xref: /openbmc/qemu/tcg/optimize.c (revision 3949f365eb6e7c934831c65c67b729562846ede9)
1 /*
2  * Optimizations for Tiny Code Generator for QEMU
3  *
4  * Copyright (c) 2010 Samsung Electronics.
5  * Contributed by Kirill Batuzov <batuzovk@ispras.ru>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/int128.h"
28 #include "qemu/interval-tree.h"
29 #include "tcg/tcg-op-common.h"
30 #include "tcg-internal.h"
31 #include "tcg-has.h"
32 
33 #define CASE_OP_32_64(x)                        \
34         glue(glue(case INDEX_op_, x), _i32):    \
35         glue(glue(case INDEX_op_, x), _i64)
36 
37 #define CASE_OP_32_64_VEC(x)                    \
38         glue(glue(case INDEX_op_, x), _i32):    \
39         glue(glue(case INDEX_op_, x), _i64):    \
40         glue(glue(case INDEX_op_, x), _vec)
41 
42 typedef struct MemCopyInfo {
43     IntervalTreeNode itree;
44     QSIMPLEQ_ENTRY (MemCopyInfo) next;
45     TCGTemp *ts;
46     TCGType type;
47 } MemCopyInfo;
48 
49 typedef struct TempOptInfo {
50     bool is_const;
51     TCGTemp *prev_copy;
52     TCGTemp *next_copy;
53     QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy;
54     uint64_t val;
55     uint64_t z_mask;  /* mask bit is 0 if and only if value bit is 0 */
56     uint64_t s_mask;  /* mask bit is 1 if value bit matches msb */
57 } TempOptInfo;
58 
59 typedef struct OptContext {
60     TCGContext *tcg;
61     TCGOp *prev_mb;
62     TCGTempSet temps_used;
63 
64     IntervalTreeRoot mem_copy;
65     QSIMPLEQ_HEAD(, MemCopyInfo) mem_free;
66 
67     /* In flight values from optimization. */
68     TCGType type;
69 } OptContext;
70 
71 static inline TempOptInfo *ts_info(TCGTemp *ts)
72 {
73     return ts->state_ptr;
74 }
75 
76 static inline TempOptInfo *arg_info(TCGArg arg)
77 {
78     return ts_info(arg_temp(arg));
79 }
80 
81 static inline bool ti_is_const(TempOptInfo *ti)
82 {
83     return ti->is_const;
84 }
85 
86 static inline uint64_t ti_const_val(TempOptInfo *ti)
87 {
88     return ti->val;
89 }
90 
91 static inline bool ti_is_const_val(TempOptInfo *ti, uint64_t val)
92 {
93     return ti_is_const(ti) && ti_const_val(ti) == val;
94 }
95 
96 static inline bool ts_is_const(TCGTemp *ts)
97 {
98     return ti_is_const(ts_info(ts));
99 }
100 
101 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val)
102 {
103     return ti_is_const_val(ts_info(ts), val);
104 }
105 
106 static inline bool arg_is_const(TCGArg arg)
107 {
108     return ts_is_const(arg_temp(arg));
109 }
110 
111 static inline bool arg_is_const_val(TCGArg arg, uint64_t val)
112 {
113     return ts_is_const_val(arg_temp(arg), val);
114 }
115 
116 static inline bool ts_is_copy(TCGTemp *ts)
117 {
118     return ts_info(ts)->next_copy != ts;
119 }
120 
121 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b)
122 {
123     return a->kind < b->kind ? b : a;
124 }
125 
126 /* Initialize and activate a temporary.  */
127 static void init_ts_info(OptContext *ctx, TCGTemp *ts)
128 {
129     size_t idx = temp_idx(ts);
130     TempOptInfo *ti;
131 
132     if (test_bit(idx, ctx->temps_used.l)) {
133         return;
134     }
135     set_bit(idx, ctx->temps_used.l);
136 
137     ti = ts->state_ptr;
138     if (ti == NULL) {
139         ti = tcg_malloc(sizeof(TempOptInfo));
140         ts->state_ptr = ti;
141     }
142 
143     ti->next_copy = ts;
144     ti->prev_copy = ts;
145     QSIMPLEQ_INIT(&ti->mem_copy);
146     if (ts->kind == TEMP_CONST) {
147         ti->is_const = true;
148         ti->val = ts->val;
149         ti->z_mask = ts->val;
150         ti->s_mask = INT64_MIN >> clrsb64(ts->val);
151     } else {
152         ti->is_const = false;
153         ti->z_mask = -1;
154         ti->s_mask = 0;
155     }
156 }
157 
158 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l)
159 {
160     IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l);
161     return r ? container_of(r, MemCopyInfo, itree) : NULL;
162 }
163 
164 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l)
165 {
166     IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l);
167     return r ? container_of(r, MemCopyInfo, itree) : NULL;
168 }
169 
170 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc)
171 {
172     TCGTemp *ts = mc->ts;
173     TempOptInfo *ti = ts_info(ts);
174 
175     interval_tree_remove(&mc->itree, &ctx->mem_copy);
176     QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next);
177     QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next);
178 }
179 
180 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l)
181 {
182     while (true) {
183         MemCopyInfo *mc = mem_copy_first(ctx, s, l);
184         if (!mc) {
185             break;
186         }
187         remove_mem_copy(ctx, mc);
188     }
189 }
190 
191 static void remove_mem_copy_all(OptContext *ctx)
192 {
193     remove_mem_copy_in(ctx, 0, -1);
194     tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy));
195 }
196 
197 static TCGTemp *find_better_copy(TCGTemp *ts)
198 {
199     TCGTemp *i, *ret;
200 
201     /* If this is already readonly, we can't do better. */
202     if (temp_readonly(ts)) {
203         return ts;
204     }
205 
206     ret = ts;
207     for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) {
208         ret = cmp_better_copy(ret, i);
209     }
210     return ret;
211 }
212 
213 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts)
214 {
215     TempOptInfo *si = ts_info(src_ts);
216     TempOptInfo *di = ts_info(dst_ts);
217     MemCopyInfo *mc;
218 
219     QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) {
220         tcg_debug_assert(mc->ts == src_ts);
221         mc->ts = dst_ts;
222     }
223     QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy);
224 }
225 
226 /* Reset TEMP's state, possibly removing the temp for the list of copies.  */
227 static void reset_ts(OptContext *ctx, TCGTemp *ts)
228 {
229     TempOptInfo *ti = ts_info(ts);
230     TCGTemp *pts = ti->prev_copy;
231     TCGTemp *nts = ti->next_copy;
232     TempOptInfo *pi = ts_info(pts);
233     TempOptInfo *ni = ts_info(nts);
234 
235     ni->prev_copy = ti->prev_copy;
236     pi->next_copy = ti->next_copy;
237     ti->next_copy = ts;
238     ti->prev_copy = ts;
239     ti->is_const = false;
240     ti->z_mask = -1;
241     ti->s_mask = 0;
242 
243     if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) {
244         if (ts == nts) {
245             /* Last temp copy being removed, the mem copies die. */
246             MemCopyInfo *mc;
247             QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) {
248                 interval_tree_remove(&mc->itree, &ctx->mem_copy);
249             }
250             QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy);
251         } else {
252             move_mem_copies(find_better_copy(nts), ts);
253         }
254     }
255 }
256 
257 static void reset_temp(OptContext *ctx, TCGArg arg)
258 {
259     reset_ts(ctx, arg_temp(arg));
260 }
261 
262 static void record_mem_copy(OptContext *ctx, TCGType type,
263                             TCGTemp *ts, intptr_t start, intptr_t last)
264 {
265     MemCopyInfo *mc;
266     TempOptInfo *ti;
267 
268     mc = QSIMPLEQ_FIRST(&ctx->mem_free);
269     if (mc) {
270         QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next);
271     } else {
272         mc = tcg_malloc(sizeof(*mc));
273     }
274 
275     memset(mc, 0, sizeof(*mc));
276     mc->itree.start = start;
277     mc->itree.last = last;
278     mc->type = type;
279     interval_tree_insert(&mc->itree, &ctx->mem_copy);
280 
281     ts = find_better_copy(ts);
282     ti = ts_info(ts);
283     mc->ts = ts;
284     QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next);
285 }
286 
287 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2)
288 {
289     TCGTemp *i;
290 
291     if (ts1 == ts2) {
292         return true;
293     }
294 
295     if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) {
296         return false;
297     }
298 
299     for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) {
300         if (i == ts2) {
301             return true;
302         }
303     }
304 
305     return false;
306 }
307 
308 static bool args_are_copies(TCGArg arg1, TCGArg arg2)
309 {
310     return ts_are_copies(arg_temp(arg1), arg_temp(arg2));
311 }
312 
313 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s)
314 {
315     MemCopyInfo *mc;
316 
317     for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) {
318         if (mc->itree.start == s && mc->type == type) {
319             return find_better_copy(mc->ts);
320         }
321     }
322     return NULL;
323 }
324 
325 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val)
326 {
327     TCGType type = ctx->type;
328     TCGTemp *ts;
329 
330     if (type == TCG_TYPE_I32) {
331         val = (int32_t)val;
332     }
333 
334     ts = tcg_constant_internal(type, val);
335     init_ts_info(ctx, ts);
336 
337     return temp_arg(ts);
338 }
339 
340 static TCGArg arg_new_temp(OptContext *ctx)
341 {
342     TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB);
343     init_ts_info(ctx, ts);
344     return temp_arg(ts);
345 }
346 
347 static TCGOp *opt_insert_after(OptContext *ctx, TCGOp *op,
348                                TCGOpcode opc, unsigned narg)
349 {
350     return tcg_op_insert_after(ctx->tcg, op, opc, ctx->type, narg);
351 }
352 
353 static TCGOp *opt_insert_before(OptContext *ctx, TCGOp *op,
354                                 TCGOpcode opc, unsigned narg)
355 {
356     return tcg_op_insert_before(ctx->tcg, op, opc, ctx->type, narg);
357 }
358 
359 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src)
360 {
361     TCGTemp *dst_ts = arg_temp(dst);
362     TCGTemp *src_ts = arg_temp(src);
363     TempOptInfo *di;
364     TempOptInfo *si;
365     TCGOpcode new_op;
366 
367     if (ts_are_copies(dst_ts, src_ts)) {
368         tcg_op_remove(ctx->tcg, op);
369         return true;
370     }
371 
372     reset_ts(ctx, dst_ts);
373     di = ts_info(dst_ts);
374     si = ts_info(src_ts);
375 
376     switch (ctx->type) {
377     case TCG_TYPE_I32:
378     case TCG_TYPE_I64:
379         new_op = INDEX_op_mov;
380         break;
381     case TCG_TYPE_V64:
382     case TCG_TYPE_V128:
383     case TCG_TYPE_V256:
384         /* TCGOP_TYPE and TCGOP_VECE remain unchanged.  */
385         new_op = INDEX_op_mov_vec;
386         break;
387     default:
388         g_assert_not_reached();
389     }
390     op->opc = new_op;
391     op->args[0] = dst;
392     op->args[1] = src;
393 
394     di->z_mask = si->z_mask;
395     di->s_mask = si->s_mask;
396 
397     if (src_ts->type == dst_ts->type) {
