1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "qemu/interval-tree.h" 29 #include "tcg/tcg-op-common.h" 30 #include "tcg-internal.h" 31 32 #define CASE_OP_32_64(x) \ 33 glue(glue(case INDEX_op_, x), _i32): \ 34 glue(glue(case INDEX_op_, x), _i64) 35 36 #define CASE_OP_32_64_VEC(x) \ 37 glue(glue(case INDEX_op_, x), _i32): \ 38 glue(glue(case INDEX_op_, x), _i64): \ 39 glue(glue(case INDEX_op_, x), _vec) 40 41 typedef struct MemCopyInfo { 42 IntervalTreeNode itree; 43 QSIMPLEQ_ENTRY (MemCopyInfo) next; 44 TCGTemp *ts; 45 TCGType type; 46 } MemCopyInfo; 47 48 typedef struct TempOptInfo { 49 bool is_const; 50 TCGTemp *prev_copy; 51 TCGTemp *next_copy; 52 QSIMPLEQ_HEAD(, MemCopyInfo) mem_copy; 53 uint64_t val; 54 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 55 uint64_t s_mask; /* a left-aligned mask of clrsb(value) bits. */ 56 } TempOptInfo; 57 58 typedef struct OptContext { 59 TCGContext *tcg; 60 TCGOp *prev_mb; 61 TCGTempSet temps_used; 62 63 IntervalTreeRoot mem_copy; 64 QSIMPLEQ_HEAD(, MemCopyInfo) mem_free; 65 66 /* In flight values from optimization. */ 67 uint64_t a_mask; /* mask bit is 0 iff value identical to first input */ 68 uint64_t z_mask; /* mask bit is 0 iff value bit is 0 */ 69 uint64_t s_mask; /* mask of clrsb(value) bits */ 70 TCGType type; 71 } OptContext; 72 73 /* Calculate the smask for a specific value. */ 74 static uint64_t smask_from_value(uint64_t value) 75 { 76 int rep = clrsb64(value); 77 return ~(~0ull >> rep); 78 } 79 80 /* 81 * Calculate the smask for a given set of known-zeros. 82 * If there are lots of zeros on the left, we can consider the remainder 83 * an unsigned field, and thus the corresponding signed field is one bit 84 * larger. 85 */ 86 static uint64_t smask_from_zmask(uint64_t zmask) 87 { 88 /* 89 * Only the 0 bits are significant for zmask, thus the msb itself 90 * must be zero, else we have no sign information. 91 */ 92 int rep = clz64(zmask); 93 if (rep == 0) { 94 return 0; 95 } 96 rep -= 1; 97 return ~(~0ull >> rep); 98 } 99 100 /* 101 * Recreate a properly left-aligned smask after manipulation. 102 * Some bit-shuffling, particularly shifts and rotates, may 103 * retain sign bits on the left, but may scatter disconnected 104 * sign bits on the right. Retain only what remains to the left. 105 */ 106 static uint64_t smask_from_smask(int64_t smask) 107 { 108 /* Only the 1 bits are significant for smask */ 109 return smask_from_zmask(~smask); 110 } 111 112 static inline TempOptInfo *ts_info(TCGTemp *ts) 113 { 114 return ts->state_ptr; 115 } 116 117 static inline TempOptInfo *arg_info(TCGArg arg) 118 { 119 return ts_info(arg_temp(arg)); 120 } 121 122 static inline bool ts_is_const(TCGTemp *ts) 123 { 124 return ts_info(ts)->is_const; 125 } 126 127 static inline bool ts_is_const_val(TCGTemp *ts, uint64_t val) 128 { 129 TempOptInfo *ti = ts_info(ts); 130 return ti->is_const && ti->val == val; 131 } 132 133 static inline bool arg_is_const(TCGArg arg) 134 { 135 return ts_is_const(arg_temp(arg)); 136 } 137 138 static inline bool arg_is_const_val(TCGArg arg, uint64_t val) 139 { 140 return ts_is_const_val(arg_temp(arg), val); 141 } 142 143 static inline bool ts_is_copy(TCGTemp *ts) 144 { 145 return ts_info(ts)->next_copy != ts; 146 } 147 148 static TCGTemp *cmp_better_copy(TCGTemp *a, TCGTemp *b) 149 { 150 return a->kind < b->kind ? b : a; 151 } 152 153 /* Initialize and activate a temporary. */ 154 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 155 { 156 size_t idx = temp_idx(ts); 157 TempOptInfo *ti; 158 159 if (test_bit(idx, ctx->temps_used.l)) { 160 return; 161 } 162 set_bit(idx, ctx->temps_used.l); 163 164 ti = ts->state_ptr; 165 if (ti == NULL) { 166 ti = tcg_malloc(sizeof(TempOptInfo)); 167 ts->state_ptr = ti; 168 } 169 170 ti->next_copy = ts; 171 ti->prev_copy = ts; 172 QSIMPLEQ_INIT(&ti->mem_copy); 173 if (ts->kind == TEMP_CONST) { 174 ti->is_const = true; 175 ti->val = ts->val; 176 ti->z_mask = ts->val; 177 ti->s_mask = smask_from_value(ts->val); 178 } else { 179 ti->is_const = false; 180 ti->z_mask = -1; 181 ti->s_mask = 0; 182 } 183 } 184 185 static MemCopyInfo *mem_copy_first(OptContext *ctx, intptr_t s, intptr_t l) 186 { 187 IntervalTreeNode *r = interval_tree_iter_first(&ctx->mem_copy, s, l); 188 return r ? container_of(r, MemCopyInfo, itree) : NULL; 189 } 190 191 static MemCopyInfo *mem_copy_next(MemCopyInfo *mem, intptr_t s, intptr_t l) 192 { 193 IntervalTreeNode *r = interval_tree_iter_next(&mem->itree, s, l); 194 return r ? container_of(r, MemCopyInfo, itree) : NULL; 195 } 196 197 static void remove_mem_copy(OptContext *ctx, MemCopyInfo *mc) 198 { 199 TCGTemp *ts = mc->ts; 200 TempOptInfo *ti = ts_info(ts); 201 202 interval_tree_remove(&mc->itree, &ctx->mem_copy); 203 QSIMPLEQ_REMOVE(&ti->mem_copy, mc, MemCopyInfo, next); 204 QSIMPLEQ_INSERT_TAIL(&ctx->mem_free, mc, next); 205 } 206 207 static void remove_mem_copy_in(OptContext *ctx, intptr_t s, intptr_t l) 208 { 209 while (true) { 210 MemCopyInfo *mc = mem_copy_first(ctx, s, l); 211 if (!mc) { 212 break; 213 } 214 remove_mem_copy(ctx, mc); 215 } 216 } 217 218 static void remove_mem_copy_all(OptContext *ctx) 219 { 220 remove_mem_copy_in(ctx, 0, -1); 221 tcg_debug_assert(interval_tree_is_empty(&ctx->mem_copy)); 222 } 223 224 static TCGTemp *find_better_copy(TCGTemp *ts) 225 { 226 TCGTemp *i, *ret; 227 228 /* If this is already readonly, we can't do better. */ 229 if (temp_readonly(ts)) { 230 return ts; 231 } 232 233 ret = ts; 234 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 235 ret = cmp_better_copy(ret, i); 236 } 237 return ret; 238 } 239 240 static void move_mem_copies(TCGTemp *dst_ts, TCGTemp *src_ts) 241 { 242 TempOptInfo *si = ts_info(src_ts); 243 TempOptInfo *di = ts_info(dst_ts); 244 MemCopyInfo *mc; 245 246 QSIMPLEQ_FOREACH(mc, &si->mem_copy, next) { 247 tcg_debug_assert(mc->ts == src_ts); 248 mc->ts = dst_ts; 249 } 250 QSIMPLEQ_CONCAT(&di->mem_copy, &si->mem_copy); 251 } 252 253 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 254 static void reset_ts(OptContext *ctx, TCGTemp *ts) 255 { 256 TempOptInfo *ti = ts_info(ts); 257 TCGTemp *pts = ti->prev_copy; 258 TCGTemp *nts = ti->next_copy; 259 TempOptInfo *pi = ts_info(pts); 260 TempOptInfo *ni = ts_info(nts); 261 262 ni->prev_copy = ti->prev_copy; 263 pi->next_copy = ti->next_copy; 264 ti->next_copy = ts; 265 ti->prev_copy = ts; 266 ti->is_const = false; 267 ti->z_mask = -1; 268 ti->s_mask = 0; 269 270 if (!QSIMPLEQ_EMPTY(&ti->mem_copy)) { 271 if (ts == nts) { 272 /* Last temp copy being removed, the mem copies die. */ 273 MemCopyInfo *mc; 274 QSIMPLEQ_FOREACH(mc, &ti->mem_copy, next) { 275 interval_tree_remove(&mc->itree, &ctx->mem_copy); 276 } 277 QSIMPLEQ_CONCAT(&ctx->mem_free, &ti->mem_copy); 278 } else { 279 move_mem_copies(find_better_copy(nts), ts); 280 } 281 } 282 } 283 284 static void reset_temp(OptContext *ctx, TCGArg arg) 285 { 286 reset_ts(ctx, arg_temp(arg)); 287 } 288 289 static void record_mem_copy(OptContext *ctx, TCGType type, 290 TCGTemp *ts, intptr_t start, intptr_t last) 291 { 292 MemCopyInfo *mc; 293 TempOptInfo *ti; 294 295 mc = QSIMPLEQ_FIRST(&ctx->mem_free); 296 if (mc) { 297 QSIMPLEQ_REMOVE_HEAD(&ctx->mem_free, next); 298 } else { 299 mc = tcg_malloc(sizeof(*mc)); 300 } 301 302 memset(mc, 0, sizeof(*mc)); 303 mc->itree.start = start; 304 mc->itree.last = last; 305 mc->type = type; 306 interval_tree_insert(&mc->itree, &ctx->mem_copy); 307 308 ts = find_better_copy(ts); 309 ti = ts_info(ts); 310 mc->ts = ts; 311 QSIMPLEQ_INSERT_TAIL(&ti->mem_copy, mc, next); 312 } 313 314 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 315 { 316 TCGTemp *i; 317 318 if (ts1 == ts2) { 319 return true; 320 } 321 322 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 323 return false; 324 } 325 326 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 327 if (i == ts2) { 328 return true; 329 } 330 } 331 332 return false; 333 } 334 335 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 336 { 337 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 338 } 339 340 static TCGTemp *find_mem_copy_for(OptContext *ctx, TCGType type, intptr_t s) 341 { 342 MemCopyInfo *mc; 343 344 for (mc = mem_copy_first(ctx, s, s); mc; mc = mem_copy_next(mc, s, s)) { 345 if (mc->itree.start == s && mc->type == type) { 346 return find_better_copy(mc->ts); 347 } 348 } 349 return NULL; 350 } 351 352 static TCGArg arg_new_constant(OptContext *ctx, uint64_t val) 353 { 354 TCGType type = ctx->type; 355 TCGTemp *ts; 356 357 if (type == TCG_TYPE_I32) { 358 val = (int32_t)val; 359 } 360 361 ts = tcg_constant_internal(type, val); 362 init_ts_info(ctx, ts); 363 364 return temp_arg(ts); 365 } 366 367 static TCGArg arg_new_temp(OptContext *ctx) 368 { 369 TCGTemp *ts = tcg_temp_new_internal(ctx->type, TEMP_EBB); 370 init_ts_info(ctx, ts); 371 return temp_arg(ts); 372 } 373 374 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 375 { 376 TCGTemp *dst_ts = arg_temp(dst); 377 TCGTemp *src_ts = arg_temp(src); 378 TempOptInfo *di; 379 TempOptInfo *si; 380 TCGOpcode new_op; 381 382 if (ts_are_copies(dst_ts, src_ts)) { 383 tcg_op_remove(ctx->tcg, op); 384 return true; 385 } 386 387 reset_ts(ctx, dst_ts); 388 di = ts_info(dst_ts); 389 si = ts_info(src_ts); 390 391 switch (ctx->type) { 392 case TCG_TYPE_I32: 393 new_op = INDEX_op_mov_i32; 394 break; 395 case TCG_TYPE_I64: 396 new_op = INDEX_op_mov_i64; 397 break; 398 case TCG_TYPE_V64: 399 case TCG_TYPE_V128: 400 case TCG_TYPE_V256: 401 /* TCGOP_VECL and TCGOP_VECE remain unchanged. */ 402 new_op = INDEX_op_mov_vec; 403 break; 404 default: 405 g_assert_not_reached(); 406 } 407 op->opc = new_op; 408 op->args[0] = dst; 409 op->args[1] = src; 410 411 di->z_mask = si->z_mask; 412 di->s_mask = si->s_mask; 413 414 if (src_ts->type == dst_ts->type) { 415 TempOptInfo *ni = ts_info(si->next_copy); 416 417 di->next_copy = si->next_copy; 418 di->prev_copy = src_ts; 419 ni->prev_copy = dst_ts; 420 si->next_copy = dst_ts; 421 di->is_const = si->is_const; 422 di->val = si->val; 423 424 if (!QSIMPLEQ_EMPTY(&si->mem_copy) 425 && cmp_better_copy(src_ts, dst_ts) == dst_ts) { 426 move_mem_copies(dst_ts, src_ts); 427 } 428 } 429 return true; 430 } 431 432 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 433 TCGArg dst, uint64_t val) 434 { 435 /* Convert movi to mov with constant temp. */ 436 return tcg_opt_gen_mov(ctx, op, dst, arg_new_constant(ctx, val)); 437 } 438 439 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 440 { 441 uint64_t l64, h64; 442 443 switch (op) { 444 CASE_OP_32_64(add): 445 return x + y; 446 447 CASE_OP_32_64(sub): 448 return x - y; 449 450 CASE_OP_32_64(mul): 451 return x * y; 452 453 CASE_OP_32_64_VEC(and): 454 return x & y; 455 456 CASE_OP_32_64_VEC(or): 457 return x | y; 458 459 CASE_OP_32_64_VEC(xor): 460 return x ^ y; 461 462 case INDEX_op_shl_i32: 463 return (uint32_t)x << (y & 31); 464 465 case INDEX_op_shl_i64: 466 return (uint64_t)x << (y & 63); 467 468 case INDEX_op_shr_i32: 469 return (uint32_t)x >> (y & 31); 470 471 case INDEX_op_shr_i64: 472 return (uint64_t)x >> (y & 63); 473 474 case INDEX_op_sar_i32: 475 return (int32_t)x >> (y & 31); 476 477 case INDEX_op_sar_i64: 478 return (int64_t)x >> (y & 63); 479 480 case INDEX_op_rotr_i32: 481 return ror32(x, y & 31); 482 483 case INDEX_op_rotr_i64: 484 return ror64(x, y & 63); 485 486 case INDEX_op_rotl_i32: 487 return rol32(x, y & 31); 488 489 case INDEX_op_rotl_i64: 490 return rol64(x, y & 63); 491 492 CASE_OP_32_64_VEC(not): 493 return ~x; 494 495 CASE_OP_32_64(neg): 496 return -x; 497 498 CASE_OP_32_64_VEC(andc): 499 return x & ~y; 500 501 CASE_OP_32_64_VEC(orc): 502 return x | ~y; 503 504 CASE_OP_32_64_VEC(eqv): 505 return ~(x ^ y); 506 507 CASE_OP_32_64_VEC(nand): 508 return ~(x & y); 509 510 CASE_OP_32_64_VEC(nor): 511 return ~(x | y); 512 513 case INDEX_op_clz_i32: 514 return (uint32_t)x ? clz32(x) : y; 515 516 case INDEX_op_clz_i64: 517 return x ? clz64(x) : y; 518 519 case INDEX_op_ctz_i32: 520 return (uint32_t)x ? ctz32(x) : y; 521 522 case INDEX_op_ctz_i64: 523 return x ? ctz64(x) : y; 524 525 case INDEX_op_ctpop_i32: 526 return ctpop32(x); 527 528 case INDEX_op_ctpop_i64: 529 return ctpop64(x); 530 531 CASE_OP_32_64(ext8s): 532 return (int8_t)x; 533 534 CASE_OP_32_64(ext16s): 535 return (int16_t)x; 536 537 CASE_OP_32_64(ext8u): 538 return (uint8_t)x; 539 540 CASE_OP_32_64(ext16u): 541 return (uint16_t)x; 542 543 CASE_OP_32_64(bswap16): 544 x = bswap16(x); 545 return y & TCG_BSWAP_OS ? (int16_t)x : x; 546 547 CASE_OP_32_64(bswap32): 548 x = bswap32(x); 549 return y & TCG_BSWAP_OS ? (int32_t)x : x; 550 551 case INDEX_op_bswap64_i64: 552 return bswap64(x); 553 554 case INDEX_op_ext_i32_i64: 555 case INDEX_op_ext32s_i64: 556 return (int32_t)x; 557 558 case INDEX_op_extu_i32_i64: 559 case INDEX_op_extrl_i64_i32: 560 case INDEX_op_ext32u_i64: 561 return (uint32_t)x; 562 563 case INDEX_op_extrh_i64_i32: 564 return (uint64_t)x >> 32; 565 566 case INDEX_op_muluh_i32: 567 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 568 case INDEX_op_mulsh_i32: 569 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 570 571 case INDEX_op_muluh_i64: 572 mulu64(&l64, &h64, x, y); 573 return h64; 574 case INDEX_op_mulsh_i64: 575 muls64(&l64, &h64, x, y); 576 return h64; 577 578 case INDEX_op_div_i32: 579 /* Avoid crashing on divide by zero, otherwise undefined. */ 580 return (int32_t)x / ((int32_t)y ? : 1); 581 case INDEX_op_divu_i32: 582 return (uint32_t)x / ((uint32_t)y ? : 1); 583 case INDEX_op_div_i64: 584 return (int64_t)x / ((int64_t)y ? : 1); 585 case INDEX_op_divu_i64: 586 return (uint64_t)x / ((uint64_t)y ? : 1); 587 588 case INDEX_op_rem_i32: 589 return (int32_t)x % ((int32_t)y ? : 1); 590 case INDEX_op_remu_i32: 591 return (uint32_t)x % ((uint32_t)y ? : 1); 592 case INDEX_op_rem_i64: 593 return (int64_t)x % ((int64_t)y ? : 1); 594 case INDEX_op_remu_i64: 595 return (uint64_t)x % ((uint64_t)y ? : 1); 596 597 default: 598 g_assert_not_reached(); 599 } 600 } 601 602 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 603 uint64_t x, uint64_t y) 604 { 605 uint64_t res = do_constant_folding_2(op, x, y); 606 if (type == TCG_TYPE_I32) { 607 res = (int32_t)res; 608 } 609 return res; 610 } 611 612 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 613 { 614 switch (c) { 615 case TCG_COND_EQ: 616 return x == y; 617 case TCG_COND_NE: 618 return x != y; 619 case TCG_COND_LT: 620 return (int32_t)x < (int32_t)y; 621 case TCG_COND_GE: 622 return (int32_t)x >= (int32_t)y; 623 case TCG_COND_LE: 624 return (int32_t)x <= (int32_t)y; 625 case TCG_COND_GT: 626 return (int32_t)x > (int32_t)y; 627 case TCG_COND_LTU: 628 return x < y; 629 case TCG_COND_GEU: 630 return x >= y; 631 case TCG_COND_LEU: 632 return x <= y; 633 case TCG_COND_GTU: 634 return x > y; 635 case TCG_COND_TSTEQ: 636 return (x & y) == 0; 637 case TCG_COND_TSTNE: 638 return (x & y) != 0; 639 case TCG_COND_ALWAYS: 640 case TCG_COND_NEVER: 641 break; 642 } 643 g_assert_not_reached(); 644 } 645 646 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 647 { 648 switch (c) { 649 case TCG_COND_EQ: 650 return x == y; 651 case TCG_COND_NE: 652 return x != y; 653 case TCG_COND_LT: 654 return (int64_t)x < (int64_t)y; 655 case TCG_COND_GE: 656 return (int64_t)x >= (int64_t)y; 657 case TCG_COND_LE: 658 return (int64_t)x <= (int64_t)y; 659 case TCG_COND_GT: 660 return (int64_t)x > (int64_t)y; 661 case TCG_COND_LTU: 662 return x < y; 663 case TCG_COND_GEU: 664 return x >= y; 665 case TCG_COND_LEU: 666 return x <= y; 667 case TCG_COND_GTU: 668 return x > y; 669 case TCG_COND_TSTEQ: 670 return (x & y) == 0; 671 case TCG_COND_TSTNE: 672 return (x & y) != 0; 673 case TCG_COND_ALWAYS: 674 case TCG_COND_NEVER: 675 break; 676 } 677 g_assert_not_reached(); 678 } 679 680 static int do_constant_folding_cond_eq(TCGCond c) 681 { 682 switch (c) { 683 case TCG_COND_GT: 684 case TCG_COND_LTU: 685 case TCG_COND_LT: 686 case TCG_COND_GTU: 687 case TCG_COND_NE: 688 return 0; 689 case TCG_COND_GE: 690 case TCG_COND_GEU: 691 case TCG_COND_LE: 692 case TCG_COND_LEU: 693 case TCG_COND_EQ: 694 return 1; 695 case TCG_COND_TSTEQ: 696 case TCG_COND_TSTNE: 697 return -1; 698 case TCG_COND_ALWAYS: 699 case TCG_COND_NEVER: 700 break; 701 } 702 g_assert_not_reached(); 703 } 704 705 /* 706 * Return -1 if the condition can't be simplified, 707 * and the result of the condition (0 or 1) if it can. 708 */ 709 static int do_constant_folding_cond(TCGType type, TCGArg x, 710 TCGArg y, TCGCond c) 711 { 712 if (arg_is_const(x) && arg_is_const(y)) { 713 uint64_t xv = arg_info(x)->val; 714 uint64_t yv = arg_info(y)->val; 715 716 switch (type) { 717 case TCG_TYPE_I32: 718 return do_constant_folding_cond_32(xv, yv, c); 719 case TCG_TYPE_I64: 720 return do_constant_folding_cond_64(xv, yv, c); 721 default: 722 /* Only scalar comparisons are optimizable */ 723 return -1; 724 } 725 } else if (args_are_copies(x, y)) { 726 return do_constant_folding_cond_eq(c); 727 } else if (arg_is_const_val(y, 0)) { 728 switch (c) { 729 case TCG_COND_LTU: 730 case TCG_COND_TSTNE: 731 return 0; 732 case TCG_COND_GEU: 733 case TCG_COND_TSTEQ: 734 return 1; 735 default: 736 return -1; 737 } 738 } 739 return -1; 740 } 741 742 /** 743 * swap_commutative: 744 * @dest: TCGArg of the destination argument, or NO_DEST. 745 * @p1: first paired argument 746 * @p2: second paired argument 747 * 748 * If *@p1 is a constant and *@p2 is not, swap. 749 * If *@p2 matches @dest, swap. 750 * Return true if a swap was performed. 