1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "tcg/tcg-op-common.h" 29 #include "tcg-internal.h" 30 31 #define CASE_OP_32_64(x) \ 32 glue(glue(case INDEX_op_, x), _i32): \ 33 glue(glue(case INDEX_op_, x), _i64) 34 35 #define CASE_OP_32_64_VEC(x) \ 36 glue(glue(case INDEX_op_, x), _i32): \ 37 glue(glue(case INDEX_op_, x), _i64): \ 38 glue(glue(case INDEX_op_, x), _vec) 39 40 typedef struct TempOptInfo { 41 bool is_const; 42 TCGTemp *prev_copy; 43 TCGTemp *next_copy; 44 uint64_t val; 45 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 46 uint64_t s_mask; /* a left-aligned mask of clrsb(value) bits. */ 47 } TempOptInfo; 48 49 typedef struct OptContext { 50 TCGContext *tcg; 51 TCGOp *prev_mb; 52 TCGTempSet temps_used; 53 54 /* In flight values from optimization. */ 55 uint64_t a_mask; /* mask bit is 0 iff value identical to first input */ 56 uint64_t z_mask; /* mask bit is 0 iff value bit is 0 */ 57 uint64_t s_mask; /* mask of clrsb(value) bits */ 58 TCGType type; 59 } OptContext; 60 61 /* Calculate the smask for a specific value. */ 62 static uint64_t smask_from_value(uint64_t value) 63 { 64 int rep = clrsb64(value); 65 return ~(~0ull >> rep); 66 } 67 68 /* 69 * Calculate the smask for a given set of known-zeros. 70 * If there are lots of zeros on the left, we can consider the remainder 71 * an unsigned field, and thus the corresponding signed field is one bit 72 * larger. 73 */ 74 static uint64_t smask_from_zmask(uint64_t zmask) 75 { 76 /* 77 * Only the 0 bits are significant for zmask, thus the msb itself 78 * must be zero, else we have no sign information. 79 */ 80 int rep = clz64(zmask); 81 if (rep == 0) { 82 return 0; 83 } 84 rep -= 1; 85 return ~(~0ull >> rep); 86 } 87 88 /* 89 * Recreate a properly left-aligned smask after manipulation. 90 * Some bit-shuffling, particularly shifts and rotates, may 91 * retain sign bits on the left, but may scatter disconnected 92 * sign bits on the right. Retain only what remains to the left. 93 */ 94 static uint64_t smask_from_smask(int64_t smask) 95 { 96 /* Only the 1 bits are significant for smask */ 97 return smask_from_zmask(~smask); 98 } 99 100 static inline TempOptInfo *ts_info(TCGTemp *ts) 101 { 102 return ts->state_ptr; 103 } 104 105 static inline TempOptInfo *arg_info(TCGArg arg) 106 { 107 return ts_info(arg_temp(arg)); 108 } 109 110 static inline bool ts_is_const(TCGTemp *ts) 111 { 112 return ts_info(ts)->is_const; 113 } 114 115 static inline bool arg_is_const(TCGArg arg) 116 { 117 return ts_is_const(arg_temp(arg)); 118 } 119 120 static inline bool ts_is_copy(TCGTemp *ts) 121 { 122 return ts_info(ts)->next_copy != ts; 123 } 124 125 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 126 static void reset_ts(TCGTemp *ts) 127 { 128 TempOptInfo *ti = ts_info(ts); 129 TempOptInfo *pi = ts_info(ti->prev_copy); 130 TempOptInfo *ni = ts_info(ti->next_copy); 131 132 ni->prev_copy = ti->prev_copy; 133 pi->next_copy = ti->next_copy; 134 ti->next_copy = ts; 135 ti->prev_copy = ts; 136 ti->is_const = false; 137 ti->z_mask = -1; 138 ti->s_mask = 0; 139 } 140 141 static void reset_temp(TCGArg arg) 142 { 143 reset_ts(arg_temp(arg)); 144 } 145 146 /* Initialize and activate a temporary. */ 147 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 148 { 149 size_t idx = temp_idx(ts); 150 TempOptInfo *ti; 151 152 if (test_bit(idx, ctx->temps_used.l)) { 153 return; 154 } 155 set_bit(idx, ctx->temps_used.l); 156 157 ti = ts->state_ptr; 158 if (ti == NULL) { 159 ti = tcg_malloc(sizeof(TempOptInfo)); 160 ts->state_ptr = ti; 161 } 162 163 ti->next_copy = ts; 164 ti->prev_copy = ts; 165 if (ts->kind == TEMP_CONST) { 166 ti->is_const = true; 167 ti->val = ts->val; 168 ti->z_mask = ts->val; 169 ti->s_mask = smask_from_value(ts->val); 170 } else { 171 ti->is_const = false; 172 ti->z_mask = -1; 173 ti->s_mask = 0; 174 } 175 } 176 177 static TCGTemp *find_better_copy(TCGContext *s, TCGTemp *ts) 178 { 179 TCGTemp *i, *g, *l; 180 181 /* If this is already readonly, we can't do better. */ 182 if (temp_readonly(ts)) { 183 return ts; 184 } 185 186 g = l = NULL; 187 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 188 if (temp_readonly(i)) { 189 return i; 190 } else if (i->kind > ts->kind) { 191 if (i->kind == TEMP_GLOBAL) { 192 g = i; 193 } else if (i->kind == TEMP_TB) { 194 l = i; 195 } 196 } 197 } 198 199 /* If we didn't find a better representation, return the same temp. */ 200 return g ? g : l ? l : ts; 201 } 202 203 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 204 { 205 TCGTemp *i; 206 207 if (ts1 == ts2) { 208 return true; 209 } 210 211 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 212 return false; 213 } 214 215 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 216 if (i == ts2) { 217 return true; 218 } 219 } 220 221 return false; 222 } 223 224 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 225 { 226 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 227 } 228 229 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 230 { 231 TCGTemp *dst_ts = arg_temp(dst); 232 TCGTemp *src_ts = arg_temp(src); 233 TempOptInfo *di; 234 TempOptInfo *si; 235 TCGOpcode new_op; 236 237 if (ts_are_copies(dst_ts, src_ts)) { 238 tcg_op_remove(ctx->tcg, op); 239 return true; 240 } 241 242 reset_ts(dst_ts); 243 di = ts_info(dst_ts); 244 si = ts_info(src_ts); 245 246 switch (ctx->type) { 247 case TCG_TYPE_I32: 248 new_op = INDEX_op_mov_i32; 249 break; 250 case TCG_TYPE_I64: 251 new_op = INDEX_op_mov_i64; 252 break; 253 case TCG_TYPE_V64: 254 case TCG_TYPE_V128: 255 case TCG_TYPE_V256: 256 /* TCGOP_VECL and TCGOP_VECE remain unchanged. */ 257 new_op = INDEX_op_mov_vec; 258 break; 259 default: 260 g_assert_not_reached(); 261 } 262 op->opc = new_op; 263 op->args[0] = dst; 264 op->args[1] = src; 265 266 di->z_mask = si->z_mask; 267 di->s_mask = si->s_mask; 268 269 if (src_ts->type == dst_ts->type) { 270 TempOptInfo *ni = ts_info(si->next_copy); 271 272 di->next_copy = si->next_copy; 273 di->prev_copy = src_ts; 274 ni->prev_copy = dst_ts; 275 si->next_copy = dst_ts; 276 di->is_const = si->is_const; 277 di->val = si->val; 278 } 279 return true; 280 } 281 282 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 283 TCGArg dst, uint64_t val) 284 { 285 TCGTemp *tv; 286 287 if (ctx->type == TCG_TYPE_I32) { 288 val = (int32_t)val; 289 } 290 291 /* Convert movi to mov with constant temp. */ 292 tv = tcg_constant_internal(ctx->type, val); 293 init_ts_info(ctx, tv); 294 return tcg_opt_gen_mov(ctx, op, dst, temp_arg(tv)); 295 } 296 297 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 298 { 299 uint64_t l64, h64; 300 301 switch (op) { 302 CASE_OP_32_64(add): 303 return x + y; 304 305 CASE_OP_32_64(sub): 306 return x - y; 307 308 CASE_OP_32_64(mul): 309 return x * y; 310 311 CASE_OP_32_64_VEC(and): 312 return x & y; 313 314 CASE_OP_32_64_VEC(or): 315 return x | y; 316 317 CASE_OP_32_64_VEC(xor): 318 return x ^ y; 319 320 case INDEX_op_shl_i32: 321 return (uint32_t)x << (y & 31); 322 323 case INDEX_op_shl_i64: 324 return (uint64_t)x << (y & 63); 325 326 case INDEX_op_shr_i32: 327 return (uint32_t)x >> (y & 31); 328 329 case INDEX_op_shr_i64: 330 return (uint64_t)x >> (y & 63); 331 332 case INDEX_op_sar_i32: 333 return (int32_t)x >> (y & 31); 334 335 case INDEX_op_sar_i64: 336 return (int64_t)x >> (y & 63); 337 338 case INDEX_op_rotr_i32: 339 return ror32(x, y & 31); 340 341 case INDEX_op_rotr_i64: 342 return ror64(x, y & 63); 343 344 case INDEX_op_rotl_i32: 345 return rol32(x, y & 31); 346 347 case INDEX_op_rotl_i64: 348 return rol64(x, y & 63); 349 350 CASE_OP_32_64_VEC(not): 351 return ~x; 352 353 CASE_OP_32_64(neg): 354 return -x; 355 356 CASE_OP_32_64_VEC(andc): 357 return x & ~y; 358 359 CASE_OP_32_64_VEC(orc): 360 return x | ~y; 361 362 CASE_OP_32_64_VEC(eqv): 363 return ~(x ^ y); 364 365 CASE_OP_32_64_VEC(nand): 366 return ~(x & y); 367 368 CASE_OP_32_64_VEC(nor): 369 return ~(x | y); 370 371 case INDEX_op_clz_i32: 372 return (uint32_t)x ? clz32(x) : y; 373 374 case INDEX_op_clz_i64: 375 return x ? clz64(x) : y; 376 377 case INDEX_op_ctz_i32: 378 return (uint32_t)x ? ctz32(x) : y; 379 380 case INDEX_op_ctz_i64: 381 return x ? ctz64(x) : y; 382 383 case INDEX_op_ctpop_i32: 384 return ctpop32(x); 385 386 case INDEX_op_ctpop_i64: 387 return ctpop64(x); 388 389 CASE_OP_32_64(ext8s): 390 return (int8_t)x; 391 392 CASE_OP_32_64(ext16s): 393 return (int16_t)x; 394 395 CASE_OP_32_64(ext8u): 396 return (uint8_t)x; 397 398 CASE_OP_32_64(ext16u): 399 return (uint16_t)x; 400 401 CASE_OP_32_64(bswap16): 402 x = bswap16(x); 403 return y & TCG_BSWAP_OS ? (int16_t)x : x; 404 405 CASE_OP_32_64(bswap32): 406 x = bswap32(x); 407 return y & TCG_BSWAP_OS ? (int32_t)x : x; 408 409 case INDEX_op_bswap64_i64: 410 return bswap64(x); 411 412 case INDEX_op_ext_i32_i64: 413 case INDEX_op_ext32s_i64: 414 return (int32_t)x; 415 416 case INDEX_op_extu_i32_i64: 417 case INDEX_op_extrl_i64_i32: 418 case INDEX_op_ext32u_i64: 419 return (uint32_t)x; 420 421 case INDEX_op_extrh_i64_i32: 422 return (uint64_t)x >> 32; 423 424 case INDEX_op_muluh_i32: 425 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 426 case INDEX_op_mulsh_i32: 427 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 428 429 case INDEX_op_muluh_i64: 430 mulu64(&l64, &h64, x, y); 431 return h64; 432 case INDEX_op_mulsh_i64: 433 muls64(&l64, &h64, x, y); 434 return h64; 435 436 case INDEX_op_div_i32: 437 /* Avoid crashing on divide by zero, otherwise undefined. */ 438 return (int32_t)x / ((int32_t)y ? : 1); 439 case INDEX_op_divu_i32: 440 return (uint32_t)x / ((uint32_t)y ? : 1); 441 case INDEX_op_div_i64: 442 return (int64_t)x / ((int64_t)y ? : 1); 443 case INDEX_op_divu_i64: 444 return (uint64_t)x / ((uint64_t)y ? : 1); 445 446 case INDEX_op_rem_i32: 447 return (int32_t)x % ((int32_t)y ? : 1); 448 case INDEX_op_remu_i32: 449 return (uint32_t)x % ((uint32_t)y ? : 1); 450 case INDEX_op_rem_i64: 451 return (int64_t)x % ((int64_t)y ? : 1); 452 case INDEX_op_remu_i64: 453 return (uint64_t)x % ((uint64_t)y ? : 1); 454 455 default: 456 g_assert_not_reached(); 457 } 458 } 459 460 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 461 uint64_t x, uint64_t y) 462 { 463 uint64_t res = do_constant_folding_2(op, x, y); 464 if (type == TCG_TYPE_I32) { 465 res = (int32_t)res; 466 } 467 return res; 468 } 469 470 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 471 { 472 switch (c) { 473 case TCG_COND_EQ: 474 return x == y; 475 case TCG_COND_NE: 476 return x != y; 477 case TCG_COND_LT: 478 return (int32_t)x < (int32_t)y; 479 case TCG_COND_GE: 480 return (int32_t)x >= (int32_t)y; 481 case TCG_COND_LE: 482 return (int32_t)x <= (int32_t)y; 483 case TCG_COND_GT: 484 return (int32_t)x > (int32_t)y; 485 case TCG_COND_LTU: 486 return x < y; 487 case TCG_COND_GEU: 488 return x >= y; 489 case TCG_COND_LEU: 490 return x <= y; 491 case TCG_COND_GTU: 492 return x > y; 493 default: 494 g_assert_not_reached(); 495 } 496 } 497 498 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 499 { 500 switch (c) { 501 case TCG_COND_EQ: 502 return x == y; 503 case TCG_COND_NE: 504 return x != y; 505 case TCG_COND_LT: 506 return (int64_t)x < (int64_t)y; 507 case TCG_COND_GE: 508 return (int64_t)x >= (int64_t)y; 509 case TCG_COND_LE: 510 return (int64_t)x <= (int64_t)y; 511 case TCG_COND_GT: 512 return (int64_t)x > (int64_t)y; 513 case TCG_COND_LTU: 514 return x < y; 515 case TCG_COND_GEU: 516 return x >= y; 517 case TCG_COND_LEU: 518 return x <= y; 519 case TCG_COND_GTU: 520 return x > y; 521 default: 522 g_assert_not_reached(); 523 } 524 } 525 526 static bool do_constant_folding_cond_eq(TCGCond c) 527 { 528 switch (c) { 529 case TCG_COND_GT: 530 case TCG_COND_LTU: 531 case TCG_COND_LT: 532 case TCG_COND_GTU: 533 case TCG_COND_NE: 534 return 0; 535 case TCG_COND_GE: 536 case TCG_COND_GEU: 537 case TCG_COND_LE: 538 case TCG_COND_LEU: 539 case TCG_COND_EQ: 540 return 1; 541 default: 542 g_assert_not_reached(); 543 } 544 } 545 546 /* 547 * Return -1 if the condition can't be simplified, 548 * and the result of the condition (0 or 1) if it can. 549 */ 550 static int do_constant_folding_cond(TCGType type, TCGArg x, 551 TCGArg y, TCGCond c) 552 { 553 if (arg_is_const(x) && arg_is_const(y)) { 554 uint64_t xv = arg_info(x)->val; 555 uint64_t yv = arg_info(y)->val; 556 557 switch (type) { 558 case TCG_TYPE_I32: 559 return do_constant_folding_cond_32(xv, yv, c); 560 case TCG_TYPE_I64: 561 return do_constant_folding_cond_64(xv, yv, c); 562 default: 563 /* Only scalar comparisons are optimizable */ 564 return -1; 565 } 566 } else if (args_are_copies(x, y)) { 567 return do_constant_folding_cond_eq(c); 568 } else if (arg_is_const(y) && arg_info(y)->val == 0) { 569 switch (c) { 570 case TCG_COND_LTU: 571 return 0; 572 case TCG_COND_GEU: 573 return 1; 574 default: 575 return -1; 576 } 577 } 578 return -1; 579 } 580 581 /* 582 * Return -1 if the condition can't be simplified, 583 * and the result of the condition (0 or 1) if it can. 584 */ 585 static int do_constant_folding_cond2(TCGArg *p1, TCGArg *p2, TCGCond c) 586 { 587 TCGArg al = p1[0], ah = p1[1]; 588 TCGArg bl = p2[0], bh = p2[1]; 589 590 if (arg_is_const(bl) && arg_is_const(bh)) { 591 tcg_target_ulong blv = arg_info(bl)->val; 592 tcg_target_ulong bhv = arg_info(bh)->val; 593 uint64_t b = deposit64(blv, 32, 32, bhv); 594 595 if (arg_is_const(al) && arg_is_const(ah)) { 596 tcg_target_ulong alv = arg_info(al)->val; 597 tcg_target_ulong ahv = arg_info(ah)->val; 598 uint64_t a = deposit64(alv, 32, 32, ahv); 599 return do_constant_folding_cond_64(a, b, c); 600 } 601 if (b == 0) { 602 switch (c) { 603 case TCG_COND_LTU: 604 return 0; 605 case TCG_COND_GEU: 606 return 1; 607 default: 608 break; 609 } 610 } 611 } 612 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 613 return do_constant_folding_cond_eq(c); 614 } 615 return -1; 616 } 617 618 /** 619 * swap_commutative: 620 * @dest: TCGArg of the destination argument, or NO_DEST. 621 * @p1: first paired argument 622 * @p2: second paired argument 623 * 624 * If *@p1 is a constant and *@p2 is not, swap. 625 * If *@p2 matches @dest, swap. 626 * Return true if a swap was performed. 