xref: /openbmc/qemu/tcg/i386/tcg-target.c.inc (revision ea46c4bce8c8a8285e6715c1bac29f5b73f5062b)
1/*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25/* Used for function call generation. */
26#define TCG_TARGET_STACK_ALIGN 16
27#if defined(_WIN64)
28#define TCG_TARGET_CALL_STACK_OFFSET 32
29#else
30#define TCG_TARGET_CALL_STACK_OFFSET 0
31#endif
32#define TCG_TARGET_CALL_ARG_I32      TCG_CALL_ARG_NORMAL
33#define TCG_TARGET_CALL_ARG_I64      TCG_CALL_ARG_NORMAL
34#if defined(_WIN64)
35# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_BY_REF
36# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_BY_VEC
37#elif TCG_TARGET_REG_BITS == 64
38# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_NORMAL
39# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_NORMAL
40#else
41# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_NORMAL
42# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_BY_REF
43#endif
44
45#ifdef CONFIG_DEBUG_TCG
46static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
47#if TCG_TARGET_REG_BITS == 64
48    "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
49#else
50    "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
51#endif
52    "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
53    "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
54#if TCG_TARGET_REG_BITS == 64
55    "%xmm8", "%xmm9", "%xmm10", "%xmm11",
56    "%xmm12", "%xmm13", "%xmm14", "%xmm15",
57#endif
58};
59#endif
60
61static const int tcg_target_reg_alloc_order[] = {
62#if TCG_TARGET_REG_BITS == 64
63    TCG_REG_RBP,
64    TCG_REG_RBX,
65    TCG_REG_R12,
66    TCG_REG_R13,
67    TCG_REG_R14,
68    TCG_REG_R15,
69    TCG_REG_R10,
70    TCG_REG_R11,
71    TCG_REG_R9,
72    TCG_REG_R8,
73    TCG_REG_RCX,
74    TCG_REG_RDX,
75    TCG_REG_RSI,
76    TCG_REG_RDI,
77    TCG_REG_RAX,
78#else
79    TCG_REG_EBX,
80    TCG_REG_ESI,
81    TCG_REG_EDI,
82    TCG_REG_EBP,
83    TCG_REG_ECX,
84    TCG_REG_EDX,
85    TCG_REG_EAX,
86#endif
87    TCG_REG_XMM0,
88    TCG_REG_XMM1,
89    TCG_REG_XMM2,
90    TCG_REG_XMM3,
91    TCG_REG_XMM4,
92    TCG_REG_XMM5,
93#ifndef _WIN64
94    /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
95       any of them.  Therefore only allow xmm0-xmm5 to be allocated.  */
96    TCG_REG_XMM6,
97    TCG_REG_XMM7,
98#if TCG_TARGET_REG_BITS == 64
99    TCG_REG_XMM8,
100    TCG_REG_XMM9,
101    TCG_REG_XMM10,
102    TCG_REG_XMM11,
103    TCG_REG_XMM12,
104    TCG_REG_XMM13,
105    TCG_REG_XMM14,
106    TCG_REG_XMM15,
107#endif
108#endif
109};
110
111#define TCG_TMP_VEC  TCG_REG_XMM5
112
113static const int tcg_target_call_iarg_regs[] = {
114#if TCG_TARGET_REG_BITS == 64
115#if defined(_WIN64)
116    TCG_REG_RCX,
117    TCG_REG_RDX,
118#else
119    TCG_REG_RDI,
120    TCG_REG_RSI,
121    TCG_REG_RDX,
122    TCG_REG_RCX,
123#endif
124    TCG_REG_R8,
125    TCG_REG_R9,
126#else
127    /* 32 bit mode uses stack based calling convention (GCC default). */
128#endif
129};
130
131static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
132{
133    switch (kind) {
134    case TCG_CALL_RET_NORMAL:
135        tcg_debug_assert(slot >= 0 && slot <= 1);
136        return slot ? TCG_REG_EDX : TCG_REG_EAX;
137#ifdef _WIN64
138    case TCG_CALL_RET_BY_VEC:
139        tcg_debug_assert(slot == 0);
140        return TCG_REG_XMM0;
141#endif
142    default:
143        g_assert_not_reached();
144    }
145}
146
147/* Constants we accept.  */
148#define TCG_CT_CONST_S32 0x100
149#define TCG_CT_CONST_U32 0x200
150#define TCG_CT_CONST_I32 0x400
151#define TCG_CT_CONST_WSZ 0x800
152#define TCG_CT_CONST_TST 0x1000
153#define TCG_CT_CONST_ZERO 0x2000
154
155/* Registers used with L constraint, which are the first argument
156   registers on x86_64, and two random call clobbered registers on
157   i386. */
158#if TCG_TARGET_REG_BITS == 64
159# define TCG_REG_L0 tcg_target_call_iarg_regs[0]
160# define TCG_REG_L1 tcg_target_call_iarg_regs[1]
161#else
162# define TCG_REG_L0 TCG_REG_EAX
163# define TCG_REG_L1 TCG_REG_EDX
164#endif
165
166#if TCG_TARGET_REG_BITS == 64
167# define ALL_GENERAL_REGS      0x0000ffffu
168# define ALL_VECTOR_REGS       0xffff0000u
169# define ALL_BYTEL_REGS        ALL_GENERAL_REGS
170#else
171# define ALL_GENERAL_REGS      0x000000ffu
172# define ALL_VECTOR_REGS       0x00ff0000u
173# define ALL_BYTEL_REGS        0x0000000fu
174#endif
175#define SOFTMMU_RESERVE_REGS \
176    (tcg_use_softmmu ? (1 << TCG_REG_L0) | (1 << TCG_REG_L1) : 0)
177
178#define have_bmi2       (cpuinfo & CPUINFO_BMI2)
179#define have_lzcnt      (cpuinfo & CPUINFO_LZCNT)
180
181static const tcg_insn_unit *tb_ret_addr;
182
183static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
184                        intptr_t value, intptr_t addend)
185{
186    value += addend;
187    switch(type) {
188    case R_386_PC32:
189        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
190        if (value != (int32_t)value) {
191            return false;
192        }
193        /* FALLTHRU */
194    case R_386_32:
195        tcg_patch32(code_ptr, value);
196        break;
197    case R_386_PC8:
198        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
199        if (value != (int8_t)value) {
200            return false;
201        }
202        tcg_patch8(code_ptr, value);
203        break;
204    default:
205        g_assert_not_reached();
206    }
207    return true;
208}
209
210/* test if a constant matches the constraint */
211static bool tcg_target_const_match(int64_t val, int ct,
212                                   TCGType type, TCGCond cond, int vece)
213{
214    if (ct & TCG_CT_CONST) {
215        return 1;
216    }
217    if (type == TCG_TYPE_I32) {
218        if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 |
219                  TCG_CT_CONST_I32 | TCG_CT_CONST_TST)) {
220            return 1;
221        }
222    } else {
223        if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
224            return 1;
225        }
226        if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
227            return 1;
228        }
229        if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
230            return 1;
231        }
232        /*
233         * This will be used in combination with TCG_CT_CONST_S32,
234         * so "normal" TESTQ is already matched.  Also accept:
235         *    TESTQ -> TESTL   (uint32_t)
236         *    TESTQ -> BT      (is_power_of_2)
237         */
238        if ((ct & TCG_CT_CONST_TST)
239            && is_tst_cond(cond)
240            && (val == (uint32_t)val || is_power_of_2(val))) {
241            return 1;
242        }
243    }
244    if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
245        return 1;
246    }
247    if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
248        return 1;
249    }
250    return 0;
251}
252
253# define LOWREGMASK(x)	((x) & 7)
254
255#define P_EXT		0x100		/* 0x0f opcode prefix */
256#define P_EXT38         0x200           /* 0x0f 0x38 opcode prefix */
257#define P_DATA16        0x400           /* 0x66 opcode prefix */
258#define P_VEXW          0x1000          /* Set VEX.W = 1 */
259#if TCG_TARGET_REG_BITS == 64
260# define P_REXW         P_VEXW          /* Set REX.W = 1; match VEXW */
261# define P_REXB_R       0x2000          /* REG field as byte register */
262# define P_REXB_RM      0x4000          /* R/M field as byte register */
263# define P_GS           0x8000          /* gs segment override */
264#else
265# define P_REXW		0
266# define P_REXB_R	0
267# define P_REXB_RM	0
268# define P_GS           0
269#endif
270#define P_EXT3A         0x10000         /* 0x0f 0x3a opcode prefix */
271#define P_SIMDF3        0x20000         /* 0xf3 opcode prefix */
