1 /* 2 * Optimizations for Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2010 Samsung Electronics. 5 * Contributed by Kirill Batuzov <batuzovk@ispras.ru> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "qemu/int128.h" 28 #include "tcg/tcg-op.h" 29 #include "tcg-internal.h" 30 31 #define CASE_OP_32_64(x) \ 32 glue(glue(case INDEX_op_, x), _i32): \ 33 glue(glue(case INDEX_op_, x), _i64) 34 35 #define CASE_OP_32_64_VEC(x) \ 36 glue(glue(case INDEX_op_, x), _i32): \ 37 glue(glue(case INDEX_op_, x), _i64): \ 38 glue(glue(case INDEX_op_, x), _vec) 39 40 typedef struct TempOptInfo { 41 bool is_const; 42 TCGTemp *prev_copy; 43 TCGTemp *next_copy; 44 uint64_t val; 45 uint64_t z_mask; /* mask bit is 0 if and only if value bit is 0 */ 46 uint64_t s_mask; /* a left-aligned mask of clrsb(value) bits. */ 47 } TempOptInfo; 48 49 typedef struct OptContext { 50 TCGContext *tcg; 51 TCGOp *prev_mb; 52 TCGTempSet temps_used; 53 54 /* In flight values from optimization. */ 55 uint64_t a_mask; /* mask bit is 0 iff value identical to first input */ 56 uint64_t z_mask; /* mask bit is 0 iff value bit is 0 */ 57 uint64_t s_mask; /* mask of clrsb(value) bits */ 58 TCGType type; 59 } OptContext; 60 61 /* Calculate the smask for a specific value. */ 62 static uint64_t smask_from_value(uint64_t value) 63 { 64 int rep = clrsb64(value); 65 return ~(~0ull >> rep); 66 } 67 68 /* 69 * Calculate the smask for a given set of known-zeros. 70 * If there are lots of zeros on the left, we can consider the remainder 71 * an unsigned field, and thus the corresponding signed field is one bit 72 * larger. 73 */ 74 static uint64_t smask_from_zmask(uint64_t zmask) 75 { 76 /* 77 * Only the 0 bits are significant for zmask, thus the msb itself 78 * must be zero, else we have no sign information. 79 */ 80 int rep = clz64(zmask); 81 if (rep == 0) { 82 return 0; 83 } 84 rep -= 1; 85 return ~(~0ull >> rep); 86 } 87 88 /* 89 * Recreate a properly left-aligned smask after manipulation. 90 * Some bit-shuffling, particularly shifts and rotates, may 91 * retain sign bits on the left, but may scatter disconnected 92 * sign bits on the right. Retain only what remains to the left. 93 */ 94 static uint64_t smask_from_smask(int64_t smask) 95 { 96 /* Only the 1 bits are significant for smask */ 97 return smask_from_zmask(~smask); 98 } 99 100 static inline TempOptInfo *ts_info(TCGTemp *ts) 101 { 102 return ts->state_ptr; 103 } 104 105 static inline TempOptInfo *arg_info(TCGArg arg) 106 { 107 return ts_info(arg_temp(arg)); 108 } 109 110 static inline bool ts_is_const(TCGTemp *ts) 111 { 112 return ts_info(ts)->is_const; 113 } 114 115 static inline bool arg_is_const(TCGArg arg) 116 { 117 return ts_is_const(arg_temp(arg)); 118 } 119 120 static inline bool ts_is_copy(TCGTemp *ts) 121 { 122 return ts_info(ts)->next_copy != ts; 123 } 124 125 /* Reset TEMP's state, possibly removing the temp for the list of copies. */ 126 static void reset_ts(TCGTemp *ts) 127 { 128 TempOptInfo *ti = ts_info(ts); 129 TempOptInfo *pi = ts_info(ti->prev_copy); 130 TempOptInfo *ni = ts_info(ti->next_copy); 131 132 ni->prev_copy = ti->prev_copy; 133 pi->next_copy = ti->next_copy; 134 ti->next_copy = ts; 135 ti->prev_copy = ts; 136 ti->is_const = false; 137 ti->z_mask = -1; 138 ti->s_mask = 0; 139 } 140 141 static void reset_temp(TCGArg arg) 142 { 143 reset_ts(arg_temp(arg)); 144 } 145 146 /* Initialize and activate a temporary. */ 147 static void init_ts_info(OptContext *ctx, TCGTemp *ts) 148 { 149 size_t idx = temp_idx(ts); 150 TempOptInfo *ti; 151 152 if (test_bit(idx, ctx->temps_used.l)) { 153 return; 154 } 155 set_bit(idx, ctx->temps_used.l); 156 157 ti = ts->state_ptr; 158 if (ti == NULL) { 159 ti = tcg_malloc(sizeof(TempOptInfo)); 160 ts->state_ptr = ti; 161 } 162 163 ti->next_copy = ts; 164 ti->prev_copy = ts; 165 if (ts->kind == TEMP_CONST) { 166 ti->is_const = true; 167 ti->val = ts->val; 168 ti->z_mask = ts->val; 169 ti->s_mask = smask_from_value(ts->val); 170 } else { 171 ti->is_const = false; 172 ti->z_mask = -1; 173 ti->s_mask = 0; 174 } 175 } 176 177 static TCGTemp *find_better_copy(TCGContext *s, TCGTemp *ts) 178 { 179 TCGTemp *i, *g, *l; 180 181 /* If this is already readonly, we can't do better. */ 182 if (temp_readonly(ts)) { 183 return ts; 184 } 185 186 g = l = NULL; 187 for (i = ts_info(ts)->next_copy; i != ts; i = ts_info(i)->next_copy) { 188 if (temp_readonly(i)) { 189 return i; 190 } else if (i->kind > ts->kind) { 191 if (i->kind == TEMP_GLOBAL) { 192 g = i; 193 } else if (i->kind == TEMP_LOCAL) { 194 l = i; 195 } 196 } 197 } 198 199 /* If we didn't find a better representation, return the same temp. */ 200 return g ? g : l ? l : ts; 201 } 202 203 static bool ts_are_copies(TCGTemp *ts1, TCGTemp *ts2) 204 { 205 TCGTemp *i; 206 207 if (ts1 == ts2) { 208 return true; 209 } 210 211 if (!ts_is_copy(ts1) || !ts_is_copy(ts2)) { 212 return false; 213 } 214 215 for (i = ts_info(ts1)->next_copy; i != ts1; i = ts_info(i)->next_copy) { 216 if (i == ts2) { 217 return true; 218 } 219 } 220 221 return false; 222 } 223 224 static bool args_are_copies(TCGArg arg1, TCGArg arg2) 225 { 226 return ts_are_copies(arg_temp(arg1), arg_temp(arg2)); 227 } 228 229 static bool tcg_opt_gen_mov(OptContext *ctx, TCGOp *op, TCGArg dst, TCGArg src) 230 { 231 TCGTemp *dst_ts = arg_temp(dst); 232 TCGTemp *src_ts = arg_temp(src); 233 TempOptInfo *di; 234 TempOptInfo *si; 235 TCGOpcode new_op; 236 237 if (ts_are_copies(dst_ts, src_ts)) { 238 tcg_op_remove(ctx->tcg, op); 239 return true; 240 } 241 242 reset_ts(dst_ts); 243 di = ts_info(dst_ts); 244 si = ts_info(src_ts); 245 246 switch (ctx->type) { 247 case TCG_TYPE_I32: 248 new_op = INDEX_op_mov_i32; 249 break; 250 case TCG_TYPE_I64: 251 new_op = INDEX_op_mov_i64; 252 break; 253 case TCG_TYPE_V64: 254 case TCG_TYPE_V128: 255 case TCG_TYPE_V256: 256 /* TCGOP_VECL and TCGOP_VECE remain unchanged. */ 257 new_op = INDEX_op_mov_vec; 258 break; 259 default: 260 g_assert_not_reached(); 261 } 262 op->opc = new_op; 263 op->args[0] = dst; 264 op->args[1] = src; 265 266 di->z_mask = si->z_mask; 267 di->s_mask = si->s_mask; 268 269 if (src_ts->type == dst_ts->type) { 270 TempOptInfo *ni = ts_info(si->next_copy); 271 272 di->next_copy = si->next_copy; 273 di->prev_copy = src_ts; 274 ni->prev_copy = dst_ts; 275 si->next_copy = dst_ts; 276 di->is_const = si->is_const; 277 di->val = si->val; 278 } 279 return true; 280 } 281 282 static bool tcg_opt_gen_movi(OptContext *ctx, TCGOp *op, 283 TCGArg dst, uint64_t val) 284 { 285 TCGTemp *tv; 286 287 if (ctx->type == TCG_TYPE_I32) { 288 val = (int32_t)val; 289 } 290 291 /* Convert movi to mov with constant temp. */ 292 tv = tcg_constant_internal(ctx->type, val); 293 init_ts_info(ctx, tv); 294 return tcg_opt_gen_mov(ctx, op, dst, temp_arg(tv)); 295 } 296 297 static uint64_t do_constant_folding_2(TCGOpcode op, uint64_t x, uint64_t y) 298 { 299 uint64_t l64, h64; 300 301 switch (op) { 302 CASE_OP_32_64(add): 303 return x + y; 304 305 CASE_OP_32_64(sub): 306 return x - y; 307 308 CASE_OP_32_64(mul): 309 return x * y; 310 311 CASE_OP_32_64(and): 312 return x & y; 313 314 CASE_OP_32_64(or): 315 return x | y; 316 317 CASE_OP_32_64(xor): 318 return x ^ y; 319 320 case INDEX_op_shl_i32: 321 return (uint32_t)x << (y & 31); 322 323 case INDEX_op_shl_i64: 324 return (uint64_t)x << (y & 63); 325 326 case INDEX_op_shr_i32: 327 return (uint32_t)x >> (y & 31); 328 329 case INDEX_op_shr_i64: 330 return (uint64_t)x >> (y & 63); 331 332 case INDEX_op_sar_i32: 333 return (int32_t)x >> (y & 31); 334 335 case INDEX_op_sar_i64: 336 return (int64_t)x >> (y & 63); 337 338 case INDEX_op_rotr_i32: 339 return ror32(x, y & 31); 340 341 case INDEX_op_rotr_i64: 342 return ror64(x, y & 63); 343 344 case INDEX_op_rotl_i32: 345 return rol32(x, y & 31); 346 347 case INDEX_op_rotl_i64: 348 return rol64(x, y & 63); 349 350 CASE_OP_32_64(not): 351 return ~x; 352 353 CASE_OP_32_64(neg): 354 return -x; 355 356 CASE_OP_32_64(andc): 357 return x & ~y; 358 359 CASE_OP_32_64(orc): 360 return x | ~y; 361 362 CASE_OP_32_64(eqv): 363 return ~(x ^ y); 364 365 CASE_OP_32_64(nand): 366 return ~(x & y); 367 368 CASE_OP_32_64(nor): 369 return ~(x | y); 370 371 case INDEX_op_clz_i32: 372 return (uint32_t)x ? clz32(x) : y; 373 374 case INDEX_op_clz_i64: 375 return x ? clz64(x) : y; 376 377 case INDEX_op_ctz_i32: 378 return (uint32_t)x ? ctz32(x) : y; 379 380 case INDEX_op_ctz_i64: 381 return x ? ctz64(x) : y; 382 383 case INDEX_op_ctpop_i32: 384 return ctpop32(x); 385 386 case INDEX_op_ctpop_i64: 387 return ctpop64(x); 388 389 CASE_OP_32_64(ext8s): 390 return (int8_t)x; 391 392 CASE_OP_32_64(ext16s): 393 return (int16_t)x; 394 395 CASE_OP_32_64(ext8u): 396 return (uint8_t)x; 397 398 CASE_OP_32_64(ext16u): 399 return (uint16_t)x; 400 401 CASE_OP_32_64(bswap16): 402 x = bswap16(x); 403 return y & TCG_BSWAP_OS ? (int16_t)x : x; 404 405 CASE_OP_32_64(bswap32): 406 x = bswap32(x); 407 return y & TCG_BSWAP_OS ? (int32_t)x : x; 408 409 case INDEX_op_bswap64_i64: 410 return bswap64(x); 411 412 case INDEX_op_ext_i32_i64: 413 case INDEX_op_ext32s_i64: 414 return (int32_t)x; 415 416 case INDEX_op_extu_i32_i64: 417 case INDEX_op_extrl_i64_i32: 418 case INDEX_op_ext32u_i64: 419 return (uint32_t)x; 420 421 case INDEX_op_extrh_i64_i32: 422 return (uint64_t)x >> 32; 423 424 case INDEX_op_muluh_i32: 425 return ((uint64_t)(uint32_t)x * (uint32_t)y) >> 32; 426 case INDEX_op_mulsh_i32: 427 return ((int64_t)(int32_t)x * (int32_t)y) >> 32; 428 429 case INDEX_op_muluh_i64: 430 mulu64(&l64, &h64, x, y); 431 return h64; 432 case INDEX_op_mulsh_i64: 433 muls64(&l64, &h64, x, y); 434 return h64; 435 436 case INDEX_op_div_i32: 437 /* Avoid crashing on divide by zero, otherwise undefined. */ 438 return (int32_t)x / ((int32_t)y ? : 1); 439 case INDEX_op_divu_i32: 440 return (uint32_t)x / ((uint32_t)y ? : 1); 441 case INDEX_op_div_i64: 442 return (int64_t)x / ((int64_t)y ? : 1); 443 case INDEX_op_divu_i64: 444 return (uint64_t)x / ((uint64_t)y ? : 1); 445 446 case INDEX_op_rem_i32: 447 return (int32_t)x % ((int32_t)y ? : 1); 448 case INDEX_op_remu_i32: 449 return (uint32_t)x % ((uint32_t)y ? : 1); 450 case INDEX_op_rem_i64: 451 return (int64_t)x % ((int64_t)y ? : 1); 452 case INDEX_op_remu_i64: 453 return (uint64_t)x % ((uint64_t)y ? : 1); 454 455 default: 456 fprintf(stderr, 457 "Unrecognized operation %d in do_constant_folding.\n", op); 458 tcg_abort(); 459 } 460 } 461 462 static uint64_t do_constant_folding(TCGOpcode op, TCGType type, 463 uint64_t x, uint64_t y) 464 { 465 uint64_t res = do_constant_folding_2(op, x, y); 466 if (type == TCG_TYPE_I32) { 467 res = (int32_t)res; 468 } 469 return res; 470 } 471 472 static bool do_constant_folding_cond_32(uint32_t x, uint32_t y, TCGCond c) 473 { 474 switch (c) { 475 case TCG_COND_EQ: 476 return x == y; 477 case TCG_COND_NE: 478 return x != y; 479 case TCG_COND_LT: 480 return (int32_t)x < (int32_t)y; 481 case TCG_COND_GE: 482 return (int32_t)x >= (int32_t)y; 483 case TCG_COND_LE: 484 return (int32_t)x <= (int32_t)y; 485 case TCG_COND_GT: 486 return (int32_t)x > (int32_t)y; 487 case TCG_COND_LTU: 488 return x < y; 489 case TCG_COND_GEU: 490 return x >= y; 491 case TCG_COND_LEU: 492 return x <= y; 493 case TCG_COND_GTU: 494 return x > y; 495 default: 496 tcg_abort(); 497 } 498 } 499 500 static bool do_constant_folding_cond_64(uint64_t x, uint64_t y, TCGCond c) 501 { 502 switch (c) { 503 case TCG_COND_EQ: 504 return x == y; 505 case TCG_COND_NE: 506 return x != y; 507 case TCG_COND_LT: 508 return (int64_t)x < (int64_t)y; 509 case TCG_COND_GE: 510 return (int64_t)x >= (int64_t)y; 511 case TCG_COND_LE: 512 return (int64_t)x <= (int64_t)y; 513 case TCG_COND_GT: 514 return (int64_t)x > (int64_t)y; 515 case TCG_COND_LTU: 516 return x < y; 517 case TCG_COND_GEU: 518 return x >= y; 519 case TCG_COND_LEU: 520 return x <= y; 521 case TCG_COND_GTU: 522 return x > y; 523 default: 524 tcg_abort(); 525 } 526 } 527 528 static bool do_constant_folding_cond_eq(TCGCond c) 529 { 530 switch (c) { 531 case TCG_COND_GT: 532 case TCG_COND_LTU: 533 case TCG_COND_LT: 534 case TCG_COND_GTU: 535 case TCG_COND_NE: 536 return 0; 537 case TCG_COND_GE: 538 case TCG_COND_GEU: 539 case TCG_COND_LE: 540 case TCG_COND_LEU: 541 case TCG_COND_EQ: 542 return 1; 543 default: 544 tcg_abort(); 545 } 546 } 547 548 /* 549 * Return -1 if the condition can't be simplified, 550 * and the result of the condition (0 or 1) if it can. 551 */ 552 static int do_constant_folding_cond(TCGType type, TCGArg x, 553 TCGArg y, TCGCond c) 554 { 555 uint64_t xv = arg_info(x)->val; 556 uint64_t yv = arg_info(y)->val; 557 558 if (arg_is_const(x) && arg_is_const(y)) { 559 switch (type) { 560 case TCG_TYPE_I32: 561 return do_constant_folding_cond_32(xv, yv, c); 562 case TCG_TYPE_I64: 563 return do_constant_folding_cond_64(xv, yv, c); 564 default: 565 /* Only scalar comparisons are optimizable */ 566 return -1; 567 } 568 } else if (args_are_copies(x, y)) { 569 return do_constant_folding_cond_eq(c); 570 } else if (arg_is_const(y) && yv == 0) { 571 switch (c) { 572 case TCG_COND_LTU: 573 return 0; 574 case TCG_COND_GEU: 575 return 1; 576 default: 577 return -1; 578 } 579 } 580 return -1; 581 } 582 583 /* 584 * Return -1 if the condition can't be simplified, 585 * and the result of the condition (0 or 1) if it can. 586 */ 587 static int do_constant_folding_cond2(TCGArg *p1, TCGArg *p2, TCGCond c) 588 { 589 TCGArg al = p1[0], ah = p1[1]; 590 TCGArg bl = p2[0], bh = p2[1]; 591 592 if (arg_is_const(bl) && arg_is_const(bh)) { 593 tcg_target_ulong blv = arg_info(bl)->val; 594 tcg_target_ulong bhv = arg_info(bh)->val; 595 uint64_t b = deposit64(blv, 32, 32, bhv); 596 597 if (arg_is_const(al) && arg_is_const(ah)) { 598 tcg_target_ulong alv = arg_info(al)->val; 599 tcg_target_ulong ahv = arg_info(ah)->val; 600 uint64_t a = deposit64(alv, 32, 32, ahv); 601 return do_constant_folding_cond_64(a, b, c); 602 } 603 if (b == 0) { 604 switch (c) { 605 case TCG_COND_LTU: 606 return 0; 607 case TCG_COND_GEU: 608 return 1; 609 default: 610 break; 611 } 612 } 613 } 614 if (args_are_copies(al, bl) && args_are_copies(ah, bh)) { 615 return do_constant_folding_cond_eq(c); 616 } 617 return -1; 618 } 619 620 /** 621 * swap_commutative: 622 * @dest: TCGArg of the destination argument, or NO_DEST. 623 * @p1: first paired argument 624 * @p2: second paired argument 625 * 626 * If *@p1 is a constant and *@p2 is not, swap. 627 * If *@p2 matches @dest, swap. 628 * Return true if a swap was performed. 