398         TempOptInfo *ni = ts_info(si->next_copy);
399 
400         di->next_copy = si->next_copy;
401         di->prev_copy = src_ts;
402         ni->prev_copy = dst_ts;
403         si->next_copy = dst_ts;
404         di->is_const = si->is_const;
405         di->val = si->val;
406 
407         if (!QSIMPLEQ_EMPTY(&si->mem_copy)
408             && cmp_better_copy(src_ts, dst_ts) == dst_ts) {
409             move_mem_copies(dst_ts, src_ts);
410         }
411     }
412     return true;
413 }
414 
415 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op,
416                              TCGArg dst, uint64_t val)
417 {
418     /* Convert movi to mov with constant temp. */
419     return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val));
420 }
421 
422 static uint64_t do_constant_folding_2(TCGOpcode op, TCGType type,
423                                       uint64_t x, uint64_t y)
424 {
425     uint64_t l64, h64;
426 
427     switch (op) {
428     case INDEX_op_add:
429         return x + y;
430 
431     case INDEX_op_sub:
432         return x - y;
433 
434     case INDEX_op_mul:
435         return x * y;
436 
437     case INDEX_op_and:
438     case INDEX_op_and_vec:
439         return x & y;
440 
441     case INDEX_op_or:
442     case INDEX_op_or_vec:
443         return x | y;
444 
445     case INDEX_op_xor:
446     case INDEX_op_xor_vec:
447         return x ^ y;
448 
449     case INDEX_op_shl:
450         if (type == TCG_TYPE_I32) {
451             return (uint32_t)x << (y & 31);
452         }
453         return (uint64_t)x << (y & 63);
454 
455     case INDEX_op_shr:
456         if (type == TCG_TYPE_I32) {
457             return (uint32_t)x >> (y & 31);
458         }
459         return (uint64_t)x >> (y & 63);
460 
461     case INDEX_op_sar:
462         if (type == TCG_TYPE_I32) {
463             return (int32_t)x >> (y & 31);
464         }
465         return (int64_t)x >> (y & 63);
466 
467     case INDEX_op_rotr_i32:
468         return ror32(x, y & 31);
469 
470     case INDEX_op_rotr_i64:
471         return ror64(x, y & 63);
472 
473     case INDEX_op_rotl_i32:
474         return rol32(x, y & 31);
475 
476     case INDEX_op_rotl_i64:
477         return rol64(x, y & 63);
478 
479     case INDEX_op_not:
480     case INDEX_op_not_vec:
481         return ~x;
482 
483     case INDEX_op_neg:
484         return -x;
485 
486     case INDEX_op_andc:
487     case INDEX_op_andc_vec:
488         return x & ~y;
489 
490     case INDEX_op_orc:
491     case INDEX_op_orc_vec:
492         return x | ~y;
493 
494     case INDEX_op_eqv:
495     case INDEX_op_eqv_vec:
496         return ~(x ^ y);
497 
498     case INDEX_op_nand:
499     case INDEX_op_nand_vec:
500         return ~(x & y);
501 
502     case INDEX_op_nor:
503     case INDEX_op_nor_vec:
504         return ~(x | y);
505 
506     case INDEX_op_clz_i32:
507         return (uint32_t)x ? clz32(x) : y;
508 
509     case INDEX_op_clz_i64:
510         return x ? clz64(x) : y;
511 
512     case INDEX_op_ctz_i32:
513         return (uint32_t)x ? ctz32(x) : y;
514 
515     case INDEX_op_ctz_i64:
516         return x ? ctz64(x) : y;
517 
518     case INDEX_op_ctpop_i32:
519         return ctpop32(x);
520 
521     case INDEX_op_ctpop_i64:
522         return ctpop64(x);
523 
524     CASE_OP_32_64(bswap16):
525         x = bswap16(x);
526         return y & TCG_BSWAP_OS ? (int16_t)x : x;
527 
528     CASE_OP_32_64(bswap32):
529         x = bswap32(x);
530         return y & TCG_BSWAP_OS ? (int32_t)x : x;
531 
532     case INDEX_op_bswap64_i64:
533         return bswap64(x);
534 
535     case INDEX_op_ext_i32_i64:
536         return (int32_t)x;
537 
538     case INDEX_op_extu_i32_i64:
539     case INDEX_op_extrl_i64_i32:
540         return (uint32_t)x;
541 
542     case INDEX_op_extrh_i64_i32:
543         return (uint64_t)x >> 32;
544 
545     case INDEX_op_muluh:
546         if (type == TCG_TYPE_I32) {
547             return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32;
548         }
549         mulu64(&l64, &h64, x, y);
550         return h64;
551 
552     case INDEX_op_mulsh:
553         if (type == TCG_TYPE_I32) {
554             return ((int64_t)(int32_t)x * (int32_t)y) >> 32;
555         }
556         muls64(&l64, &h64, x, y);
557         return h64;
558 
559     case INDEX_op_divs:
560         /* Avoid crashing on divide by zero, otherwise undefined.  */
561         if (type == TCG_TYPE_I32) {
562             return (int32_t)x / ((int32_t)y ? : 1);
563         }
564         return (int64_t)x / ((int64_t)y ? : 1);
565 
566     case INDEX_op_divu:
567         if (type == TCG_TYPE_I32) {
568             return (uint32_t)x / ((uint32_t)y ? : 1);
569         }
570         return (uint64_t)x / ((uint64_t)y ? : 1);
571 
572     case INDEX_op_rems:
573         if (type == TCG_TYPE_I32) {
574             return (int32_t)x % ((int32_t)y ? : 1);
575         }
576         return (int64_t)x % ((int64_t)y ? : 1);
577 
578     case INDEX_op_remu:
579         if (type == TCG_TYPE_I32) {
580             return (uint32_t)x % ((uint32_t)y ? : 1);
581         }
582         return (uint64_t)x % ((uint64_t)y ? : 1);
583 
584     default:
585         g_assert_not_reached();
586     }
587 }
588 
589 static uint64_t do_constant_folding(TCGOpcode op, TCGType type,
590                                     uint64_t x, uint64_t y)
591 {
592     uint64_t res = do_constant_folding_2(op, type, x, y);
593     if (type == TCG_TYPE_I32) {
594         res = (int32_t)res;
595     }
596     return res;
597 }
598 
599 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c)
600 {
601     switch (c) {
602     case TCG_COND_EQ:
603         return x == y;
604     case TCG_COND_NE:
605         return x != y;
606     case TCG_COND_LT:
607         return (int32_t)x < (int32_t)y;
608     case TCG_COND_GE:
609         return (int32_t)x >= (int32_t)y;
610     case TCG_COND_LE:
611         return (int32_t)x <= (int32_t)y;
612     case TCG_COND_GT:
613         return (int32_t)x > (int32_t)y;
614     case TCG_COND_LTU:
615         return x < y;
616     case TCG_COND_GEU:
617         return x >= y;
618     case TCG_COND_LEU:
619         return x <= y;
620     case TCG_COND_GTU:
621         return x > y;
622     case TCG_COND_TSTEQ:
623         return (x & y) == 0;
624     case TCG_COND_TSTNE:
625         return (x & y) != 0;
626     case TCG_COND_ALWAYS:
627     case TCG_COND_NEVER:
628         break;
629     }
630     g_assert_not_reached();
631 }
632 
633 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c)
634 {
635     switch (c) {
636     case TCG_COND_EQ:
637         return x == y;
638     case TCG_COND_NE:
639         return x != y;
640     case TCG_COND_LT:
641         return (int64_t)x < (int64_t)y;
642     case TCG_COND_GE:
643         return (int64_t)x >= (int64_t)y;
644     case TCG_COND_LE:
645         return (int64_t)x <= (int64_t)y;
646     case TCG_COND_GT:
647         return (int64_t)x > (int64_t)y;
648     case TCG_COND_LTU:
649         return x < y;
650     case TCG_COND_GEU:
651         return x >= y;
652     case TCG_COND_LEU:
653         return x <= y;
654     case TCG_COND_GTU:
655         return x > y;
656     case TCG_COND_TSTEQ:
657         return (x & y) == 0;
658     case TCG_COND_TSTNE:
659         return (x & y) != 0;
660     case TCG_COND_ALWAYS:
661     case TCG_COND_NEVER:
662         break;
663     }
664     g_assert_not_reached();
665 }
666 
667 static int do_constant_folding_cond_eq(TCGCond c)
668 {
669     switch (c) {
670     case TCG_COND_GT:
671     case TCG_COND_LTU:
672     case TCG_COND_LT:
673     case TCG_COND_GTU:
674     case TCG_COND_NE:
675         return 0;
676     case TCG_COND_GE:
677     case TCG_COND_GEU:
678     case TCG_COND_LE:
679     case TCG_COND_LEU:
680     case TCG_COND_EQ:
681         return 1;
682     case TCG_COND_TSTEQ:
683     case TCG_COND_TSTNE:
684         return -1;
685     case TCG_COND_ALWAYS:
686     case TCG_COND_NEVER:
687         break;
688     }
689     g_assert_not_reached();
690 }
691 
692 /*
693  * Return -1 if the condition can't be simplified,
694  * and the result of the condition (0 or 1) if it can.
695  */
696 static int do_constant_folding_cond(TCGType type, TCGArg x,
697                                     TCGArg y, TCGCond c)
698 {
699     if (arg_is_const(x) && arg_is_const(y)) {
700         uint64_t xv = arg_info(x)->val;
701         uint64_t yv = arg_info(y)->val;
702 
703         switch (type) {
704         case TCG_TYPE_I32:
705             return do_constant_folding_cond_32(xv, yv, c);
706         case TCG_TYPE_I64:
707             return do_constant_folding_cond_64(xv, yv, c);
708         default:
709             /* Only scalar comparisons are optimizable */
710             return -1;
711         }
712     } else if (args_are_copies(x, y)) {
713         return do_constant_folding_cond_eq(c);
714     } else if (arg_is_const_val(y, 0)) {
715         switch (c) {
716         case TCG_COND_LTU:
717         case TCG_COND_TSTNE:
718             return 0;
719         case TCG_COND_GEU:
720         case TCG_COND_TSTEQ:
721             return 1;
722         default:
723             return -1;
724         }
725     }
726     return -1;
727 }
728 
729 /**
730  * swap_commutative:
731  * @dest: TCGArg of the destination argument, or NO_DEST.
732  * @p1: first paired argument
733  * @p2: second paired argument
734  *
735  * If *@p1 is a constant and *@p2 is not, swap.
736  * If *@p2 matches @dest, swap.
737  * Return true if a swap was performed.
738  */
739 
740 #define NO_DEST  temp_arg(NULL)
741 
742 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2)
743 {
744     TCGArg a1 = *p1, a2 = *p2;
745     int sum = 0;
746     sum += arg_is_const(a1);
747     sum -= arg_is_const(a2);
748 
749     /* Prefer the constant in second argument, and then the form
750        op a, a, b, which is better handled on non-RISC hosts. */
751     if (sum > 0 || (sum == 0 && dest == a2)) {
752         *p1 = a2;
753         *p2 = a1;
754         return true;
755     }
756     return false;
757 }
758 
759 static bool swap_commutative2(TCGArg *p1, TCGArg *p2)
760 {
761     int sum = 0;
762     sum += arg_is_const(p1[0]);
763     sum += arg_is_const(p1[1]);
764     sum -= arg_is_const(p2[0]);
765     sum -= arg_is_const(p2[1]);
766     if (sum > 0) {
767         TCGArg t;
768         t = p1[0], p1[0] = p2[0], p2[0] = t;
769         t = p1[1], p1[1] = p2[1], p2[1] = t;
770         return true;
771     }
772     return false;
773 }
774 
775 /*
776  * Return -1 if the condition can't be simplified,
777  * and the result of the condition (0 or 1) if it can.