272#define P_SIMDF2        0x40000         /* 0xf2 opcode prefix */
273#define P_VEXL          0x80000         /* Set VEX.L = 1 */
274#define P_EVEX          0x100000        /* Requires EVEX encoding */
275
276#define OPC_ARITH_EbIb	(0x80)
277#define OPC_ARITH_EvIz	(0x81)
278#define OPC_ARITH_EvIb	(0x83)
279#define OPC_ARITH_GvEv	(0x03)		/* ... plus (ARITH_FOO << 3) */
280#define OPC_ANDN        (0xf2 | P_EXT38)
281#define OPC_ADD_GvEv	(OPC_ARITH_GvEv | (ARITH_ADD << 3))
282#define OPC_AND_GvEv    (OPC_ARITH_GvEv | (ARITH_AND << 3))
283#define OPC_BLENDPS     (0x0c | P_EXT3A | P_DATA16)
284#define OPC_BSF         (0xbc | P_EXT)
285#define OPC_BSR         (0xbd | P_EXT)
286#define OPC_BSWAP	(0xc8 | P_EXT)
287#define OPC_CALL_Jz	(0xe8)
288#define OPC_CMOVCC      (0x40 | P_EXT)  /* ... plus condition code */
289#define OPC_CMP_GvEv	(OPC_ARITH_GvEv | (ARITH_CMP << 3))
290#define OPC_DEC_r32	(0x48)
291#define OPC_IMUL_GvEv	(0xaf | P_EXT)
292#define OPC_IMUL_GvEvIb	(0x6b)
293#define OPC_IMUL_GvEvIz	(0x69)
294#define OPC_INC_r32	(0x40)
295#define OPC_JCC_long	(0x80 | P_EXT)	/* ... plus condition code */
296#define OPC_JCC_short	(0x70)		/* ... plus condition code */
297#define OPC_JMP_long	(0xe9)
298#define OPC_JMP_short	(0xeb)
299#define OPC_LEA         (0x8d)
300#define OPC_LZCNT       (0xbd | P_EXT | P_SIMDF3)
301#define OPC_MOVB_EvGv	(0x88)		/* stores, more or less */
302#define OPC_MOVL_EvGv	(0x89)		/* stores, more or less */
303#define OPC_MOVL_GvEv	(0x8b)		/* loads, more or less */
304#define OPC_MOVB_EvIz   (0xc6)
305#define OPC_MOVL_EvIz	(0xc7)
306#define OPC_MOVB_Ib     (0xb0)
307#define OPC_MOVL_Iv     (0xb8)
308#define OPC_MOVBE_GyMy  (0xf0 | P_EXT38)
309#define OPC_MOVBE_MyGy  (0xf1 | P_EXT38)
310#define OPC_MOVD_VyEy   (0x6e | P_EXT | P_DATA16)
311#define OPC_MOVD_EyVy   (0x7e | P_EXT | P_DATA16)
312#define OPC_MOVDDUP     (0x12 | P_EXT | P_SIMDF2)
313#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
314#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
315#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
316#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
317#define OPC_MOVQ_VqWq   (0x7e | P_EXT | P_SIMDF3)
318#define OPC_MOVQ_WqVq   (0xd6 | P_EXT | P_DATA16)
319#define OPC_MOVSBL	(0xbe | P_EXT)
320#define OPC_MOVSWL	(0xbf | P_EXT)
321#define OPC_MOVSLQ	(0x63 | P_REXW)
322#define OPC_MOVZBL	(0xb6 | P_EXT)
323#define OPC_MOVZWL	(0xb7 | P_EXT)
324#define OPC_PABSB       (0x1c | P_EXT38 | P_DATA16)
325#define OPC_PABSW       (0x1d | P_EXT38 | P_DATA16)
326#define OPC_PABSD       (0x1e | P_EXT38 | P_DATA16)
327#define OPC_VPABSQ      (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
328#define OPC_PACKSSDW    (0x6b | P_EXT | P_DATA16)
329#define OPC_PACKSSWB    (0x63 | P_EXT | P_DATA16)
330#define OPC_PACKUSDW    (0x2b | P_EXT38 | P_DATA16)
331#define OPC_PACKUSWB    (0x67 | P_EXT | P_DATA16)
332#define OPC_PADDB       (0xfc | P_EXT | P_DATA16)
333#define OPC_PADDW       (0xfd | P_EXT | P_DATA16)
334#define OPC_PADDD       (0xfe | P_EXT | P_DATA16)
335#define OPC_PADDQ       (0xd4 | P_EXT | P_DATA16)
336#define OPC_PADDSB      (0xec | P_EXT | P_DATA16)
337#define OPC_PADDSW      (0xed | P_EXT | P_DATA16)
338#define OPC_PADDUB      (0xdc | P_EXT | P_DATA16)
339#define OPC_PADDUW      (0xdd | P_EXT | P_DATA16)
340#define OPC_PAND        (0xdb | P_EXT | P_DATA16)
341#define OPC_PANDN       (0xdf | P_EXT | P_DATA16)
342#define OPC_PBLENDW     (0x0e | P_EXT3A | P_DATA16)
343#define OPC_PCMPEQB     (0x74 | P_EXT | P_DATA16)
344#define OPC_PCMPEQW     (0x75 | P_EXT | P_DATA16)
345#define OPC_PCMPEQD     (0x76 | P_EXT | P_DATA16)
346#define OPC_PCMPEQQ     (0x29 | P_EXT38 | P_DATA16)
347#define OPC_PCMPGTB     (0x64 | P_EXT | P_DATA16)
348#define OPC_PCMPGTW     (0x65 | P_EXT | P_DATA16)
349#define OPC_PCMPGTD     (0x66 | P_EXT | P_DATA16)
350#define OPC_PCMPGTQ     (0x37 | P_EXT38 | P_DATA16)
351#define OPC_PEXTRD      (0x16 | P_EXT3A | P_DATA16)
352#define OPC_PINSRD      (0x22 | P_EXT3A | P_DATA16)
353#define OPC_PMAXSB      (0x3c | P_EXT38 | P_DATA16)
354#define OPC_PMAXSW      (0xee | P_EXT | P_DATA16)
355#define OPC_PMAXSD      (0x3d | P_EXT38 | P_DATA16)
356#define OPC_VPMAXSQ     (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
357#define OPC_PMAXUB      (0xde | P_EXT | P_DATA16)
358#define OPC_PMAXUW      (0x3e | P_EXT38 | P_DATA16)
359#define OPC_PMAXUD      (0x3f | P_EXT38 | P_DATA16)
360#define OPC_VPMAXUQ     (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
361#define OPC_PMINSB      (0x38 | P_EXT38 | P_DATA16)
362#define OPC_PMINSW      (0xea | P_EXT | P_DATA16)
363#define OPC_PMINSD      (0x39 | P_EXT38 | P_DATA16)
364#define OPC_VPMINSQ     (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
365#define OPC_PMINUB      (0xda | P_EXT | P_DATA16)
366#define OPC_PMINUW      (0x3a | P_EXT38 | P_DATA16)
367#define OPC_PMINUD      (0x3b | P_EXT38 | P_DATA16)
368#define OPC_VPMINUQ     (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
369#define OPC_PMOVSXBW    (0x20 | P_EXT38 | P_DATA16)
370#define OPC_PMOVSXWD    (0x23 | P_EXT38 | P_DATA16)
371#define OPC_PMOVSXDQ    (0x25 | P_EXT38 | P_DATA16)
372#define OPC_PMOVZXBW    (0x30 | P_EXT38 | P_DATA16)
373#define OPC_PMOVZXWD    (0x33 | P_EXT38 | P_DATA16)
374#define OPC_PMOVZXDQ    (0x35 | P_EXT38 | P_DATA16)
375#define OPC_PMULLW      (0xd5 | P_EXT | P_DATA16)
376#define OPC_PMULLD      (0x40 | P_EXT38 | P_DATA16)
377#define OPC_VPMULLQ     (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
378#define OPC_POR         (0xeb | P_EXT | P_DATA16)
379#define OPC_PSHUFB      (0x00 | P_EXT38 | P_DATA16)
380#define OPC_PSHUFD      (0x70 | P_EXT | P_DATA16)
381#define OPC_PSHUFLW     (0x70 | P_EXT | P_SIMDF2)
382#define OPC_PSHUFHW     (0x70 | P_EXT | P_SIMDF3)
383#define OPC_PSHIFTW_Ib  (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
384#define OPC_PSHIFTD_Ib  (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */
385#define OPC_PSHIFTQ_Ib  (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
386#define OPC_PSLLW       (0xf1 | P_EXT | P_DATA16)
387#define OPC_PSLLD       (0xf2 | P_EXT | P_DATA16)
388#define OPC_PSLLQ       (0xf3 | P_EXT | P_DATA16)
389#define OPC_PSRAW       (0xe1 | P_EXT | P_DATA16)
390#define OPC_PSRAD       (0xe2 | P_EXT | P_DATA16)
391#define OPC_VPSRAQ      (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX)
392#define OPC_PSRLW       (0xd1 | P_EXT | P_DATA16)
393#define OPC_PSRLD       (0xd2 | P_EXT | P_DATA16)
394#define OPC_PSRLQ       (0xd3 | P_EXT | P_DATA16)
395#define OPC_PSUBB       (0xf8 | P_EXT | P_DATA16)
396#define OPC_PSUBW       (0xf9 | P_EXT | P_DATA16)
397#define OPC_PSUBD       (0xfa | P_EXT | P_DATA16)
398#define OPC_PSUBQ       (0xfb | P_EXT | P_DATA16)
399#define OPC_PSUBSB      (0xe8 | P_EXT | P_DATA16)
400#define OPC_PSUBSW      (0xe9 | P_EXT | P_DATA16)
401#define OPC_PSUBUB      (0xd8 | P_EXT | P_DATA16)
402#define OPC_PSUBUW      (0xd9 | P_EXT | P_DATA16)
403#define OPC_PUNPCKLBW   (0x60 | P_EXT | P_DATA16)
404#define OPC_PUNPCKLWD   (0x61 | P_EXT | P_DATA16)
405#define OPC_PUNPCKLDQ   (0x62 | P_EXT | P_DATA16)
406#define OPC_PUNPCKLQDQ  (0x6c | P_EXT | P_DATA16)
407#define OPC_PUNPCKHBW   (0x68 | P_EXT | P_DATA16)
408#define OPC_PUNPCKHWD   (0x69 | P_EXT | P_DATA16)
409#define OPC_PUNPCKHDQ   (0x6a | P_EXT | P_DATA16)
410#define OPC_PUNPCKHQDQ  (0x6d | P_EXT | P_DATA16)
411#define OPC_PXOR        (0xef | P_EXT | P_DATA16)
412#define OPC_POP_r32	(0x58)
413#define OPC_POPCNT      (0xb8 | P_EXT | P_SIMDF3)
414#define OPC_PUSH_r32	(0x50)
415#define OPC_PUSH_Iv	(0x68)
416#define OPC_PUSH_Ib	(0x6a)
417#define OPC_RET		(0xc3)
418#define OPC_SETCC	(0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
419#define OPC_SHIFT_1	(0xd1)
