1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 #include "tcg-has.h" 32 33 #define CASE_OP_32_64(x) \ 34 glue(glue(case INDEX_op_, x), _i32): \ 35 glue(glue(case INDEX_op_, x), _i64) 36 37 #define CASE_OP_32_64_VEC(x) \ 38 glue(glue(case INDEX_op_, x), _i32): \ 39 glue(glue(case INDEX_op_, x), _i64): \ 40 glue(glue(case INDEX_op_, x), _vec) 41 42 typedef struct MemCopyInfo { 43 IntervalTreeNode itree; 44 QSIMPLEQ_ENTRY (MemCopyInfo) next; 45 TCGTemp *ts; 46 TCGType type; 47 } MemCopyInfo; 48 49 typedef struct TempOptInfo { 50 bool is_const; 51 TCGTemp *prev_copy; 52 TCGTemp *next_copy; 53 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 54 uint64_t val; 55 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 56 uint64_t s_mask; /* mask bit is 1 if value bit matches msb */ 57 } TempOptInfo; 58 59 typedef struct OptContext { 60 TCGContext *tcg; 61 TCGOp *prev_mb; 62 TCGTempSet temps_used; 63 64 IntervalTreeRoot mem_copy; 65 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 66 67 /* In flight values from optimization. */ 68 TCGType type; 69 } OptContext; 70 71 static inline TempOptInfo *ts_info(TCGTemp *ts) 72 { 73 return ts->state_ptr; 74 } 75 76 static inline TempOptInfo *arg_info(TCGArg arg) 77 { 78 return ts_info(arg_temp(arg)); 79 } 80 81 static inline bool ti_is_const(TempOptInfo *ti) 82 { 83 return ti->is_const; 84 } 85 86 static inline uint64_t ti_const_val(TempOptInfo *ti) 87 { 88 return ti->val; 89 } 90 91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val) 92 { 93 return ti_is_const(ti) && ti_const_val(ti) == val; 94 } 95 96 static inline bool ts_is_const(TCGTemp *ts) 97 { 98 return ti_is_const(ts_info(ts)); 99 } 100 101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 102 { 103 return ti_is_const_val(ts_info(ts), val); 104 } 105 106 static inline bool arg_is_const(TCGArg arg) 107 { 108 return ts_is_const(arg_temp(arg)); 109 } 110 111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 112 { 113 return ts_is_const_val(arg_temp(arg), val); 114 } 115 116 static inline bool ts_is_copy(TCGTemp *ts) 117 { 118 return ts_info(ts)->next_copy != ts; 119 } 120 121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 122 { 123 return a->kind < b->kind ? b : a; 124 } 125 126 /* Initialize and activate a temporary. */ 127 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 128 { 129 size_t idx = temp_idx(ts); 130 TempOptInfo *ti; 131 132 if (test_bit(idx, ctx->temps_used.l)) { 133 return; 134 } 135 set_bit(idx, ctx->temps_used.l); 136 137 ti = ts->state_ptr; 138 if (ti == NULL) { 139 ti = tcg_malloc(sizeof(TempOptInfo)); 140 ts->state_ptr = ti; 141 } 142 143 ti->next_copy = ts; 144 ti->prev_copy = ts; 145 QSIMPLEQ_INIT(&ti->mem_copy); 146 if (ts->kind == TEMP_CONST) { 147 ti->is_const = true; 148 ti->val = ts->val; 149 ti->z_mask = ts->val; 150 ti->s_mask = INT64_MIN >> clrsb64(ts->val); 151 } else { 152 ti->is_const = false; 153 ti->z_mask = -1; 154 ti->s_mask = 0; 155 } 156 } 157 158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 159 { 160 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 161 return r ? container_of(r, MemCopyInfo, itree) : NULL; 162 } 163 164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 165 { 166 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 167 return r ? container_of(r, MemCopyInfo, itree) : NULL; 168 } 169 170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 171 { 172 TCGTemp *ts = mc->ts; 173 TempOptInfo *ti = ts_info(ts); 174 175 interval_tree_remove(&mc->itree, &ctx->mem_copy); 176 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 177 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 178 } 179 180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 181 { 182 while (true) { 183 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 184 if (!mc) { 185 break; 186 } 187 remove_mem_copy(ctx, mc); 188 } 189 } 190 191 static void remove_mem_copy_all(OptContext *ctx) 192 { 193 remove_mem_copy_in(ctx, 0, -1); 194 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 195 } 196 197 static TCGTemp *find_better_copy(TCGTemp *ts) 198 { 199 TCGTemp *i, *ret; 200 201 /* If this is already readonly, we can't do better. */ 202 if (temp_readonly(ts)) { 203 return ts; 204 } 205 206 ret = ts; 207 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 208 ret = cmp_better_copy(ret, i); 209 } 210 return ret; 211 } 212 213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 214 { 215 TempOptInfo *si = ts_info(src_ts); 216 TempOptInfo *di = ts_info(dst_ts); 217 MemCopyInfo *mc; 218 219 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 220 tcg_debug_assert(mc->ts == src_ts); 221 mc->ts = dst_ts; 222 } 223 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 224 } 225 226 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 227 static void reset_ts(OptContext *ctx, TCGTemp *ts) 228 { 229 TempOptInfo *ti = ts_info(ts); 230 TCGTemp *pts = ti->prev_copy; 231 TCGTemp *nts = ti->next_copy; 232 TempOptInfo *pi = ts_info(pts); 233 TempOptInfo *ni = ts_info(nts); 234 235 ni->prev_copy = ti->prev_copy; 236 pi->next_copy = ti->next_copy; 237 ti->next_copy = ts; 238 ti->prev_copy = ts; 239 ti->is_const = false; 240 ti->z_mask = -1; 241 ti->s_mask = 0; 242 243 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 244 if (ts == nts) { 245 /* Last temp copy being removed, the mem copies die. */ 246 MemCopyInfo *mc; 247 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 248 interval_tree_remove(&mc->itree, &ctx->mem_copy); 249 } 250 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 251 } else { 252 move_mem_copies(find_better_copy(nts), ts); 253 } 254 } 255 } 256 257 static void reset_temp(OptContext *ctx, TCGArg arg) 258 { 259 reset_ts(ctx, arg_temp(arg)); 260 } 261 262 static void record_mem_copy(OptContext *ctx, TCGType type, 263 TCGTemp *ts, intptr_t start, intptr_t last) 264 { 265 MemCopyInfo *mc; 266 TempOptInfo *ti; 267 268 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 269 if (mc) { 270 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 271 } else { 272 mc = tcg_malloc(sizeof(*mc)); 273 } 274 275 memset(mc, 0, sizeof(*mc)); 276 mc->itree.start = start; 277 mc->itree.last = last; 278 mc->type = type; 279 interval_tree_insert(&mc->itree, &ctx->mem_copy); 280 281 ts = find_better_copy(ts); 282 ti = ts_info(ts); 283 mc->ts = ts; 284 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 285 } 286 287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 288 { 289 TCGTemp *i; 290 291 if (ts1 == ts2) { 292 return true; 293 } 294 295 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 296 return false; 297 } 298 299 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 300 if (i == ts2) { 301 return true; 302 } 303 } 304 305 return false; 306 } 307 308 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 309 { 310 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 311 } 312 313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 314 { 315 MemCopyInfo *mc; 316 317 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 318 if (mc->itree.start == s && mc->type == type) { 319 return find_better_copy(mc->ts); 320 } 321 } 322 return NULL; 323 } 324 325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 326 { 327 TCGType type = ctx->type; 328 TCGTemp *ts; 329 330 if (type == TCG_TYPE_I32) { 331 val = (int32_t)val; 332 } 333 334 ts = tcg_constant_internal(type, val); 335 init_ts_info(ctx, ts); 336 337 return temp_arg(ts); 338 } 339 340 static TCGArg arg_new_temp(OptContext *ctx) 341 { 342 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 343 init_ts_info(ctx, ts); 344 return temp_arg(ts); 345 } 346 347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op, 348 TCGOpcode opc, unsigned narg) 349 { 350 return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg); 351 } 352 353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op, 354 TCGOpcode opc, unsigned narg) 355 { 356 return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg); 357 } 358 359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 360 { 361 TCGTemp *dst_ts = arg_temp(dst); 362 TCGTemp *src_ts = arg_temp(src); 363 TempOptInfo *di; 364 TempOptInfo *si; 365 TCGOpcode new_op; 366 367 if (ts_are_copies(dst_ts, src_ts)) { 368 tcg_op_remove(ctx->tcg, op); 369 return true; 370 } 371 372 reset_ts(ctx, dst_ts); 373 di = ts_info(dst_ts); 374 si = ts_info(src_ts); 375 376 switch (ctx->type) { 377 case TCG_TYPE_I32: 378 case TCG_TYPE_I64: 379 new_op = INDEX_op_mov; 380 break; 381 case TCG_TYPE_V64: 382 case TCG_TYPE_V128: 383 case TCG_TYPE_V256: 384 /* TCGOP_TYPE and TCGOP_VECE remain unchanged. */ 385 new_op = INDEX_op_mov_vec; 386 break; 387 default: 388 g_assert_not_reached(); 389 } 390 op->opc = new_op; 391 op->args[0] = dst; 392 op->args[1] = src; 393 394 di->z_mask = si->z_mask; 395 di->s_mask = si->s_mask; 396 397 if (src_ts->type == dst_ts->type) { 398 TempOptInfo *ni = ts_info(si->next_copy); 399 400 di->next_copy = si->next_copy; 401 di->prev_copy = src_ts; 402 ni->prev_copy = dst_ts; 403 si->next_copy = dst_ts; 404 di->is_const = si->is_const; 405 di->val = si->val; 406 407 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 408 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 409 move_mem_copies(dst_ts, src_ts); 410 } 411 } 412 return true; 413 } 414 415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 416 TCGArg dst, uint64_t val) 417 { 418 /* Convert movi to mov with constant temp. */ 419 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 420 } 421 422 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 