TCG_COND_TSTEQ: 1492 case TCG_COND_TSTNE: 1493 if (arg_is_const_val(op->args[2], 0)) { 1494 goto do_brcond_high; 1495 } 1496 if (arg_is_const_val(op->args[3], 0)) { 1497 goto do_brcond_low; 1498 } 1499 break; 1500 1501 default: 1502 break; 1503 1504 do_brcond_low: 1505 op->opc = INDEX_op_brcond_i32; 1506 op->args[1] = op->args[2]; 1507 op->args[2] = cond; 1508 op->args[3] = label; 1509 return fold_brcond(ctx, op); 1510 1511 do_brcond_high: 1512 op->opc = INDEX_op_brcond_i32; 1513 op->args[0] = op->args[1]; 1514 op->args[1] = op->args[3]; 1515 op->args[2] = cond; 1516 op->args[3] = label; 1517 return fold_brcond(ctx, op); 1518 1519 do_brcond_const: 1520 if (i == 0) { 1521 tcg_op_remove(ctx->tcg, op); 1522 return true; 1523 } 1524 op->opc = INDEX_op_br; 1525 op->args[0] = label; 1526 finish_ebb(ctx); 1527 return true; 1528 } 1529 1530 finish_bb(ctx); 1531 return true; 1532 } 1533 1534 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1535 { 1536 uint64_t z_mask, s_mask, sign; 1537 TempOptInfo *t1 = arg_info(op->args[1]); 1538 1539 if (ti_is_const(t1)) { 1540 return tcg_opt_gen_movi(ctx, op, op->args[0], 1541 do_constant_folding(op->opc, ctx->type, 1542 ti_const_val(t1), 1543 op->args[2])); 1544 } 1545 1546 z_mask = t1->z_mask; 1547 switch (op->opc) { 1548 case INDEX_op_bswap16_i32: 1549 case INDEX_op_bswap16_i64: 1550 z_mask = bswap16(z_mask); 1551 sign = INT16_MIN; 1552 break; 1553 case INDEX_op_bswap32_i32: 1554 case INDEX_op_bswap32_i64: 1555 z_mask = bswap32(z_mask); 1556 sign = INT32_MIN; 1557 break; 1558 case INDEX_op_bswap64_i64: 1559 z_mask = bswap64(z_mask); 1560 sign = INT64_MIN; 1561 break; 1562 default: 1563 g_assert_not_reached(); 1564 } 1565 1566 s_mask = 0; 1567 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1568 case TCG_BSWAP_OZ: 1569 break; 1570 case TCG_BSWAP_OS: 1571 /* If the sign bit may be 1, force all the bits above to 1. */ 1572 if (z_mask & sign) { 1573 z_mask |= sign; 1574 } 1575 /* The value and therefore s_mask is explicitly sign-extended. */ 1576 s_mask = sign; 1577 break; 1578 default: 1579 /* The high bits are undefined: force all bits above the sign to 1. */ 1580 z_mask |= sign << 1; 1581 break; 1582 } 1583 1584 return fold_masks_zs(ctx, op, z_mask, s_mask); 1585 } 1586 1587 static bool fold_call(OptContext *ctx, TCGOp *op) 1588 { 1589 TCGContext *s = ctx->tcg; 1590 int nb_oargs = TCGOP_CALLO(op); 1591 int nb_iargs = TCGOP_CALLI(op); 1592 int flags, i; 1593 1594 init_arguments(ctx, op, nb_oargs + nb_iargs); 1595 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1596 1597 /* If the function reads or writes globals, reset temp data. */ 1598 flags = tcg_call_flags(op); 1599 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1600 int nb_globals = s->nb_globals; 1601 1602 for (i = 0; i < nb_globals; i++) { 1603 if (test_bit(i, ctx->temps_used.l)) { 1604 reset_ts(ctx, &ctx->tcg->temps[i]); 1605 } 1606 } 1607 } 1608 1609 /* If the function has side effects, reset mem data. */ 1610 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1611 remove_mem_copy_all(ctx); 1612 } 1613 1614 /* Reset temp data for outputs. */ 1615 for (i = 0; i < nb_oargs; i++) { 1616 reset_temp(ctx, op->args[i]); 1617 } 1618 1619 /* Stop optimizing MB across calls. */ 1620 ctx->prev_mb = NULL; 1621 return true; 1622 } 1623 1624 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1625 { 1626 /* Canonicalize the comparison to put immediate second. */ 1627 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1628 op->args[3] = tcg_swap_cond(op->args[3]); 1629 } 1630 return finish_folding(ctx, op); 1631 } 1632 1633 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1634 { 1635 /* If true and false values are the same, eliminate the cmp. */ 1636 if (args_are_copies(op->args[3], op->args[4])) { 1637 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1638 } 1639 1640 /* Canonicalize the comparison to put immediate second. */ 1641 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1642 op->args[5] = tcg_swap_cond(op->args[5]); 1643 } 1644 /* 1645 * Canonicalize the "false" input reg to match the destination, 1646 * so that the tcg backend can implement "move if true". 1647 */ 1648 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1649 op->args[5] = tcg_invert_cond(op->args[5]); 1650 } 1651 return finish_folding(ctx, op); 1652 } 1653 1654 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1655 { 1656 uint64_t z_mask, s_mask; 1657 TempOptInfo *t1 = arg_info(op->args[1]); 1658 TempOptInfo *t2 = arg_info(op->args[2]); 1659 1660 if (ti_is_const(t1)) { 1661 uint64_t t = ti_const_val(t1); 1662 1663 if (t != 0) { 1664 t = do_constant_folding(op->opc, ctx->type, t, 0); 1665 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1666 } 1667 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1668 } 1669 1670 switch (ctx->type) { 1671 case TCG_TYPE_I32: 1672 z_mask = 31; 1673 break; 1674 case TCG_TYPE_I64: 1675 z_mask = 63; 1676 break; 1677 