420#define OPC_SHIFT_Ib	(0xc1)
421#define OPC_SHIFT_cl	(0xd3)
422#define OPC_SARX        (0xf7 | P_EXT38 | P_SIMDF3)
423#define OPC_SHUFPS      (0xc6 | P_EXT)
424#define OPC_SHLX        (0xf7 | P_EXT38 | P_DATA16)
425#define OPC_SHRX        (0xf7 | P_EXT38 | P_SIMDF2)
426#define OPC_SHRD_Ib     (0xac | P_EXT)
427#define OPC_TESTB	(0x84)
428#define OPC_TESTL	(0x85)
429#define OPC_TZCNT       (0xbc | P_EXT | P_SIMDF3)
430#define OPC_UD2         (0x0b | P_EXT)
431#define OPC_VPBLENDD    (0x02 | P_EXT3A | P_DATA16)
432#define OPC_VPBLENDVB   (0x4c | P_EXT3A | P_DATA16)
433#define OPC_VPBLENDMB   (0x66 | P_EXT38 | P_DATA16 | P_EVEX)
434#define OPC_VPBLENDMW   (0x66 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
435#define OPC_VPBLENDMD   (0x64 | P_EXT38 | P_DATA16 | P_EVEX)
436#define OPC_VPBLENDMQ   (0x64 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
437#define OPC_VPCMPB      (0x3f | P_EXT3A | P_DATA16 | P_EVEX)
438#define OPC_VPCMPUB     (0x3e | P_EXT3A | P_DATA16 | P_EVEX)
439#define OPC_VPCMPW      (0x3f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
440#define OPC_VPCMPUW     (0x3e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
441#define OPC_VPCMPD      (0x1f | P_EXT3A | P_DATA16 | P_EVEX)
442#define OPC_VPCMPUD     (0x1e | P_EXT3A | P_DATA16 | P_EVEX)
443#define OPC_VPCMPQ      (0x1f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
444#define OPC_VPCMPUQ     (0x1e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
445#define OPC_VPINSRB     (0x20 | P_EXT3A | P_DATA16)
446#define OPC_VPINSRW     (0xc4 | P_EXT | P_DATA16)
447#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
448#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
449#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
450#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
451#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
452#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
453#define OPC_VPMOVM2B    (0x28 | P_EXT38 | P_SIMDF3 | P_EVEX)
454#define OPC_VPMOVM2W    (0x28 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
455#define OPC_VPMOVM2D    (0x38 | P_EXT38 | P_SIMDF3 | P_EVEX)
456#define OPC_VPMOVM2Q    (0x38 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
457#define OPC_VPERMQ      (0x00 | P_EXT3A | P_DATA16 | P_VEXW)
458#define OPC_VPERM2I128  (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
459#define OPC_VPROLVD     (0x15 | P_EXT38 | P_DATA16 | P_EVEX)
460#define OPC_VPROLVQ     (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
461#define OPC_VPRORVD     (0x14 | P_EXT38 | P_DATA16 | P_EVEX)
462#define OPC_VPRORVQ     (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
463#define OPC_VPSHLDW     (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
464#define OPC_VPSHLDD     (0x71 | P_EXT3A | P_DATA16 | P_EVEX)
465#define OPC_VPSHLDQ     (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
466#define OPC_VPSHLDVW    (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
467#define OPC_VPSHLDVD    (0x71 | P_EXT38 | P_DATA16 | P_EVEX)
468#define OPC_VPSHLDVQ    (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
469#define OPC_VPSHRDVW    (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
470#define OPC_VPSHRDVD    (0x73 | P_EXT38 | P_DATA16 | P_EVEX)
471#define OPC_VPSHRDVQ    (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
472#define OPC_VPSLLVW     (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
473#define OPC_VPSLLVD     (0x47 | P_EXT38 | P_DATA16)
474#define OPC_VPSLLVQ     (0x47 | P_EXT38 | P_DATA16 | P_VEXW)
475#define OPC_VPSRAVW     (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
476#define OPC_VPSRAVD     (0x46 | P_EXT38 | P_DATA16)
477#define OPC_VPSRAVQ     (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
478#define OPC_VPSRLVW     (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
479#define OPC_VPSRLVD     (0x45 | P_EXT38 | P_DATA16)
480#define OPC_VPSRLVQ     (0x45 | P_EXT38 | P_DATA16 | P_VEXW)
481#define OPC_VPTERNLOGQ  (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
482#define OPC_VPTESTMB    (0x26 | P_EXT38 | P_DATA16 | P_EVEX)
483#define OPC_VPTESTMW    (0x26 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
484#define OPC_VPTESTMD    (0x27 | P_EXT38 | P_DATA16 | P_EVEX)
485#define OPC_VPTESTMQ    (0x27 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
486#define OPC_VPTESTNMB   (0x26 | P_EXT38 | P_SIMDF3 | P_EVEX)
487#define OPC_VPTESTNMW   (0x26 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
488#define OPC_VPTESTNMD   (0x27 | P_EXT38 | P_SIMDF3 | P_EVEX)
489#define OPC_VPTESTNMQ   (0x27 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
490#define OPC_VZEROUPPER  (0x77 | P_EXT)
491#define OPC_XCHG_ax_r32	(0x90)
492#define OPC_XCHG_EvGv   (0x87)
493
494#define OPC_GRP3_Eb     (0xf6)
495#define OPC_GRP3_Ev     (0xf7)
496#define OPC_GRP5        (0xff)
497#define OPC_GRP14       (0x73 | P_EXT | P_DATA16)
498#define OPC_GRPBT       (0xba | P_EXT)
499
500#define OPC_GRPBT_BT    4
501#define OPC_GRPBT_BTS   5
502#define OPC_GRPBT_BTR   6
503#define OPC_GRPBT_BTC   7
504
505/* Group 1 opcode extensions for 0x80-0x83.
506   These are also used as modifiers for OPC_ARITH.  */
507#define ARITH_ADD 0
508#define ARITH_OR  1
509#define ARITH_ADC 2
510#define ARITH_SBB 3
511#define ARITH_AND 4
512#define ARITH_SUB 5
513#define ARITH_XOR 6
514#define ARITH_CMP 7
515
516/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3.  */
517#define SHIFT_ROL 0
518#define SHIFT_ROR 1
519#define SHIFT_SHL 4
520#define SHIFT_SHR 5
521#define SHIFT_SAR 7
522
523/* Group 3 opcode extensions for 0xf6, 0xf7.  To be used with OPC_GRP3.  */
524#define EXT3_TESTi 0
525#define EXT3_NOT   2
526#define EXT3_NEG   3
527#define EXT3_MUL   4
528#define EXT3_IMUL  5
529#define EXT3_DIV   6
530#define EXT3_IDIV  7
531
532/* Group 5 opcode extensions for 0xff.  To be used with OPC_GRP5.  */
533#define EXT5_INC_Ev	0
534#define EXT5_DEC_Ev	1
535#define EXT5_CALLN_Ev	2
536#define EXT5_JMPN_Ev	4
537
538/* Condition codes to be added to OPC_JCC_{long,short}.  */
539#define JCC_JMP (-1)
540#define JCC_JO  0x0
541#define JCC_JNO 0x1
542#define JCC_JB  0x2
543#define JCC_JAE 0x3
544#define JCC_JE  0x4
545#define JCC_JNE 0x5
546#define JCC_JBE 0x6
547#define JCC_JA  0x7
548#define JCC_JS  0x8
549#define JCC_JNS 0x9
550#define JCC_JP  0xa
551#define JCC_JNP 0xb
552#define JCC_JL  0xc
553#define JCC_JGE 0xd
554#define JCC_JLE 0xe
555#define JCC_JG  0xf
556
557static const uint8_t tcg_cond_to_jcc[] = {
558    [TCG_COND_EQ] = JCC_JE,
559    [TCG_COND_NE] = JCC_JNE,
560    [TCG_COND_LT] = JCC_JL,
561    [TCG_COND_GE] = JCC_JGE,
562    [TCG_COND_LE] = JCC_JLE,
563    [TCG_COND_GT] = JCC_JG,
564    [TCG_COND_LTU] = JCC_JB,
565    [TCG_COND_GEU] = JCC_JAE,
566    [TCG_COND_LEU] = JCC_JBE,
567    [TCG_COND_GTU] = JCC_JA,
568    [TCG_COND_TSTEQ] = JCC_JE,
569    [TCG_COND_TSTNE] = JCC_JNE,
570};
571
572#if TCG_TARGET_REG_BITS == 64
573static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
574{
575    int rex;
576
577    if (opc & P_GS) {
578        tcg_out8(s, 0x65);
579    }
580    if (opc & P_DATA16) {
581        /* We should never be asking for both 16 and 64-bit operation.  */
582        tcg_debug_assert((opc & P_REXW) == 0);
583        tcg_out8(s, 0x66);
584    }
585    if (opc & P_SIMDF3) {
586        tcg_out8(s, 0xf3);
587    } else if (opc & P_SIMDF2) {
588        tcg_out8(s, 0xf2);
589    }
590
591    rex = 0;
592    rex |= (opc & P_REXW) ? 0x8 : 0x0;  /* REX.W */
593    rex |= (r & 8) >> 1;                /* REX.R */
594    rex |= (x & 8) >> 2;                /* REX.X */
595    rex |= (rm & 8) >> 3;               /* REX.B */
596
597    /* P_REXB_{R,RM} indicates that the given register is the low byte.