423 { 424 uint64_t l64, h64; 425 426 switch (op) { 427 case INDEX_op_add: 428 return x + y; 429 430 CASE_OP_32_64(sub): 431 return x - y; 432 433 CASE_OP_32_64(mul): 434 return x * y; 435 436 case INDEX_op_and: 437 case INDEX_op_and_vec: 438 return x & y; 439 440 CASE_OP_32_64_VEC(or): 441 return x | y; 442 443 CASE_OP_32_64_VEC(xor): 444 return x ^ y; 445 446 case INDEX_op_shl_i32: 447 return (uint32_t)x << (y & 31); 448 449 case INDEX_op_shl_i64: 450 return (uint64_t)x << (y & 63); 451 452 case INDEX_op_shr_i32: 453 return (uint32_t)x >> (y & 31); 454 455 case INDEX_op_shr_i64: 456 return (uint64_t)x >> (y & 63); 457 458 case INDEX_op_sar_i32: 459 return (int32_t)x >> (y & 31); 460 461 case INDEX_op_sar_i64: 462 return (int64_t)x >> (y & 63); 463 464 case INDEX_op_rotr_i32: 465 return ror32(x, y & 31); 466 467 case INDEX_op_rotr_i64: 468 return ror64(x, y & 63); 469 470 case INDEX_op_rotl_i32: 471 return rol32(x, y & 31); 472 473 case INDEX_op_rotl_i64: 474 return rol64(x, y & 63); 475 476 CASE_OP_32_64_VEC(not): 477 return ~x; 478 479 CASE_OP_32_64(neg): 480 return -x; 481 482 case INDEX_op_andc: 483 case INDEX_op_andc_vec: 484 return x & ~y; 485 486 CASE_OP_32_64_VEC(orc): 487 return x | ~y; 488 489 CASE_OP_32_64_VEC(eqv): 490 return ~(x ^ y); 491 492 CASE_OP_32_64_VEC(nand): 493 return ~(x & y); 494 495 CASE_OP_32_64_VEC(nor): 496 return ~(x | y); 497 498 case INDEX_op_clz_i32: 499 return (uint32_t)x ? clz32(x) : y; 500 501 case INDEX_op_clz_i64: 502 return x ? clz64(x) : y; 503 504 case INDEX_op_ctz_i32: 505 return (uint32_t)x ? ctz32(x) : y; 506 507 case INDEX_op_ctz_i64: 508 return x ? ctz64(x) : y; 509 510 case INDEX_op_ctpop_i32: 511 return ctpop32(x); 512 513 case INDEX_op_ctpop_i64: 514 return ctpop64(x); 515 516 CASE_OP_32_64(bswap16): 517 x = bswap16(x); 518 return y & TCG_BSWAP_OS ? (int16_t)x : x; 519 520 CASE_OP_32_64(bswap32): 521 x = bswap32(x); 522 return y & TCG_BSWAP_OS ? (int32_t)x : x; 523 524 case INDEX_op_bswap64_i64: 525 return bswap64(x); 526 527 case INDEX_op_ext_i32_i64: 528 return (int32_t)x; 529 530 case INDEX_op_extu_i32_i64: 531 case INDEX_op_extrl_i64_i32: 532 return (uint32_t)x; 533 534 case INDEX_op_extrh_i64_i32: 535 return (uint64_t)x >> 32; 536 537 case INDEX_op_muluh_i32: 538 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 539 case INDEX_op_mulsh_i32: 540 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 541 542 case INDEX_op_muluh_i64: 543 mulu64(&l64, &h64, x, y); 544 return h64; 545 case INDEX_op_mulsh_i64: 546 muls64(&l64, &h64, x, y); 547 return h64; 548 549 case INDEX_op_div_i32: 550 /* Avoid crashing on divide by zero, otherwise undefined. */ 551 return (int32_t)x / ((int32_t)y ? : 1); 552 case INDEX_op_divu_i32: 553 return (uint32_t)x / ((uint32_t)y ? : 1); 554 case INDEX_op_div_i64: 555 return (int64_t)x / ((int64_t)y ? : 1); 556 case INDEX_op_divu_i64: 557 return (uint64_t)x / ((uint64_t)y ? : 1); 558 559 case INDEX_op_rem_i32: 560 return (int32_t)x % ((int32_t)y ? : 1); 561 case INDEX_op_remu_i32: 562 return (uint32_t)x % ((uint32_t)y ? : 1); 563 case INDEX_op_rem_i64: 564 return (int64_t)x % ((int64_t)y ? : 1); 565 case INDEX_op_remu_i64: 566 return (uint64_t)x % ((uint64_t)y ? : 1); 567 568 default: 569 g_assert_not_reached(); 570 } 571 } 572 573 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 574 uint64_t x, uint64_t y) 575 { 576 uint64_t res = do_constant_folding_2(op, x, y); 577 if (type == TCG_TYPE_I32) { 578 res = (int32_t)res; 579 } 580 return res; 581 } 582 583 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 584 { 585 switch (c) { 586 case TCG_COND_EQ: 587 return x == y; 588 case TCG_COND_NE: 589 return x != y; 590 case TCG_COND_LT: 591 return (int32_t)x < (int32_t)y; 592 case TCG_COND_GE: 593 return (int32_t)x >= (int32_t)y; 594 case TCG_COND_LE: 595 return (int32_t)x <= (int32_t)y; 596 case TCG_COND_GT: 597 return (int32_t)x > (int32_t)y; 598 case TCG_COND_LTU: 599 return x < y; 600 case TCG_COND_GEU: 601 return x >= y; 602 case TCG_COND_LEU: 603 return x <= y; 604 case TCG_COND_GTU: 605 return x > y; 606 case TCG_COND_TSTEQ: 607 return (x & y) == 0; 608 case TCG_COND_TSTNE: 609 return (x & y) != 0; 610 case TCG_COND_ALWAYS: 611 case TCG_COND_NEVER: 612 break; 613 } 614 g_assert_not_reached(); 615 } 616 617 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 618 { 619 switch (c) { 620 case TCG_COND_EQ: 621 return x == y; 622 case TCG_COND_NE: 623 return x != y; 624 case TCG_COND_LT: 625 return (int64_t)x < (int64_t)y; 626 case TCG_COND_GE: 627 return (int64_t)x >= (int64_t)y; 628 case TCG_COND_LE: 629 return (int64_t)x <= (int64_t)y; 630 case TCG_COND_GT: 631 return (int64_t)x > (int64_t)y; 632 case TCG_COND_LTU: 633 return x < y; 634 case TCG_COND_GEU: 635 return x >= y; 636 case TCG_COND_LEU: 637 return x <= y; 638 case TCG_COND_GTU: 639 return x > y; 640 case TCG_COND_TSTEQ: 641 return (x & y) == 0; 642 case TCG_COND_TSTNE: 643 return (x & y) != 0; 644 case TCG_COND_ALWAYS: 645 case TCG_COND_NEVER: 646 break; 647 } 648 g_assert_not_reached(); 649 } 650 651 static int do_constant_folding_cond_eq(TCGCond c) 652 { 653 switch (c) { 654 case TCG_COND_GT: 655 case TCG_COND_LTU: 656 case TCG_COND_LT: 657 case TCG_COND_GTU: 658 case TCG_COND_NE: 659 return 0; 660 case TCG_COND_GE: 661 case TCG_COND_GEU: 662 case TCG_COND_LE: 663 case TCG_COND_LEU: 664 case TCG_COND_EQ: 665 return 1; 666 case TCG_COND_TSTEQ: 667 case TCG_COND_TSTNE: 668 return -1; 669 case TCG_COND_ALWAYS: 670 case TCG_COND_NEVER: 671 break; 672 } 673 g_assert_not_reached(); 674 } 675 676 /* 677 * Return -1 if the condition can't be simplified, 678 * and the result of the condition (0 or 1) if it can. 679 */ 680 static int do_constant_folding_cond(TCGType type, TCGArg x, 681 TCGArg y, TCGCond c) 682 { 683 if (arg_is_const(x) && arg_is_const(y)) { 684 uint64_t xv = arg_info(x)->val; 685 uint64_t yv = arg_info(y)->val; 686 687 switch (type) { 688 case TCG_TYPE_I32: 689 return do_constant_folding_cond_32(xv, yv, c); 690 case TCG_TYPE_I64: 691 return do_constant_folding_cond_64(xv, yv, c); 692 default: 693 /* Only scalar comparisons are optimizable */ 694 return -1; 695 } 696 } else if (args_are_copies(x, y)) { 697 return do_constant_folding_cond_eq(c); 698 } else if (arg_is_const_val(y, 0)) { 699 switch (c) { 700 case TCG_COND_LTU: 701 case TCG_COND_TSTNE: 702 return 0; 703 case TCG_COND_GEU: 704 case TCG_COND_TSTEQ: 705 return 1; 706 default: 707 return -1; 708 } 709 } 710 return -1; 711 } 712 713 /** 714 * swap_commutative: 715 * @dest: TCGArg of the destination argument, or NO_DEST. 716 * @p1: first paired argument 717 * @p2: second paired argument 718 * 719 * If *@p1 is a constant and *@p2 is not, swap. 720 * If *@p2 matches @dest, swap. 721 * Return true if a swap was performed. 722 */ 723 724 #define NO_DEST temp_arg(NULL) 725 726 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 727 { 728 TCGArg a1 = *p1, a2 = *p2; 729 int sum = 0; 730 sum += arg_is_const(a1); 731 sum -= arg_is_const(a2); 732 733 /* Prefer the constant in second argument, and then the form 734 op a, a, b, which is better handled on non-RISC hosts. */ 735 if (sum > 0 || (sum == 0 && dest == a2)) { 736 *p1 = a2; 737 *p2 = a1; 738 return true; 739 } 740 return false; 741 } 742 743 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 744 { 745 int sum = 0; 746 sum += arg_is_const(p1[0]); 747 sum += arg_is_const(p1[1]); 748 sum -= arg_is_const(p2[0]); 749 sum -= arg_is_const(p2[1]); 750 if (sum > 0) { 751 TCGArg t; 752 t = p1[0], p1[0] = p2[0], p2[0] = t; 753 t = p1[1], p1[1] = p2[1], p2[1] = t; 754 return true; 755 } 756 return false; 757 } 758 759 /* 760 * Return -1 if the condition can't be simplified, 761 * and the result of the condition (0 or 1) if it can. 762 */ 763 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 764 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 765 { 766 TCGCond cond; 767 TempOptInfo *i1; 768 bool swap; 769 int r; 770 771 swap = swap_commutative(dest, p1, p2); 772 cond = *pcond; 773 if (swap) { 774 *pcond = cond = tcg_swap_cond(cond); 775 } 776 777 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 778 if (r >= 0) { 779 return r; 780 } 781 if (!is_tst_cond(cond)) { 782 return -1; 783 } 784 785 i1 = arg_info(*p1); 786 787 /* 788 * TSTNE x,x -> NE x,0 789 * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x 790 */ 791 if (args_are_copies(*p1, *p2) || 792 (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) { 793 *p2 = arg_new_constant(ctx, 0); 794 *pcond = tcg_tst_eqne_cond(cond); 795 return -1; 796 } 797 798 /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */ 799 if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) { 800 *p2 = arg_new_constant(ctx, 0); 801 *pcond = tcg_tst_ltge_cond(cond); 802 return -1; 803 } 804 805 /* Expand to AND with a temporary if no backend support. */ 806 if (!TCG_TARGET_HAS_tst) { 807 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 808 TCGArg tmp = arg_new_temp(ctx); 809 810 op2->args[0] = tmp; 811 op2->args[1] = *p1; 812 op2->args[2] = *p2; 813 814 *p1 = tmp; 815 *p2 = arg_new_constant(ctx, 0); 816 *pcond = tcg_tst_eqne_cond(cond); 817 } 818 return -1; 819 } 820 821 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 822 { 823 TCGArg al, ah, bl, bh; 824 TCGCond c; 825 bool swap; 826 int r; 827 828 swap = swap_commutative2(args, args + 2); 829 c = args[4]; 830 if (swap) { 831 args[4] = c = tcg_swap_cond(c); 832 } 833 834 al = args[0]; 835 ah = args[1]; 836 bl = args[2]; 837 bh = args[3]; 838 839 if (arg_is_const(bl) && arg_is_const(bh)) { 