751 */ 752 753 #define NO_DEST temp_arg(NULL) 754 755 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 756 { 757 TCGArg a1 = *p1, a2 = *p2; 758 int sum = 0; 759 sum += arg_is_const(a1); 760 sum -= arg_is_const(a2); 761 762 /* Prefer the constant in second argument, and then the form 763 op a, a, b, which is better handled on non-RISC hosts. */ 764 if (sum > 0 || (sum == 0 && dest == a2)) { 765 *p1 = a2; 766 *p2 = a1; 767 return true; 768 } 769 return false; 770 } 771 772 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 773 { 774 int sum = 0; 775 sum += arg_is_const(p1[0]); 776 sum += arg_is_const(p1[1]); 777 sum -= arg_is_const(p2[0]); 778 sum -= arg_is_const(p2[1]); 779 if (sum > 0) { 780 TCGArg t; 781 t = p1[0], p1[0] = p2[0], p2[0] = t; 782 t = p1[1], p1[1] = p2[1], p2[1] = t; 783 return true; 784 } 785 return false; 786 } 787 788 /* 789 * Return -1 if the condition can't be simplified, 790 * and the result of the condition (0 or 1) if it can. 791 */ 792 static int do_constant_folding_cond1(OptContext *ctx, TCGOp *op, TCGArg dest, 793 TCGArg *p1, TCGArg *p2, TCGArg *pcond) 794 { 795 TCGCond cond; 796 bool swap; 797 int r; 798 799 swap = swap_commutative(dest, p1, p2); 800 cond = *pcond; 801 if (swap) { 802 *pcond = cond = tcg_swap_cond(cond); 803 } 804 805 r = do_constant_folding_cond(ctx->type, *p1, *p2, cond); 806 if (r >= 0) { 807 return r; 808 } 809 if (!is_tst_cond(cond)) { 810 return -1; 811 } 812 813 /* 814 * TSTNE x,x -> NE x,0 815 * TSTNE x,-1 -> NE x,0 816 */ 817 if (args_are_copies(*p1, *p2) || arg_is_const_val(*p2, -1)) { 818 *p2 = arg_new_constant(ctx, 0); 819 *pcond = tcg_tst_eqne_cond(cond); 820 return -1; 821 } 822 823 /* TSTNE x,sign -> LT x,0 */ 824 if (arg_is_const_val(*p2, (ctx->type == TCG_TYPE_I32 825 ? INT32_MIN : INT64_MIN))) { 826 *p2 = arg_new_constant(ctx, 0); 827 *pcond = tcg_tst_ltge_cond(cond); 828 return -1; 829 } 830 831 /* Expand to AND with a temporary if no backend support. */ 832 if (!TCG_TARGET_HAS_tst) { 833 TCGOpcode and_opc = (ctx->type == TCG_TYPE_I32 834 ? INDEX_op_and_i32 : INDEX_op_and_i64); 835 TCGOp *op2 = tcg_op_insert_before(ctx->tcg, op, and_opc, 3); 836 TCGArg tmp = arg_new_temp(ctx); 837 838 op2->args[0] = tmp; 839 op2->args[1] = *p1; 840 op2->args[2] = *p2; 841 842 *p1 = tmp; 843 *p2 = arg_new_constant(ctx, 0); 844 *pcond = tcg_tst_eqne_cond(cond); 845 } 846 return -1; 847 } 848 849 static int do_constant_folding_cond2(OptContext *ctx, TCGOp *op, TCGArg *args) 850 { 851 TCGArg al, ah, bl, bh; 852 TCGCond c; 853 bool swap; 854 int r; 855 856 swap = swap_commutative2(args, args + 2); 857 c = args[4]; 858 if (swap) { 859 args[4] = c = tcg_swap_cond(c); 860 } 861 862 al = args[0]; 863 ah = args[1]; 864 bl = args[2]; 865 bh = args[3]; 866 867 if (arg_is_const(bl) && arg_is_const(bh)) { 868 tcg_target_ulong blv = arg_info(bl)->val; 869 tcg_target_ulong bhv = arg_info(bh)->val; 870 uint64_t b = deposit64(blv, 32, 32, bhv); 871 872 if (arg_is_const(al) && arg_is_const(ah)) { 873 tcg_target_ulong alv = arg_info(al)->val; 874 tcg_target_ulong ahv = arg_info(ah)->val; 875 uint64_t a = deposit64(alv, 32, 32, ahv); 876 877 r = do_constant_folding_cond_64(a, b, c); 878 if (r >= 0) { 879 return r; 880 } 881 } 882 883 if (b == 0) { 884 switch (c) { 885 case TCG_COND_LTU: 886 case TCG_COND_TSTNE: 887 return 0; 888 case TCG_COND_GEU: 889 case TCG_COND_TSTEQ: 890 return 1; 891 default: 892 break; 893 } 894 } 895 896 /* TSTNE x,-1 -> NE x,0 */ 897 if (b == -1 && is_tst_cond(c)) { 898 args[3] = args[2] = arg_new_constant(ctx, 0); 899 args[4] = tcg_tst_eqne_cond(c); 900 return -1; 901 } 902 903 /* TSTNE x,sign -> LT x,0 */ 904 if (b == INT64_MIN && is_tst_cond(c)) { 905 /* bl must be 0, so copy that to bh */ 906 args[3] = bl; 907 args[4] = tcg_tst_ltge_cond(c); 908 return -1; 909 } 910 } 911 912 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 913 r = do_constant_folding_cond_eq(c); 914 if (r >= 0) { 915 return r; 916 } 917 918 /* TSTNE x,x -> NE x,0 */ 919 if (is_tst_cond(c)) { 920 args[3] = args[2] = arg_new_constant(ctx, 0); 921 args[4] = tcg_tst_eqne_cond(c); 922 return -1; 923 } 924 } 925 926 /* Expand to AND with a temporary if no backend support. */ 927 if (!TCG_TARGET_HAS_tst && is_tst_cond(c)) { 928 TCGOp *op1 = tcg_op_insert_before(ctx->tcg, op, INDEX_op_and_i32, 3); 929 TCGOp *op2 = tcg_op_insert_before(ctx->tcg, op, INDEX_op_and_i32, 3); 930 TCGArg t1 = arg_new_temp(ctx); 931 TCGArg t2 = arg_new_temp(ctx); 932 933 op1->args[0] = t1; 934 op1->args[1] = al; 935 op1->args[2] = bl; 936 op2->args[0] = t2; 937 op2->args[1] = ah; 938 op2->args[2] = bh; 939 940 args[0] = t1; 941 args[1] = t2; 942 args[3] = args[2] = arg_new_constant(ctx, 0); 943 args[4] = tcg_tst_eqne_cond(c); 944 } 945 return -1; 946 } 947 948 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 949 { 950 for (int i = 0; i < nb_args; i++) { 951 TCGTemp *ts = arg_temp(op->args[i]); 952 init_ts_info(ctx, ts); 953 } 954 } 955 956 static void copy_propagate(OptContext *ctx, TCGOp *op, 957 int nb_oargs, int nb_iargs) 958 { 959 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 960 TCGTemp *ts = arg_temp(op->args[i]); 961 if (ts_is_copy(ts)) { 962 op->args[i] = temp_arg(find_better_copy(ts)); 963 } 964 } 965 } 966 967 static void finish_folding(OptContext *ctx, TCGOp *op) 968 { 969 const TCGOpDef *def = &tcg_op_defs[op->opc]; 970 int i, nb_oargs; 971 972 /* 973 * We only optimize extended basic blocks. If the opcode ends a BB 974 * and is not a conditional branch, reset all temp data. 975 */ 976 if (def->flags & TCG_OPF_BB_END) { 977 ctx->prev_mb = NULL; 978 if (!(def->flags & TCG_OPF_COND_BRANCH)) { 979 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 980 remove_mem_copy_all(ctx); 981 } 982 return; 983 } 984 985 nb_oargs = def->nb_oargs; 986 for (i = 0; i < nb_oargs; i++) { 987 TCGTemp *ts = arg_temp(op->args[i]); 988 reset_ts(ctx, ts); 989 /* 990 * Save the corresponding known-zero/sign bits mask for the 991 * first output argument (only one supported so far). 992 */ 993 if (i == 0) { 994 ts_info(ts)->z_mask = ctx->z_mask; 995 ts_info(ts)->s_mask = ctx->s_mask; 996 } 997 } 998 } 999 1000 /* 1001 * The fold_* functions return true when processing is complete, 1002 * usually by folding the operation to a constant or to a copy, 1003 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 1004 * like collect information about the value produced, for use in 1005 * optimizing a subsequent operation. 1006 * 1007 * These first fold_* functions are all helpers, used by other 1008 * folders for more specific operations. 1009 */ 1010 1011 static bool fold_const1(OptContext *ctx, TCGOp *op) 1012 { 1013 if (arg_is_const(op->args[1])) { 1014 uint64_t t; 1015 1016 t = arg_info(op->args[1])->val; 1017 t = do_constant_folding(op->opc, ctx->type, t, 0); 1018 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1019 } 1020 return false; 1021 } 1022 1023 static bool fold_const2(OptContext *ctx, TCGOp *op) 1024 { 1025 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1026 uint64_t t1 = arg_info(op->args[1])->val; 1027 uint64_t t2 = arg_info(op->args[2])->val; 1028 1029 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 1030 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 1031 } 1032 return false; 1033 } 1034 1035 static bool fold_commutative(OptContext *ctx, TCGOp *op) 1036 { 1037 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1038 return false; 1039 } 1040 1041 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 1042 { 1043 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 1044 return fold_const2(ctx, op); 1045 } 1046 1047 static bool fold_masks(OptContext *ctx, TCGOp *op) 1048 { 1049 uint64_t a_mask = ctx->a_mask; 1050 uint64_t z_mask = ctx->z_mask; 1051 uint64_t s_mask = ctx->s_mask; 1052 1053 /* 1054 * 32-bit ops generate 32-bit results, which for the purpose of 1055 * simplifying tcg are sign-extended. Certainly that's how we 1056 * represent our constants elsewhere. Note that the bits will 1057 * be reset properly for a 64-bit value when encountering the 1058 * type changing opcodes. 1059 */ 1060 if (ctx->type == TCG_TYPE_I32) { 1061 a_mask = (int32_t)a_mask; 1062 z_mask = (int32_t)z_mask; 1063 s_mask |= MAKE_64BIT_MASK(32, 32); 1064 ctx->z_mask = z_mask; 1065 ctx->s_mask = s_mask; 1066 } 1067 1068 if (z_mask == 0) { 1069 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 1070 } 1071 if (a_mask == 0) { 1072 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1073 } 1074 return false; 1075 } 1076 1077 /* 1078 * Convert @op to NOT, if NOT is supported by the host. 1079 * Return true f the conversion is successful, which will still 1080 * indicate that the processing is complete. 