default: 1678 g_assert_not_reached(); 1679 } 1680 s_mask = ~z_mask; 1681 z_mask |= t2->z_mask; 1682 s_mask &= t2->s_mask; 1683 1684 return fold_masks_zs(ctx, op, z_mask, s_mask); 1685 } 1686 1687 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1688 { 1689 uint64_t z_mask; 1690 1691 if (fold_const1(ctx, op)) { 1692 return true; 1693 } 1694 1695 switch (ctx->type) { 1696 case TCG_TYPE_I32: 1697 z_mask = 32 | 31; 1698 break; 1699 case TCG_TYPE_I64: 1700 z_mask = 64 | 63; 1701 break; 1702 default: 1703 g_assert_not_reached(); 1704 } 1705 return fold_masks_z(ctx, op, z_mask); 1706 } 1707 1708 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1709 { 1710 TempOptInfo *t1 = arg_info(op->args[1]); 1711 TempOptInfo *t2 = arg_info(op->args[2]); 1712 int ofs = op->args[3]; 1713 int len = op->args[4]; 1714 int width; 1715 TCGOpcode and_opc; 1716 uint64_t z_mask, s_mask; 1717 1718 if (ti_is_const(t1) && ti_is_const(t2)) { 1719 return tcg_opt_gen_movi(ctx, op, op->args[0], 1720 deposit64(ti_const_val(t1), ofs, len, 1721 ti_const_val(t2))); 1722 } 1723 1724 switch (ctx->type) { 1725 case TCG_TYPE_I32: 1726 and_opc = INDEX_op_and_i32; 1727 width = 32; 1728 break; 1729 case TCG_TYPE_I64: 1730 and_opc = INDEX_op_and_i64; 1731 width = 64; 1732 break; 1733 default: 1734 g_assert_not_reached(); 1735 } 1736 1737 /* Inserting a value into zero at offset 0. */ 1738 if (ti_is_const_val(t1, 0) && ofs == 0) { 1739 uint64_t mask = MAKE_64BIT_MASK(0, len); 1740 1741 op->opc = and_opc; 1742 op->args[1] = op->args[2]; 1743 op->args[2] = arg_new_constant(ctx, mask); 1744 return fold_and(ctx, op); 1745 } 1746 1747 /* Inserting zero into a value. */ 1748 if (ti_is_const_val(t2, 0)) { 1749 uint64_t mask = deposit64(-1, ofs, len, 0); 1750 1751 op->opc = and_opc; 1752 op->args[2] = arg_new_constant(ctx, mask); 1753 return fold_and(ctx, op); 1754 } 1755 1756 /* The s_mask from the top portion of the deposit is still valid. */ 1757 if (ofs + len == width) { 1758 s_mask = t2->s_mask << ofs; 1759 } else { 1760 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1761 } 1762 1763 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1764 return fold_masks_zs(ctx, op, z_mask, s_mask); 1765 } 1766 1767 static bool fold_divide(OptContext *ctx, TCGOp *op) 1768 { 1769 if (fold_const2(ctx, op) || 1770 fold_xi_to_x(ctx, op, 1)) { 1771 return true; 1772 } 1773 return finish_folding(ctx, op); 1774 } 1775 1776 static bool fold_dup(OptContext *ctx, TCGOp *op) 1777 { 1778 if (arg_is_const(op->args[1])) { 1779 uint64_t t = arg_info(op->args[1])->val; 1780 t = dup_const(TCGOP_VECE(op), t); 1781 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1782 } 1783 return finish_folding(ctx, op); 1784 } 1785 1786 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1787 { 1788 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1789 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1790 arg_info(op->args[2])->val); 1791 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1792 } 1793 1794 if (args_are_copies(op->args[1], op->args[2])) { 1795 op->opc = INDEX_op_dup_vec; 1796 TCGOP_VECE(op) = MO_32; 1797 } 1798 return finish_folding(ctx, op); 1799 } 1800 1801 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1802 { 1803 uint64_t s_mask; 1804 1805 if (fold_const2_commutative(ctx, op) || 1806 fold_xi_to_x(ctx, op, -1) || 1807 fold_xi_to_not(ctx, op, 0)) { 1808 return true; 1809 } 1810 1811 s_mask = arg_info(op->args[1])->s_mask 1812 & arg_info(op->args[2])->s_mask; 1813 return fold_masks_s(ctx, op, s_mask); 1814 } 1815 1816 static bool fold_extract(OptContext *ctx, TCGOp *op) 1817 { 1818 uint64_t z_mask_old, z_mask; 1819 TempOptInfo *t1 = arg_info(op->args[1]); 1820 int pos = op->args[2]; 1821 int len = op->args[3]; 1822 1823 if (ti_is_const(t1)) { 1824 return tcg_opt_gen_movi(ctx, op, op->args[0], 1825 extract64(ti_const_val(t1), pos, len)); 1826 } 1827 1828 z_mask_old = t1->z_mask; 1829 z_mask = extract64(z_mask_old, pos, len); 1830 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1831 return true; 1832 } 1833 1834 return fold_masks_z(ctx, op, z_mask); 1835 } 1836 1837 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1838 { 1839 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1840 uint64_t v1 = arg_info(op->args[1])->val; 1841 uint64_t v2 = arg_info(op->args[2])->val; 1842 int shr = op->args[3]; 1843 1844 if (op->opc == INDEX_op_extract2_i64) { 1845 v1 >>= shr; 1846 v2 <<= 64 - shr; 1847 } else { 1848 v1 = (uint32_t)v1 >> shr; 1849 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1850 } 1851 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1852 } 1853 return finish_folding(ctx, op); 1854 } 1855 1856 static bool fold_exts(OptContext *ctx, TCGOp *op) 1857 { 1858 uint64_t s_mask, z_mask; 1859 TempOptInfo *t1; 1860 1861 if (fold_const1(ctx, op)) { 1862 return true; 1863 } 1864 1865 t1 = arg_info(op->args[1]); 1866 z_mask = t1->z_mask; 1867 s_mask = t1->s_mask; 1868 1869 switch (op->opc) { 