840 tcg_target_ulong blv = arg_info(bl)->val; 841 tcg_target_ulong bhv = arg_info(bh)->val; 842 uint64_t b = deposit64(blv, 32, 32, bhv); 843 844 if (arg_is_const(al) && arg_is_const(ah)) { 845 tcg_target_ulong alv = arg_info(al)->val; 846 tcg_target_ulong ahv = arg_info(ah)->val; 847 uint64_t a = deposit64(alv, 32, 32, ahv); 848 849 r = do_constant_folding_cond_64(a, b, c); 850 if (r >= 0) { 851 return r; 852 } 853 } 854 855 if (b == 0) { 856 switch (c) { 857 case TCG_COND_LTU: 858 case TCG_COND_TSTNE: 859 return 0; 860 case TCG_COND_GEU: 861 case TCG_COND_TSTEQ: 862 return 1; 863 default: 864 break; 865 } 866 } 867 868 /* TSTNE x,-1 -> NE x,0 */ 869 if (b == -1 && is_tst_cond(c)) { 870 args[3] = args[2] = arg_new_constant(ctx, 0); 871 args[4] = tcg_tst_eqne_cond(c); 872 return -1; 873 } 874 875 /* TSTNE x,sign -> LT x,0 */ 876 if (b == INT64_MIN && is_tst_cond(c)) { 877 /* bl must be 0, so copy that to bh */ 878 args[3] = bl; 879 args[4] = tcg_tst_ltge_cond(c); 880 return -1; 881 } 882 } 883 884 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 885 r = do_constant_folding_cond_eq(c); 886 if (r >= 0) { 887 return r; 888 } 889 890 /* TSTNE x,x -> NE x,0 */ 891 if (is_tst_cond(c)) { 892 args[3] = args[2] = arg_new_constant(ctx, 0); 893 args[4] = tcg_tst_eqne_cond(c); 894 return -1; 895 } 896 } 897 898 /* Expand to AND with a temporary if no backend support. */ 899 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 900 TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and, 3); 901 TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3); 902 TCGArg t1 = arg_new_temp(ctx); 903 TCGArg t2 = arg_new_temp(ctx); 904 905 op1->args[0] = t1; 906 op1->args[1] = al; 907 op1->args[2] = bl; 908 op2->args[0] = t2; 909 op2->args[1] = ah; 910 op2->args[2] = bh; 911 912 args[0] = t1; 913 args[1] = t2; 914 args[3] = args[2] = arg_new_constant(ctx, 0); 915 args[4] = tcg_tst_eqne_cond(c); 916 } 917 return -1; 918 } 919 920 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 921 { 922 for (int i = 0; i < nb_args; i++) { 923 TCGTemp *ts = arg_temp(op->args[i]); 924 init_ts_info(ctx, ts); 925 } 926 } 927 928 static void copy_propagate(OptContext *ctx, TCGOp *op, 929 int nb_oargs, int nb_iargs) 930 { 931 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 932 TCGTemp *ts = arg_temp(op->args[i]); 933 if (ts_is_copy(ts)) { 934 op->args[i] = temp_arg(find_better_copy(ts)); 935 } 936 } 937 } 938 939 static void finish_bb(OptContext *ctx) 940 { 941 /* We only optimize memory barriers across basic blocks. */ 942 ctx->prev_mb = NULL; 943 } 944 945 static void finish_ebb(OptContext *ctx) 946 { 947 finish_bb(ctx); 948 /* We only optimize across extended basic blocks. */ 949 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 950 remove_mem_copy_all(ctx); 951 } 952 953 static bool finish_folding(OptContext *ctx, TCGOp *op) 954 { 955 const TCGOpDef *def = &tcg_op_defs[op->opc]; 956 int i, nb_oargs; 957 958 nb_oargs = def->nb_oargs; 959 for (i = 0; i < nb_oargs; i++) { 960 TCGTemp *ts = arg_temp(op->args[i]); 961 reset_ts(ctx, ts); 962 } 963 return true; 964 } 965 966 /* 967 * The fold_* functions return true when processing is complete, 968 * usually by folding the operation to a constant or to a copy, 969 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 970 * like collect information about the value produced, for use in 971 * optimizing a subsequent operation. 972 * 973 * These first fold_* functions are all helpers, used by other 974 * folders for more specific operations. 975 */ 976 977 static bool fold_const1(OptContext *ctx, TCGOp *op) 978 { 979 if (arg_is_const(op->args[1])) { 980 uint64_t t; 981 982 t = arg_info(op->args[1])->val; 983 t = do_constant_folding(op->opc, ctx->type, t, 0); 984 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 985 } 986 return false; 987 } 988 989 static bool fold_const2(OptContext *ctx, TCGOp *op) 990 { 991 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 992 uint64_t t1 = arg_info(op->args[1])->val; 993 uint64_t t2 = arg_info(op->args[2])->val; 994 995 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 996 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 997 } 998 return false; 999 } 1000 1001 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1002 { 1003 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1004 return false; 1005 } 1006 1007 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1008 { 1009 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1010 return fold_const2(ctx, op); 1011 } 1012 1013 /* 1014 * Record "zero" and "sign" masks for the single output of @op. 1015 * See TempOptInfo definition of z_mask and s_mask. 1016 * If z_mask allows, fold the output to constant zero. 1017 * The passed s_mask may be augmented by z_mask. 1018 */ 1019 static bool fold_masks_zs(OptContext *ctx, TCGOp *op, 1020 uint64_t z_mask, int64_t s_mask) 1021 { 1022 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1023 TCGTemp *ts; 1024 TempOptInfo *ti; 1025 int rep; 1026 1027 /* Only single-output opcodes are supported here. */ 1028 tcg_debug_assert(def->nb_oargs == 1); 1029 1030 /* 1031 * 32-bit ops generate 32-bit results, which for the purpose of 1032 * simplifying tcg are sign-extended. Certainly that's how we 1033 * represent our constants elsewhere. Note that the bits will 1034 * be reset properly for a 64-bit value when encountering the 1035 * type changing opcodes. 1036 */ 1037 if (ctx->type == TCG_TYPE_I32) { 1038 z_mask = (int32_t)z_mask; 1039 s_mask |= INT32_MIN; 1040 } 1041 1042 if (z_mask == 0) { 1043 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1044 } 1045 1046 ts = arg_temp(op->args[0]); 1047 reset_ts(ctx, ts); 1048 1049 ti = ts_info(ts); 1050 ti->z_mask = z_mask; 1051 1052 /* Canonicalize s_mask and incorporate data from z_mask. */ 1053 rep = clz64(~s_mask); 1054 rep = MAX(rep, clz64(z_mask)); 1055 rep = MAX(rep - 1, 0); 1056 ti->s_mask = INT64_MIN >> rep; 1057 1058 return true; 1059 } 1060 1061 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask) 1062 { 1063 return fold_masks_zs(ctx, op, z_mask, 0); 1064 } 1065 1066 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask) 1067 { 1068 return fold_masks_zs(ctx, op, -1, s_mask); 1069 } 1070 1071 /* 1072 * An "affected" mask bit is 0 if and only if the result is identical 1073 * to the first input. Thus if the entire mask is 0, the operation 1074 * is equivalent to a copy. 1075 */ 1076 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask) 1077 { 1078 if (ctx->type == TCG_TYPE_I32) { 1079 a_mask = (uint32_t)a_mask; 1080 } 1081 if (a_mask == 0) { 1082 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1083 } 1084 return false; 1085 } 1086 1087 /* 1088 * Convert @op to NOT, if NOT is supported by the host. 1089 * Return true f the conversion is successful, which will still 1090 * indicate that the processing is complete. 1091 */ 1092 static bool fold_not(OptContext *ctx, TCGOp *op); 1093 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1094 { 1095 TCGOpcode not_op; 1096 bool have_not; 1097 1098 switch (ctx->type) { 1099 case TCG_TYPE_I32: 1100 not_op = INDEX_op_not_i32; 1101 have_not = TCG_TARGET_HAS_not_i32; 1102 break; 1103 case TCG_TYPE_I64: 1104 not_op = INDEX_op_not_i64; 1105 have_not = TCG_TARGET_HAS_not_i64; 1106 break; 1107 case TCG_TYPE_V64: 1108 case TCG_TYPE_V128: 1109 case TCG_TYPE_V256: 1110 not_op = INDEX_op_not_vec; 1111 have_not = TCG_TARGET_HAS_not_vec; 1112 break; 1113 default: 1114 g_assert_not_reached(); 1115 } 1116 if (have_not) { 1117 op->opc = not_op; 1118 op->args[1] = op->args[idx]; 1119 return fold_not(ctx, op); 1120 } 1121 return false; 1122 } 1123 1124 /* If the binary operation has first argument @i, fold to @i. */ 1125 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1126 { 1127 if (arg_is_const_val(op->args[1], i)) { 1128 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1129 } 1130 return false; 1131 } 1132 1133 /* If the binary operation has first argument @i, fold to NOT. */ 1134 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1135 { 1136 if (arg_is_const_val(op->args[1], i)) { 1137 return fold_to_not(ctx, op, 2); 1138 } 1139 return false; 1140 } 1141 1142 /* If the binary operation has second argument @i, fold to @i. */ 1143 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1144 { 1145 if (arg_is_const_val(op->args[2], i)) { 1146 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1147 } 1148 return false; 1149 } 1150 1151 /* If the binary operation has second argument @i, fold to identity. */ 1152 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1153 { 1154 if (arg_is_const_val(op->args[2], i)) { 1155 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1156 } 1157 return false; 1158 } 1159 1160 /* If the binary operation has second argument @i, fold to NOT. */ 1161 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1162 { 1163 if (arg_is_const_val(op->args[2], i)) { 1164 return fold_to_not(ctx, op, 1); 1165 } 1166 return false; 1167 } 1168 1169 /* If the binary operation has both arguments equal, fold to @i. */ 1170 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1171 { 1172 if (args_are_copies(op->args[1], op->args[2])) { 1173 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1174 } 1175 return false; 1176 } 1177 1178 /* If the binary operation has both arguments equal, fold to identity. */ 1179 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1180 { 1181 if (args_are_copies(op->args[1], op->args[2])) { 1182 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1183 } 1184 return false; 1185 } 1186 1187 /* 1188 * These outermost fold_<op> functions are sorted alphabetically. 