778  */
779 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest,
780                                      TCGArg *p1, TCGArg *p2, TCGArg *pcond)
781 {
782     TCGCond cond;
783     TempOptInfo *i1;
784     bool swap;
785     int r;
786 
787     swap = swap_commutative(dest, p1, p2);
788     cond = *pcond;
789     if (swap) {
790         *pcond = cond = tcg_swap_cond(cond);
791     }
792 
793     r = do_constant_folding_cond(ctx->type, *p1, *p2, cond);
794     if (r >= 0) {
795         return r;
796     }
797     if (!is_tst_cond(cond)) {
798         return -1;
799     }
800 
801     i1 = arg_info(*p1);
802 
803     /*
804      * TSTNE x,x -> NE x,0
805      * TSTNE x,i -> NE x,0 if i includes all nonzero bits of x
806      */
807     if (args_are_copies(*p1, *p2) ||
808         (arg_is_const(*p2) && (i1->z_mask & ~arg_info(*p2)->val) == 0)) {
809         *p2 = arg_new_constant(ctx, 0);
810         *pcond = tcg_tst_eqne_cond(cond);
811         return -1;
812     }
813 
814     /* TSTNE x,i -> LT x,0 if i only includes sign bit copies */
815     if (arg_is_const(*p2) && (arg_info(*p2)->val & ~i1->s_mask) == 0) {
816         *p2 = arg_new_constant(ctx, 0);
817         *pcond = tcg_tst_ltge_cond(cond);
818         return -1;
819     }
820 
821     /* Expand to AND with a temporary if no backend support. */
822     if (!TCG_TARGET_HAS_tst) {
823         TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3);
824         TCGArg tmp = arg_new_temp(ctx);
825 
826         op2->args[0] = tmp;
827         op2->args[1] = *p1;
828         op2->args[2] = *p2;
829 
830         *p1 = tmp;
831         *p2 = arg_new_constant(ctx, 0);
832         *pcond = tcg_tst_eqne_cond(cond);
833     }
834     return -1;
835 }
836 
837 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args)
838 {
839     TCGArg al, ah, bl, bh;
840     TCGCond c;
841     bool swap;
842     int r;
843 
844     swap = swap_commutative2(args, args + 2);
845     c = args[4];
846     if (swap) {
847         args[4] = c = tcg_swap_cond(c);
848     }
849 
850     al = args[0];
851     ah = args[1];
852     bl = args[2];
853     bh = args[3];
854 
855     if (arg_is_const(bl) && arg_is_const(bh)) {
856         tcg_target_ulong blv = arg_info(bl)->val;
857         tcg_target_ulong bhv = arg_info(bh)->val;
858         uint64_t b = deposit64(blv, 32, 32, bhv);
859 
860         if (arg_is_const(al) && arg_is_const(ah)) {
861             tcg_target_ulong alv = arg_info(al)->val;
862             tcg_target_ulong ahv = arg_info(ah)->val;
863             uint64_t a = deposit64(alv, 32, 32, ahv);
864 
865             r = do_constant_folding_cond_64(a, b, c);
866             if (r >= 0) {
867                 return r;
868             }
869         }
870 
871         if (b == 0) {
872             switch (c) {
873             case TCG_COND_LTU:
874             case TCG_COND_TSTNE:
875                 return 0;
876             case TCG_COND_GEU:
877             case TCG_COND_TSTEQ:
878                 return 1;
879             default:
880                 break;
881             }
882         }
883 
884         /* TSTNE x,-1 -> NE x,0 */
885         if (b == -1 && is_tst_cond(c)) {
886             args[3] = args[2] = arg_new_constant(ctx, 0);
887             args[4] = tcg_tst_eqne_cond(c);
888             return -1;
889         }
890 
891         /* TSTNE x,sign -> LT x,0 */
892         if (b == INT64_MIN && is_tst_cond(c)) {
893             /* bl must be 0, so copy that to bh */
894             args[3] = bl;
895             args[4] = tcg_tst_ltge_cond(c);
896             return -1;
897         }
898     }
899 
900     if (args_are_copies(al, bl) && args_are_copies(ah, bh)) {
901         r = do_constant_folding_cond_eq(c);
902         if (r >= 0) {
903             return r;
904         }
905 
906         /* TSTNE x,x -> NE x,0 */
907         if (is_tst_cond(c)) {
908             args[3] = args[2] = arg_new_constant(ctx, 0);
909             args[4] = tcg_tst_eqne_cond(c);
910             return -1;
911         }
912     }
913 
914     /* Expand to AND with a temporary if no backend support. */
915     if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) {
916         TCGOp *op1 = opt_insert_before(ctx, op, INDEX_op_and, 3);
917         TCGOp *op2 = opt_insert_before(ctx, op, INDEX_op_and, 3);
918         TCGArg t1 = arg_new_temp(ctx);
919         TCGArg t2 = arg_new_temp(ctx);
920 
921         op1->args[0] = t1;
922         op1->args[1] = al;
923         op1->args[2] = bl;
924         op2->args[0] = t2;
925         op2->args[1] = ah;
926         op2->args[2] = bh;
927 
928         args[0] = t1;
929         args[1] = t2;
930         args[3] = args[2] = arg_new_constant(ctx, 0);
931         args[4] = tcg_tst_eqne_cond(c);
932     }
933     return -1;
934 }
935 
936 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args)
937 {
938     for (int i = 0; i < nb_args; i++) {
939         TCGTemp *ts = arg_temp(op->args[i]);
940         init_ts_info(ctx, ts);
941     }
942 }
943 
944 static void copy_propagate(OptContext *ctx, TCGOp *op,
945                            int nb_oargs, int nb_iargs)
946 {
947     for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
948         TCGTemp *ts = arg_temp(op->args[i]);
949         if (ts_is_copy(ts)) {
950             op->args[i] = temp_arg(find_better_copy(ts));
951         }
952     }
953 }
954 
955 static void finish_bb(OptContext *ctx)
956 {
957     /* We only optimize memory barriers across basic blocks. */
958     ctx->prev_mb = NULL;
959 }
960 
961 static void finish_ebb(OptContext *ctx)
962 {
963     finish_bb(ctx);
964     /* We only optimize across extended basic blocks. */
965     memset(&ctx->temps_used, 0, sizeof(ctx->temps_used));
966     remove_mem_copy_all(ctx);
967 }
968 
969 static bool finish_folding(OptContext *ctx, TCGOp *op)
970 {
971     const TCGOpDef *def = &tcg_op_defs[op->opc];
972     int i, nb_oargs;
973 
974     nb_oargs = def->nb_oargs;
975     for (i = 0; i < nb_oargs; i++) {
976         TCGTemp *ts = arg_temp(op->args[i]);
977         reset_ts(ctx, ts);
978     }
979     return true;
980 }
981 
982 /*
983  * The fold_* functions return true when processing is complete,
984  * usually by folding the operation to a constant or to a copy,
985  * and calling tcg_opt_gen_{mov,movi}.  They may do other things,
986  * like collect information about the value produced, for use in
987  * optimizing a subsequent operation.
988  *
989  * These first fold_* functions are all helpers, used by other
990  * folders for more specific operations.
991  */
992 
993 static bool fold_const1(OptContext *ctx, TCGOp *op)
994 {
995     if (arg_is_const(op->args[1])) {
996         uint64_t t;
997 
998         t = arg_info(op->args[1])->val;
999         t = do_constant_folding(op->opc, ctx->type, t, 0);
1000         return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1001     }
1002     return false;
1003 }
1004 
1005 static bool fold_const2(OptContext *ctx, TCGOp *op)
1006 {
1007     if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1008         uint64_t t1 = arg_info(op->args[1])->val;
1009         uint64_t t2 = arg_info(op->args[2])->val;
1010 
1011         t1 = do_constant_folding(op->opc, ctx->type, t1, t2);
1012         return tcg_opt_gen_movi(ctx, op, op->args[0], t1);
1013     }
1014     return false;
1015 }
1016 
1017 static bool fold_commutative(OptContext *ctx, TCGOp *op)
1018 {
1019     swap_commutative(op->args[0], &op->args[1], &op->args[2]);
1020     return false;
1021 }
1022 
1023 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op)
1024 {
1025     swap_commutative(op->args[0], &op->args[1], &op->args[2]);
1026     return fold_const2(ctx, op);
1027 }
1028 
1029 /*
1030  * Record "zero" and "sign" masks for the single output of @op.
1031  * See TempOptInfo definition of z_mask and s_mask.
1032  * If z_mask allows, fold the output to constant zero.
1033  * The passed s_mask may be augmented by z_mask.
1034  */
1035 static bool fold_masks_zs(OptContext *ctx, TCGOp *op,
1036                           uint64_t z_mask, int64_t s_mask)
1037 {
1038     const TCGOpDef *def = &tcg_op_defs[op->opc];
1039     TCGTemp *ts;
1040     TempOptInfo *ti;
1041     int rep;
1042 
1043     /* Only single-output opcodes are supported here. */
1044     tcg_debug_assert(def->nb_oargs == 1);
1045 
1046     /*
1047      * 32-bit ops generate 32-bit results, which for the purpose of
1048      * simplifying tcg are sign-extended.  Certainly that's how we
1049      * represent our constants elsewhere.  Note that the bits will
1050      * be reset properly for a 64-bit value when encountering the
1051      * type changing opcodes.
1052      */
1053     if (ctx->type == TCG_TYPE_I32) {
1054         z_mask = (int32_t)z_mask;
1055         s_mask |= INT32_MIN;
1056     }
1057 
1058     if (z_mask == 0) {
1059         return tcg_opt_gen_movi(ctx, op, op->args[0], 0);
1060     }
1061 
1062     ts = arg_temp(op->args[0]);
1063     reset_ts(ctx, ts);
1064 
1065     ti = ts_info(ts);
1066     ti->z_mask = z_mask;
1067 
1068     /* Canonicalize s_mask and incorporate data from z_mask. */
1069     rep = clz64(~s_mask);
1070     rep = MAX(rep, clz64(z_mask));
1071     rep = MAX(rep - 1, 0);
1072     ti->s_mask = INT64_MIN >> rep;
1073 
1074     return true;
1075 }
1076 
1077 static bool fold_masks_z(OptContext *ctx, TCGOp *op, uint64_t z_mask)
1078 {
1079     return fold_masks_zs(ctx, op, z_mask, 0);
1080 }
1081 
1082 static bool fold_masks_s(OptContext *ctx, TCGOp *op, uint64_t s_mask)
1083 {
1084     return fold_masks_zs(ctx, op, -1, s_mask);
1085 }
1086 
1087 /*
1088  * An "affected" mask bit is 0 if and only if the result is identical
1089  * to the first input.  Thus if the entire mask is 0, the operation
1090  * is equivalent to a copy.
1091  */
1092 static bool fold_affected_mask(OptContext *ctx, TCGOp *op, uint64_t a_mask)
1093 {
1094     if (ctx->type == TCG_TYPE_I32) {
1095         a_mask = (uint32_t)a_mask;
1096     }
1097     if (a_mask == 0) {
1098         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1099     }
1100     return false;
1101 }
1102 
1103 /*
1104  * Convert @op to NOT, if NOT is supported by the host.
1105  * Return true f the conversion is successful, which will still
1106  * indicate that the processing is complete.
1107  */
1108 static bool fold_not(OptContext *ctx, TCGOp *op);
1109 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx)
1110 {
1111     TCGOpcode not_op;
1112     bool have_not;
1113 
1114     switch (ctx->type) {
1115     case TCG_TYPE_I32:
1116     case TCG_TYPE_I64:
1117         not_op = INDEX_op_not;
1118         have_not = tcg_op_supported(INDEX_op_not, ctx->type, 0);
1119         break;
1120     case TCG_TYPE_V64:
1121     case TCG_TYPE_V128:
1122     case TCG_TYPE_V256:
1123         not_op = INDEX_op_not_vec;
1124         have_not = TCG_TARGET_HAS_not_vec;
1125         break;
1126     default:
1127         g_assert_not_reached();
1128     }
1129     if (have_not) {
1130         op->opc = not_op;
1131         op->args[1] = op->args[idx];
1132         return fold_not(ctx, op);
1133     }
1134     return false;
1135 }
1136 
1137 /* If the binary operation has first argument @i, fold to @i. */
1138 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
1139 {
1140     if (arg_is_const_val(op->args[1], i)) {
1141         return tcg_opt_gen_movi(ctx, op, op->args[0], i);
1142     }
1143     return false;
1144 }
1145 
1146 /* If the binary operation has first argument @i, fold to NOT. */
1147 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i)
1148 {
1149     if (arg_is_const_val(op->args[1], i)) {
1150         return fold_to_not(ctx, op, 2);
1151     }
1152     return false;
1153 }
1154 
1155 /* If the binary operation has second argument @i, fold to @i. */
1156 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
1157 {
1158     if (arg_is_const_val(op->args[2], i)) {
1159         return tcg_opt_gen_movi(ctx, op, op->args[0], i);
1160     }
1161     return false;
1162 }
1163 
1164 /* If the binary operation has second argument @i, fold to identity. */
1165 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i)
1166 {
1167     if (arg_is_const_val(op->args[2], i)) {
1168         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1169     }
1170     return false;
1171 }
1172 
1173 /* If the binary operation has second argument @i, fold to NOT. */
1174 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i)
1175 {
1176     if (arg_is_const_val(op->args[2], i)) {
1177         return fold_to_not(ctx, op, 1);
1178     }
1179     return false;
1180 }
1181 
1182 /* If the binary operation has both arguments equal, fold to @i. */
1183 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i)
1184 {
1185     if (args_are_copies(op->args[1], op->args[2])) {
1186         return tcg_opt_gen_movi(ctx, op, op->args[0], i);
1187     }
1188     return false;
1189 }
1190 
1191 /* If the binary operation has both arguments equal, fold to identity. */
1192 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op)
1193 {
1194     if (args_are_copies(op->args[1], op->args[2])) {
1195         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1196     }
1197     return false;
1198 }
1199 
1200 /*
1201  * These outermost fold_<op> functions are sorted alphabetically.
1202  *
1203  * The ordering of the transformations should be:
1204  *   1) those that produce a constant
1205  *   2) those that produce a copy
1206  *   3) those that produce information about the result value.