629 */ 630 631 #define NO_DEST temp_arg(NULL) 632 633 static bool swap_commutative(TCGArg dest, TCGArg *p1, TCGArg *p2) 634 { 635 TCGArg a1 = *p1, a2 = *p2; 636 int sum = 0; 637 sum += arg_is_const(a1); 638 sum -= arg_is_const(a2); 639 640 /* Prefer the constant in second argument, and then the form 641 op a, a, b, which is better handled on non-RISC hosts. */ 642 if (sum > 0 || (sum == 0 && dest == a2)) { 643 *p1 = a2; 644 *p2 = a1; 645 return true; 646 } 647 return false; 648 } 649 650 static bool swap_commutative2(TCGArg *p1, TCGArg *p2) 651 { 652 int sum = 0; 653 sum += arg_is_const(p1[0]); 654 sum += arg_is_const(p1[1]); 655 sum -= arg_is_const(p2[0]); 656 sum -= arg_is_const(p2[1]); 657 if (sum > 0) { 658 TCGArg t; 659 t = p1[0], p1[0] = p2[0], p2[0] = t; 660 t = p1[1], p1[1] = p2[1], p2[1] = t; 661 return true; 662 } 663 return false; 664 } 665 666 static void init_arguments(OptContext *ctx, TCGOp *op, int nb_args) 667 { 668 for (int i = 0; i < nb_args; i++) { 669 TCGTemp *ts = arg_temp(op->args[i]); 670 if (ts) { 671 init_ts_info(ctx, ts); 672 } 673 } 674 } 675 676 static void copy_propagate(OptContext *ctx, TCGOp *op, 677 int nb_oargs, int nb_iargs) 678 { 679 TCGContext *s = ctx->tcg; 680 681 for (int i = nb_oargs; i < nb_oargs + nb_iargs; i++) { 682 TCGTemp *ts = arg_temp(op->args[i]); 683 if (ts && ts_is_copy(ts)) { 684 op->args[i] = temp_arg(find_better_copy(s, ts)); 685 } 686 } 687 } 688 689 static void finish_folding(OptContext *ctx, TCGOp *op) 690 { 691 const TCGOpDef *def = &tcg_op_defs[op->opc]; 692 int i, nb_oargs; 693 694 /* 695 * For an opcode that ends a BB, reset all temp data. 696 * We do no cross-BB optimization. 697 */ 698 if (def->flags & TCG_OPF_BB_END) { 699 memset(&ctx->temps_used, 0, sizeof(ctx->temps_used)); 700 ctx->prev_mb = NULL; 701 return; 702 } 703 704 nb_oargs = def->nb_oargs; 705 for (i = 0; i < nb_oargs; i++) { 706 TCGTemp *ts = arg_temp(op->args[i]); 707 reset_ts(ts); 708 /* 709 * Save the corresponding known-zero/sign bits mask for the 710 * first output argument (only one supported so far). 711 */ 712 if (i == 0) { 713 ts_info(ts)->z_mask = ctx->z_mask; 714 ts_info(ts)->s_mask = ctx->s_mask; 715 } 716 } 717 } 718 719 /* 720 * The fold_* functions return true when processing is complete, 721 * usually by folding the operation to a constant or to a copy, 722 * and calling tcg_opt_gen_{mov,movi}. They may do other things, 723 * like collect information about the value produced, for use in 724 * optimizing a subsequent operation. 725 * 726 * These first fold_* functions are all helpers, used by other 727 * folders for more specific operations. 728 */ 729 730 static bool fold_const1(OptContext *ctx, TCGOp *op) 731 { 732 if (arg_is_const(op->args[1])) { 733 uint64_t t; 734 735 t = arg_info(op->args[1])->val; 736 t = do_constant_folding(op->opc, ctx->type, t, 0); 737 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 738 } 739 return false; 740 } 741 742 static bool fold_const2(OptContext *ctx, TCGOp *op) 743 { 744 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 745 uint64_t t1 = arg_info(op->args[1])->val; 746 uint64_t t2 = arg_info(op->args[2])->val; 747 748 t1 = do_constant_folding(op->opc, ctx->type, t1, t2); 749 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 750 } 751 return false; 752 } 753 754 static bool fold_const2_commutative(OptContext *ctx, TCGOp *op) 755 { 756 swap_commutative(op->args[0], &op->args[1], &op->args[2]); 757 return fold_const2(ctx, op); 758 } 759 760 static bool fold_masks(OptContext *ctx, TCGOp *op) 761 { 762 uint64_t a_mask = ctx->a_mask; 763 uint64_t z_mask = ctx->z_mask; 764 uint64_t s_mask = ctx->s_mask; 765 766 /* 767 * 32-bit ops generate 32-bit results, which for the purpose of 768 * simplifying tcg are sign-extended. Certainly that's how we 769 * represent our constants elsewhere. Note that the bits will 770 * be reset properly for a 64-bit value when encountering the 771 * type changing opcodes. 772 */ 773 if (ctx->type == TCG_TYPE_I32) { 774 a_mask = (int32_t)a_mask; 775 z_mask = (int32_t)z_mask; 776 s_mask |= MAKE_64BIT_MASK(32, 32); 777 ctx->z_mask = z_mask; 778 ctx->s_mask = s_mask; 779 } 780 781 if (z_mask == 0) { 782 return tcg_opt_gen_movi(ctx, op, op->args[0], 0); 783 } 784 if (a_mask == 0) { 785 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 786 } 787 return false; 788 } 789 790 /* 791 * Convert @op to NOT, if NOT is supported by the host. 792 * Return true f the conversion is successful, which will still 793 * indicate that the processing is complete. 794 */ 795 static bool fold_not(OptContext *ctx, TCGOp *op); 796 static bool fold_to_not(OptContext *ctx, TCGOp *op, int idx) 797 { 798 TCGOpcode not_op; 799 bool have_not; 800 801 switch (ctx->type) { 802 case TCG_TYPE_I32: 803 not_op = INDEX_op_not_i32; 804 have_not = TCG_TARGET_HAS_not_i32; 805 break; 806 case TCG_TYPE_I64: 807 not_op = INDEX_op_not_i64; 808 have_not = TCG_TARGET_HAS_not_i64; 809 break; 810 case TCG_TYPE_V64: 811 case TCG_TYPE_V128: 812 case TCG_TYPE_V256: 813 not_op = INDEX_op_not_vec; 814 have_not = TCG_TARGET_HAS_not_vec; 815 break; 816 default: 817 g_assert_not_reached(); 818 } 819 if (have_not) { 820 op->opc = not_op; 821 op->args[1] = op->args[idx]; 822 return fold_not(ctx, op); 823 } 824 return false; 825 } 826 827 /* If the binary operation has first argument @i, fold to @i. */ 828 static bool fold_ix_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 829 { 830 if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) { 831 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 832 } 833 return false; 834 } 835 836 /* If the binary operation has first argument @i, fold to NOT. */ 837 static bool fold_ix_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 838 { 839 if (arg_is_const(op->args[1]) && arg_info(op->args[1])->val == i) { 840 return fold_to_not(ctx, op, 2); 841 } 842 return false; 843 } 844 845 /* If the binary operation has second argument @i, fold to @i. */ 846 static bool fold_xi_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 847 { 848 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { 849 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 850 } 851 return false; 852 } 853 854 /* If the binary operation has second argument @i, fold to identity. */ 855 static bool fold_xi_to_x(OptContext *ctx, TCGOp *op, uint64_t i) 856 { 857 