1189 * 1190 * The ordering of the transformations should be: 1191 * 1) those that produce a constant 1192 * 2) those that produce a copy 1193 * 3) those that produce information about the result value. 1194 */ 1195 1196 static bool fold_or(OptContext *ctx, TCGOp *op); 1197 static bool fold_orc(OptContext *ctx, TCGOp *op); 1198 static bool fold_xor(OptContext *ctx, TCGOp *op); 1199 1200 static bool fold_add(OptContext *ctx, TCGOp *op) 1201 { 1202 if (fold_const2_commutative(ctx, op) || 1203 fold_xi_to_x(ctx, op, 0)) { 1204 return true; 1205 } 1206 return finish_folding(ctx, op); 1207 } 1208 1209 /* We cannot as yet do_constant_folding with vectors. */ 1210 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1211 { 1212 if (fold_commutative(ctx, op) || 1213 fold_xi_to_x(ctx, op, 0)) { 1214 return true; 1215 } 1216 return finish_folding(ctx, op); 1217 } 1218 1219 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1220 { 1221 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1222 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1223 1224 if (a_const && b_const) { 1225 uint64_t al = arg_info(op->args[2])->val; 1226 uint64_t ah = arg_info(op->args[3])->val; 1227 uint64_t bl = arg_info(op->args[4])->val; 1228 uint64_t bh = arg_info(op->args[5])->val; 1229 TCGArg rl, rh; 1230 TCGOp *op2; 1231 1232 if (ctx->type == TCG_TYPE_I32) { 1233 uint64_t a = deposit64(al, 32, 32, ah); 1234 uint64_t b = deposit64(bl, 32, 32, bh); 1235 1236 if (add) { 1237 a += b; 1238 } else { 1239 a -= b; 1240 } 1241 1242 al = sextract64(a, 0, 32); 1243 ah = sextract64(a, 32, 32); 1244 } else { 1245 Int128 a = int128_make128(al, ah); 1246 Int128 b = int128_make128(bl, bh); 1247 1248 if (add) { 1249 a = int128_add(a, b); 1250 } else { 1251 a = int128_sub(a, b); 1252 } 1253 1254 al = int128_getlo(a); 1255 ah = int128_gethi(a); 1256 } 1257 1258 rl = op->args[0]; 1259 rh = op->args[1]; 1260 1261 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1262 op2 = opt_insert_before(ctx, op, 0, 2); 1263 1264 tcg_opt_gen_movi(ctx, op, rl, al); 1265 tcg_opt_gen_movi(ctx, op2, rh, ah); 1266 return true; 1267 } 1268 1269 /* Fold sub2 r,x,i to add2 r,x,-i */ 1270 if (!add && b_const) { 1271 uint64_t bl = arg_info(op->args[4])->val; 1272 uint64_t bh = arg_info(op->args[5])->val; 1273 1274 /* Negate the two parts without assembling and disassembling. */ 1275 bl = -bl; 1276 bh = ~bh + !bl; 1277 1278 op->opc = (ctx->type == TCG_TYPE_I32 1279 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1280 op->args[4] = arg_new_constant(ctx, bl); 1281 op->args[5] = arg_new_constant(ctx, bh); 1282 } 1283 return finish_folding(ctx, op); 1284 } 1285 1286 static bool fold_add2(OptContext *ctx, TCGOp *op) 1287 { 1288 /* Note that the high and low parts may be independently swapped. */ 1289 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1290 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1291 1292 return fold_addsub2(ctx, op, true); 1293 } 1294 1295 static bool fold_and(OptContext *ctx, TCGOp *op) 1296 { 1297 uint64_t z1, z2, z_mask, s_mask; 1298 TempOptInfo *t1, *t2; 1299 1300 if (fold_const2_commutative(ctx, op) || 1301 fold_xi_to_i(ctx, op, 0) || 1302 fold_xi_to_x(ctx, op, -1) || 1303 fold_xx_to_x(ctx, op)) { 1304 return true; 1305 } 1306 1307 t1 = arg_info(op->args[1]); 1308 t2 = arg_info(op->args[2]); 1309 z1 = t1->z_mask; 1310 z2 = t2->z_mask; 1311 1312 /* 1313 * Known-zeros does not imply known-ones. Therefore unless 1314 * arg2 is constant, we can't infer affected bits from it. 1315 */ 1316 if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) { 1317 return true; 1318 } 1319 1320 z_mask = z1 & z2; 1321 1322 /* 1323 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1324 * Bitwise operations preserve the relative quantity of the repetitions. 1325 */ 1326 s_mask = t1->s_mask & t2->s_mask; 1327 1328 return fold_masks_zs(ctx, op, z_mask, s_mask); 1329 } 1330 1331 static bool fold_andc(OptContext *ctx, TCGOp *op) 1332 { 1333 uint64_t z_mask, s_mask; 1334 TempOptInfo *t1, *t2; 1335 1336 if (fold_const2(ctx, op) || 1337 fold_xx_to_i(ctx, op, 0) || 1338 fold_xi_to_x(ctx, op, 0) || 1339 fold_ix_to_not(ctx, op, -1)) { 1340 return true; 1341 } 1342 1343 t1 = arg_info(op->args[1]); 1344 t2 = arg_info(op->args[2]); 1345 z_mask = t1->z_mask; 1346 1347 if (ti_is_const(t2)) { 1348 /* Fold andc r,x,i to and r,x,~i. */ 1349 switch (ctx->type) { 1350 case TCG_TYPE_I32: 1351 case TCG_TYPE_I64: 1352 op->opc = INDEX_op_and; 1353 break; 1354 case TCG_TYPE_V64: 1355 case TCG_TYPE_V128: 1356 case TCG_TYPE_V256: 1357 op->opc = INDEX_op_and_vec; 1358 break; 1359 default: 1360 g_assert_not_reached(); 1361 } 1362 op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2)); 1363 return fold_and(ctx, op); 1364 } 1365 1366 /* 1367 * Known-zeros does not imply known-ones. Therefore unless 1368 * arg2 is constant, we can't infer anything from it. 1369 */ 1370 if (ti_is_const(t2)) { 1371 uint64_t v2 = ti_const_val(t2); 1372 if (fold_affected_mask(ctx, op, z_mask & v2)) { 1373 return true; 1374 } 1375 z_mask &= ~v2; 1376 } 1377 1378 s_mask = t1->s_mask & t2->s_mask; 1379 return fold_masks_zs(ctx, op, z_mask, s_mask); 1380 } 1381 1382 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op) 1383 { 1384 /* If true and false values are the same, eliminate the cmp. */ 1385 if (args_are_copies(op->args[2], op->args[3])) { 1386 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1387 } 1388 1389 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1390 uint64_t tv = arg_info(op->args[2])->val; 1391 uint64_t fv = arg_info(op->args[3])->val; 1392 1393 if (tv == -1 && fv == 0) { 1394 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1395 } 1396 if (tv == 0 && fv == -1) { 1397 if (TCG_TARGET_HAS_not_vec) { 1398 op->opc = INDEX_op_not_vec; 1399 return fold_not(ctx, op); 1400 } else { 1401 op->opc = INDEX_op_xor_vec; 1402 op->args[2] = arg_new_constant(ctx, -1); 1403 return fold_xor(ctx, op); 1404 } 1405 } 1406 } 1407 if (arg_is_const(op->args[2])) { 1408 uint64_t tv = arg_info(op->args[2])->val; 1409 if (tv == -1) { 1410 op->opc = INDEX_op_or_vec; 1411 op->args[2] = op->args[3]; 1412 return fold_or(ctx, op); 1413 } 1414 if (tv == 0 && TCG_TARGET_HAS_andc_vec) { 1415 op->opc = INDEX_op_andc_vec; 1416 op->args[2] = op->args[1]; 1417 op->args[1] = op->args[3]; 1418 return fold_andc(ctx, op); 1419 } 1420 } 1421 if (arg_is_const(op->args[3])) { 1422 uint64_t fv = arg_info(op->args[3])->val; 1423 if (fv == 0) { 1424 op->opc = INDEX_op_and_vec; 1425 return fold_and(ctx, op); 1426 } 1427 if (fv == -1 && TCG_TARGET_HAS_orc_vec) { 1428 op->opc = INDEX_op_orc_vec; 1429 op->args[2] = op->args[1]; 1430 op->args[1] = op->args[3]; 1431 return fold_orc(ctx, op); 1432 } 1433 } 1434 return finish_folding(ctx, op); 1435 } 1436 1437 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1438 { 1439 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1440 &op->args[1], &op->args[2]); 1441 if (i == 0) { 1442 tcg_op_remove(ctx->tcg, op); 1443 return true; 1444 } 1445 if (i > 0) { 1446 op->opc = INDEX_op_br; 1447 op->args[0] = op->args[3]; 1448 finish_ebb(ctx); 1449 } else { 1450 finish_bb(ctx); 1451 } 1452 return true; 1453 } 1454 1455 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1456 { 1457 TCGCond cond; 1458 TCGArg label; 1459 int i, inv = 0; 1460 1461 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1462 cond = op->args[4]; 1463 label = op->args[5]; 1464 if (i >= 0) { 1465 goto do_brcond_const; 1466 } 1467 1468 switch (cond) { 1469 case TCG_COND_LT: 1470 case TCG_COND_GE: 1471 /* 1472 * Simplify LT/GE comparisons vs zero to a single compare 1473 * vs the high word of the input. 1474 */ 1475 if (arg_is_const_val(op->args[2], 0) && 1476 arg_is_const_val(op->args[3], 0)) { 1477 goto do_brcond_high; 1478 } 1479 break; 1480 1481 case TCG_COND_NE: 1482 inv = 1; 1483 QEMU_FALLTHROUGH; 1484 case TCG_COND_EQ: 1485 /* 1486 * Simplify EQ/NE comparisons where one of the pairs 1487 * can be simplified. 1488 */ 1489 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1490 op->args[2], cond); 1491 switch (i ^ inv) { 1492 case 0: 1493 goto do_brcond_const; 1494 case 1: 1495 goto do_brcond_high; 1496 } 1497 1498 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1499 op->args[3], cond); 1500 switch (i ^ inv) { 1501 case 0: 1502 goto do_brcond_const; 1503 case 1: 1504 goto do_brcond_low; 1505 } 1506 break; 1507 1508 case TCG_COND_TSTEQ: 1509 case TCG_COND_TSTNE: 1510 if (arg_is_const_val(op->args[2], 0)) { 1511 goto do_brcond_high; 1512 } 1513 if (arg_is_const_val(op->args[3], 0)) { 1514 goto do_brcond_low; 1515 } 1516 break; 1517 1518 default: 1519 break; 1520 1521 do_brcond_low: 1522 op->opc = INDEX_op_brcond_i32; 1523 op->args[1] = op->args[2]; 1524 op->args[2] = cond; 1525 op->args[3] = label; 1526 return fold_brcond(ctx, op); 1527 1528 do_brcond_high: 1529 op->opc = INDEX_op_brcond_i32; 1530 op->args[0] = op->args[1]; 1531 op->args[1] = op->args[3]; 1532 op->args[2] = cond; 1533 op->args[3] = label; 1534 return fold_brcond(ctx, op); 1535 1536 do_brcond_const: 1537 if (i == 0) { 1538 tcg_op_remove(ctx->tcg, op); 1539 return true; 1540 } 1541 op->opc = INDEX_op_br; 1542 op->args[0] = label; 1543 finish_ebb(ctx); 1544 return true; 1545 } 1546 1547 finish_bb(ctx); 1548 return true; 1549 } 1550 1551 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1552 { 1553 uint64_t z_mask, s_mask, sign; 1554 TempOptInfo *t1 = arg_info(op->args[1]); 1555 1556 if (ti_is_const(t1)) { 1557 return tcg_opt_gen_movi(ctx, op, op->args[0], 1558 do_constant_folding(op->opc, ctx->type, 1559 ti_const_val(t1), 1560 op->args[2])); 1561 } 1562 1563 z_mask = t1->z_mask; 1564 switch (op->opc) { 1565 case INDEX_op_bswap16_i32: 1566 case INDEX_op_bswap16_i64: 1567 z_mask = bswap16(z_mask); 1568 sign = INT16_MIN; 1569 break; 1570 case INDEX_op_bswap32_i32: 1571 case INDEX_op_bswap32_i64: 1572 z_mask = bswap32(z_mask); 1573 sign = INT32_MIN; 1574 break; 1575 case INDEX_op_bswap64_i64: 1576 z_mask = bswap64(z_mask); 1577 sign = INT64_MIN; 1578 break; 1579 default: 1580 g_assert_not_reached(); 1581 } 1582 1583 s_mask = 0; 1584 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1585 case TCG_BSWAP_OZ: 1586 break; 1587 case TCG_BSWAP_OS: 1588 /* If the sign bit may be 1, force all the bits above to 1. */ 1589 if (z_mask & sign) { 1590 z_mask |= sign; 1591 } 1592 /* The value and therefore s_mask is explicitly sign-extended. */ 1593 s_mask = sign; 1594 break; 1595 default: 1596 /* The high bits are undefined: force all bits above the sign to 1. */ 1597 z_mask |= sign << 1; 1598 break; 1599 } 1600 1601 return fold_masks_zs(ctx, op, z_mask, s_mask); 1602 } 1603 1604 static bool fold_call(OptContext *ctx, TCGOp *op) 1605 { 1606 TCGContext *s = ctx->tcg; 1607 int nb_oargs = TCGOP_CALLO(op); 1608 int nb_iargs = TCGOP_CALLI(op); 1609 int flags, i; 1610 1611 init_arguments(ctx, op, nb_oargs + nb_iargs); 1612 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1613 1614 /* If the function reads or writes globals, reset temp data. */ 1615 flags = tcg_call_flags(op); 1616 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1617 int nb_globals = s->nb_globals; 1618 1619 for (i = 0; i < nb_globals; i++) { 1620 if (test_bit(i, ctx->temps_used.l)) { 1621 reset_ts(ctx, &ctx->tcg->temps[i]); 1622 } 1623 } 1624 } 1625 1626 /* If the function has side effects, reset mem data. */ 1627 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1628 remove_mem_copy_all(ctx); 1629 } 1630 1631 /* Reset temp data for outputs. */ 1632 for (i = 0; i < nb_oargs; i++) { 1633 reset_temp(ctx, op->args[i]); 1634 } 1635 1636 /* Stop optimizing MB across calls. */ 1637 ctx->prev_mb = NULL; 1638 return true; 1639 } 1640 1641 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op) 1642 { 1643 /* Canonicalize the comparison to put immediate second. */ 1644 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1645 op->args[3] = tcg_swap_cond(op->args[3]); 1646 } 1647 return finish_folding(ctx, op); 1648 } 1649 1650 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op) 1651 { 1652 /* If true and false values are the same, eliminate the cmp. */ 1653 if (args_are_copies(op->args[3], op->args[4])) { 1654 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1655 } 1656 1657 /* Canonicalize the comparison to put immediate second. */ 1658 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1659 op->args[5] = tcg_swap_cond(op->args[5]); 1660 } 1661 /* 1662 * Canonicalize the "false" input reg to match the destination, 1663 * so that the tcg backend can implement "move if true". 1664 */ 1665 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1666 op->args[5] = tcg_invert_cond(op->args[5]); 1667 } 1668 return finish_folding(ctx, op); 1669 } 1670 1671 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1672 { 1673 uint64_t z_mask, s_mask; 1674 TempOptInfo *t1 = arg_info(op->args[1]); 1675 TempOptInfo *t2 = arg_info(op->args[2]); 1676 1677 if (ti_is_const(t1)) { 1678 uint64_t t = ti_const_val(t1); 1679 1680 if (t != 0) { 1681 t = do_constant_folding(op->opc, ctx->type, t, 0); 1682 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1683 } 1684 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1685 } 1686 1687 switch (ctx->type) { 1688 case TCG_TYPE_I32: 1689 z_mask = 31; 1690 break; 1691 case TCG_TYPE_I64: 1692 z_mask = 63; 1693 break; 1694 default: 1695 g_assert_not_reached(); 1696 } 1697 s_mask = ~z_mask; 1698 z_mask |= t2->z_mask; 1699 s_mask &= t2->s_mask; 1700 1701 return fold_masks_zs(ctx, op, z_mask, s_mask); 1702 } 1703 1704 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1705 { 1706 uint64_t z_mask; 1707 1708 if (fold_const1(ctx, op)) { 1709 return true; 1710 } 1711 1712 switch (ctx->type) { 1713 case TCG_TYPE_I32: 1714 z_mask = 32 | 31; 1715 break; 1716 case TCG_TYPE_I64: 1717 z_mask = 64 | 63; 1718 break; 1719 default: 1720 g_assert_not_reached(); 1721 } 1722 return fold_masks_z(ctx, op, z_mask); 1723 } 1724 1725 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1726 { 1727 TempOptInfo *t1 = arg_info(op->args[1]); 1728 TempOptInfo *t2 = arg_info(op->args[2]); 1729 int ofs = op->args[3]; 1730 int len = op->args[4]; 1731 int width = 8 * tcg_type_size(ctx->type); 1732 uint64_t z_mask, s_mask; 1733 1734 if (ti_is_const(t1) && ti_is_const(t2)) { 1735 return tcg_opt_gen_movi(ctx, op, op->args[0], 1736 deposit64(ti_const_val(t1), ofs, len, 1737 ti_const_val(t2))); 1738 } 1739 1740 /* Inserting a value into zero at offset 0. */ 1741 if (ti_is_const_val(t1, 0) && ofs == 0) { 1742 uint64_t mask = MAKE_64BIT_MASK(0, len); 1743 1744 op->opc = INDEX_op_and; 1745 op->args[1] = op->args[2]; 1746 op->args[2] = arg_new_constant(ctx, mask); 1747 return fold_and(ctx, op); 1748 } 1749 1750 /* Inserting zero into a value. */ 1751 if (ti_is_const_val(t2, 0)) { 1752 uint64_t mask = deposit64(-1, ofs, len, 0); 1753 1754 op->opc = INDEX_op_and; 1755 op->args[2] = arg_new_constant(ctx, mask); 1756 return fold_and(ctx, op); 1757 } 1758 1759 /* The s_mask from the top portion of the deposit is still valid. */ 1760 if (ofs + len == width) { 1761 s_mask = t2->s_mask << ofs; 1762 } else { 1763 s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len); 1764 } 1765 1766 z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask); 1767 return fold_masks_zs(ctx, op, z_mask, s_mask); 1768 } 1769 1770 static bool fold_divide(OptContext *ctx, TCGOp *op) 1771 { 1772 if (fold_const2(ctx, op) || 1773 fold_xi_to_x(ctx, op, 1)) { 1774 return true; 1775 } 1776 return finish_folding(ctx, op); 1777 } 1778 1779 static bool fold_dup(OptContext *ctx, TCGOp *op) 1780 { 1781 if (arg_is_const(op->args[1])) { 1782 uint64_t t = arg_info(op->args[1])->val; 1783 t = dup_const(TCGOP_VECE(op), t); 1784 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1785 } 1786 return finish_folding(ctx, op); 1787 } 1788 1789 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1790 { 1791 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1792 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1793 arg_info(op->args[2])->val); 1794 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1795 } 1796 1797 if (args_are_copies(op->args[1], op->args[2])) { 1798 op->opc = INDEX_op_dup_vec; 1799 TCGOP_VECE(op) = MO_32; 1800 } 1801 return finish_folding(ctx, op); 1802 } 1803 1804 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1805 { 1806 uint64_t s_mask; 1807 1808 if (fold_const2_commutative(ctx, op) || 1809 fold_xi_to_x(ctx, op, -1) || 1810 fold_xi_to_not(ctx, op, 0)) { 1811 return true; 1812 } 1813 1814 s_mask = arg_info(op->args[1])->s_mask 1815 & arg_info(op->args[2])->s_mask; 1816 return fold_masks_s(ctx, op, s_mask); 1817 } 1818 1819 static bool fold_extract(OptContext *ctx, TCGOp *op) 1820 { 1821 uint64_t z_mask_old, z_mask; 1822 TempOptInfo *t1 = arg_info(op->args[1]); 1823 int pos = op->args[2]; 1824 int len = op->args[3]; 1825 1826 if (ti_is_const(t1)) { 1827 return tcg_opt_gen_movi(ctx, op, op->args[0], 1828 extract64(ti_const_val(t1), pos, len)); 1829 } 1830 1831 z_mask_old = t1->z_mask; 1832 z_mask = extract64(z_mask_old, pos, len); 1833 if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) { 1834 return true; 1835 } 1836 1837 return fold_masks_z(ctx, op, z_mask); 1838 } 1839 1840 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1841 { 1842 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1843 uint64_t v1 = arg_info(op->args[1])->val; 1844 uint64_t v2 = arg_info(op->args[2])->val; 1845 int shr = op->args[3]; 1846 1847 if (op->opc == INDEX_op_extract2_i64) { 1848 v1 >>= shr; 1849 v2 <<= 64 - shr; 1850 } else { 1851 v1 = (uint32_t)v1 >> shr; 1852 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1853 } 1854 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1855 } 1856 return finish_folding(ctx, op); 1857 } 1858 1859 static bool fold_exts(OptContext *ctx, TCGOp *op) 1860 { 1861 uint64_t s_mask, z_mask; 1862 TempOptInfo *t1; 1863 1864 if (fold_const1(ctx, op)) { 1865 return true; 1866 } 1867 1868 t1 = arg_info(op->args[1]); 1869 z_mask = t1->z_mask; 1870 s_mask = t1->s_mask; 1871 1872 switch (op->opc) { 1873 case INDEX_op_ext_i32_i64: 1874 s_mask |= INT32_MIN; 1875 z_mask = (int32_t)z_mask; 1876 break; 1877 default: 1878 g_assert_not_reached(); 1879 } 1880 return fold_masks_zs(ctx, op, z_mask, s_mask); 1881 } 1882 1883 static bool fold_extu(OptContext *ctx, TCGOp *op) 1884 { 1885 uint64_t z_mask; 1886 1887 if (fold_const1(ctx, op)) { 1888 return true; 1889 } 1890 1891 z_mask = arg_info(op->args[1])->z_mask; 1892 switch (op->opc) { 1893 case INDEX_op_extrl_i64_i32: 1894 case INDEX_op_extu_i32_i64: 1895 z_mask = (uint32_t)z_mask; 1896 break; 1897 case INDEX_op_extrh_i64_i32: 1898 z_mask >>= 32; 1899 break; 1900 default: 1901 g_assert_not_reached(); 1902 } 1903 return fold_masks_z(ctx, op, z_mask); 1904 } 1905 1906 static bool fold_mb(OptContext *ctx, TCGOp *op) 1907 { 1908 /* Eliminate duplicate and redundant fence instructions. */ 1909 if (ctx->prev_mb) { 1910 /* 1911 * Merge two barriers of the same type into one, 1912 * or a weaker barrier into a stronger one, 1913 * or two weaker barriers into a stronger one. 1914 * mb X; mb Y => mb X|Y 1915 * mb; strl => mb; st 1916 * ldaq; mb => ld; mb 1917 * ldaq; strl => ld; mb; st 1918 * Other combinations are also merged into a strong 1919 * barrier. This is stricter than specified but for 1920 * the purposes of TCG is better than not optimizing. 