1870 case INDEX_op_ext_i32_i64: 1871 s_mask |= INT32_MIN; 1872 z_mask = (int32_t)z_mask; 1873 break; 1874 default: 1875 g_assert_not_reached(); 1876 } 1877 return fold_masks_zs(ctx, op, z_mask, s_mask); 1878 } 1879 1880 static bool fold_extu(OptContext *ctx, TCGOp *op) 1881 { 1882 uint64_t z_mask; 1883 1884 if (fold_const1(ctx, op)) { 1885 return true; 1886 } 1887 1888 z_mask = arg_info(op->args[1])->z_mask; 1889 switch (op->opc) { 1890 case INDEX_op_extrl_i64_i32: 1891 case INDEX_op_extu_i32_i64: 1892 z_mask = (uint32_t)z_mask; 1893 break; 1894 case INDEX_op_extrh_i64_i32: 1895 z_mask >>= 32; 1896 break; 1897 default: 1898 g_assert_not_reached(); 1899 } 1900 return fold_masks_z(ctx, op, z_mask); 1901 } 1902 1903 static bool fold_mb(OptContext *ctx, TCGOp *op) 1904 { 1905 /* Eliminate duplicate and redundant fence instructions. */ 1906 if (ctx->prev_mb) { 1907 /* 1908 * Merge two barriers of the same type into one, 1909 * or a weaker barrier into a stronger one, 1910 * or two weaker barriers into a stronger one. 1911 * mb X; mb Y => mb X|Y 1912 * mb; strl => mb; st 1913 * ldaq; mb => ld; mb 1914 * ldaq; strl => ld; mb; st 1915 * Other combinations are also merged into a strong 1916 * barrier. This is stricter than specified but for 1917 * the purposes of TCG is better than not optimizing. 1918 */ 1919 ctx->prev_mb->args[0] |= op->args[0]; 1920 tcg_op_remove(ctx->tcg, op); 1921 } else { 1922 ctx->prev_mb = op; 1923 } 1924 return true; 1925 } 1926 1927 static bool fold_mov(OptContext *ctx, TCGOp *op) 1928 { 1929 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1930 } 1931 1932 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1933 { 1934 uint64_t z_mask, s_mask; 1935 TempOptInfo *tt, *ft; 1936 int i; 1937 1938 /* If true and false values are the same, eliminate the cmp. */ 1939 if (args_are_copies(op->args[3], op->args[4])) { 1940 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1941 } 1942 1943 /* 1944 * Canonicalize the "false" input reg to match the destination reg so 1945 * that the tcg backend can implement a "move if true" operation. 1946 */ 1947 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1948 op->args[5] = tcg_invert_cond(op->args[5]); 1949 } 1950 1951 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1952 &op->args[2], &op->args[5]); 1953 if (i >= 0) { 1954 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1955 } 1956 1957 tt = arg_info(op->args[3]); 1958 ft = arg_info(op->args[4]); 1959 z_mask = tt->z_mask | ft->z_mask; 1960 s_mask = tt->s_mask & ft->s_mask; 1961 1962 if (ti_is_const(tt) && ti_is_const(ft)) { 1963 uint64_t tv = ti_const_val(tt); 1964 uint64_t fv = ti_const_val(ft); 1965 TCGOpcode opc, negopc = 0; 1966 TCGCond cond = op->args[5]; 1967 1968 switch (ctx->type) { 1969 case TCG_TYPE_I32: 1970 opc = INDEX_op_setcond_i32; 1971 if (TCG_TARGET_HAS_negsetcond_i32) { 1972 negopc = INDEX_op_negsetcond_i32; 1973 } 1974 tv = (int32_t)tv; 1975 fv = (int32_t)fv; 1976 break; 1977 case TCG_TYPE_I64: 1978 opc = INDEX_op_setcond_i64; 1979 if (TCG_TARGET_HAS_negsetcond_i64) { 1980 negopc = INDEX_op_negsetcond_i64; 1981 } 1982 break; 1983 default: 1984 g_assert_not_reached(); 1985 } 1986 1987 if (tv == 1 && fv == 0) { 1988 op->opc = opc; 1989 op->args[3] = cond; 1990 } else if (fv == 1 && tv == 0) { 1991 op->opc = opc; 1992 op->args[3] = tcg_invert_cond(cond); 1993 } else if (negopc) { 1994 if (tv == -1 && fv == 0) { 1995 op->opc = negopc; 1996 op->args[3] = cond; 1997 } else if (fv == -1 && tv == 0) { 1998 op->opc = negopc; 1999 op->args[3] = tcg_invert_cond(cond); 2000 } 2001 } 2002 } 2003 2004 return fold_masks_zs(ctx, op, z_mask, s_mask); 2005 } 2006 2007 static bool fold_mul(OptContext *ctx, TCGOp *op) 2008 { 2009 if (fold_const2(ctx, op) || 2010 fold_xi_to_i(ctx, op, 0) || 2011 fold_xi_to_x(ctx, op, 1)) { 2012 return true; 2013 } 2014 return finish_folding(ctx, op); 2015 } 2016 2017 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2018 { 2019 if (fold_const2_commutative(ctx, op) || 2020 fold_xi_to_i(ctx, op, 0)) { 2021 return true; 2022 } 2023 return finish_folding(ctx, op); 2024 } 2025 2026 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2027 { 2028 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2029 2030 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2031 uint64_t a = arg_info(op->args[2])->val; 2032 uint64_t b = arg_info(op->args[3])->val; 2033 uint64_t h, l; 2034 TCGArg rl, rh; 2035 TCGOp *op2; 2036 2037 switch (op->opc) { 2038 case INDEX_op_mulu2_i32: 2039 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2040 h = (int32_t)(l >> 32); 2041 l = (int32_t)l; 2042 break; 2043 case INDEX_op_muls2_i32: 2044 l = (int64_t)(int32_t)a * (int32_t)b; 2045 h = l >> 32; 2046 l = (int32_t)l; 2047 break; 2048 case INDEX_op_mulu2_i64: 2049 mulu64(&l, &h, a, b); 2050 break; 2051 case INDEX_op_muls2_i64: 2052 muls64(&l, &h, a, b); 2053 break; 2054 default: 2055 g_assert_not_reached(); 2056 } 2057 