1/* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25#include "../tcg-ldst.c.inc" 26#include "../tcg-pool.c.inc" 27 28#ifdef CONFIG_DEBUG_TCG 29static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { 30#if TCG_TARGET_REG_BITS == 64 31 "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi", 32#else 33 "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi", 34#endif 35 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", 36 "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7", 37#if TCG_TARGET_REG_BITS == 64 38 "%xmm8", "%xmm9", "%xmm10", "%xmm11", 39 "%xmm12", "%xmm13", "%xmm14", "%xmm15", 40#endif 41}; 42#endif 43 44static const int tcg_target_reg_alloc_order[] = { 45#if TCG_TARGET_REG_BITS == 64 46 TCG_REG_RBP, 47 TCG_REG_RBX, 48 TCG_REG_R12, 49 TCG_REG_R13, 50 TCG_REG_R14, 51 TCG_REG_R15, 52 TCG_REG_R10, 53 TCG_REG_R11, 54 TCG_REG_R9, 55 TCG_REG_R8, 56 TCG_REG_RCX, 57 TCG_REG_RDX, 58 TCG_REG_RSI, 59 TCG_REG_RDI, 60 TCG_REG_RAX, 61#else 62 TCG_REG_EBX, 63 TCG_REG_ESI, 64 TCG_REG_EDI, 65 TCG_REG_EBP, 66 TCG_REG_ECX, 67 TCG_REG_EDX, 68 TCG_REG_EAX, 69#endif 70 TCG_REG_XMM0, 71 TCG_REG_XMM1, 72 TCG_REG_XMM2, 73 TCG_REG_XMM3, 74 TCG_REG_XMM4, 75 TCG_REG_XMM5, 76#ifndef _WIN64 77 /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save 78 any of them. Therefore only allow xmm0-xmm5 to be allocated. */ 79 TCG_REG_XMM6, 80 TCG_REG_XMM7, 81#if TCG_TARGET_REG_BITS == 64 82 TCG_REG_XMM8, 83 TCG_REG_XMM9, 84 TCG_REG_XMM10, 85 TCG_REG_XMM11, 86 TCG_REG_XMM12, 87 TCG_REG_XMM13, 88 TCG_REG_XMM14, 89 TCG_REG_XMM15, 90#endif 91#endif 92}; 93 94#define TCG_TMP_VEC TCG_REG_XMM5 95 96static const int tcg_target_call_iarg_regs[] = { 97#if TCG_TARGET_REG_BITS == 64 98#if defined(_WIN64) 99 TCG_REG_RCX, 100 TCG_REG_RDX, 101#else 102 TCG_REG_RDI, 103 TCG_REG_RSI, 104 TCG_REG_RDX, 105 TCG_REG_RCX, 106#endif 107 TCG_REG_R8, 108 TCG_REG_R9, 109#else 110 /* 32 bit mode uses stack based calling convention (GCC default). */ 111#endif 112}; 113 114static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) 115{ 116 switch (kind) { 117 case TCG_CALL_RET_NORMAL: 118 tcg_debug_assert(slot >= 0 && slot <= 1); 119 return slot ? TCG_REG_EDX : TCG_REG_EAX; 120#ifdef _WIN64 121 case TCG_CALL_RET_BY_VEC: 122 tcg_debug_assert(slot == 0); 123 return TCG_REG_XMM0; 124#endif 125 default: 126 g_assert_not_reached(); 127 } 128} 129 130/* Constants we accept. */ 131#define TCG_CT_CONST_S32 0x100 132#define TCG_CT_CONST_U32 0x200 133#define TCG_CT_CONST_I32 0x400 134#define TCG_CT_CONST_WSZ 0x800 135 136/* Registers used with L constraint, which are the first argument 137 registers on x86_64, and two random call clobbered registers on 138 i386. */ 139#if TCG_TARGET_REG_BITS == 64 140# define TCG_REG_L0 tcg_target_call_iarg_regs[0] 141# define TCG_REG_L1 tcg_target_call_iarg_regs[1] 142#else 143# define TCG_REG_L0 TCG_REG_EAX 144# define TCG_REG_L1 TCG_REG_EDX 145#endif 146 147#if TCG_TARGET_REG_BITS == 64 148# define ALL_GENERAL_REGS 0x0000ffffu 149# define ALL_VECTOR_REGS 0xffff0000u 150# define ALL_BYTEL_REGS ALL_GENERAL_REGS 151#else 152# define ALL_GENERAL_REGS 0x000000ffu 153# define ALL_VECTOR_REGS 0x00ff0000u 154# define ALL_BYTEL_REGS 0x0000000fu 155#endif 156#define SOFTMMU_RESERVE_REGS \ 157 (tcg_use_softmmu ? (1 << TCG_REG_L0) | (1 << TCG_REG_L1) : 0) 158 159/* For 64-bit, we always know that CMOV is available. */ 160#if TCG_TARGET_REG_BITS == 64 161# define have_cmov true 162#else 163# define have_cmov (cpuinfo & CPUINFO_CMOV) 164#endif 165#define have_bmi2 (cpuinfo & CPUINFO_BMI2) 166#define have_lzcnt (cpuinfo & CPUINFO_LZCNT) 167 168static const tcg_insn_unit *tb_ret_addr; 169 170static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 171 intptr_t value, intptr_t addend) 172{ 173 value += addend; 174 switch(type) { 175 case R_386_PC32: 176 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr); 177 if (value != (int32_t)value) { 178 return false; 179 } 180 /* FALLTHRU */ 181 case R_386_32: 182 tcg_patch32(code_ptr, value); 183 break; 184 case R_386_PC8: 185 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr); 186 if (value != (int8_t)value) { 187 return false; 188 } 189 tcg_patch8(code_ptr, value); 190 break; 191 default: 192 g_assert_not_reached(); 193 } 194 return true; 195} 196 197/* test if a constant matches the constraint */ 198static bool tcg_target_const_match(int64_t val, TCGType type, int ct, int vece) 199{ 200 if (ct & TCG_CT_CONST) { 201 return 1; 202 } 203 if (type == TCG_TYPE_I32) { 204 if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 | TCG_CT_CONST_I32)) { 205 return 1; 206 } 207 } else { 208 if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) { 209 return 1; 210 } 211 if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) { 212 return 1; 213 } 214 if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) { 215 return 1; 216 } 217 } 218 if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) { 219 return 1; 220 } 221 return 0; 222} 223 224# define LOWREGMASK(x) ((x) & 7) 225 226#define P_EXT 0x100 /* 0x0f opcode prefix */ 227#define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */ 228#define P_DATA16 0x400 /* 0x66 opcode prefix */ 229#define P_VEXW 0x1000 /* Set VEX.W = 1 */ 230#if TCG_TARGET_REG_BITS == 64 231# define P_REXW P_VEXW /* Set REX.W = 1; match VEXW */ 232# define P_REXB_R 0x2000 /* REG field as byte register */ 233# define P_REXB_RM 0x4000 /* R/M field as byte register */ 234# define P_GS 0x8000 /* gs segment override */ 235#else 236# define P_REXW 0 237# define P_REXB_R 0 238# define P_REXB_RM 0 239# define P_GS 0 240#endif 241#define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */ 242#define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */ 243#define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */ 244#define P_VEXL 0x80000 /* Set VEX.L = 1 */ 245#define P_EVEX 0x100000 /* Requires EVEX encoding */ 246 247#define OPC_ARITH_EbIb (0x80) 248#define OPC_ARITH_EvIz (0x81) 249#define OPC_ARITH_EvIb (0x83) 250#define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */ 251#define OPC_ANDN (0xf2 | P_EXT38) 252#define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3)) 253#define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3)) 254#define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16) 255#define OPC_BSF (0xbc | P_EXT) 256#define OPC_BSR (0xbd | P_EXT) 257#define OPC_BSWAP (0xc8 | P_EXT) 258#define OPC_CALL_Jz (0xe8) 259#define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */ 260#define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3)) 261#define OPC_DEC_r32 (0x48) 262#define OPC_IMUL_GvEv (0xaf | P_EXT) 263#define OPC_IMUL_GvEvIb (0x6b) 264#define OPC_IMUL_GvEvIz (0x69) 265#define OPC_INC_r32 (0x40) 266#define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */ 267#define OPC_JCC_short (0x70) /* ... plus condition code */ 268#define OPC_JMP_long (0xe9) 269#define OPC_JMP_short (0xeb) 270#define OPC_LEA (0x8d) 271#define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3) 272#define OPC_MOVB_EvGv (0x88) /* stores, more or less */ 273#define OPC_MOVL_EvGv (0x89) /* stores, more or less */ 274#define OPC_MOVL_GvEv (0x8b) /* loads, more or less */ 275#define OPC_MOVB_EvIz (0xc6) 276#define OPC_MOVL_EvIz (0xc7) 277#define OPC_MOVB_Ib (0xb0) 278#define OPC_MOVL_Iv (0xb8) 279#define OPC_MOVBE_GyMy (0xf0 | P_EXT38) 280#define OPC_MOVBE_MyGy (0xf1 | P_EXT38) 281#define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16) 282#define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16) 283#define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2) 284#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16) 285#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16) 286#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3) 287#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3) 288#define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3) 289#define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16) 290#define OPC_MOVSBL (0xbe | P_EXT) 291#define OPC_MOVSWL (0xbf | P_EXT) 292#define OPC_MOVSLQ (0x63 | P_REXW) 293#define OPC_MOVZBL (0xb6 | P_EXT) 294#define OPC_MOVZWL (0xb7 | P_EXT) 295#define OPC_PABSB (0x1c | P_EXT38 | P_DATA16) 296#define OPC_PABSW (0x1d | P_EXT38 | P_DATA16) 297#define OPC_PABSD (0x1e | P_EXT38 | P_DATA16) 298#define OPC_VPABSQ (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 299#define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16) 300#define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16) 301#define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16) 302#define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16) 303#define OPC_PADDB (0xfc | P_EXT | P_DATA16) 304#define OPC_PADDW (0xfd | P_EXT | P_DATA16) 305#define OPC_PADDD (0xfe | P_EXT | P_DATA16) 306#define OPC_PADDQ (0xd4 | P_EXT | P_DATA16) 307#define OPC_PADDSB (0xec | P_EXT | P_DATA16) 308#define OPC_PADDSW (0xed | P_EXT | P_DATA16) 309#define OPC_PADDUB (0xdc | P_EXT | P_DATA16) 310#define OPC_PADDUW (0xdd | P_EXT | P_DATA16) 311#define OPC_PAND (0xdb | P_EXT | P_DATA16) 312#define OPC_PANDN (0xdf | P_EXT | P_DATA16) 313#define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16) 314#define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16) 315#define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16) 316#define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16) 317#define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16) 318#define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16) 319#define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16) 320#define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16) 321#define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16) 322#define OPC_PEXTRD (0x16 | P_EXT3A | P_DATA16) 323#define OPC_PINSRD (0x22 | P_EXT3A | P_DATA16) 324#define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16) 325#define OPC_PMAXSW (0xee | P_EXT | P_DATA16) 326#define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16) 327#define OPC_VPMAXSQ (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 328#define OPC_PMAXUB (0xde | P_EXT | P_DATA16) 329#define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16) 330#define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16) 331#define OPC_VPMAXUQ (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 332#define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16) 333#define OPC_PMINSW (0xea | P_EXT | P_DATA16) 334#define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16) 335#define OPC_VPMINSQ (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 336#define OPC_PMINUB (0xda | P_EXT | P_DATA16) 337#define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16) 338#define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16) 339#define OPC_VPMINUQ (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 340#define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16) 341#define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16) 342#define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16) 343#define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16) 344#define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16) 345#define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16) 346#define OPC_PMULLW (0xd5 | P_EXT | P_DATA16) 347#define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16) 348#define OPC_VPMULLQ (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 349#define OPC_POR (0xeb | P_EXT | P_DATA16) 350#define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16) 351#define OPC_PSHUFD (0x70 | P_EXT | P_DATA16) 352#define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2) 353#define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3) 354#define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */ 355#define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */ 356#define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */ 357#define OPC_PSLLW (0xf1 | P_EXT | P_DATA16) 358#define OPC_PSLLD (0xf2 | P_EXT | P_DATA16) 359#define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16) 360#define OPC_PSRAW (0xe1 | P_EXT | P_DATA16) 361#define OPC_PSRAD (0xe2 | P_EXT | P_DATA16) 362#define OPC_VPSRAQ (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX) 363#define OPC_PSRLW (0xd1 | P_EXT | P_DATA16) 364#define OPC_PSRLD (0xd2 | P_EXT | P_DATA16) 365#define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16) 366#define OPC_PSUBB (0xf8 | P_EXT | P_DATA16) 367#define OPC_PSUBW (0xf9 | P_EXT | P_DATA16) 368#define OPC_PSUBD (0xfa | P_EXT | P_DATA16) 369#define OPC_PSUBQ (0xfb | P_EXT | P_DATA16) 370#define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16) 371#define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16) 372#define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16) 373#define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16) 374#define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16) 375#define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16) 376#define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16) 377#define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16) 378#define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16) 379#define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16) 380#define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16) 381#define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16) 382#define OPC_PXOR (0xef | P_EXT | P_DATA16) 383#define OPC_POP_r32 (0x58) 384#define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3) 385#define OPC_PUSH_r32 (0x50) 386#define OPC_PUSH_Iv (0x68) 387#define OPC_PUSH_Ib (0x6a) 388#define OPC_RET (0xc3) 389#define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */ 390#define OPC_SHIFT_1 (0xd1) 391#define OPC_SHIFT_Ib (0xc1) 392#define OPC_SHIFT_cl (0xd3) 393#define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3) 394#define OPC_SHUFPS (0xc6 | P_EXT) 395#define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16) 396#define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2) 397#define OPC_SHRD_Ib (0xac | P_EXT) 398#define OPC_TESTL (0x85) 399#define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3) 400#define OPC_UD2 (0x0b | P_EXT) 401#define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16) 402#define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16) 403#define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16) 404#define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16) 405#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16) 406#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16) 407#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16) 408#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16) 409#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16) 410#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16) 411#define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_VEXW) 412#define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL) 413#define OPC_VPROLVD (0x15 | P_EXT38 | P_DATA16 | P_EVEX) 414#define OPC_VPROLVQ (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 415#define OPC_VPRORVD (0x14 | P_EXT38 | P_DATA16 | P_EVEX) 416#define OPC_VPRORVQ (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 417#define OPC_VPSHLDW (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 418#define OPC_VPSHLDD (0x71 | P_EXT3A | P_DATA16 | P_EVEX) 419#define OPC_VPSHLDQ (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 420#define OPC_VPSHLDVW (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 421#define OPC_VPSHLDVD (0x71 | P_EXT38 | P_DATA16 | P_EVEX) 422#define OPC_VPSHLDVQ (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 423#define OPC_VPSHRDVW (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 424#define OPC_VPSHRDVD (0x73 | P_EXT38 | P_DATA16 | P_EVEX) 425#define OPC_VPSHRDVQ (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 426#define OPC_VPSLLVW (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 427#define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16) 428#define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_VEXW) 429#define OPC_VPSRAVW (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 430#define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16) 431#define OPC_VPSRAVQ (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 432#define OPC_VPSRLVW (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 433#define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16) 434#define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_VEXW) 435#define OPC_VPTERNLOGQ (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 436#define OPC_VZEROUPPER (0x77 | P_EXT) 437#define OPC_XCHG_ax_r32 (0x90) 438#define OPC_XCHG_EvGv (0x87) 439 440#define OPC_GRP3_Eb (0xf6) 441#define OPC_GRP3_Ev (0xf7) 442#define OPC_GRP5 (0xff) 443#define OPC_GRP14 (0x73 | P_EXT | P_DATA16) 444 445/* Group 1 opcode extensions for 0x80-0x83. 