1921 */ 1922 ctx->prev_mb->args[0] |= op->args[0]; 1923 tcg_op_remove(ctx->tcg, op); 1924 } else { 1925 ctx->prev_mb = op; 1926 } 1927 return true; 1928 } 1929 1930 static bool fold_mov(OptContext *ctx, TCGOp *op) 1931 { 1932 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1933 } 1934 1935 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1936 { 1937 uint64_t z_mask, s_mask; 1938 TempOptInfo *tt, *ft; 1939 int i; 1940 1941 /* If true and false values are the same, eliminate the cmp. */ 1942 if (args_are_copies(op->args[3], op->args[4])) { 1943 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]); 1944 } 1945 1946 /* 1947 * Canonicalize the "false" input reg to match the destination reg so 1948 * that the tcg backend can implement a "move if true" operation. 1949 */ 1950 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1951 op->args[5] = tcg_invert_cond(op->args[5]); 1952 } 1953 1954 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1955 &op->args[2], &op->args[5]); 1956 if (i >= 0) { 1957 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1958 } 1959 1960 tt = arg_info(op->args[3]); 1961 ft = arg_info(op->args[4]); 1962 z_mask = tt->z_mask | ft->z_mask; 1963 s_mask = tt->s_mask & ft->s_mask; 1964 1965 if (ti_is_const(tt) && ti_is_const(ft)) { 1966 uint64_t tv = ti_const_val(tt); 1967 uint64_t fv = ti_const_val(ft); 1968 TCGOpcode opc, negopc = 0; 1969 TCGCond cond = op->args[5]; 1970 1971 switch (ctx->type) { 1972 case TCG_TYPE_I32: 1973 opc = INDEX_op_setcond_i32; 1974 if (TCG_TARGET_HAS_negsetcond_i32) { 1975 negopc = INDEX_op_negsetcond_i32; 1976 } 1977 tv = (int32_t)tv; 1978 fv = (int32_t)fv; 1979 break; 1980 case TCG_TYPE_I64: 1981 opc = INDEX_op_setcond_i64; 1982 if (TCG_TARGET_HAS_negsetcond_i64) { 1983 negopc = INDEX_op_negsetcond_i64; 1984 } 1985 break; 1986 default: 1987 g_assert_not_reached(); 1988 } 1989 1990 if (tv == 1 && fv == 0) { 1991 op->opc = opc; 1992 op->args[3] = cond; 1993 } else if (fv == 1 && tv == 0) { 1994 op->opc = opc; 1995 op->args[3] = tcg_invert_cond(cond); 1996 } else if (negopc) { 1997 if (tv == -1 && fv == 0) { 1998 op->opc = negopc; 1999 op->args[3] = cond; 2000 } else if (fv == -1 && tv == 0) { 2001 op->opc = negopc; 2002 op->args[3] = tcg_invert_cond(cond); 2003 } 2004 } 2005 } 2006 2007 return fold_masks_zs(ctx, op, z_mask, s_mask); 2008 } 2009 2010 static bool fold_mul(OptContext *ctx, TCGOp *op) 2011 { 2012 if (fold_const2(ctx, op) || 2013 fold_xi_to_i(ctx, op, 0) || 2014 fold_xi_to_x(ctx, op, 1)) { 2015 return true; 2016 } 2017 return finish_folding(ctx, op); 2018 } 2019 2020 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 2021 { 2022 if (fold_const2_commutative(ctx, op) || 2023 fold_xi_to_i(ctx, op, 0)) { 2024 return true; 2025 } 2026 return finish_folding(ctx, op); 2027 } 2028 2029 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 2030 { 2031 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 2032 2033 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 2034 uint64_t a = arg_info(op->args[2])->val; 2035 uint64_t b = arg_info(op->args[3])->val; 2036 uint64_t h, l; 2037 TCGArg rl, rh; 2038 TCGOp *op2; 2039 2040 switch (op->opc) { 2041 case INDEX_op_mulu2_i32: 2042 l = (uint64_t)(uint32_t)a * (uint32_t)b; 2043 h = (int32_t)(l >> 32); 2044 l = (int32_t)l; 2045 break; 2046 case INDEX_op_muls2_i32: 2047 l = (int64_t)(int32_t)a * (int32_t)b; 2048 h = l >> 32; 2049 l = (int32_t)l; 2050 break; 2051 case INDEX_op_mulu2_i64: 2052 mulu64(&l, &h, a, b); 2053 break; 2054 case INDEX_op_muls2_i64: 2055 muls64(&l, &h, a, b); 2056 break; 2057 default: 2058 g_assert_not_reached(); 2059 } 2060 2061 rl = op->args[0]; 2062 rh = op->args[1]; 2063 2064 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 2065 op2 = opt_insert_before(ctx, op, 0, 2); 2066 2067 tcg_opt_gen_movi(ctx, op, rl, l); 2068 tcg_opt_gen_movi(ctx, op2, rh, h); 2069 return true; 2070 } 2071 return finish_folding(ctx, op); 2072 } 2073 2074 static bool fold_nand(OptContext *ctx, TCGOp *op) 2075 { 2076 uint64_t s_mask; 2077 2078 if (fold_const2_commutative(ctx, op) || 2079 fold_xi_to_not(ctx, op, -1)) { 2080 return true; 2081 } 2082 2083 s_mask = arg_info(op->args[1])->s_mask 2084 & arg_info(op->args[2])->s_mask; 2085 return fold_masks_s(ctx, op, s_mask); 2086 } 2087 2088 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 2089 { 2090 /* Set to 1 all bits to the left of the rightmost. */ 2091 uint64_t z_mask = arg_info(op->args[1])->z_mask; 2092 z_mask = -(z_mask & -z_mask); 2093 2094 return fold_masks_z(ctx, op, z_mask); 2095 } 2096 2097 static bool fold_neg(OptContext *ctx, TCGOp *op) 2098 { 2099 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2100 } 2101 2102 static bool fold_nor(OptContext *ctx, TCGOp *op) 2103 { 2104 uint64_t s_mask; 2105 2106 if (fold_const2_commutative(ctx, op) || 2107 fold_xi_to_not(ctx, op, 0)) { 2108 return true; 2109 } 2110 2111 s_mask = arg_info(op->args[1])->s_mask 2112 & arg_info(op->args[2])->s_mask; 2113 return fold_masks_s(ctx, op, s_mask); 2114 } 2115 2116 static bool fold_not(OptContext *ctx, TCGOp *op) 2117 { 2118 if (fold_const1(ctx, op)) { 2119 return true; 2120 } 2121 return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask); 2122 } 2123 2124 static bool fold_or(OptContext *ctx, TCGOp *op) 2125 { 2126 uint64_t z_mask, s_mask; 2127 TempOptInfo *t1, *t2; 2128 2129 if (fold_const2_commutative(ctx, op) || 2130 fold_xi_to_x(ctx, op, 0) || 2131 fold_xx_to_x(ctx, op)) { 2132 return true; 2133 } 2134 2135 t1 = arg_info(op->args[1]); 2136 t2 = arg_info(op->args[2]); 2137 z_mask = t1->z_mask | t2->z_mask; 2138 s_mask = t1->s_mask & t2->s_mask; 2139 return fold_masks_zs(ctx, op, z_mask, s_mask); 2140 } 2141 2142 static bool fold_orc(OptContext *ctx, TCGOp *op) 2143 { 2144 uint64_t s_mask; 2145 2146 if (fold_const2(ctx, op) || 2147 fold_xx_to_i(ctx, op, -1) || 2148 fold_xi_to_x(ctx, op, -1) || 2149 fold_ix_to_not(ctx, op, 0)) { 2150 return true; 2151 } 2152 2153 s_mask = arg_info(op->args[1])->s_mask 2154 & arg_info(op->args[2])->s_mask; 2155 return fold_masks_s(ctx, op, s_mask); 2156 } 2157 2158 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op) 2159 { 2160 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2161 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2162 MemOp mop = get_memop(oi); 2163 int width = 8 * memop_size(mop); 2164 uint64_t z_mask = -1, s_mask = 0; 2165 2166 if (width < 64) { 2167 if (mop & MO_SIGN) { 2168 s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1)); 2169 } else { 2170 z_mask = MAKE_64BIT_MASK(0, width); 2171 } 2172 } 2173 2174 /* Opcodes that touch guest memory stop the mb optimization. */ 2175 ctx->prev_mb = NULL; 2176 2177 return fold_masks_zs(ctx, op, z_mask, s_mask); 2178 } 2179 2180 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op) 2181 { 2182 /* Opcodes that touch guest memory stop the mb optimization. */ 2183 ctx->prev_mb = NULL; 2184 return finish_folding(ctx, op); 2185 } 2186 2187 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2188 { 2189 /* Opcodes that touch guest memory stop the mb optimization. */ 2190 ctx->prev_mb = NULL; 2191 return true; 2192 } 2193 2194 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2195 { 2196 if (fold_const2(ctx, op) || 2197 fold_xx_to_i(ctx, op, 0)) { 2198 return true; 2199 } 2200 return finish_folding(ctx, op); 2201 } 2202 2203 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */ 2204 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg) 2205 { 2206 uint64_t a_zmask, b_val; 2207 TCGCond cond; 2208 2209 if (!arg_is_const(op->args[2])) { 2210 return false; 2211 } 2212 2213 a_zmask = arg_info(op->args[1])->z_mask; 2214 b_val = arg_info(op->args[2])->val; 2215 cond = op->args[3]; 2216 2217 if (ctx->type == TCG_TYPE_I32) { 2218 a_zmask = (uint32_t)a_zmask; 2219 b_val = (uint32_t)b_val; 2220 } 2221 2222 /* 2223 * A with only low bits set vs B with high bits set means that A < B. 2224 */ 2225 if (a_zmask < b_val) { 2226 bool inv = false; 2227 2228 switch (cond) { 2229 case TCG_COND_NE: 2230 case TCG_COND_LEU: 2231 case TCG_COND_LTU: 2232 inv = true; 2233 /* fall through */ 2234 case TCG_COND_GTU: 2235 case TCG_COND_GEU: 2236 case TCG_COND_EQ: 2237 return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv); 2238 default: 2239 break; 2240 } 2241 } 2242 2243 /* 2244 * A with only lsb set is already boolean. 