627 */ 628 629 #define NO_DEST temp_arg(NULL) 630 631 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 632 { 633 TCGArg a1 = *p1, a2 = *p2; 634 int sum = 0; 635 sum += arg_is_const(a1); 636 sum -= arg_is_const(a2); 637 638 /* Prefer the constant in second argument, and then the form 639 op a, a, b, which is better handled on non-RISC hosts. */ 640 if (sum > 0 || (sum == 0 && dest == a2)) { 641 *p1 = a2; 642 *p2 = a1; 643 return true; 644 } 645 return false; 646 } 647 648 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 649 { 650 int sum = 0; 651 sum += arg_is_const(p1[0]); 652 sum += arg_is_const(p1[1]); 653 sum -= arg_is_const(p2[0]); 654 sum -= arg_is_const(p2[1]); 655 if (sum > 0) { 656 TCGArg t; 657 t = p1[0], p1[0] = p2[0], p2[0] = t; 658 t = p1[1], p1[1] = p2[1], p2[1] = t; 659 return true; 660 } 661 return false; 662 } 663 664 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 665 { 666 for (int i = 0; i < nb_args; i++) { 667 TCGTemp *ts = arg_temp(op->args[i]); 668 init_ts_info(ctx, ts); 669 } 670 } 671 672 static void copy_propagate(OptContext *ctx, TCGOp *op, 673 int nb_oargs, int nb_iargs) 674 { 675 TCGContext *s = ctx->tcg; 676 677 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 678 TCGTemp *ts = arg_temp(op->args[i]); 679 if (ts_is_copy(ts)) { 680 op->args[i] = temp_arg(find_better_copy(s, ts)); 681 } 682 } 683 } 684 685 static void finish_folding(OptContext *ctx, TCGOp *op) 686 { 687 const TCGOpDef *def = &tcg_op_defs[op->opc]; 688 int i, nb_oargs; 689 690 /* 691 * We only optimize extended basic blocks. If the opcode ends a BB 692 * and is not a conditional branch, reset all temp data. 693 */ 694 if (def->flags & TCG_OPF_BB_END) { 695 ctx->prev_mb = NULL; 696 if (!(def->flags & TCG_OPF_COND_BRANCH)) { 697 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 698 } 699 return; 700 } 701 702 nb_oargs = def->nb_oargs; 703 for (i = 0; i < nb_oargs; i++) { 704 TCGTemp *ts = arg_temp(op->args[i]); 705 reset_ts(ts); 706 /* 707 * Save the corresponding known-zero/sign bits mask for the 708 * first output argument (only one supported so far). 709 */ 710 if (i == 0) { 711 ts_info(ts)->z_mask = ctx->z_mask; 712 ts_info(ts)->s_mask = ctx->s_mask; 713 } 714 } 715 } 716 717 /* 718 * The fold_* functions return true when processing is complete, 719 * usually by folding the operation to a constant or to a copy, 720 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 721 * like collect information about the value produced, for use in 722 * optimizing a subsequent operation. 723 * 724 * These first fold_* functions are all helpers, used by other 725 * folders for more specific operations. 726 */ 727 728 static bool fold_const1(OptContext *ctx, TCGOp *op) 729 { 730 if (arg_is_const(op->args[1])) { 731 uint64_t t; 732 733 t = arg_info(op->args[1])->val; 734 t = do_constant_folding(op->opc, ctx->type, t, 0); 735 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 736 } 737 return false; 738 } 739 740 static bool fold_const2(OptContext *ctx, TCGOp *op) 741 { 742 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 743 uint64_t t1 = arg_info(op->args[1])->val; 744 uint64_t t2 = arg_info(op->args[2])->val; 745 746 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 747 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 748 } 749 return false; 750 } 751 752 static bool fold_commutative(OptContext *ctx, TCGOp *op) 753 { 754 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 755 return false; 756 } 757 758 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 759 { 760 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 761 return fold_const2(ctx, op); 762 } 763 764 static bool fold_masks(OptContext *ctx, TCGOp *op) 765 { 766 uint64_t a_mask = ctx->a_mask; 767 uint64_t z_mask = ctx->z_mask; 768 uint64_t s_mask = ctx->s_mask; 769 770 /* 771 * 32-bit ops generate 32-bit results, which for the purpose of 772 * simplifying tcg are sign-extended. Certainly that's how we 773 * represent our constants elsewhere. Note that the bits will 774 * be reset properly for a 64-bit value when encountering the 775 * type changing opcodes. 776 */ 777 if (ctx->type == TCG_TYPE_I32) { 778 a_mask = (int32_t)a_mask; 779 z_mask = (int32_t)z_mask; 780 s_mask |= MAKE_64BIT_MASK(32, 32); 781 ctx->z_mask = z_mask; 782 ctx->s_mask = s_mask; 783 } 784 785 if (z_mask == 0) { 786 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 787 } 788 if (a_mask == 0) { 789 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 790 } 791 return false; 792 } 793 794 /* 795 * Convert @op to NOT, if NOT is supported by the host. 796 * Return true f the conversion is successful, which will still 797 * indicate that the processing is complete. 798 */ 799 static bool fold_not(OptContext *ctx, TCGOp *op); 800 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 801 { 802 TCGOpcode not_op; 803 bool have_not; 804 805 switch (ctx->type) { 806 case TCG_TYPE_I32: 807 not_op = INDEX_op_not_i32; 808 have_not = TCG_TARGET_HAS_not_i32; 809 break; 810 case TCG_TYPE_I64: 811 not_op = INDEX_op_not_i64; 812 have_not = TCG_TARGET_HAS_not_i64; 813 break; 814 case TCG_TYPE_V64: 815 case TCG_TYPE_V128: 816 case TCG_TYPE_V256: 817 not_op = INDEX_op_not_vec; 818 have_not = TCG_TARGET_HAS_not_vec; 819 break; 820 default: 821 g_assert_not_reached(); 822 } 823 if (have_not) { 824 op->opc = not_op; 825 op->args[1] = op->args[idx]; 826 return fold_not(ctx, op); 827 } 828 return false; 829 } 830 831 /* If the binary operation has first argument @i, fold to @i. */ 832 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 833 { 834 if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) { 835 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 836 } 837 return false; 838 } 839 840 /* If the binary operation has first argument @i, fold to NOT. */ 841 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 842 { 843 if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) { 844 return fold_to_not(ctx, op, 2); 845 } 846 return false; 847 } 848 849 /* If the binary operation has second argument @i, fold to @i. */ 850 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 851 { 852 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { 853 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 854 } 855 return false; 856 } 857 858 /* If the binary operation has second argument @i, fold to identity. */ 859 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 860 { 861 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { 862 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 863 } 864 return false; 865 } 866 867 /* If the binary operation has second argument @i, fold to NOT. */ 868 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 869 { 870 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { 871 return fold_to_not(ctx, op, 1); 872 } 873 return false; 874 } 875 876 /* If the binary operation has both arguments equal, fold to @i. */ 877 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 878 { 879 if (args_are_copies(op->args[1], op->args[2])) { 880 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 881 } 882 return false; 883 } 884 885 /* If the binary operation has both arguments equal, fold to identity. */ 886 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 887 { 888 if (args_are_copies(op->args[1], op->args[2])) { 889 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 890 } 891 return false; 892 } 893 894 /* 895 * These outermost fold_<op> functions are sorted alphabetically. 896 * 897 * The ordering of the transformations should be: 898 * 1) those that produce a constant 899 * 2) those that produce a copy 900 * 3) those that produce information about the result value. 