1207  */
1208 
1209 static bool fold_or(OptContext *ctx, TCGOp *op);
1210 static bool fold_orc(OptContext *ctx, TCGOp *op);
1211 static bool fold_xor(OptContext *ctx, TCGOp *op);
1212 
1213 static bool fold_add(OptContext *ctx, TCGOp *op)
1214 {
1215     if (fold_const2_commutative(ctx, op) ||
1216         fold_xi_to_x(ctx, op, 0)) {
1217         return true;
1218     }
1219     return finish_folding(ctx, op);
1220 }
1221 
1222 /* We cannot as yet do_constant_folding with vectors. */
1223 static bool fold_add_vec(OptContext *ctx, TCGOp *op)
1224 {
1225     if (fold_commutative(ctx, op) ||
1226         fold_xi_to_x(ctx, op, 0)) {
1227         return true;
1228     }
1229     return finish_folding(ctx, op);
1230 }
1231 
1232 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add)
1233 {
1234     bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]);
1235     bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]);
1236 
1237     if (a_const && b_const) {
1238         uint64_t al = arg_info(op->args[2])->val;
1239         uint64_t ah = arg_info(op->args[3])->val;
1240         uint64_t bl = arg_info(op->args[4])->val;
1241         uint64_t bh = arg_info(op->args[5])->val;
1242         TCGArg rl, rh;
1243         TCGOp *op2;
1244 
1245         if (ctx->type == TCG_TYPE_I32) {
1246             uint64_t a = deposit64(al, 32, 32, ah);
1247             uint64_t b = deposit64(bl, 32, 32, bh);
1248 
1249             if (add) {
1250                 a += b;
1251             } else {
1252                 a -= b;
1253             }
1254 
1255             al = sextract64(a, 0, 32);
1256             ah = sextract64(a, 32, 32);
1257         } else {
1258             Int128 a = int128_make128(al, ah);
1259             Int128 b = int128_make128(bl, bh);
1260 
1261             if (add) {
1262                 a = int128_add(a, b);
1263             } else {
1264                 a = int128_sub(a, b);
1265             }
1266 
1267             al = int128_getlo(a);
1268             ah = int128_gethi(a);
1269         }
1270 
1271         rl = op->args[0];
1272         rh = op->args[1];
1273 
1274         /* The proper opcode is supplied by tcg_opt_gen_mov. */
1275         op2 = opt_insert_before(ctx, op, 0, 2);
1276 
1277         tcg_opt_gen_movi(ctx, op, rl, al);
1278         tcg_opt_gen_movi(ctx, op2, rh, ah);
1279         return true;
1280     }
1281 
1282     /* Fold sub2 r,x,i to add2 r,x,-i */
1283     if (!add && b_const) {
1284         uint64_t bl = arg_info(op->args[4])->val;
1285         uint64_t bh = arg_info(op->args[5])->val;
1286 
1287         /* Negate the two parts without assembling and disassembling. */
1288         bl = -bl;
1289         bh = ~bh + !bl;
1290 
1291         op->opc = (ctx->type == TCG_TYPE_I32
1292                    ? INDEX_op_add2_i32 : INDEX_op_add2_i64);
1293         op->args[4] = arg_new_constant(ctx, bl);
1294         op->args[5] = arg_new_constant(ctx, bh);
1295     }
1296     return finish_folding(ctx, op);
1297 }
1298 
1299 static bool fold_add2(OptContext *ctx, TCGOp *op)
1300 {
1301     /* Note that the high and low parts may be independently swapped. */
1302     swap_commutative(op->args[0], &op->args[2], &op->args[4]);
1303     swap_commutative(op->args[1], &op->args[3], &op->args[5]);
1304 
1305     return fold_addsub2(ctx, op, true);
1306 }
1307 
1308 static bool fold_and(OptContext *ctx, TCGOp *op)
1309 {
1310     uint64_t z1, z2, z_mask, s_mask;
1311     TempOptInfo *t1, *t2;
1312 
1313     if (fold_const2_commutative(ctx, op) ||
1314         fold_xi_to_i(ctx, op, 0) ||
1315         fold_xi_to_x(ctx, op, -1) ||
1316         fold_xx_to_x(ctx, op)) {
1317         return true;
1318     }
1319 
1320     t1 = arg_info(op->args[1]);
1321     t2 = arg_info(op->args[2]);
1322     z1 = t1->z_mask;
1323     z2 = t2->z_mask;
1324 
1325     /*
1326      * Known-zeros does not imply known-ones.  Therefore unless
1327      * arg2 is constant, we can't infer affected bits from it.
1328      */
1329     if (ti_is_const(t2) && fold_affected_mask(ctx, op, z1 & ~z2)) {
1330         return true;
1331     }
1332 
1333     z_mask = z1 & z2;
1334 
1335     /*
1336      * Sign repetitions are perforce all identical, whether they are 1 or 0.
1337      * Bitwise operations preserve the relative quantity of the repetitions.
1338      */
1339     s_mask = t1->s_mask & t2->s_mask;
1340 
1341     return fold_masks_zs(ctx, op, z_mask, s_mask);
1342 }
1343 
1344 static bool fold_andc(OptContext *ctx, TCGOp *op)
1345 {
1346     uint64_t z_mask, s_mask;
1347     TempOptInfo *t1, *t2;
1348 
1349     if (fold_const2(ctx, op) ||
1350         fold_xx_to_i(ctx, op, 0) ||
1351         fold_xi_to_x(ctx, op, 0) ||
1352         fold_ix_to_not(ctx, op, -1)) {
1353         return true;
1354     }
1355 
1356     t1 = arg_info(op->args[1]);
1357     t2 = arg_info(op->args[2]);
1358     z_mask = t1->z_mask;
1359 
1360     if (ti_is_const(t2)) {
1361         /* Fold andc r,x,i to and r,x,~i. */
1362         switch (ctx->type) {
1363         case TCG_TYPE_I32:
1364         case TCG_TYPE_I64:
1365             op->opc = INDEX_op_and;
1366             break;
1367         case TCG_TYPE_V64:
1368         case TCG_TYPE_V128:
1369         case TCG_TYPE_V256:
1370             op->opc = INDEX_op_and_vec;
1371             break;
1372         default:
1373             g_assert_not_reached();
1374         }
1375         op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2));
1376         return fold_and(ctx, op);
1377     }
1378 
1379     /*
1380      * Known-zeros does not imply known-ones.  Therefore unless
1381      * arg2 is constant, we can't infer anything from it.
1382      */
1383     if (ti_is_const(t2)) {
1384         uint64_t v2 = ti_const_val(t2);
1385         if (fold_affected_mask(ctx, op, z_mask & v2)) {
1386             return true;
1387         }
1388         z_mask &= ~v2;
1389     }
1390 
1391     s_mask = t1->s_mask & t2->s_mask;
1392     return fold_masks_zs(ctx, op, z_mask, s_mask);
1393 }
1394 
1395 static bool fold_bitsel_vec(OptContext *ctx, TCGOp *op)
1396 {
1397     /* If true and false values are the same, eliminate the cmp. */
1398     if (args_are_copies(op->args[2], op->args[3])) {
1399         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]);
1400     }
1401 
1402     if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) {
1403         uint64_t tv = arg_info(op->args[2])->val;
1404         uint64_t fv = arg_info(op->args[3])->val;
1405 
1406         if (tv == -1 && fv == 0) {
1407             return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1408         }
1409         if (tv == 0 && fv == -1) {
1410             if (TCG_TARGET_HAS_not_vec) {
1411                 op->opc = INDEX_op_not_vec;
1412                 return fold_not(ctx, op);
1413             } else {
1414                 op->opc = INDEX_op_xor_vec;
1415                 op->args[2] = arg_new_constant(ctx, -1);
1416                 return fold_xor(ctx, op);
1417             }
1418         }
1419     }
1420     if (arg_is_const(op->args[2])) {
1421         uint64_t tv = arg_info(op->args[2])->val;
1422         if (tv == -1) {
1423             op->opc = INDEX_op_or_vec;
1424             op->args[2] = op->args[3];
1425             return fold_or(ctx, op);
1426         }
1427         if (tv == 0 && TCG_TARGET_HAS_andc_vec) {
1428             op->opc = INDEX_op_andc_vec;
1429             op->args[2] = op->args[1];
1430             op->args[1] = op->args[3];
1431             return fold_andc(ctx, op);
1432         }
1433     }
1434     if (arg_is_const(op->args[3])) {
1435         uint64_t fv = arg_info(op->args[3])->val;
1436         if (fv == 0) {
1437             op->opc = INDEX_op_and_vec;
1438             return fold_and(ctx, op);
1439         }
1440         if (fv == -1 && TCG_TARGET_HAS_orc_vec) {
1441             op->opc = INDEX_op_orc_vec;
1442             op->args[2] = op->args[1];
1443             op->args[1] = op->args[3];
1444             return fold_orc(ctx, op);
1445         }
1446     }
1447     return finish_folding(ctx, op);
1448 }
1449 
1450 static bool fold_brcond(OptContext *ctx, TCGOp *op)
1451 {
1452     int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0],
1453                                       &op->args[1], &op->args[2]);
1454     if (i == 0) {
1455         tcg_op_remove(ctx->tcg, op);
1456         return true;
1457     }
1458     if (i > 0) {
1459         op->opc = INDEX_op_br;
1460         op->args[0] = op->args[3];
1461         finish_ebb(ctx);
1462     } else {
1463         finish_bb(ctx);
1464     }
1465     return true;
1466 }
1467 
1468 static bool fold_brcond2(OptContext *ctx, TCGOp *op)
1469 {
1470     TCGCond cond;
1471     TCGArg label;
1472     int i, inv = 0;
1473 
1474     i = do_constant_folding_cond2(ctx, op, &op->args[0]);
1475     cond = op->args[4];
1476     label = op->args[5];
1477     if (i >= 0) {
1478         goto do_brcond_const;
1479     }
1480 
1481     switch (cond) {
1482     case TCG_COND_LT:
1483     case TCG_COND_GE:
1484         /*
1485          * Simplify LT/GE comparisons vs zero to a single compare
1486          * vs the high word of the input.
1487          */
1488         if (arg_is_const_val(op->args[2], 0) &&
1489             arg_is_const_val(op->args[3], 0)) {
1490             goto do_brcond_high;
1491         }
1492         break;
1493 
1494     case TCG_COND_NE:
1495         inv = 1;
1496         QEMU_FALLTHROUGH;
1497     case TCG_COND_EQ:
1498         /*
1499          * Simplify EQ/NE comparisons where one of the pairs
1500          * can be simplified.
1501          */
1502         i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0],
1503                                      op->args[2], cond);
1504         switch (i ^ inv) {
1505         case 0:
1506             goto do_brcond_const;
1507         case 1:
1508             goto do_brcond_high;
1509         }
1510 
1511         i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1],
1512                                      op->args[3], cond);
1513         switch (i ^ inv) {
1514         case 0:
1515             goto do_brcond_const;
1516         case 1:
1517             goto do_brcond_low;
1518         }
1519         break;
1520 
1521     case TCG_COND_TSTEQ:
1522     case TCG_COND_TSTNE:
1523         if (arg_is_const_val(op->args[2], 0)) {
1524             goto do_brcond_high;
1525         }
1526         if (arg_is_const_val(op->args[3], 0)) {
1527             goto do_brcond_low;
1528         }
1529         break;
1530 
1531     default:
1532         break;
1533 
1534     do_brcond_low:
1535         op->opc = INDEX_op_brcond_i32;
1536         op->args[1] = op->args[2];
1537         op->args[2] = cond;
1538         op->args[3] = label;
1539         return fold_brcond(ctx, op);
1540 
1541     do_brcond_high:
1542         op->opc = INDEX_op_brcond_i32;
1543         op->args[0] = op->args[1];
1544         op->args[1] = op->args[3];
1545         op->args[2] = cond;
1546         op->args[3] = label;
1547         return fold_brcond(ctx, op);
1548 
1549     do_brcond_const:
1550         if (i == 0) {
1551             tcg_op_remove(ctx->tcg, op);
1552             return true;
1553         }
1554         op->opc = INDEX_op_br;
1555         op->args[0] = label;
1556         finish_ebb(ctx);
1557         return true;
1558     }
1559 
1560     finish_bb(ctx);
1561     return true;
1562 }
1563 
1564 static bool fold_bswap(OptContext *ctx, TCGOp *op)
1565 {
1566     uint64_t z_mask, s_mask, sign;
1567     TempOptInfo *t1 = arg_info(op->args[1]);
1568 
1569     if (ti_is_const(t1)) {
1570         return tcg_opt_gen_movi(ctx, op, op->args[0],
1571                                 do_constant_folding(op->opc, ctx->type,
1572                                                     ti_const_val(t1),
1573                                                     op->args[2]));
1574     }
1575 
1576     z_mask = t1->z_mask;
1577     switch (op->opc) {
1578     case INDEX_op_bswap16_i32:
1579     case INDEX_op_bswap16_i64:
1580         z_mask = bswap16(z_mask);
1581         sign = INT16_MIN;
1582         break;
1583     case INDEX_op_bswap32_i32:
1584     case INDEX_op_bswap32_i64:
1585         z_mask = bswap32(z_mask);
1586         sign = INT32_MIN;
1587         break;
1588     case INDEX_op_bswap64_i64:
1589         z_mask = bswap64(z_mask);
1590         sign = INT64_MIN;
1591         break;
1592     default:
1593         g_assert_not_reached();
1594     }
1595 
1596     s_mask = 0;
1597     switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) {
1598     case TCG_BSWAP_OZ:
1599         break;
1600     case TCG_BSWAP_OS:
1601         /* If the sign bit may be 1, force all the bits above to 1. */
1602         if (z_mask & sign) {
1603             z_mask |= sign;
1604         }
1605         /* The value and therefore s_mask is explicitly sign-extended. */
1606         s_mask = sign;
1607         break;
1608     default:
1609         /* The high bits are undefined: force all bits above the sign to 1. */
1610         z_mask |= sign << 1;
1611         break;
1612     }
1613 
1614     return fold_masks_zs(ctx, op, z_mask, s_mask);
1615 }
1616 
1617 static bool fold_call(OptContext *ctx, TCGOp *op)
1618 {
1619     TCGContext *s = ctx->tcg;
1620     int nb_oargs = TCGOP_CALLO(op);
1621     int nb_iargs = TCGOP_CALLI(op);
1622     int flags, i;
1623 
1624     init_arguments(ctx, op, nb_oargs + nb_iargs);
1625     copy_propagate(ctx, op, nb_oargs, nb_iargs);
1626 
1627     /* If the function reads or writes globals, reset temp data. */
1628     flags = tcg_call_flags(op);
1629     if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) {
1630         int nb_globals = s->nb_globals;
1631 
1632         for (i = 0; i < nb_globals; i++) {
1633             if (test_bit(i, ctx->temps_used.l)) {
1634                 reset_ts(ctx, &ctx->tcg->temps[i]);
1635             }
1636         }
1637     }
1638 
1639     /* If the function has side effects, reset mem data. */
1640     if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) {
1641         remove_mem_copy_all(ctx);
1642     }
1643 
1644     /* Reset temp data for outputs. */
1645     for (i = 0; i < nb_oargs; i++) {
1646         reset_temp(ctx, op->args[i]);
1647     }
1648 
1649     /* Stop optimizing MB across calls. */
1650     ctx->prev_mb = NULL;
1651     return true;
1652 }
1653 
1654 static bool fold_cmp_vec(OptContext *ctx, TCGOp *op)
1655 {
1656     /* Canonicalize the comparison to put immediate second. */
1657     if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) {
1658         op->args[3] = tcg_swap_cond(op->args[3]);
1659     }
1660     return finish_folding(ctx, op);
1661 }
1662 
1663 static bool fold_cmpsel_vec(OptContext *ctx, TCGOp *op)
1664 {
1665     /* If true and false values are the same, eliminate the cmp. */
1666     if (args_are_copies(op->args[3], op->args[4])) {
1667         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]);
1668     }
1669 
1670     /* Canonicalize the comparison to put immediate second. */
1671     if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) {
1672         op->args[5] = tcg_swap_cond(op->args[5]);
1673     }
1674     /*
1675      * Canonicalize the "false" input reg to match the destination,
1676      * so that the tcg backend can implement "move if true".