2058 rl = op->args[0]; 2059 rh = op->args[1]; 2060 2061 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2062 op2 = opt_insert_before(ctx, op, 0, 2); 2063 2064 tcg_opt_gen_movi(ctx, op, rl, l); 2065 tcg_opt_gen_movi(ctx, op2, rh, h); 2066 return true; 2067 } 2068 return finish_folding(ctx, op); 2069 } 2070 2071 static bool fold_nand(OptContext *ctx, TCGOp *op) 2072 { 2073 uint64_t s_mask; 2074 2075 if (fold_const2_commutative(ctx, op) || 2076 fold_xi_to_not(ctx, op, -1)) { 2077 return true; 2078 } 2079 2080 s_mask = arg_info(op->args[1])->s_mask 2081 & arg_info(op->args[2])->s_mask; 2082 return fold_masks_s(ctx, op, s_mask); 2083 } 2084 2085 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2086 { 2087 /* Set to 1 all bits to the left of the rightmost. */ 2088 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2089 z_mask = -(z_mask & -z_mask); 2090 2091 return fold_masks_z(ctx, op, z_mask); 2092 } 2093 2094 static bool fold_neg(OptContext *ctx, TCGOp *op) 2095 { 2096 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2097 } 2098 2099 static bool fold_nor(OptContext *ctx, TCGOp *op) 2100 { 2101 uint64_t s_mask; 2102 2103 if (fold_const2_commutative(ctx, op) || 2104 fold_xi_to_not(ctx, op, 0)) { 2105 return true; 2106 } 2107 2108 s_mask = arg_info(op->args[1])->s_mask 2109 & arg_info(op->args[2])->s_mask; 2110 return fold_masks_s(ctx, op, s_mask); 2111 } 2112 2113 static bool fold_not(OptContext *ctx, TCGOp *op) 2114 { 2115 if (fold_const1(ctx, op)) { 2116 return true; 2117 } 2118 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2119 } 2120 2121 static bool fold_or(OptContext *ctx, TCGOp *op) 2122 { 2123 uint64_t z_mask, s_mask; 2124 TempOptInfo *t1, *t2; 2125 2126 if (fold_const2_commutative(ctx, op) || 2127 fold_xi_to_x(ctx, op, 0) || 2128 fold_xx_to_x(ctx, op)) { 2129 return true; 2130 } 2131 2132 t1 = arg_info(op->args[1]); 2133 t2 = arg_info(op->args[2]); 2134 z_mask = t1->z_mask | t2->z_mask; 2135 s_mask = t1->s_mask & t2->s_mask; 2136 return fold_masks_zs(ctx, op, z_mask, s_mask); 2137 } 2138 2139 static bool fold_orc(OptContext *ctx, TCGOp *op) 2140 { 2141 uint64_t s_mask; 2142 2143 if (fold_const2(ctx, op) || 2144 fold_xx_to_i(ctx, op, -1) || 2145 fold_xi_to_x(ctx, op, -1) || 2146 fold_ix_to_not(ctx, op, 0)) { 2147 return true; 2148 } 2149 2150 s_mask = arg_info(op->args[1])->s_mask 2151 & arg_info(op->args[2])->s_mask; 2152 return fold_masks_s(ctx, op, s_mask); 2153 } 2154 2155 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2156 { 2157 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2158 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2159 MemOp mop = get_memop(oi); 2160 int width = 8 * memop_size(mop); 2161 uint64_t z_mask = -1, s_mask = 0; 2162 2163 if (width < 64) { 2164 if (mop & MO_SIGN) { 2165 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2166 } else { 2167 z_mask = MAKE_64BIT_MASK(0, width); 2168 } 2169 } 2170 2171 /* Opcodes that touch guest memory stop the mb optimization. */ 2172 ctx->prev_mb = NULL; 2173 2174 return fold_masks_zs(ctx, op, z_mask, s_mask); 2175 } 2176 2177 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2178 { 2179 /* Opcodes that touch guest memory stop the mb optimization. */ 2180 ctx->prev_mb = NULL; 2181 return finish_folding(ctx, op); 2182 } 2183 2184 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2185 { 2186 /* Opcodes that touch guest memory stop the mb optimization. */ 2187 ctx->prev_mb = NULL; 2188 return true; 2189 } 2190 2191 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2192 { 2193 if (fold_const2(ctx, op) || 2194 fold_xx_to_i(ctx, op, 0)) { 2195 return true; 2196 } 2197 return finish_folding(ctx, op); 2198 } 2199 2200 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2201 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2202 { 2203 uint64_t a_zmask, b_val; 2204 TCGCond cond; 2205 2206 if (!arg_is_const(op->args[2])) { 2207 return false; 2208 } 2209 2210 a_zmask = arg_info(op->args[1])->z_mask; 2211 b_val = arg_info(op->args[2])->val; 2212 cond = op->args[3]; 2213 2214 if (ctx->type == TCG_TYPE_I32) { 2215 a_zmask = (uint32_t)a_zmask; 2216 b_val = (uint32_t)b_val; 2217 } 2218 2219 /* 2220 * A with only low bits set vs B with high bits set means that A < B. 2221 */ 2222 if (a_zmask < b_val) { 2223 bool inv = false; 2224 2225 switch (cond) { 2226 case TCG_COND_NE: 2227 case TCG_COND_LEU: 2228 case TCG_COND_LTU: 2229 inv = true; 2230 /* fall through */ 2231 case TCG_COND_GTU: 2232 case TCG_COND_GEU: 2233 case TCG_COND_EQ: 2234 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2235 default: 2236 break; 2237 } 2238 } 2239 2240 /* 2241 * A with only lsb set is already boolean. 