446 These are also used as modifiers for OPC_ARITH. */ 447#define ARITH_ADD 0 448#define ARITH_OR 1 449#define ARITH_ADC 2 450#define ARITH_SBB 3 451#define ARITH_AND 4 452#define ARITH_SUB 5 453#define ARITH_XOR 6 454#define ARITH_CMP 7 455 456/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */ 457#define SHIFT_ROL 0 458#define SHIFT_ROR 1 459#define SHIFT_SHL 4 460#define SHIFT_SHR 5 461#define SHIFT_SAR 7 462 463/* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */ 464#define EXT3_TESTi 0 465#define EXT3_NOT 2 466#define EXT3_NEG 3 467#define EXT3_MUL 4 468#define EXT3_IMUL 5 469#define EXT3_DIV 6 470#define EXT3_IDIV 7 471 472/* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */ 473#define EXT5_INC_Ev 0 474#define EXT5_DEC_Ev 1 475#define EXT5_CALLN_Ev 2 476#define EXT5_JMPN_Ev 4 477 478/* Condition codes to be added to OPC_JCC_{long,short}. */ 479#define JCC_JMP (-1) 480#define JCC_JO 0x0 481#define JCC_JNO 0x1 482#define JCC_JB 0x2 483#define JCC_JAE 0x3 484#define JCC_JE 0x4 485#define JCC_JNE 0x5 486#define JCC_JBE 0x6 487#define JCC_JA 0x7 488#define JCC_JS 0x8 489#define JCC_JNS 0x9 490#define JCC_JP 0xa 491#define JCC_JNP 0xb 492#define JCC_JL 0xc 493#define JCC_JGE 0xd 494#define JCC_JLE 0xe 495#define JCC_JG 0xf 496 497static const uint8_t tcg_cond_to_jcc[] = { 498 [TCG_COND_EQ] = JCC_JE, 499 [TCG_COND_NE] = JCC_JNE, 500 [TCG_COND_LT] = JCC_JL, 501 [TCG_COND_GE] = JCC_JGE, 502 [TCG_COND_LE] = JCC_JLE, 503 [TCG_COND_GT] = JCC_JG, 504 [TCG_COND_LTU] = JCC_JB, 505 [TCG_COND_GEU] = JCC_JAE, 506 [TCG_COND_LEU] = JCC_JBE, 507 [TCG_COND_GTU] = JCC_JA, 508}; 509 510#if TCG_TARGET_REG_BITS == 64 511static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x) 512{ 513 int rex; 514 515 if (opc & P_GS) { 516 tcg_out8(s, 0x65); 517 } 518 if (opc & P_DATA16) { 519 /* We should never be asking for both 16 and 64-bit operation. */ 520 tcg_debug_assert((opc & P_REXW) == 0); 521 tcg_out8(s, 0x66); 522 } 523 if (opc & P_SIMDF3) { 524 tcg_out8(s, 0xf3); 525 } else if (opc & P_SIMDF2) { 526 tcg_out8(s, 0xf2); 527 } 528 529 rex = 0; 530 rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */ 531 rex |= (r & 8) >> 1; /* REX.R */ 532 rex |= (x & 8) >> 2; /* REX.X */ 533 rex |= (rm & 8) >> 3; /* REX.B */ 534 535 /* P_REXB_{R,RM} indicates that the given register is the low byte. 536 For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do, 537 as otherwise the encoding indicates %[abcd]h. Note that the values 538 that are ORed in merely indicate that the REX byte must be present; 539 those bits get discarded in output. */ 540 rex |= opc & (r >= 4 ? P_REXB_R : 0); 541 rex |= opc & (rm >= 4 ? P_REXB_RM : 0); 542 543 if (rex) { 544 tcg_out8(s, (uint8_t)(rex | 0x40)); 545 } 546 547 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) { 548 tcg_out8(s, 0x0f); 549 if (opc & P_EXT38) { 550 tcg_out8(s, 0x38); 551 } else if (opc & P_EXT3A) { 552 tcg_out8(s, 0x3a); 553 } 554 } 555 556 tcg_out8(s, opc); 557} 558#else 559static void tcg_out_opc(TCGContext *s, int opc) 560{ 561 if (opc & P_DATA16) { 562 tcg_out8(s, 0x66); 563 } 564 if (opc & P_SIMDF3) { 565 tcg_out8(s, 0xf3); 566 } else if (opc & P_SIMDF2) { 567 tcg_out8(s, 0xf2); 568 } 569 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) { 570 tcg_out8(s, 0x0f); 571 if (opc & P_EXT38) { 572 tcg_out8(s, 0x38); 573 } else if (opc & P_EXT3A) { 574 tcg_out8(s, 0x3a); 575 } 576 } 577 tcg_out8(s, opc); 578} 579/* Discard the register arguments to tcg_out_opc early, so as not to penalize 580 the 32-bit compilation paths. This method works with all versions of gcc, 581 whereas relying on optimization may not be able to exclude them. */ 582#define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc) 583#endif 584 585static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm) 586{ 587 tcg_out_opc(s, opc, r, rm, 0); 588 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 589} 590 591static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v, 592 int rm, int index) 593{ 594 int tmp; 595 596 if (opc & P_GS) { 597 tcg_out8(s, 0x65); 598 } 599 /* Use the two byte form if possible, which cannot encode 600 VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */ 601 if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT 602 && ((rm | index) & 8) == 0) { 603 /* Two byte VEX prefix. */ 604 tcg_out8(s, 0xc5); 605 606 tmp = (r & 8 ? 0 : 0x80); /* VEX.R */ 607 } else { 608 /* Three byte VEX prefix. */ 609 tcg_out8(s, 0xc4); 610 611 /* VEX.m-mmmm */ 612 if (opc & P_EXT3A) { 613 tmp = 3; 614 } else if (opc & P_EXT38) { 615 tmp = 2; 616 } else if (opc & P_EXT) { 617 tmp = 1; 618 } else { 619 g_assert_not_reached(); 620 } 621 tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */ 622 tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */ 623 tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */ 624 tcg_out8(s, tmp); 625 626 tmp = (opc & P_VEXW ? 0x80 : 0); /* VEX.W */ 627 } 628 629 tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */ 630 /* VEX.pp */ 631 if (opc & P_DATA16) { 632 tmp |= 1; /* 0x66 */ 633 } else if (opc & P_SIMDF3) { 634 tmp |= 2; /* 0xf3 */ 635 } else if (opc & P_SIMDF2) { 636 tmp |= 3; /* 0xf2 */ 637 } 638 tmp |= (~v & 15) << 3; /* VEX.vvvv */ 639 tcg_out8(s, tmp); 640 tcg_out8(s, opc); 641} 642 643static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v, 644 int rm, int index) 645{ 646 /* The entire 4-byte evex prefix; with R' and V' set. */ 647 uint32_t p = 0x08041062; 648 int mm, pp; 649 650 tcg_debug_assert(have_avx512vl); 651 652 /* EVEX.mm */ 653 if (opc & P_EXT3A) { 654 mm = 3; 655 } else if (opc & P_EXT38) { 656 mm = 2; 657 } else if (opc & P_EXT) { 658 mm = 1; 659 } else { 660 g_assert_not_reached(); 661 } 662 663 /* EVEX.pp */ 664 if (opc & P_DATA16) { 665 pp = 1; /* 0x66 */ 666 } else if (opc & P_SIMDF3) { 667 pp = 2; /* 0xf3 */ 668 } else if (opc & P_SIMDF2) { 669 pp = 3; /* 0xf2 */ 670 } else { 671 pp = 0; 672 } 673 674 p = deposit32(p, 8, 2, mm); 675 p = deposit32(p, 13, 1, (rm & 8) == 0); /* EVEX.RXB.B */ 676 p = deposit32(p, 14, 1, (index & 8) == 0); /* EVEX.RXB.X */ 677 p = deposit32(p, 15, 1, (r & 8) == 0); /* EVEX.RXB.R */ 678 p = deposit32(p, 16, 2, pp); 679 p = deposit32(p, 19, 4, ~v); 680 p = deposit32(p, 23, 1, (opc & P_VEXW) != 0); 681 p = deposit32(p, 29, 2, (opc & P_VEXL) != 0); 682 683 tcg_out32(s, p); 684 tcg_out8(s, opc); 685} 686 687static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm) 688{ 689 if (opc & P_EVEX) { 690 tcg_out_evex_opc(s, opc, r, v, rm, 0); 691 } else { 692 tcg_out_vex_opc(s, opc, r, v, rm, 0); 693 } 694 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 695} 696 697/* Output an opcode with a full "rm + (index<<shift) + offset" address mode. 698 We handle either RM and INDEX missing with a negative value. In 64-bit 699 mode for absolute addresses, ~RM is the size of the immediate operand 700 that will follow the instruction. */ 701 702static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index, 703 int shift, intptr_t offset) 704{ 705 int mod, len; 706 707 if (index < 0 && rm < 0) { 708 if (TCG_TARGET_REG_BITS == 64) { 709 /* Try for a rip-relative addressing mode. This has replaced 710 the 32-bit-mode absolute addressing encoding. */ 711 intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm; 712 intptr_t disp = offset - pc; 713 if (disp == (int32_t)disp) { 714 tcg_out8(s, (LOWREGMASK(r) << 3) | 5); 715 tcg_out32(s, disp); 716 return; 717 } 718 719 /* Try for an absolute address encoding. This requires the 720 use of the MODRM+SIB encoding and is therefore larger than 721 rip-relative addressing. */ 722 if (offset == (int32_t)offset) { 723 tcg_out8(s, (LOWREGMASK(r) << 3) | 4); 724 tcg_out8(s, (4 << 3) | 5); 725 tcg_out32(s, offset); 726 return; 727 } 728 729 /* ??? The memory isn't directly addressable. */ 730 g_assert_not_reached(); 731 } else { 732 /* Absolute address. */ 733 tcg_out8(s, (r << 3) | 5); 734 tcg_out32(s, offset); 735 return; 736 } 737 } 738 739 /* Find the length of the immediate addend. Note that the encoding 740 that would be used for (%ebp) indicates absolute addressing. */ 741 if (rm < 0) { 742 mod = 0, len = 4, rm = 5; 743 } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) { 744 mod = 0, len = 0; 745 } else if (offset == (int8_t)offset) { 746 mod = 0x40, len = 1; 747 } else { 748 mod = 0x80, len = 4; 749 } 750 751 /* Use a single byte MODRM format if possible. Note that the encoding 752 that would be used for %esp is the escape to the two byte form. */ 753 if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) { 754 /* Single byte MODRM format. */ 755 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 756 } else { 757 /* Two byte MODRM+SIB format. */ 758 759 /* Note that the encoding that would place %esp into the index 760 field indicates no index register. In 64-bit mode, the REX.X 761 bit counts, so %r12 can be used as the index. */ 762 if (index < 0) { 763 index = 4; 764 } else { 765 tcg_debug_assert(index != TCG_REG_ESP); 766 } 767 768 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4); 769 tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm)); 770 } 771 772 if (len == 1) { 773 tcg_out8(s, offset); 774 } else if (len == 4) { 775 tcg_out32(s, offset); 776 } 777} 778 779static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm, 780 int index, int shift, intptr_t offset) 781{ 782 tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index); 783 tcg_out_sib_offset(s, r, rm, index, shift, offset); 784} 785 786static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v, 787 int rm, int index, int shift, 788 intptr_t offset) 789{ 790 tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index); 791 tcg_out_sib_offset(s, r, rm, index, shift, offset); 792} 793 794/* A simplification of the above with no index or shift. */ 795static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r, 796 int rm, intptr_t offset) 797{ 798 tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset); 799} 800 801static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r, 802 int v, int rm, intptr_t offset) 803{ 804 tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset); 805} 806 807/* Output an opcode with an expected reference to the constant pool. */ 808static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r) 809{ 810 tcg_out_opc(s, opc, r, 0, 0); 811 /* Absolute for 32-bit, pc-relative for 64-bit. */ 812 tcg_out8(s, LOWREGMASK(r) << 3 | 5); 813 tcg_out32(s, 0); 814} 815 816/* Output an opcode with an expected reference to the constant pool. */ 817static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r) 818{ 819 tcg_out_vex_opc(s, opc, r, 0, 0, 0); 820 /* Absolute for 32-bit, pc-relative for 64-bit. */ 821 tcg_out8(s, LOWREGMASK(r) << 3 | 5); 822 tcg_out32(s, 0); 823} 824 825/* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */ 826static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src) 827{ 828 /* Propagate an opcode prefix, such as P_REXW. */ 829 int ext = subop & ~0x7; 830 subop &= 0x7; 831 832 tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src); 833} 834 835static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 836{ 837 int rexw = 0; 838 839 if (arg == ret) { 840 return true; 841 } 842 switch (type) { 843 case TCG_TYPE_I64: 844 rexw = P_REXW; 845 /* fallthru */ 846 case TCG_TYPE_I32: 847 if (ret < 16) { 848 if (arg < 16) { 849 tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg); 850 } else { 851 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret); 852 } 853 } else { 854 if (arg < 16) { 855 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg); 856 } else { 857 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg); 858 } 859 } 860 break; 861 862 case TCG_TYPE_V64: 863 tcg_debug_assert(ret >= 16 && arg >= 16); 864 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg); 865 break; 866 case TCG_TYPE_V128: 867 tcg_debug_assert(ret >= 16 && arg >= 16); 868 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg); 869 break; 870 case TCG_TYPE_V256: 871 tcg_debug_assert(ret >= 16 && arg >= 16); 872 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg); 873 break; 874 875 default: 876 g_assert_not_reached(); 877 } 878 return true; 879} 880 881static const int avx2_dup_insn[4] = { 882 OPC_VPBROADCASTB, OPC_VPBROADCASTW, 883 OPC_VPBROADCASTD, OPC_VPBROADCASTQ, 884}; 885 886static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 887 TCGReg r, TCGReg a) 888{ 889 if (have_avx2) { 890 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); 891 tcg_out_vex_modrm(s, avx2_dup_insn[vece] + vex_l, r, 0, a); 892 } else { 893 switch (vece) { 894 case MO_8: 895 /* ??? With zero in a register, use PSHUFB. */ 896 tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a); 897 a = r; 898 /* FALLTHRU */ 899 case MO_16: 900 tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a); 901 a = r; 902 /* FALLTHRU */ 903 case MO_32: 904 tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a); 905 /* imm8 operand: all output lanes selected from input lane 0. */ 906 tcg_out8(s, 0); 907 break; 908 case MO_64: 909 tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a); 910 break; 911 default: 912 g_assert_not_reached(); 913 } 914 } 915 return true; 916} 917 918static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 919 TCGReg r, TCGReg base, intptr_t offset) 920{ 921 if (have_avx2) { 922 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); 923 tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l, 924 r, 0, base, offset); 925 } else { 926 switch (vece) { 927 case MO_64: 928 tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset); 929 break; 930 case MO_32: 931 tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset); 932 break; 933 case MO_16: 934 tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset); 935 tcg_out8(s, 0); /* imm8 */ 936 tcg_out_dup_vec(s, type, vece, r, r); 937 break; 938 case MO_8: 939 tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset); 940 tcg_out8(s, 0); /* imm8 */ 941 tcg_out_dup_vec(s, type, vece, r, r); 942 break; 943 default: 944 g_assert_not_reached(); 945 } 946 } 947 return true; 948} 949 950static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 951 TCGReg ret, int64_t arg) 952{ 953 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); 954 955 if (arg == 0) { 956 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret); 957 return; 958 } 959 if (arg == -1) { 960 tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret); 961 return; 962 } 963 964 if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) { 965 if (have_avx2) { 966 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret); 967 } else { 968 tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret); 969 } 970 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0); 971 } else { 972 if (type == TCG_TYPE_V64) { 973 tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret); 974 } else if (have_avx2) { 975 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret); 976 } else { 977 tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret); 978 } 979 if (TCG_TARGET_REG_BITS == 64) { 980 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4); 981 } else { 982 new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32); 983 } 984 } 985} 986 987static void tcg_out_movi_vec(TCGContext *s, TCGType type, 988 TCGReg ret, tcg_target_long arg) 989{ 990 if (arg == 0) { 991 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret); 992 return; 993 } 994 if (arg == -1) { 995 tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret); 996 return; 997 } 998 999 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW); 1000 tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret); 1001 if (TCG_TARGET_REG_BITS == 64) { 1002 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4); 1003 } else { 1004 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0); 1005 } 1006} 1007 1008static void tcg_out_movi_int(TCGContext *s, TCGType type, 1009 TCGReg ret, tcg_target_long arg) 1010{ 1011 tcg_target_long diff; 1012 1013 if (arg == 0) { 1014 tgen_arithr(s, ARITH_XOR, ret, ret); 1015 return; 1016 } 1017 if (arg == (uint32_t)arg || type == TCG_TYPE_I32) { 1018 tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0); 1019 