1677      */
1678     if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) {
1679         op->args[5] = tcg_invert_cond(op->args[5]);
1680     }
1681     return finish_folding(ctx, op);
1682 }
1683 
1684 static bool fold_count_zeros(OptContext *ctx, TCGOp *op)
1685 {
1686     uint64_t z_mask, s_mask;
1687     TempOptInfo *t1 = arg_info(op->args[1]);
1688     TempOptInfo *t2 = arg_info(op->args[2]);
1689 
1690     if (ti_is_const(t1)) {
1691         uint64_t t = ti_const_val(t1);
1692 
1693         if (t != 0) {
1694             t = do_constant_folding(op->opc, ctx->type, t, 0);
1695             return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1696         }
1697         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]);
1698     }
1699 
1700     switch (ctx->type) {
1701     case TCG_TYPE_I32:
1702         z_mask = 31;
1703         break;
1704     case TCG_TYPE_I64:
1705         z_mask = 63;
1706         break;
1707     default:
1708         g_assert_not_reached();
1709     }
1710     s_mask = ~z_mask;
1711     z_mask |= t2->z_mask;
1712     s_mask &= t2->s_mask;
1713 
1714     return fold_masks_zs(ctx, op, z_mask, s_mask);
1715 }
1716 
1717 static bool fold_ctpop(OptContext *ctx, TCGOp *op)
1718 {
1719     uint64_t z_mask;
1720 
1721     if (fold_const1(ctx, op)) {
1722         return true;
1723     }
1724 
1725     switch (ctx->type) {
1726     case TCG_TYPE_I32:
1727         z_mask = 32 | 31;
1728         break;
1729     case TCG_TYPE_I64:
1730         z_mask = 64 | 63;
1731         break;
1732     default:
1733         g_assert_not_reached();
1734     }
1735     return fold_masks_z(ctx, op, z_mask);
1736 }
1737 
1738 static bool fold_deposit(OptContext *ctx, TCGOp *op)
1739 {
1740     TempOptInfo *t1 = arg_info(op->args[1]);
1741     TempOptInfo *t2 = arg_info(op->args[2]);
1742     int ofs = op->args[3];
1743     int len = op->args[4];
1744     int width = 8 * tcg_type_size(ctx->type);
1745     uint64_t z_mask, s_mask;
1746 
1747     if (ti_is_const(t1) && ti_is_const(t2)) {
1748         return tcg_opt_gen_movi(ctx, op, op->args[0],
1749                                 deposit64(ti_const_val(t1), ofs, len,
1750                                           ti_const_val(t2)));
1751     }
1752 
1753     /* Inserting a value into zero at offset 0. */
1754     if (ti_is_const_val(t1, 0) && ofs == 0) {
1755         uint64_t mask = MAKE_64BIT_MASK(0, len);
1756 
1757         op->opc = INDEX_op_and;
1758         op->args[1] = op->args[2];
1759         op->args[2] = arg_new_constant(ctx, mask);
1760         return fold_and(ctx, op);
1761     }
1762 
1763     /* Inserting zero into a value. */
1764     if (ti_is_const_val(t2, 0)) {
1765         uint64_t mask = deposit64(-1, ofs, len, 0);
1766 
1767         op->opc = INDEX_op_and;
1768         op->args[2] = arg_new_constant(ctx, mask);
1769         return fold_and(ctx, op);
1770     }
1771 
1772     /* The s_mask from the top portion of the deposit is still valid. */
1773     if (ofs + len == width) {
1774         s_mask = t2->s_mask << ofs;
1775     } else {
1776         s_mask = t1->s_mask & ~MAKE_64BIT_MASK(0, ofs + len);
1777     }
1778 
1779     z_mask = deposit64(t1->z_mask, ofs, len, t2->z_mask);
1780     return fold_masks_zs(ctx, op, z_mask, s_mask);
1781 }
1782 
1783 static bool fold_divide(OptContext *ctx, TCGOp *op)
1784 {
1785     if (fold_const2(ctx, op) ||
1786         fold_xi_to_x(ctx, op, 1)) {
1787         return true;
1788     }
1789     return finish_folding(ctx, op);
1790 }
1791 
1792 static bool fold_dup(OptContext *ctx, TCGOp *op)
1793 {
1794     if (arg_is_const(op->args[1])) {
1795         uint64_t t = arg_info(op->args[1])->val;
1796         t = dup_const(TCGOP_VECE(op), t);
1797         return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1798     }
1799     return finish_folding(ctx, op);
1800 }
1801 
1802 static bool fold_dup2(OptContext *ctx, TCGOp *op)
1803 {
1804     if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1805         uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32,
1806                                arg_info(op->args[2])->val);
1807         return tcg_opt_gen_movi(ctx, op, op->args[0], t);
1808     }
1809 
1810     if (args_are_copies(op->args[1], op->args[2])) {
1811         op->opc = INDEX_op_dup_vec;
1812         TCGOP_VECE(op) = MO_32;
1813     }
1814     return finish_folding(ctx, op);
1815 }
1816 
1817 static bool fold_eqv(OptContext *ctx, TCGOp *op)
1818 {
1819     uint64_t s_mask;
1820     TempOptInfo *t1, *t2;
1821 
1822     if (fold_const2_commutative(ctx, op) ||
1823         fold_xi_to_x(ctx, op, -1) ||
1824         fold_xi_to_not(ctx, op, 0)) {
1825         return true;
1826     }
1827 
1828     t2 = arg_info(op->args[2]);
1829     if (ti_is_const(t2)) {
1830         /* Fold eqv r,x,i to xor r,x,~i. */
1831         switch (ctx->type) {
1832         case TCG_TYPE_I32:
1833         case TCG_TYPE_I64:
1834             op->opc = INDEX_op_xor;
1835             break;
1836         case TCG_TYPE_V64:
1837         case TCG_TYPE_V128:
1838         case TCG_TYPE_V256:
1839             op->opc = INDEX_op_xor_vec;
1840             break;
1841         default:
1842             g_assert_not_reached();
1843         }
1844         op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2));
1845         return fold_xor(ctx, op);
1846     }
1847 
1848     t1 = arg_info(op->args[1]);
1849     s_mask = t1->s_mask & t2->s_mask;
1850     return fold_masks_s(ctx, op, s_mask);
1851 }
1852 
1853 static bool fold_extract(OptContext *ctx, TCGOp *op)
1854 {
1855     uint64_t z_mask_old, z_mask;
1856     TempOptInfo *t1 = arg_info(op->args[1]);
1857     int pos = op->args[2];
1858     int len = op->args[3];
1859 
1860     if (ti_is_const(t1)) {
1861         return tcg_opt_gen_movi(ctx, op, op->args[0],
1862                                 extract64(ti_const_val(t1), pos, len));
1863     }
1864 
1865     z_mask_old = t1->z_mask;
1866     z_mask = extract64(z_mask_old, pos, len);
1867     if (pos == 0 && fold_affected_mask(ctx, op, z_mask_old ^ z_mask)) {
1868         return true;
1869     }
1870 
1871     return fold_masks_z(ctx, op, z_mask);
1872 }
1873 
1874 static bool fold_extract2(OptContext *ctx, TCGOp *op)
1875 {
1876     if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) {
1877         uint64_t v1 = arg_info(op->args[1])->val;
1878         uint64_t v2 = arg_info(op->args[2])->val;
1879         int shr = op->args[3];
1880 
1881         if (op->opc == INDEX_op_extract2_i64) {
1882             v1 >>= shr;
1883             v2 <<= 64 - shr;
1884         } else {
1885             v1 = (uint32_t)v1 >> shr;
1886             v2 = (uint64_t)((int32_t)v2 << (32 - shr));
1887         }
1888         return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2);
1889     }
1890     return finish_folding(ctx, op);
1891 }
1892 
1893 static bool fold_exts(OptContext *ctx, TCGOp *op)
1894 {
1895     uint64_t s_mask, z_mask;
1896     TempOptInfo *t1;
1897 
1898     if (fold_const1(ctx, op)) {
1899         return true;
1900     }
1901 
1902     t1 = arg_info(op->args[1]);
1903     z_mask = t1->z_mask;
1904     s_mask = t1->s_mask;
1905 
1906     switch (op->opc) {
1907     case INDEX_op_ext_i32_i64:
1908         s_mask |= INT32_MIN;
1909         z_mask = (int32_t)z_mask;
1910         break;
1911     default:
1912         g_assert_not_reached();
1913     }
1914     return fold_masks_zs(ctx, op, z_mask, s_mask);
1915 }
1916 
1917 static bool fold_extu(OptContext *ctx, TCGOp *op)
1918 {
1919     uint64_t z_mask;
1920 
1921     if (fold_const1(ctx, op)) {
1922         return true;
1923     }
1924 
1925     z_mask = arg_info(op->args[1])->z_mask;
1926     switch (op->opc) {
1927     case INDEX_op_extrl_i64_i32:
1928     case INDEX_op_extu_i32_i64:
1929         z_mask = (uint32_t)z_mask;
1930         break;
1931     case INDEX_op_extrh_i64_i32:
1932         z_mask >>= 32;
1933         break;
1934     default:
1935         g_assert_not_reached();
1936     }
1937     return fold_masks_z(ctx, op, z_mask);
1938 }
1939 
1940 static bool fold_mb(OptContext *ctx, TCGOp *op)
1941 {
1942     /* Eliminate duplicate and redundant fence instructions.  */
1943     if (ctx->prev_mb) {
1944         /*
1945          * Merge two barriers of the same type into one,
1946          * or a weaker barrier into a stronger one,
1947          * or two weaker barriers into a stronger one.
1948          *   mb X; mb Y => mb X|Y
1949          *   mb; strl => mb; st
1950          *   ldaq; mb => ld; mb
1951          *   ldaq; strl => ld; mb; st
1952          * Other combinations are also merged into a strong
1953          * barrier.  This is stricter than specified but for
1954          * the purposes of TCG is better than not optimizing.
1955          */
1956         ctx->prev_mb->args[0] |= op->args[0];
1957         tcg_op_remove(ctx->tcg, op);
1958     } else {
1959         ctx->prev_mb = op;
1960     }
1961     return true;
1962 }
1963 
1964 static bool fold_mov(OptContext *ctx, TCGOp *op)
1965 {
1966     return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
1967 }
1968 
1969 static bool fold_movcond(OptContext *ctx, TCGOp *op)
1970 {
1971     uint64_t z_mask, s_mask;
1972     TempOptInfo *tt, *ft;
1973     int i;
1974 
1975     /* If true and false values are the same, eliminate the cmp. */
1976     if (args_are_copies(op->args[3], op->args[4])) {
1977         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[3]);
1978     }
1979 
1980     /*
1981      * Canonicalize the "false" input reg to match the destination reg so
1982      * that the tcg backend can implement a "move if true" operation.