901 */ 902 903 static bool fold_add(OptContext *ctx, TCGOp *op) 904 { 905 if (fold_const2_commutative(ctx, op) || 906 fold_xi_to_x(ctx, op, 0)) { 907 return true; 908 } 909 return false; 910 } 911 912 /* We cannot as yet do_constant_folding with vectors. */ 913 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 914 { 915 if (fold_commutative(ctx, op) || 916 fold_xi_to_x(ctx, op, 0)) { 917 return true; 918 } 919 return false; 920 } 921 922 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 923 { 924 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3]) && 925 arg_is_const(op->args[4]) && arg_is_const(op->args[5])) { 926 uint64_t al = arg_info(op->args[2])->val; 927 uint64_t ah = arg_info(op->args[3])->val; 928 uint64_t bl = arg_info(op->args[4])->val; 929 uint64_t bh = arg_info(op->args[5])->val; 930 TCGArg rl, rh; 931 TCGOp *op2; 932 933 if (ctx->type == TCG_TYPE_I32) { 934 uint64_t a = deposit64(al, 32, 32, ah); 935 uint64_t b = deposit64(bl, 32, 32, bh); 936 937 if (add) { 938 a += b; 939 } else { 940 a -= b; 941 } 942 943 al = sextract64(a, 0, 32); 944 ah = sextract64(a, 32, 32); 945 } else { 946 Int128 a = int128_make128(al, ah); 947 Int128 b = int128_make128(bl, bh); 948 949 if (add) { 950 a = int128_add(a, b); 951 } else { 952 a = int128_sub(a, b); 953 } 954 955 al = int128_getlo(a); 956 ah = int128_gethi(a); 957 } 958 959 rl = op->args[0]; 960 rh = op->args[1]; 961 962 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 963 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); 964 965 tcg_opt_gen_movi(ctx, op, rl, al); 966 tcg_opt_gen_movi(ctx, op2, rh, ah); 967 return true; 968 } 969 return false; 970 } 971 972 static bool fold_add2(OptContext *ctx, TCGOp *op) 973 { 974 /* Note that the high and low parts may be independently swapped. */ 975 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 976 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 977 978 return fold_addsub2(ctx, op, true); 979 } 980 981 static bool fold_and(OptContext *ctx, TCGOp *op) 982 { 983 uint64_t z1, z2; 984 985 if (fold_const2_commutative(ctx, op) || 986 fold_xi_to_i(ctx, op, 0) || 987 fold_xi_to_x(ctx, op, -1) || 988 fold_xx_to_x(ctx, op)) { 989 return true; 990 } 991 992 z1 = arg_info(op->args[1])->z_mask; 993 z2 = arg_info(op->args[2])->z_mask; 994 ctx->z_mask = z1 & z2; 995 996 /* 997 * Sign repetitions are perforce all identical, whether they are 1 or 0. 998 * Bitwise operations preserve the relative quantity of the repetitions. 999 */ 1000 ctx->s_mask = arg_info(op->args[1])->s_mask 1001 & arg_info(op->args[2])->s_mask; 1002 1003 /* 1004 * Known-zeros does not imply known-ones. Therefore unless 1005 * arg2 is constant, we can't infer affected bits from it. 1006 */ 1007 if (arg_is_const(op->args[2])) { 1008 ctx->a_mask = z1 & ~z2; 1009 } 1010 1011 return fold_masks(ctx, op); 1012 } 1013 1014 static bool fold_andc(OptContext *ctx, TCGOp *op) 1015 { 1016 uint64_t z1; 1017 1018 if (fold_const2(ctx, op) || 1019 fold_xx_to_i(ctx, op, 0) || 1020 fold_xi_to_x(ctx, op, 0) || 1021 fold_ix_to_not(ctx, op, -1)) { 1022 return true; 1023 } 1024 1025 z1 = arg_info(op->args[1])->z_mask; 1026 1027 /* 1028 * Known-zeros does not imply known-ones. Therefore unless 1029 * arg2 is constant, we can't infer anything from it. 1030 */ 1031 if (arg_is_const(op->args[2])) { 1032 uint64_t z2 = ~arg_info(op->args[2])->z_mask; 1033 ctx->a_mask = z1 & ~z2; 1034 z1 &= z2; 1035 } 1036 ctx->z_mask = z1; 1037 1038 ctx->s_mask = arg_info(op->args[1])->s_mask 1039 & arg_info(op->args[2])->s_mask; 1040 return fold_masks(ctx, op); 1041 } 1042 1043 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1044 { 1045 TCGCond cond = op->args[2]; 1046 int i; 1047 1048 if (swap_commutative(NO_DEST, &op->args[0], &op->args[1])) { 1049 op->args[2] = cond = tcg_swap_cond(cond); 1050 } 1051 1052 i = do_constant_folding_cond(ctx->type, op->args[0], op->args[1], cond); 1053 if (i == 0) { 1054 tcg_op_remove(ctx->tcg, op); 1055 return true; 1056 } 1057 if (i > 0) { 1058 op->opc = INDEX_op_br; 1059 op->args[0] = op->args[3]; 1060 } 1061 return false; 1062 } 1063 1064 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1065 { 1066 TCGCond cond = op->args[4]; 1067 TCGArg label = op->args[5]; 1068 int i, inv = 0; 1069 1070 if (swap_commutative2(&op->args[0], &op->args[2])) { 1071 op->args[4] = cond = tcg_swap_cond(cond); 1072 } 1073 1074 i = do_constant_folding_cond2(&op->args[0], &op->args[2], cond); 1075 if (i >= 0) { 1076 goto do_brcond_const; 1077 } 1078 1079 switch (cond) { 1080 case TCG_COND_LT: 1081 case TCG_COND_GE: 1082 /* 1083 * Simplify LT/GE comparisons vs zero to a single compare 1084 * vs the high word of the input. 1085 */ 1086 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0 && 1087 arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0) { 1088 goto do_brcond_high; 1089 } 1090 break; 1091 1092 case TCG_COND_NE: 1093 inv = 1; 1094 QEMU_FALLTHROUGH; 1095 case TCG_COND_EQ: 1096 /* 1097 * Simplify EQ/NE comparisons where one of the pairs 1098 * can be simplified. 1099 */ 1100 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1101 op->args[2], cond); 1102 switch (i ^ inv) { 1103 case 0: 1104 goto do_brcond_const; 1105 case 1: 1106 goto do_brcond_high; 1107 } 1108 1109 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1110 op->args[3], cond); 1111 switch (i ^ inv) { 1112 case 0: 1113 goto do_brcond_const; 1114 case 1: 1115 op->opc = INDEX_op_brcond_i32; 1116 op->args[1] = op->args[2]; 1117 op->args[2] = cond; 1118 op->args[3] = label; 1119 break; 1120 } 1121 break; 1122 1123 default: 1124 break; 1125 1126 do_brcond_high: 1127 op->opc = INDEX_op_brcond_i32; 1128 op->args[0] = op->args[1]; 1129 op->args[1] = op->args[3]; 1130 op->args[2] = cond; 1131 op->args[3] = label; 1132 break; 1133 1134 do_brcond_const: 1135 if (i == 0) { 1136 tcg_op_remove(ctx->tcg, op); 1137 return true; 1138 } 1139 op->opc = INDEX_op_br; 1140 op->args[0] = label; 1141 break; 1142 } 1143 return false; 1144 } 1145 1146 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1147 { 1148 uint64_t z_mask, s_mask, sign; 1149 1150 if (arg_is_const(op->args[1])) { 1151 uint64_t t = arg_info(op->args[1])->val; 1152 1153 t = do_constant_folding(op->opc, ctx->type, t, op->args[2]); 1154 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1155 } 1156 1157 z_mask = arg_info(op->args[1])->z_mask; 1158 1159 switch (op->opc) { 1160 case INDEX_op_bswap16_i32: 1161 case INDEX_op_bswap16_i64: 1162 z_mask = bswap16(z_mask); 1163 sign = INT16_MIN; 1164 break; 1165 case INDEX_op_bswap32_i32: 1166 case INDEX_op_bswap32_i64: 1167 z_mask = bswap32(z_mask); 1168 sign = INT32_MIN; 1169 break; 1170 case INDEX_op_bswap64_i64: 1171 z_mask = bswap64(z_mask); 1172 sign = INT64_MIN; 1173 break; 1174 default: 1175 g_assert_not_reached(); 1176 } 1177 s_mask = smask_from_zmask(z_mask); 1178 1179 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1180 case TCG_BSWAP_OZ: 1181 break; 1182 case TCG_BSWAP_OS: 1183 /* If the sign bit may be 1, force all the bits above to 1. */ 1184 if (z_mask & sign) { 1185 z_mask |= sign; 1186 s_mask = sign << 1; 1187 } 1188 break; 1189 default: 1190 /* The high bits are undefined: force all bits above the sign to 1. */ 1191 z_mask |= sign << 1; 1192 s_mask = 0; 1193 break; 