2242 */ 2243 if (a_zmask <= 1) { 2244 bool convert = false; 2245 bool inv = false; 2246 2247 switch (cond) { 2248 case TCG_COND_EQ: 2249 inv = true; 2250 /* fall through */ 2251 case TCG_COND_NE: 2252 convert = (b_val == 0); 2253 break; 2254 case TCG_COND_LTU: 2255 case TCG_COND_TSTEQ: 2256 inv = true; 2257 /* fall through */ 2258 case TCG_COND_GEU: 2259 case TCG_COND_TSTNE: 2260 convert = (b_val == 1); 2261 break; 2262 default: 2263 break; 2264 } 2265 if (convert) { 2266 TCGOpcode add_opc, xor_opc, neg_opc; 2267 2268 if (!inv && !neg) { 2269 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2270 } 2271 2272 switch (ctx->type) { 2273 case TCG_TYPE_I32: 2274 add_opc = INDEX_op_add_i32; 2275 neg_opc = INDEX_op_neg_i32; 2276 xor_opc = INDEX_op_xor_i32; 2277 break; 2278 case TCG_TYPE_I64: 2279 add_opc = INDEX_op_add_i64; 2280 neg_opc = INDEX_op_neg_i64; 2281 xor_opc = INDEX_op_xor_i64; 2282 break; 2283 default: 2284 g_assert_not_reached(); 2285 } 2286 2287 if (!inv) { 2288 op->opc = neg_opc; 2289 } else if (neg) { 2290 op->opc = add_opc; 2291 op->args[2] = arg_new_constant(ctx, -1); 2292 } else { 2293 op->opc = xor_opc; 2294 op->args[2] = arg_new_constant(ctx, 1); 2295 } 2296 return -1; 2297 } 2298 } 2299 return 0; 2300 } 2301 2302 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2303 { 2304 TCGOpcode and_opc, sub_opc, xor_opc, neg_opc, shr_opc; 2305 TCGOpcode uext_opc = 0, sext_opc = 0; 2306 TCGCond cond = op->args[3]; 2307 TCGArg ret, src1, src2; 2308 TCGOp *op2; 2309 uint64_t val; 2310 int sh; 2311 bool inv; 2312 2313 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2314 return; 2315 } 2316 2317 src2 = op->args[2]; 2318 val = arg_info(src2)->val; 2319 if (!is_power_of_2(val)) { 2320 return; 2321 } 2322 sh = ctz64(val); 2323 2324 switch (ctx->type) { 2325 case TCG_TYPE_I32: 2326 and_opc = INDEX_op_and_i32; 2327 sub_opc = INDEX_op_sub_i32; 2328 xor_opc = INDEX_op_xor_i32; 2329 shr_opc = INDEX_op_shr_i32; 2330 neg_opc = INDEX_op_neg_i32; 2331 if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) { 2332 uext_opc = INDEX_op_extract_i32; 2333 } 2334 if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) { 2335 sext_opc = INDEX_op_sextract_i32; 2336 } 2337 break; 2338 case TCG_TYPE_I64: 2339 and_opc = INDEX_op_and_i64; 2340 sub_opc = INDEX_op_sub_i64; 2341 xor_opc = INDEX_op_xor_i64; 2342 shr_opc = INDEX_op_shr_i64; 2343 neg_opc = INDEX_op_neg_i64; 2344 if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) { 2345 uext_opc = INDEX_op_extract_i64; 2346 } 2347 if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) { 2348 sext_opc = INDEX_op_sextract_i64; 2349 } 2350 break; 2351 default: 2352 g_assert_not_reached(); 2353 } 2354 2355 ret = op->args[0]; 2356 src1 = op->args[1]; 2357 inv = cond == TCG_COND_TSTEQ; 2358 2359 if (sh && sext_opc && neg && !inv) { 2360 op->opc = sext_opc; 2361 op->args[1] = src1; 2362 op->args[2] = sh; 2363 op->args[3] = 1; 2364 return; 2365 } else if (sh && uext_opc) { 2366 op->opc = uext_opc; 2367 op->args[1] = src1; 2368 op->args[2] = sh; 2369 op->args[3] = 1; 2370 } else { 2371 if (sh) { 2372 op2 = opt_insert_before(ctx, op, shr_opc, 3); 2373 op2->args[0] = ret; 2374 op2->args[1] = src1; 2375 op2->args[2] = arg_new_constant(ctx, sh); 2376 src1 = ret; 2377 } 2378 op->opc = and_opc; 2379 op->args[1] = src1; 2380 op->args[2] = arg_new_constant(ctx, 1); 2381 } 2382 2383 if (neg && inv) { 2384 op2 = opt_insert_after(ctx, op, sub_opc, 3); 2385 op2->args[0] = ret; 2386 op2->args[1] = ret; 2387 op2->args[2] = arg_new_constant(ctx, 1); 2388 } else if (inv) { 2389 op2 = opt_insert_after(ctx, op, xor_opc, 3); 2390 op2->args[0] = ret; 2391 op2->args[1] = ret; 2392 op2->args[2] = arg_new_constant(ctx, 1); 2393 } else if (neg) { 2394 op2 = opt_insert_after(ctx, op, neg_opc, 2); 2395 op2->args[0] = ret; 2396 op2->args[1] = ret; 2397 } 2398 } 2399 2400 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2401 { 2402 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2403 &op->args[2], &op->args[3]); 2404 if (i >= 0) { 2405 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2406 } 2407 2408 i = fold_setcond_zmask(ctx, op, false); 2409 if (i > 0) { 2410 return true; 2411 } 2412 if (i == 0) { 2413 fold_setcond_tst_pow2(ctx, op, false); 2414 } 2415 2416 return fold_masks_z(ctx, op, 1); 2417 } 2418 2419 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2420 { 2421 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2422 &op->args[2], &op->args[3]); 2423 if (i >= 0) { 2424 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2425 } 2426 2427 i = fold_setcond_zmask(ctx, op, true); 2428 if (i > 0) { 2429 return true; 2430 } 2431 if (i == 0) { 2432 fold_setcond_tst_pow2(ctx, op, true); 2433 } 2434 2435 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2436 return fold_masks_s(ctx, op, -1); 2437 } 2438 2439 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2440 { 2441 TCGCond cond; 2442 int i, inv = 0; 2443 2444 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2445 cond = op->args[5]; 2446 if (i >= 0) { 2447 goto do_setcond_const; 2448 } 2449 2450 switch (cond) { 2451 case TCG_COND_LT: 2452 case TCG_COND_GE: 2453 /* 2454 * Simplify LT/GE comparisons vs zero to a single compare 2455 * vs the high word of the input. 