598       For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
599       as otherwise the encoding indicates %[abcd]h.  Note that the values
600       that are ORed in merely indicate that the REX byte must be present;
601       those bits get discarded in output.  */
602    rex |= opc & (r >= 4 ? P_REXB_R : 0);
603    rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
604
605    if (rex) {
606        tcg_out8(s, (uint8_t)(rex | 0x40));
607    }
608
609    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
610        tcg_out8(s, 0x0f);
611        if (opc & P_EXT38) {
612            tcg_out8(s, 0x38);
613        } else if (opc & P_EXT3A) {
614            tcg_out8(s, 0x3a);
615        }
616    }
617
618    tcg_out8(s, opc);
619}
620#else
621static void tcg_out_opc(TCGContext *s, int opc)
622{
623    if (opc & P_DATA16) {
624        tcg_out8(s, 0x66);
625    }
626    if (opc & P_SIMDF3) {
627        tcg_out8(s, 0xf3);
628    } else if (opc & P_SIMDF2) {
629        tcg_out8(s, 0xf2);
630    }
631    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
632        tcg_out8(s, 0x0f);
633        if (opc & P_EXT38) {
634            tcg_out8(s, 0x38);
635        } else if (opc & P_EXT3A) {
636            tcg_out8(s, 0x3a);
637        }
638    }
639    tcg_out8(s, opc);
640}
641/* Discard the register arguments to tcg_out_opc early, so as not to penalize
642   the 32-bit compilation paths.  This method works with all versions of gcc,
643   whereas relying on optimization may not be able to exclude them.  */
644#define tcg_out_opc(s, opc, r, rm, x)  (tcg_out_opc)(s, opc)
645#endif
646
647static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
648{
649    tcg_out_opc(s, opc, r, rm, 0);
650    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
651}
652
653static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
654                            int rm, int index)
655{
656    int tmp;
657
658    if (opc & P_GS) {
659        tcg_out8(s, 0x65);
660    }
661    /* Use the two byte form if possible, which cannot encode
662       VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT.  */
663    if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT
664        && ((rm | index) & 8) == 0) {
665        /* Two byte VEX prefix.  */
666        tcg_out8(s, 0xc5);
667
668        tmp = (r & 8 ? 0 : 0x80);              /* VEX.R */
669    } else {
670        /* Three byte VEX prefix.  */
671        tcg_out8(s, 0xc4);
672
673        /* VEX.m-mmmm */
674        if (opc & P_EXT3A) {
675            tmp = 3;
676        } else if (opc & P_EXT38) {
677            tmp = 2;
678        } else if (opc & P_EXT) {
679            tmp = 1;
680        } else {
681            g_assert_not_reached();
682        }
683        tmp |= (r & 8 ? 0 : 0x80);             /* VEX.R */
684        tmp |= (index & 8 ? 0 : 0x40);         /* VEX.X */
685        tmp |= (rm & 8 ? 0 : 0x20);            /* VEX.B */
686        tcg_out8(s, tmp);
687
688        tmp = (opc & P_VEXW ? 0x80 : 0);       /* VEX.W */
689    }
690
691    tmp |= (opc & P_VEXL ? 0x04 : 0);      /* VEX.L */
692    /* VEX.pp */
693    if (opc & P_DATA16) {
694        tmp |= 1;                          /* 0x66 */
695    } else if (opc & P_SIMDF3) {
696        tmp |= 2;                          /* 0xf3 */
697    } else if (opc & P_SIMDF2) {
698        tmp |= 3;                          /* 0xf2 */
699    }
700    tmp |= (~v & 15) << 3;                 /* VEX.vvvv */
701    tcg_out8(s, tmp);
702    tcg_out8(s, opc);
703}
704
705static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v,
706                             int rm, int index, int aaa, bool z)
707{
708    /* The entire 4-byte evex prefix; with R' and V' set. */
709    uint32_t p = 0x08041062;
710    int mm, pp;
711
712    tcg_debug_assert(have_avx512vl);
713
714    /* EVEX.mm */
715    if (opc & P_EXT3A) {
716        mm = 3;
717    } else if (opc & P_EXT38) {
718        mm = 2;
719    } else if (opc & P_EXT) {
720        mm = 1;
721    } else {
722        g_assert_not_reached();
723    }
724
725    /* EVEX.pp */
726    if (opc & P_DATA16) {
727        pp = 1;                          /* 0x66 */
728    } else if (opc & P_SIMDF3) {
729        pp = 2;                          /* 0xf3 */
730    } else if (opc & P_SIMDF2) {
731        pp = 3;                          /* 0xf2 */
732    } else {
733        pp = 0;
734    }
735
736    p = deposit32(p, 8, 2, mm);
737    p = deposit32(p, 13, 1, (rm & 8) == 0);             /* EVEX.RXB.B */
738    p = deposit32(p, 14, 1, (index & 8) == 0);          /* EVEX.RXB.X */
739    p = deposit32(p, 15, 1, (r & 8) == 0);              /* EVEX.RXB.R */
740    p = deposit32(p, 16, 2, pp);
741    p = deposit32(p, 19, 4, ~v);
742    p = deposit32(p, 23, 1, (opc & P_VEXW) != 0);
743    p = deposit32(p, 24, 3, aaa);
744    p = deposit32(p, 29, 2, (opc & P_VEXL) != 0);
745    p = deposit32(p, 31, 1, z);
746
747    tcg_out32(s, p);
748    tcg_out8(s, opc);
749}
750
751static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
752{
753    if (opc & P_EVEX) {
754        tcg_out_evex_opc(s, opc, r, v, rm, 0, 0, false);
755    } else {
756        tcg_out_vex_opc(s, opc, r, v, rm, 0);
757    }
758    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
759}
760
761static void tcg_out_vex_modrm_type(TCGContext *s, int opc,
762                                   int r, int v, int rm, TCGType type)
763{
764    if (type == TCG_TYPE_V256) {
765        opc |= P_VEXL;
766    }
767    tcg_out_vex_modrm(s, opc, r, v, rm);
768}
769
770static void tcg_out_evex_modrm_type(TCGContext *s, int opc, int r, int v,
771                                    int rm, int aaa, bool z, TCGType type)
772{
773    if (type == TCG_TYPE_V256) {
774        opc |= P_VEXL;
775    }
776    tcg_out_evex_opc(s, opc, r, v, rm, 0, aaa, z);
777    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
778}
779
780/* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
781   We handle either RM and INDEX missing with a negative value.  In 64-bit
782   mode for absolute addresses, ~RM is the size of the immediate operand
783   that will follow the instruction.  */
784
785static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
786                               int shift, intptr_t offset)
787{
788    int mod, len;
789
790    if (index < 0 && rm < 0) {
791        if (TCG_TARGET_REG_BITS == 64) {
792            /* Try for a rip-relative addressing mode.  This has replaced
793               the 32-bit-mode absolute addressing encoding.  */
794            intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
795            intptr_t disp = offset - pc;
796            if (disp == (int32_t)disp) {
797                tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
798                tcg_out32(s, disp);
799                return;
800            }
801
802            /* Try for an absolute address encoding.  This requires the
803               use of the MODRM+SIB encoding and is therefore larger than
804               rip-relative addressing.  */
805            if (offset == (int32_t)offset) {
806                tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
807                tcg_out8(s, (4 << 3) | 5);
808                tcg_out32(s, offset);
809                return;
810            }
811
812            /* ??? The memory isn't directly addressable.  */
813            g_assert_not_reached();
814        } else {
815            /* Absolute address.  */
816            tcg_out8(s, (r << 3) | 5);
817            tcg_out32(s, offset);
818            return;
819        }
820    }
821
822    /* Find the length of the immediate addend.  Note that the encoding
823       that would be used for (%ebp) indicates absolute addressing.  */
824    if (rm < 0) {
825        mod = 0, len = 4, rm = 5;
826    } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
827        mod = 0, len = 0;
828    } else if (offset == (int8_t)offset) {
829        mod = 0x40, len = 1;
830    } else {
831        mod = 0x80, len = 4;
832    }
833
834    /* Use a single byte MODRM format if possible.  Note that the encoding
835       that would be used for %esp is the escape to the two byte form.  */
836    if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
837        /* Single byte MODRM format.  */
838        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
839    } else {
840        /* Two byte MODRM+SIB format.  */
841
842        /* Note that the encoding that would place %esp into the index
843           field indicates no index register.  In 64-bit mode, the REX.X
844           bit counts, so %r12 can be used as the index.  */
845        if (index < 0) {
846            index = 4;
847        } else {
848            tcg_debug_assert(index != TCG_REG_ESP);
849        }
850
851        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
852        tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
853    }
854
855    if (len == 1) {
856        tcg_out8(s, offset);
857    } else if (len == 4) {
858        tcg_out32(s, offset);
859    }
860}
861
862static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
863                                     int index, int shift, intptr_t offset)
864{
865    tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
866    tcg_out_sib_offset(s, r, rm, index, shift, offset);
867}
868
869static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
870                                         int rm, int index, int shift,
871                                         intptr_t offset)
872{
873    tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
874    tcg_out_sib_offset(s, r, rm, index, shift, offset);
875}
876
877/* A simplification of the above with no index or shift.  */
878static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
879                                        int rm, intptr_t offset)
880{
881    tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
882}
883
884static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
885                                            int v, int rm, intptr_t offset)
886{
887    tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
888}
889
890/* Output an opcode with an expected reference to the constant pool.  */
891static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
892{
893    tcg_out_opc(s, opc, r, 0, 0);
894    /* Absolute for 32-bit, pc-relative for 64-bit.  */
895    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
896    tcg_out32(s, 0);
897}
898
899/* Output an opcode with an expected reference to the constant pool.  */
900static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
901{
902    tcg_out_vex_opc(s, opc, r, 0, 0, 0);
903    /* Absolute for 32-bit, pc-relative for 64-bit.  */
904    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
905    tcg_out32(s, 0);
906}
907
908/* Generate dest op= src.  Uses the same ARITH_* codes as tgen_arithi.  */
909static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
910{
911    /* Propagate an opcode prefix, such as P_REXW.  */
912    int ext = subop & ~0x7;
913    subop &= 0x7;
914
915    tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
916}
917
918static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
919{
920    int rexw = 0;
921
922    if (arg == ret) {
923        return true;
924    }
925    switch (type) {
926    case TCG_TYPE_I64:
927        rexw = P_REXW;
928        /* fallthru */
929    case TCG_TYPE_I32:
930        if (ret < 16) {
931            if (arg < 16) {
932                tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
933            } else {
934                tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
935            }
936        } else {
937            if (arg < 16) {
938                tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
939            } else {
940                tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