1081 */ 1082 static bool fold_not(OptContext *ctx, TCGOp *op); 1083 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 1084 { 1085 TCGOpcode not_op; 1086 bool have_not; 1087 1088 switch (ctx->type) { 1089 case TCG_TYPE_I32: 1090 not_op = INDEX_op_not_i32; 1091 have_not = TCG_TARGET_HAS_not_i32; 1092 break; 1093 case TCG_TYPE_I64: 1094 not_op = INDEX_op_not_i64; 1095 have_not = TCG_TARGET_HAS_not_i64; 1096 break; 1097 case TCG_TYPE_V64: 1098 case TCG_TYPE_V128: 1099 case TCG_TYPE_V256: 1100 not_op = INDEX_op_not_vec; 1101 have_not = TCG_TARGET_HAS_not_vec; 1102 break; 1103 default: 1104 g_assert_not_reached(); 1105 } 1106 if (have_not) { 1107 op->opc = not_op; 1108 op->args[1] = op->args[idx]; 1109 return fold_not(ctx, op); 1110 } 1111 return false; 1112 } 1113 1114 /* If the binary operation has first argument @i, fold to @i. */ 1115 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1116 { 1117 if (arg_is_const_val(op->args[1], i)) { 1118 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1119 } 1120 return false; 1121 } 1122 1123 /* If the binary operation has first argument @i, fold to NOT. */ 1124 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1125 { 1126 if (arg_is_const_val(op->args[1], i)) { 1127 return fold_to_not(ctx, op, 2); 1128 } 1129 return false; 1130 } 1131 1132 /* If the binary operation has second argument @i, fold to @i. */ 1133 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1134 { 1135 if (arg_is_const_val(op->args[2], i)) { 1136 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1137 } 1138 return false; 1139 } 1140 1141 /* If the binary operation has second argument @i, fold to identity. */ 1142 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 1143 { 1144 if (arg_is_const_val(op->args[2], i)) { 1145 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1146 } 1147 return false; 1148 } 1149 1150 /* If the binary operation has second argument @i, fold to NOT. */ 1151 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 1152 { 1153 if (arg_is_const_val(op->args[2], i)) { 1154 return fold_to_not(ctx, op, 1); 1155 } 1156 return false; 1157 } 1158 1159 /* If the binary operation has both arguments equal, fold to @i. */ 1160 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 1161 { 1162 if (args_are_copies(op->args[1], op->args[2])) { 1163 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1164 } 1165 return false; 1166 } 1167 1168 /* If the binary operation has both arguments equal, fold to identity. */ 1169 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 1170 { 1171 if (args_are_copies(op->args[1], op->args[2])) { 1172 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1173 } 1174 return false; 1175 } 1176 1177 /* 1178 * These outermost fold_<op> functions are sorted alphabetically. 1179 * 1180 * The ordering of the transformations should be: 1181 * 1) those that produce a constant 1182 * 2) those that produce a copy 1183 * 3) those that produce information about the result value. 1184 */ 1185 1186 static bool fold_add(OptContext *ctx, TCGOp *op) 1187 { 1188 if (fold_const2_commutative(ctx, op) || 1189 fold_xi_to_x(ctx, op, 0)) { 1190 return true; 1191 } 1192 return false; 1193 } 1194 1195 /* We cannot as yet do_constant_folding with vectors. */ 1196 static bool fold_add_vec(OptContext *ctx, TCGOp *op) 1197 { 1198 if (fold_commutative(ctx, op) || 1199 fold_xi_to_x(ctx, op, 0)) { 1200 return true; 1201 } 1202 return false; 1203 } 1204 1205 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 1206 { 1207 bool a_const = arg_is_const(op->args[2]) && arg_is_const(op->args[3]); 1208 bool b_const = arg_is_const(op->args[4]) && arg_is_const(op->args[5]); 1209 1210 if (a_const && b_const) { 1211 uint64_t al = arg_info(op->args[2])->val; 1212 uint64_t ah = arg_info(op->args[3])->val; 1213 uint64_t bl = arg_info(op->args[4])->val; 1214 uint64_t bh = arg_info(op->args[5])->val; 1215 TCGArg rl, rh; 1216 TCGOp *op2; 1217 1218 if (ctx->type == TCG_TYPE_I32) { 1219 uint64_t a = deposit64(al, 32, 32, ah); 1220 uint64_t b = deposit64(bl, 32, 32, bh); 1221 1222 if (add) { 1223 a += b; 1224 } else { 1225 a -= b; 1226 } 1227 1228 al = sextract64(a, 0, 32); 1229 ah = sextract64(a, 32, 32); 1230 } else { 1231 Int128 a = int128_make128(al, ah); 1232 Int128 b = int128_make128(bl, bh); 1233 1234 if (add) { 1235 a = int128_add(a, b); 1236 } else { 1237 a = int128_sub(a, b); 1238 } 1239 1240 al = int128_getlo(a); 1241 ah = int128_gethi(a); 1242 } 1243 1244 rl = op->args[0]; 1245 rh = op->args[1]; 1246 1247 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1248 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); 1249 1250 tcg_opt_gen_movi(ctx, op, rl, al); 1251 tcg_opt_gen_movi(ctx, op2, rh, ah); 1252 return true; 1253 } 1254 1255 /* Fold sub2 r,x,i to add2 r,x,-i */ 1256 if (!add && b_const) { 1257 uint64_t bl = arg_info(op->args[4])->val; 1258 uint64_t bh = arg_info(op->args[5])->val; 1259 1260 /* Negate the two parts without assembling and disassembling. */ 1261 bl = -bl; 1262 bh = ~bh + !bl; 1263 1264 op->opc = (ctx->type == TCG_TYPE_I32 1265 ? INDEX_op_add2_i32 : INDEX_op_add2_i64); 1266 op->args[4] = arg_new_constant(ctx, bl); 1267 op->args[5] = arg_new_constant(ctx, bh); 1268 } 1269 return false; 1270 } 1271 1272 static bool fold_add2(OptContext *ctx, TCGOp *op) 1273 { 1274 /* Note that the high and low parts may be independently swapped. */ 1275 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 1276 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 1277 1278 return fold_addsub2(ctx, op, true); 1279 } 1280 1281 static bool fold_and(OptContext *ctx, TCGOp *op) 1282 { 1283 uint64_t z1, z2; 1284 1285 if (fold_const2_commutative(ctx, op) || 1286 fold_xi_to_i(ctx, op, 0) || 1287 fold_xi_to_x(ctx, op, -1) || 1288 fold_xx_to_x(ctx, op)) { 1289 return true; 1290 } 1291 1292 z1 = arg_info(op->args[1])->z_mask; 1293 z2 = arg_info(op->args[2])->z_mask; 1294 ctx->z_mask = z1 & z2; 1295 1296 /* 1297 * Sign repetitions are perforce all identical, whether they are 1 or 0. 1298 * Bitwise operations preserve the relative quantity of the repetitions. 1299 */ 1300 ctx->s_mask = arg_info(op->args[1])->s_mask 1301 & arg_info(op->args[2])->s_mask; 1302 1303 /* 1304 * Known-zeros does not imply known-ones. Therefore unless 1305 * arg2 is constant, we can't infer affected bits from it. 1306 */ 1307 if (arg_is_const(op->args[2])) { 1308 ctx->a_mask = z1 & ~z2; 1309 } 1310 1311 return fold_masks(ctx, op); 1312 } 1313 1314 static bool fold_andc(OptContext *ctx, TCGOp *op) 1315 { 1316 uint64_t z1; 1317 1318 if (fold_const2(ctx, op) || 1319 fold_xx_to_i(ctx, op, 0) || 1320 fold_xi_to_x(ctx, op, 0) || 1321 fold_ix_to_not(ctx, op, -1)) { 1322 return true; 1323 } 1324 1325 z1 = arg_info(op->args[1])->z_mask; 1326 1327 /* 1328 * Known-zeros does not imply known-ones. Therefore unless 1329 * arg2 is constant, we can't infer anything from it. 1330 */ 1331 if (arg_is_const(op->args[2])) { 1332 uint64_t z2 = ~arg_info(op->args[2])->z_mask; 1333 ctx->a_mask = z1 & ~z2; 1334 z1 &= z2; 1335 } 1336 ctx->z_mask = z1; 1337 1338 ctx->s_mask = arg_info(op->args[1])->s_mask 1339 & arg_info(op->args[2])->s_mask; 1340 return fold_masks(ctx, op); 1341 } 1342 1343 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1344 { 1345 int i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[0], 1346 &op->args[1], &op->args[2]); 1347 if (i == 0) { 1348 tcg_op_remove(ctx->tcg, op); 1349 return true; 1350 } 1351 if (i > 0) { 1352 op->opc = INDEX_op_br; 1353 op->args[0] = op->args[3]; 1354 } 1355 return false; 1356 } 1357 1358 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1359 { 1360 TCGCond cond; 1361 TCGArg label; 1362 int i, inv = 0; 1363 1364 i = do_constant_folding_cond2(ctx, op, &op->args[0]); 1365 cond = op->args[4]; 1366 label = op->args[5]; 1367 if (i >= 0) { 1368 goto do_brcond_const; 1369 } 1370 1371 switch (cond) { 1372 case TCG_COND_LT: 1373 case TCG_COND_GE: 1374 /* 1375 * Simplify LT/GE comparisons vs zero to a single compare 1376 * vs the high word of the input. 1377 */ 1378 if (arg_is_const_val(op->args[2], 0) && 1379 arg_is_const_val(op->args[3], 0)) { 1380 goto do_brcond_high; 1381 } 1382 break; 1383 1384 case TCG_COND_NE: 1385 inv = 1; 1386 QEMU_FALLTHROUGH; 1387 case TCG_COND_EQ: 1388 /* 1389 * Simplify EQ/NE comparisons where one of the pairs 1390 * can be simplified. 