1983      */
1984     if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) {
1985         op->args[5] = tcg_invert_cond(op->args[5]);
1986     }
1987 
1988     i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1],
1989                                   &op->args[2], &op->args[5]);
1990     if (i >= 0) {
1991         return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]);
1992     }
1993 
1994     tt = arg_info(op->args[3]);
1995     ft = arg_info(op->args[4]);
1996     z_mask = tt->z_mask | ft->z_mask;
1997     s_mask = tt->s_mask & ft->s_mask;
1998 
1999     if (ti_is_const(tt) && ti_is_const(ft)) {
2000         uint64_t tv = ti_const_val(tt);
2001         uint64_t fv = ti_const_val(ft);
2002         TCGOpcode opc, negopc = 0;
2003         TCGCond cond = op->args[5];
2004 
2005         switch (ctx->type) {
2006         case TCG_TYPE_I32:
2007             opc = INDEX_op_setcond_i32;
2008             if (TCG_TARGET_HAS_negsetcond_i32) {
2009                 negopc = INDEX_op_negsetcond_i32;
2010             }
2011             tv = (int32_t)tv;
2012             fv = (int32_t)fv;
2013             break;
2014         case TCG_TYPE_I64:
2015             opc = INDEX_op_setcond_i64;
2016             if (TCG_TARGET_HAS_negsetcond_i64) {
2017                 negopc = INDEX_op_negsetcond_i64;
2018             }
2019             break;
2020         default:
2021             g_assert_not_reached();
2022         }
2023 
2024         if (tv == 1 && fv == 0) {
2025             op->opc = opc;
2026             op->args[3] = cond;
2027         } else if (fv == 1 && tv == 0) {
2028             op->opc = opc;
2029             op->args[3] = tcg_invert_cond(cond);
2030         } else if (negopc) {
2031             if (tv == -1 && fv == 0) {
2032                 op->opc = negopc;
2033                 op->args[3] = cond;
2034             } else if (fv == -1 && tv == 0) {
2035                 op->opc = negopc;
2036                 op->args[3] = tcg_invert_cond(cond);
2037             }
2038         }
2039     }
2040 
2041     return fold_masks_zs(ctx, op, z_mask, s_mask);
2042 }
2043 
2044 static bool fold_mul(OptContext *ctx, TCGOp *op)
2045 {
2046     if (fold_const2(ctx, op) ||
2047         fold_xi_to_i(ctx, op, 0) ||
2048         fold_xi_to_x(ctx, op, 1)) {
2049         return true;
2050     }
2051     return finish_folding(ctx, op);
2052 }
2053 
2054 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op)
2055 {
2056     if (fold_const2_commutative(ctx, op) ||
2057         fold_xi_to_i(ctx, op, 0)) {
2058         return true;
2059     }
2060     return finish_folding(ctx, op);
2061 }
2062 
2063 static bool fold_multiply2(OptContext *ctx, TCGOp *op)
2064 {
2065     swap_commutative(op->args[0], &op->args[2], &op->args[3]);
2066 
2067     if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) {
2068         uint64_t a = arg_info(op->args[2])->val;
2069         uint64_t b = arg_info(op->args[3])->val;
2070         uint64_t h, l;
2071         TCGArg rl, rh;
2072         TCGOp *op2;
2073 
2074         switch (op->opc) {
2075         case INDEX_op_mulu2_i32:
2076             l = (uint64_t)(uint32_t)a * (uint32_t)b;
2077             h = (int32_t)(l >> 32);
2078             l = (int32_t)l;
2079             break;
2080         case INDEX_op_muls2_i32:
2081             l = (int64_t)(int32_t)a * (int32_t)b;
2082             h = l >> 32;
2083             l = (int32_t)l;
2084             break;
2085         case INDEX_op_mulu2_i64:
2086             mulu64(&l, &h, a, b);
2087             break;
2088         case INDEX_op_muls2_i64:
2089             muls64(&l, &h, a, b);
2090             break;
2091         default:
2092             g_assert_not_reached();
2093         }
2094 
2095         rl = op->args[0];
2096         rh = op->args[1];
2097 
2098         /* The proper opcode is supplied by tcg_opt_gen_mov. */
2099         op2 = opt_insert_before(ctx, op, 0, 2);
2100 
2101         tcg_opt_gen_movi(ctx, op, rl, l);
2102         tcg_opt_gen_movi(ctx, op2, rh, h);
2103         return true;
2104     }
2105     return finish_folding(ctx, op);
2106 }
2107 
2108 static bool fold_nand(OptContext *ctx, TCGOp *op)
2109 {
2110     uint64_t s_mask;
2111 
2112     if (fold_const2_commutative(ctx, op) ||
2113         fold_xi_to_not(ctx, op, -1)) {
2114         return true;
2115     }
2116 
2117     s_mask = arg_info(op->args[1])->s_mask
2118            & arg_info(op->args[2])->s_mask;
2119     return fold_masks_s(ctx, op, s_mask);
2120 }
2121 
2122 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op)
2123 {
2124     /* Set to 1 all bits to the left of the rightmost.  */
2125     uint64_t z_mask = arg_info(op->args[1])->z_mask;
2126     z_mask = -(z_mask & -z_mask);
2127 
2128     return fold_masks_z(ctx, op, z_mask);
2129 }
2130 
2131 static bool fold_neg(OptContext *ctx, TCGOp *op)
2132 {
2133     return fold_const1(ctx, op) || fold_neg_no_const(ctx, op);
2134 }
2135 
2136 static bool fold_nor(OptContext *ctx, TCGOp *op)
2137 {
2138     uint64_t s_mask;
2139 
2140     if (fold_const2_commutative(ctx, op) ||
2141         fold_xi_to_not(ctx, op, 0)) {
2142         return true;
2143     }
2144 
2145     s_mask = arg_info(op->args[1])->s_mask
2146            & arg_info(op->args[2])->s_mask;
2147     return fold_masks_s(ctx, op, s_mask);
2148 }
2149 
2150 static bool fold_not(OptContext *ctx, TCGOp *op)
2151 {
2152     if (fold_const1(ctx, op)) {
2153         return true;
2154     }
2155     return fold_masks_s(ctx, op, arg_info(op->args[1])->s_mask);
2156 }
2157 
2158 static bool fold_or(OptContext *ctx, TCGOp *op)
2159 {
2160     uint64_t z_mask, s_mask;
2161     TempOptInfo *t1, *t2;
2162 
2163     if (fold_const2_commutative(ctx, op) ||
2164         fold_xi_to_x(ctx, op, 0) ||
2165         fold_xx_to_x(ctx, op)) {
2166         return true;
2167     }
2168 
2169     t1 = arg_info(op->args[1]);
2170     t2 = arg_info(op->args[2]);
2171     z_mask = t1->z_mask | t2->z_mask;
2172     s_mask = t1->s_mask & t2->s_mask;
2173     return fold_masks_zs(ctx, op, z_mask, s_mask);
2174 }
2175 
2176 static bool fold_orc(OptContext *ctx, TCGOp *op)
2177 {
2178     uint64_t s_mask;
2179     TempOptInfo *t1, *t2;
2180 
2181     if (fold_const2(ctx, op) ||
2182         fold_xx_to_i(ctx, op, -1) ||
2183         fold_xi_to_x(ctx, op, -1) ||
2184         fold_ix_to_not(ctx, op, 0)) {
2185         return true;
2186     }
2187 
2188     t2 = arg_info(op->args[2]);
2189     if (ti_is_const(t2)) {
2190         /* Fold orc r,x,i to or r,x,~i. */
2191         switch (ctx->type) {
2192         case TCG_TYPE_I32:
2193         case TCG_TYPE_I64:
2194             op->opc = INDEX_op_or;
2195             break;
2196         case TCG_TYPE_V64:
2197         case TCG_TYPE_V128:
2198         case TCG_TYPE_V256:
2199             op->opc = INDEX_op_or_vec;
2200             break;
2201         default:
2202             g_assert_not_reached();
2203         }
2204         op->args[2] = arg_new_constant(ctx, ~ti_const_val(t2));
2205         return fold_or(ctx, op);
2206     }
2207 
2208     t1 = arg_info(op->args[1]);
2209     s_mask = t1->s_mask & t2->s_mask;
2210     return fold_masks_s(ctx, op, s_mask);
2211 }
2212 
2213 static bool fold_qemu_ld_1reg(OptContext *ctx, TCGOp *op)
2214 {
2215     const TCGOpDef *def = &tcg_op_defs[op->opc];
2216     MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs];
2217     MemOp mop = get_memop(oi);
2218     int width = 8 * memop_size(mop);
2219     uint64_t z_mask = -1, s_mask = 0;
2220 
2221     if (width < 64) {
2222         if (mop & MO_SIGN) {
2223             s_mask = MAKE_64BIT_MASK(width - 1, 64 - (width - 1));
2224         } else {
2225             z_mask = MAKE_64BIT_MASK(0, width);
2226         }
2227     }
2228 
2229     /* Opcodes that touch guest memory stop the mb optimization.  */
2230     ctx->prev_mb = NULL;
2231 
2232     return fold_masks_zs(ctx, op, z_mask, s_mask);
2233 }
2234 
2235 static bool fold_qemu_ld_2reg(OptContext *ctx, TCGOp *op)
2236 {
2237     /* Opcodes that touch guest memory stop the mb optimization.  */
2238     ctx->prev_mb = NULL;
2239     return finish_folding(ctx, op);
2240 }
2241 
2242 static bool fold_qemu_st(OptContext *ctx, TCGOp *op)
2243 {
2244     /* Opcodes that touch guest memory stop the mb optimization.  */
2245     ctx->prev_mb = NULL;
2246     return true;
2247 }
2248 
2249 static bool fold_remainder(OptContext *ctx, TCGOp *op)
2250 {
2251     if (fold_const2(ctx, op) ||
2252         fold_xx_to_i(ctx, op, 0)) {
2253         return true;
2254     }
2255     return finish_folding(ctx, op);
2256 }
2257 
2258 /* Return 1 if finished, -1 if simplified, 0 if unchanged. */
2259 static int fold_setcond_zmask(OptContext *ctx, TCGOp *op, bool neg)
2260 {
2261     uint64_t a_zmask, b_val;
2262     TCGCond cond;
2263 
2264     if (!arg_is_const(op->args[2])) {
2265         return false;
2266     }
2267 
2268     a_zmask = arg_info(op->args[1])->z_mask;
2269     b_val = arg_info(op->args[2])->val;
2270     cond = op->args[3];
2271 
2272     if (ctx->type == TCG_TYPE_I32) {
2273         a_zmask = (uint32_t)a_zmask;
2274         b_val = (uint32_t)b_val;
2275     }
2276 
2277     /*
2278      * A with only low bits set vs B with high bits set means that A < B.
2279      */
2280     if (a_zmask < b_val) {
2281         bool inv = false;
2282 
2283         switch (cond) {
2284         case TCG_COND_NE:
2285         case TCG_COND_LEU:
2286         case TCG_COND_LTU:
2287             inv = true;
2288             /* fall through */
2289         case TCG_COND_GTU:
2290         case TCG_COND_GEU:
2291         case TCG_COND_EQ:
2292             return tcg_opt_gen_movi(ctx, op, op->args[0], neg ? -inv : inv);
2293         default:
2294             break;
2295         }
2296     }
2297 
2298     /*
2299      * A with only lsb set is already boolean.