2456 */ 2457 if (arg_is_const_val(op->args[3], 0) && 2458 arg_is_const_val(op->args[4], 0)) { 2459 goto do_setcond_high; 2460 } 2461 break; 2462 2463 case TCG_COND_NE: 2464 inv = 1; 2465 QEMU_FALLTHROUGH; 2466 case TCG_COND_EQ: 2467 /* 2468 * Simplify EQ/NE comparisons where one of the pairs 2469 * can be simplified. 2470 */ 2471 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2472 op->args[3], cond); 2473 switch (i ^ inv) { 2474 case 0: 2475 goto do_setcond_const; 2476 case 1: 2477 goto do_setcond_high; 2478 } 2479 2480 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2481 op->args[4], cond); 2482 switch (i ^ inv) { 2483 case 0: 2484 goto do_setcond_const; 2485 case 1: 2486 goto do_setcond_low; 2487 } 2488 break; 2489 2490 case TCG_COND_TSTEQ: 2491 case TCG_COND_TSTNE: 2492 if (arg_is_const_val(op->args[3], 0)) { 2493 goto do_setcond_high; 2494 } 2495 if (arg_is_const_val(op->args[4], 0)) { 2496 goto do_setcond_low; 2497 } 2498 break; 2499 2500 default: 2501 break; 2502 2503 do_setcond_low: 2504 op->args[2] = op->args[3]; 2505 op->args[3] = cond; 2506 op->opc = INDEX_op_setcond_i32; 2507 return fold_setcond(ctx, op); 2508 2509 do_setcond_high: 2510 op->args[1] = op->args[2]; 2511 op->args[2] = op->args[4]; 2512 op->args[3] = cond; 2513 op->opc = INDEX_op_setcond_i32; 2514 return fold_setcond(ctx, op); 2515 } 2516 2517 return fold_masks_z(ctx, op, 1); 2518 2519 do_setcond_const: 2520 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2521 } 2522 2523 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2524 { 2525 uint64_t z_mask, s_mask, s_mask_old; 2526 TempOptInfo *t1 = arg_info(op->args[1]); 2527 int pos = op->args[2]; 2528 int len = op->args[3]; 2529 2530 if (ti_is_const(t1)) { 2531 return tcg_opt_gen_movi(ctx, op, op->args[0], 2532 sextract64(ti_const_val(t1), pos, len)); 2533 } 2534 2535 s_mask_old = t1->s_mask; 2536 s_mask = s_mask_old >> pos; 2537 s_mask |= -1ull << (len - 1); 2538 2539 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2540 return true; 2541 } 2542 2543 z_mask = sextract64(t1->z_mask, pos, len); 2544 return fold_masks_zs(ctx, op, z_mask, s_mask); 2545 } 2546 2547 static bool fold_shift(OptContext *ctx, TCGOp *op) 2548 { 2549 uint64_t s_mask, z_mask; 2550 TempOptInfo *t1, *t2; 2551 2552 if (fold_const2(ctx, op) || 2553 fold_ix_to_i(ctx, op, 0) || 2554 fold_xi_to_x(ctx, op, 0)) { 2555 return true; 2556 } 2557 2558 t1 = arg_info(op->args[1]); 2559 t2 = arg_info(op->args[2]); 2560 s_mask = t1->s_mask; 2561 z_mask = t1->z_mask; 2562 2563 if (ti_is_const(t2)) { 2564 int sh = ti_const_val(t2); 2565 2566 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2567 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2568 2569 return fold_masks_zs(ctx, op, z_mask, s_mask); 2570 } 2571 2572 switch (op->opc) { 2573 CASE_OP_32_64(sar): 2574 /* 2575 * Arithmetic right shift will not reduce the number of 2576 * input sign repetitions. 2577 */ 2578 return fold_masks_s(ctx, op, s_mask); 2579 CASE_OP_32_64(shr): 2580 /* 2581 * If the sign bit is known zero, then logical right shift 2582 * will not reduce the number of input sign repetitions. 2583 */ 2584 if (~z_mask & -s_mask) { 2585 return fold_masks_s(ctx, op, s_mask); 2586 } 2587 break; 2588 default: 2589 break; 2590 } 2591 2592 return finish_folding(ctx, op); 2593 } 2594 2595 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2596 { 2597 TCGOpcode neg_op; 2598 bool have_neg; 2599 2600 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2601 return false; 2602 } 2603 2604 switch (ctx->type) { 2605 case TCG_TYPE_I32: 2606 neg_op = INDEX_op_neg_i32; 2607 have_neg = true; 2608 break; 2609 case TCG_TYPE_I64: 2610 neg_op = INDEX_op_neg_i64; 2611 have_neg = true; 2612 break; 2613 case TCG_TYPE_V64: 2614 case TCG_TYPE_V128: 2615 case TCG_TYPE_V256: 2616 neg_op = INDEX_op_neg_vec; 2617 have_neg = (TCG_TARGET_HAS_neg_vec && 2618 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2619 break; 2620 default: 2621 g_assert_not_reached(); 2622 } 2623 if (have_neg) { 2624 op->opc = neg_op; 2625 op->args[1] = op->args[2]; 2626 return fold_neg_no_const(ctx, op); 2627 } 2628 return false; 2629 } 2630 2631 /* We cannot as yet do_constant_folding with vectors. */ 2632 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2633 { 2634 if (fold_xx_to_i(ctx, op, 0) || 2635 fold_xi_to_x(ctx, op, 0) || 2636 fold_sub_to_neg(ctx, op)) { 2637 return true; 2638 } 2639 return finish_folding(ctx, op); 2640 } 2641 2642 static bool fold_sub(OptContext *ctx, TCGOp *op) 2643 { 2644 if (fold_const2(ctx, op) || 2645 fold_xx_to_i(ctx, op, 0) || 2646 fold_xi_to_x(ctx, op, 0) || 2647 fold_sub_to_neg(ctx, op)) { 2648 return true; 2649 } 2650 2651 /* Fold sub r,x,i to add r,x,-i */ 2652 if (arg_is_const(op->args[2])) { 2653 uint64_t val = arg_info(op->args[2])->val; 2654 2655 op->opc = (ctx->type == TCG_TYPE_I32 2656 ? INDEX_op_add_i32 : INDEX_op_add_i64); 2657 