1391 */ 1392 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1393 op->args[2], cond); 1394 switch (i ^ inv) { 1395 case 0: 1396 goto do_brcond_const; 1397 case 1: 1398 goto do_brcond_high; 1399 } 1400 1401 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1402 op->args[3], cond); 1403 switch (i ^ inv) { 1404 case 0: 1405 goto do_brcond_const; 1406 case 1: 1407 goto do_brcond_low; 1408 } 1409 break; 1410 1411 case TCG_COND_TSTEQ: 1412 case TCG_COND_TSTNE: 1413 if (arg_is_const_val(op->args[2], 0)) { 1414 goto do_brcond_high; 1415 } 1416 if (arg_is_const_val(op->args[3], 0)) { 1417 goto do_brcond_low; 1418 } 1419 break; 1420 1421 default: 1422 break; 1423 1424 do_brcond_low: 1425 op->opc = INDEX_op_brcond_i32; 1426 op->args[1] = op->args[2]; 1427 op->args[2] = cond; 1428 op->args[3] = label; 1429 return fold_brcond(ctx, op); 1430 1431 do_brcond_high: 1432 op->opc = INDEX_op_brcond_i32; 1433 op->args[0] = op->args[1]; 1434 op->args[1] = op->args[3]; 1435 op->args[2] = cond; 1436 op->args[3] = label; 1437 return fold_brcond(ctx, op); 1438 1439 do_brcond_const: 1440 if (i == 0) { 1441 tcg_op_remove(ctx->tcg, op); 1442 return true; 1443 } 1444 op->opc = INDEX_op_br; 1445 op->args[0] = label; 1446 break; 1447 } 1448 return false; 1449 } 1450 1451 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1452 { 1453 uint64_t z_mask, s_mask, sign; 1454 1455 if (arg_is_const(op->args[1])) { 1456 uint64_t t = arg_info(op->args[1])->val; 1457 1458 t = do_constant_folding(op->opc, ctx->type, t, op->args[2]); 1459 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1460 } 1461 1462 z_mask = arg_info(op->args[1])->z_mask; 1463 1464 switch (op->opc) { 1465 case INDEX_op_bswap16_i32: 1466 case INDEX_op_bswap16_i64: 1467 z_mask = bswap16(z_mask); 1468 sign = INT16_MIN; 1469 break; 1470 case INDEX_op_bswap32_i32: 1471 case INDEX_op_bswap32_i64: 1472 z_mask = bswap32(z_mask); 1473 sign = INT32_MIN; 1474 break; 1475 case INDEX_op_bswap64_i64: 1476 z_mask = bswap64(z_mask); 1477 sign = INT64_MIN; 1478 break; 1479 default: 1480 g_assert_not_reached(); 1481 } 1482 s_mask = smask_from_zmask(z_mask); 1483 1484 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1485 case TCG_BSWAP_OZ: 1486 break; 1487 case TCG_BSWAP_OS: 1488 /* If the sign bit may be 1, force all the bits above to 1. */ 1489 if (z_mask & sign) { 1490 z_mask |= sign; 1491 s_mask = sign << 1; 1492 } 1493 break; 1494 default: 1495 /* The high bits are undefined: force all bits above the sign to 1. */ 1496 z_mask |= sign << 1; 1497 s_mask = 0; 1498 break; 1499 } 1500 ctx->z_mask = z_mask; 1501 ctx->s_mask = s_mask; 1502 1503 return fold_masks(ctx, op); 1504 } 1505 1506 static bool fold_call(OptContext *ctx, TCGOp *op) 1507 { 1508 TCGContext *s = ctx->tcg; 1509 int nb_oargs = TCGOP_CALLO(op); 1510 int nb_iargs = TCGOP_CALLI(op); 1511 int flags, i; 1512 1513 init_arguments(ctx, op, nb_oargs + nb_iargs); 1514 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1515 1516 /* If the function reads or writes globals, reset temp data. */ 1517 flags = tcg_call_flags(op); 1518 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1519 int nb_globals = s->nb_globals; 1520 1521 for (i = 0; i < nb_globals; i++) { 1522 if (test_bit(i, ctx->temps_used.l)) { 1523 reset_ts(ctx, &ctx->tcg->temps[i]); 1524 } 1525 } 1526 } 1527 1528 /* If the function has side effects, reset mem data. */ 1529 if (!(flags & TCG_CALL_NO_SIDE_EFFECTS)) { 1530 remove_mem_copy_all(ctx); 1531 } 1532 1533 /* Reset temp data for outputs. */ 1534 for (i = 0; i < nb_oargs; i++) { 1535 reset_temp(ctx, op->args[i]); 1536 } 1537 1538 /* Stop optimizing MB across calls. */ 1539 ctx->prev_mb = NULL; 1540 return true; 1541 } 1542 1543 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1544 { 1545 uint64_t z_mask; 1546 1547 if (arg_is_const(op->args[1])) { 1548 uint64_t t = arg_info(op->args[1])->val; 1549 1550 if (t != 0) { 1551 t = do_constant_folding(op->opc, ctx->type, t, 0); 1552 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1553 } 1554 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1555 } 1556 1557 switch (ctx->type) { 1558 case TCG_TYPE_I32: 1559 z_mask = 31; 1560 break; 1561 case TCG_TYPE_I64: 1562 z_mask = 63; 1563 break; 1564 default: 1565 g_assert_not_reached(); 1566 } 1567 ctx->z_mask = arg_info(op->args[2])->z_mask | z_mask; 1568 ctx->s_mask = smask_from_zmask(ctx->z_mask); 1569 return false; 1570 } 1571 1572 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1573 { 1574 if (fold_const1(ctx, op)) { 1575 return true; 1576 } 1577 1578 switch (ctx->type) { 1579 case TCG_TYPE_I32: 1580 ctx->z_mask = 32 | 31; 1581 break; 1582 case TCG_TYPE_I64: 1583 ctx->z_mask = 64 | 63; 1584 break; 1585 default: 1586 g_assert_not_reached(); 1587 } 1588 ctx->s_mask = smask_from_zmask(ctx->z_mask); 1589 return false; 1590 } 1591 1592 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1593 { 1594 TCGOpcode and_opc; 1595 1596 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1597 uint64_t t1 = arg_info(op->args[1])->val; 1598 uint64_t t2 = arg_info(op->args[2])->val; 1599 1600 t1 = deposit64(t1, op->args[3], op->args[4], t2); 1601 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 1602 } 1603 1604 switch (ctx->type) { 1605 case TCG_TYPE_I32: 1606 and_opc = INDEX_op_and_i32; 1607 break; 1608 case TCG_TYPE_I64: 1609 and_opc = INDEX_op_and_i64; 1610 break; 1611 default: 1612 g_assert_not_reached(); 1613 } 1614 1615 /* Inserting a value into zero at offset 0. */ 1616 if (arg_is_const_val(op->args[1], 0) && op->args[3] == 0) { 1617 uint64_t mask = MAKE_64BIT_MASK(0, op->args[4]); 1618 1619 op->opc = and_opc; 1620 op->args[1] = op->args[2]; 1621 op->args[2] = arg_new_constant(ctx, mask); 1622 ctx->z_mask = mask & arg_info(op->args[1])->z_mask; 1623 return false; 1624 } 1625 1626 /* Inserting zero into a value. */ 1627 if (arg_is_const_val(op->args[2], 0)) { 1628 uint64_t mask = deposit64(-1, op->args[3], op->args[4], 0); 1629 1630 op->opc = and_opc; 1631 op->args[2] = arg_new_constant(ctx, mask); 1632 ctx->z_mask = mask & arg_info(op->args[1])->z_mask; 1633 return false; 1634 } 1635 1636 ctx->z_mask = deposit64(arg_info(op->args[1])->z_mask, 1637 op->args[3], op->args[4], 1638 arg_info(op->args[2])->z_mask); 1639 return false; 1640 } 1641 1642 static bool fold_divide(OptContext *ctx, TCGOp *op) 1643 { 1644 if (fold_const2(ctx, op) || 1645 fold_xi_to_x(ctx, op, 1)) { 1646 return true; 1647 } 1648 return false; 1649 } 1650 1651 static bool fold_dup(OptContext *ctx, TCGOp *op) 1652 { 1653 if (arg_is_const(op->args[1])) { 1654 uint64_t t = arg_info(op->args[1])->val; 1655 t = dup_const(TCGOP_VECE(op), t); 1656 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1657 } 1658 return false; 1659 } 1660 1661 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1662 { 1663 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1664 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1665 arg_info(op->args[2])->val); 1666 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1667 } 1668 1669 if (args_are_copies(op->args[1], op->args[2])) { 1670 op->opc = INDEX_op_dup_vec; 1671 TCGOP_VECE(op) = MO_32; 1672 } 1673 return false; 1674 } 1675 1676 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1677 { 1678 if (fold_const2_commutative(ctx, op) || 1679 fold_xi_to_x(ctx, op, -1) || 1680 fold_xi_to_not(ctx, op, 0)) { 1681 return true; 1682 } 1683 1684 ctx->s_mask = arg_info(op->args[1])->s_mask 1685 & arg_info(op->args[2])->s_mask; 1686 return false; 1687 } 1688 1689 static bool fold_extract(OptContext *ctx, TCGOp *op) 1690 { 1691 uint64_t z_mask_old, z_mask; 1692 int pos = op->args[2]; 1693 int len = op->args[3]; 1694 1695 if (arg_is_const(op->args[1])) { 1696 uint64_t t; 1697 1698 t = arg_info(op->args[1])->val; 1699 t = extract64(t, pos, len); 1700 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1701 } 1702 1703 z_mask_old = arg_info(op->args[1])->z_mask; 1704 z_mask = extract64(z_mask_old, pos, len); 1705 if (pos == 0) { 1706 ctx->a_mask = z_mask_old ^ z_mask; 1707 } 1708 ctx->z_mask = z_mask; 1709 ctx->s_mask = smask_from_zmask(z_mask); 1710 1711 return fold_masks(ctx, op); 1712 } 1713 1714 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1715 { 1716 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1717 uint64_t v1 = arg_info(op->args[1])->val; 1718 uint64_t v2 = arg_info(op->args[2])->val; 1719 int shr = op->args[3]; 1720 1721 if (op->opc == INDEX_op_extract2_i64) { 1722 v1 >>= shr; 1723 v2 <<= 64 - shr; 1724 } else { 1725 v1 = (uint32_t)v1 >> shr; 1726 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1727 } 1728 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1729 } 1730 return false; 1731 } 1732 1733 static bool fold_exts(OptContext *ctx, TCGOp *op) 1734 { 1735 uint64_t s_mask_old, s_mask, z_mask, sign; 1736 bool type_change = false; 1737 1738 if (fold_const1(ctx, op)) { 1739 return true; 1740 } 1741 1742 z_mask = arg_info(op->args[1])->z_mask; 1743 s_mask = arg_info(op->args[1])->s_mask; 1744 s_mask_old = s_mask; 1745 1746 switch (op->opc) { 1747 CASE_OP_32_64(ext8s): 1748 sign = INT8_MIN; 1749 z_mask = (uint8_t)z_mask; 1750 break; 1751 CASE_OP_32_64(ext16s): 1752 sign = INT16_MIN; 1753 z_mask = (uint16_t)z_mask; 1754 break; 1755 case INDEX_op_ext_i32_i64: 1756 type_change = true; 1757 QEMU_FALLTHROUGH; 1758 case INDEX_op_ext32s_i64: 1759 sign = INT32_MIN; 1760 z_mask = (uint32_t)z_mask; 1761 break; 1762 default: 1763 g_assert_not_reached(); 1764 } 1765 1766 if (z_mask & sign) { 1767 z_mask |= sign; 1768 } 1769 s_mask |= sign << 1; 1770 1771 ctx->z_mask = z_mask; 1772 ctx->s_mask = s_mask; 1773 if (!type_change) { 1774 ctx->a_mask = s_mask & ~s_mask_old; 1775 } 1776 1777 return fold_masks(ctx, op); 1778 } 1779 1780 static bool fold_extu(OptContext *ctx, TCGOp *op) 1781 { 1782 uint64_t z_mask_old, z_mask; 1783 bool type_change = false; 1784 1785 if (fold_const1(ctx, op)) { 1786 return true; 1787 } 1788 1789 z_mask_old = z_mask = arg_info(op->args[1])->z_mask; 1790 1791 switch (op->opc) { 1792 CASE_OP_32_64(ext8u): 1793 z_mask = (uint8_t)z_mask; 1794 break; 1795 CASE_OP_32_64(ext16u): 1796 z_mask = (uint16_t)z_mask; 1797 break; 1798 case INDEX_op_extrl_i64_i32: 1799 case INDEX_op_extu_i32_i64: 1800 type_change = true; 1801 QEMU_FALLTHROUGH; 1802 case INDEX_op_ext32u_i64: 1803 z_mask = (uint32_t)z_mask; 1804 break; 1805 case INDEX_op_extrh_i64_i32: 1806 type_change = true; 1807 z_mask >>= 32; 1808 break; 1809 default: 1810 g_assert_not_reached(); 1811 } 1812 1813 ctx->z_mask = z_mask; 1814 ctx->s_mask = smask_from_zmask(z_mask); 1815 if (!type_change) { 1816 ctx->a_mask = z_mask_old ^ z_mask; 1817 } 1818 return fold_masks(ctx, op); 1819 } 1820 1821 static bool fold_mb(OptContext *ctx, TCGOp *op) 1822 { 1823 /* Eliminate duplicate and redundant fence instructions. */ 1824 if (ctx->prev_mb) { 1825 /* 1826 * Merge two barriers of the same type into one, 1827 * or a weaker barrier into a stronger one, 1828 * or two weaker barriers into a stronger one. 1829 * mb X; mb Y => mb X|Y 1830 * mb; strl => mb; st 1831 * ldaq; mb => ld; mb 1832 * ldaq; strl => ld; mb; st 1833 * Other combinations are also merged into a strong 1834 * barrier. This is stricter than specified but for 1835 * the purposes of TCG is better than not optimizing. 