1194 } 1195 ctx->z_mask = z_mask; 1196 ctx->s_mask = s_mask; 1197 1198 return fold_masks(ctx, op); 1199 } 1200 1201 static bool fold_call(OptContext *ctx, TCGOp *op) 1202 { 1203 TCGContext *s = ctx->tcg; 1204 int nb_oargs = TCGOP_CALLO(op); 1205 int nb_iargs = TCGOP_CALLI(op); 1206 int flags, i; 1207 1208 init_arguments(ctx, op, nb_oargs + nb_iargs); 1209 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1210 1211 /* If the function reads or writes globals, reset temp data. */ 1212 flags = tcg_call_flags(op); 1213 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1214 int nb_globals = s->nb_globals; 1215 1216 for (i = 0; i < nb_globals; i++) { 1217 if (test_bit(i, ctx->temps_used.l)) { 1218 reset_ts(&ctx->tcg->temps[i]); 1219 } 1220 } 1221 } 1222 1223 /* Reset temp data for outputs. */ 1224 for (i = 0; i < nb_oargs; i++) { 1225 reset_temp(op->args[i]); 1226 } 1227 1228 /* Stop optimizing MB across calls. */ 1229 ctx->prev_mb = NULL; 1230 return true; 1231 } 1232 1233 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1234 { 1235 uint64_t z_mask; 1236 1237 if (arg_is_const(op->args[1])) { 1238 uint64_t t = arg_info(op->args[1])->val; 1239 1240 if (t != 0) { 1241 t = do_constant_folding(op->opc, ctx->type, t, 0); 1242 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1243 } 1244 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1245 } 1246 1247 switch (ctx->type) { 1248 case TCG_TYPE_I32: 1249 z_mask = 31; 1250 break; 1251 case TCG_TYPE_I64: 1252 z_mask = 63; 1253 break; 1254 default: 1255 g_assert_not_reached(); 1256 } 1257 ctx->z_mask = arg_info(op->args[2])->z_mask | z_mask; 1258 ctx->s_mask = smask_from_zmask(ctx->z_mask); 1259 return false; 1260 } 1261 1262 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1263 { 1264 if (fold_const1(ctx, op)) { 1265 return true; 1266 } 1267 1268 switch (ctx->type) { 1269 case TCG_TYPE_I32: 1270 ctx->z_mask = 32 | 31; 1271 break; 1272 case TCG_TYPE_I64: 1273 ctx->z_mask = 64 | 63; 1274 break; 1275 default: 1276 g_assert_not_reached(); 1277 } 1278 ctx->s_mask = smask_from_zmask(ctx->z_mask); 1279 return false; 1280 } 1281 1282 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1283 { 1284 TCGOpcode and_opc; 1285 1286 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1287 uint64_t t1 = arg_info(op->args[1])->val; 1288 uint64_t t2 = arg_info(op->args[2])->val; 1289 1290 t1 = deposit64(t1, op->args[3], op->args[4], t2); 1291 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 1292 } 1293 1294 switch (ctx->type) { 1295 case TCG_TYPE_I32: 1296 and_opc = INDEX_op_and_i32; 1297 break; 1298 case TCG_TYPE_I64: 1299 and_opc = INDEX_op_and_i64; 1300 break; 1301 default: 1302 g_assert_not_reached(); 1303 } 1304 1305 /* Inserting a value into zero at offset 0. */ 1306 if (arg_is_const(op->args[1]) 1307 && arg_info(op->args[1])->val == 0 1308 && op->args[3] == 0) { 1309 uint64_t mask = MAKE_64BIT_MASK(0, op->args[4]); 1310 1311 op->opc = and_opc; 1312 op->args[1] = op->args[2]; 1313 op->args[2] = temp_arg(tcg_constant_internal(ctx->type, mask)); 1314 ctx->z_mask = mask & arg_info(op->args[1])->z_mask; 1315 return false; 1316 } 1317 1318 /* Inserting zero into a value. */ 1319 if (arg_is_const(op->args[2]) 1320 && arg_info(op->args[2])->val == 0) { 1321 uint64_t mask = deposit64(-1, op->args[3], op->args[4], 0); 1322 1323 op->opc = and_opc; 1324 op->args[2] = temp_arg(tcg_constant_internal(ctx->type, mask)); 1325 ctx->z_mask = mask & arg_info(op->args[1])->z_mask; 1326 return false; 1327 } 1328 1329 ctx->z_mask = deposit64(arg_info(op->args[1])->z_mask, 1330 op->args[3], op->args[4], 1331 arg_info(op->args[2])->z_mask); 1332 return false; 1333 } 1334 1335 static bool fold_divide(OptContext *ctx, TCGOp *op) 1336 { 1337 if (fold_const2(ctx, op) || 1338 fold_xi_to_x(ctx, op, 1)) { 1339 return true; 1340 } 1341 return false; 1342 } 1343 1344 static bool fold_dup(OptContext *ctx, TCGOp *op) 1345 { 1346 if (arg_is_const(op->args[1])) { 1347 uint64_t t = arg_info(op->args[1])->val; 1348 t = dup_const(TCGOP_VECE(op), t); 1349 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1350 } 1351 return false; 1352 } 1353 1354 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1355 { 1356 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1357 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1358 arg_info(op->args[2])->val); 1359 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1360 } 1361 1362 if (args_are_copies(op->args[1], op->args[2])) { 1363 op->opc = INDEX_op_dup_vec; 1364 TCGOP_VECE(op) = MO_32; 1365 } 1366 return false; 1367 } 1368 1369 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1370 { 1371 if (fold_const2_commutative(ctx, op) || 1372 fold_xi_to_x(ctx, op, -1) || 1373 fold_xi_to_not(ctx, op, 0)) { 1374 return true; 1375 } 1376 1377 ctx->s_mask = arg_info(op->args[1])->s_mask 1378 & arg_info(op->args[2])->s_mask; 1379 return false; 1380 } 1381 1382 static bool fold_extract(OptContext *ctx, TCGOp *op) 1383 { 1384 uint64_t z_mask_old, z_mask; 1385 int pos = op->args[2]; 1386 int len = op->args[3]; 1387 1388 if (arg_is_const(op->args[1])) { 1389 uint64_t t; 1390 1391 t = arg_info(op->args[1])->val; 1392 t = extract64(t, pos, len); 1393 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1394 } 1395 1396 z_mask_old = arg_info(op->args[1])->z_mask; 1397 z_mask = extract64(z_mask_old, pos, len); 1398 if (pos == 0) { 1399 ctx->a_mask = z_mask_old ^ z_mask; 1400 } 1401 ctx->z_mask = z_mask; 1402 ctx->s_mask = smask_from_zmask(z_mask); 1403 1404 return fold_masks(ctx, op); 1405 } 1406 1407 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1408 { 1409 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1410 uint64_t v1 = arg_info(op->args[1])->val; 1411 uint64_t v2 = arg_info(op->args[2])->val; 1412 int shr = op->args[3]; 1413 1414 if (op->opc == INDEX_op_extract2_i64) { 1415 v1 >>= shr; 1416 v2 <<= 64 - shr; 1417 } else { 1418 v1 = (uint32_t)v1 >> shr; 1419 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1420 } 1421 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1422 } 1423 return false; 1424 } 1425 1426 static bool fold_exts(OptContext *ctx, TCGOp *op) 1427 { 1428 uint64_t s_mask_old, s_mask, z_mask, sign; 1429 bool type_change = false; 1430 1431 if (fold_const1(ctx, op)) { 1432 return true; 1433 } 1434 1435 z_mask = arg_info(op->args[1])->z_mask; 1436 s_mask = arg_info(op->args[1])->s_mask; 1437 s_mask_old = s_mask; 1438 1439 switch (op->opc) { 1440 CASE_OP_32_64(ext8s): 1441 sign = INT8_MIN; 1442 z_mask = (uint8_t)z_mask; 1443 break; 1444 CASE_OP_32_64(ext16s): 1445 sign = INT16_MIN; 1446 z_mask = (uint16_t)z_mask; 1447 break; 1448 case INDEX_op_ext_i32_i64: 1449 type_change = true; 1450 QEMU_FALLTHROUGH; 1451 case INDEX_op_ext32s_i64: 1452 sign = INT32_MIN; 1453 z_mask = (uint32_t)z_mask; 1454 break; 1455 default: 1456 g_assert_not_reached(); 1457 } 1458 1459 if (z_mask & sign) { 1460 z_mask |= sign; 1461 } 1462 s_mask |= sign << 1; 1463 1464 ctx->z_mask = z_mask; 1465 ctx->s_mask = s_mask; 1466 if (!type_change) { 1467 ctx->a_mask = s_mask & ~s_mask_old; 1468 } 1469 1470 return fold_masks(ctx, op); 1471 } 1472 1473 static bool fold_extu(OptContext *ctx, TCGOp *op) 1474 { 1475 uint64_t z_mask_old, z_mask; 1476 bool type_change = false; 1477 1478 if (fold_const1(ctx, op)) { 1479 return true; 1480 } 1481 1482 z_mask_old = z_mask = arg_info(op->args[1])->z_mask; 1483 1484 switch (op->opc) { 1485 CASE_OP_32_64(ext8u): 1486 z_mask = (uint8_t)z_mask; 1487 break; 1488 CASE_OP_32_64(ext16u): 1489 z_mask = (uint16_t)z_mask; 1490 break; 1491 case INDEX_op_extrl_i64_i32: 1492 case INDEX_op_extu_i32_i64: 1493 type_change = true; 1494 QEMU_FALLTHROUGH; 1495 case INDEX_op_ext32u_i64: 1496 z_mask = (uint32_t)z_mask; 1497 break; 1498 case INDEX_op_extrh_i64_i32: 1499 type_change = true; 1500 z_mask >>= 32; 1501 break; 1502 default: 1503 g_assert_not_reached(); 1504 } 1505 1506 ctx->z_mask = z_mask; 1507 ctx->s_mask = smask_from_zmask(z_mask); 1508 if (!type_change) { 1509 ctx->a_mask = z_mask_old ^ z_mask; 1510 } 1511 return fold_masks(ctx, op); 1512 } 1513 1514 static bool fold_mb(OptContext *ctx, TCGOp *op) 1515 { 1516 /* Eliminate duplicate and redundant fence instructions. */ 1517 if (ctx->prev_mb) { 1518 /* 1519 * Merge two barriers of the same type into one, 1520 * or a weaker barrier into a stronger one, 1521 * or two weaker barriers into a stronger one. 1522 * mb X; mb Y => mb X|Y 1523 * mb; strl => mb; st 1524 * ldaq; mb => ld; mb 1525 * ldaq; strl => ld; mb; st 1526 * Other combinations are also merged into a strong 1527 * barrier. This is stricter than specified but for 1528 * the purposes of TCG is better than not optimizing. 1529 */ 1530 ctx->prev_mb->args[0] |= op->args[0]; 1531 tcg_op_remove(ctx->tcg, op); 1532 } else { 1533 ctx->prev_mb = op; 1534 } 1535 return true; 1536 } 1537 1538 static bool fold_mov(OptContext *ctx, TCGOp *op) 1539 { 1540 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1541 } 1542 1543 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1544 { 1545 TCGCond cond = op->args[5]; 1546 int i; 1547 1548 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1549 op->args[5] = cond = tcg_swap_cond(cond); 1550 } 1551 /* 1552 * Canonicalize the "false" input reg to match the destination reg so 1553 * that the tcg backend can implement a "move if true" operation. 1554 */ 1555 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1556 op->args[5] = cond = tcg_invert_cond(cond); 1557 } 1558 1559 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); 1560 if (i >= 0) { 1561 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1562 } 1563 1564 ctx->z_mask = arg_info(op->args[3])->z_mask 1565 | arg_info(op->args[4])->z_mask; 1566 ctx->s_mask = arg_info(op->args[3])->s_mask 1567 & arg_info(op->args[4])->s_mask; 1568 1569 if (arg_is_const(op->args[3]) && arg_is_const(op->args[4])) { 1570 uint64_t tv = arg_info(op->args[3])->val; 1571 uint64_t fv = arg_info(op->args[4])->val; 1572 TCGOpcode opc, negopc = 0; 1573 1574 switch (ctx->type) { 1575 case TCG_TYPE_I32: 1576 opc = INDEX_op_setcond_i32; 1577 if (TCG_TARGET_HAS_negsetcond_i32) { 1578 negopc = INDEX_op_negsetcond_i32; 1579 } 1580 tv = (int32_t)tv; 1581 fv = (int32_t)fv; 1582 break; 1583 case TCG_TYPE_I64: 1584 opc = INDEX_op_setcond_i64; 1585 if (TCG_TARGET_HAS_negsetcond_i64) { 1586 negopc = INDEX_op_negsetcond_i64; 1587 } 1588 break; 1589 default: 1590 g_assert_not_reached(); 1591 } 1592 1593 if (tv == 1 && fv == 0) { 1594 op->opc = opc; 1595 op->args[3] = cond; 1596 } else if (fv == 1 && tv == 0) { 1597 op->opc = opc; 1598 op->args[3] = tcg_invert_cond(cond); 1599 } else if (negopc) { 1600 if (tv == -1 && fv == 0) { 1601 op->opc = negopc; 1602 op->args[3] = cond; 1603 } else if (fv == -1 && tv == 0) { 1604 op->opc = negopc; 1605 op->args[3] = tcg_invert_cond(cond); 1606 } 1607 } 1608 } 1609 return false; 1610 } 1611 1612 static bool fold_mul(OptContext *ctx, TCGOp *op) 1613 { 1614 if (fold_const2(ctx, op) || 1615 fold_xi_to_i(ctx, op, 0) || 1616 fold_xi_to_x(ctx, op, 1)) { 1617 return true; 1618 } 1619 return false; 1620 } 1621 1622 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 1623 { 1624 if (fold_const2_commutative(ctx, op) || 1625 fold_xi_to_i(ctx, op, 0)) { 1626 return true; 1627 } 1628 return false; 1629 } 1630 1631 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 1632 { 1633 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 1634 1635 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1636 uint64_t a = arg_info(op->args[2])->val; 1637 uint64_t b = arg_info(op->args[3])->val; 1638 uint64_t h, l; 1639 TCGArg rl, rh; 1640 TCGOp *op2; 1641 1642 switch (op->opc) { 1643 case INDEX_op_mulu2_i32: 1644 l = (uint64_t)(uint32_t)a * (uint32_t)b; 1645 h = (int32_t)(l >> 32); 1646 l = (int32_t)l; 1647 break; 1648 case INDEX_op_muls2_i32: 1649 l = (int64_t)(int32_t)a * (int32_t)b; 1650 h = l >> 32; 1651 l = (int32_t)l; 1652 break; 1653 case INDEX_op_mulu2_i64: 1654 mulu64(&l, &h, a, b); 1655 break; 1656 case INDEX_op_muls2_i64: 1657 muls64(&l, &h, a, b); 1658 break; 1659 default: 1660 g_assert_not_reached(); 1661 } 1662 1663 rl = op->args[0]; 1664 rh = op->args[1]; 1665 1666 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1667 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); 1668 1669 tcg_opt_gen_movi(ctx, op, rl, l); 1670 tcg_opt_gen_movi(ctx, op2, rh, h); 1671 return true; 1672 } 1673 return false; 1674 } 1675 1676 static bool fold_nand(OptContext *ctx, TCGOp *op) 1677 { 1678 if (fold_const2_commutative(ctx, op) || 1679 fold_xi_to_not(ctx, op, -1)) { 1680 return true; 1681 } 1682 1683 ctx->s_mask = arg_info(op->args[1])->s_mask 1684 & arg_info(op->args[2])->s_mask; 1685 return false; 1686 } 1687 1688 static bool fold_neg(OptContext *ctx, TCGOp *op) 1689 { 1690 uint64_t z_mask; 1691 1692 if (fold_const1(ctx, op)) { 1693 return true; 1694 } 1695 1696 /* Set to 1 all bits to the left of the rightmost. */ 1697 z_mask = arg_info(op->args[1])->z_mask; 1698 ctx->z_mask = -(z_mask & -z_mask); 1699 1700 /* 1701 * Because of fold_sub_to_neg, we want to always return true, 1702 * via finish_folding. 1703 */ 1704 finish_folding(ctx, op); 1705 return true; 1706 } 1707 1708 static bool fold_nor(OptContext *ctx, TCGOp *op) 1709 { 1710 if (fold_const2_commutative(ctx, op) || 1711 fold_xi_to_not(ctx, op, 0)) { 1712 return true; 1713 } 1714 1715 ctx->s_mask = arg_info(op->args[1])->s_mask 1716 & arg_info(op->args[2])->s_mask; 1717 return false; 1718 } 1719 1720 static bool fold_not(OptContext *ctx, TCGOp *op) 1721 { 1722 if (fold_const1(ctx, op)) { 1723 return true; 1724 } 1725 1726 ctx->s_mask = arg_info(op->args[1])->s_mask; 1727 1728 /* Because of fold_to_not, we want to always return true, via finish. */ 1729 finish_folding(ctx, op); 1730 return true; 1731 } 1732 1733 static bool fold_or(OptContext *ctx, TCGOp *op) 1734 { 1735 if (fold_const2_commutative(ctx, op) || 1736 fold_xi_to_x(ctx, op, 0) || 1737 fold_xx_to_x(ctx, op)) { 1738 return true; 1739 } 1740 1741 ctx->z_mask = arg_info(op->args[1])->z_mask 1742 | arg_info(op->args[2])->z_mask; 1743 ctx->s_mask = arg_info(op->args[1])->s_mask 1744 & arg_info(op->args[2])->s_mask; 1745 return fold_masks(ctx, op); 1746 } 1747 1748 static bool fold_orc(OptContext *ctx, TCGOp *op) 1749 { 1750 if (fold_const2(ctx, op) || 1751 fold_xx_to_i(ctx, op, -1) || 1752 fold_xi_to_x(ctx, op, -1) || 1753 fold_ix_to_not(ctx, op, 0)) { 1754 return true; 1755 } 1756 1757 ctx->s_mask = arg_info(op->args[1])->s_mask 1758 & arg_info(op->args[2])->s_mask; 1759 return false; 1760 } 1761 1762 static bool fold_qemu_ld(OptContext *ctx, TCGOp *op) 1763 { 1764 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1765 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 1766 MemOp mop = get_memop(oi); 1767 int width = 8 * memop_size(mop); 1768 1769 if (width < 64) { 1770 ctx->s_mask = MAKE_64BIT_MASK(width, 64 - width); 1771 if (!