2245 */ 2246 if (a_zmask <= 1) { 2247 bool convert = false; 2248 bool inv = false; 2249 2250 switch (cond) { 2251 case TCG_COND_EQ: 2252 inv = true; 2253 /* fall through */ 2254 case TCG_COND_NE: 2255 convert = (b_val == 0); 2256 break; 2257 case TCG_COND_LTU: 2258 case TCG_COND_TSTEQ: 2259 inv = true; 2260 /* fall through */ 2261 case TCG_COND_GEU: 2262 case TCG_COND_TSTNE: 2263 convert = (b_val == 1); 2264 break; 2265 default: 2266 break; 2267 } 2268 if (convert) { 2269 TCGOpcode xor_opc, neg_opc; 2270 2271 if (!inv && !neg) { 2272 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 2273 } 2274 2275 switch (ctx->type) { 2276 case TCG_TYPE_I32: 2277 neg_opc = INDEX_op_neg_i32; 2278 xor_opc = INDEX_op_xor_i32; 2279 break; 2280 case TCG_TYPE_I64: 2281 neg_opc = INDEX_op_neg_i64; 2282 xor_opc = INDEX_op_xor_i64; 2283 break; 2284 default: 2285 g_assert_not_reached(); 2286 } 2287 2288 if (!inv) { 2289 op->opc = neg_opc; 2290 } else if (neg) { 2291 op->opc = INDEX_op_add; 2292 op->args[2] = arg_new_constant(ctx, -1); 2293 } else { 2294 op->opc = xor_opc; 2295 op->args[2] = arg_new_constant(ctx, 1); 2296 } 2297 return -1; 2298 } 2299 } 2300 return 0; 2301 } 2302 2303 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2304 { 2305 TCGOpcode xor_opc, neg_opc, shr_opc; 2306 TCGOpcode uext_opc = 0, sext_opc = 0; 2307 TCGCond cond = op->args[3]; 2308 TCGArg ret, src1, src2; 2309 TCGOp *op2; 2310 uint64_t val; 2311 int sh; 2312 bool inv; 2313 2314 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2315 return; 2316 } 2317 2318 src2 = op->args[2]; 2319 val = arg_info(src2)->val; 2320 if (!is_power_of_2(val)) { 2321 return; 2322 } 2323 sh = ctz64(val); 2324 2325 switch (ctx->type) { 2326 case TCG_TYPE_I32: 2327 xor_opc = INDEX_op_xor_i32; 2328 shr_opc = INDEX_op_shr_i32; 2329 neg_opc = INDEX_op_neg_i32; 2330 if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) { 2331 uext_opc = INDEX_op_extract_i32; 2332 } 2333 if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) { 2334 sext_opc = INDEX_op_sextract_i32; 2335 } 2336 break; 2337 case TCG_TYPE_I64: 2338 xor_opc = INDEX_op_xor_i64; 2339 shr_opc = INDEX_op_shr_i64; 2340 neg_opc = INDEX_op_neg_i64; 2341 if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) { 2342 uext_opc = INDEX_op_extract_i64; 2343 } 2344 if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) { 2345 sext_opc = INDEX_op_sextract_i64; 2346 } 2347 break; 2348 default: 2349 g_assert_not_reached(); 2350 } 2351 2352 ret = op->args[0]; 2353 src1 = op->args[1]; 2354 inv = cond == TCG_COND_TSTEQ; 2355 2356 if (sh && sext_opc && neg && !inv) { 2357 op->opc = sext_opc; 2358 op->args[1] = src1; 2359 op->args[2] = sh; 2360 op->args[3] = 1; 2361 return; 2362 } else if (sh && uext_opc) { 2363 op->opc = uext_opc; 2364 op->args[1] = src1; 2365 op->args[2] = sh; 2366 op->args[3] = 1; 2367 } else { 2368 if (sh) { 2369 op2 = opt_insert_before(ctx, op, shr_opc, 3); 2370 op2->args[0] = ret; 2371 op2->args[1] = src1; 2372 op2->args[2] = arg_new_constant(ctx, sh); 2373 src1 = ret; 2374 } 2375 op->opc = INDEX_op_and; 2376 op->args[1] = src1; 2377 op->args[2] = arg_new_constant(ctx, 1); 2378 } 2379 2380 if (neg && inv) { 2381 op2 = opt_insert_after(ctx, op, INDEX_op_add, 3); 2382 op2->args[0] = ret; 2383 op2->args[1] = ret; 2384 op2->args[2] = arg_new_constant(ctx, -1); 2385 } else if (inv) { 2386 op2 = opt_insert_after(ctx, op, xor_opc, 3); 2387 op2->args[0] = ret; 2388 op2->args[1] = ret; 2389 op2->args[2] = arg_new_constant(ctx, 1); 2390 } else if (neg) { 2391 op2 = opt_insert_after(ctx, op, neg_opc, 2); 2392 op2->args[0] = ret; 2393 op2->args[1] = ret; 2394 } 2395 } 2396 2397 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2398 { 2399 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2400 &op->args[2], &op->args[3]); 2401 if (i >= 0) { 2402 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2403 } 2404 2405 i = fold_setcond_zmask(ctx, op, false); 2406 if (i > 0) { 2407 return true; 2408 } 2409 if (i == 0) { 2410 fold_setcond_tst_pow2(ctx, op, false); 2411 } 2412 2413 return fold_masks_z(ctx, op, 1); 2414 } 2415 2416 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2417 { 2418 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2419 &op->args[2], &op->args[3]); 2420 if (i >= 0) { 2421 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2422 } 2423 2424 i = fold_setcond_zmask(ctx, op, true); 2425 if (i > 0) { 2426 return true; 2427 } 2428 if (i == 0) { 2429 fold_setcond_tst_pow2(ctx, op, true); 2430 } 2431 2432 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2433 return fold_masks_s(ctx, op, -1); 2434 } 2435 2436 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2437 { 2438 TCGCond cond; 2439 int i, inv = 0; 2440 2441 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2442 cond = op->args[5]; 2443 if (i >= 0) { 2444 goto do_setcond_const; 2445 } 2446 2447 switch (cond) { 2448 case TCG_COND_LT: 2449 case TCG_COND_GE: 2450 /* 2451 * Simplify LT/GE comparisons vs zero to a single compare 2452 * vs the high word of the input. 2453 */ 2454 if (arg_is_const_val(op->args[3], 0) && 2455 arg_is_const_val(op->args[4], 0)) { 2456 goto do_setcond_high; 2457 } 2458 break; 2459 2460 case TCG_COND_NE: 2461 inv = 1; 2462 QEMU_FALLTHROUGH; 2463 case TCG_COND_EQ: 2464 /* 2465 * Simplify EQ/NE comparisons where one of the pairs 2466 * can be simplified. 2467 */ 2468 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2469 op->args[3], cond); 2470 switch (i ^ inv) { 2471 case 0: 2472 goto do_setcond_const; 2473 case 1: 2474 goto do_setcond_high; 2475 } 2476 2477 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2478 op->args[4], cond); 2479 switch (i ^ inv) { 2480 case 0: 2481 goto do_setcond_const; 2482 case 1: 2483 goto do_setcond_low; 2484 } 2485 break; 2486 2487 case TCG_COND_TSTEQ: 2488 case TCG_COND_TSTNE: 2489 if (arg_is_const_val(op->args[3], 0)) { 2490 goto do_setcond_high; 2491 } 2492 if (arg_is_const_val(op->args[4], 0)) { 2493 goto do_setcond_low; 2494 } 2495 break; 2496 2497 default: 2498 break; 2499 2500 do_setcond_low: 2501 op->args[2] = op->args[3]; 2502 op->args[3] = cond; 2503 op->opc = INDEX_op_setcond_i32; 2504 return fold_setcond(ctx, op); 2505 2506 do_setcond_high: 2507 op->args[1] = op->args[2]; 2508 op->args[2] = op->args[4]; 2509 op->args[3] = cond; 2510 op->opc = INDEX_op_setcond_i32; 2511 return fold_setcond(ctx, op); 2512 } 2513 2514 return fold_masks_z(ctx, op, 1); 2515 2516 do_setcond_const: 2517 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2518 } 2519 2520 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2521 { 2522 uint64_t z_mask, s_mask, s_mask_old; 2523 TempOptInfo *t1 = arg_info(op->args[1]); 2524 int pos = op->args[2]; 2525 int len = op->args[3]; 2526 2527 if (ti_is_const(t1)) { 2528 return tcg_opt_gen_movi(ctx, op, op->args[0], 2529 sextract64(ti_const_val(t1), pos, len)); 2530 } 2531 2532 s_mask_old = t1->s_mask; 2533 s_mask = s_mask_old >> pos; 2534 s_mask |= -1ull << (len - 1); 2535 2536 if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) { 2537 return true; 2538 } 2539 2540 z_mask = sextract64(t1->z_mask, pos, len); 2541 return fold_masks_zs(ctx, op, z_mask, s_mask); 2542 } 2543 2544 static bool fold_shift(OptContext *ctx, TCGOp *op) 2545 { 2546 uint64_t s_mask, z_mask; 2547 TempOptInfo *t1, *t2; 2548 2549 if (fold_const2(ctx, op) || 2550 fold_ix_to_i(ctx, op, 0) || 2551 fold_xi_to_x(ctx, op, 0)) { 2552 return true; 2553 } 2554 2555 t1 = arg_info(op->args[1]); 2556 t2 = arg_info(op->args[2]); 2557 s_mask = t1->s_mask; 2558 z_mask = t1->z_mask; 2559 2560 if (ti_is_const(t2)) { 2561 int sh = ti_const_val(t2); 2562 2563 z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2564 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2565 2566 return fold_masks_zs(ctx, op, z_mask, s_mask); 2567 } 2568 2569 switch (op->opc) { 2570 CASE_OP_32_64(sar): 2571 /* 2572 * Arithmetic right shift will not reduce the number of 2573 * input sign repetitions. 2574 */ 2575 return fold_masks_s(ctx, op, s_mask); 2576 CASE_OP_32_64(shr): 2577 /* 2578 * If the sign bit is known zero, then logical right shift 2579 * will not reduce the number of input sign repetitions. 2580 */ 2581 if (~z_mask & -s_mask) { 2582 return fold_masks_s(ctx, op, s_mask); 2583 } 2584 break; 2585 default: 2586 break; 2587 } 2588 2589 return finish_folding(ctx, op); 2590 } 2591 2592 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2593 { 2594 TCGOpcode neg_op; 2595 bool have_neg; 2596 2597 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2598 return false; 2599 } 2600 2601 switch (ctx->type) { 2602 case TCG_TYPE_I32: 2603 neg_op = INDEX_op_neg_i32; 2604 have_neg = true; 2605 break; 2606 case TCG_TYPE_I64: 2607 neg_op = INDEX_op_neg_i64; 2608 have_neg = true; 2609 break; 2610 case TCG_TYPE_V64: 2611 case TCG_TYPE_V128: 2612 case TCG_TYPE_V256: 2613 neg_op = INDEX_op_neg_vec; 2614 have_neg = (TCG_TARGET_HAS_neg_vec && 2615 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2616 break; 2617 default: 2618 g_assert_not_reached(); 2619 } 2620 if (have_neg) { 2621 op->opc = neg_op; 2622 op->args[1] = op->args[2]; 2623 return fold_neg_no_const(ctx, op); 2624 } 2625 return false; 2626 } 2627 2628 /* We cannot as yet do_constant_folding with vectors. */ 2629 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2630 { 2631 if (fold_xx_to_i(ctx, op, 0) || 2632 fold_xi_to_x(ctx, op, 0) || 2633 fold_sub_to_neg(ctx, op)) { 2634 return true; 2635 } 2636 return finish_folding(ctx, op); 2637 } 2638 2639 static bool fold_sub(OptContext *ctx, TCGOp *op) 2640 { 2641 if (fold_const2(ctx, op) || 2642 fold_xx_to_i(ctx, op, 0) || 2643 fold_xi_to_x(ctx, op, 0) || 2644 fold_sub_to_neg(ctx, op)) { 2645 return true; 2646 } 2647 2648 /* Fold sub r,x,i to add r,x,-i */ 2649 if (arg_is_const(op->args[2])) { 2650 uint64_t val = arg_info(op->args[2])->val; 2651 2652 op->opc = INDEX_op_add; 2653 op->args[2] = arg_new_constant(ctx, -val); 2654 } 2655 return finish_folding(ctx, op); 2656 } 2657 2658 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2659 { 2660 return fold_addsub2(ctx, op, false); 2661 } 2662 2663 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2664 { 2665 uint64_t z_mask = -1, s_mask = 0; 2666 2667 /* We can't do any folding with a load, but we can record bits. */ 2668 switch (op->opc) { 2669 