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { 858 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 859 } 860 return false; 861 } 862 863 /* If the binary operation has second argument @i, fold to NOT. */ 864 static bool fold_xi_to_not(OptContext *ctx, TCGOp *op, uint64_t i) 865 { 866 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == i) { 867 return fold_to_not(ctx, op, 1); 868 } 869 return false; 870 } 871 872 /* If the binary operation has both arguments equal, fold to @i. */ 873 static bool fold_xx_to_i(OptContext *ctx, TCGOp *op, uint64_t i) 874 { 875 if (args_are_copies(op->args[1], op->args[2])) { 876 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 877 } 878 return false; 879 } 880 881 /* If the binary operation has both arguments equal, fold to identity. */ 882 static bool fold_xx_to_x(OptContext *ctx, TCGOp *op) 883 { 884 if (args_are_copies(op->args[1], op->args[2])) { 885 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 886 } 887 return false; 888 } 889 890 /* 891 * These outermost fold_<op> functions are sorted alphabetically. 892 * 893 * The ordering of the transformations should be: 894 * 1) those that produce a constant 895 * 2) those that produce a copy 896 * 3) those that produce information about the result value. 897 */ 898 899 static bool fold_add(OptContext *ctx, TCGOp *op) 900 { 901 if (fold_const2_commutative(ctx, op) || 902 fold_xi_to_x(ctx, op, 0)) { 903 return true; 904 } 905 return false; 906 } 907 908 static bool fold_addsub2(OptContext *ctx, TCGOp *op, bool add) 909 { 910 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3]) && 911 arg_is_const(op->args[4]) && arg_is_const(op->args[5])) { 912 uint64_t al = arg_info(op->args[2])->val; 913 uint64_t ah = arg_info(op->args[3])->val; 914 uint64_t bl = arg_info(op->args[4])->val; 915 uint64_t bh = arg_info(op->args[5])->val; 916 TCGArg rl, rh; 917 TCGOp *op2; 918 919 if (ctx->type == TCG_TYPE_I32) { 920 uint64_t a = deposit64(al, 32, 32, ah); 921 uint64_t b = deposit64(bl, 32, 32, bh); 922 923 if (add) { 924 a += b; 925 } else { 926 a -= b; 927 } 928 929 al = sextract64(a, 0, 32); 930 ah = sextract64(a, 32, 32); 931 } else { 932 Int128 a = int128_make128(al, ah); 933 Int128 b = int128_make128(bl, bh); 934 935 if (add) { 936 a = int128_add(a, b); 937 } else { 938 a = int128_sub(a, b); 939 } 940 941 al = int128_getlo(a); 942 ah = int128_gethi(a); 943 } 944 945 rl = op->args[0]; 946 rh = op->args[1]; 947 948 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 949 op2 = tcg_op_insert_before(ctx->tcg, op, 0); 950 951 tcg_opt_gen_movi(ctx, op, rl, al); 952 tcg_opt_gen_movi(ctx, op2, rh, ah); 953 return true; 954 } 955 return false; 956 } 957 958 static bool fold_add2(OptContext *ctx, TCGOp *op) 959 { 960 /* Note that the high and low parts may be independently swapped. */ 961 swap_commutative(op->args[0], &op->args[2], &op->args[4]); 962 swap_commutative(op->args[1], &op->args[3], &op->args[5]); 963 964 return fold_addsub2(ctx, op, true); 965 } 966 967 static bool fold_and(OptContext *ctx, TCGOp *op) 968 { 969 uint64_t z1, z2; 970 971 if (fold_const2_commutative(ctx, op) || 972 fold_xi_to_i(ctx, op, 0) || 973 fold_xi_to_x(ctx, op, -1) || 974 fold_xx_to_x(ctx, op)) { 975 return true; 976 } 977 978 z1 = arg_info(op->args[1])->z_mask; 979 z2 = arg_info(op->args[2])->z_mask; 980 ctx->z_mask = z1 & z2; 981 982 /* 983 * Sign repetitions are perforce all identical, whether they are 1 or 0. 984 * Bitwise operations preserve the relative quantity of the repetitions. 985 */ 986 ctx->s_mask = arg_info(op->args[1])->s_mask 987 & arg_info(op->args[2])->s_mask; 988 989 /* 990 * Known-zeros does not imply known-ones. Therefore unless 991 * arg2 is constant, we can't infer affected bits from it. 992 */ 993 if (arg_is_const(op->args[2])) { 994 ctx->a_mask = z1 & ~z2; 995 } 996 997 return fold_masks(ctx, op); 998 } 999 1000 static bool fold_andc(OptContext *ctx, TCGOp *op) 1001 { 1002 uint64_t z1; 1003 1004 if (fold_const2(ctx, op) || 1005 fold_xx_to_i(ctx, op, 0) || 1006 fold_xi_to_x(ctx, op, 0) || 1007 fold_ix_to_not(ctx, op, -1)) { 1008 return true; 1009 } 1010 1011 z1 = arg_info(op->args[1])->z_mask; 1012 1013 /* 1014 * Known-zeros does not imply known-ones. Therefore unless 1015 * arg2 is constant, we can't infer anything from it. 1016 */ 1017 if (arg_is_const(op->args[2])) { 1018 uint64_t z2 = ~arg_info(op->args[2])->z_mask; 1019 ctx->a_mask = z1 & ~z2; 1020 z1 &= z2; 1021 } 1022 ctx->z_mask = z1; 1023 1024 ctx->s_mask = arg_info(op->args[1])->s_mask 1025 & arg_info(op->args[2])->s_mask; 1026 return fold_masks(ctx, op); 1027 } 1028 1029 static bool fold_brcond(OptContext *ctx, TCGOp *op) 1030 { 1031 TCGCond cond = op->args[2]; 1032 int i; 1033 1034 if (swap_commutative(NO_DEST, &op->args[0], &op->args[1])) { 1035 op->args[2] = cond = tcg_swap_cond(cond); 1036 } 1037 1038 i = do_constant_folding_cond(ctx->type, op->args[0], op->args[1], cond); 1039 if (i == 0) { 1040 tcg_op_remove(ctx->tcg, op); 1041 return true; 1042 } 1043 if (i > 0) { 1044 op->opc = INDEX_op_br; 1045 op->args[0] = op->args[3]; 1046 } 1047 return false; 1048 } 1049 1050 static bool fold_brcond2(OptContext *ctx, TCGOp *op) 1051 { 1052 TCGCond cond = op->args[4]; 1053 TCGArg label = op->args[5]; 1054 int i, inv = 0; 1055 1056 if (swap_commutative2(&op->args[0], &op->args[2])) { 1057 op->args[4] = cond = tcg_swap_cond(cond); 1058 } 1059 1060 i = do_constant_folding_cond2(&op->args[0], &op->args[2], cond); 1061 if (i >= 0) { 1062 goto do_brcond_const; 1063 } 1064 1065 switch (cond) { 1066 case TCG_COND_LT: 1067 case TCG_COND_GE: 1068 /* 1069 * Simplify LT/GE comparisons vs zero to a single compare 1070 * vs the high word of the input. 1071 */ 1072 if (arg_is_const(op->args[2]) && arg_info(op->args[2])->val == 0 && 1073 arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0) { 1074 goto do_brcond_high; 1075 } 1076 break; 1077 1078 case TCG_COND_NE: 1079 inv = 1; 1080 QEMU_FALLTHROUGH; 1081 case TCG_COND_EQ: 1082 /* 1083 * Simplify EQ/NE comparisons where one of the pairs 1084 * can be simplified. 