2300      */
2301     if (a_zmask <= 1) {
2302         bool convert = false;
2303         bool inv = false;
2304 
2305         switch (cond) {
2306         case TCG_COND_EQ:
2307             inv = true;
2308             /* fall through */
2309         case TCG_COND_NE:
2310             convert = (b_val == 0);
2311             break;
2312         case TCG_COND_LTU:
2313         case TCG_COND_TSTEQ:
2314             inv = true;
2315             /* fall through */
2316         case TCG_COND_GEU:
2317         case TCG_COND_TSTNE:
2318             convert = (b_val == 1);
2319             break;
2320         default:
2321             break;
2322         }
2323         if (convert) {
2324             if (!inv && !neg) {
2325                 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]);
2326             }
2327 
2328             if (!inv) {
2329                 op->opc = INDEX_op_neg;
2330             } else if (neg) {
2331                 op->opc = INDEX_op_add;
2332                 op->args[2] = arg_new_constant(ctx, -1);
2333             } else {
2334                 op->opc = INDEX_op_xor;
2335                 op->args[2] = arg_new_constant(ctx, 1);
2336             }
2337             return -1;
2338         }
2339     }
2340     return 0;
2341 }
2342 
2343 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg)
2344 {
2345     TCGOpcode uext_opc = 0, sext_opc = 0;
2346     TCGCond cond = op->args[3];
2347     TCGArg ret, src1, src2;
2348     TCGOp *op2;
2349     uint64_t val;
2350     int sh;
2351     bool inv;
2352 
2353     if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) {
2354         return;
2355     }
2356 
2357     src2 = op->args[2];
2358     val = arg_info(src2)->val;
2359     if (!is_power_of_2(val)) {
2360         return;
2361     }
2362     sh = ctz64(val);
2363 
2364     switch (ctx->type) {
2365     case TCG_TYPE_I32:
2366         if (TCG_TARGET_extract_valid(TCG_TYPE_I32, sh, 1)) {
2367             uext_opc = INDEX_op_extract_i32;
2368         }
2369         if (TCG_TARGET_sextract_valid(TCG_TYPE_I32, sh, 1)) {
2370             sext_opc = INDEX_op_sextract_i32;
2371         }
2372         break;
2373     case TCG_TYPE_I64:
2374         if (TCG_TARGET_extract_valid(TCG_TYPE_I64, sh, 1)) {
2375             uext_opc = INDEX_op_extract_i64;
2376         }
2377         if (TCG_TARGET_sextract_valid(TCG_TYPE_I64, sh, 1)) {
2378             sext_opc = INDEX_op_sextract_i64;
2379         }
2380         break;
2381     default:
2382         g_assert_not_reached();
2383     }
2384 
2385     ret = op->args[0];
2386     src1 = op->args[1];
2387     inv = cond == TCG_COND_TSTEQ;
2388 
2389     if (sh && sext_opc && neg && !inv) {
2390         op->opc = sext_opc;
2391         op->args[1] = src1;
2392         op->args[2] = sh;
2393         op->args[3] = 1;
2394         return;
2395     } else if (sh && uext_opc) {
2396         op->opc = uext_opc;
2397         op->args[1] = src1;
2398         op->args[2] = sh;
2399         op->args[3] = 1;
2400     } else {
2401         if (sh) {
2402             op2 = opt_insert_before(ctx, op, INDEX_op_shr, 3);
2403             op2->args[0] = ret;
2404             op2->args[1] = src1;
2405             op2->args[2] = arg_new_constant(ctx, sh);
2406             src1 = ret;
2407         }
2408         op->opc = INDEX_op_and;
2409         op->args[1] = src1;
2410         op->args[2] = arg_new_constant(ctx, 1);
2411     }
2412 
2413     if (neg && inv) {
2414         op2 = opt_insert_after(ctx, op, INDEX_op_add, 3);
2415         op2->args[0] = ret;
2416         op2->args[1] = ret;
2417         op2->args[2] = arg_new_constant(ctx, -1);
2418     } else if (inv) {
2419         op2 = opt_insert_after(ctx, op, INDEX_op_xor, 3);
2420         op2->args[0] = ret;
2421         op2->args[1] = ret;
2422         op2->args[2] = arg_new_constant(ctx, 1);
2423     } else if (neg) {
2424         op2 = opt_insert_after(ctx, op, INDEX_op_neg, 2);
2425         op2->args[0] = ret;
2426         op2->args[1] = ret;
2427     }
2428 }
2429 
2430 static bool fold_setcond(OptContext *ctx, TCGOp *op)
2431 {
2432     int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1],
2433                                       &op->args[2], &op->args[3]);
2434     if (i >= 0) {
2435         return tcg_opt_gen_movi(ctx, op, op->args[0], i);
2436     }
2437 
2438     i = fold_setcond_zmask(ctx, op, false);
2439     if (i > 0) {
2440         return true;
2441     }
2442     if (i == 0) {
2443         fold_setcond_tst_pow2(ctx, op, false);
2444     }
2445 
2446     return fold_masks_z(ctx, op, 1);
2447 }
2448 
2449 static bool fold_negsetcond(OptContext *ctx, TCGOp *op)
2450 {
2451     int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1],
2452                                       &op->args[2], &op->args[3]);
2453     if (i >= 0) {
2454         return tcg_opt_gen_movi(ctx, op, op->args[0], -i);
2455     }
2456 
2457     i = fold_setcond_zmask(ctx, op, true);
2458     if (i > 0) {
2459         return true;
2460     }
2461     if (i == 0) {
2462         fold_setcond_tst_pow2(ctx, op, true);
2463     }
2464 
2465     /* Value is {0,-1} so all bits are repetitions of the sign. */
2466     return fold_masks_s(ctx, op, -1);
2467 }
2468 
2469 static bool fold_setcond2(OptContext *ctx, TCGOp *op)
2470 {
2471     TCGCond cond;
2472     int i, inv = 0;
2473 
2474     i = do_constant_folding_cond2(ctx, op, &op->args[1]);
2475     cond = op->args[5];
2476     if (i >= 0) {
2477         goto do_setcond_const;
2478     }
2479 
2480     switch (cond) {
2481     case TCG_COND_LT:
2482     case TCG_COND_GE:
2483         /*
2484          * Simplify LT/GE comparisons vs zero to a single compare
2485          * vs the high word of the input.
2486          */
2487         if (arg_is_const_val(op->args[3], 0) &&
2488             arg_is_const_val(op->args[4], 0)) {
2489             goto do_setcond_high;
2490         }
2491         break;
2492 
2493     case TCG_COND_NE:
2494         inv = 1;
2495         QEMU_FALLTHROUGH;
2496     case TCG_COND_EQ:
2497         /*
2498          * Simplify EQ/NE comparisons where one of the pairs
2499          * can be simplified.
2500          */
2501         i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1],
2502                                      op->args[3], cond);
2503         switch (i ^ inv) {
2504         case 0:
2505             goto do_setcond_const;
2506         case 1:
2507             goto do_setcond_high;
2508         }
2509 
2510         i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2],
2511                                      op->args[4], cond);
2512         switch (i ^ inv) {
2513         case 0:
2514             goto do_setcond_const;
2515         case 1:
2516             goto do_setcond_low;
2517         }
2518         break;
2519 
2520     case TCG_COND_TSTEQ:
2521     case TCG_COND_TSTNE:
2522         if (arg_is_const_val(op->args[3], 0)) {
2523             goto do_setcond_high;
2524         }
2525         if (arg_is_const_val(op->args[4], 0)) {
2526             goto do_setcond_low;
2527         }
2528         break;
2529 
2530     default:
2531         break;
2532 
2533     do_setcond_low:
2534         op->args[2] = op->args[3];
2535         op->args[3] = cond;
2536         op->opc = INDEX_op_setcond_i32;
2537         return fold_setcond(ctx, op);
2538 
2539     do_setcond_high:
2540         op->args[1] = op->args[2];
2541         op->args[2] = op->args[4];
2542         op->args[3] = cond;
2543         op->opc = INDEX_op_setcond_i32;
2544         return fold_setcond(ctx, op);
2545     }
2546 
2547     return fold_masks_z(ctx, op, 1);
2548 
2549  do_setcond_const:
2550     return tcg_opt_gen_movi(ctx, op, op->args[0], i);
2551 }
2552 
2553 static bool fold_sextract(OptContext *ctx, TCGOp *op)
2554 {
2555     uint64_t z_mask, s_mask, s_mask_old;
2556     TempOptInfo *t1 = arg_info(op->args[1]);
2557     int pos = op->args[2];
2558     int len = op->args[3];
2559 
2560     if (ti_is_const(t1)) {
2561         return tcg_opt_gen_movi(ctx, op, op->args[0],
2562                                 sextract64(ti_const_val(t1), pos, len));
2563     }
2564 
2565     s_mask_old = t1->s_mask;
2566     s_mask = s_mask_old >> pos;
2567     s_mask |= -1ull << (len - 1);
2568 
2569     if (pos == 0 && fold_affected_mask(ctx, op, s_mask & ~s_mask_old)) {
2570         return true;
2571     }
2572 
2573     z_mask = sextract64(t1->z_mask, pos, len);
2574     return fold_masks_zs(ctx, op, z_mask, s_mask);
2575 }
2576 
2577 static bool fold_shift(OptContext *ctx, TCGOp *op)
2578 {
2579     uint64_t s_mask, z_mask;
2580     TempOptInfo *t1, *t2;
2581 
2582     if (fold_const2(ctx, op) ||
2583         fold_ix_to_i(ctx, op, 0) ||
2584         fold_xi_to_x(ctx, op, 0)) {
2585         return true;
2586     }
2587 
2588     t1 = arg_info(op->args[1]);
2589     t2 = arg_info(op->args[2]);
2590     s_mask = t1->s_mask;
2591     z_mask = t1->z_mask;
2592 
2593     if (ti_is_const(t2)) {
2594         int sh = ti_const_val(t2);
2595 
2596         z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh);
2597         s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh);
2598 
2599         return fold_masks_zs(ctx, op, z_mask, s_mask);
2600     }
2601 
2602     switch (op->opc) {
2603     case INDEX_op_sar:
2604         /*
2605          * Arithmetic right shift will not reduce the number of
2606          * input sign repetitions.
2607          */
2608         return fold_masks_s(ctx, op, s_mask);
2609     case INDEX_op_shr:
2610         /*
2611          * If the sign bit is known zero, then logical right shift
2612          * will not reduce the number of input sign repetitions.
2613          */
2614         if (~z_mask & -s_mask) {
2615             return fold_masks_s(ctx, op, s_mask);
2616         }
2617         break;
2618     default:
2619         break;
2620     }
2621 
2622     return finish_folding(ctx, op);
2623 }
2624 
2625 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op)
2626 {
2627     TCGOpcode neg_op;
2628     bool have_neg;
2629 
2630     if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) {
2631         return false;
2632     }
2633 
2634     switch (ctx->type) {
2635     case TCG_TYPE_I32:
2636     case TCG_TYPE_I64:
2637         neg_op = INDEX_op_neg;
2638         have_neg = true;
2639         break;
2640     case TCG_TYPE_V64:
2641     case TCG_TYPE_V128:
2642     case TCG_TYPE_V256:
2643         neg_op = INDEX_op_neg_vec;
2644         have_neg = (TCG_TARGET_HAS_neg_vec &&
2645                     tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0);
2646         break;
2647     default:
2648         g_assert_not_reached();
2649     }
2650     if (have_neg) {
2651         op->opc = neg_op;
2652         op->args[1] = op->args[2];
2653         return fold_neg_no_const(ctx, op);
2654     }
2655     return false;
2656 }
2657 
2658 /* We cannot as yet do_constant_folding with vectors. */
2659 static bool fold_sub_vec(OptContext *ctx, TCGOp *op)
2660 {
2661     if (fold_xx_to_i(ctx, op, 0) ||
2662         fold_xi_to_x(ctx, op, 0) ||
2663         fold_sub_to_neg(ctx, op)) {
2664         return true;
2665     }
2666     return finish_folding(ctx, op);
2667 }
2668 
2669 static bool fold_sub(OptContext *ctx, TCGOp *op)
2670 {
2671     if (fold_const2(ctx, op) ||
2672         fold_xx_to_i(ctx, op, 0) ||
2673         fold_xi_to_x(ctx, op, 0) ||
2674         fold_sub_to_neg(ctx, op)) {
2675         return true;
2676     }
2677 
2678     /* Fold sub r,x,i to add r,x,-i */
2679     if (arg_is_const(op->args[2])) {
2680         uint64_t val = arg_info(op->args[2])->val;
2681 
2682         op->opc = INDEX_op_add;
2683         op->args[2] = arg_new_constant(ctx, -val);
2684     }
2685     return finish_folding(ctx, op);
2686 }
2687 
2688 static bool fold_sub2(OptContext *ctx, TCGOp *op)
2689 {
2690     return fold_addsub2(ctx, op, false);
2691 }
2692 
2693 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op)
2694 {
2695     uint64_t z_mask = -1, s_mask = 0;
2696 
2697     /* We can't do any folding with a load, but we can record bits. */
2698     switch (op->opc) {
2699     CASE_OP_32_64(ld8s):
2700         s_mask = INT8_MIN;
2701         break;
2702     CASE_OP_32_64(ld8u):
2703         z_mask = MAKE_64BIT_MASK(0, 8);
2704         break;
2705     CASE_OP_32_64(ld16s):
2706         s_mask = INT16_MIN;
2707         break;
2708     CASE_OP_32_64(ld16u):
2709         z_mask = MAKE_64BIT_MASK(0, 16);
2710         break;
2711     case INDEX_op_ld32s_i64:
2712         s_mask = INT32_MIN;
2713         break;
2714     case INDEX_op_ld32u_i64:
2715         z_mask = MAKE_64BIT_MASK(0, 32);
2716         break;
2717     default:
2718         g_assert_not_reached();
2719     }
2720     return fold_masks_zs(ctx, op, z_mask, s_mask);
2721 }
2722 
2723 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op)
2724 {
2725     TCGTemp *dst, *src;
2726     intptr_t ofs;
2727     TCGType type;
2728 
2729     if (op->args[1] != tcgv_ptr_arg(tcg_env)) {
2730         return finish_folding(ctx, op);
2731     }
2732 
2733     type = ctx->type;
2734     ofs = op->args[2];
2735     dst = arg_temp(op->args[0]);
2736     src = find_mem_copy_for(ctx, type, ofs);
2737     if (src && src->base_type == type) {
2738         return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src));
2739     }
2740 
2741     reset_ts(ctx, dst);
2742     record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1);
2743     return true;
2744 }
2745 
2746 static bool fold_tcg_st(OptContext *ctx, TCGOp *op)
2747 {
2748     intptr_t ofs = op->args[2];
2749     intptr_t lm1;
2750 
2751     if (op->args[1] != tcgv_ptr_arg(tcg_env)) {
2752         remove_mem_copy_all(ctx);
2753         return true;
2754     }
2755 
2756     switch (op->opc) {
2757     CASE_OP_32_64(st8):
2758         lm1 = 0;
2759         break;
2760     CASE_OP_32_64(st16):
2761         lm1 = 1;
2762         break;
2763     case INDEX_op_st32_i64:
2764     case INDEX_op_st_i32:
2765         lm1 = 3;
2766         break;
2767     case INDEX_op_st_i64:
2768         lm1 = 7;
2769         break;
2770     case INDEX_op_st_vec:
2771         lm1 = tcg_type_size(ctx->type) - 1;
2772         break;
2773     default:
2774         g_assert_not_reached();
2775     }
2776     remove_mem_copy_in(ctx, ofs, ofs + lm1);
2777     return true;
2778 }
2779 
2780 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op)
2781 {
2782     TCGTemp *src;
2783     intptr_t ofs, last;
2784     TCGType type;
2785 
2786     if (op->args[1] != tcgv_ptr_arg(tcg_env)) {
2787         return fold_tcg_st(ctx, op);
2788     }
2789 
2790     src = arg_temp(op->args[0]);
2791     ofs = op->args[2];
2792     type = ctx->type;
2793 
2794     /*
2795      * Eliminate duplicate stores of a constant.