CASE_OP_32_64(ld8s): 2670 s_mask = INT8_MIN; 2671 break; 2672 CASE_OP_32_64(ld8u): 2673 z_mask = MAKE_64BIT_MASK(0, 8); 2674 break; 2675 CASE_OP_32_64(ld16s): 2676 s_mask = INT16_MIN; 2677 break; 2678 CASE_OP_32_64(ld16u): 2679 z_mask = MAKE_64BIT_MASK(0, 16); 2680 break; 2681 case INDEX_op_ld32s_i64: 2682 s_mask = INT32_MIN; 2683 break; 2684 case INDEX_op_ld32u_i64: 2685 z_mask = MAKE_64BIT_MASK(0, 32); 2686 break; 2687 default: 2688 g_assert_not_reached(); 2689 } 2690 return fold_masks_zs(ctx, op, z_mask, s_mask); 2691 } 2692 2693 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2694 { 2695 TCGTemp *dst, *src; 2696 intptr_t ofs; 2697 TCGType type; 2698 2699 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2700 return finish_folding(ctx, op); 2701 } 2702 2703 type = ctx->type; 2704 ofs = op->args[2]; 2705 dst = arg_temp(op->args[0]); 2706 src = find_mem_copy_for(ctx, type, ofs); 2707 if (src && src->base_type == type) { 2708 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2709 } 2710 2711 reset_ts(ctx, dst); 2712 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2713 return true; 2714 } 2715 2716 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2717 { 2718 intptr_t ofs = op->args[2]; 2719 intptr_t lm1; 2720 2721 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2722 remove_mem_copy_all(ctx); 2723 return true; 2724 } 2725 2726 switch (op->opc) { 2727 CASE_OP_32_64(st8): 2728 lm1 = 0; 2729 break; 2730 CASE_OP_32_64(st16): 2731 lm1 = 1; 2732 break; 2733 case INDEX_op_st32_i64: 2734 case INDEX_op_st_i32: 2735 lm1 = 3; 2736 break; 2737 case INDEX_op_st_i64: 2738 lm1 = 7; 2739 break; 2740 case INDEX_op_st_vec: 2741 lm1 = tcg_type_size(ctx->type) - 1; 2742 break; 2743 default: 2744 g_assert_not_reached(); 2745 } 2746 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2747 return true; 2748 } 2749 2750 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2751 { 2752 TCGTemp *src; 2753 intptr_t ofs, last; 2754 TCGType type; 2755 2756 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2757 return fold_tcg_st(ctx, op); 2758 } 2759 2760 src = arg_temp(op->args[0]); 2761 ofs = op->args[2]; 2762 type = ctx->type; 2763 2764 /* 2765 * Eliminate duplicate stores of a constant. 2766 * This happens frequently when the target ISA zero-extends. 2767 */ 2768 if (ts_is_const(src)) { 2769 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2770 if (src == prev) { 2771 tcg_op_remove(ctx->tcg, op); 2772 return true; 2773 } 2774 } 2775 2776 last = ofs + tcg_type_size(type) - 1; 2777 remove_mem_copy_in(ctx, ofs, last); 2778 record_mem_copy(ctx, type, src, ofs, last); 2779 return true; 2780 } 2781 2782 static bool fold_xor(OptContext *ctx, TCGOp *op) 2783 { 2784 uint64_t z_mask, s_mask; 2785 TempOptInfo *t1, *t2; 2786 2787 if (fold_const2_commutative(ctx, op) || 2788 fold_xx_to_i(ctx, op, 0) || 2789 fold_xi_to_x(ctx, op, 0) || 2790 fold_xi_to_not(ctx, op, -1)) { 2791 return true; 2792 } 2793 2794 t1 = arg_info(op->args[1]); 2795 t2 = arg_info(op->args[2]); 2796 z_mask = t1->z_mask | t2->z_mask; 2797 s_mask = t1->s_mask & t2->s_mask; 2798 return fold_masks_zs(ctx, op, z_mask, s_mask); 2799 } 2800 2801 /* Propagate constants and copies, fold constant expressions. */ 2802 void tcg_optimize(TCGContext *s) 2803 { 2804 int nb_temps, i; 2805 TCGOp *op, *op_next; 2806 OptContext ctx = { .tcg = s }; 2807 2808 QSIMPLEQ_INIT(&ctx.mem_free); 2809 2810 /* Array VALS has an element for each temp. 2811 If this temp holds a constant then its value is kept in VALS' element. 2812 If this temp is a copy of other ones then the other copies are 2813 available through the doubly linked circular list. */ 2814 2815 nb_temps = s->nb_temps; 2816 for (i = 0; i < nb_temps; ++i) { 2817 s->temps[i].state_ptr = NULL; 2818 } 2819 2820 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2821 TCGOpcode opc = op->opc; 2822 const TCGOpDef *def; 2823 bool done = false; 2824 2825 /* Calls are special. */ 2826 if (opc == INDEX_op_call) { 2827 fold_call(&ctx, op); 2828 continue; 2829 } 2830 2831 def = &tcg_op_defs[opc]; 2832 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2833 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2834 2835 /* Pre-compute the type of the operation. */ 2836 ctx.type = TCGOP_TYPE(op); 2837 2838 /* 2839 * Process each opcode. 2840 * Sorted alphabetically by opcode as much as possible. 2841 */ 2842 switch (opc) { 2843 case INDEX_op_add: 2844 done = fold_add(&ctx, op); 2845 break; 2846 case INDEX_op_add_vec: 2847 done = fold_add_vec(&ctx, op); 2848 break; 2849 CASE_OP_32_64(add2): 2850 done = fold_add2(&ctx, op); 2851 break; 2852 case INDEX_op_and: 2853 case INDEX_op_and_vec: 2854 done = fold_and(&ctx, op); 2855 break; 2856 case INDEX_op_andc: 2857 case INDEX_op_andc_vec: 2858 done = fold_andc(&ctx, op); 2859 break; 2860 CASE_OP_32_64(brcond): 2861 done = fold_brcond(&ctx, op); 2862 break; 2863 case INDEX_op_brcond2_i32: 2864 done = fold_brcond2(&ctx, op); 2865 break; 2866 CASE_OP_32_64(bswap16): 2867 CASE_OP_32_64(bswap32): 2868 case INDEX_op_bswap64_i64: 2869 done = fold_bswap(&ctx, op); 2870 break; 2871 CASE_OP_32_64(clz): 2872 CASE_OP_32_64(ctz): 2873 done = fold_count_zeros(&ctx, op); 2874 break; 2875 CASE_OP_32_64(ctpop): 2876 done = fold_ctpop(&ctx, op); 2877 break; 2878 CASE_OP_32_64(deposit): 2879 done = fold_deposit(&ctx, op); 2880 break; 2881 CASE_OP_32_64(div): 2882 CASE_OP_32_64(divu): 2883 done = fold_divide(&ctx, op); 2884 break; 2885 case INDEX_op_dup_vec: 2886 done = fold_dup(&ctx, op); 2887 break; 2888 case INDEX_op_dup2_vec: 2889 done = fold_dup2(&ctx, op); 2890 break; 2891 CASE_OP_32_64_VEC(eqv): 2892 done = fold_eqv(&ctx, op); 2893 break; 2894 CASE_OP_32_64(extract): 2895 done = fold_extract(&ctx, op); 2896 break; 2897 CASE_OP_32_64(extract2): 2898 done = fold_extract2(&ctx, op); 2899 break; 2900 case INDEX_op_ext_i32_i64: 2901 done = fold_exts(&ctx, op); 2902 break; 2903 case INDEX_op_extu_i32_i64: 2904 case INDEX_op_extrl_i64_i32: 2905 case INDEX_op_extrh_i64_i32: 2906 done = fold_extu(&ctx, op); 2907 break; 2908 CASE_OP_32_64(ld8s): 2909 CASE_OP_32_64(ld8u): 2910 CASE_OP_32_64(ld16s): 2911 CASE_OP_32_64(ld16u): 2912 case INDEX_op_ld32s_i64: 2913 case INDEX_op_ld32u_i64: 2914 done = fold_tcg_ld(&ctx, op); 2915 break; 2916 case INDEX_op_ld_i32: 2917 case INDEX_op_ld_i64: 2918 case INDEX_op_ld_vec: 2919 done = fold_tcg_ld_memcopy(&ctx, op); 2920 break; 2921 CASE_OP_32_64(st8): 2922 CASE_OP_32_64(st16): 2923 case INDEX_op_st32_i64: 2924 done = fold_tcg_st(&ctx, op); 2925 break; 2926 case INDEX_op_st_i32: 2927 case INDEX_op_st_i64: 2928 case INDEX_op_st_vec: 2929 done = fold_tcg_st_memcopy(&ctx, op); 2930 break; 2931 case INDEX_op_mb: 2932 done = fold_mb(&ctx, op); 2933 break; 2934 case INDEX_op_mov: 2935 case INDEX_op_mov_vec: 2936 done = fold_mov(&ctx, op); 2937 break; 2938 CASE_OP_32_64(movcond): 2939 done = fold_movcond(&ctx, op); 2940 break; 2941 CASE_OP_32_64(mul): 2942 done = fold_mul(&ctx, op); 2943 break; 2944 CASE_OP_32_64(mulsh): 2945 CASE_OP_32_64(muluh): 2946 done = fold_mul_highpart(&ctx, op); 2947 break; 2948 CASE_OP_32_64(muls2): 2949 CASE_OP_32_64(mulu2): 2950 done = fold_multiply2(&ctx, op); 2951 break; 2952 CASE_OP_32_64_VEC(nand): 2953 done = fold_nand(&ctx, op); 2954 break; 2955 CASE_OP_32_64(neg): 2956 done = fold_neg(&ctx, op); 2957 break; 2958 CASE_OP_32_64_VEC(nor): 2959 done = fold_nor(&ctx, op); 2960 break; 2961 CASE_OP_32_64_VEC(not): 2962 done = fold_not(&ctx, op); 2963 break; 2964 CASE_OP_32_64_VEC(or): 2965 done = fold_or(&ctx, op); 2966 break; 2967 CASE_OP_32_64_VEC(orc): 2968 done = fold_orc(&ctx, op); 2969 break; 2970 case INDEX_op_qemu_ld_i32: 2971 done = fold_qemu_ld_1reg(&ctx, op); 2972 break; 2973 case INDEX_op_qemu_ld_i64: 2974 if (TCG_TARGET_REG_BITS == 64) { 2975 done = fold_qemu_ld_1reg(&ctx, op); 2976 break; 2977 } 2978 QEMU_FALLTHROUGH; 2979 case INDEX_op_qemu_ld_i128: 2980 done = fold_qemu_ld_2reg(&ctx, op); 2981 break; 2982 case INDEX_op_qemu_st8_i32: 2983 case INDEX_op_qemu_st_i32: 2984 case INDEX_op_qemu_st_i64: 2985 case INDEX_op_qemu_st_i128: 2986 done = fold_qemu_st(&ctx, op); 2987 break; 2988 CASE_OP_32_64(rem): 2989 CASE_OP_32_64(remu): 2990 done = fold_remainder(&ctx, op); 2991 break; 2992 CASE_OP_32_64(rotl): 2993 CASE_OP_32_64(rotr): 2994 CASE_OP_32_64(sar): 2995 CASE_OP_32_64(shl): 2996 CASE_OP_32_64(shr): 2997 done = fold_shift(&ctx, op); 2998 break; 2999 CASE_OP_32_64(setcond): 3000 done = fold_setcond(&ctx, op); 3001 break; 3002 CASE_OP_32_64(negsetcond): 3003 done = fold_negsetcond(&ctx, op); 3004 break; 3005 case INDEX_op_setcond2_i32: 3006 done = fold_setcond2(&ctx, op); 3007 break; 3008 case INDEX_op_cmp_vec: 3009 done = fold_cmp_vec(&ctx, op); 3010 break; 3011 case INDEX_op_cmpsel_vec: 3012 done = fold_cmpsel_vec(&ctx, op); 3013 break; 3014 case INDEX_op_bitsel_vec: 3015 done = fold_bitsel_vec(&ctx, op); 3016 break; 3017 CASE_OP_32_64(sextract): 3018 done = fold_sextract(&ctx, op); 3019 break; 3020 CASE_OP_32_64(sub): 3021 done = fold_sub(&ctx, op); 3022 break; 3023 case INDEX_op_sub_vec: 3024 done = fold_sub_vec(&ctx, op); 3025 break; 3026 CASE_OP_32_64(sub2): 3027 done = fold_sub2(&ctx, op); 3028 break; 3029 CASE_OP_32_64_VEC(xor): 3030 done = fold_xor(&ctx, op); 3031 break; 3032 case INDEX_op_set_label: 3033 case INDEX_op_br: 3034 case INDEX_op_exit_tb: 3035 case INDEX_op_goto_tb: 3036 case INDEX_op_goto_ptr: 3037 finish_ebb(&ctx); 3038 done = true; 3039 break; 3040 default: 3041 done = finish_folding(&ctx, op); 3042 break; 3043 } 3044 tcg_debug_assert(done); 3045 } 3046 } 3047