1085 */ 1086 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[0], 1087 op->args[2], cond); 1088 switch (i ^ inv) { 1089 case 0: 1090 goto do_brcond_const; 1091 case 1: 1092 goto do_brcond_high; 1093 } 1094 1095 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1096 op->args[3], cond); 1097 switch (i ^ inv) { 1098 case 0: 1099 goto do_brcond_const; 1100 case 1: 1101 op->opc = INDEX_op_brcond_i32; 1102 op->args[1] = op->args[2]; 1103 op->args[2] = cond; 1104 op->args[3] = label; 1105 break; 1106 } 1107 break; 1108 1109 default: 1110 break; 1111 1112 do_brcond_high: 1113 op->opc = INDEX_op_brcond_i32; 1114 op->args[0] = op->args[1]; 1115 op->args[1] = op->args[3]; 1116 op->args[2] = cond; 1117 op->args[3] = label; 1118 break; 1119 1120 do_brcond_const: 1121 if (i == 0) { 1122 tcg_op_remove(ctx->tcg, op); 1123 return true; 1124 } 1125 op->opc = INDEX_op_br; 1126 op->args[0] = label; 1127 break; 1128 } 1129 return false; 1130 } 1131 1132 static bool fold_bswap(OptContext *ctx, TCGOp *op) 1133 { 1134 uint64_t z_mask, s_mask, sign; 1135 1136 if (arg_is_const(op->args[1])) { 1137 uint64_t t = arg_info(op->args[1])->val; 1138 1139 t = do_constant_folding(op->opc, ctx->type, t, op->args[2]); 1140 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1141 } 1142 1143 z_mask = arg_info(op->args[1])->z_mask; 1144 1145 switch (op->opc) { 1146 case INDEX_op_bswap16_i32: 1147 case INDEX_op_bswap16_i64: 1148 z_mask = bswap16(z_mask); 1149 sign = INT16_MIN; 1150 break; 1151 case INDEX_op_bswap32_i32: 1152 case INDEX_op_bswap32_i64: 1153 z_mask = bswap32(z_mask); 1154 sign = INT32_MIN; 1155 break; 1156 case INDEX_op_bswap64_i64: 1157 z_mask = bswap64(z_mask); 1158 sign = INT64_MIN; 1159 break; 1160 default: 1161 g_assert_not_reached(); 1162 } 1163 s_mask = smask_from_zmask(z_mask); 1164 1165 switch (op->args[2] & (TCG_BSWAP_OZ | TCG_BSWAP_OS)) { 1166 case TCG_BSWAP_OZ: 1167 break; 1168 case TCG_BSWAP_OS: 1169 /* If the sign bit may be 1, force all the bits above to 1. */ 1170 if (z_mask & sign) { 1171 z_mask |= sign; 1172 s_mask = sign << 1; 1173 } 1174 break; 1175 default: 1176 /* The high bits are undefined: force all bits above the sign to 1. */ 1177 z_mask |= sign << 1; 1178 s_mask = 0; 1179 break; 1180 } 1181 ctx->z_mask = z_mask; 1182 ctx->s_mask = s_mask; 1183 1184 return fold_masks(ctx, op); 1185 } 1186 1187 static bool fold_call(OptContext *ctx, TCGOp *op) 1188 { 1189 TCGContext *s = ctx->tcg; 1190 int nb_oargs = TCGOP_CALLO(op); 1191 int nb_iargs = TCGOP_CALLI(op); 1192 int flags, i; 1193 1194 init_arguments(ctx, op, nb_oargs + nb_iargs); 1195 copy_propagate(ctx, op, nb_oargs, nb_iargs); 1196 1197 /* If the function reads or writes globals, reset temp data. */ 1198 flags = tcg_call_flags(op); 1199 if (!(flags & (TCG_CALL_NO_READ_GLOBALS | TCG_CALL_NO_WRITE_GLOBALS))) { 1200 int nb_globals = s->nb_globals; 1201 1202 for (i = 0; i < nb_globals; i++) { 1203 if (test_bit(i, ctx->temps_used.l)) { 1204 reset_ts(&ctx->tcg->temps[i]); 1205 } 1206 } 1207 } 1208 1209 /* Reset temp data for outputs. */ 1210 for (i = 0; i < nb_oargs; i++) { 1211 reset_temp(op->args[i]); 1212 } 1213 1214 /* Stop optimizing MB across calls. */ 1215 ctx->prev_mb = NULL; 1216 return true; 1217 } 1218 1219 static bool fold_count_zeros(OptContext *ctx, TCGOp *op) 1220 { 1221 uint64_t z_mask; 1222 1223 if (arg_is_const(op->args[1])) { 1224 uint64_t t = arg_info(op->args[1])->val; 1225 1226 if (t != 0) { 1227 t = do_constant_folding(op->opc, ctx->type, t, 0); 1228 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1229 } 1230 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[2]); 1231 } 1232 1233 switch (ctx->type) { 1234 case TCG_TYPE_I32: 1235 z_mask = 31; 1236 break; 1237 case TCG_TYPE_I64: 1238 z_mask = 63; 1239 break; 1240 default: 1241 g_assert_not_reached(); 1242 } 1243 ctx->z_mask = arg_info(op->args[2])->z_mask | z_mask; 1244 ctx->s_mask = smask_from_zmask(ctx->z_mask); 1245 return false; 1246 } 1247 1248 static bool fold_ctpop(OptContext *ctx, TCGOp *op) 1249 { 1250 if (fold_const1(ctx, op)) { 1251 return true; 1252 } 1253 1254 switch (ctx->type) { 1255 case TCG_TYPE_I32: 1256 ctx->z_mask = 32 | 31; 1257 break; 1258 case TCG_TYPE_I64: 1259 ctx->z_mask = 64 | 63; 1260 break; 1261 default: 1262 g_assert_not_reached(); 1263 } 1264 ctx->s_mask = smask_from_zmask(ctx->z_mask); 1265 return false; 1266 } 1267 1268 static bool fold_deposit(OptContext *ctx, TCGOp *op) 1269 { 1270 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1271 uint64_t t1 = arg_info(op->args[1])->val; 1272 uint64_t t2 = arg_info(op->args[2])->val; 1273 1274 t1 = deposit64(t1, op->args[3], op->args[4], t2); 1275 return tcg_opt_gen_movi(ctx, op, op->args[0], t1); 1276 } 1277 1278 ctx->z_mask = deposit64(arg_info(op->args[1])->z_mask, 1279 op->args[3], op->args[4], 1280 arg_info(op->args[2])->z_mask); 1281 return false; 1282 } 1283 1284 static bool fold_divide(OptContext *ctx, TCGOp *op) 1285 { 1286 if (fold_const2(ctx, op) || 1287 fold_xi_to_x(ctx, op, 1)) { 1288 return true; 1289 } 1290 return false; 1291 } 1292 1293 static bool fold_dup(OptContext *ctx, TCGOp *op) 1294 { 1295 if (arg_is_const(op->args[1])) { 1296 uint64_t t = arg_info(op->args[1])->val; 1297 t = dup_const(TCGOP_VECE(op), t); 1298 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1299 } 1300 return false; 1301 } 1302 1303 static bool fold_dup2(OptContext *ctx, TCGOp *op) 1304 { 1305 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1306 uint64_t t = deposit64(arg_info(op->args[1])->val, 32, 32, 1307 arg_info(op->args[2])->val); 1308 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1309 } 1310 1311 if (args_are_copies(op->args[1], op->args[2])) { 1312 op->opc = INDEX_op_dup_vec; 1313 TCGOP_VECE(op) = MO_32; 1314 } 1315 return false; 1316 } 1317 1318 static bool fold_eqv(OptContext *ctx, TCGOp *op) 1319 { 1320 if (fold_const2_commutative(ctx, op) || 1321 fold_xi_to_x(ctx, op, -1) || 1322 fold_xi_to_not(ctx, op, 0)) { 1323 return true; 1324 } 1325 1326 ctx->s_mask = arg_info(op->args[1])->s_mask 1327 & arg_info(op->args[2])->s_mask; 1328 return false; 1329 } 1330 1331 static bool fold_extract(OptContext *ctx, TCGOp *op) 1332 { 1333 uint64_t z_mask_old, z_mask; 1334 int pos = op->args[2]; 1335 int len = op->args[3]; 1336 1337 if (arg_is_const(op->args[1])) { 1338 uint64_t t; 1339 1340 t = arg_info(op->args[1])->val; 1341 t = extract64(t, pos, len); 1342 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1343 } 1344 1345 z_mask_old = arg_info(op->args[1])->z_mask; 1346 z_mask = extract64(z_mask_old, pos, len); 1347 if (pos == 0) { 1348 ctx->a_mask = z_mask_old ^ z_mask; 1349 } 1350 ctx->z_mask = z_mask; 1351 ctx->s_mask = smask_from_zmask(z_mask); 1352 1353 return fold_masks(ctx, op); 1354 } 1355 1356 static bool fold_extract2(OptContext *ctx, TCGOp *op) 1357 { 1358 if (arg_is_const(op->args[1]) && arg_is_const(op->args[2])) { 1359 uint64_t v1 = arg_info(op->args[1])->val; 1360 uint64_t v2 = arg_info(op->args[2])->val; 1361 int shr = op->args[3]; 1362 1363 if (op->opc == INDEX_op_extract2_i64) { 1364 v1 >>= shr; 1365 v2 <<= 64 - shr; 1366 } else { 1367 v1 = (uint32_t)v1 >> shr; 1368 v2 = (uint64_t)((int32_t)v2 << (32 - shr)); 1369 } 1370 return tcg_opt_gen_movi(ctx, op, op->args[0], v1 | v2); 1371 } 1372 return false; 1373 } 1374 1375 static bool fold_exts(OptContext *ctx, TCGOp *op) 1376 { 1377 uint64_t s_mask_old, s_mask, z_mask, sign; 1378 bool type_change = false; 1379 1380 if (fold_const1(ctx, op)) { 1381 return true; 1382 } 1383 1384 z_mask = arg_info(op->args[1])->z_mask; 1385 s_mask = arg_info(op->args[1])->s_mask; 1386 s_mask_old = s_mask; 1387 1388 switch (op->opc) { 1389 CASE_OP_32_64(ext8s): 1390 sign = INT8_MIN; 1391 z_mask = (uint8_t)z_mask; 1392 break; 1393 CASE_OP_32_64(ext16s): 1394 sign = INT16_MIN; 1395 z_mask = (uint16_t)z_mask; 1396 