op->args[2] = arg_new_constant(ctx, -val); 2658 } 2659 return finish_folding(ctx, op); 2660 } 2661 2662 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2663 { 2664 return fold_addsub2(ctx, op, false); 2665 } 2666 2667 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2668 { 2669 uint64_t z_mask = -1, s_mask = 0; 2670 2671 /* We can't do any folding with a load, but we can record bits. */ 2672 switch (op->opc) { 2673 CASE_OP_32_64(ld8s): 2674 s_mask = INT8_MIN; 2675 break; 2676 CASE_OP_32_64(ld8u): 2677 z_mask = MAKE_64BIT_MASK(0, 8); 2678 break; 2679 CASE_OP_32_64(ld16s): 2680 s_mask = INT16_MIN; 2681 break; 2682 CASE_OP_32_64(ld16u): 2683 z_mask = MAKE_64BIT_MASK(0, 16); 2684 break; 2685 case INDEX_op_ld32s_i64: 2686 s_mask = INT32_MIN; 2687 break; 2688 case INDEX_op_ld32u_i64: 2689 z_mask = MAKE_64BIT_MASK(0, 32); 2690 break; 2691 default: 2692 g_assert_not_reached(); 2693 } 2694 return fold_masks_zs(ctx, op, z_mask, s_mask); 2695 } 2696 2697 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2698 { 2699 TCGTemp *dst, *src; 2700 intptr_t ofs; 2701 TCGType type; 2702 2703 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2704 return finish_folding(ctx, op); 2705 } 2706 2707 type = ctx->type; 2708 ofs = op->args[2]; 2709 dst = arg_temp(op->args[0]); 2710 src = find_mem_copy_for(ctx, type, ofs); 2711 if (src && src->base_type == type) { 2712 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2713 } 2714 2715 reset_ts(ctx, dst); 2716 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2717 return true; 2718 } 2719 2720 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2721 { 2722 intptr_t ofs = op->args[2]; 2723 intptr_t lm1; 2724 2725 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2726 remove_mem_copy_all(ctx); 2727 return true; 2728 } 2729 2730 switch (op->opc) { 2731 CASE_OP_32_64(st8): 2732 lm1 = 0; 2733 break; 2734 CASE_OP_32_64(st16): 2735 lm1 = 1; 2736 break; 2737 case INDEX_op_st32_i64: 2738 case INDEX_op_st_i32: 2739 lm1 = 3; 2740 break; 2741 case INDEX_op_st_i64: 2742 lm1 = 7; 2743 break; 2744 case INDEX_op_st_vec: 2745 lm1 = tcg_type_size(ctx->type) - 1; 2746 break; 2747 default: 2748 g_assert_not_reached(); 2749 } 2750 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2751 return true; 2752 } 2753 2754 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2755 { 2756 TCGTemp *src; 2757 intptr_t ofs, last; 2758 TCGType type; 2759 2760 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2761 return fold_tcg_st(ctx, op); 2762 } 2763 2764 src = arg_temp(op->args[0]); 2765 ofs = op->args[2]; 2766 type = ctx->type; 2767 2768 /* 2769 * Eliminate duplicate stores of a constant. 2770 * This happens frequently when the target ISA zero-extends. 2771 */ 2772 if (ts_is_const(src)) { 2773 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2774 if (src == prev) { 2775 tcg_op_remove(ctx->tcg, op); 2776 return true; 2777 } 2778 } 2779 2780 last = ofs + tcg_type_size(type) - 1; 2781 remove_mem_copy_in(ctx, ofs, last); 2782 record_mem_copy(ctx, type, src, ofs, last); 2783 return true; 2784 } 2785 2786 static bool fold_xor(OptContext *ctx, TCGOp *op) 2787 { 2788 uint64_t z_mask, s_mask; 2789 TempOptInfo *t1, *t2; 2790 2791 if (fold_const2_commutative(ctx, op) || 2792 fold_xx_to_i(ctx, op, 0) || 2793 fold_xi_to_x(ctx, op, 0) || 2794 fold_xi_to_not(ctx, op, -1)) { 2795 return true; 2796 } 2797 2798 t1 = arg_info(op->args[1]); 2799 t2 = arg_info(op->args[2]); 2800 z_mask = t1->z_mask | t2->z_mask; 2801 s_mask = t1->s_mask & t2->s_mask; 2802 return fold_masks_zs(ctx, op, z_mask, s_mask); 2803 } 2804 2805 /* Propagate constants and copies, fold constant expressions. */ 2806 void tcg_optimize(TCGContext *s) 2807 { 2808 int nb_temps, i; 2809 TCGOp *op, *op_next; 2810 OptContext ctx = { .tcg = s }; 2811 2812 QSIMPLEQ_INIT(&ctx.mem_free); 2813 2814 /* Array VALS has an element for each temp. 2815 If this temp holds a constant then its value is kept in VALS' element. 2816 If this temp is a copy of other ones then the other copies are 2817 available through the doubly linked circular list. */ 2818 2819 nb_temps = s->nb_temps; 2820 for (i = 0; i < nb_temps; ++i) { 2821 s->temps[i].state_ptr = NULL; 2822 } 2823 2824 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2825 TCGOpcode opc = op->opc; 2826 const TCGOpDef *def; 2827 bool done = false; 2828 2829 /* Calls are special. */ 2830 if (opc == INDEX_op_call) { 2831 fold_call(&ctx, op); 2832 continue; 2833 } 2834 2835 def = &tcg_op_defs[opc]; 2836 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2837 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2838 2839 /* Pre-compute the type of the operation. */ 2840 ctx.type = TCGOP_TYPE(op); 2841 2842 /* 2843 * Process each opcode. 2844 * Sorted alphabetically by opcode as much as possible. 