tcg_out32(s, arg); 1020 return; 1021 } 1022 if (arg == (int32_t)arg) { 1023 tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret); 1024 tcg_out32(s, arg); 1025 return; 1026 } 1027 1028 /* Try a 7 byte pc-relative lea before the 10 byte movq. */ 1029 diff = tcg_pcrel_diff(s, (const void *)arg) - 7; 1030 if (diff == (int32_t)diff) { 1031 tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0); 1032 tcg_out8(s, (LOWREGMASK(ret) << 3) | 5); 1033 tcg_out32(s, diff); 1034 return; 1035 } 1036 1037 tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0); 1038 tcg_out64(s, arg); 1039} 1040 1041static void tcg_out_movi(TCGContext *s, TCGType type, 1042 TCGReg ret, tcg_target_long arg) 1043{ 1044 switch (type) { 1045 case TCG_TYPE_I32: 1046#if TCG_TARGET_REG_BITS == 64 1047 case TCG_TYPE_I64: 1048#endif 1049 if (ret < 16) { 1050 tcg_out_movi_int(s, type, ret, arg); 1051 } else { 1052 tcg_out_movi_vec(s, type, ret, arg); 1053 } 1054 break; 1055 default: 1056 g_assert_not_reached(); 1057 } 1058} 1059 1060static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) 1061{ 1062 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1063 tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2); 1064 return true; 1065} 1066 1067static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, 1068 tcg_target_long imm) 1069{ 1070 /* This function is only used for passing structs by reference. */ 1071 tcg_debug_assert(imm == (int32_t)imm); 1072 tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm); 1073} 1074 1075static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val) 1076{ 1077 if (val == (int8_t)val) { 1078 tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0); 1079 tcg_out8(s, val); 1080 } else if (val == (int32_t)val) { 1081 tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0); 1082 tcg_out32(s, val); 1083 } else { 1084 g_assert_not_reached(); 1085 } 1086} 1087 1088static inline void tcg_out_mb(TCGContext *s, TCGArg a0) 1089{ 1090 /* Given the strength of x86 memory ordering, we only need care for 1091 store-load ordering. Experimentally, "lock orl $0,0(%esp)" is 1092 faster than "mfence", so don't bother with the sse insn. */ 1093 if (a0 & TCG_MO_ST_LD) { 1094 tcg_out8(s, 0xf0); 1095 tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0); 1096 tcg_out8(s, 0); 1097 } 1098} 1099 1100static inline void tcg_out_push(TCGContext *s, int reg) 1101{ 1102 tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0); 1103} 1104 1105static inline void tcg_out_pop(TCGContext *s, int reg) 1106{ 1107 tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0); 1108} 1109 1110static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, 1111 TCGReg arg1, intptr_t arg2) 1112{ 1113 switch (type) { 1114 case TCG_TYPE_I32: 1115 if (ret < 16) { 1116 tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2); 1117 } else { 1118 tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2); 1119 } 1120 break; 1121 case TCG_TYPE_I64: 1122 if (ret < 16) { 1123 tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2); 1124 break; 1125 } 1126 /* FALLTHRU */ 1127 case TCG_TYPE_V64: 1128 /* There is no instruction that can validate 8-byte alignment. */ 1129 tcg_debug_assert(ret >= 16); 1130 tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2); 1131 break; 1132 case TCG_TYPE_V128: 1133 /* 1134 * The gvec infrastructure is asserts that v128 vector loads 1135 * and stores use a 16-byte aligned offset. Validate that the 1136 * final pointer is aligned by using an insn that will SIGSEGV. 1137 */ 1138 tcg_debug_assert(ret >= 16); 1139 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2); 1140 break; 1141 case TCG_TYPE_V256: 1142 /* 1143 * The gvec infrastructure only requires 16-byte alignment, 1144 * so here we must use an unaligned load. 1145 */ 1146 tcg_debug_assert(ret >= 16); 1147 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL, 1148 ret, 0, arg1, arg2); 1149 break; 1150 default: 1151 g_assert_not_reached(); 1152 } 1153} 1154 1155static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, 1156 TCGReg arg1, intptr_t arg2) 1157{ 1158 switch (type) { 1159 case TCG_TYPE_I32: 1160 if (arg < 16) { 1161 tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2); 1162 } else { 1163 tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2); 1164 } 1165 break; 1166 case TCG_TYPE_I64: 1167 if (arg < 16) { 1168 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2); 1169 break; 1170 } 1171 /* FALLTHRU */ 1172 case TCG_TYPE_V64: 1173 /* There is no instruction that can validate 8-byte alignment. */ 1174 tcg_debug_assert(arg >= 16); 1175 tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2); 1176 break; 1177 case TCG_TYPE_V128: 1178 /* 1179 * The gvec infrastructure is asserts that v128 vector loads 1180 * and stores use a 16-byte aligned offset. Validate that the 1181 * final pointer is aligned by using an insn that will SIGSEGV. 1182 * 1183 * This specific instance is also used by TCG_CALL_RET_BY_VEC, 1184 * for _WIN64, which must have SSE2 but may not have AVX. 1185 */ 1186 tcg_debug_assert(arg >= 16); 1187 if (have_avx1) { 1188 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2); 1189 } else { 1190 tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2); 1191 } 1192 break; 1193 case TCG_TYPE_V256: 1194 /* 1195 * The gvec infrastructure only requires 16-byte alignment, 1196 * so here we must use an unaligned store. 1197 */ 1198 tcg_debug_assert(arg >= 16); 1199 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL, 1200 arg, 0, arg1, arg2); 1201 break; 1202 default: 1203 g_assert_not_reached(); 1204 } 1205} 1206 1207static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 1208 TCGReg base, intptr_t ofs) 1209{ 1210 int rexw = 0; 1211 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) { 1212 if (val != (int32_t)val) { 1213 return false; 1214 } 1215 rexw = P_REXW; 1216 } else if (type != TCG_TYPE_I32) { 1217 return false; 1218 } 1219 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs); 1220 tcg_out32(s, val); 1221 return true; 1222} 1223 1224static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count) 1225{ 1226 /* Propagate an opcode prefix, such as P_DATA16. */ 1227 int ext = subopc & ~0x7; 1228 subopc &= 0x7; 1229 1230 if (count == 1) { 1231 tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg); 1232 } else { 1233 tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg); 1234 tcg_out8(s, count); 1235 } 1236} 1237 1238static inline void tcg_out_bswap32(TCGContext *s, int reg) 1239{ 1240 tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0); 1241} 1242 1243static inline void tcg_out_rolw_8(TCGContext *s, int reg) 1244{ 1245 tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8); 1246} 1247 1248static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src) 1249{ 1250 /* movzbl */ 1251 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64); 1252 tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src); 1253} 1254 1255static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) 1256{ 1257 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1258 /* movsbl */ 1259 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64); 1260 tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src); 1261} 1262 1263static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src) 1264{ 1265 /* movzwl */ 1266 tcg_out_modrm(s, OPC_MOVZWL, dest, src); 1267} 1268 1269static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) 1270{ 1271 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1272 /* movsw[lq] */ 1273 tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src); 1274} 1275 1276static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src) 1277{ 1278 /* 32-bit mov zero extends. */ 1279 tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src); 1280} 1281 1282static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src) 1283{ 1284 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 1285 tcg_out_modrm(s, OPC_MOVSLQ, dest, src); 1286} 1287 1288static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src) 1289{ 1290 tcg_out_ext32s(s, dest, src); 1291} 1292 1293static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src) 1294{ 1295 if (dest != src) { 1296 tcg_out_ext32u(s, dest, src); 1297 } 1298} 1299 1300static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src) 1301{ 1302 tcg_out_ext32u(s, dest, src); 1303} 1304 1305static inline void tcg_out_bswap64(TCGContext *s, int reg) 1306{ 1307 tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0); 1308} 1309 1310static void tgen_arithi(TCGContext *s, int c, int r0, 1311 tcg_target_long val, int cf) 1312{ 1313 int rexw = 0; 1314 1315 if (TCG_TARGET_REG_BITS == 64) { 1316 rexw = c & -8; 1317 c &= 7; 1318 } 1319 1320 switch (c) { 1321 case ARITH_ADD: 1322 case ARITH_SUB: 1323 if (!cf) { 1324 /* 1325 * ??? While INC is 2 bytes shorter than ADDL $1, they also induce 1326 * partial flags update stalls on Pentium4 and are not recommended 1327 * by current Intel optimization manuals. 1328 */ 1329 if (val == 1 || val == -1) { 1330 int is_inc = (c == ARITH_ADD) ^ (val < 0); 1331 if (TCG_TARGET_REG_BITS == 64) { 1332 /* 1333 * The single-byte increment encodings are re-tasked 1334 * as the REX prefixes. Use the MODRM encoding. 1335 */ 1336 tcg_out_modrm(s, OPC_GRP5 + rexw, 1337 (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0); 1338 } else { 1339 tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0); 1340 } 1341 return; 1342 } 1343 if (val == 128) { 1344 /* 1345 * Facilitate using an 8-bit immediate. Carry is inverted 1346 * by this transformation, so do it only if cf == 0. 1347 */ 1348 c ^= ARITH_ADD ^ ARITH_SUB; 1349 val = -128; 1350 } 1351 } 1352 break; 1353 1354 case ARITH_AND: 1355 if (TCG_TARGET_REG_BITS == 64) { 1356 if (val == 0xffffffffu) { 1357 tcg_out_ext32u(s, r0, r0); 1358 return; 1359 } 1360 if (val == (uint32_t)val) { 1361 /* AND with no high bits set can use a 32-bit operation. */ 1362 rexw = 0; 1363 } 1364 } 1365 if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) { 1366 tcg_out_ext8u(s, r0, r0); 1367 return; 1368 } 1369 if (val == 0xffffu) { 1370 tcg_out_ext16u(s, r0, r0); 1371 return; 1372 } 1373 break; 1374 1375 case ARITH_OR: 1376 case ARITH_XOR: 1377 if (val >= 0x80 && val <= 0xff 1378 && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) { 1379 tcg_out_modrm(s, OPC_ARITH_EbIb + P_REXB_RM, c, r0); 1380 tcg_out8(s, val); 1381 return; 1382 } 1383 break; 1384 } 1385 1386 if (val == (int8_t)val) { 1387 tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0); 1388 tcg_out8(s, val); 1389 return; 1390 } 1391 if (rexw == 0 || val == (int32_t)val) { 1392 tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0); 1393 tcg_out32(s, val); 1394 return; 1395 } 1396 1397 g_assert_not_reached(); 1398} 1399 1400static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val) 1401{ 1402 if (val != 0) { 1403 tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0); 1404 } 1405} 1406 1407/* Set SMALL to force a short forward branch. */ 1408static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small) 1409{ 1410 int32_t val, val1; 1411 1412 if (l->has_value) { 1413 val = tcg_pcrel_diff(s, l->u.value_ptr); 1414 val1 = val - 2; 1415 if ((int8_t)val1 == val1) { 1416 if (opc == -1) { 1417 tcg_out8(s, OPC_JMP_short); 1418 } else { 1419 tcg_out8(s, OPC_JCC_short + opc); 1420 } 1421 tcg_out8(s, val1); 1422 } else { 1423 tcg_debug_assert(!small); 1424 if (opc == -1) { 1425 tcg_out8(s, OPC_JMP_long); 1426 tcg_out32(s, val - 5); 1427 } else { 1428 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0); 1429 tcg_out32(s, val - 6); 1430 } 1431 } 1432 } else if (small) { 1433 if (opc == -1) { 1434 tcg_out8(s, OPC_JMP_short); 1435 } else { 1436 tcg_out8(s, OPC_JCC_short + opc); 1437 } 1438 tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1); 1439 s->code_ptr += 1; 1440 } else { 1441 if (opc == -1) { 1442 tcg_out8(s, OPC_JMP_long); 1443 } else { 1444 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0); 1445 } 1446 tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4); 1447 s->code_ptr += 4; 1448 } 1449} 1450 1451static void tcg_out_cmp(TCGContext *s, TCGArg arg1, TCGArg arg2, 1452 int const_arg2, int rexw) 1453{ 1454 if (const_arg2) { 1455 if (arg2 == 0) { 1456 /* test r, r */ 1457 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1); 1458 } else { 1459 tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0); 1460 } 1461 } else { 1462 tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2); 1463 } 1464} 1465 1466static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond, 1467 TCGArg arg1, TCGArg arg2, int const_arg2, 1468 TCGLabel *label, bool small) 1469{ 1470 tcg_out_cmp(s, arg1, arg2, const_arg2, rexw); 1471 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small); 1472} 1473 1474#if TCG_TARGET_REG_BITS == 32 1475static void tcg_out_brcond2(TCGContext *s, const TCGArg *args, 1476 const int *const_args, bool small) 1477{ 1478 TCGLabel *label_next = gen_new_label(); 1479 TCGLabel *label_this = arg_label(args[5]); 1480 1481 switch(args[4]) { 1482 case TCG_COND_EQ: 1483 tcg_out_brcond(s, 0, TCG_COND_NE, args[0], args[2], const_args[2], 1484 label_next, 1); 1485 tcg_out_brcond(s, 0, TCG_COND_EQ, args[1], args[3], const_args[3], 1486 label_this, small); 1487 break; 1488 case TCG_COND_NE: 1489 tcg_out_brcond(s, 0, TCG_COND_NE, args[0], args[2], const_args[2], 1490 label_this, small); 1491 tcg_out_brcond(s, 0, TCG_COND_NE, args[1], args[3], const_args[3], 1492 label_this, small); 1493 break; 1494 case TCG_COND_LT: 1495 tcg_out_brcond(s, 0, TCG_COND_LT, args[1], args[3], const_args[3], 1496 label_this, small); 1497 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1498 tcg_out_brcond(s, 0, TCG_COND_LTU, args[0], args[2], const_args[2], 1499 label_this, small); 1500 break; 1501 case TCG_COND_LE: 1502 tcg_out_brcond(s, 0, TCG_COND_LT, args[1], args[3], const_args[3], 1503 label_this, small); 1504 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1505 tcg_out_brcond(s, 0, TCG_COND_LEU, args[0], args[2], const_args[2], 1506 label_this, small); 1507 break; 1508 case TCG_COND_GT: 1509 tcg_out_brcond(s, 0, TCG_COND_GT, args[1], args[3], const_args[3], 1510 label_this, small); 1511 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1512 tcg_out_brcond(s, 0, TCG_COND_GTU, args[0], args[2], const_args[2], 1513 label_this, small); 1514 break; 1515 case TCG_COND_GE: 1516 tcg_out_brcond(s, 0, TCG_COND_GT, args[1], args[3], const_args[3], 1517 label_this, small); 1518 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1519 tcg_out_brcond(s, 0, TCG_COND_GEU, args[0], args[2], const_args[2], 1520 label_this, small); 1521 break; 1522 case TCG_COND_LTU: 1523 tcg_out_brcond(s, 0, TCG_COND_LTU, args[1], args[3], const_args[3], 1524 label_this, small); 1525 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1526 tcg_out_brcond(s, 0, TCG_COND_LTU, args[0], args[2], const_args[2], 1527 label_this, small); 1528 break; 1529 case TCG_COND_LEU: 1530 tcg_out_brcond(s, 0, TCG_COND_LTU, args[1], args[3], const_args[3], 1531 label_this, small); 1532 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1533 tcg_out_brcond(s, 0, TCG_COND_LEU, args[0], args[2], const_args[2], 1534 label_this, small); 1535 break; 1536 case TCG_COND_GTU: 1537 tcg_out_brcond(s, 0, TCG_COND_GTU, args[1], args[3], const_args[3], 1538 label_this, small); 1539 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1540 tcg_out_brcond(s, 0, TCG_COND_GTU, args[0], args[2], const_args[2], 1541 label_this, small); 1542 break; 1543 case TCG_COND_GEU: 1544 tcg_out_brcond(s, 0, TCG_COND_GTU, args[1], args[3], const_args[3], 1545 label_this, small); 1546 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1547 tcg_out_brcond(s, 0, TCG_COND_GEU, args[0], args[2], const_args[2], 1548 label_this, small); 1549 break; 1550 default: 1551 g_assert_not_reached(); 1552 } 1553 tcg_out_label(s, label_next); 1554} 1555#endif 1556 1557static void tcg_out_setcond(TCGContext *s, int rexw, TCGCond cond, 1558 TCGArg dest, TCGArg arg1, TCGArg arg2, 1559 int const_arg2, bool neg) 1560{ 1561 bool inv = false; 1562 bool cleared; 1563 1564 switch (cond) { 1565 case TCG_COND_NE: 1566 inv = true; 1567 /* fall through */ 1568 case TCG_COND_EQ: 1569 /* If arg2 is 0, convert to LTU/GEU vs 1. */ 1570 if (const_arg2 && arg2 == 0) { 1571 arg2 = 1; 1572 goto do_ltu; 1573 } 1574 break; 1575 1576 case TCG_COND_LEU: 1577 inv = true; 1578 /* fall through */ 1579 case TCG_COND_GTU: 1580 /* If arg2 is a register, swap for LTU/GEU. */ 1581 if (!const_arg2) { 1582 TCGReg t = arg1; 1583 arg1 = arg2; 1584 arg2 = t; 1585 goto do_ltu; 1586 } 1587 break; 1588 1589 case TCG_COND_GEU: 1590 inv = true; 1591 /* fall through */ 1592 case TCG_COND_LTU: 1593 do_ltu: 1594 /* 1595 * Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU. 1596 * We can then use NEG or INC to produce the desired result. 