2796      * This happens frequently when the target ISA zero-extends.
2797      */
2798     if (ts_is_const(src)) {
2799         TCGTemp *prev = find_mem_copy_for(ctx, type, ofs);
2800         if (src == prev) {
2801             tcg_op_remove(ctx->tcg, op);
2802             return true;
2803         }
2804     }
2805 
2806     last = ofs + tcg_type_size(type) - 1;
2807     remove_mem_copy_in(ctx, ofs, last);
2808     record_mem_copy(ctx, type, src, ofs, last);
2809     return true;
2810 }
2811 
2812 static bool fold_xor(OptContext *ctx, TCGOp *op)
2813 {
2814     uint64_t z_mask, s_mask;
2815     TempOptInfo *t1, *t2;
2816 
2817     if (fold_const2_commutative(ctx, op) ||
2818         fold_xx_to_i(ctx, op, 0) ||
2819         fold_xi_to_x(ctx, op, 0) ||
2820         fold_xi_to_not(ctx, op, -1)) {
2821         return true;
2822     }
2823 
2824     t1 = arg_info(op->args[1]);
2825     t2 = arg_info(op->args[2]);
2826     z_mask = t1->z_mask | t2->z_mask;
2827     s_mask = t1->s_mask & t2->s_mask;
2828     return fold_masks_zs(ctx, op, z_mask, s_mask);
2829 }
2830 
2831 /* Propagate constants and copies, fold constant expressions. */
2832 void tcg_optimize(TCGContext *s)
2833 {
2834     int nb_temps, i;
2835     TCGOp *op, *op_next;
2836     OptContext ctx = { .tcg = s };
2837 
2838     QSIMPLEQ_INIT(&ctx.mem_free);
2839 
2840     /* Array VALS has an element for each temp.
2841        If this temp holds a constant then its value is kept in VALS' element.
2842        If this temp is a copy of other ones then the other copies are
2843        available through the doubly linked circular list. */
2844 
2845     nb_temps = s->nb_temps;
2846     for (i = 0; i < nb_temps; ++i) {
2847         s->temps[i].state_ptr = NULL;
2848     }
2849 
2850     QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2851         TCGOpcode opc = op->opc;
2852         const TCGOpDef *def;
2853         bool done = false;
2854 
2855         /* Calls are special. */
2856         if (opc == INDEX_op_call) {
2857             fold_call(&ctx, op);
2858             continue;
2859         }
2860 
2861         def = &tcg_op_defs[opc];
2862         init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs);
2863         copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs);
2864 
2865         /* Pre-compute the type of the operation. */
2866         ctx.type = TCGOP_TYPE(op);
2867 
2868         /*
2869          * Process each opcode.
2870          * Sorted alphabetically by opcode as much as possible.
2871          */
2872         switch (opc) {
2873         case INDEX_op_add:
2874             done = fold_add(&ctx, op);
2875             break;
2876         case INDEX_op_add_vec:
2877             done = fold_add_vec(&ctx, op);
2878             break;
2879         CASE_OP_32_64(add2):
2880             done = fold_add2(&ctx, op);
2881             break;
2882         case INDEX_op_and:
2883         case INDEX_op_and_vec:
2884             done = fold_and(&ctx, op);
2885             break;
2886         case INDEX_op_andc:
2887         case INDEX_op_andc_vec:
2888             done = fold_andc(&ctx, op);
2889             break;
2890         CASE_OP_32_64(brcond):
2891             done = fold_brcond(&ctx, op);
2892             break;
2893         case INDEX_op_brcond2_i32:
2894             done = fold_brcond2(&ctx, op);
2895             break;
2896         CASE_OP_32_64(bswap16):
2897         CASE_OP_32_64(bswap32):
2898         case INDEX_op_bswap64_i64:
2899             done = fold_bswap(&ctx, op);
2900             break;
2901         CASE_OP_32_64(clz):
2902         CASE_OP_32_64(ctz):
2903             done = fold_count_zeros(&ctx, op);
2904             break;
2905         CASE_OP_32_64(ctpop):
2906             done = fold_ctpop(&ctx, op);
2907             break;
2908         CASE_OP_32_64(deposit):
2909             done = fold_deposit(&ctx, op);
2910             break;
2911         case INDEX_op_divs:
2912         case INDEX_op_divu:
2913             done = fold_divide(&ctx, op);
2914             break;
2915         case INDEX_op_dup_vec:
2916             done = fold_dup(&ctx, op);
2917             break;
2918         case INDEX_op_dup2_vec:
2919             done = fold_dup2(&ctx, op);
2920             break;
2921         case INDEX_op_eqv:
2922         case INDEX_op_eqv_vec:
2923             done = fold_eqv(&ctx, op);
2924             break;
2925         CASE_OP_32_64(extract):
2926             done = fold_extract(&ctx, op);
2927             break;
2928         CASE_OP_32_64(extract2):
2929             done = fold_extract2(&ctx, op);
2930             break;
2931         case INDEX_op_ext_i32_i64:
2932             done = fold_exts(&ctx, op);
2933             break;
2934         case INDEX_op_extu_i32_i64:
2935         case INDEX_op_extrl_i64_i32:
2936         case INDEX_op_extrh_i64_i32:
2937             done = fold_extu(&ctx, op);
2938             break;
2939         CASE_OP_32_64(ld8s):
2940         CASE_OP_32_64(ld8u):
2941         CASE_OP_32_64(ld16s):
2942         CASE_OP_32_64(ld16u):
2943         case INDEX_op_ld32s_i64:
2944         case INDEX_op_ld32u_i64:
2945             done = fold_tcg_ld(&ctx, op);
2946             break;
2947         case INDEX_op_ld_i32:
2948         case INDEX_op_ld_i64:
2949         case INDEX_op_ld_vec:
2950             done = fold_tcg_ld_memcopy(&ctx, op);
2951             break;
2952         CASE_OP_32_64(st8):
2953         CASE_OP_32_64(st16):
2954         case INDEX_op_st32_i64:
2955             done = fold_tcg_st(&ctx, op);
2956             break;
2957         case INDEX_op_st_i32:
2958         case INDEX_op_st_i64:
2959         case INDEX_op_st_vec:
2960             done = fold_tcg_st_memcopy(&ctx, op);
2961             break;
2962         case INDEX_op_mb:
2963             done = fold_mb(&ctx, op);
2964             break;
2965         case INDEX_op_mov:
2966         case INDEX_op_mov_vec:
2967             done = fold_mov(&ctx, op);
2968             break;
2969         CASE_OP_32_64(movcond):
2970             done = fold_movcond(&ctx, op);
2971             break;
2972         case INDEX_op_mul:
2973             done = fold_mul(&ctx, op);
2974             break;
2975         case INDEX_op_mulsh:
2976         case INDEX_op_muluh:
2977             done = fold_mul_highpart(&ctx, op);
2978             break;
2979         CASE_OP_32_64(muls2):
2980         CASE_OP_32_64(mulu2):
2981             done = fold_multiply2(&ctx, op);
2982             break;
2983         case INDEX_op_nand:
2984         case INDEX_op_nand_vec:
2985             done = fold_nand(&ctx, op);
2986             break;
2987         case INDEX_op_neg:
2988             done = fold_neg(&ctx, op);
2989             break;
2990         case INDEX_op_nor:
2991         case INDEX_op_nor_vec:
2992             done = fold_nor(&ctx, op);
2993             break;
2994         case INDEX_op_not:
2995         case INDEX_op_not_vec:
2996             done = fold_not(&ctx, op);
2997             break;
2998         case INDEX_op_or:
2999         case INDEX_op_or_vec:
3000             done = fold_or(&ctx, op);
3001             break;
3002         case INDEX_op_orc:
3003         case INDEX_op_orc_vec:
3004             done = fold_orc(&ctx, op);
3005             break;
3006         case INDEX_op_qemu_ld_i32:
3007             done = fold_qemu_ld_1reg(&ctx, op);
3008             break;
3009         case INDEX_op_qemu_ld_i64:
3010             if (TCG_TARGET_REG_BITS == 64) {
3011                 done = fold_qemu_ld_1reg(&ctx, op);
3012                 break;
3013             }
3014             QEMU_FALLTHROUGH;
3015         case INDEX_op_qemu_ld_i128:
3016             done = fold_qemu_ld_2reg(&ctx, op);
3017             break;
3018         case INDEX_op_qemu_st8_i32:
3019         case INDEX_op_qemu_st_i32:
3020         case INDEX_op_qemu_st_i64:
3021         case INDEX_op_qemu_st_i128:
3022             done = fold_qemu_st(&ctx, op);
3023             break;
3024         case INDEX_op_rems:
3025         case INDEX_op_remu:
3026             done = fold_remainder(&ctx, op);
3027             break;
3028         CASE_OP_32_64(rotl):
3029         CASE_OP_32_64(rotr):
3030         case INDEX_op_sar:
3031         case INDEX_op_shl:
3032         case INDEX_op_shr:
3033             done = fold_shift(&ctx, op);
3034             break;
3035         CASE_OP_32_64(setcond):
3036             done = fold_setcond(&ctx, op);
3037             break;
3038         CASE_OP_32_64(negsetcond):
3039             done = fold_negsetcond(&ctx, op);
3040             break;
3041         case INDEX_op_setcond2_i32:
3042             done = fold_setcond2(&ctx, op);
3043             break;
3044         case INDEX_op_cmp_vec:
3045             done = fold_cmp_vec(&ctx, op);
3046             break;
3047         case INDEX_op_cmpsel_vec:
3048             done = fold_cmpsel_vec(&ctx, op);
3049             break;
3050         case INDEX_op_bitsel_vec:
3051             done = fold_bitsel_vec(&ctx, op);
3052             break;
3053         CASE_OP_32_64(sextract):
3054             done = fold_sextract(&ctx, op);
3055             break;
3056         case INDEX_op_sub:
3057             done = fold_sub(&ctx, op);
3058             break;
3059         case INDEX_op_sub_vec:
3060             done = fold_sub_vec(&ctx, op);
3061             break;
3062         CASE_OP_32_64(sub2):
3063             done = fold_sub2(&ctx, op);
3064             break;
3065         case INDEX_op_xor:
3066         case INDEX_op_xor_vec:
3067             done = fold_xor(&ctx, op);
3068             break;
3069         case INDEX_op_set_label:
3070         case INDEX_op_br:
3071         case INDEX_op_exit_tb:
3072         case INDEX_op_goto_tb:
3073         case INDEX_op_goto_ptr:
3074             finish_ebb(&ctx);
3075             done = true;
3076             break;
3077         default:
3078             done = finish_folding(&ctx, op);
3079             break;
3080         }
3081         tcg_debug_assert(done);
3082     }
3083 }
3084