break; 1397 case INDEX_op_ext_i32_i64: 1398 type_change = true; 1399 QEMU_FALLTHROUGH; 1400 case INDEX_op_ext32s_i64: 1401 sign = INT32_MIN; 1402 z_mask = (uint32_t)z_mask; 1403 break; 1404 default: 1405 g_assert_not_reached(); 1406 } 1407 1408 if (z_mask & sign) { 1409 z_mask |= sign; 1410 } 1411 s_mask |= sign << 1; 1412 1413 ctx->z_mask = z_mask; 1414 ctx->s_mask = s_mask; 1415 if (!type_change) { 1416 ctx->a_mask = s_mask & ~s_mask_old; 1417 } 1418 1419 return fold_masks(ctx, op); 1420 } 1421 1422 static bool fold_extu(OptContext *ctx, TCGOp *op) 1423 { 1424 uint64_t z_mask_old, z_mask; 1425 bool type_change = false; 1426 1427 if (fold_const1(ctx, op)) { 1428 return true; 1429 } 1430 1431 z_mask_old = z_mask = arg_info(op->args[1])->z_mask; 1432 1433 switch (op->opc) { 1434 CASE_OP_32_64(ext8u): 1435 z_mask = (uint8_t)z_mask; 1436 break; 1437 CASE_OP_32_64(ext16u): 1438 z_mask = (uint16_t)z_mask; 1439 break; 1440 case INDEX_op_extrl_i64_i32: 1441 case INDEX_op_extu_i32_i64: 1442 type_change = true; 1443 QEMU_FALLTHROUGH; 1444 case INDEX_op_ext32u_i64: 1445 z_mask = (uint32_t)z_mask; 1446 break; 1447 case INDEX_op_extrh_i64_i32: 1448 type_change = true; 1449 z_mask >>= 32; 1450 break; 1451 default: 1452 g_assert_not_reached(); 1453 } 1454 1455 ctx->z_mask = z_mask; 1456 ctx->s_mask = smask_from_zmask(z_mask); 1457 if (!type_change) { 1458 ctx->a_mask = z_mask_old ^ z_mask; 1459 } 1460 return fold_masks(ctx, op); 1461 } 1462 1463 static bool fold_mb(OptContext *ctx, TCGOp *op) 1464 { 1465 /* Eliminate duplicate and redundant fence instructions. */ 1466 if (ctx->prev_mb) { 1467 /* 1468 * Merge two barriers of the same type into one, 1469 * or a weaker barrier into a stronger one, 1470 * or two weaker barriers into a stronger one. 1471 * mb X; mb Y => mb X|Y 1472 * mb; strl => mb; st 1473 * ldaq; mb => ld; mb 1474 * ldaq; strl => ld; mb; st 1475 * Other combinations are also merged into a strong 1476 * barrier. This is stricter than specified but for 1477 * the purposes of TCG is better than not optimizing. 1478 */ 1479 ctx->prev_mb->args[0] |= op->args[0]; 1480 tcg_op_remove(ctx->tcg, op); 1481 } else { 1482 ctx->prev_mb = op; 1483 } 1484 return true; 1485 } 1486 1487 static bool fold_mov(OptContext *ctx, TCGOp *op) 1488 { 1489 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[1]); 1490 } 1491 1492 static bool fold_movcond(OptContext *ctx, TCGOp *op) 1493 { 1494 TCGCond cond = op->args[5]; 1495 int i; 1496 1497 if (swap_commutative(NO_DEST, &op->args[1], &op->args[2])) { 1498 op->args[5] = cond = tcg_swap_cond(cond); 1499 } 1500 /* 1501 * Canonicalize the "false" input reg to match the destination reg so 1502 * that the tcg backend can implement a "move if true" operation. 1503 */ 1504 if (swap_commutative(op->args[0], &op->args[4], &op->args[3])) { 1505 op->args[5] = cond = tcg_invert_cond(cond); 1506 } 1507 1508 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); 1509 if (i >= 0) { 1510 return tcg_opt_gen_mov(ctx, op, op->args[0], op->args[4 - i]); 1511 } 1512 1513 ctx->z_mask = arg_info(op->args[3])->z_mask 1514 | arg_info(op->args[4])->z_mask; 1515 ctx->s_mask = arg_info(op->args[3])->s_mask 1516 & arg_info(op->args[4])->s_mask; 1517 1518 if (arg_is_const(op->args[3]) && arg_is_const(op->args[4])) { 1519 uint64_t tv = arg_info(op->args[3])->val; 1520 uint64_t fv = arg_info(op->args[4])->val; 1521 TCGOpcode opc; 1522 1523 switch (ctx->type) { 1524 case TCG_TYPE_I32: 1525 opc = INDEX_op_setcond_i32; 1526 break; 1527 case TCG_TYPE_I64: 1528 opc = INDEX_op_setcond_i64; 1529 break; 1530 default: 1531 g_assert_not_reached(); 1532 } 1533 1534 if (tv == 1 && fv == 0) { 1535 op->opc = opc; 1536 op->args[3] = cond; 1537 } else if (fv == 1 && tv == 0) { 1538 op->opc = opc; 1539 op->args[3] = tcg_invert_cond(cond); 1540 } 1541 } 1542 return false; 1543 } 1544 1545 static bool fold_mul(OptContext *ctx, TCGOp *op) 1546 { 1547 if (fold_const2(ctx, op) || 1548 fold_xi_to_i(ctx, op, 0) || 1549 fold_xi_to_x(ctx, op, 1)) { 1550 return true; 1551 } 1552 return false; 1553 } 1554 1555 static bool fold_mul_highpart(OptContext *ctx, TCGOp *op) 1556 { 1557 if (fold_const2_commutative(ctx, op) || 1558 fold_xi_to_i(ctx, op, 0)) { 1559 return true; 1560 } 1561 return false; 1562 } 1563 1564 static bool fold_multiply2(OptContext *ctx, TCGOp *op) 1565 { 1566 swap_commutative(op->args[0], &op->args[2], &op->args[3]); 1567 1568 if (arg_is_const(op->args[2]) && arg_is_const(op->args[3])) { 1569 uint64_t a = arg_info(op->args[2])->val; 1570 uint64_t b = arg_info(op->args[3])->val; 1571 uint64_t h, l; 1572 TCGArg rl, rh; 1573 TCGOp *op2; 1574 1575 switch (op->opc) { 1576 case INDEX_op_mulu2_i32: 1577 l = (uint64_t)(uint32_t)a * (uint32_t)b; 1578 h = (int32_t)(l >> 32); 1579 l = (int32_t)l; 1580 break; 1581 case INDEX_op_muls2_i32: 1582 l = (int64_t)(int32_t)a * (int32_t)b; 1583 h = l >> 32; 1584 l = (int32_t)l; 1585 break; 1586 case INDEX_op_mulu2_i64: 1587 mulu64(&l, &h, a, b); 1588 break; 1589 case INDEX_op_muls2_i64: 1590 muls64(&l, &h, a, b); 1591 break; 1592 default: 1593 g_assert_not_reached(); 1594 } 1595 1596 rl = op->args[0]; 1597 rh = op->args[1]; 1598 1599 /* The proper opcode is supplied by tcg_opt_gen_mov. */ 1600 op2 = tcg_op_insert_before(ctx->tcg, op, 0); 1601 1602 tcg_opt_gen_movi(ctx, op, rl, l); 1603 tcg_opt_gen_movi(ctx, op2, rh, h); 1604 return true; 1605 } 1606 return false; 1607 } 1608 1609 static bool fold_nand(OptContext *ctx, TCGOp *op) 1610 { 1611 if (fold_const2_commutative(ctx, op) || 1612 fold_xi_to_not(ctx, op, -1)) { 1613 return true; 1614 } 1615 1616 ctx->s_mask = arg_info(op->args[1])->s_mask 1617 & arg_info(op->args[2])->s_mask; 1618 return false; 1619 } 1620 1621 static bool fold_neg(OptContext *ctx, TCGOp *op) 1622 { 1623 uint64_t z_mask; 1624 1625 if (fold_const1(ctx, op)) { 1626 return true; 1627 } 1628 1629 /* Set to 1 all bits to the left of the rightmost. */ 1630 z_mask = arg_info(op->args[1])->z_mask; 1631 ctx->z_mask = -(z_mask & -z_mask); 1632 1633 /* 1634 * Because of fold_sub_to_neg, we want to always return true, 1635 * via finish_folding. 