1597 * This is always smaller than the SETCC expansion. 1598 */ 1599 tcg_out_cmp(s, arg1, arg2, const_arg2, rexw); 1600 1601 /* X - X - C = -C = (C ? -1 : 0) */ 1602 tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest); 1603 if (inv && neg) { 1604 /* ~(C ? -1 : 0) = (C ? 0 : -1) */ 1605 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest); 1606 } else if (inv) { 1607 /* (C ? -1 : 0) + 1 = (C ? 0 : 1) */ 1608 tgen_arithi(s, ARITH_ADD, dest, 1, 0); 1609 } else if (!neg) { 1610 /* -(C ? -1 : 0) = (C ? 1 : 0) */ 1611 tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest); 1612 } 1613 return; 1614 1615 case TCG_COND_GE: 1616 inv = true; 1617 /* fall through */ 1618 case TCG_COND_LT: 1619 /* If arg2 is 0, extract the sign bit. */ 1620 if (const_arg2 && arg2 == 0) { 1621 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, dest, arg1); 1622 if (inv) { 1623 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest); 1624 } 1625 tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw, 1626 dest, rexw ? 63 : 31); 1627 return; 1628 } 1629 break; 1630 1631 default: 1632 break; 1633 } 1634 1635 /* 1636 * If dest does not overlap the inputs, clearing it first is preferred. 1637 * The XOR breaks any false dependency for the low-byte write to dest, 1638 * and is also one byte smaller than MOVZBL. 1639 */ 1640 cleared = false; 1641 if (dest != arg1 && (const_arg2 || dest != arg2)) { 1642 tgen_arithr(s, ARITH_XOR, dest, dest); 1643 cleared = true; 1644 } 1645 1646 tcg_out_cmp(s, arg1, arg2, const_arg2, rexw); 1647 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest); 1648 1649 if (!cleared) { 1650 tcg_out_ext8u(s, dest, dest); 1651 } 1652 if (neg) { 1653 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest); 1654 } 1655} 1656 1657#if TCG_TARGET_REG_BITS == 32 1658static void tcg_out_setcond2(TCGContext *s, const TCGArg *args, 1659 const int *const_args) 1660{ 1661 TCGArg new_args[6]; 1662 TCGLabel *label_true, *label_over; 1663 1664 memcpy(new_args, args+1, 5*sizeof(TCGArg)); 1665 1666 if (args[0] == args[1] || args[0] == args[2] 1667 || (!const_args[3] && args[0] == args[3]) 1668 || (!const_args[4] && args[0] == args[4])) { 1669 /* When the destination overlaps with one of the argument 1670 registers, don't do anything tricky. */ 1671 label_true = gen_new_label(); 1672 label_over = gen_new_label(); 1673 1674 new_args[5] = label_arg(label_true); 1675 tcg_out_brcond2(s, new_args, const_args+1, 1); 1676 1677 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0); 1678 tcg_out_jxx(s, JCC_JMP, label_over, 1); 1679 tcg_out_label(s, label_true); 1680 1681 tcg_out_movi(s, TCG_TYPE_I32, args[0], 1); 1682 tcg_out_label(s, label_over); 1683 } else { 1684 /* When the destination does not overlap one of the arguments, 1685 clear the destination first, jump if cond false, and emit an 1686 increment in the true case. This results in smaller code. */ 1687 1688 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0); 1689 1690 label_over = gen_new_label(); 1691 new_args[4] = tcg_invert_cond(new_args[4]); 1692 new_args[5] = label_arg(label_over); 1693 tcg_out_brcond2(s, new_args, const_args+1, 1); 1694 1695 tgen_arithi(s, ARITH_ADD, args[0], 1, 0); 1696 tcg_out_label(s, label_over); 1697 } 1698} 1699#endif 1700 1701static void tcg_out_cmov(TCGContext *s, TCGCond cond, int rexw, 1702 TCGReg dest, TCGReg v1) 1703{ 1704 if (have_cmov) { 1705 tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond] | rexw, dest, v1); 1706 } else { 1707 TCGLabel *over = gen_new_label(); 1708 tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1); 1709 tcg_out_mov(s, TCG_TYPE_I32, dest, v1); 1710 tcg_out_label(s, over); 1711 } 1712} 1713 1714static void tcg_out_movcond(TCGContext *s, int rexw, TCGCond cond, 1715 TCGReg dest, TCGReg c1, TCGArg c2, int const_c2, 1716 TCGReg v1) 1717{ 1718 tcg_out_cmp(s, c1, c2, const_c2, rexw); 1719 tcg_out_cmov(s, cond, rexw, dest, v1); 1720} 1721 1722static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1, 1723 TCGArg arg2, bool const_a2) 1724{ 1725 if (have_bmi1) { 1726 tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1); 1727 if (const_a2) { 1728 tcg_debug_assert(arg2 == (rexw ? 64 : 32)); 1729 } else { 1730 tcg_debug_assert(dest != arg2); 1731 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2); 1732 } 1733 } else { 1734 tcg_debug_assert(dest != arg2); 1735 tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1); 1736 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2); 1737 } 1738} 1739 1740static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1, 1741 TCGArg arg2, bool const_a2) 1742{ 1743 if (have_lzcnt) { 1744 tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1); 1745 if (const_a2) { 1746 tcg_debug_assert(arg2 == (rexw ? 64 : 32)); 1747 } else { 1748 tcg_debug_assert(dest != arg2); 1749 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2); 1750 } 1751 } else { 1752 tcg_debug_assert(!const_a2); 1753 tcg_debug_assert(dest != arg1); 1754 tcg_debug_assert(dest != arg2); 1755 1756 /* Recall that the output of BSR is the index not the count. */ 1757 tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1); 1758 tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0); 1759 1760 /* Since we have destroyed the flags from BSR, we have to re-test. */ 1761 tcg_out_cmp(s, arg1, 0, 1, rexw); 1762 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2); 1763 } 1764} 1765 1766static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest) 1767{ 1768 intptr_t disp = tcg_pcrel_diff(s, dest) - 5; 1769 1770 if (disp == (int32_t)disp) { 1771 tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0); 1772 tcg_out32(s, disp); 1773 } else { 1774 /* rip-relative addressing into the constant pool. 1775 This is 6 + 8 = 14 bytes, as compared to using an 1776 immediate load 10 + 6 = 16 bytes, plus we may 1777 be able to re-use the pool constant for more calls. */ 1778 tcg_out_opc(s, OPC_GRP5, 0, 0, 0); 1779 tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5); 1780 new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4); 1781 tcg_out32(s, 0); 1782 } 1783} 1784 1785static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest, 1786 const TCGHelperInfo *info) 1787{ 1788 tcg_out_branch(s, 1, dest); 1789 1790#ifndef _WIN32 1791 if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) { 1792 /* 1793 * The sysv i386 abi for struct return places a reference as the 1794 * first argument of the stack, and pops that argument with the 1795 * return statement. Since we want to retain the aligned stack 1796 * pointer for the callee, we do not want to actually push that 1797 * argument before the call but rely on the normal store to the 1798 * stack slot. But we do need to compensate for the pop in order 1799 * to reset our correct stack pointer value. 1800 * Pushing a garbage value back onto the stack is quickest. 1801 */ 1802 tcg_out_push(s, TCG_REG_EAX); 1803 } 1804#endif 1805} 1806 1807static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest) 1808{ 1809 tcg_out_branch(s, 0, dest); 1810} 1811 1812static void tcg_out_nopn(TCGContext *s, int n) 1813{ 1814 int i; 1815 /* Emit 1 or 2 operand size prefixes for the standard one byte nop, 1816 * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the 1817 * duplicate prefix, and all of the interesting recent cores can 1818 * decode and discard the duplicates in a single cycle. 1819 */ 1820 tcg_debug_assert(n >= 1); 1821 for (i = 1; i < n; ++i) { 1822 tcg_out8(s, 0x66); 1823 } 1824 tcg_out8(s, 0x90); 1825} 1826 1827/* Test register R vs immediate bits I, setting Z flag for EQ/NE. */ 1828static void __attribute__((unused)) 1829tcg_out_testi(TCGContext *s, TCGReg r, uint32_t i) 1830{ 1831 /* 1832 * This is used for testing alignment, so we can usually use testb. 1833 * For i686, we have to use testl for %esi/%edi. 1834 */ 1835 if (i <= 0xff && (TCG_TARGET_REG_BITS == 64 || r < 4)) { 1836 tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, r); 1837 tcg_out8(s, i); 1838 } else { 1839 tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_TESTi, r); 1840 tcg_out32(s, i); 1841 } 1842} 1843 1844typedef struct { 1845 TCGReg base; 1846 int index; 1847 int ofs; 1848 int seg; 1849 TCGAtomAlign aa; 1850} HostAddress; 1851 1852bool tcg_target_has_memory_bswap(MemOp memop) 1853{ 1854 TCGAtomAlign aa; 1855 1856 if (!have_movbe) { 1857 return false; 1858 } 1859 if ((memop & MO_SIZE) < MO_128) { 1860 return true; 1861 } 1862 1863 /* 1864 * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA, 1865 * but do allow a pair of 64-bit operations, i.e. MOVBEQ. 1866 */ 1867 aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true); 1868 return aa.atom < MO_128; 1869} 1870 1871/* 1872 * Because i686 has no register parameters and because x86_64 has xchg 1873 * to handle addr/data register overlap, we have placed all input arguments 1874 * before we need might need a scratch reg. 1875 * 1876 * Even then, a scratch is only needed for l->raddr. Rather than expose 1877 * a general-purpose scratch when we don't actually know it's available, 1878 * use the ra_gen hook to load into RAX if needed. 1879 */ 1880#if TCG_TARGET_REG_BITS == 64 1881static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg) 1882{ 1883 if (arg < 0) { 1884 arg = TCG_REG_RAX; 1885 } 1886 tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr); 1887 return arg; 1888} 1889static const TCGLdstHelperParam ldst_helper_param = { 1890 .ra_gen = ldst_ra_gen 1891}; 1892#else 1893static const TCGLdstHelperParam ldst_helper_param = { }; 1894#endif 1895 1896static void tcg_out_vec_to_pair(TCGContext *s, TCGType type, 1897 TCGReg l, TCGReg h, TCGReg v) 1898{ 1899 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1900 1901 /* vpmov{d,q} %v, %l */ 1902 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l); 1903 /* vpextr{d,q} $1, %v, %h */ 1904 tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h); 1905 tcg_out8(s, 1); 1906} 1907 1908static void tcg_out_pair_to_vec(TCGContext *s, TCGType type, 1909 TCGReg v, TCGReg l, TCGReg h) 1910{ 1911 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1912 1913 /* vmov{d,q} %l, %v */ 1914 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l); 1915 /* vpinsr{d,q} $1, %h, %v, %v */ 1916 tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h); 1917 tcg_out8(s, 1); 1918} 1919 1920/* 1921 * Generate code for the slow path for a load at the end of block 1922 */ 1923static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 1924{ 1925 MemOp opc = get_memop(l->oi); 1926 tcg_insn_unit **label_ptr = &l->label_ptr[0]; 1927 1928 /* resolve label address */ 1929 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4); 1930 if (label_ptr[1]) { 1931 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4); 1932 } 1933 1934 tcg_out_ld_helper_args(s, l, &ldst_helper_param); 1935 tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]); 1936 tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param); 1937 1938 tcg_out_jmp(s, l->raddr); 1939 return true; 1940} 1941 1942/* 1943 * Generate code for the slow path for a store at the end of block 1944 */ 1945static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 1946{ 1947 MemOp opc = get_memop(l->oi); 1948 tcg_insn_unit **label_ptr = &l->label_ptr[0]; 1949 1950 /* resolve label address */ 1951 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4); 1952 if (label_ptr[1]) { 1953 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4); 1954 } 1955 1956 tcg_out_st_helper_args(s, l, &ldst_helper_param); 1957 tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]); 1958 1959 tcg_out_jmp(s, l->raddr); 1960 return true; 1961} 1962 1963#ifdef CONFIG_USER_ONLY 1964static HostAddress x86_guest_base = { 1965 .index = -1 1966}; 1967 1968#if defined(__x86_64__) && defined(__linux__) 1969# include <asm/prctl.h> 1970# include <sys/prctl.h> 1971int arch_prctl(int code, unsigned long addr); 1972static inline int setup_guest_base_seg(void) 1973{ 1974 if (arch_prctl(ARCH_SET_GS, guest_base) == 0) { 1975 return P_GS; 1976 } 1977 return 0; 1978} 1979#define setup_guest_base_seg setup_guest_base_seg 1980#elif defined(__x86_64__) && \ 1981 (defined (__FreeBSD__) || defined (__FreeBSD_kernel__)) 1982# include <machine/sysarch.h> 1983static inline int setup_guest_base_seg(void) 1984{ 1985 if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) { 1986 return P_GS; 1987 } 1988 return 0; 1989} 1990#define setup_guest_base_seg setup_guest_base_seg 1991#endif 1992#else 1993# define x86_guest_base (*(HostAddress *)({ qemu_build_not_reached(); NULL; })) 1994#endif /* CONFIG_USER_ONLY */ 1995#ifndef setup_guest_base_seg 1996# define setup_guest_base_seg() 0 1997#endif 1998 1999#define MIN_TLB_MASK_TABLE_OFS INT_MIN 2000 2001/* 2002 * For softmmu, perform the TLB load and compare. 2003 * For useronly, perform any required alignment tests. 2004 * In both cases, return a TCGLabelQemuLdst structure if the slow path 2005 * is required and fill in @h with the host address for the fast path. 2006 */ 2007static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h, 2008 TCGReg addrlo, TCGReg addrhi, 2009 MemOpIdx oi, bool is_ld) 2010{ 2011 TCGLabelQemuLdst *ldst = NULL; 2012 MemOp opc = get_memop(oi); 2013 MemOp s_bits = opc & MO_SIZE; 2014 unsigned a_mask; 2015 2016 if (tcg_use_softmmu) { 2017 h->index = TCG_REG_L0; 2018 h->ofs = 0; 2019 h->seg = 0; 2020 } else { 2021 *h = x86_guest_base; 2022 } 2023 h->base = addrlo; 2024 h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128); 2025 a_mask = (1 << h->aa.align) - 1; 2026 2027 if (tcg_use_softmmu) { 2028 int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read) 2029 : offsetof(CPUTLBEntry, addr_write); 2030 TCGType ttype = TCG_TYPE_I32; 2031 TCGType tlbtype = TCG_TYPE_I32; 2032 int trexw = 0, hrexw = 0, tlbrexw = 0; 2033 unsigned mem_index = get_mmuidx(oi); 2034 unsigned s_mask = (1 << s_bits) - 1; 2035 int fast_ofs = tlb_mask_table_ofs(s, mem_index); 2036 int tlb_mask; 2037 2038 ldst = new_ldst_label(s); 2039 ldst->is_ld = is_ld; 2040 ldst->oi = oi; 2041 ldst->addrlo_reg = addrlo; 2042 ldst->addrhi_reg = addrhi; 2043 2044 if (TCG_TARGET_REG_BITS == 64) { 2045 ttype = s->addr_type; 2046 trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW); 2047 if (TCG_TYPE_PTR == TCG_TYPE_I64) { 2048 hrexw = P_REXW; 2049 if (s->page_bits + s->tlb_dyn_max_bits > 32) { 2050 tlbtype = TCG_TYPE_I64; 2051 tlbrexw = P_REXW; 2052 } 2053 } 2054 } 2055 2056 tcg_out_mov(s, tlbtype, TCG_REG_L0, addrlo); 2057 tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0, 2058 s->page_bits - CPU_TLB_ENTRY_BITS); 2059 2060 tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0, 2061 fast_ofs + offsetof(CPUTLBDescFast, mask)); 2062 2063 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0, 2064 fast_ofs + offsetof(CPUTLBDescFast, table)); 2065 2066 /* 2067 * If the required alignment is at least as large as the access, 2068 * simply copy the address and mask. For lesser alignments, 2069 * check that we don't cross pages for the complete access. 