1836 */ 1837 ctx->prev_mb->args[0] |= op->args[0]; 1838 tcg_op_remove(ctx->tcg, op); 1839 } else { 1840 ctx->prev_mb = op; 1841 } 1842 return true; 1843 } 1844 1845 static bool fold_mov(OptContext *ctx, TCGOp *op) 1846 { 1847 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1848 } 1849 1850 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1851 { 1852 int i; 1853 1854 /* 1855 * Canonicalize the "false" input reg to match the destination reg so 1856 * that the tcg backend can implement a "move if true" operation. 1857 */ 1858 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1859 op->args[5] = tcg_invert_cond(op->args[5]); 1860 } 1861 1862 i = do_constant_folding_cond1(ctx, op, NO_DEST, &op->args[1], 1863 &op->args[2], &op->args[5]); 1864 if (i >= 0) { 1865 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1866 } 1867 1868 ctx->z_mask = arg_info(op->args[3])->z_mask 1869 | arg_info(op->args[4])->z_mask; 1870 ctx->s_mask = arg_info(op->args[3])->s_mask 1871 & arg_info(op->args[4])->s_mask; 1872 1873 if (arg_is_const(op->args[3]) && arg_is_const(op->args[4])) { 1874 uint64_t tv = arg_info(op->args[3])->val; 1875 uint64_t fv = arg_info(op->args[4])->val; 1876 TCGOpcode opc, negopc = 0; 1877 TCGCond cond = op->args[5]; 1878 1879 switch (ctx->type) { 1880 case TCG_TYPE_I32: 1881 opc = INDEX_op_setcond_i32; 1882 if (TCG_TARGET_HAS_negsetcond_i32) { 1883 negopc = INDEX_op_negsetcond_i32; 1884 } 1885 tv = (int32_t)tv; 1886 fv = (int32_t)fv; 1887 break; 1888 case TCG_TYPE_I64: 1889 opc = INDEX_op_setcond_i64; 1890 if (TCG_TARGET_HAS_negsetcond_i64) { 1891 negopc = INDEX_op_negsetcond_i64; 1892 } 1893 break; 1894 default: 1895 g_assert_not_reached(); 1896 } 1897 1898 if (tv == 1 && fv == 0) { 1899 op->opc = opc; 1900 op->args[3] = cond; 1901 } else if (fv == 1 && tv == 0) { 1902 op->opc = opc; 1903 op->args[3] = tcg_invert_cond(cond); 1904 } else if (negopc) { 1905 if (tv == -1 && fv == 0) { 1906 op->opc = negopc; 1907 op->args[3] = cond; 1908 } else if (fv == -1 && tv == 0) { 1909 op->opc = negopc; 1910 op->args[3] = tcg_invert_cond(cond); 1911 } 1912 } 1913 } 1914 return false; 1915 } 1916 1917 static bool fold_mul(OptContext *ctx, TCGOp *op) 1918 { 1919 if (fold_const2(ctx, op) || 1920 fold_xi_to_i(ctx, op, 0) || 1921 fold_xi_to_x(ctx, op, 1)) { 1922 return true; 1923 } 1924 return false; 1925 } 1926 1927 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 1928 { 1929 if (fold_const2_commutative(ctx, op) || 1930 fold_xi_to_i(ctx, op, 0)) { 1931 return true; 1932 } 1933 return false; 1934 } 1935 1936 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 1937 { 1938 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 1939 1940 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1941 uint64_t a = arg_info(op->args[2])->val; 1942 uint64_t b = arg_info(op->args[3])->val; 1943 uint64_t h, l; 1944 TCGArg rl, rh; 1945 TCGOp *op2; 1946 1947 switch (op->opc) { 1948 case INDEX_op_mulu2_i32: 1949 l = (uint64_t)(uint32_t)a * (uint32_t)b; 1950 h = (int32_t)(l >> 32); 1951 l = (int32_t)l; 1952 break; 1953 case INDEX_op_muls2_i32: 1954 l = (int64_t)(int32_t)a * (int32_t)b; 1955 h = l >> 32; 1956 l = (int32_t)l; 1957 break; 1958 case INDEX_op_mulu2_i64: 1959 mulu64(&l, &h, a, b); 1960 break; 1961 case INDEX_op_muls2_i64: 1962 muls64(&l, &h, a, b); 1963 break; 1964 default: 1965 g_assert_not_reached(); 1966 } 1967 1968 rl = op->args[0]; 1969 rh = op->args[1]; 1970 1971 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1972 op2 = tcg_op_insert_before(ctx->tcg, op, 0, 2); 1973 1974 tcg_opt_gen_movi(ctx, op, rl, l); 1975 tcg_opt_gen_movi(ctx, op2, rh, h); 1976 return true; 1977 } 1978 return false; 1979 } 1980 1981 static bool fold_nand(OptContext *ctx, TCGOp *op) 1982 { 1983 if (fold_const2_commutative(ctx, op) || 1984 fold_xi_to_not(ctx, op, -1)) { 1985 return true; 1986 } 1987 1988 ctx->s_mask = arg_info(op->args[1])->s_mask 1989 & arg_info(op->args[2])->s_mask; 1990 return false; 1991 } 1992 1993 static bool fold_neg_no_const(OptContext *ctx, TCGOp *op) 1994 { 1995 /* Set to 1 all bits to the left of the rightmost. */ 1996 uint64_t z_mask = arg_info(op->args[1])->z_mask; 1997 ctx->z_mask = -(z_mask & -z_mask); 1998 1999 /* 2000 * Because of fold_sub_to_neg, we want to always return true, 2001 * via finish_folding. 2002 */ 2003 finish_folding(ctx, op); 2004 return true; 2005 } 2006 2007 static bool fold_neg(OptContext *ctx, TCGOp *op) 2008 { 2009 return fold_const1(ctx, op) || fold_neg_no_const(ctx, op); 2010 } 2011 2012 static bool fold_nor(OptContext *ctx, TCGOp *op) 2013 { 2014 if (fold_const2_commutative(ctx, op) || 2015 fold_xi_to_not(ctx, op, 0)) { 2016 return true; 2017 } 2018 2019 ctx->s_mask = arg_info(op->args[1])->s_mask 2020 & arg_info(op->args[2])->s_mask; 2021 return false; 2022 } 2023 2024 static bool fold_not(OptContext *ctx, TCGOp *op) 2025 { 2026 if (fold_const1(ctx, op)) { 2027 return true; 2028 } 2029 2030 ctx->s_mask = arg_info(op->args[1])->s_mask; 2031 2032 /* Because of fold_to_not, we want to always return true, via finish. */ 2033 finish_folding(ctx, op); 2034 return true; 2035 } 2036 2037 static bool fold_or(OptContext *ctx, TCGOp *op) 2038 { 2039 if (fold_const2_commutative(ctx, op) || 2040 fold_xi_to_x(ctx, op, 0) || 2041 fold_xx_to_x(ctx, op)) { 2042 return true; 2043 } 2044 2045 ctx->z_mask = arg_info(op->args[1])->z_mask 2046 | arg_info(op->args[2])->z_mask; 2047 ctx->s_mask = arg_info(op->args[1])->s_mask 2048 & arg_info(op->args[2])->s_mask; 2049 return fold_masks(ctx, op); 2050 } 2051 2052 static bool fold_orc(OptContext *ctx, TCGOp *op) 2053 { 2054 if (fold_const2(ctx, op) || 2055 fold_xx_to_i(ctx, op, -1) || 2056 fold_xi_to_x(ctx, op, -1) || 2057 fold_ix_to_not(ctx, op, 0)) { 2058 return true; 2059 } 2060 2061 ctx->s_mask = arg_info(op->args[1])->s_mask 2062 & arg_info(op->args[2])->s_mask; 2063 return false; 2064 } 2065 2066 static bool fold_qemu_ld(OptContext *ctx, TCGOp *op) 2067 { 2068 const TCGOpDef *def = &tcg_op_defs[op->opc]; 2069 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 2070 MemOp mop = get_memop(oi); 2071 int width = 8 * memop_size(mop); 2072 2073 if (width < 64) { 2074 ctx->s_mask = MAKE_64BIT_MASK(width, 64 - width); 2075 if (!(mop & MO_SIGN)) { 2076 ctx->z_mask = MAKE_64BIT_MASK(0, width); 2077 ctx->s_mask <<= 1; 2078 } 2079 } 2080 2081 /* Opcodes that touch guest memory stop the mb optimization. */ 2082 ctx->prev_mb = NULL; 2083 return false; 2084 } 2085 2086 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 2087 { 2088 /* Opcodes that touch guest memory stop the mb optimization. */ 2089 ctx->prev_mb = NULL; 2090 return false; 2091 } 2092 2093 static bool fold_remainder(OptContext *ctx, TCGOp *op) 2094 { 2095 if (fold_const2(ctx, op) || 2096 fold_xx_to_i(ctx, op, 0)) { 2097 return true; 2098 } 2099 return false; 2100 } 2101 2102 static void fold_setcond_tst_pow2(OptContext *ctx, TCGOp *op, bool neg) 2103 { 2104 TCGOpcode and_opc, sub_opc, xor_opc, neg_opc, shr_opc; 2105 TCGOpcode uext_opc = 0, sext_opc = 0; 2106 TCGCond cond = op->args[3]; 2107 TCGArg ret, src1, src2; 2108 TCGOp *op2; 2109 uint64_t val; 2110 int sh; 2111 bool inv; 2112 2113 if (!is_tst_cond(cond) || !arg_is_const(op->args[2])) { 2114 return; 2115 } 2116 2117 src2 = op->args[2]; 2118 val = arg_info(src2)->val; 2119 if (!is_power_of_2(val)) { 2120 return; 2121 } 2122 sh = ctz64(val); 2123 2124 switch (ctx->type) { 2125 case TCG_TYPE_I32: 2126 and_opc = INDEX_op_and_i32; 2127 sub_opc = INDEX_op_sub_i32; 2128 xor_opc = INDEX_op_xor_i32; 2129 shr_opc = INDEX_op_shr_i32; 2130 neg_opc = INDEX_op_neg_i32; 2131 if (TCG_TARGET_extract_i32_valid(sh, 1)) { 2132 uext_opc = TCG_TARGET_HAS_extract_i32 ? INDEX_op_extract_i32 : 0; 2133 sext_opc = TCG_TARGET_HAS_sextract_i32 ? INDEX_op_sextract_i32 : 0; 2134 } 2135 break; 2136 case TCG_TYPE_I64: 2137 and_opc = INDEX_op_and_i64; 2138 sub_opc = INDEX_op_sub_i64; 2139 xor_opc = INDEX_op_xor_i64; 2140 shr_opc = INDEX_op_shr_i64; 2141 neg_opc = INDEX_op_neg_i64; 2142 if (TCG_TARGET_extract_i64_valid(sh, 1)) { 2143 uext_opc = TCG_TARGET_HAS_extract_i64 ? INDEX_op_extract_i64 : 0; 2144 sext_opc = TCG_TARGET_HAS_sextract_i64 ? INDEX_op_sextract_i64 : 0; 2145 } 2146 break; 2147 default: 2148 g_assert_not_reached(); 2149 } 2150 2151 ret = op->args[0]; 2152 src1 = op->args[1]; 2153 inv = cond == TCG_COND_TSTEQ; 2154 2155 if (sh && sext_opc && neg && !inv) { 2156 op->opc = sext_opc; 2157 op->args[1] = src1; 2158 op->args[2] = sh; 2159 op->args[3] = 1; 2160 return; 2161 } else if (sh && uext_opc) { 2162 op->opc = uext_opc; 2163 op->args[1] = src1; 2164 op->args[2] = sh; 2165 op->args[3] = 1; 2166 } else { 2167 if (sh) { 2168 op2 = tcg_op_insert_before(ctx->tcg, op, shr_opc, 3); 2169 op2->args[0] = ret; 2170 op2->args[1] = src1; 2171 op2->args[2] = arg_new_constant(ctx, sh); 2172 src1 = ret; 2173 } 2174 op->opc = and_opc; 2175 op->args[1] = src1; 2176 op->args[2] = arg_new_constant(ctx, 1); 2177 } 2178 2179 if (neg && inv) { 2180 op2 = tcg_op_insert_after(ctx->tcg, op, sub_opc, 3); 2181 op2->args[0] = ret; 2182 op2->args[1] = ret; 2183 op2->args[2] = arg_new_constant(ctx, 1); 2184 } else if (inv) { 2185 op2 = tcg_op_insert_after(ctx->tcg, op, xor_opc, 3); 2186 op2->args[0] = ret; 2187 op2->args[1] = ret; 2188 op2->args[2] = arg_new_constant(ctx, 1); 2189 } else if (neg) { 2190 op2 = tcg_op_insert_after(ctx->tcg, op, neg_opc, 2); 2191 op2->args[0] = ret; 2192 op2->args[1] = ret; 2193 } 2194 } 2195 2196 static bool fold_setcond(OptContext *ctx, TCGOp *op) 2197 { 2198 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2199 &op->args[2], &op->args[3]); 2200 if (i >= 0) { 2201 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2202 } 2203 fold_setcond_tst_pow2(ctx, op, false); 2204 2205 ctx->z_mask = 1; 2206 ctx->s_mask = smask_from_zmask(1); 2207 return false; 2208 } 2209 2210 static bool fold_negsetcond(OptContext *ctx, TCGOp *op) 2211 { 2212 int i = do_constant_folding_cond1(ctx, op, op->args[0], &op->args[1], 2213 &op->args[2], &op->args[3]); 2214 if (i >= 0) { 2215 return tcg_opt_gen_movi(ctx, op, op->args[0], -i); 2216 } 2217 fold_setcond_tst_pow2(ctx, op, true); 2218 2219 /* Value is {0,-1} so all bits are repetitions of the sign. */ 2220 ctx->s_mask = -1; 2221 return false; 2222 } 2223 2224 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 2225 { 2226 TCGCond cond; 2227 int i, inv = 0; 2228 2229 i = do_constant_folding_cond2(ctx, op, &op->args[1]); 2230 cond = op->args[5]; 2231 if (i >= 0) { 2232 goto do_setcond_const; 2233 } 2234 2235 switch (cond) { 2236 case TCG_COND_LT: 2237 case TCG_COND_GE: 2238 /* 2239 * Simplify LT/GE comparisons vs zero to a single compare 2240 * vs the high word of the input. 2241 */ 2242 if (arg_is_const_val(op->args[3], 0) && 2243 arg_is_const_val(op->args[4], 0)) { 2244 goto do_setcond_high; 2245 } 2246 break; 2247 2248 case TCG_COND_NE: 2249 inv = 1; 2250 QEMU_FALLTHROUGH; 2251 case TCG_COND_EQ: 2252 /* 2253 * Simplify EQ/NE comparisons where one of the pairs 2254 * can be simplified. 2255 */ 2256 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 2257 op->args[3], cond); 2258 switch (i ^ inv) { 2259 case 0: 2260 goto do_setcond_const; 2261 case 1: 2262 goto do_setcond_high; 2263 } 2264 2265 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 2266 op->args[4], cond); 2267 switch (i ^ inv) { 2268 case 0: 2269 goto do_setcond_const; 2270 case 1: 2271 goto do_setcond_low; 2272 } 2273 break; 2274 2275 case TCG_COND_TSTEQ: 2276 case TCG_COND_TSTNE: 2277 if (arg_is_const_val(op->args[2], 0)) { 2278 goto do_setcond_high; 2279 } 2280 if (arg_is_const_val(op->args[4], 0)) { 2281 goto do_setcond_low; 2282 } 2283 break; 2284 2285 default: 2286 break; 2287 2288 do_setcond_low: 2289 op->args[2] = op->args[3]; 2290 op->args[3] = cond; 2291 op->opc = INDEX_op_setcond_i32; 2292 return fold_setcond(ctx, op); 2293 2294 do_setcond_high: 2295 op->args[1] = op->args[2]; 2296 op->args[2] = op->args[4]; 2297 op->args[3] = cond; 2298 op->opc = INDEX_op_setcond_i32; 2299 return fold_setcond(ctx, op); 2300 } 2301 2302 ctx->z_mask = 1; 2303 ctx->s_mask = smask_from_zmask(1); 2304 return false; 2305 2306 do_setcond_const: 2307 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 2308 } 2309 2310 static bool fold_sextract(OptContext *ctx, TCGOp *op) 2311 { 2312 uint64_t z_mask, s_mask, s_mask_old; 2313 int pos = op->args[2]; 2314 int len = op->args[3]; 2315 2316 if (arg_is_const(op->args[1])) { 2317 uint64_t t; 2318 2319 t = arg_info(op->args[1])->val; 2320 t = sextract64(t, pos, len); 2321 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 2322 } 2323 2324 z_mask = arg_info(op->args[1])->z_mask; 2325 z_mask = sextract64(z_mask, pos, len); 2326 ctx->z_mask = z_mask; 2327 2328 s_mask_old = arg_info(op->args[1])->s_mask; 2329 s_mask = sextract64(s_mask_old, pos, len); 2330 s_mask |= MAKE_64BIT_MASK(len, 64 - len); 2331 ctx->s_mask = s_mask; 2332 2333 if (pos == 0) { 2334 ctx->a_mask = s_mask & ~s_mask_old; 2335 } 2336 2337 return fold_masks(ctx, op); 2338 } 2339 2340 static bool fold_shift(OptContext *ctx, TCGOp *op) 2341 { 2342 uint64_t s_mask, z_mask, sign; 2343 2344 if (fold_const2(ctx, op) || 2345 fold_ix_to_i(ctx, op, 0) || 2346 fold_xi_to_x(ctx, op, 0)) { 2347 return true; 2348 } 2349 2350 s_mask = arg_info(op->args[1])->s_mask; 2351 z_mask = arg_info(op->args[1])->z_mask; 2352 2353 if (arg_is_const(op->args[2])) { 2354 int sh = arg_info(op->args[2])->val; 2355 2356 ctx->z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 2357 2358 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 2359 ctx->s_mask = smask_from_smask(s_mask); 2360 2361 return fold_masks(ctx, op); 2362 } 2363 2364 switch (op->opc) { 2365 CASE_OP_32_64(sar): 2366 /* 2367 * Arithmetic right shift will not reduce the number of 2368 * input sign repetitions. 2369 */ 2370 ctx->s_mask = s_mask; 2371 break; 2372 CASE_OP_32_64(shr): 2373 /* 2374 * If the sign bit is known zero, then logical right shift 2375 * will not reduced the number of input sign repetitions. 2376 */ 2377 sign = (s_mask & -s_mask) >> 1; 2378 if (sign && !(z_mask & sign)) { 2379 ctx->s_mask = s_mask; 2380 } 2381 break; 2382 default: 2383 break; 2384 } 2385 2386 return false; 2387 } 2388 2389 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 2390 { 2391 TCGOpcode neg_op; 2392 bool have_neg; 2393 2394 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 2395 return false; 2396 } 2397 2398 switch (ctx->type) { 2399 case TCG_TYPE_I32: 2400 neg_op = INDEX_op_neg_i32; 2401 have_neg = true; 2402 break; 2403 case TCG_TYPE_I64: 2404 neg_op = INDEX_op_neg_i64; 2405 have_neg = true; 2406 break; 2407 case TCG_TYPE_V64: 2408 case TCG_TYPE_V128: 2409 case TCG_TYPE_V256: 2410 neg_op = INDEX_op_neg_vec; 2411 have_neg = (TCG_TARGET_HAS_neg_vec && 2412 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 2413 break; 2414 default: 2415 g_assert_not_reached(); 2416 } 2417 if (have_neg) { 2418 op->opc = neg_op; 2419 op->args[1] = op->args[2]; 2420 return fold_neg_no_const(ctx, op); 2421 } 2422 return false; 2423 } 2424 2425 /* We cannot as yet do_constant_folding with vectors. */ 2426 static bool fold_sub_vec(OptContext *ctx, TCGOp *op) 2427 { 2428 if (fold_xx_to_i(ctx, op, 0) || 2429 fold_xi_to_x(ctx, op, 0) || 2430 fold_sub_to_neg(ctx, op)) { 2431 return true; 2432 } 2433 return false; 2434 } 2435 2436 static bool fold_sub(OptContext *ctx, TCGOp *op) 2437 { 2438 if (fold_const2(ctx, op) || fold_sub_vec(ctx, op)) { 2439 return true; 2440 } 2441 2442 /* Fold sub r,x,i to add r,x,-i */ 2443 if (arg_is_const(op->args[2])) { 2444 uint64_t val = arg_info(op->args[2])->val; 2445 2446 op->opc = (ctx->type == TCG_TYPE_I32 2447 ? INDEX_op_add_i32 : INDEX_op_add_i64); 2448 op->args[2] = arg_new_constant(ctx, -val); 2449 } 2450 return false; 2451 } 2452 2453 static bool fold_sub2(OptContext *ctx, TCGOp *op) 2454 { 2455 return fold_addsub2(ctx, op, false); 2456 } 2457 2458 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 2459 { 2460 /* We can't do any folding with a load, but we can record bits. */ 2461 switch (op->opc) { 2462 CASE_OP_32_64(ld8s): 2463 ctx->s_mask = MAKE_64BIT_MASK(8, 56); 2464 break; 2465 CASE_OP_32_64(ld8u): 2466 ctx->z_mask = MAKE_64BIT_MASK(0, 8); 2467 ctx->s_mask = MAKE_64BIT_MASK(9, 55); 2468 break; 2469 CASE_OP_32_64(ld16s): 2470 ctx->s_mask = MAKE_64BIT_MASK(16, 48); 2471 break; 2472 CASE_OP_32_64(ld16u): 2473 ctx->z_mask = MAKE_64BIT_MASK(0, 16); 2474 ctx->s_mask = MAKE_64BIT_MASK(17, 47); 2475 break; 2476 case INDEX_op_ld32s_i64: 2477 ctx->s_mask = MAKE_64BIT_MASK(32, 32); 2478 break; 2479 case INDEX_op_ld32u_i64: 2480 ctx->z_mask = MAKE_64BIT_MASK(0, 32); 2481 ctx->s_mask = MAKE_64BIT_MASK(33, 31); 2482 break; 2483 default: 2484 g_assert_not_reached(); 2485 } 2486 return false; 2487 } 2488 2489 static bool fold_tcg_ld_memcopy(OptContext *ctx, TCGOp *op) 2490 { 2491 TCGTemp *dst, *src; 2492 intptr_t ofs; 2493 TCGType