1636 */ 1637 finish_folding(ctx, op); 1638 return true; 1639 } 1640 1641 static bool fold_nor(OptContext *ctx, TCGOp *op) 1642 { 1643 if (fold_const2_commutative(ctx, op) || 1644 fold_xi_to_not(ctx, op, 0)) { 1645 return true; 1646 } 1647 1648 ctx->s_mask = arg_info(op->args[1])->s_mask 1649 & arg_info(op->args[2])->s_mask; 1650 return false; 1651 } 1652 1653 static bool fold_not(OptContext *ctx, TCGOp *op) 1654 { 1655 if (fold_const1(ctx, op)) { 1656 return true; 1657 } 1658 1659 ctx->s_mask = arg_info(op->args[1])->s_mask; 1660 1661 /* Because of fold_to_not, we want to always return true, via finish. */ 1662 finish_folding(ctx, op); 1663 return true; 1664 } 1665 1666 static bool fold_or(OptContext *ctx, TCGOp *op) 1667 { 1668 if (fold_const2_commutative(ctx, op) || 1669 fold_xi_to_x(ctx, op, 0) || 1670 fold_xx_to_x(ctx, op)) { 1671 return true; 1672 } 1673 1674 ctx->z_mask = arg_info(op->args[1])->z_mask 1675 | arg_info(op->args[2])->z_mask; 1676 ctx->s_mask = arg_info(op->args[1])->s_mask 1677 & arg_info(op->args[2])->s_mask; 1678 return fold_masks(ctx, op); 1679 } 1680 1681 static bool fold_orc(OptContext *ctx, TCGOp *op) 1682 { 1683 if (fold_const2(ctx, op) || 1684 fold_xx_to_i(ctx, op, -1) || 1685 fold_xi_to_x(ctx, op, -1) || 1686 fold_ix_to_not(ctx, op, 0)) { 1687 return true; 1688 } 1689 1690 ctx->s_mask = arg_info(op->args[1])->s_mask 1691 & arg_info(op->args[2])->s_mask; 1692 return false; 1693 } 1694 1695 static bool fold_qemu_ld(OptContext *ctx, TCGOp *op) 1696 { 1697 const TCGOpDef *def = &tcg_op_defs[op->opc]; 1698 MemOpIdx oi = op->args[def->nb_oargs + def->nb_iargs]; 1699 MemOp mop = get_memop(oi); 1700 int width = 8 * memop_size(mop); 1701 1702 if (width < 64) { 1703 ctx->s_mask = MAKE_64BIT_MASK(width, 64 - width); 1704 if (!(mop & MO_SIGN)) { 1705 ctx->z_mask = MAKE_64BIT_MASK(0, width); 1706 ctx->s_mask <<= 1; 1707 } 1708 } 1709 1710 /* Opcodes that touch guest memory stop the mb optimization. */ 1711 ctx->prev_mb = NULL; 1712 return false; 1713 } 1714 1715 static bool fold_qemu_st(OptContext *ctx, TCGOp *op) 1716 { 1717 /* Opcodes that touch guest memory stop the mb optimization. */ 1718 ctx->prev_mb = NULL; 1719 return false; 1720 } 1721 1722 static bool fold_remainder(OptContext *ctx, TCGOp *op) 1723 { 1724 if (fold_const2(ctx, op) || 1725 fold_xx_to_i(ctx, op, 0)) { 1726 return true; 1727 } 1728 return false; 1729 } 1730 1731 static bool fold_setcond(OptContext *ctx, TCGOp *op) 1732 { 1733 TCGCond cond = op->args[3]; 1734 int i; 1735 1736 if (swap_commutative(op->args[0], &op->args[1], &op->args[2])) { 1737 op->args[3] = cond = tcg_swap_cond(cond); 1738 } 1739 1740 i = do_constant_folding_cond(ctx->type, op->args[1], op->args[2], cond); 1741 if (i >= 0) { 1742 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1743 } 1744 1745 ctx->z_mask = 1; 1746 ctx->s_mask = smask_from_zmask(1); 1747 return false; 1748 } 1749 1750 static bool fold_setcond2(OptContext *ctx, TCGOp *op) 1751 { 1752 TCGCond cond = op->args[5]; 1753 int i, inv = 0; 1754 1755 if (swap_commutative2(&op->args[1], &op->args[3])) { 1756 op->args[5] = cond = tcg_swap_cond(cond); 1757 } 1758 1759 i = do_constant_folding_cond2(&op->args[1], &op->args[3], cond); 1760 if (i >= 0) { 1761 goto do_setcond_const; 1762 } 1763 1764 switch (cond) { 1765 case TCG_COND_LT: 1766 case TCG_COND_GE: 1767 /* 1768 * Simplify LT/GE comparisons vs zero to a single compare 1769 * vs the high word of the input. 1770 */ 1771 if (arg_is_const(op->args[3]) && arg_info(op->args[3])->val == 0 && 1772 arg_is_const(op->args[4]) && arg_info(op->args[4])->val == 0) { 1773 goto do_setcond_high; 1774 } 1775 break; 1776 1777 case TCG_COND_NE: 1778 inv = 1; 1779 QEMU_FALLTHROUGH; 1780 case TCG_COND_EQ: 1781 /* 1782 * Simplify EQ/NE comparisons where one of the pairs 1783 * can be simplified. 1784 */ 1785 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[1], 1786 op->args[3], cond); 1787 switch (i ^ inv) { 1788 case 0: 1789 goto do_setcond_const; 1790 case 1: 1791 goto do_setcond_high; 1792 } 1793 1794 i = do_constant_folding_cond(TCG_TYPE_I32, op->args[2], 1795 op->args[4], cond); 1796 switch (i ^ inv) { 1797 case 0: 1798 goto do_setcond_const; 1799 case 1: 1800 op->args[2] = op->args[3]; 1801 op->args[3] = cond; 1802 op->opc = INDEX_op_setcond_i32; 1803 break; 1804 } 1805 break; 1806 1807 default: 1808 break; 1809 1810 do_setcond_high: 1811 op->args[1] = op->args[2]; 1812 op->args[2] = op->args[4]; 1813 op->args[3] = cond; 1814 op->opc = INDEX_op_setcond_i32; 1815 break; 1816 } 1817 1818 ctx->z_mask = 1; 1819 ctx->s_mask = smask_from_zmask(1); 1820 return false; 1821 1822 do_setcond_const: 1823 return tcg_opt_gen_movi(ctx, op, op->args[0], i); 1824 } 1825 1826 static bool fold_sextract(OptContext *ctx, TCGOp *op) 1827 { 1828 uint64_t z_mask, s_mask, s_mask_old; 1829 int pos = op->args[2]; 1830 int len = op->args[3]; 1831 1832 if (arg_is_const(op->args[1])) { 1833 uint64_t t; 1834 1835 t = arg_info(op->args[1])->val; 1836 t = sextract64(t, pos, len); 1837 return tcg_opt_gen_movi(ctx, op, op->args[0], t); 1838 } 1839 1840 z_mask = arg_info(op->args[1])->z_mask; 1841 z_mask = sextract64(z_mask, pos, len); 1842 ctx->z_mask = z_mask; 1843 1844 s_mask_old = arg_info(op->args[1])->s_mask; 1845 s_mask = sextract64(s_mask_old, pos, len); 1846 s_mask |= MAKE_64BIT_MASK(len, 64 - len); 1847 ctx->s_mask = s_mask; 1848 1849 if (pos == 0) { 1850 ctx->a_mask = s_mask & ~s_mask_old; 1851 } 1852 1853 return fold_masks(ctx, op); 1854 } 1855 1856 static bool fold_shift(OptContext *ctx, TCGOp *op) 1857 { 1858 uint64_t s_mask, z_mask, sign; 1859 1860 if (fold_const2(ctx, op) || 1861 fold_ix_to_i(ctx, op, 0) || 1862 fold_xi_to_x(ctx, op, 0)) { 1863 return true; 1864 } 1865 1866 s_mask = arg_info(op->args[1])->s_mask; 1867 z_mask = arg_info(op->args[1])->z_mask; 1868 1869 if (arg_is_const(op->args[2])) { 1870 int sh = arg_info(op->args[2])->val; 1871 1872 ctx->z_mask = do_constant_folding(op->opc, ctx->type, z_mask, sh); 1873 1874 s_mask = do_constant_folding(op->opc, ctx->type, s_mask, sh); 1875 ctx->s_mask = smask_from_smask(s_mask); 1876 1877 return fold_masks(ctx, op); 1878 } 1879 1880 switch (op->opc) { 1881 CASE_OP_32_64(sar): 1882 /* 1883 * Arithmetic right shift will not reduce the number of 1884 * input sign repetitions. 1885 */ 1886 ctx->s_mask = s_mask; 1887 break; 1888 CASE_OP_32_64(shr): 1889 /* 1890 * If the sign bit is known zero, then logical right shift 1891 * will not reduced the number of input sign repetitions. 1892 */ 1893 sign = (s_mask & -s_mask) >> 1; 1894 if (!(z_mask & sign)) { 1895 ctx->s_mask = s_mask; 1896 } 1897 break; 1898 default: 1899 break; 1900 } 1901 1902 return false; 1903 } 1904 1905 static bool fold_sub_to_neg(OptContext *ctx, TCGOp *op) 1906 { 1907 TCGOpcode neg_op; 1908 bool have_neg; 1909 1910 if (!arg_is_const(op->args[1]) || arg_info(op->args[1])->val != 0) { 1911 return false; 1912 } 1913 1914 switch (ctx->type) { 1915 case TCG_TYPE_I32: 1916 neg_op = INDEX_op_neg_i32; 1917 have_neg = TCG_TARGET_HAS_neg_i32; 1918 break; 1919 case TCG_TYPE_I64: 1920 neg_op = INDEX_op_neg_i64; 1921 have_neg = TCG_TARGET_HAS_neg_i64; 1922 break; 1923 case TCG_TYPE_V64: 1924 case TCG_TYPE_V128: 1925 case TCG_TYPE_V256: 1926 neg_op = INDEX_op_neg_vec; 1927 have_neg = (TCG_TARGET_HAS_neg_vec && 1928 tcg_can_emit_vec_op(neg_op, ctx->type, TCGOP_VECE(op)) > 0); 1929 break; 1930 default: 1931 g_assert_not_reached(); 1932 } 1933 if (have_neg) { 1934 op->opc = neg_op; 1935 op->args[1] = op->args[2]; 1936 return fold_neg(ctx, op); 1937 } 1938 return false; 1939 } 1940 1941 static bool fold_sub(OptContext *ctx, TCGOp *op) 1942 { 1943 if (fold_const2(ctx, op) || 1944 fold_xx_to_i(ctx, op, 0) || 1945 fold_xi_to_x(ctx, op, 0) || 1946 fold_sub_to_neg(ctx, op)) { 1947 return true; 1948 } 1949 