2070 */ 2071 if (a_mask >= s_mask) { 2072 tcg_out_mov(s, ttype, TCG_REG_L1, addrlo); 2073 } else { 2074 tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1, 2075 addrlo, s_mask - a_mask); 2076 } 2077 tlb_mask = s->page_mask | a_mask; 2078 tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0); 2079 2080 /* cmp 0(TCG_REG_L0), TCG_REG_L1 */ 2081 tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, 2082 TCG_REG_L1, TCG_REG_L0, cmp_ofs); 2083 2084 /* jne slow_path */ 2085 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); 2086 ldst->label_ptr[0] = s->code_ptr; 2087 s->code_ptr += 4; 2088 2089 if (TCG_TARGET_REG_BITS == 32 && s->addr_type == TCG_TYPE_I64) { 2090 /* cmp 4(TCG_REG_L0), addrhi */ 2091 tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, 2092 TCG_REG_L0, cmp_ofs + 4); 2093 2094 /* jne slow_path */ 2095 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); 2096 ldst->label_ptr[1] = s->code_ptr; 2097 s->code_ptr += 4; 2098 } 2099 2100 /* TLB Hit. */ 2101 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0, 2102 offsetof(CPUTLBEntry, addend)); 2103 } else if (a_mask) { 2104 ldst = new_ldst_label(s); 2105 2106 ldst->is_ld = is_ld; 2107 ldst->oi = oi; 2108 ldst->addrlo_reg = addrlo; 2109 ldst->addrhi_reg = addrhi; 2110 2111 tcg_out_testi(s, addrlo, a_mask); 2112 /* jne slow_path */ 2113 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); 2114 ldst->label_ptr[0] = s->code_ptr; 2115 s->code_ptr += 4; 2116 } 2117 2118 return ldst; 2119} 2120 2121static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, 2122 HostAddress h, TCGType type, MemOp memop) 2123{ 2124 bool use_movbe = false; 2125 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW); 2126 int movop = OPC_MOVL_GvEv; 2127 2128 /* Do big-endian loads with movbe. */ 2129 if (memop & MO_BSWAP) { 2130 tcg_debug_assert(have_movbe); 2131 use_movbe = true; 2132 movop = OPC_MOVBE_GyMy; 2133 } 2134 2135 switch (memop & MO_SSIZE) { 2136 case MO_UB: 2137 tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo, 2138 h.base, h.index, 0, h.ofs); 2139 break; 2140 case MO_SB: 2141 tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo, 2142 h.base, h.index, 0, h.ofs); 2143 break; 2144 case MO_UW: 2145 if (use_movbe) { 2146 /* There is no extending movbe; only low 16-bits are modified. */ 2147 if (datalo != h.base && datalo != h.index) { 2148 /* XOR breaks dependency chains. */ 2149 tgen_arithr(s, ARITH_XOR, datalo, datalo); 2150 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2151 datalo, h.base, h.index, 0, h.ofs); 2152 } else { 2153 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2154 datalo, h.base, h.index, 0, h.ofs); 2155 tcg_out_ext16u(s, datalo, datalo); 2156 } 2157 } else { 2158 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo, 2159 h.base, h.index, 0, h.ofs); 2160 } 2161 break; 2162 case MO_SW: 2163 if (use_movbe) { 2164 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2165 datalo, h.base, h.index, 0, h.ofs); 2166 tcg_out_ext16s(s, type, datalo, datalo); 2167 } else { 2168 tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg, 2169 datalo, h.base, h.index, 0, h.ofs); 2170 } 2171 break; 2172 case MO_UL: 2173 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2174 h.base, h.index, 0, h.ofs); 2175 break; 2176#if TCG_TARGET_REG_BITS == 64 2177 case MO_SL: 2178 if (use_movbe) { 2179 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo, 2180 h.base, h.index, 0, h.ofs); 2181 tcg_out_ext32s(s, datalo, datalo); 2182 } else { 2183 tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo, 2184 h.base, h.index, 0, h.ofs); 2185 } 2186 break; 2187#endif 2188 case MO_UQ: 2189 if (TCG_TARGET_REG_BITS == 64) { 2190 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2191 h.base, h.index, 0, h.ofs); 2192 break; 2193 } 2194 if (use_movbe) { 2195 TCGReg t = datalo; 2196 datalo = datahi; 2197 datahi = t; 2198 } 2199 if (h.base == datalo || h.index == datalo) { 2200 tcg_out_modrm_sib_offset(s, OPC_LEA, datahi, 2201 h.base, h.index, 0, h.ofs); 2202 tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0); 2203 tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4); 2204 } else { 2205 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2206 h.base, h.index, 0, h.ofs); 2207 tcg_out_modrm_sib_offset(s, movop + h.seg, datahi, 2208 h.base, h.index, 0, h.ofs + 4); 2209 } 2210 break; 2211 2212 case MO_128: 2213 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2214 2215 /* 2216 * Without 16-byte atomicity, use integer regs. 2217 * That is where we want the data, and it allows bswaps. 2218 */ 2219 if (h.aa.atom < MO_128) { 2220 if (use_movbe) { 2221 TCGReg t = datalo; 2222 datalo = datahi; 2223 datahi = t; 2224 } 2225 if (h.base == datalo || h.index == datalo) { 2226 tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi, 2227 h.base, h.index, 0, h.ofs); 2228 tcg_out_modrm_offset(s, movop + P_REXW + h.seg, 2229 datalo, datahi, 0); 2230 tcg_out_modrm_offset(s, movop + P_REXW + h.seg, 2231 datahi, datahi, 8); 2232 } else { 2233 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2234 h.base, h.index, 0, h.ofs); 2235 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi, 2236 h.base, h.index, 0, h.ofs + 8); 2237 } 2238 break; 2239 } 2240 2241 /* 2242 * With 16-byte atomicity, a vector load is required. 2243 * If we already have 16-byte alignment, then VMOVDQA always works. 2244 * Else if VMOVDQU has atomicity with dynamic alignment, use that. 2245 * Else use we require a runtime test for alignment for VMOVDQA; 2246 * use VMOVDQU on the unaligned nonatomic path for simplicity. 2247 */ 2248 if (h.aa.align >= MO_128) { 2249 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg, 2250 TCG_TMP_VEC, 0, 2251 h.base, h.index, 0, h.ofs); 2252 } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) { 2253 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg, 2254 TCG_TMP_VEC, 0, 2255 h.base, h.index, 0, h.ofs); 2256 } else { 2257 TCGLabel *l1 = gen_new_label(); 2258 TCGLabel *l2 = gen_new_label(); 2259 2260 tcg_out_testi(s, h.base, 15); 2261 tcg_out_jxx(s, JCC_JNE, l1, true); 2262 2263 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg, 2264 TCG_TMP_VEC, 0, 2265 h.base, h.index, 0, h.ofs); 2266 tcg_out_jxx(s, JCC_JMP, l2, true); 2267 2268 tcg_out_label(s, l1); 2269 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg, 2270 TCG_TMP_VEC, 0, 2271 h.base, h.index, 0, h.ofs); 2272 tcg_out_label(s, l2); 2273 } 2274 tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC); 2275 break; 2276 2277 default: 2278 g_assert_not_reached(); 2279 } 2280} 2281 2282static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi, 2283 TCGReg addrlo, TCGReg addrhi, 2284 MemOpIdx oi, TCGType data_type) 2285{ 2286 TCGLabelQemuLdst *ldst; 2287 HostAddress h; 2288 2289 ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, true); 2290 tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi)); 2291 2292 if (ldst) { 2293 ldst->type = data_type; 2294 ldst->datalo_reg = datalo; 2295 ldst->datahi_reg = datahi; 2296 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 2297 } 2298} 2299 2300static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, 2301 HostAddress h, MemOp memop) 2302{ 2303 bool use_movbe = false; 2304 int movop = OPC_MOVL_EvGv; 2305 2306 /* 2307 * Do big-endian stores with movbe or system-mode. 2308 * User-only without movbe will have its swapping done generically. 2309 */ 2310 if (memop & MO_BSWAP) { 2311 tcg_debug_assert(have_movbe); 2312 use_movbe = true; 2313 movop = OPC_MOVBE_MyGy; 2314 } 2315 2316 switch (memop & MO_SIZE) { 2317 case MO_8: 2318 /* This is handled with constraints on INDEX_op_qemu_st8_i32. */ 2319 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4); 2320 tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg, 2321 datalo, h.base, h.index, 0, h.ofs); 2322 break; 2323 case MO_16: 2324 tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo, 2325 h.base, h.index, 0, h.ofs); 2326 break; 2327 case MO_32: 2328 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2329 h.base, h.index, 0, h.ofs); 2330 break; 2331 case MO_64: 2332 if (TCG_TARGET_REG_BITS == 64) { 2333 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2334 h.base, h.index, 0, h.ofs); 2335 } else { 2336 if (use_movbe) { 2337 TCGReg t = datalo; 2338 datalo = datahi; 2339 datahi = t; 2340 } 2341 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2342 h.base, h.index, 0, h.ofs); 2343 tcg_out_modrm_sib_offset(s, movop + h.seg, datahi, 2344 h.base, h.index, 0, h.ofs + 4); 2345 } 2346 break; 2347 2348 case MO_128: 2349 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2350 2351 /* 2352 * Without 16-byte atomicity, use integer regs. 2353 * That is where we have the data, and it allows bswaps. 2354 */ 2355 if (h.aa.atom < MO_128) { 2356 if (use_movbe) { 2357 TCGReg t = datalo; 2358 datalo = datahi; 2359 datahi = t; 2360 } 2361 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2362 h.base, h.index, 0, h.ofs); 2363 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi, 2364 h.base, h.index, 0, h.ofs + 8); 2365 break; 2366 } 2367 2368 /* 2369 * With 16-byte atomicity, a vector store is required. 2370 * If we already have 16-byte alignment, then VMOVDQA always works. 2371 * Else if VMOVDQU has atomicity with dynamic alignment, use that. 2372 * Else use we require a runtime test for alignment for VMOVDQA; 2373 * use VMOVDQU on the unaligned nonatomic path for simplicity. 2374 */ 2375 tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi); 2376 if (h.aa.align >= MO_128) { 2377 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg, 2378 TCG_TMP_VEC, 0, 2379 h.base, h.index, 0, h.ofs); 2380 } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) { 2381 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg, 2382 TCG_TMP_VEC, 0, 2383 h.base, h.index, 0, h.ofs); 2384 } else { 2385 TCGLabel *l1 = gen_new_label(); 2386 TCGLabel *l2 = gen_new_label(); 2387 2388 tcg_out_testi(s, h.base, 15); 2389 tcg_out_jxx(s, JCC_JNE, l1, true); 2390 2391 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg, 2392 TCG_TMP_VEC, 0, 2393 h.base, h.index, 0, h.ofs); 2394 tcg_out_jxx(s, JCC_JMP, l2, true); 2395 2396 tcg_out_label(s, l1); 2397 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg, 2398 TCG_TMP_VEC, 0, 2399 h.base, h.index, 0, h.ofs); 2400 tcg_out_label(s, l2); 2401 } 2402 break; 2403 2404 default: 2405 g_assert_not_reached(); 2406 } 2407} 2408 2409static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi, 2410 TCGReg addrlo, TCGReg addrhi, 2411 MemOpIdx oi, TCGType data_type) 2412{ 2413 TCGLabelQemuLdst *ldst; 2414 HostAddress h; 2415 2416 ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, false); 2417 tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi)); 2418 2419 if (ldst) { 2420 ldst->type = data_type; 2421 ldst->datalo_reg = datalo; 2422 ldst->datahi_reg = datahi; 2423 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 2424 } 2425} 2426 2427static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0) 2428{ 2429 /* Reuse the zeroing that exists for goto_ptr. */ 2430 if (a0 == 0) { 2431 tcg_out_jmp(s, tcg_code_gen_epilogue); 2432 } else { 2433 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0); 2434 tcg_out_jmp(s, tb_ret_addr); 2435 } 2436} 2437 2438static void tcg_out_goto_tb(TCGContext *s, int which) 2439{ 2440 /* 2441 * Jump displacement must be aligned for atomic patching; 2442 * see if we need to add extra nops before jump 2443 */ 2444 int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr; 2445 if (gap != 1) { 2446 tcg_out_nopn(s, gap - 1); 2447 } 2448 tcg_out8(s, OPC_JMP_long); /* jmp im */ 2449 set_jmp_insn_offset(s, which); 2450 tcg_out32(s, 0); 2451 set_jmp_reset_offset(s, which); 2452} 2453 2454void tb_target_set_jmp_target(const TranslationBlock *tb, int n, 2455 uintptr_t jmp_rx, uintptr_t jmp_rw) 2456{ 2457 /* patch the branch destination */ 2458 uintptr_t addr = tb->jmp_target_addr[n]; 2459 qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4)); 2460 /* no need to flush icache explicitly */ 2461} 2462 2463static inline void tcg_out_op(TCGContext *s, TCGOpcode opc, 2464 const TCGArg args[TCG_MAX_OP_ARGS], 2465 const int const_args[TCG_MAX_OP_ARGS]) 2466{ 2467 TCGArg a0, a1, a2; 2468 int c, const_a2, vexop, rexw = 0; 2469 2470#if TCG_TARGET_REG_BITS == 64 2471# define OP_32_64(x) \ 2472 case glue(glue(INDEX_op_, x), _i64): \ 2473 rexw = P_REXW; /* FALLTHRU */ \ 2474 case glue(glue(INDEX_op_, x), _i32) 2475#else 2476# define OP_32_64(x) \ 2477 case glue(glue(INDEX_op_, x), _i32) 2478#endif 2479 2480 /* Hoist the loads of the most common arguments. */ 2481 a0 = args[0]; 2482 a1 = args[1]; 2483 a2 = args[2]; 2484 const_a2 = const_args[2]; 2485 2486 switch (opc) { 2487 case INDEX_op_goto_ptr: 2488 /* jmp to the given host address (could be epilogue) */ 2489 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0); 2490 break; 2491 case INDEX_op_br: 2492 tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0); 2493 break; 2494 OP_32_64(ld8u): 2495 /* Note that we can ignore REXW for the zero-extend to 64-bit. */ 2496 tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2); 2497 break; 2498 OP_32_64(ld8s): 2499 tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2); 2500 break; 2501 OP_32_64(ld16u): 2502 /* Note that we can ignore REXW for the zero-extend to 64-bit. */ 2503 tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2); 2504 break; 2505 OP_32_64(ld16s): 2506 tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2); 2507 break; 2508#if TCG_TARGET_REG_BITS == 64 2509 case INDEX_op_ld32u_i64: 2510#endif 2511 case INDEX_op_ld_i32: 2512 tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2); 2513 break; 2514 2515 OP_32_64(st8): 2516 if (const_args[0]) { 2517 tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2); 2518 tcg_out8(s, a0); 2519 } else { 2520 tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2); 2521 } 2522 break; 2523 OP_32_64(st16): 2524 if (const_args[0]) { 2525 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2); 2526 tcg_out16(s, a0); 2527 } else { 2528 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2); 2529 } 2530 break; 2531#if TCG_TARGET_REG_BITS == 64 2532 case INDEX_op_st32_i64: 2533#endif 2534 case INDEX_op_st_i32: 2535 if (const_args[0]) { 2536 tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2); 2537 tcg_out32(s, a0); 2538 } else { 2539 tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2); 2540 } 2541 break; 2542 2543 OP_32_64(add): 2544 /* For 3-operand addition, use LEA. */ 2545 if (a0 != a1) { 2546 TCGArg c3 = 0; 2547 if (const_a2) { 2548 c3 = a2, a2 = -1; 2549 } else if (a0 == a2) { 2550 /* Watch out for dest = src + dest, since we've removed 2551 the matching constraint on the add. */ 2552 tgen_arithr(s, ARITH_ADD + rexw, a0, a1); 2553 break; 2554 } 2555 2556 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3); 2557 break; 2558 } 2559 c = ARITH_ADD; 2560 goto gen_arith; 2561 OP_32_64(sub): 2562 c = ARITH_SUB; 2563 goto gen_arith; 2564 OP_32_64(and): 2565 c = ARITH_AND; 2566 goto gen_arith; 2567 OP_32_64(or): 2568 c = ARITH_OR; 2569 goto gen_arith; 2570 OP_32_64(xor): 2571 c = ARITH_XOR; 2572 goto gen_arith; 2573 gen_arith: 2574 if (const_a2) { 2575 tgen_arithi(s, c + rexw, a0, a2, 0); 2576 } else { 2577 tgen_arithr(s, c + rexw, a0, a2); 2578 } 2579 break; 2580 2581 OP_32_64(andc): 2582 if (const_a2) { 2583 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1); 2584 tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0); 2585 } else { 2586 tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1); 2587 } 2588 break; 2589 2590 OP_32_64(mul): 2591 if (const_a2) { 2592 int32_t val; 2593 val = a2; 2594 if (val == (int8_t)val) { 2595 tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0); 2596 tcg_out8(s, val); 2597 } else { 2598 tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0); 2599 tcg_out32(s, val); 2600 } 2601 } else { 2602 tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2); 2603 } 2604 break; 2605 2606 OP_32_64(div2): 2607 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]); 2608 break; 2609 OP_32_64(divu2): 2610 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]); 2611 break; 2612 2613 OP_32_64(shl): 2614 /* For small constant 3-operand shift, use LEA. */ 2615 if (const_a2 && a0 != a1 && (a2 - 1) < 3) { 2616 if (a2 - 1 == 0) { 2617 /* shl $1,a1,a0 -> lea (a1,a1),a0 */ 2618 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0); 2619 } else { 2620 /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */ 2621 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0); 2622 } 2623 break; 2624 } 2625 c = SHIFT_SHL; 2626 vexop = OPC_SHLX; 2627 goto gen_shift_maybe_vex; 2628 OP_32_64(shr): 2629 c = SHIFT_SHR; 2630 vexop = OPC_SHRX; 2631 goto gen_shift_maybe_vex; 2632 OP_32_64(sar): 2633 c = SHIFT_SAR; 2634 vexop = OPC_SARX; 2635 goto gen_shift_maybe_vex; 2636 OP_32_64(rotl): 2637 c = SHIFT_ROL; 2638 goto gen_shift; 2639 OP_32_64(rotr): 2640 c = SHIFT_ROR; 2641 goto gen_shift; 2642 gen_shift_maybe_vex: 2643 if (have_bmi2) { 2644 if (!const_a2) { 2645 tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1); 2646 break; 2647 } 2648 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1); 2649 } 2650 /* FALLTHRU */ 2651 gen_shift: 2652 if (const_a2) { 2653 tcg_out_shifti(s, c + rexw, a0, a2); 2654 } else { 2655 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0); 2656 } 2657 break; 2658 2659 OP_32_64(ctz): 2660 tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]); 2661 break; 2662 OP_32_64(clz): 2663 tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]); 2664 break; 2665 OP_32_64(ctpop): 2666 tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1); 2667 break; 2668 2669 OP_32_64(brcond): 2670 tcg_out_brcond(s, rexw, a2, a0, a1, const_args[1], 2671 arg_label(args[3]), 0); 2672 break; 2673 OP_32_64(setcond): 2674 tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, false); 2675 break; 2676 