941            }
942        }
943        break;
944
945    case TCG_TYPE_V64:
946        tcg_debug_assert(ret >= 16 && arg >= 16);
947        tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
948        break;
949    case TCG_TYPE_V128:
950        tcg_debug_assert(ret >= 16 && arg >= 16);
951        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
952        break;
953    case TCG_TYPE_V256:
954        tcg_debug_assert(ret >= 16 && arg >= 16);
955        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
956        break;
957
958    default:
959        g_assert_not_reached();
960    }
961    return true;
962}
963
964static const int avx2_dup_insn[4] = {
965    OPC_VPBROADCASTB, OPC_VPBROADCASTW,
966    OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
967};
968
969static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
970                            TCGReg r, TCGReg a)
971{
972    if (have_avx2) {
973        tcg_out_vex_modrm_type(s, avx2_dup_insn[vece], r, 0, a, type);
974    } else {
975        switch (vece) {
976        case MO_8:
977            /* ??? With zero in a register, use PSHUFB.  */
978            tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
979            a = r;
980            /* FALLTHRU */
981        case MO_16:
982            tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
983            a = r;
984            /* FALLTHRU */
985        case MO_32:
986            tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
987            /* imm8 operand: all output lanes selected from input lane 0.  */
988            tcg_out8(s, 0);
989            break;
990        case MO_64:
991            tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
992            break;
993        default:
994            g_assert_not_reached();
995        }
996    }
997    return true;
998}
999
1000static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
1001                             TCGReg r, TCGReg base, intptr_t offset)
1002{
1003    if (have_avx2) {
1004        int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
1005        tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
1006                                 r, 0, base, offset);
1007    } else {
1008        switch (vece) {
1009        case MO_64:
1010            tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
1011            break;
1012        case MO_32:
1013            tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
1014            break;
1015        case MO_16:
1016            tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
1017            tcg_out8(s, 0); /* imm8 */
1018            tcg_out_dup_vec(s, type, vece, r, r);
1019            break;
1020        case MO_8:
1021            tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
1022            tcg_out8(s, 0); /* imm8 */
1023            tcg_out_dup_vec(s, type, vece, r, r);
1024            break;
1025        default:
1026            g_assert_not_reached();
1027        }
1028    }
1029    return true;
1030}
1031
1032static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
1033                             TCGReg ret, int64_t arg)
1034{
1035    int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
1036
1037    if (arg == 0) {
1038        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1039        return;
1040    }
1041    if (arg == -1) {
1042        tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
1043        return;
1044    }
1045
1046    if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) {
1047        if (have_avx2) {
1048            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
1049        } else {
1050            tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
1051        }
1052        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1053    } else {
1054        if (type == TCG_TYPE_V64) {
1055            tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
1056        } else if (have_avx2) {
1057            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
1058        } else {
1059            tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
1060        }
1061        if (TCG_TARGET_REG_BITS == 64) {
1062            new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1063        } else {
1064            new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32);
1065        }
1066    }
1067}
1068
1069static void tcg_out_movi_vec(TCGContext *s, TCGType type,
1070                             TCGReg ret, tcg_target_long arg)
1071{
1072    if (arg == 0) {
1073        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1074        return;
1075    }
1076    if (arg == -1) {
1077        tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret);
1078        return;
1079    }
1080
1081    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
1082    tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret);
1083    if (TCG_TARGET_REG_BITS == 64) {
1084        new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1085    } else {
1086        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1087    }
1088}
1089
1090static void tcg_out_movi_int(TCGContext *s, TCGType type,
1091                             TCGReg ret, tcg_target_long arg)
1092{
1093    tcg_target_long diff;
1094
1095    if (arg == 0) {
1096        tgen_arithr(s, ARITH_XOR, ret, ret);
1097        return;
1098    }
1099    if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
1100        tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
1101        tcg_out32(s, arg);
1102        return;
1103    }
1104    if (arg == (int32_t)arg) {
1105        tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
1106        tcg_out32(s, arg);
1107        return;
1108    }
1109
1110    /* Try a 7 byte pc-relative lea before the 10 byte movq.  */
1111    diff = tcg_pcrel_diff(s, (const void *)arg) - 7;
1112    if (diff == (int32_t)diff) {
1113        tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
1114        tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
1115        tcg_out32(s, diff);
1116        return;
1117    }
1118
1119    tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
1120    tcg_out64(s, arg);
1121}
1122
1123static void tcg_out_movi(TCGContext *s, TCGType type,
1124                         TCGReg ret, tcg_target_long arg)
1125{
1126    switch (type) {
1127    case TCG_TYPE_I32:
1128#if TCG_TARGET_REG_BITS == 64
1129    case TCG_TYPE_I64:
1130#endif
1131        if (ret < 16) {
1132            tcg_out_movi_int(s, type, ret, arg);
1133        } else {
1134            tcg_out_movi_vec(s, type, ret, arg);
1135        }
1136        break;
1137    default:
1138        g_assert_not_reached();
1139    }
1140}
1141
1142static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
1143{
1144    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1145    tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2);
1146    return true;
1147}
1148
1149static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
1150                             tcg_target_long imm)
1151{
1152    /* This function is only used for passing structs by reference. */
1153    tcg_debug_assert(imm == (int32_t)imm);
1154    tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm);
1155}
1156
1157static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
1158{
1159    if (val == (int8_t)val) {
1160        tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
1161        tcg_out8(s, val);
1162    } else if (val == (int32_t)val) {
1163        tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
1164        tcg_out32(s, val);
1165    } else {
1166        g_assert_not_reached();
1167    }
1168}
1169
1170static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
1171{
1172    /* Given the strength of x86 memory ordering, we only need care for
1173       store-load ordering.  Experimentally, "lock orl $0,0(%esp)" is
1174       faster than "mfence", so don't bother with the sse insn.  */
1175    if (a0 & TCG_MO_ST_LD) {
1176        tcg_out8(s, 0xf0);
1177        tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
1178        tcg_out8(s, 0);
1179    }
1180}
1181
1182static inline void tcg_out_push(TCGContext *s, int reg)
1183{
1184    tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
1185}
1186
1187static inline void tcg_out_pop(TCGContext *s, int reg)
1188{
1189    tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
1190}
1191
1192static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1193                       TCGReg arg1, intptr_t arg2)
1194{
1195    switch (type) {
1196    case TCG_TYPE_I32:
1197        if (ret < 16) {
1198            tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
1199        } else {
1200            tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
1201        }
1202        break;
1203    case TCG_TYPE_I64:
1204        if (ret < 16) {
1205            tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
1206            break;
1207        }
1208        /* FALLTHRU */
1209    case TCG_TYPE_V64:
1210        /* There is no instruction that can validate 8-byte alignment.  */
1211        tcg_debug_assert(ret >= 16);
1212        tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
1213        break;
1214    case TCG_TYPE_V128:
1215        /*
1216         * The gvec infrastructure is asserts that v128 vector loads
1217         * and stores use a 16-byte aligned offset.  Validate that the
1218         * final pointer is aligned by using an insn that will SIGSEGV.
1219         */
1220        tcg_debug_assert(ret >= 16);
1221        tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
1222        break;
1223    case TCG_TYPE_V256:
1224        /*
1225         * The gvec infrastructure only requires 16-byte alignment,
1226         * so here we must use an unaligned load.
1227         */
1228        tcg_debug_assert(ret >= 16);
1229        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
1230                                 ret, 0, arg1, arg2);
1231        break;
1232    default:
1233        g_assert_not_reached();
1234    }
1235}
1236
1237static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1238                       TCGReg arg1, intptr_t arg2)
1239{
1240    switch (type) {
1241    case TCG_TYPE_I32:
1242        if (arg < 16) {
1243            tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
1244        } else {
1245            tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
1246        }
1247        break;
1248    case TCG_TYPE_I64:
1249        if (arg < 16) {
1250            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
1251            break;
1252        }
1253        /* FALLTHRU */
1254    case TCG_TYPE_V64:
1255        /* There is no instruction that can validate 8-byte alignment.  */
1256        tcg_debug_assert(arg >= 16);
1257        tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
1258        break;
1259    case TCG_TYPE_V128:
1260        /*
1261         * The gvec infrastructure is asserts that v128 vector loads
1262         * and stores use a 16-byte aligned offset.  Validate that the
1263         * final pointer is aligned by using an insn that will SIGSEGV.
1264         *
1265         * This specific instance is also used by TCG_CALL_RET_BY_VEC,
1266         * for _WIN64, which must have SSE2 but may not have AVX.
1267         */
1268        tcg_debug_assert(arg >= 16);
1269        if (have_avx1) {
1270            tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
1271        } else {
1272            tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2);
1273        }
1274        break;
1275    case TCG_TYPE_V256:
1276        /*
1277         * The gvec infrastructure only requires 16-byte alignment,
1278         * so here we must use an unaligned store.