type; 2494 2495 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2496 return false; 2497 } 2498 2499 type = ctx->type; 2500 ofs = op->args[2]; 2501 dst = arg_temp(op->args[0]); 2502 src = find_mem_copy_for(ctx, type, ofs); 2503 if (src && src->base_type == type) { 2504 return tcg_opt_gen_mov(ctx, op, temp_arg(dst), temp_arg(src)); 2505 } 2506 2507 reset_ts(ctx, dst); 2508 record_mem_copy(ctx, type, dst, ofs, ofs + tcg_type_size(type) - 1); 2509 return true; 2510 } 2511 2512 static bool fold_tcg_st(OptContext *ctx, TCGOp *op) 2513 { 2514 intptr_t ofs = op->args[2]; 2515 intptr_t lm1; 2516 2517 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2518 remove_mem_copy_all(ctx); 2519 return false; 2520 } 2521 2522 switch (op->opc) { 2523 CASE_OP_32_64(st8): 2524 lm1 = 0; 2525 break; 2526 CASE_OP_32_64(st16): 2527 lm1 = 1; 2528 break; 2529 case INDEX_op_st32_i64: 2530 case INDEX_op_st_i32: 2531 lm1 = 3; 2532 break; 2533 case INDEX_op_st_i64: 2534 lm1 = 7; 2535 break; 2536 case INDEX_op_st_vec: 2537 lm1 = tcg_type_size(ctx->type) - 1; 2538 break; 2539 default: 2540 g_assert_not_reached(); 2541 } 2542 remove_mem_copy_in(ctx, ofs, ofs + lm1); 2543 return false; 2544 } 2545 2546 static bool fold_tcg_st_memcopy(OptContext *ctx, TCGOp *op) 2547 { 2548 TCGTemp *src; 2549 intptr_t ofs, last; 2550 TCGType type; 2551 2552 if (op->args[1] != tcgv_ptr_arg(tcg_env)) { 2553 fold_tcg_st(ctx, op); 2554 return false; 2555 } 2556 2557 src = arg_temp(op->args[0]); 2558 ofs = op->args[2]; 2559 type = ctx->type; 2560 2561 /* 2562 * Eliminate duplicate stores of a constant. 2563 * This happens frequently when the target ISA zero-extends. 2564 */ 2565 if (ts_is_const(src)) { 2566 TCGTemp *prev = find_mem_copy_for(ctx, type, ofs); 2567 if (src == prev) { 2568 tcg_op_remove(ctx->tcg, op); 2569 return true; 2570 } 2571 } 2572 2573 last = ofs + tcg_type_size(type) - 1; 2574 remove_mem_copy_in(ctx, ofs, last); 2575 record_mem_copy(ctx, type, src, ofs, last); 2576 return false; 2577 } 2578 2579 static bool fold_xor(OptContext *ctx, TCGOp *op) 2580 { 2581 if (fold_const2_commutative(ctx, op) || 2582 fold_xx_to_i(ctx, op, 0) || 2583 fold_xi_to_x(ctx, op, 0) || 2584 fold_xi_to_not(ctx, op, -1)) { 2585 return true; 2586 } 2587 2588 ctx->z_mask = arg_info(op->args[1])->z_mask 2589 | arg_info(op->args[2])->z_mask; 2590 ctx->s_mask = arg_info(op->args[1])->s_mask 2591 & arg_info(op->args[2])->s_mask; 2592 return fold_masks(ctx, op); 2593 } 2594 2595 /* Propagate constants and copies, fold constant expressions. */ 2596 void tcg_optimize(TCGContext *s) 2597 { 2598 int nb_temps, i; 2599 TCGOp *op, *op_next; 2600 OptContext ctx = { .tcg = s }; 2601 2602 QSIMPLEQ_INIT(&ctx.mem_free); 2603 2604 /* Array VALS has an element for each temp. 2605 If this temp holds a constant then its value is kept in VALS' element. 2606 If this temp is a copy of other ones then the other copies are 2607 available through the doubly linked circular list. */ 2608 2609 nb_temps = s->nb_temps; 2610 for (i = 0; i < nb_temps; ++i) { 2611 s->temps[i].state_ptr = NULL; 2612 } 2613 2614 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2615 TCGOpcode opc = op->opc; 2616 const TCGOpDef *def; 2617 bool done = false; 2618 2619 /* Calls are special. */ 2620 if (opc == INDEX_op_call) { 2621 fold_call(&ctx, op); 2622 continue; 2623 } 2624 2625 def = &tcg_op_defs[opc]; 2626 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2627 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2628 2629 /* Pre-compute the type of the operation. */ 2630 if (def->flags & TCG_OPF_VECTOR) { 2631 ctx.type = TCG_TYPE_V64 + TCGOP_VECL(op); 2632 } else if (def->flags & TCG_OPF_64BIT) { 2633 ctx.type = TCG_TYPE_I64; 2634 } else { 2635 ctx.type = TCG_TYPE_I32; 2636 } 2637 2638 /* Assume all bits affected, no bits known zero, no sign reps. */ 2639 ctx.a_mask = -1; 2640 ctx.z_mask = -1; 2641 ctx.s_mask = 0; 2642 2643 /* 2644 * Process each opcode. 2645 * Sorted alphabetically by opcode as much as possible. 2646 */ 2647 switch (opc) { 2648 CASE_OP_32_64(add): 2649 done = fold_add(&ctx, op); 2650 break; 2651 case INDEX_op_add_vec: 2652 done = fold_add_vec(&ctx, op); 2653 break; 2654 CASE_OP_32_64(add2): 2655 done = fold_add2(&ctx, op); 2656 break; 2657 CASE_OP_32_64_VEC(and): 2658 done = fold_and(&ctx, op); 2659 break; 2660 CASE_OP_32_64_VEC(andc): 2661 done = fold_andc(&ctx, op); 2662 break; 2663 CASE_OP_32_64(brcond): 2664 done = fold_brcond(&ctx, op); 2665 break; 2666 case INDEX_op_brcond2_i32: 2667 done = fold_brcond2(&ctx, op); 2668 break; 2669 CASE_OP_32_64(bswap16): 2670 CASE_OP_32_64(bswap32): 2671 case INDEX_op_bswap64_i64: 2672 done = fold_bswap(&ctx, op); 2673 break; 2674 CASE_OP_32_64(clz): 2675 CASE_OP_32_64(ctz): 2676 done = fold_count_zeros(&ctx, op); 2677 break; 2678 CASE_OP_32_64(ctpop): 2679 done = fold_ctpop(&ctx, op); 2680 break; 2681 CASE_OP_32_64(deposit): 2682 done = fold_deposit(&ctx, op); 2683 break; 2684 CASE_OP_32_64(div): 2685 CASE_OP_32_64(divu): 2686 done = fold_divide(&ctx, op); 2687 break; 2688 case INDEX_op_dup_vec: 2689 done = fold_dup(&ctx, op); 2690 break; 2691 case INDEX_op_dup2_vec: 2692 done = fold_dup2(&ctx, op); 2693 break; 2694 CASE_OP_32_64_VEC(eqv): 2695 done = fold_eqv(&ctx, op); 2696 break; 2697 CASE_OP_32_64(extract): 2698 done = fold_extract(&ctx, op); 2699 break; 2700 CASE_OP_32_64(extract2): 2701 done = fold_extract2(&ctx, op); 2702 break; 2703 CASE_OP_32_64(ext8s): 2704 CASE_OP_32_64(ext16s): 2705 case INDEX_op_ext32s_i64: 2706 case INDEX_op_ext_i32_i64: 2707 done = fold_exts(&ctx, op); 2708 break; 2709 CASE_OP_32_64(ext8u): 2710 CASE_OP_32_64(ext16u): 2711 case INDEX_op_ext32u_i64: 2712 case INDEX_op_extu_i32_i64: 2713 case INDEX_op_extrl_i64_i32: 2714 case INDEX_op_extrh_i64_i32: 2715 done = fold_extu(&ctx, op); 2716 break; 2717 CASE_OP_32_64(ld8s): 2718 CASE_OP_32_64(ld8u): 2719 CASE_OP_32_64(ld16s): 2720 CASE_OP_32_64(ld16u): 2721 case INDEX_op_ld32s_i64: 2722 case INDEX_op_ld32u_i64: 2723 done = fold_tcg_ld(&ctx, op); 2724 break; 2725 case INDEX_op_ld_i32: 2726 case INDEX_op_ld_i64: 2727 case INDEX_op_ld_vec: 2728 done = fold_tcg_ld_memcopy(&ctx, op); 2729 break; 2730 CASE_OP_32_64(st8): 2731 CASE_OP_32_64(st16): 2732 case INDEX_op_st32_i64: 2733 done = fold_tcg_st(&ctx, op); 2734 break; 2735 case INDEX_op_st_i32: 2736 case INDEX_op_st_i64: 2737 case INDEX_op_st_vec: 2738 done = fold_tcg_st_memcopy(&ctx, op); 2739 break; 2740 case INDEX_op_mb: 2741 done = fold_mb(&ctx, op); 2742 break; 2743 CASE_OP_32_64_VEC(mov): 2744 done = fold_mov(&ctx, op); 2745 break; 2746 CASE_OP_32_64(movcond): 2747 done = fold_movcond(&ctx, op); 2748 break; 2749 CASE_OP_32_64(mul): 2750 done = fold_mul(&ctx, op); 2751 break; 2752 CASE_OP_32_64(mulsh): 2753 CASE_OP_32_64(muluh): 2754 done = fold_mul_highpart(&ctx, op); 2755 break; 2756 CASE_OP_32_64(muls2): 2757 CASE_OP_32_64(mulu2): 2758 done = fold_multiply2(&ctx, op); 2759 break; 2760 CASE_OP_32_64_VEC(nand): 2761 done = fold_nand(&ctx, op); 2762 break; 2763 CASE_OP_32_64(neg): 2764 done = fold_neg(&ctx, op); 2765 break; 2766 CASE_OP_32_64_VEC(nor): 2767 done = fold_nor(&ctx, op); 2768 break; 2769 CASE_OP_32_64_VEC(not): 2770 done = fold_not(&ctx, op); 2771 break; 2772 CASE_OP_32_64_VEC(or): 2773 done = fold_or(&ctx, op); 2774 break; 2775 CASE_OP_32_64_VEC(orc): 2776 done = fold_orc(&ctx, op); 2777 break; 2778 case INDEX_op_qemu_ld_a32_i32: 2779 case INDEX_op_qemu_ld_a64_i32: 2780 case INDEX_op_qemu_ld_a32_i64: 2781 case INDEX_op_qemu_ld_a64_i64: 2782 case INDEX_op_qemu_ld_a32_i128: 2783 case INDEX_op_qemu_ld_a64_i128: 2784 done = fold_qemu_ld(&ctx, op); 2785 break; 2786 case INDEX_op_qemu_st8_a32_i32: 2787 case INDEX_op_qemu_st8_a64_i32: 2788 case INDEX_op_qemu_st_a32_i32: 2789 case INDEX_op_qemu_st_a64_i32: 2790 case INDEX_op_qemu_st_a32_i64: 2791 case INDEX_op_qemu_st_a64_i64: 2792 case INDEX_op_qemu_st_a32_i128: 2793 case INDEX_op_qemu_st_a64_i128: 2794 done = fold_qemu_st(&ctx, op); 2795 break; 2796 CASE_OP_32_64(rem): 2797 CASE_OP_32_64(remu): 2798 done = fold_remainder(&ctx, op); 2799 break; 2800 CASE_OP_32_64(rotl): 2801 CASE_OP_32_64(rotr): 2802 CASE_OP_32_64(sar): 2803 CASE_OP_32_64(shl): 2804 CASE_OP_32_64(shr): 2805 done = fold_shift(&ctx, op); 2806 break; 2807 CASE_OP_32_64(setcond): 2808 done = fold_setcond(&ctx, op); 2809 break; 2810 CASE_OP_32_64(negsetcond): 2811 done = fold_negsetcond(&ctx, op); 2812 break; 2813 case INDEX_op_setcond2_i32: 2814 done = fold_setcond2(&ctx, op); 2815 break; 2816 CASE_OP_32_64(sextract): 2817 done = fold_sextract(&ctx, op); 2818 break; 2819 CASE_OP_32_64(sub): 2820 done = fold_sub(&ctx, op); 2821 break; 2822 case INDEX_op_sub_vec: 2823 done = fold_sub_vec(&ctx, op); 2824 break; 2825 CASE_OP_32_64(sub2): 2826 done = fold_sub2(&ctx, op); 2827 break; 2828 CASE_OP_32_64_VEC(xor): 2829 done = fold_xor(&ctx, op); 2830 break; 2831 default: 2832 break; 2833 } 2834 2835 if (!done) { 2836 finish_folding(&ctx, op); 2837 } 2838 } 2839 } 2840