OP_32_64(negsetcond): 2677 tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, true); 2678 break; 2679 OP_32_64(movcond): 2680 tcg_out_movcond(s, rexw, args[5], a0, a1, a2, const_a2, args[3]); 2681 break; 2682 2683 OP_32_64(bswap16): 2684 if (a2 & TCG_BSWAP_OS) { 2685 /* Output must be sign-extended. */ 2686 if (rexw) { 2687 tcg_out_bswap64(s, a0); 2688 tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48); 2689 } else { 2690 tcg_out_bswap32(s, a0); 2691 tcg_out_shifti(s, SHIFT_SAR, a0, 16); 2692 } 2693 } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { 2694 /* Output must be zero-extended, but input isn't. */ 2695 tcg_out_bswap32(s, a0); 2696 tcg_out_shifti(s, SHIFT_SHR, a0, 16); 2697 } else { 2698 tcg_out_rolw_8(s, a0); 2699 } 2700 break; 2701 OP_32_64(bswap32): 2702 tcg_out_bswap32(s, a0); 2703 if (rexw && (a2 & TCG_BSWAP_OS)) { 2704 tcg_out_ext32s(s, a0, a0); 2705 } 2706 break; 2707 2708 OP_32_64(neg): 2709 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0); 2710 break; 2711 OP_32_64(not): 2712 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0); 2713 break; 2714 2715 case INDEX_op_qemu_ld_a64_i32: 2716 if (TCG_TARGET_REG_BITS == 32) { 2717 tcg_out_qemu_ld(s, a0, -1, a1, a2, args[3], TCG_TYPE_I32); 2718 break; 2719 } 2720 /* fall through */ 2721 case INDEX_op_qemu_ld_a32_i32: 2722 tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I32); 2723 break; 2724 case INDEX_op_qemu_ld_a32_i64: 2725 if (TCG_TARGET_REG_BITS == 64) { 2726 tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); 2727 } else { 2728 tcg_out_qemu_ld(s, a0, a1, a2, -1, args[3], TCG_TYPE_I64); 2729 } 2730 break; 2731 case INDEX_op_qemu_ld_a64_i64: 2732 if (TCG_TARGET_REG_BITS == 64) { 2733 tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); 2734 } else { 2735 tcg_out_qemu_ld(s, a0, a1, a2, args[3], args[4], TCG_TYPE_I64); 2736 } 2737 break; 2738 case INDEX_op_qemu_ld_a32_i128: 2739 case INDEX_op_qemu_ld_a64_i128: 2740 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2741 tcg_out_qemu_ld(s, a0, a1, a2, -1, args[3], TCG_TYPE_I128); 2742 break; 2743 2744 case INDEX_op_qemu_st_a64_i32: 2745 case INDEX_op_qemu_st8_a64_i32: 2746 if (TCG_TARGET_REG_BITS == 32) { 2747 tcg_out_qemu_st(s, a0, -1, a1, a2, args[3], TCG_TYPE_I32); 2748 break; 2749 } 2750 /* fall through */ 2751 case INDEX_op_qemu_st_a32_i32: 2752 case INDEX_op_qemu_st8_a32_i32: 2753 tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I32); 2754 break; 2755 case INDEX_op_qemu_st_a32_i64: 2756 if (TCG_TARGET_REG_BITS == 64) { 2757 tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); 2758 } else { 2759 tcg_out_qemu_st(s, a0, a1, a2, -1, args[3], TCG_TYPE_I64); 2760 } 2761 break; 2762 case INDEX_op_qemu_st_a64_i64: 2763 if (TCG_TARGET_REG_BITS == 64) { 2764 tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); 2765 } else { 2766 tcg_out_qemu_st(s, a0, a1, a2, args[3], args[4], TCG_TYPE_I64); 2767 } 2768 break; 2769 case INDEX_op_qemu_st_a32_i128: 2770 case INDEX_op_qemu_st_a64_i128: 2771 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2772 tcg_out_qemu_st(s, a0, a1, a2, -1, args[3], TCG_TYPE_I128); 2773 break; 2774 2775 OP_32_64(mulu2): 2776 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]); 2777 break; 2778 OP_32_64(muls2): 2779 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]); 2780 break; 2781 OP_32_64(add2): 2782 if (const_args[4]) { 2783 tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1); 2784 } else { 2785 tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]); 2786 } 2787 if (const_args[5]) { 2788 tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1); 2789 } else { 2790 tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]); 2791 } 2792 break; 2793 OP_32_64(sub2): 2794 if (const_args[4]) { 2795 tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1); 2796 } else { 2797 tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]); 2798 } 2799 if (const_args[5]) { 2800 tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1); 2801 } else { 2802 tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]); 2803 } 2804 break; 2805 2806#if TCG_TARGET_REG_BITS == 32 2807 case INDEX_op_brcond2_i32: 2808 tcg_out_brcond2(s, args, const_args, 0); 2809 break; 2810 case INDEX_op_setcond2_i32: 2811 tcg_out_setcond2(s, args, const_args); 2812 break; 2813#else /* TCG_TARGET_REG_BITS == 64 */ 2814 case INDEX_op_ld32s_i64: 2815 tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2); 2816 break; 2817 case INDEX_op_ld_i64: 2818 tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2); 2819 break; 2820 case INDEX_op_st_i64: 2821 if (const_args[0]) { 2822 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2); 2823 tcg_out32(s, a0); 2824 } else { 2825 tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2); 2826 } 2827 break; 2828 2829 case INDEX_op_bswap64_i64: 2830 tcg_out_bswap64(s, a0); 2831 break; 2832 case INDEX_op_extrh_i64_i32: 2833 tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32); 2834 break; 2835#endif 2836 2837 OP_32_64(deposit): 2838 if (args[3] == 0 && args[4] == 8) { 2839 /* load bits 0..7 */ 2840 if (const_a2) { 2841 tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0), 2842 0, a0, 0); 2843 tcg_out8(s, a2); 2844 } else { 2845 tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0); 2846 } 2847 } else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) { 2848 /* load bits 8..15 */ 2849 if (const_a2) { 2850 tcg_out8(s, OPC_MOVB_Ib + a0 + 4); 2851 tcg_out8(s, a2); 2852 } else { 2853 tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4); 2854 } 2855 } else if (args[3] == 0 && args[4] == 16) { 2856 /* load bits 0..15 */ 2857 if (const_a2) { 2858 tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0), 2859 0, a0, 0); 2860 tcg_out16(s, a2); 2861 } else { 2862 tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0); 2863 } 2864 } else { 2865 g_assert_not_reached(); 2866 } 2867 break; 2868 2869 case INDEX_op_extract_i64: 2870 if (a2 + args[3] == 32) { 2871 /* This is a 32-bit zero-extending right shift. */ 2872 tcg_out_mov(s, TCG_TYPE_I32, a0, a1); 2873 tcg_out_shifti(s, SHIFT_SHR, a0, a2); 2874 break; 2875 } 2876 /* FALLTHRU */ 2877 case INDEX_op_extract_i32: 2878 /* On the off-chance that we can use the high-byte registers. 2879 Otherwise we emit the same ext16 + shift pattern that we 2880 would have gotten from the normal tcg-op.c expansion. */ 2881 tcg_debug_assert(a2 == 8 && args[3] == 8); 2882 if (a1 < 4 && a0 < 8) { 2883 tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4); 2884 } else { 2885 tcg_out_ext16u(s, a0, a1); 2886 tcg_out_shifti(s, SHIFT_SHR, a0, 8); 2887 } 2888 break; 2889 2890 case INDEX_op_sextract_i32: 2891 /* We don't implement sextract_i64, as we cannot sign-extend to 2892 64-bits without using the REX prefix that explicitly excludes 2893 access to the high-byte registers. */ 2894 tcg_debug_assert(a2 == 8 && args[3] == 8); 2895 if (a1 < 4 && a0 < 8) { 2896 tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4); 2897 } else { 2898 tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1); 2899 tcg_out_shifti(s, SHIFT_SAR, a0, 8); 2900 } 2901 break; 2902 2903 OP_32_64(extract2): 2904 /* Note that SHRD outputs to the r/m operand. */ 2905 tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0); 2906 tcg_out8(s, args[3]); 2907 break; 2908 2909 case INDEX_op_mb: 2910 tcg_out_mb(s, a0); 2911 break; 2912 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */ 2913 case INDEX_op_mov_i64: 2914 case INDEX_op_call: /* Always emitted via tcg_out_call. */ 2915 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ 2916 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ 2917 case INDEX_op_ext8s_i32: /* Always emitted via tcg_reg_alloc_op. */ 2918 case INDEX_op_ext8s_i64: 2919 case INDEX_op_ext8u_i32: 2920 case INDEX_op_ext8u_i64: 2921 case INDEX_op_ext16s_i32: 2922 case INDEX_op_ext16s_i64: 2923 case INDEX_op_ext16u_i32: 2924 case INDEX_op_ext16u_i64: 2925 case INDEX_op_ext32s_i64: 2926 case INDEX_op_ext32u_i64: 2927 case INDEX_op_ext_i32_i64: 2928 case INDEX_op_extu_i32_i64: 2929 case INDEX_op_extrl_i64_i32: 2930 default: 2931 g_assert_not_reached(); 2932 } 2933 2934#undef OP_32_64 2935} 2936 2937static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 2938 unsigned vecl, unsigned vece, 2939 const TCGArg args[TCG_MAX_OP_ARGS], 2940 const int const_args[TCG_MAX_OP_ARGS]) 2941{ 2942 static int const add_insn[4] = { 2943 OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ 2944 }; 2945 static int const ssadd_insn[4] = { 2946 OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2 2947 }; 2948 static int const usadd_insn[4] = { 2949 OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2 2950 }; 2951 static int const sub_insn[4] = { 2952 OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ 2953 }; 2954 static int const sssub_insn[4] = { 2955 OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2 2956 }; 2957 static int const ussub_insn[4] = { 2958 OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2 2959 }; 2960 static int const mul_insn[4] = { 2961 OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ 2962 }; 2963 static int const shift_imm_insn[4] = { 2964 OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib 2965 }; 2966 static int const cmpeq_insn[4] = { 2967 OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ 2968 }; 2969 static int const cmpgt_insn[4] = { 2970 OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ 2971 }; 2972 static int const punpckl_insn[4] = { 2973 OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ 2974 }; 2975 static int const punpckh_insn[4] = { 2976 OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ 2977 }; 2978 static int const packss_insn[4] = { 2979 OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2 2980 }; 2981 static int const packus_insn[4] = { 2982 OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2 2983 }; 2984 static int const smin_insn[4] = { 2985 OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ 2986 }; 2987 static int const smax_insn[4] = { 2988 OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ 2989 }; 2990 static int const umin_insn[4] = { 2991 OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ 2992 }; 2993 static int const umax_insn[4] = { 2994 OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ 2995 }; 2996 static int const rotlv_insn[4] = { 2997 OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ 2998 }; 2999 static int const rotrv_insn[4] = { 3000 OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ 3001 }; 3002 static int const shlv_insn[4] = { 3003 OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ 3004 }; 3005 static int const shrv_insn[4] = { 3006 OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ 3007 }; 3008 static int const sarv_insn[4] = { 3009 OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ 3010 }; 3011 static int const shls_insn[4] = { 3012 OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ 3013 }; 3014 static int const shrs_insn[4] = { 3015 OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ 3016 }; 3017 static int const sars_insn[4] = { 3018 OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ 3019 }; 3020 static int const vpshldi_insn[4] = { 3021 OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ 3022 }; 3023 static int const vpshldv_insn[4] = { 3024 OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ 3025 }; 3026 static int const vpshrdv_insn[4] = { 3027 OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ 3028 }; 3029 static int const abs_insn[4] = { 3030 OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ 3031 }; 3032 3033 TCGType type = vecl + TCG_TYPE_V64; 3034 int insn, sub; 3035 TCGArg a0, a1, a2, a3; 3036 3037 a0 = args[0]; 3038 a1 = args[1]; 3039 a2 = args[2]; 3040 3041 switch (opc) { 3042 case INDEX_op_add_vec: 3043 insn = add_insn[vece]; 3044 goto gen_simd; 3045 case INDEX_op_ssadd_vec: 3046 insn = ssadd_insn[vece]; 3047 goto gen_simd; 3048 case INDEX_op_usadd_vec: 3049 insn = usadd_insn[vece]; 3050 goto gen_simd; 3051 case INDEX_op_sub_vec: 3052 insn = sub_insn[vece]; 3053 goto gen_simd; 3054 case INDEX_op_sssub_vec: 3055 insn = sssub_insn[vece]; 3056 goto gen_simd; 3057 case INDEX_op_ussub_vec: 3058 insn = ussub_insn[vece]; 3059 goto gen_simd; 3060 case INDEX_op_mul_vec: 3061 insn = mul_insn[vece]; 3062 goto gen_simd; 3063 case INDEX_op_and_vec: 3064 insn = OPC_PAND; 3065 goto gen_simd; 3066 case INDEX_op_or_vec: 3067 insn = OPC_POR; 3068 goto gen_simd; 3069 case INDEX_op_xor_vec: 3070 insn = OPC_PXOR; 3071 goto gen_simd; 3072 case INDEX_op_smin_vec: 3073 insn = smin_insn[vece]; 3074 goto gen_simd; 3075 case INDEX_op_umin_vec: 3076 insn = umin_insn[vece]; 3077 goto gen_simd; 3078 case INDEX_op_smax_vec: 3079 insn = smax_insn[vece]; 3080 goto gen_simd; 3081 case INDEX_op_umax_vec: 3082 insn = umax_insn[vece]; 3083 goto gen_simd; 3084 case INDEX_op_shlv_vec: 3085 insn = shlv_insn[vece]; 3086 goto gen_simd; 3087 case INDEX_op_shrv_vec: 3088 insn = shrv_insn[vece]; 3089 goto gen_simd; 3090 case INDEX_op_sarv_vec: 3091 insn = sarv_insn[vece]; 3092 goto gen_simd; 3093 case INDEX_op_rotlv_vec: 3094 insn = rotlv_insn[vece]; 3095 goto gen_simd; 3096 case INDEX_op_rotrv_vec: 3097 insn = rotrv_insn[vece]; 3098 goto gen_simd; 3099 case INDEX_op_shls_vec: 3100 insn = shls_insn[vece]; 3101 goto gen_simd; 3102 case INDEX_op_shrs_vec: 3103 insn = shrs_insn[vece]; 3104 goto gen_simd; 3105 case INDEX_op_sars_vec: 3106 insn = sars_insn[vece]; 3107 goto gen_simd; 3108 case INDEX_op_x86_punpckl_vec: 3109 insn = punpckl_insn[vece]; 3110 goto gen_simd; 3111 case INDEX_op_x86_punpckh_vec: 3112 insn = punpckh_insn[vece]; 3113 goto gen_simd; 3114 case INDEX_op_x86_packss_vec: 3115 insn = packss_insn[vece]; 3116 goto gen_simd; 3117 case INDEX_op_x86_packus_vec: 3118 insn = packus_insn[vece]; 3119 goto gen_simd; 3120 case INDEX_op_x86_vpshldv_vec: 3121 insn = vpshldv_insn[vece]; 3122 a1 = a2; 3123 a2 = args[3]; 3124 goto gen_simd; 3125 case INDEX_op_x86_vpshrdv_vec: 3126 insn = vpshrdv_insn[vece]; 3127 a1 = a2; 3128 a2 = args[3]; 3129 goto gen_simd; 3130#if TCG_TARGET_REG_BITS == 32 3131 case INDEX_op_dup2_vec: 3132 /* First merge the two 32-bit inputs to a single 64-bit element. */ 3133 tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2); 3134 /* Then replicate the 64-bit elements across the rest of the vector. */ 3135 if (type != TCG_TYPE_V64) { 3136 tcg_out_dup_vec(s, type, MO_64, a0, a0); 3137 } 3138 break; 3139#endif 3140 case INDEX_op_abs_vec: 3141 insn = abs_insn[vece]; 3142 a2 = a1; 3143 a1 = 0; 3144 goto gen_simd; 3145 gen_simd: 3146 tcg_debug_assert(insn != OPC_UD2); 3147 if (type == TCG_TYPE_V256) { 3148 insn |= P_VEXL; 3149 } 3150 tcg_out_vex_modrm(s, insn, a0, a1, a2); 3151 break; 3152 3153 case INDEX_op_cmp_vec: 3154 sub = args[3]; 3155 if (sub == TCG_COND_EQ) { 3156 insn = cmpeq_insn[vece]; 3157 } else if (sub == TCG_COND_GT) { 3158 insn = cmpgt_insn[vece]; 3159 } else { 3160 g_assert_not_reached(); 3161 } 3162 goto gen_simd; 3163 3164 case INDEX_op_andc_vec: 3165 insn = OPC_PANDN; 3166 if (type == TCG_TYPE_V256) { 3167 insn |= P_VEXL; 3168 } 3169 tcg_out_vex_modrm(s, insn, a0, a2, a1); 3170 break; 3171 3172 case INDEX_op_shli_vec: 3173 insn = shift_imm_insn[vece]; 3174 sub = 6; 3175 goto gen_shift; 3176 case INDEX_op_shri_vec: 3177 insn = shift_imm_insn[vece]; 3178 sub = 2; 3179 goto gen_shift; 3180 case INDEX_op_sari_vec: 3181 if (vece == MO_64) { 3182 insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX; 3183 } else { 3184 insn = shift_imm_insn[vece]; 3185 } 3186 sub = 4; 3187 goto gen_shift; 3188 case INDEX_op_rotli_vec: 3189 insn = OPC_PSHIFTD_Ib | P_EVEX; /* VPROL[DQ] */ 3190 if (vece == MO_64) { 3191 insn |= P_VEXW; 3192 } 3193 sub = 1; 3194 goto gen_shift; 3195 gen_shift: 3196 tcg_debug_assert(vece != MO_8); 3197 if (type == TCG_TYPE_V256) { 3198 insn |= P_VEXL; 3199 } 3200 tcg_out_vex_modrm(s, insn, sub, a0, a1); 3201 tcg_out8(s, a2); 3202 break; 3203 3204 case INDEX_op_ld_vec: 3205 tcg_out_ld(s, type, a0, a1, a2); 3206 break; 3207 case INDEX_op_st_vec: 3208 tcg_out_st(s, type, a0, a1, a2); 3209 break; 3210 case INDEX_op_dupm_vec: 3211 tcg_out_dupm_vec(s, type, vece, a0, a1, a2); 3212 break; 3213 3214 case INDEX_op_x86_shufps_vec: 3215 insn = OPC_SHUFPS; 3216 sub = args[3]; 3217 goto gen_simd_imm8; 3218 case INDEX_op_x86_blend_vec: 3219 if (vece == MO_16) { 3220 insn = OPC_PBLENDW; 3221 } else if (vece == MO_32) { 3222 insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS); 3223 } else { 3224 g_assert_not_reached(); 3225 } 3226 sub = args[3]; 3227 goto gen_simd_imm8; 3228 case INDEX_op_x86_vperm2i128_vec: 