1279         */
1280        tcg_debug_assert(arg >= 16);
1281        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
1282                                 arg, 0, arg1, arg2);
1283        break;
1284    default:
1285        g_assert_not_reached();
1286    }
1287}
1288
1289static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1290                        TCGReg base, intptr_t ofs)
1291{
1292    int rexw = 0;
1293    if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
1294        if (val != (int32_t)val) {
1295            return false;
1296        }
1297        rexw = P_REXW;
1298    } else if (type != TCG_TYPE_I32) {
1299        return false;
1300    }
1301    tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
1302    tcg_out32(s, val);
1303    return true;
1304}
1305
1306static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
1307{
1308    /* Propagate an opcode prefix, such as P_DATA16.  */
1309    int ext = subopc & ~0x7;
1310    subopc &= 0x7;
1311
1312    if (count == 1) {
1313        tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
1314    } else {
1315        tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
1316        tcg_out8(s, count);
1317    }
1318}
1319
1320static inline void tcg_out_bswap32(TCGContext *s, int reg)
1321{
1322    tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
1323}
1324
1325static inline void tcg_out_rolw_8(TCGContext *s, int reg)
1326{
1327    tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
1328}
1329
1330static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src)
1331{
1332    if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
1333        tcg_out_mov(s, TCG_TYPE_I32, dest, src);
1334        if (dest >= 4) {
1335            tcg_out_modrm(s, OPC_ARITH_EvIz, ARITH_AND, dest);
1336            tcg_out32(s, 0xff);
1337            return;
1338        }
1339        src = dest;
1340    }
1341    tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
1342}
1343
1344static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1345{
1346    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1347
1348    if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
1349        tcg_out_mov(s, TCG_TYPE_I32, dest, src);
1350        if (dest >= 4) {
1351            tcg_out_shifti(s, SHIFT_SHL, dest, 24);
1352            tcg_out_shifti(s, SHIFT_SAR, dest, 24);
1353            return;
1354        }
1355        src = dest;
1356    }
1357    tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
1358}
1359
1360static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src)
1361{
1362    /* movzwl */
1363    tcg_out_modrm(s, OPC_MOVZWL, dest, src);
1364}
1365
1366static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1367{
1368    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1369    /* movsw[lq] */
1370    tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
1371}
1372
1373static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
1374{
1375    /* 32-bit mov zero extends.  */
1376    tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
1377}
1378
1379static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
1380{
1381    tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1382    tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
1383}
1384
1385static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1386{
1387    tcg_out_ext32s(s, dest, src);
1388}
1389
1390static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1391{
1392    if (dest != src) {
1393        tcg_out_ext32u(s, dest, src);
1394    }
1395}
1396
1397static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src)
1398{
1399    tcg_out_ext32u(s, dest, src);
1400}
1401
1402static inline void tcg_out_bswap64(TCGContext *s, int reg)
1403{
1404    tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
1405}
1406
1407static void tgen_arithi(TCGContext *s, int c, int r0,
1408                        tcg_target_long val, int cf)
1409{
1410    int rexw = 0;
1411
1412    if (TCG_TARGET_REG_BITS == 64) {
1413        rexw = c & -8;
1414        c &= 7;
1415    }
1416
1417    switch (c) {
1418    case ARITH_ADD:
1419    case ARITH_SUB:
1420        if (!cf) {
1421            /*
1422             * ??? While INC is 2 bytes shorter than ADDL $1, they also induce
1423             * partial flags update stalls on Pentium4 and are not recommended
1424             * by current Intel optimization manuals.
1425             */
1426            if (val == 1 || val == -1) {
1427                int is_inc = (c == ARITH_ADD) ^ (val < 0);
1428                if (TCG_TARGET_REG_BITS == 64) {
1429                    /*
1430                     * The single-byte increment encodings are re-tasked
1431                     * as the REX prefixes.  Use the MODRM encoding.
1432                     */
1433                    tcg_out_modrm(s, OPC_GRP5 + rexw,
1434                                  (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
1435                } else {
1436                    tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
1437                }
1438                return;
1439            }
1440            if (val == 128) {
1441                /*
1442                 * Facilitate using an 8-bit immediate.  Carry is inverted
1443                 * by this transformation, so do it only if cf == 0.
1444                 */
1445                c ^= ARITH_ADD ^ ARITH_SUB;
1446                val = -128;
1447            }
1448        }
1449        break;
1450
1451    case ARITH_AND:
1452        if (TCG_TARGET_REG_BITS == 64) {
1453            if (val == 0xffffffffu) {
1454                tcg_out_ext32u(s, r0, r0);
1455                return;
1456            }
1457            if (val == (uint32_t)val) {
1458                /* AND with no high bits set can use a 32-bit operation.  */
1459                rexw = 0;
1460            }
1461        }
1462        if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1463            tcg_out_ext8u(s, r0, r0);
1464            return;
1465        }
1466        if (val == 0xffffu) {
1467            tcg_out_ext16u(s, r0, r0);
1468            return;
1469        }
1470        break;
1471
1472    case ARITH_OR:
1473    case ARITH_XOR:
1474        if (val >= 0x80 && val <= 0xff
1475            && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1476            tcg_out_modrm(s, OPC_ARITH_EbIb + P_REXB_RM, c, r0);
1477            tcg_out8(s, val);
1478            return;
1479        }
1480        break;
1481    }
1482
1483    if (val == (int8_t)val) {
1484        tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
1485        tcg_out8(s, val);
1486        return;
1487    }
1488    if (rexw == 0 || val == (int32_t)val) {
1489        tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
1490        tcg_out32(s, val);
1491        return;
1492    }
1493
1494    g_assert_not_reached();
1495}
1496
1497static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
1498{
1499    if (val != 0) {
1500        tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
1501    }
1502}
1503
1504/* Set SMALL to force a short forward branch.  */
1505static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small)
1506{
1507    int32_t val, val1;
1508
1509    if (l->has_value) {
1510        val = tcg_pcrel_diff(s, l->u.value_ptr);
1511        val1 = val - 2;
1512        if ((int8_t)val1 == val1) {
1513            if (opc == -1) {
1514                tcg_out8(s, OPC_JMP_short);
1515            } else {
1516                tcg_out8(s, OPC_JCC_short + opc);
1517            }
1518            tcg_out8(s, val1);
1519        } else {
1520            tcg_debug_assert(!small);
1521            if (opc == -1) {
1522                tcg_out8(s, OPC_JMP_long);
1523                tcg_out32(s, val - 5);
1524            } else {
1525                tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1526                tcg_out32(s, val - 6);
1527            }
1528        }
1529    } else if (small) {
1530        if (opc == -1) {
1531            tcg_out8(s, OPC_JMP_short);
1532        } else {
1533            tcg_out8(s, OPC_JCC_short + opc);
1534        }
1535        tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
1536        s->code_ptr += 1;
1537    } else {
1538        if (opc == -1) {
1539            tcg_out8(s, OPC_JMP_long);
1540        } else {
1541            tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1542        }
1543        tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
1544        s->code_ptr += 4;
1545    }
1546}
1547
1548static int tcg_out_cmp(TCGContext *s, TCGCond cond, TCGArg arg1,
1549                       TCGArg arg2, int const_arg2, int rexw)
1550{
1551    int jz, js;
1552
1553    if (!is_tst_cond(cond)) {
1554        if (!const_arg2) {
1555            tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
1556        } else if (arg2 == 0) {
1557            tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
1558        } else {
1559            tcg_debug_assert(!rexw || arg2 == (int32_t)arg2);
1560            tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
1561        }
1562        return tcg_cond_to_jcc[cond];
1563    }
1564
1565    jz = tcg_cond_to_jcc[cond];
1566    js = (cond == TCG_COND_TSTNE ? JCC_JS : JCC_JNS);
1567
1568    if (!const_arg2) {
1569        tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg2);
1570        return jz;
1571    }
1572
1573    if (arg2 <= 0xff && (TCG_TARGET_REG_BITS == 64 || arg1 < 4)) {
1574        if (arg2 == 0x80) {
1575            tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
1576            return js;
1577        }
1578        if (arg2 == 0xff) {
1579            tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
1580            return jz;
1581        }
1582        tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, arg1);
1583        tcg_out8(s, arg2);
1584        return jz;
1585    }
1586
1587    if ((arg2 & ~0xff00) == 0 && arg1 < 4) {
1588        if (arg2 == 0x8000) {
1589            tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
1590            return js;
1591        }
1592        if (arg2 == 0xff00) {
1593            tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
1594            return jz;
1595        }
1596        tcg_out_modrm(s, OPC_GRP3_Eb, EXT3_TESTi, arg1 + 4);
1597        tcg_out8(s, arg2 >> 8);
1598        return jz;
1599    }
1600
1601    if (arg2 == 0xffff) {
1602        tcg_out_modrm(s, OPC_TESTL | P_DATA16, arg1, arg1);
1603        return jz;
1604    }
1605    if (arg2 == 0xffffffffu) {
1606        tcg_out_modrm(s, OPC_TESTL, arg1, arg1);
1607        return jz;
1608    }
1609
1610    if (is_power_of_2(rexw ? arg2 : (uint32_t)arg2)) {
1611        int jc = (cond == TCG_COND_TSTNE ? JCC_JB : JCC_JAE);
1612        int sh = ctz64(arg2);
1613
1614        rexw = (sh & 32 ? P_REXW : 0);
1615        if ((sh & 31) == 31) {
1616            tcg_out_modrm(s, OPC_TESTL | rexw, arg1, arg1);
1617            return js;
1618        } else {
1619            tcg_out_modrm(s, OPC_GRPBT | rexw, OPC_GRPBT_BT, arg1);
1620            tcg_out8(s, sh);
1621            return jc;
1622        }
1623    }
1624
1625    if (rexw) {
1626        if (arg2 == (uint32_t)arg2) {
1627            rexw = 0;
1628        } else {
1629            tcg_debug_assert(arg2 == (int32_t)arg2);
1630        }
1631    }
1632    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_TESTi, arg1);
1633    tcg_out32(s, arg2);
1634    return jz;
1635}
1636
1637static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond,
1638                           TCGArg arg1, TCGArg arg2, int const_arg2,