(mop & MO_SIGN)) { 1772 ctx->z_mask = MAKE_64BIT_MASK(0, width); 1773 ctx->s_mask <<= 1; 1774 } 1775 } 1776 1777 /* Opcodes that touch guest memory stop the mb optimization. */ 1778 ctx->prev_mb = NULL; 1779 return false; 1780 } 1781 1782 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 1783 { 1784 /* Opcodes that touch guest memory stop the mb optimization. */ 1785 ctx->prev_mb = NULL; 1786 return false; 1787 } 1788 1789 static bool fold_remainder(OptContext *ctx, TCGOp *op) 1790 { 1791 if (fold_const2(ctx, op) || 1792 fold_xx_to_i(ctx, op, 0)) { 1793 return true; 1794 } 1795 return false; 1796 } 1797 1798 static bool fold_setcond(OptContext *ctx, TCGOp *op) 1799 { 1800 TCGCond cond = op->args[3]; 1801 int i; 1802 1803 if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) { 1804 op->args[3] = cond = tcg_swap_cond(cond); 1805 } 1806 1807 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); 1808 if (i >= 0) { 1809 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1810 } 1811 1812 ctx->z_mask = 1; 1813 ctx->s_mask = smask_from_zmask(1); 1814 return false; 1815 } 1816 1817 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 1818 { 1819 TCGCond cond = op->args[3]; 1820 int i; 1821 1822 if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) { 1823 op->args[3] = cond = tcg_swap_cond(cond); 1824 } 1825 1826 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); 1827 if (i >= 0) { 1828 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 1829 } 1830 1831 /* Value is {0,-1} so all bits are repetitions of the sign. */ 1832 ctx->s_mask = -1; 1833 return false; 1834 } 1835 1836 1837 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 1838 { 1839 TCGCond cond = op->args[5]; 1840 int i, inv = 0; 1841 1842 if (swap_commutative2(&op->args[1], &op->args[3])) { 1843 op->args[5] = cond = tcg_swap_cond(cond); 1844 } 1845 1846 i = do_constant_folding_cond2(&op->args[1], &op->args[3], cond); 1847 if (i >= 0) { 1848 goto do_setcond_const; 1849 } 1850 1851 switch (cond) { 1852 case TCG_COND_LT: 1853 case TCG_COND_GE: 1854 /* 1855 * Simplify LT/GE comparisons vs zero to a single compare 1856 * vs the high word of the input. 1857 */ 1858 if (arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0 && 1859 arg_is_const(op->args[4]) && arg_info(op->args[4])->val == 0) { 1860 goto do_setcond_high; 1861 } 1862 break; 1863 1864 case TCG_COND_NE: 1865 inv = 1; 1866 QEMU_FALLTHROUGH; 1867 case TCG_COND_EQ: 1868 /* 1869 * Simplify EQ/NE comparisons where one of the pairs 1870 * can be simplified. 1871 */ 1872 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1873 op->args[3], cond); 1874 switch (i ^ inv) { 1875 case 0: 1876 goto do_setcond_const; 1877 case 1: 1878 goto do_setcond_high; 1879 } 1880 1881 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 1882 op->args[4], cond); 1883 switch (i ^ inv) { 1884 case 0: 1885 goto do_setcond_const; 1886 case 1: 1887 op->args[2] = op->args[3]; 1888 op->args[3] = cond; 1889 op->opc = INDEX_op_setcond_i32; 1890 break; 1891 } 1892 break; 1893 1894 default: 1895 break; 1896 1897 do_setcond_high: 1898 op->args[1] = op->args[2]; 1899 op->args[2] = op->args[4]; 1900 op->args[3] = cond; 1901 op->opc = INDEX_op_setcond_i32; 1902 break; 1903 } 1904 1905 ctx->z_mask = 1; 1906 ctx->s_mask = smask_from_zmask(1); 1907 return false; 1908 1909 do_setcond_const: 1910 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1911 } 1912 1913 static bool fold_sextract(OptContext *ctx, TCGOp *op) 1914 { 1915 uint64_t z_mask, s_mask, s_mask_old; 1916 int pos = op->args[2]; 1917 int len = op->args[3]; 1918 1919 if (arg_is_const(op->args[1])) { 1920 uint64_t t; 1921 1922 t = arg_info(op->args[1])->val; 1923 t = sextract64(t, pos, len); 1924 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1925 } 1926 1927 z_mask = arg_info(op->args[1])->z_mask; 1928 z_mask = sextract64(z_mask, pos, len); 1929 ctx->z_mask = z_mask; 1930 1931 s_mask_old = arg_info(op->args[1])->s_mask; 1932 s_mask = sextract64(s_mask_old, pos, len); 1933 s_mask |= MAKE_64BIT_MASK(len, 64 - len); 1934 ctx->s_mask = s_mask; 1935 1936 if (pos == 0) { 1937 ctx->a_mask = s_mask & ~s_mask_old; 1938 } 1939 1940 return fold_masks(ctx, op); 1941 } 1942 1943 static bool fold_shift(OptContext *ctx, TCGOp *op) 1944 { 1945 uint64_t s_mask, z_mask, sign; 1946 1947 if (fold_const2(ctx, op) || 1948 fold_ix_to_i(ctx, op, 0) || 1949 fold_xi_to_x(ctx, op, 0)) { 1950 return true; 1951 } 1952 1953 s_mask = arg_info(op->args[1])->s_mask; 1954 z_mask = arg_info(op->args[1])->z_mask; 1955 1956 if (arg_is_const(op->args[2])) { 1957 int sh = arg_info(op->args[2])->val; 1958 1959 ctx->z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 1960 1961 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 1962 ctx->s_mask = smask_from_smask(s_mask); 1963 1964 return fold_masks(ctx, op); 1965 } 1966 1967 switch (op->opc) { 1968 CASE_OP_32_64(sar): 1969 /* 1970 * Arithmetic right shift will not reduce the number of 1971 * input sign repetitions. 1972 */ 1973 ctx->s_mask = s_mask; 1974 break; 1975 CASE_OP_32_64(shr): 1976 /* 1977 * If the sign bit is known zero, then logical right shift 1978 * will not reduced the number of input sign repetitions. 1979 */ 1980 sign = (s_mask & -s_mask) >> 1; 1981 if (!(z_mask & sign)) { 1982 ctx->s_mask = s_mask; 1983 } 1984 break; 1985 default: 1986 break; 1987 } 1988 1989 return false; 1990 } 1991 1992 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 1993 { 1994 TCGOpcode neg_op; 1995 bool have_neg; 1996 1997 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 1998 return false; 1999 } 2000 2001 switch (ctx->type) { 2002 case TCG_TYPE_I32: 2003 neg_op = INDEX_op_neg_i32; 2004 have_neg = TCG_TARGET_HAS_neg_i32; 2005 break; 2006 case TCG_TYPE_I64: 2007 neg_op = INDEX_op_neg_i64; 2008 have_neg = TCG_TARGET_HAS_neg_i64; 2009 break; 2010 case TCG_TYPE_V64: 2011 case TCG_TYPE_V128: 2012 case TCG_TYPE_V256: 2013 neg_op = INDEX_op_neg_vec; 2014 have_neg = (TCG_TARGET_HAS_neg_vec && 2015 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2016 break; 2017 default: 2018 g_assert_not_reached(); 2019 } 2020 if (have_neg) { 2021 op->opc = neg_op; 2022 op->args[1] = op->args[2]; 2023 return fold_neg(ctx, op); 2024 } 2025 return false; 2026 } 2027 2028 /* We cannot as yet do_constant_folding with vectors. */ 2029 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2030 { 2031 if (fold_xx_to_i(ctx, op, 0) || 2032 fold_xi_to_x(ctx, op, 0) || 2033 fold_sub_to_neg(ctx, op)) { 2034 return true; 2035 } 2036 return false; 2037 } 2038 2039 static bool fold_sub(OptContext *ctx, TCGOp *op) 2040 { 2041 return fold_const2(ctx, op) || fold_sub_vec(ctx, op); 2042 } 2043 2044 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2045 { 2046 return fold_addsub2(ctx, op, false); 2047 } 2048 2049 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2050 { 2051 /* We can't do any folding with a load, but