return false; 1950 } 1951 1952 static bool fold_sub2(OptContext *ctx, TCGOp *op) 1953 { 1954 return fold_addsub2(ctx, op, false); 1955 } 1956 1957 static bool fold_tcg_ld(OptContext *ctx, TCGOp *op) 1958 { 1959 /* We can't do any folding with a load, but we can record bits. */ 1960 switch (op->opc) { 1961 CASE_OP_32_64(ld8s): 1962 ctx->s_mask = MAKE_64BIT_MASK(8, 56); 1963 break; 1964 CASE_OP_32_64(ld8u): 1965 ctx->z_mask = MAKE_64BIT_MASK(0, 8); 1966 ctx->s_mask = MAKE_64BIT_MASK(9, 55); 1967 break; 1968 CASE_OP_32_64(ld16s): 1969 ctx->s_mask = MAKE_64BIT_MASK(16, 48); 1970 break; 1971 CASE_OP_32_64(ld16u): 1972 ctx->z_mask = MAKE_64BIT_MASK(0, 16); 1973 ctx->s_mask = MAKE_64BIT_MASK(17, 47); 1974 break; 1975 case INDEX_op_ld32s_i64: 1976 ctx->s_mask = MAKE_64BIT_MASK(32, 32); 1977 break; 1978 case INDEX_op_ld32u_i64: 1979 ctx->z_mask = MAKE_64BIT_MASK(0, 32); 1980 ctx->s_mask = MAKE_64BIT_MASK(33, 31); 1981 break; 1982 default: 1983 g_assert_not_reached(); 1984 } 1985 return false; 1986 } 1987 1988 static bool fold_xor(OptContext *ctx, TCGOp *op) 1989 { 1990 if (fold_const2_commutative(ctx, op) || 1991 fold_xx_to_i(ctx, op, 0) || 1992 fold_xi_to_x(ctx, op, 0) || 1993 fold_xi_to_not(ctx, op, -1)) { 1994 return true; 1995 } 1996 1997 ctx->z_mask = arg_info(op->args[1])->z_mask 1998 | arg_info(op->args[2])->z_mask; 1999 ctx->s_mask = arg_info(op->args[1])->s_mask 2000 & arg_info(op->args[2])->s_mask; 2001 return fold_masks(ctx, op); 2002 } 2003 2004 /* Propagate constants and copies, fold constant expressions. */ 2005 void tcg_optimize(TCGContext *s) 2006 { 2007 int nb_temps, i; 2008 TCGOp *op, *op_next; 2009 OptContext ctx = { .tcg = s }; 2010 2011 /* Array VALS has an element for each temp. 2012 If this temp holds a constant then its value is kept in VALS' element. 2013 If this temp is a copy of other ones then the other copies are 2014 available through the doubly linked circular list. */ 2015 2016 nb_temps = s->nb_temps; 2017 for (i = 0; i < nb_temps; ++i) { 2018 s->temps[i].state_ptr = NULL; 2019 } 2020 2021 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) { 2022 TCGOpcode opc = op->opc; 2023 const TCGOpDef *def; 2024 bool done = false; 2025 2026 /* Calls are special. */ 2027 if (opc == INDEX_op_call) { 2028 fold_call(&ctx, op); 2029 continue; 2030 } 2031 2032 def = &tcg_op_defs[opc]; 2033 init_arguments(&ctx, op, def->nb_oargs + def->nb_iargs); 2034 copy_propagate(&ctx, op, def->nb_oargs, def->nb_iargs); 2035 2036 /* Pre-compute the type of the operation. */ 2037 if (def->flags & TCG_OPF_VECTOR) { 2038 ctx.type = TCG_TYPE_V64 + TCGOP_VECL(op); 2039 } else if (def->flags & TCG_OPF_64BIT) { 2040 ctx.type = TCG_TYPE_I64; 2041 } else { 2042 ctx.type = TCG_TYPE_I32; 2043 } 2044 2045 /* Assume all bits affected, no bits known zero, no sign reps. */ 2046 ctx.a_mask = -1; 2047 ctx.z_mask = -1; 2048 ctx.s_mask = 0; 2049 2050 /* 2051 * Process each opcode. 2052 * Sorted alphabetically by opcode as much as possible. 2053 */ 2054 switch (opc) { 2055 CASE_OP_32_64_VEC(add): 2056 done = fold_add(&ctx, op); 2057 break; 2058 CASE_OP_32_64(add2): 2059 done = fold_add2(&ctx, op); 2060 break; 2061 CASE_OP_32_64_VEC(and): 2062 done = fold_and(&ctx, op); 2063 break; 2064 CASE_OP_32_64_VEC(andc): 2065 done = fold_andc(&ctx, op); 2066 break; 2067 CASE_OP_32_64(brcond): 2068 done = fold_brcond(&ctx, op); 2069 break; 2070 case INDEX_op_brcond2_i32: 2071 done = fold_brcond2(&ctx, op); 2072 break; 2073 CASE_OP_32_64(bswap16): 2074 CASE_OP_32_64(bswap32): 2075 case INDEX_op_bswap64_i64: 2076 done = fold_bswap(&ctx, op); 2077 break; 2078 CASE_OP_32_64(clz): 2079 CASE_OP_32_64(ctz): 2080 done = fold_count_zeros(&ctx, op); 2081 break; 2082 CASE_OP_32_64(ctpop): 2083 done = fold_ctpop(&ctx, op); 2084 break; 2085 CASE_OP_32_64(deposit): 2086 done = fold_deposit(&ctx, op); 2087 break; 2088 CASE_OP_32_64(div): 2089 CASE_OP_32_64(divu): 2090 done = fold_divide(&ctx, op); 2091 break; 2092 case INDEX_op_dup_vec: 2093 done = fold_dup(&ctx, op); 2094 break; 2095 case INDEX_op_dup2_vec: 2096 done = fold_dup2(&ctx, op); 2097 break; 2098 CASE_OP_32_64(eqv): 2099 done = fold_eqv(&ctx, op); 2100 break; 2101 CASE_OP_32_64(extract): 2102 done = fold_extract(&ctx, op); 2103 break; 2104 CASE_OP_32_64(extract2): 2105 done = fold_extract2(&ctx, op); 2106 break; 2107 CASE_OP_32_64(ext8s): 2108 CASE_OP_32_64(ext16s): 2109 case INDEX_op_ext32s_i64: 2110 case INDEX_op_ext_i32_i64: 2111 done = fold_exts(&ctx, op); 2112 break; 2113 CASE_OP_32_64(ext8u): 2114 CASE_OP_32_64(ext16u): 2115 case INDEX_op_ext32u_i64: 2116 case INDEX_op_extu_i32_i64: 2117 case INDEX_op_extrl_i64_i32: 2118 case INDEX_op_extrh_i64_i32: 2119 done = fold_extu(&ctx, op); 2120 break; 2121 CASE_OP_32_64(ld8s): 2122 CASE_OP_32_64(ld8u): 2123 CASE_OP_32_64(ld16s): 2124 CASE_OP_32_64(ld16u): 2125 case INDEX_op_ld32s_i64: 2126 case INDEX_op_ld32u_i64: 2127 done = fold_tcg_ld(&ctx, op); 2128 break; 2129 case INDEX_op_mb: 2130 done = fold_mb(&ctx, op); 2131 break; 2132 CASE_OP_32_64_VEC(mov): 2133 done = fold_mov(&ctx, op); 2134 break; 2135 CASE_OP_32_64(movcond): 2136 done = fold_movcond(&ctx, op); 2137 break; 2138 CASE_OP_32_64(mul): 2139 done = fold_mul(&ctx, op); 2140 break; 2141 CASE_OP_32_64(mulsh): 2142 CASE_OP_32_64(muluh): 2143 done = fold_mul_highpart(&ctx, op); 2144 break; 2145 CASE_OP_32_64(muls2): 2146 CASE_OP_32_64(mulu2): 2147 done = fold_multiply2(&ctx, op); 2148 break; 2149 CASE_OP_32_64(nand): 2150 done = fold_nand(&ctx, op); 2151 break; 2152 CASE_OP_32_64(neg): 2153 done = fold_neg(&ctx, op); 2154 break; 2155 CASE_OP_32_64(nor): 2156 done = fold_nor(&ctx, op); 2157 break; 2158 CASE_OP_32_64_VEC(not): 2159 done = fold_not(&ctx, op); 2160 break; 2161 CASE_OP_32_64_VEC(or): 2162 done = fold_or(&ctx, op); 2163 break; 2164 CASE_OP_32_64_VEC(orc): 2165 done = fold_orc(&ctx, op); 2166 break; 2167 case INDEX_op_qemu_ld_i32: 2168 case INDEX_op_qemu_ld_i64: 2169 done = fold_qemu_ld(&ctx, op); 2170 break; 2171 case INDEX_op_qemu_st_i32: 2172 case INDEX_op_qemu_st8_i32: 2173 case INDEX_op_qemu_st_i64: 2174 done = fold_qemu_st(&ctx, op); 2175 break; 2176 CASE_OP_32_64(rem): 2177 CASE_OP_32_64(remu): 2178 done = fold_remainder(&ctx, op); 2179 break; 2180 CASE_OP_32_64(rotl): 2181 CASE_OP_32_64(rotr): 2182 CASE_OP_32_64(sar): 2183 CASE_OP_32_64(shl): 2184 CASE_OP_32_64(shr): 2185 done = fold_shift(&ctx, op); 2186 break; 2187 CASE_OP_32_64(setcond): 2188 done = fold_setcond(&ctx, op); 2189 break; 2190 case INDEX_op_setcond2_i32: 2191 done = fold_setcond2(&ctx, op); 2192 break; 2193 CASE_OP_32_64(sextract): 2194 done = fold_sextract(&ctx, op); 2195 break; 2196 CASE_OP_32_64_VEC(sub): 2197 done = fold_sub(&ctx, op); 2198 break; 2199 CASE_OP_32_64(sub2): 2200 done = fold_sub2(&ctx, op); 2201 break; 2202 CASE_OP_32_64_VEC(xor): 2203 done = fold_xor(&ctx, op); 2204 break; 2205 default: 2206 break; 2207 } 2208 2209 if (!done) { 2210 finish_folding(&ctx, op); 2211 } 2212 } 2213 } 2214