1639                           TCGLabel *label, bool small)
1640{
1641    int jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, rexw);
1642    tcg_out_jxx(s, jcc, label, small);
1643}
1644
1645static void tgen_brcond(TCGContext *s, TCGType type, TCGCond cond,
1646                        TCGReg arg1, TCGReg arg2, TCGLabel *label)
1647{
1648    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1649    tcg_out_brcond(s, rexw, cond, arg1, arg2, false, label, false);
1650}
1651
1652static void tgen_brcondi(TCGContext *s, TCGType type, TCGCond cond,
1653                         TCGReg arg1, tcg_target_long arg2, TCGLabel *label)
1654{
1655    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1656    tcg_out_brcond(s, rexw, cond, arg1, arg2, true, label, false);
1657}
1658
1659static const TCGOutOpBrcond outop_brcond = {
1660    .base.static_constraint = C_O0_I2(r, reT),
1661    .out_rr = tgen_brcond,
1662    .out_ri = tgen_brcondi,
1663};
1664
1665#if TCG_TARGET_REG_BITS == 32
1666static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
1667                            const int *const_args, bool small)
1668{
1669    TCGLabel *label_next = gen_new_label();
1670    TCGLabel *label_this = arg_label(args[5]);
1671    TCGCond cond = args[4];
1672
1673    switch (cond) {
1674    case TCG_COND_EQ:
1675    case TCG_COND_TSTEQ:
1676        tcg_out_brcond(s, 0, tcg_invert_cond(cond),
1677                       args[0], args[2], const_args[2], label_next, 1);
1678        tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3],
1679                       label_this, small);
1680        break;
1681
1682    case TCG_COND_NE:
1683    case TCG_COND_TSTNE:
1684        tcg_out_brcond(s, 0, cond, args[0], args[2], const_args[2],
1685                       label_this, small);
1686        tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3],
1687                       label_this, small);
1688        break;
1689
1690    default:
1691        tcg_out_brcond(s, 0, tcg_high_cond(cond), args[1],
1692                       args[3], const_args[3], label_this, small);
1693        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1694        tcg_out_brcond(s, 0, tcg_unsigned_cond(cond), args[0],
1695                       args[2], const_args[2], label_this, small);
1696        break;
1697    }
1698    tcg_out_label(s, label_next);
1699}
1700#endif
1701
1702static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond,
1703                            TCGReg dest, TCGReg arg1, TCGArg arg2,
1704                            bool const_arg2, bool neg)
1705{
1706    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1707    int cmp_rexw = rexw;
1708    bool inv = false;
1709    bool cleared;
1710    int jcc;
1711
1712    switch (cond) {
1713    case TCG_COND_NE:
1714        inv = true;
1715        /* fall through */
1716    case TCG_COND_EQ:
1717        /* If arg2 is 0, convert to LTU/GEU vs 1. */
1718        if (const_arg2 && arg2 == 0) {
1719            arg2 = 1;
1720            goto do_ltu;
1721        }
1722        break;
1723
1724    case TCG_COND_TSTNE:
1725        inv = true;
1726        /* fall through */
1727    case TCG_COND_TSTEQ:
1728        /* If arg2 is -1, convert to LTU/GEU vs 1. */
1729        if (const_arg2 && arg2 == 0xffffffffu) {
1730            arg2 = 1;
1731            cmp_rexw = 0;
1732            goto do_ltu;
1733        }
1734        break;
1735
1736    case TCG_COND_LEU:
1737        inv = true;
1738        /* fall through */
1739    case TCG_COND_GTU:
1740        /* If arg2 is a register, swap for LTU/GEU. */
1741        if (!const_arg2) {
1742            TCGReg t = arg1;
1743            arg1 = arg2;
1744            arg2 = t;
1745            goto do_ltu;
1746        }
1747        break;
1748
1749    case TCG_COND_GEU:
1750        inv = true;
1751        /* fall through */
1752    case TCG_COND_LTU:
1753    do_ltu:
1754        /*
1755         * Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU.
1756         * We can then use NEG or INC to produce the desired result.
1757         * This is always smaller than the SETCC expansion.
1758         */
1759        tcg_out_cmp(s, TCG_COND_LTU, arg1, arg2, const_arg2, cmp_rexw);
1760
1761        /* X - X - C = -C = (C ? -1 : 0) */
1762        tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest);
1763        if (inv && neg) {
1764            /* ~(C ? -1 : 0) = (C ? 0 : -1) */
1765            tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
1766        } else if (inv) {
1767            /* (C ? -1 : 0) + 1 = (C ? 0 : 1) */
1768            tgen_arithi(s, ARITH_ADD, dest, 1, 0);
1769        } else if (!neg) {
1770            /* -(C ? -1 : 0) = (C ? 1 : 0) */
1771            tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest);
1772        }
1773        return;
1774
1775    case TCG_COND_GE:
1776        inv = true;
1777        /* fall through */
1778    case TCG_COND_LT:
1779        /* If arg2 is 0, extract the sign bit. */
1780        if (const_arg2 && arg2 == 0) {
1781            tcg_out_mov(s, type, dest, arg1);
1782            if (inv) {
1783                tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
1784            }
1785            tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw,
1786                           dest, rexw ? 63 : 31);
1787            return;
1788        }
1789        break;
1790
1791    default:
1792        break;
1793    }
1794
1795    /*
1796     * If dest does not overlap the inputs, clearing it first is preferred.
1797     * The XOR breaks any false dependency for the low-byte write to dest,
1798     * and is also one byte smaller than MOVZBL.
1799     */
1800    cleared = false;
1801    if (dest != arg1 && (const_arg2 || dest != arg2)) {
1802        tgen_arithr(s, ARITH_XOR, dest, dest);
1803        cleared = true;
1804    }
1805
1806    jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, cmp_rexw);
1807    tcg_out_modrm(s, OPC_SETCC | jcc, 0, dest);
1808
1809    if (!cleared) {
1810        tcg_out_ext8u(s, dest, dest);
1811    }
1812    if (neg) {
1813        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest);
1814    }
1815}
1816
1817static void tgen_setcond(TCGContext *s, TCGType type, TCGCond cond,
1818                         TCGReg dest, TCGReg arg1, TCGReg arg2)
1819{
1820    tcg_out_setcond(s, type, cond, dest, arg1, arg2, false, false);
1821}
1822
1823static void tgen_setcondi(TCGContext *s, TCGType type, TCGCond cond,
1824                          TCGReg dest, TCGReg arg1, tcg_target_long arg2)
1825{
1826    tcg_out_setcond(s, type, cond, dest, arg1, arg2, true, false);
1827}
1828
1829static const TCGOutOpSetcond outop_setcond = {
1830    .base.static_constraint = C_O1_I2(q, r, reT),
1831    .out_rrr = tgen_setcond,
1832    .out_rri = tgen_setcondi,
1833};
1834
1835static void tgen_negsetcond(TCGContext *s, TCGType type, TCGCond cond,
1836                            TCGReg dest, TCGReg arg1, TCGReg arg2)
1837{
1838    tcg_out_setcond(s, type, cond, dest, arg1, arg2, false, true);
1839}
1840
1841static void tgen_negsetcondi(TCGContext *s, TCGType type, TCGCond cond,
1842                             TCGReg dest, TCGReg arg1, tcg_target_long arg2)
1843{
1844    tcg_out_setcond(s, type, cond, dest, arg1, arg2, true, true);
1845}
1846
1847static const TCGOutOpSetcond outop_negsetcond = {
1848    .base.static_constraint = C_O1_I2(q, r, reT),
1849    .out_rrr = tgen_negsetcond,
1850    .out_rri = tgen_negsetcondi,
1851};
1852
1853#if TCG_TARGET_REG_BITS == 32
1854static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1855                             const int *const_args)
1856{
1857    TCGArg new_args[6];
1858    TCGLabel *label_true, *label_over;
1859
1860    memcpy(new_args, args+1, 5*sizeof(TCGArg));
1861
1862    if (args[0] == args[1] || args[0] == args[2]
1863        || (!const_args[3] && args[0] == args[3])
1864        || (!const_args[4] && args[0] == args[4])) {
1865        /* When the destination overlaps with one of the argument
1866           registers, don't do anything tricky.  */
1867        label_true = gen_new_label();
1868        label_over = gen_new_label();
1869
1870        new_args[5] = label_arg(label_true);
1871        tcg_out_brcond2(s, new_args, const_args+1, 1);
1872
1873        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1874        tcg_out_jxx(s, JCC_JMP, label_over, 1);
1875        tcg_out_label(s, label_true);
1876
1877        tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1878        tcg_out_label(s, label_over);
1879    } else {
1880        /* When the destination does not overlap one of the arguments,
1881           clear the destination first, jump if cond false, and emit an
1882           increment in the true case.  This results in smaller code.  */
1883
1884        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1885
1886        label_over = gen_new_label();
1887        new_args[4] = tcg_invert_cond(new_args[4]);
1888        new_args[5] = label_arg(label_over);
1889        tcg_out_brcond2(s, new_args, const_args+1, 1);
1890
1891        tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1892        tcg_out_label(s, label_over);
1893    }
1894}
1895#endif
1896
1897static void tcg_out_cmov(TCGContext *s, int jcc, int rexw,
1898                         TCGReg dest, TCGReg v1)
1899{
1900    tcg_out_modrm(s, OPC_CMOVCC | jcc | rexw, dest, v1);
1901}
1902
1903static void tgen_movcond(TCGContext *s, TCGType type, TCGCond cond,
1904                         TCGReg dest, TCGReg c1, TCGArg c2, bool const_c2,
1905                         TCGArg vt, bool const_vt,
1906                         TCGArg vf, bool consf_vf)
1907{
1908    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1909    int jcc = tcg_out_cmp(s, cond, c1, c2, const_c2, rexw);
1910    tcg_out_cmov(s, jcc, rexw, dest, vt);
1911}
1912
1913static const TCGOutOpMovcond outop_movcond = {
1914    .base.static_constraint = C_O1_I4(r, r, reT, r, 0),
1915    .out = tgen_movcond,
1916};
1917
1918static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest)
1919{
1920    intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1921
1922    if (disp == (int32_t)disp) {
1923        tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1924        tcg_out32(s, disp);
1925    } else {
1926        /* rip-relative addressing into the constant pool.
1927           This is 6 + 8 = 14 bytes, as compared to using an
1928           immediate load 10 + 6 = 16 bytes, plus we may
1929           be able to re-use the pool constant for more calls.  */
1930        tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
1931        tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
1932        new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
1933        tcg_out32(s, 0);
1934    }
1935}
1936
1937static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
1938                         const TCGHelperInfo *info)
1939{
1940    tcg_out_branch(s, 1, dest);
1941
1942#ifndef _WIN32
1943    if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) {
1944        /*
1945         * The sysv i386 abi for struct return places a reference as the
1946         * first argument of the stack, and pops that argument with the
1947         * return statement.  Since we want to retain the aligned stack
1948         * pointer for the callee, we do not want to actually push that
1949         * argument before the call but rely on the normal store to the
1950         * stack slot.  But we do need to compensate for the pop in order
1951         * to reset our correct stack pointer value.