we can record bits. */ 2052 switch (op->opc) { 2053 CASE_OP_32_64(ld8s): 2054 ctx->s_mask = MAKE_64BIT_MASK(8, 56); 2055 break; 2056 CASE_OP_32_64(ld8u): 2057 ctx->z_mask = MAKE_64BIT_MASK(0, 8); 2058 ctx->s_mask = MAKE_64BIT_MASK(9, 55); 2059 break; 2060 CASE_OP_32_64(ld16s): 2061 ctx->s_mask = MAKE_64BIT_MASK(16, 48); 2062 break; 2063 CASE_OP_32_64(ld16u): 2064 ctx->z_mask = MAKE_64BIT_MASK(0, 16); 2065 ctx->s_mask = MAKE_64BIT_MASK(17, 47); 2066 break; 2067 case INDEX_op_ld32s_i64: 2068 ctx->s_mask = MAKE_64BIT_MASK(32, 32); 2069 break; 2070 case INDEX_op_ld32u_i64: 2071 ctx->z_mask = MAKE_64BIT_MASK(0, 32); 2072 ctx->s_mask = MAKE_64BIT_MASK(33, 31); 2073 break; 2074 default: 2075 g_assert_not_reached(); 2076 } 2077 return false; 2078 } 2079 2080 static bool fold_xor(OptContext *ctx, TCGOp *op) 2081 { 2082 if (fold_const2_commutative(ctx, op) || 2083 fold_xx_to_i(ctx, op, 0) || 2084 fold_xi_to_x(ctx, op, 0) || 2085 fold_xi_to_not(ctx, op, -1)) { 2086 return true; 2087 } 2088 2089 ctx->z_mask = arg_info(op->args[1])->z_mask 2090 | arg_info(op->args[2])->z_mask; 2091 ctx->s_mask = arg_info(op->args[1])->s_mask 2092 & arg_info(op->args[2])->s_mask; 2093 return fold_masks(ctx, op); 2094 } 2095 2096 /* Propagate constants and copies, fold constant expressions. */ 2097 void tcg_optimize(TCGContext *s) 2098 { 2099 int nb_temps, i; 2100 TCGOp *op, *op_next; 2101 OptContext ctx = { .tcg = s }; 2102 2103 /* Array VALS has an element for each temp. 2104 If this temp holds a constant then its value is kept in VALS' element. 2105 If this temp is a copy of other ones then the other copies are 2106 available through the doubly linked circular list. */ 2107 2108 nb_temps = s->nb_temps; 2109 for (i = 0; i < nb_temps; ++i) { 2110 s->temps[i].state_ptr = NULL; 2111 } 2112 2113 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2114 TCGOpcode opc = op->opc; 2115 const TCGOpDef *def; 2116 bool done = false; 2117 2118 /* Calls are special. */ 2119 if (opc == INDEX_op_call) { 2120 fold_call(&ctx, op); 2121 continue; 2122 } 2123 2124 def = &tcg_op_defs[opc]; 2125 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2126 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2127 2128 /* Pre-compute the type of the operation. */ 2129 if (def->flags & TCG_OPF_VECTOR) { 2130 ctx.type = TCG_TYPE_V64 + TCGOP_VECL(op); 2131 } else if (def->flags & TCG_OPF_64BIT) { 2132 ctx.type = TCG_TYPE_I64; 2133 } else { 2134 ctx.type = TCG_TYPE_I32; 2135 } 2136 2137 /* Assume all bits affected, no bits known zero, no sign reps. */ 2138 ctx.a_mask = -1; 2139 ctx.z_mask = -1; 2140 ctx.s_mask = 0; 2141 2142 /* 2143 * Process each opcode. 2144 * Sorted alphabetically by opcode as much as possible. 2145 */ 2146 switch (opc) { 2147 CASE_OP_32_64(add): 2148 done = fold_add(&ctx, op); 2149 break; 2150 case INDEX_op_add_vec: 2151 done = fold_add_vec(&ctx, op); 2152 break; 2153 CASE_OP_32_64(add2): 2154 done = fold_add2(&ctx, op); 2155 break; 2156 CASE_OP_32_64_VEC(and): 2157 done = fold_and(&ctx, op); 2158 break; 2159 CASE_OP_32_64_VEC(andc): 2160 done = fold_andc(&ctx, op); 2161 break; 2162 CASE_OP_32_64(brcond): 2163 done = fold_brcond(&ctx, op); 2164 break; 2165 case INDEX_op_brcond2_i32: 2166 done = fold_brcond2(&ctx, op); 2167 break; 2168 CASE_OP_32_64(bswap16): 2169 CASE_OP_32_64(bswap32): 2170 case INDEX_op_bswap64_i64: 2171 done = fold_bswap(&ctx, op); 2172 break; 2173 CASE_OP_32_64(clz): 2174 CASE_OP_32_64(ctz): 2175 done = fold_count_zeros(&ctx, op); 2176 break; 2177 CASE_OP_32_64(ctpop): 2178 done = fold_ctpop(&ctx, op); 2179 break; 2180 CASE_OP_32_64(deposit): 2181 done = fold_deposit(&ctx, op); 2182 break; 2183 CASE_OP_32_64(div): 2184 CASE_OP_32_64(divu): 2185 done = fold_divide(&ctx, op); 2186 break; 2187 case INDEX_op_dup_vec: 2188 done = fold_dup(&ctx, op); 2189 break; 2190 case INDEX_op_dup2_vec: 2191 done = fold_dup2(&ctx, op); 2192 break; 2193 CASE_OP_32_64_VEC(eqv): 2194 done = fold_eqv(&ctx, op); 2195 break; 2196 CASE_OP_32_64(extract): 2197 done = fold_extract(&ctx, op); 2198 break; 2199 CASE_OP_32_64(extract2): 2200 done = fold_extract2(&ctx, op); 2201 break; 2202 CASE_OP_32_64(ext8s): 2203 CASE_OP_32_64(ext16s): 2204 case INDEX_op_ext32s_i64: 2205 case INDEX_op_ext_i32_i64: 2206 done = fold_exts(&ctx, op); 2207 break; 2208 CASE_OP_32_64(ext8u): 2209 CASE_OP_32_64(ext16u): 2210 case INDEX_op_ext32u_i64: 2211 case INDEX_op_extu_i32_i64: 2212 case INDEX_op_extrl_i64_i32: 2213 case INDEX_op_extrh_i64_i32: 2214 done = fold_extu(&ctx, op); 2215 break; 2216 CASE_OP_32_64(ld8s): 2217 CASE_OP_32_64(ld8u): 2218 CASE_OP_32_64(ld16s): 2219 CASE_OP_32_64(ld16u): 2220 case INDEX_op_ld32s_i64: 2221 case INDEX_op_ld32u_i64: 2222 done = fold_tcg_ld(&ctx, op); 2223 break; 2224 case INDEX_op_mb: 2225 done = fold_mb(&ctx, op); 2226 break; 2227 CASE_OP_32_64_VEC(mov): 2228 done = fold_mov(&ctx, op); 2229 break; 2230 CASE_OP_32_64(movcond): 2231 done = fold_movcond(&ctx, op); 2232 break; 2233 CASE_OP_32_64(mul): 2234 done = fold_mul(&ctx, op); 2235 break; 2236 CASE_OP_32_64(mulsh): 2237 CASE_OP_32_64(muluh): 2238 done = fold_mul_highpart(&ctx, op); 2239 break; 2240 CASE_OP_32_64(muls2): 2241 CASE_OP_32_64(mulu2): 2242 done = fold_multiply2(&ctx, op); 2243 break; 2244 CASE_OP_32_64_VEC(nand): 2245 done = fold_nand(&ctx, op); 2246 break; 2247 CASE_OP_32_64(neg): 2248 done = fold_neg(&ctx, op); 2249 break; 2250 CASE_OP_32_64_VEC(nor): 2251 done = fold_nor(&ctx, op); 2252 break; 2253 CASE_OP_32_64_VEC(not): 2254 done = fold_not(&ctx, op); 2255 break; 2256 CASE_OP_32_64_VEC(or): 2257 done = fold_or(&ctx, op); 2258 break; 2259 CASE_OP_32_64_VEC(orc): 2260 done = fold_orc(&ctx, op); 2261 break; 2262 case INDEX_op_qemu_ld_a32_i32: 2263 case INDEX_op_qemu_ld_a64_i32: 2264 case INDEX_op_qemu_ld_a32_i64: 2265 case INDEX_op_qemu_ld_a64_i64: 2266 case INDEX_op_qemu_ld_a32_i128: 2267 case INDEX_op_qemu_ld_a64_i128: 2268 done = fold_qemu_ld(&ctx, op); 2269 break; 2270 case INDEX_op_qemu_st8_a32_i32: 2271 case INDEX_op_qemu_st8_a64_i32: 2272 case INDEX_op_qemu_st_a32_i32: 2273 case INDEX_op_qemu_st_a64_i32: 2274 case INDEX_op_qemu_st_a32_i64: 2275 case INDEX_op_qemu_st_a64_i64: 2276 case INDEX_op_qemu_st_a32_i128: 2277 case INDEX_op_qemu_st_a64_i128: 2278 done = fold_qemu_st(&ctx, op); 2279 break; 2280 CASE_OP_32_64(rem): 2281 CASE_OP_32_64(remu): 2282 done = fold_remainder(&ctx, op); 2283 break; 2284 CASE_OP_32_64(rotl): 2285 CASE_OP_32_64(rotr): 2286 CASE_OP_32_64(sar): 2287 CASE_OP_32_64(shl): 2288 CASE_OP_32_64(shr): 2289 done = fold_shift(&ctx, op); 2290 break; 2291 CASE_OP_32_64(setcond): 2292 done = fold_setcond(&ctx, op); 2293 break; 2294 CASE_OP_32_64(negsetcond): 2295 done = fold_negsetcond(&ctx, op); 2296 break; 2297 case INDEX_op_setcond2_i32: 2298 done = fold_setcond2(&ctx, op); 2299 break; 2300 CASE_OP_32_64(sextract): 2301 done = fold_sextract(&ctx, op); 2302 break; 2303 CASE_OP_32_64(sub): 2304 done = fold_sub(&ctx, op); 2305 break; 2306 case INDEX_op_sub_vec: 2307 done = fold_sub_vec(&ctx, op); 2308 break; 2309 CASE_OP_32_64(sub2): 2310 done = fold_sub2(&ctx, op); 2311 break; 2312 CASE_OP_32_64_VEC(xor): 2313 done = fold_xor(&ctx, op); 2314 break; 2315 default: 2316 break; 2317 } 2318 2319 if (!done) { 2320 finish_folding(&ctx, op); 2321 } 2322 } 2323 } 2324