2845 */ 2846 switch (opc) { 2847 CASE_OP_32_64(add): 2848 done = fold_add(&ctx, op); 2849 break; 2850 case INDEX_op_add_vec: 2851 done = fold_add_vec(&ctx, op); 2852 break; 2853 CASE_OP_32_64(add2): 2854 done = fold_add2(&ctx, op); 2855 break; 2856 CASE_OP_32_64_VEC(and): 2857 done = fold_and(&ctx, op); 2858 break; 2859 CASE_OP_32_64_VEC(andc): 2860 done = fold_andc(&ctx, op); 2861 break; 2862 CASE_OP_32_64(brcond): 2863 done = fold_brcond(&ctx, op); 2864 break; 2865 case INDEX_op_brcond2_i32: 2866 done = fold_brcond2(&ctx, op); 2867 break; 2868 CASE_OP_32_64(bswap16): 2869 CASE_OP_32_64(bswap32): 2870 case INDEX_op_bswap64_i64: 2871 done = fold_bswap(&ctx, op); 2872 break; 2873 CASE_OP_32_64(clz): 2874 CASE_OP_32_64(ctz): 2875 done = fold_count_zeros(&ctx, op); 2876 break; 2877 CASE_OP_32_64(ctpop): 2878 done = fold_ctpop(&ctx, op); 2879 break; 2880 CASE_OP_32_64(deposit): 2881 done = fold_deposit(&ctx, op); 2882 break; 2883 CASE_OP_32_64(div): 2884 CASE_OP_32_64(divu): 2885 done = fold_divide(&ctx, op); 2886 break; 2887 case INDEX_op_dup_vec: 2888 done = fold_dup(&ctx, op); 2889 break; 2890 case INDEX_op_dup2_vec: 2891 done = fold_dup2(&ctx, op); 2892 break; 2893 CASE_OP_32_64_VEC(eqv): 2894 done = fold_eqv(&ctx, op); 2895 break; 2896 CASE_OP_32_64(extract): 2897 done = fold_extract(&ctx, op); 2898 break; 2899 CASE_OP_32_64(extract2): 2900 done = fold_extract2(&ctx, op); 2901 break; 2902 case INDEX_op_ext_i32_i64: 2903 done = fold_exts(&ctx, op); 2904 break; 2905 case INDEX_op_extu_i32_i64: 2906 case INDEX_op_extrl_i64_i32: 2907 case INDEX_op_extrh_i64_i32: 2908 done = fold_extu(&ctx, op); 2909 break; 2910 CASE_OP_32_64(ld8s): 2911 CASE_OP_32_64(ld8u): 2912 CASE_OP_32_64(ld16s): 2913 CASE_OP_32_64(ld16u): 2914 case INDEX_op_ld32s_i64: 2915 case INDEX_op_ld32u_i64: 2916 done = fold_tcg_ld(&ctx, op); 2917 break; 2918 case INDEX_op_ld_i32: 2919 case INDEX_op_ld_i64: 2920 case INDEX_op_ld_vec: 2921 done = fold_tcg_ld_memcopy(&ctx, op); 2922 break; 2923 CASE_OP_32_64(st8): 2924 CASE_OP_32_64(st16): 2925 case INDEX_op_st32_i64: 2926 done = fold_tcg_st(&ctx, op); 2927 break; 2928 case INDEX_op_st_i32: 2929 case INDEX_op_st_i64: 2930 case INDEX_op_st_vec: 2931 done = fold_tcg_st_memcopy(&ctx, op); 2932 break; 2933 case INDEX_op_mb: 2934 done = fold_mb(&ctx, op); 2935 break; 2936 CASE_OP_32_64_VEC(mov): 2937 done = fold_mov(&ctx, op); 2938 break; 2939 CASE_OP_32_64(movcond): 2940 done = fold_movcond(&ctx, op); 2941 break; 2942 CASE_OP_32_64(mul): 2943 done = fold_mul(&ctx, op); 2944 break; 2945 CASE_OP_32_64(mulsh): 2946 CASE_OP_32_64(muluh): 2947 done = fold_mul_highpart(&ctx, op); 2948 break; 2949 CASE_OP_32_64(muls2): 2950 CASE_OP_32_64(mulu2): 2951 done = fold_multiply2(&ctx, op); 2952 break; 2953 CASE_OP_32_64_VEC(nand): 2954 done = fold_nand(&ctx, op); 2955 break; 2956 CASE_OP_32_64(neg): 2957 done = fold_neg(&ctx, op); 2958 break; 2959 CASE_OP_32_64_VEC(nor): 2960 done = fold_nor(&ctx, op); 2961 break; 2962 CASE_OP_32_64_VEC(not): 2963 done = fold_not(&ctx, op); 2964 break; 2965 CASE_OP_32_64_VEC(or): 2966 done = fold_or(&ctx, op); 2967 break; 2968 CASE_OP_32_64_VEC(orc): 2969 done = fold_orc(&ctx, op); 2970 break; 2971 case INDEX_op_qemu_ld_i32: 2972 done = fold_qemu_ld_1reg(&ctx, op); 2973 break; 2974 case INDEX_op_qemu_ld_i64: 2975 if (TCG_TARGET_REG_BITS == 64) { 2976 done = fold_qemu_ld_1reg(&ctx, op); 2977 break; 2978 } 2979 QEMU_FALLTHROUGH; 2980 case INDEX_op_qemu_ld_i128: 2981 done = fold_qemu_ld_2reg(&ctx, op); 2982 break; 2983 case INDEX_op_qemu_st8_i32: 2984 case INDEX_op_qemu_st_i32: 2985 case INDEX_op_qemu_st_i64: 2986 case INDEX_op_qemu_st_i128: 2987 done = fold_qemu_st(&ctx, op); 2988 break; 2989 CASE_OP_32_64(rem): 2990 CASE_OP_32_64(remu): 2991 done = fold_remainder(&ctx, op); 2992 break; 2993 CASE_OP_32_64(rotl): 2994 CASE_OP_32_64(rotr): 2995 CASE_OP_32_64(sar): 2996 CASE_OP_32_64(shl): 2997 CASE_OP_32_64(shr): 2998 done = fold_shift(&ctx, op); 2999 break; 3000 CASE_OP_32_64(setcond): 3001 done = fold_setcond(&ctx, op); 3002 break; 3003 CASE_OP_32_64(negsetcond): 3004 done = fold_negsetcond(&ctx, op); 3005 break; 3006 case INDEX_op_setcond2_i32: 3007 done = fold_setcond2(&ctx, op); 3008 break; 3009 case INDEX_op_cmp_vec: 3010 done = fold_cmp_vec(&ctx, op); 3011 break; 3012 case INDEX_op_cmpsel_vec: 3013 done = fold_cmpsel_vec(&ctx, op); 3014 break; 3015 case INDEX_op_bitsel_vec: 3016 done = fold_bitsel_vec(&ctx, op); 3017 break; 3018 CASE_OP_32_64(sextract): 3019 done = fold_sextract(&ctx, op); 3020 break; 3021 CASE_OP_32_64(sub): 3022 done = fold_sub(&ctx, op); 3023 break; 3024 case INDEX_op_sub_vec: 3025 done = fold_sub_vec(&ctx, op); 3026 break; 3027 CASE_OP_32_64(sub2): 3028 done = fold_sub2(&ctx, op); 3029 break; 3030 CASE_OP_32_64_VEC(xor): 3031 done = fold_xor(&ctx, op); 3032 break; 3033 case INDEX_op_set_label: 3034 case INDEX_op_br: 3035 case INDEX_op_exit_tb: 3036 case INDEX_op_goto_tb: 3037 case INDEX_op_goto_ptr: 3038 finish_ebb(&ctx); 3039 done = true; 3040 break; 3041 default: 3042 done = finish_folding(&ctx, op); 3043 break; 3044 } 3045 tcg_debug_assert(done); 3046 } 3047 } 3048