3229 insn = OPC_VPERM2I128; 3230 sub = args[3]; 3231 goto gen_simd_imm8; 3232 case INDEX_op_x86_vpshldi_vec: 3233 insn = vpshldi_insn[vece]; 3234 sub = args[3]; 3235 goto gen_simd_imm8; 3236 3237 case INDEX_op_not_vec: 3238 insn = OPC_VPTERNLOGQ; 3239 a2 = a1; 3240 sub = 0x33; /* !B */ 3241 goto gen_simd_imm8; 3242 case INDEX_op_nor_vec: 3243 insn = OPC_VPTERNLOGQ; 3244 sub = 0x11; /* norCB */ 3245 goto gen_simd_imm8; 3246 case INDEX_op_nand_vec: 3247 insn = OPC_VPTERNLOGQ; 3248 sub = 0x77; /* nandCB */ 3249 goto gen_simd_imm8; 3250 case INDEX_op_eqv_vec: 3251 insn = OPC_VPTERNLOGQ; 3252 sub = 0x99; /* xnorCB */ 3253 goto gen_simd_imm8; 3254 case INDEX_op_orc_vec: 3255 insn = OPC_VPTERNLOGQ; 3256 sub = 0xdd; /* orB!C */ 3257 goto gen_simd_imm8; 3258 3259 case INDEX_op_bitsel_vec: 3260 insn = OPC_VPTERNLOGQ; 3261 a3 = args[3]; 3262 if (a0 == a1) { 3263 a1 = a2; 3264 a2 = a3; 3265 sub = 0xca; /* A?B:C */ 3266 } else if (a0 == a2) { 3267 a2 = a3; 3268 sub = 0xe2; /* B?A:C */ 3269 } else { 3270 tcg_out_mov(s, type, a0, a3); 3271 sub = 0xb8; /* B?C:A */ 3272 } 3273 goto gen_simd_imm8; 3274 3275 gen_simd_imm8: 3276 tcg_debug_assert(insn != OPC_UD2); 3277 if (type == TCG_TYPE_V256) { 3278 insn |= P_VEXL; 3279 } 3280 tcg_out_vex_modrm(s, insn, a0, a1, a2); 3281 tcg_out8(s, sub); 3282 break; 3283 3284 case INDEX_op_x86_vpblendvb_vec: 3285 insn = OPC_VPBLENDVB; 3286 if (type == TCG_TYPE_V256) { 3287 insn |= P_VEXL; 3288 } 3289 tcg_out_vex_modrm(s, insn, a0, a1, a2); 3290 tcg_out8(s, args[3] << 4); 3291 break; 3292 3293 case INDEX_op_x86_psrldq_vec: 3294 tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1); 3295 tcg_out8(s, a2); 3296 break; 3297 3298 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ 3299 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ 3300 default: 3301 g_assert_not_reached(); 3302 } 3303} 3304 3305static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op) 3306{ 3307 switch (op) { 3308 case INDEX_op_goto_ptr: 3309 return C_O0_I1(r); 3310 3311 case INDEX_op_ld8u_i32: 3312 case INDEX_op_ld8u_i64: 3313 case INDEX_op_ld8s_i32: 3314 case INDEX_op_ld8s_i64: 3315 case INDEX_op_ld16u_i32: 3316 case INDEX_op_ld16u_i64: 3317 case INDEX_op_ld16s_i32: 3318 case INDEX_op_ld16s_i64: 3319 case INDEX_op_ld_i32: 3320 case INDEX_op_ld32u_i64: 3321 case INDEX_op_ld32s_i64: 3322 case INDEX_op_ld_i64: 3323 return C_O1_I1(r, r); 3324 3325 case INDEX_op_st8_i32: 3326 case INDEX_op_st8_i64: 3327 return C_O0_I2(qi, r); 3328 3329 case INDEX_op_st16_i32: 3330 case INDEX_op_st16_i64: 3331 case INDEX_op_st_i32: 3332 case INDEX_op_st32_i64: 3333 return C_O0_I2(ri, r); 3334 3335 case INDEX_op_st_i64: 3336 return C_O0_I2(re, r); 3337 3338 case INDEX_op_add_i32: 3339 case INDEX_op_add_i64: 3340 return C_O1_I2(r, r, re); 3341 3342 case INDEX_op_sub_i32: 3343 case INDEX_op_sub_i64: 3344 case INDEX_op_mul_i32: 3345 case INDEX_op_mul_i64: 3346 case INDEX_op_or_i32: 3347 case INDEX_op_or_i64: 3348 case INDEX_op_xor_i32: 3349 case INDEX_op_xor_i64: 3350 return C_O1_I2(r, 0, re); 3351 3352 case INDEX_op_and_i32: 3353 case INDEX_op_and_i64: 3354 return C_O1_I2(r, 0, reZ); 3355 3356 case INDEX_op_andc_i32: 3357 case INDEX_op_andc_i64: 3358 return C_O1_I2(r, r, rI); 3359 3360 case INDEX_op_shl_i32: 3361 case INDEX_op_shl_i64: 3362 case INDEX_op_shr_i32: 3363 case INDEX_op_shr_i64: 3364 case INDEX_op_sar_i32: 3365 case INDEX_op_sar_i64: 3366 return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci); 3367 3368 case INDEX_op_rotl_i32: 3369 case INDEX_op_rotl_i64: 3370 case INDEX_op_rotr_i32: 3371 case INDEX_op_rotr_i64: 3372 return C_O1_I2(r, 0, ci); 3373 3374 case INDEX_op_brcond_i32: 3375 case INDEX_op_brcond_i64: 3376 return C_O0_I2(r, re); 3377 3378 case INDEX_op_bswap16_i32: 3379 case INDEX_op_bswap16_i64: 3380 case INDEX_op_bswap32_i32: 3381 case INDEX_op_bswap32_i64: 3382 case INDEX_op_bswap64_i64: 3383 case INDEX_op_neg_i32: 3384 case INDEX_op_neg_i64: 3385 case INDEX_op_not_i32: 3386 case INDEX_op_not_i64: 3387 case INDEX_op_extrh_i64_i32: 3388 return C_O1_I1(r, 0); 3389 3390 case INDEX_op_ext8s_i32: 3391 case INDEX_op_ext8s_i64: 3392 case INDEX_op_ext8u_i32: 3393 case INDEX_op_ext8u_i64: 3394 return C_O1_I1(r, q); 3395 3396 case INDEX_op_ext16s_i32: 3397 case INDEX_op_ext16s_i64: 3398 case INDEX_op_ext16u_i32: 3399 case INDEX_op_ext16u_i64: 3400 case INDEX_op_ext32s_i64: 3401 case INDEX_op_ext32u_i64: 3402 case INDEX_op_ext_i32_i64: 3403 case INDEX_op_extu_i32_i64: 3404 case INDEX_op_extrl_i64_i32: 3405 case INDEX_op_extract_i32: 3406 case INDEX_op_extract_i64: 3407 case INDEX_op_sextract_i32: 3408 case INDEX_op_ctpop_i32: 3409 case INDEX_op_ctpop_i64: 3410 return C_O1_I1(r, r); 3411 3412 case INDEX_op_extract2_i32: 3413 case INDEX_op_extract2_i64: 3414 return C_O1_I2(r, 0, r); 3415 3416 case INDEX_op_deposit_i32: 3417 case INDEX_op_deposit_i64: 3418 return C_O1_I2(q, 0, qi); 3419 3420 case INDEX_op_setcond_i32: 3421 case INDEX_op_setcond_i64: 3422 case INDEX_op_negsetcond_i32: 3423 case INDEX_op_negsetcond_i64: 3424 return C_O1_I2(q, r, re); 3425 3426 case INDEX_op_movcond_i32: 3427 case INDEX_op_movcond_i64: 3428 return C_O1_I4(r, r, re, r, 0); 3429 3430 case INDEX_op_div2_i32: 3431 case INDEX_op_div2_i64: 3432 case INDEX_op_divu2_i32: 3433 case INDEX_op_divu2_i64: 3434 return C_O2_I3(a, d, 0, 1, r); 3435 3436 case INDEX_op_mulu2_i32: 3437 case INDEX_op_mulu2_i64: 3438 case INDEX_op_muls2_i32: 3439 case INDEX_op_muls2_i64: 3440 return C_O2_I2(a, d, a, r); 3441 3442 case INDEX_op_add2_i32: 3443 case INDEX_op_add2_i64: 3444 case INDEX_op_sub2_i32: 3445 case INDEX_op_sub2_i64: 3446 return C_N1_O1_I4(r, r, 0, 1, re, re); 3447 3448 case INDEX_op_ctz_i32: 3449 case INDEX_op_ctz_i64: 3450 return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r); 3451 3452 case INDEX_op_clz_i32: 3453 case INDEX_op_clz_i64: 3454 return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r); 3455 3456 case INDEX_op_qemu_ld_a32_i32: 3457 return C_O1_I1(r, L); 3458 case INDEX_op_qemu_ld_a64_i32: 3459 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O1_I2(r, L, L); 3460 3461 case INDEX_op_qemu_st_a32_i32: 3462 return C_O0_I2(L, L); 3463 case INDEX_op_qemu_st_a64_i32: 3464 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L); 3465 case INDEX_op_qemu_st8_a32_i32: 3466 return C_O0_I2(s, L); 3467 case INDEX_op_qemu_st8_a64_i32: 3468 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(s, L) : C_O0_I3(s, L, L); 3469 3470 case INDEX_op_qemu_ld_a32_i64: 3471 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L); 3472 case INDEX_op_qemu_ld_a64_i64: 3473 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I2(r, r, L, L); 3474 3475 case INDEX_op_qemu_st_a32_i64: 3476 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L); 3477 case INDEX_op_qemu_st_a64_i64: 3478 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I4(L, L, L, L); 3479 3480 case INDEX_op_qemu_ld_a32_i128: 3481 case INDEX_op_qemu_ld_a64_i128: 3482 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 3483 return C_O2_I1(r, r, L); 3484 case INDEX_op_qemu_st_a32_i128: 3485 case INDEX_op_qemu_st_a64_i128: 3486 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 3487 return C_O0_I3(L, L, L); 3488 3489 case INDEX_op_brcond2_i32: 3490 return C_O0_I4(r, r, ri, ri); 3491 3492 case INDEX_op_setcond2_i32: 3493 return C_O1_I4(r, r, r, ri, ri); 3494 3495 case INDEX_op_ld_vec: 3496 case INDEX_op_dupm_vec: 3497 return C_O1_I1(x, r); 3498 3499 case INDEX_op_st_vec: 3500 return C_O0_I2(x, r); 3501 3502 case INDEX_op_add_vec: 3503 case INDEX_op_sub_vec: 3504 case INDEX_op_mul_vec: 3505 case INDEX_op_and_vec: 3506 case INDEX_op_or_vec: 3507 case INDEX_op_xor_vec: 3508 case INDEX_op_andc_vec: 3509 case INDEX_op_orc_vec: 3510 case INDEX_op_nand_vec: 3511 case INDEX_op_nor_vec: 3512 case INDEX_op_eqv_vec: 3513 case INDEX_op_ssadd_vec: 3514 case INDEX_op_usadd_vec: 3515 case INDEX_op_sssub_vec: 3516 case INDEX_op_ussub_vec: 3517 case INDEX_op_smin_vec: 3518 case INDEX_op_umin_vec: 3519 case INDEX_op_smax_vec: 3520 case INDEX_op_umax_vec: 3521 case INDEX_op_shlv_vec: 3522 case INDEX_op_shrv_vec: 3523 case INDEX_op_sarv_vec: 3524 case INDEX_op_rotlv_vec: 3525 case INDEX_op_rotrv_vec: 3526 case INDEX_op_shls_vec: 3527 case INDEX_op_shrs_vec: 3528 case INDEX_op_sars_vec: 3529 case INDEX_op_cmp_vec: 3530 case INDEX_op_x86_shufps_vec: 3531 case INDEX_op_x86_blend_vec: 3532 case INDEX_op_x86_packss_vec: 3533 case INDEX_op_x86_packus_vec: 3534 case INDEX_op_x86_vperm2i128_vec: 3535 case INDEX_op_x86_punpckl_vec: 3536 case INDEX_op_x86_punpckh_vec: 3537 case INDEX_op_x86_vpshldi_vec: 3538#if TCG_TARGET_REG_BITS == 32 3539 case INDEX_op_dup2_vec: 3540#endif 3541 return C_O1_I2(x, x, x); 3542 3543 case INDEX_op_abs_vec: 3544 case INDEX_op_dup_vec: 3545 case INDEX_op_not_vec: 3546 case INDEX_op_shli_vec: 3547 case INDEX_op_shri_vec: 3548 case INDEX_op_sari_vec: 3549 case INDEX_op_rotli_vec: 3550 case INDEX_op_x86_psrldq_vec: 3551 return C_O1_I1(x, x); 3552 3553 case INDEX_op_x86_vpshldv_vec: 3554 case INDEX_op_x86_vpshrdv_vec: 3555 return C_O1_I3(x, 0, x, x); 3556 3557 case INDEX_op_bitsel_vec: 3558 case INDEX_op_x86_vpblendvb_vec: 3559 return C_O1_I3(x, x, x, x); 3560 3561 default: 3562 g_assert_not_reached(); 3563 } 3564} 3565 3566int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) 3567{ 3568 switch (opc) { 3569 case INDEX_op_add_vec: 3570 case INDEX_op_sub_vec: 3571 case INDEX_op_and_vec: 3572 case INDEX_op_or_vec: 3573 case INDEX_op_xor_vec: 3574 case INDEX_op_andc_vec: 3575 case INDEX_op_orc_vec: 3576 case INDEX_op_nand_vec: 3577 case INDEX_op_nor_vec: 3578 case INDEX_op_eqv_vec: 3579 case INDEX_op_not_vec: 3580 case INDEX_op_bitsel_vec: 3581 return 1; 3582 case INDEX_op_cmp_vec: 3583 case INDEX_op_cmpsel_vec: 3584 return -1; 3585 3586 case INDEX_op_rotli_vec: 3587 return have_avx512vl && vece >= MO_32 ? 1 : -1; 3588 3589 case INDEX_op_shli_vec: 3590 case INDEX_op_shri_vec: 3591 /* We must expand the operation for MO_8. */ 3592 return vece == MO_8 ? -1 : 1; 3593 3594 case INDEX_op_sari_vec: 3595 switch (vece) { 3596 case MO_8: 3597 return -1; 3598 case MO_16: 3599 case MO_32: 3600 return 1; 3601 case MO_64: 3602 if (have_avx512vl) { 3603 return 1; 3604 } 3605 /* 3606 * We can emulate this for MO_64, but it does not pay off 3607 * unless we're producing at least 4 values. 3608 */ 3609 return type >= TCG_TYPE_V256 ? -1 : 0; 3610 } 3611 return 0; 3612 3613 case INDEX_op_shls_vec: 3614 case INDEX_op_shrs_vec: 3615 return vece >= MO_16; 3616 case INDEX_op_sars_vec: 3617 switch (vece) { 3618 case MO_16: 3619 case MO_32: 3620 return 1; 3621 case MO_64: 3622 return have_avx512vl; 3623 } 3624 return 0; 3625 case INDEX_op_rotls_vec: 3626 return vece >= MO_16 ? -1 : 0; 3627 3628 case INDEX_op_shlv_vec: 3629 case INDEX_op_shrv_vec: 3630 switch (vece) { 3631 case MO_16: 3632 return have_avx512bw; 3633 case MO_32: 3634 case MO_64: 3635 return have_avx2; 3636 } 3637 return 0; 3638 case INDEX_op_sarv_vec: 3639 switch (vece) { 3640 case MO_16: 3641 return have_avx512bw; 3642 case MO_32: 3643 return have_avx2; 3644 case MO_64: 3645 return have_avx512vl; 3646 } 3647 return 0; 3648 case INDEX_op_rotlv_vec: 3649 case INDEX_op_rotrv_vec: 3650 switch (vece) { 3651 case MO_16: 3652 return have_avx512vbmi2 ? -1 : 0; 3653 case MO_32: 3654 case MO_64: 3655 return have_avx512vl ? 1 : have_avx2 ? -1 : 0; 3656 } 3657 return 0; 3658 3659 case INDEX_op_mul_vec: 3660 switch (vece) { 3661 case MO_8: 3662 return -1; 3663 case MO_64: 3664 return have_avx512dq; 3665 } 3666 return 1; 3667 3668 case INDEX_op_ssadd_vec: 3669 case INDEX_op_usadd_vec: 3670 case INDEX_op_sssub_vec: 3671 case INDEX_op_ussub_vec: 3672 return vece <= MO_16; 3673 case INDEX_op_smin_vec: 3674 case INDEX_op_smax_vec: 3675 case INDEX_op_umin_vec: 3676 case INDEX_op_umax_vec: 3677 case INDEX_op_abs_vec: 3678 return vece <= MO_32 || have_avx512vl; 3679 3680 default: 3681 return 0; 3682 } 3683} 3684 3685static void expand_vec_shi(TCGType type, unsigned vece, TCGOpcode opc, 3686 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 3687{ 3688 TCGv_vec t1, t2; 3689 3690 tcg_debug_assert(vece == MO_8); 3691 3692 t1 = tcg_temp_new_vec(type); 3693 t2 = tcg_temp_new_vec(type); 3694 3695 /* 3696 * Unpack to W, shift, and repack. Tricky bits: 3697 * (1) Use punpck*bw x,x to produce DDCCBBAA, 3698 * i.e. duplicate in other half of the 16-bit lane. 3699 * (2) For right-shift, add 8 so that the high half of the lane 3700 * becomes zero. For left-shift, and left-rotate, we must 3701 * shift up and down again. 3702 * (3) Step 2 leaves high half zero such that PACKUSWB 3703 * (pack with unsigned saturation) does not modify 3704 * the quantity. 3705 */ 3706 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 3707 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 3708 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 3709 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 3710 3711 if (opc != INDEX_op_rotli_vec) { 3712 imm += 8; 3713 } 3714 if (opc == INDEX_op_shri_vec) { 3715 tcg_gen_shri_vec(MO_16, t1, t1, imm); 3716 tcg_gen_shri_vec(MO_16, t2, t2, imm); 3717 } else { 3718 tcg_gen_shli_vec(MO_16, t1, t1, imm); 3719 tcg_gen_shli_vec(MO_16, t2, t2, imm); 3720 tcg_gen_shri_vec(MO_16, t1, t1, 8); 3721 tcg_gen_shri_vec(MO_16, t2, t2, 8); 3722 } 3723 3724 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8, 3725 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2)); 3726 tcg_temp_free_vec(t1); 3727 tcg_temp_free_vec(t2); 3728} 3729 3730static void expand_vec_sari(TCGType type, unsigned vece, 3731 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 3732{ 3733 TCGv_vec t1, t2; 3734 3735 switch (vece) { 3736 case MO_8: 3737 /* Unpack to W, shift, and repack, as in expand_vec_shi. */ 3738 t1 = tcg_temp_new_vec(type); 3739 t2 = tcg_temp_new_vec(type); 3740 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 3741 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 3742 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 3743 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 3744 tcg_gen_sari_vec(MO_16, t1, t1, imm + 8); 3745 tcg_gen_sari_vec(MO_16, t2, t2, imm + 8); 3746 vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8, 3747 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2)); 3748 tcg_temp_free_vec(t1); 3749 tcg_temp_free_vec(t2); 3750 break; 3751 3752 case MO_64: 3753 t1 = tcg_temp_new_vec(type); 3754 if (imm <= 32) { 3755 /* 3756 * We can emulate a small sign extend by performing an arithmetic 3757 * 32-bit shift and overwriting the high half of a 64-bit logical 3758 * shift. Note that the ISA says shift of 32 is valid, but TCG 3759 * does not, so we have to bound the smaller shift -- we get the 3760 * same result in the high half either way. 3761 */ 3762 tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31)); 3763 tcg_gen_shri_vec(MO_64, v0, v1, imm); 3764 vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32, 3765 tcgv_vec_arg(v0), tcgv_vec_arg(v0), 3766 tcgv_vec_arg(t1), 0xaa); 3767 } else { 3768 /* Otherwise we will need to use a compare vs 0 to produce 3769 * the sign-extend, shift and merge. 3770 */ 3771 tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1, 3772 tcg_constant_vec(type, MO_64, 0), v1); 3773 tcg_gen_shri_vec(MO_64, v0, v1, imm); 3774 tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm); 3775 tcg_gen_or_vec(MO_64, v0, v0, t1); 3776 } 3777 tcg_temp_free_vec(t1); 3778 break; 3779 3780 default: 3781 g_assert_not_reached(); 3782 } 3783} 3784 3785static void expand_vec_rotli(TCGType type, unsigned vece, 3786 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 3787{ 3788 TCGv_vec t; 3789 3790 if (vece == MO_8) { 3791 expand_vec_shi(type, vece, INDEX_op_rotli_vec, v0, v1, imm); 3792 return; 3793 } 3794 3795 if (have_avx512vbmi2) { 3796 vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece, 3797 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm); 3798 return; 3799 } 3800 3801 t = tcg_temp_new_vec(type); 3802 tcg_gen_shli_vec(vece, t, v1, imm); 3803 tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm); 3804 tcg_gen_or_vec(vece, v0, v0, t); 3805 tcg_temp_free_vec(t); 3806} 3807 3808static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0, 3809 TCGv_vec v1, TCGv_vec sh, bool right) 3810{ 3811 TCGv_vec t; 3812 3813 if (have_avx512vbmi2) { 3814 vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec, 3815 type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1), 3816 tcgv_vec_arg(v1), tcgv_vec_arg(sh)); 3817 return; 3818 } 3819 3820 t = tcg_temp_new_vec(type); 3821 tcg_gen_dupi_vec(vece, t, 8 << vece); 3822 tcg_gen_sub_vec(vece, t, t, sh); 3823 if (right) { 3824 tcg_gen_shlv_vec(vece, t, v1, t); 3825 tcg_gen_shrv_vec(vece, v0, v1, sh); 3826 } else { 3827 tcg_gen_shrv_vec(vece, t, v1, t); 3828 tcg_gen_shlv_vec(vece, v0, v1, sh); 3829 } 3830 tcg_gen_or_vec(vece, v0, v0, t); 3831 tcg_temp_free_vec(t); 3832} 3833 3834static void expand_vec_rotls(TCGType type, unsigned vece, 3835 TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh) 3836{ 3837 TCGv_vec t = tcg_temp_new_vec(type); 3838 3839 tcg_debug_assert(vece != MO_8); 3840 3841 if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) { 3842 tcg_gen_dup_i32_vec(vece, t, lsh); 3843 if (vece >= MO_32) { 3844 tcg_gen_rotlv_vec(vece, v0, v1, t); 3845 } else { 3846 expand_vec_rotv(type, vece, v0, v1, t, false); 3847 } 3848 } else { 3849 TCGv_i32 rsh = tcg_temp_new_i32(); 3850 3851 tcg_gen_neg_i32(rsh, lsh); 3852 tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1); 3853 tcg_gen_shls_vec(vece, t, v1, lsh); 3854 tcg_gen_shrs_vec(vece, v0, v1, rsh); 3855 tcg_gen_or_vec(vece, v0, v0, t); 3856 3857 tcg_temp_free_i32(rsh); 3858 } 3859 3860 tcg_temp_free_vec(t); 3861} 3862 3863static void expand_vec_mul(TCGType type, unsigned vece, 3864 TCGv_vec v0, TCGv_vec v1, TCGv_vec v2) 3865{ 3866 TCGv_vec t1, t2, t3, t4, zero; 3867 3868 tcg_debug_assert(vece == MO_8); 3869 3870 /* 3871 * Unpack v1 bytes to words, 0 | x. 3872 * Unpack v2 bytes to words, y | 0. 3873 * This leaves the 8-bit result, x * y, with 8 bits of right padding. 3874 * Shift logical right by 8 bits to clear the high 8 bytes before 3875 * using an unsigned saturated pack. 3876 * 3877 * The difference between the V64, V128 and V256 cases is merely how 3878 * we distribute the expansion between temporaries. 3879 */ 3880 switch (type) { 3881 case TCG_TYPE_V64: 3882 t1 = tcg_temp_new_vec(TCG_TYPE_V128); 3883 t2 = tcg_temp_new_vec(TCG_TYPE_V128); 3884 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0); 3885 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8, 3886 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 3887 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8, 3888 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 3889 tcg_gen_mul_vec(MO_16, t1, t1, t2); 3890 tcg_gen_shri_vec(MO_16, t1, t1, 8); 3891 vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8, 3892 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1)); 3893 tcg_temp_free_vec(t1); 3894 tcg_temp_free_vec(t2); 3895 break; 3896 3897 case TCG_TYPE_V128: 3898 case TCG_TYPE_V256: 3899 t1 = tcg_temp_new_vec(type); 3900 t2 = tcg_temp_new_vec(type); 3901 t3 = tcg_temp_new_vec(type); 3902 t4 = tcg_temp_new_vec(type); 3903 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0); 3904 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 3905 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 3906 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 3907 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 3908 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 3909 tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 3910 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 3911 tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 3912 tcg_gen_mul_vec(MO_16, t1, t1, t2); 3913 tcg_gen_mul_vec(MO_16, t3, t3, t4); 3914 tcg_gen_shri_vec(MO_16, t1, t1, 8); 3915 tcg_gen_shri_vec(MO_16, t3, t3, 8); 3916 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8, 3917 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3)); 3918 tcg_temp_free_vec(t1); 3919 tcg_temp_free_vec(t2); 3920 tcg_temp_free_vec(t3); 3921 tcg_temp_free_vec(t4); 3922 break; 3923 3924 default: 3925 g_assert_not_reached(); 3926 } 3927} 3928 3929static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0, 3930 TCGv_vec v1, TCGv_vec v2, TCGCond cond) 3931{ 3932 enum { 3933 NEED_INV = 1, 3934 NEED_SWAP = 2, 3935 NEED_BIAS = 4, 3936 NEED_UMIN = 8, 3937 NEED_UMAX = 16, 3938 }; 3939 TCGv_vec t1, t2, t3; 3940 uint8_t fixup; 3941 3942 switch (cond) { 3943 case TCG_COND_EQ: 3944 case TCG_COND_GT: 3945 fixup = 0; 3946 break; 3947 case TCG_COND_NE: 3948 case TCG_COND_LE: 3949 fixup = NEED_INV; 3950 break; 3951 case TCG_COND_LT: 3952 fixup = NEED_SWAP; 3953 break; 3954 case TCG_COND_GE: 3955 fixup = NEED_SWAP | NEED_INV; 3956 break; 3957 case TCG_COND_LEU: 3958 if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) { 3959 fixup = NEED_UMIN; 3960 } else { 3961 fixup = NEED_BIAS | NEED_INV; 3962 } 3963 break; 3964 case TCG_COND_GTU: 3965 if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) { 3966 fixup = NEED_UMIN | NEED_INV; 3967 } else { 3968 fixup = NEED_BIAS; 3969 } 3970 break; 3971 case TCG_COND_GEU: 3972 if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) { 3973 fixup = NEED_UMAX; 3974 } else { 3975 fixup = NEED_BIAS | NEED_SWAP | NEED_INV; 3976 } 3977 break; 3978 case TCG_COND_LTU: 3979 if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) { 3980 fixup = NEED_UMAX | NEED_INV; 3981 } else { 3982 fixup = NEED_BIAS | NEED_SWAP; 3983 } 3984 break; 3985 default: 3986 g_assert_not_reached(); 3987 } 3988 3989 if (fixup & NEED_INV) { 3990 cond = tcg_invert_cond(cond); 3991 } 3992 if (fixup & NEED_SWAP) { 3993 t1 = v1, v1 = v2, v2 = t1; 3994 cond = tcg_swap_cond(cond); 3995 } 3996 3997 t1 = t2 = NULL; 3998 if (fixup & (NEED_UMIN | NEED_UMAX)) { 3999 t1 = tcg_temp_new_vec(type); 4000 if (fixup & NEED_UMIN) { 4001 tcg_gen_umin_vec(vece, t1, v1, v2); 4002 } else { 4003 tcg_gen_umax_vec(vece, t1, v1, v2); 4004 } 4005 v2 = t1; 4006 cond = TCG_COND_EQ; 4007 } else if (fixup & NEED_BIAS) { 4008 t1 = tcg_temp_new_vec(type); 4009 t2 = tcg_temp_new_vec(type); 4010 t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1)); 4011 tcg_gen_sub_vec(vece, t1, v1, t3); 4012 tcg_gen_sub_vec(vece, t2, v2, t3); 4013 v1 = t1; 4014 v2 = t2; 4015 cond = tcg_signed_cond(cond); 4016 } 4017 4018 tcg_debug_assert(cond == TCG_COND_EQ || cond == TCG_COND_GT); 4019 /* Expand directly; do not recurse. */ 4020 vec_gen_4(INDEX_op_cmp_vec, type, vece, 4021 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond); 4022 4023 if (t1) { 4024 tcg_temp_free_vec(t1); 4025 if (t2) { 4026 tcg_temp_free_vec(t2); 4027 } 4028 } 4029 return fixup & NEED_INV; 4030} 4031 4032static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0, 4033 TCGv_vec v1, TCGv_vec v2, TCGCond cond) 4034{ 4035 if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) { 4036 tcg_gen_not_vec(vece, v0, v0); 4037 } 4038} 4039 4040static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0, 4041 TCGv_vec c1, TCGv_vec c2, 4042 TCGv_vec v3, TCGv_vec v4, TCGCond cond) 4043{ 4044 TCGv_vec t = tcg_temp_new_vec(type); 4045 4046 if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) { 4047 /* Invert the sense of the compare by swapping arguments. */ 4048 TCGv_vec x; 4049 x = v3, v3 = v4, v4 = x; 4050 } 4051 vec_gen_4(INDEX_op_x86_vpblendvb_vec, type, vece, 4052 tcgv_vec_arg(v0), tcgv_vec_arg(v4), 4053 tcgv_vec_arg(v3), tcgv_vec_arg(t)); 4054 tcg_temp_free_vec(t); 4055} 4056 4057void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, 4058 TCGArg a0, ...) 4059{ 4060 va_list va; 4061 TCGArg a2; 4062 TCGv_vec v0, v1, v2, v3, v4; 4063 4064 va_start(va, a0); 4065 v0 = temp_tcgv_vec(arg_temp(a0)); 4066 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 4067 a2 = va_arg(va, TCGArg); 4068 4069 switch (opc) { 4070 case INDEX_op_shli_vec: 4071 case INDEX_op_shri_vec: 4072 expand_vec_shi(type, vece, opc, v0, v1, a2); 4073 break; 4074 4075 case INDEX_op_sari_vec: 4076 expand_vec_sari(type, vece, v0, v1, a2); 4077 break; 4078 4079 case INDEX_op_rotli_vec: 4080 expand_vec_rotli(type, vece, v0, v1, a2); 4081 break; 4082 4083 case INDEX_op_rotls_vec: 4084 expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2))); 4085 break; 4086 4087 case INDEX_op_rotlv_vec: 4088 v2 = temp_tcgv_vec(arg_temp(a2)); 4089 expand_vec_rotv(type, vece, v0, v1, v2, false); 4090 break; 4091 case INDEX_op_rotrv_vec: 4092 v2 = temp_tcgv_vec(arg_temp(a2)); 4093 expand_vec_rotv(type, vece, v0, v1, v2, true); 4094 break; 4095 4096 case INDEX_op_mul_vec: 4097 v2 = temp_tcgv_vec(arg_temp(a2)); 4098 expand_vec_mul(type, vece, v0, v1, v2); 4099 break; 4100 4101 case INDEX_op_cmp_vec: 4102 v2 = temp_tcgv_vec(arg_temp(a2)); 4103 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg)); 4104 break; 4105 4106 case INDEX_op_cmpsel_vec: 4107 v2 = temp_tcgv_vec(arg_temp(a2)); 4108 v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 4109 v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 4110 expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg)); 4111 break; 4112 4113 default: 4114 break; 4115 } 4116 4117 va_end(va); 4118} 4119 4120static const int tcg_target_callee_save_regs[] = { 4121#if TCG_TARGET_REG_BITS == 64 4122 TCG_REG_RBP, 4123 TCG_REG_RBX, 4124#if defined(_WIN64) 4125 TCG_REG_RDI, 4126 TCG_REG_RSI, 4127#endif 4128 TCG_REG_R12, 4129 TCG_REG_R13, 4130 TCG_REG_R14, /* Currently used for the global env. */ 4131 TCG_REG_R15, 4132#else 4133 TCG_REG_EBP, /* Currently used for the global env. */ 4134 TCG_REG_EBX, 4135 TCG_REG_ESI, 4136 TCG_REG_EDI, 4137#endif 4138}; 4139 4140/* Compute frame size via macros, to share between tcg_target_qemu_prologue 4141 and tcg_register_jit. */ 4142 4143#define PUSH_SIZE \ 4144 ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \ 4145 * (TCG_TARGET_REG_BITS / 8)) 4146 4147#define FRAME_SIZE \ 4148 ((PUSH_SIZE \ 4149 + TCG_STATIC_CALL_ARGS_SIZE \ 4150 + CPU_TEMP_BUF_NLONGS * sizeof(long) \ 4151 + TCG_TARGET_STACK_ALIGN - 1) \ 4152 & ~(TCG_TARGET_STACK_ALIGN - 1)) 4153 4154/* Generate global QEMU prologue and epilogue code */ 4155static void tcg_target_qemu_prologue(TCGContext *s) 4156{ 4157 int i, stack_addend; 4158 4159 /* TB prologue */ 4160 4161 /* Reserve some stack space, also for TCG temps. */ 4162 stack_addend = FRAME_SIZE - PUSH_SIZE; 4163 tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE, 4164 CPU_TEMP_BUF_NLONGS * sizeof(long)); 4165 4166 /* Save all callee saved registers. */ 4167 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) { 4168 tcg_out_push(s, tcg_target_callee_save_regs[i]); 4169 } 4170 4171 if (!tcg_use_softmmu && guest_base) { 4172 int seg = setup_guest_base_seg(); 4173 if (seg != 0) { 4174 x86_guest_base.seg = seg; 4175 } else if (guest_base == (int32_t)guest_base) { 4176 x86_guest_base.ofs = guest_base; 4177 } else { 4178 assert(TCG_TARGET_REG_BITS == 64); 4179 /* Choose R12 because, as a base, it requires a SIB byte. */ 4180 x86_guest_base.index = TCG_REG_R12; 4181 tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base); 4182 tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index); 4183 } 4184 } 4185 4186 if (TCG_TARGET_REG_BITS == 32) { 4187 tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, 4188 (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4); 4189 tcg_out_addi(s, TCG_REG_ESP, -stack_addend); 4190 /* jmp *tb. */ 4191 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP, 4192 (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4 4193 + stack_addend); 4194 } else { 4195 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); 4196 tcg_out_addi(s, TCG_REG_ESP, -stack_addend); 4197 /* jmp *tb. */ 4198 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]); 4199 } 4200 4201 /* 4202 * Return path for goto_ptr. Set return value to 0, a-la exit_tb, 4203 * and fall through to the rest of the epilogue. 4204 */ 4205 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); 4206 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0); 4207 4208 /* TB epilogue */ 4209 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr); 4210 4211 tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend); 4212 4213 if (have_avx2) { 4214 tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0); 4215 } 4216 for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) { 4217 tcg_out_pop(s, tcg_target_callee_save_regs[i]); 4218 } 4219 tcg_out_opc(s, OPC_RET, 0, 0, 0); 4220} 4221 4222static void tcg_out_tb_start(TCGContext *s) 4223{ 4224 /* nothing to do */ 4225} 4226 4227static void tcg_out_nop_fill(tcg_insn_unit *p, int count) 4228{ 4229 memset(p, 0x90, count); 4230} 4231 4232static void tcg_target_init(TCGContext *s) 4233{ 4234 tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS; 4235 if (TCG_TARGET_REG_BITS == 64) { 4236 tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS; 4237 } 4238 if (have_avx1) { 4239 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS; 4240 tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS; 4241 } 4242 if (have_avx2) { 4243 tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS; 4244 } 4245 4246 tcg_target_call_clobber_regs = ALL_VECTOR_REGS; 4247 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX); 4248 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX); 4249 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX); 4250 if (TCG_TARGET_REG_BITS == 64) { 4251#if !defined(_WIN64) 4252 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI); 4253 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI); 4254#endif 4255 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8); 4256 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9); 4257 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10); 4258 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11); 4259 } 4260 4261 s->reserved_regs = 0; 4262 tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK); 4263 tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC); 4264#ifdef _WIN64 4265 /* These are call saved, and we don't save them, so don't use them. */ 4266 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6); 4267 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7); 4268 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8); 4269 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9); 4270 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10); 4271 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11); 4272 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12); 4273 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13); 4274 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14); 4275 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15); 4276#endif 4277} 4278 4279typedef struct { 4280 DebugFrameHeader h; 4281 uint8_t fde_def_cfa[4]; 4282 uint8_t fde_reg_ofs[14]; 4283} DebugFrame; 4284 4285/* We're expecting a 2 byte uleb128 encoded value. */ 4286QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); 4287 4288#if !defined(__ELF__) 4289 /* Host machine without ELF. */ 4290#elif TCG_TARGET_REG_BITS == 64 4291#define ELF_HOST_MACHINE EM_X86_64 4292static const DebugFrame debug_frame = { 4293 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 4294 .h.cie.id = -1, 4295 .h.cie.version = 1, 4296 .h.cie.code_align = 1, 4297 .h.cie.data_align = 0x78, /* sleb128 -8 */ 4298 .h.cie.return_column = 16, 4299 4300 /* Total FDE size does not include the "len" member. */ 4301 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 4302 4303 .fde_def_cfa = { 4304 12, 7, /* DW_CFA_def_cfa %rsp, ... */ 4305 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 4306 (FRAME_SIZE >> 7) 4307 }, 4308 .fde_reg_ofs = { 4309 0x90, 1, /* DW_CFA_offset, %rip, -8 */ 4310 /* The following ordering must match tcg_target_callee_save_regs. */ 4311 0x86, 2, /* DW_CFA_offset, %rbp, -16 */ 4312 0x83, 3, /* DW_CFA_offset, %rbx, -24 */ 4313 0x8c, 4, /* DW_CFA_offset, %r12, -32 */ 4314 0x8d, 5, /* DW_CFA_offset, %r13, -40 */ 4315 0x8e, 6, /* DW_CFA_offset, %r14, -48 */ 4316 0x8f, 7, /* DW_CFA_offset, %r15, -56 */ 4317 } 4318}; 4319#else 4320#define ELF_HOST_MACHINE EM_386 4321static const DebugFrame debug_frame = { 4322 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 4323 .h.cie.id = -1, 4324 .h.cie.version = 1, 4325 .h.cie.code_align = 1, 4326 .h.cie.data_align = 0x7c, /* sleb128 -4 */ 4327 .h.cie.return_column = 8, 4328 4329 /* Total FDE size does not include the "len" member. */ 4330 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 4331 4332 .fde_def_cfa = { 4333 12, 4, /* DW_CFA_def_cfa %esp, ... */ 4334 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 4335 (FRAME_SIZE >> 7) 4336 }, 4337 .fde_reg_ofs = { 4338 0x88, 1, /* DW_CFA_offset, %eip, -4 */ 4339 /* The following ordering must match tcg_target_callee_save_regs. */ 4340 0x85, 2, /* DW_CFA_offset, %ebp, -8 */ 4341 0x83, 3, /* DW_CFA_offset, %ebx, -12 */ 4342 0x86, 4, /* DW_CFA_offset, %esi, -16 */ 4343 0x87, 5, /* DW_CFA_offset, %edi, -20 */ 4344 } 4345}; 4346#endif 4347 4348#if defined(ELF_HOST_MACHINE) 4349void tcg_register_jit(const void *buf, size_t buf_size) 4350{ 4351 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); 4352} 4353#endif 4354