1952         * Pushing a garbage value back onto the stack is quickest.
1953         */
1954        tcg_out_push(s, TCG_REG_EAX);
1955    }
1956#endif
1957}
1958
1959static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest)
1960{
1961    tcg_out_branch(s, 0, dest);
1962}
1963
1964static void tcg_out_nopn(TCGContext *s, int n)
1965{
1966    int i;
1967    /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1968     * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1969     * duplicate prefix, and all of the interesting recent cores can
1970     * decode and discard the duplicates in a single cycle.
1971     */
1972    tcg_debug_assert(n >= 1);
1973    for (i = 1; i < n; ++i) {
1974        tcg_out8(s, 0x66);
1975    }
1976    tcg_out8(s, 0x90);
1977}
1978
1979typedef struct {
1980    TCGReg base;
1981    int index;
1982    int ofs;
1983    int seg;
1984    TCGAtomAlign aa;
1985} HostAddress;
1986
1987bool tcg_target_has_memory_bswap(MemOp memop)
1988{
1989    TCGAtomAlign aa;
1990
1991    if (!have_movbe) {
1992        return false;
1993    }
1994    if ((memop & MO_SIZE) < MO_128) {
1995        return true;
1996    }
1997
1998    /*
1999     * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA,
2000     * but do allow a pair of 64-bit operations, i.e. MOVBEQ.
2001     */
2002    aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true);
2003    return aa.atom < MO_128;
2004}
2005
2006/*
2007 * Because i686 has no register parameters and because x86_64 has xchg
2008 * to handle addr/data register overlap, we have placed all input arguments
2009 * before we need might need a scratch reg.
2010 *
2011 * Even then, a scratch is only needed for l->raddr.  Rather than expose
2012 * a general-purpose scratch when we don't actually know it's available,
2013 * use the ra_gen hook to load into RAX if needed.
2014 */
2015#if TCG_TARGET_REG_BITS == 64
2016static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg)
2017{
2018    if (arg < 0) {
2019        arg = TCG_REG_RAX;
2020    }
2021    tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr);
2022    return arg;
2023}
2024static const TCGLdstHelperParam ldst_helper_param = {
2025    .ra_gen = ldst_ra_gen
2026};
2027#else
2028static const TCGLdstHelperParam ldst_helper_param = { };
2029#endif
2030
2031static void tcg_out_vec_to_pair(TCGContext *s, TCGType type,
2032                                TCGReg l, TCGReg h, TCGReg v)
2033{
2034    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2035
2036    /* vpmov{d,q} %v, %l */
2037    tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l);
2038    /* vpextr{d,q} $1, %v, %h */
2039    tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h);
2040    tcg_out8(s, 1);
2041}
2042
2043static void tcg_out_pair_to_vec(TCGContext *s, TCGType type,
2044                                TCGReg v, TCGReg l, TCGReg h)
2045{
2046    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2047
2048    /* vmov{d,q} %l, %v */
2049    tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l);
2050    /* vpinsr{d,q} $1, %h, %v, %v */
2051    tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h);
2052    tcg_out8(s, 1);
2053}
2054
2055/*
2056 * Generate code for the slow path for a load at the end of block
2057 */
2058static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2059{
2060    MemOp opc = get_memop(l->oi);
2061    tcg_insn_unit **label_ptr = &l->label_ptr[0];
2062
2063    /* resolve label address */
2064    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
2065    if (label_ptr[1]) {
2066        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
2067    }
2068
2069    tcg_out_ld_helper_args(s, l, &ldst_helper_param);
2070    tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]);
2071    tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param);
2072
2073    tcg_out_jmp(s, l->raddr);
2074    return true;
2075}
2076
2077/*
2078 * Generate code for the slow path for a store at the end of block
2079 */
2080static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2081{
2082    MemOp opc = get_memop(l->oi);
2083    tcg_insn_unit **label_ptr = &l->label_ptr[0];
2084
2085    /* resolve label address */
2086    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
2087    if (label_ptr[1]) {
2088        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
2089    }
2090
2091    tcg_out_st_helper_args(s, l, &ldst_helper_param);
2092    tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]);
2093
2094    tcg_out_jmp(s, l->raddr);
2095    return true;
2096}
2097
2098#ifdef CONFIG_USER_ONLY
2099static HostAddress x86_guest_base = {
2100    .index = -1
2101};
2102
2103#if defined(__x86_64__) && defined(__linux__)
2104# include <asm/prctl.h>
2105# include <sys/prctl.h>
2106int arch_prctl(int code, unsigned long addr);
2107static inline int setup_guest_base_seg(void)
2108{
2109    if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
2110        return P_GS;
2111    }
2112    return 0;
2113}
2114#define setup_guest_base_seg  setup_guest_base_seg
2115#elif defined(__x86_64__) && \
2116      (defined (__FreeBSD__) || defined (__FreeBSD_kernel__))
2117# include <machine/sysarch.h>
2118static inline int setup_guest_base_seg(void)
2119{
2120    if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
2121        return P_GS;
2122    }
2123    return 0;
2124}
2125#define setup_guest_base_seg  setup_guest_base_seg
2126#endif
2127#else
2128# define x86_guest_base (*(HostAddress *)({ qemu_build_not_reached(); NULL; }))
2129#endif /* CONFIG_USER_ONLY */
2130#ifndef setup_guest_base_seg
2131# define setup_guest_base_seg()  0
2132#endif
2133
2134#define MIN_TLB_MASK_TABLE_OFS  INT_MIN
2135
2136/*
2137 * For softmmu, perform the TLB load and compare.
2138 * For useronly, perform any required alignment tests.
2139 * In both cases, return a TCGLabelQemuLdst structure if the slow path
2140 * is required and fill in @h with the host address for the fast path.
2141 */
2142static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
2143                                           TCGReg addr, MemOpIdx oi, bool is_ld)
2144{
2145    TCGLabelQemuLdst *ldst = NULL;
2146    MemOp opc = get_memop(oi);
2147    MemOp s_bits = opc & MO_SIZE;
2148    unsigned a_mask;
2149
2150    if (tcg_use_softmmu) {
2151        h->index = TCG_REG_L0;
2152        h->ofs = 0;
2153        h->seg = 0;
2154    } else {
2155        *h = x86_guest_base;
2156    }
2157    h->base = addr;
2158    h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128);
2159    a_mask = (1 << h->aa.align) - 1;
2160
2161    if (tcg_use_softmmu) {
2162        int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read)
2163                            : offsetof(CPUTLBEntry, addr_write);
2164        TCGType ttype = TCG_TYPE_I32;
2165        TCGType tlbtype = TCG_TYPE_I32;
2166        int trexw = 0, hrexw = 0, tlbrexw = 0;
2167        unsigned mem_index = get_mmuidx(oi);
2168        unsigned s_mask = (1 << s_bits) - 1;
2169        int fast_ofs = tlb_mask_table_ofs(s, mem_index);
2170        int tlb_mask;
2171
2172        ldst = new_ldst_label(s);
2173        ldst->is_ld = is_ld;
2174        ldst->oi = oi;
2175        ldst->addr_reg = addr;
2176
2177        if (TCG_TARGET_REG_BITS == 64) {
2178            ttype = s->addr_type;
2179            trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW);
2180            if (TCG_TYPE_PTR == TCG_TYPE_I64) {
2181                hrexw = P_REXW;
2182                if (s->page_bits + s->tlb_dyn_max_bits > 32) {
2183                    tlbtype = TCG_TYPE_I64;
2184                    tlbrexw = P_REXW;
2185                }
2186            }
2187        }
2188
2189        tcg_out_mov(s, tlbtype, TCG_REG_L0, addr);
2190        tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0,
2191                       s->page_bits - CPU_TLB_ENTRY_BITS);
2192
2193        tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0,
2194                             fast_ofs + offsetof(CPUTLBDescFast, mask));
2195
2196        tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0,
2197                             fast_ofs + offsetof(CPUTLBDescFast, table));
2198
2199        /*
2200         * If the required alignment is at least as large as the access,
2201         * simply copy the address and mask.  For lesser alignments,
2202         * check that we don't cross pages for the complete access.
2203         */
2204        if (a_mask >= s_mask) {
2205            tcg_out_mov(s, ttype, TCG_REG_L1, addr);
2206        } else {
2207            tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1,
2208                                 addr, s_mask - a_mask);
2209        }
2210        tlb_mask = s->page_mask | a_mask;
2211        tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0);
2212
2213        /* cmp 0(TCG_REG_L0), TCG_REG_L1 */
2214        tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw,
2215                             TCG_REG_L1, TCG_REG_L0, cmp_ofs);
2216
2217        /* jne slow_path */
2218        tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
2219        ldst->label_ptr[0] = s->code_ptr;
2220        s->code_ptr += 4;
2221
2222        /* TLB Hit.  */
2223        tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0,
2224                   offsetof(CPUTLBEntry, addend));
2225    } else if (a_mask) {
2226        int jcc;
2227
2228        ldst = new_ldst_label(s);
2229        ldst->is_ld = is_ld;
2230        ldst->oi = oi;
2231        ldst->addr_reg = addr;
2232
2233        /* jne slow_path */
2234        jcc = tcg_out_cmp(s, TCG_COND_TSTNE, addr, a_mask, true, false);
2235        tcg_out_opc(s, OPC_JCC_long + jcc, 0, 0, 0);
2236        ldst->label_ptr[0] = s->code_ptr;
2237        s->code_ptr += 4;
2238    }
2239
2240    return ldst;
2241}
2242
2243static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2244                                   HostAddress h, TCGType type, MemOp memop)
2245{
2246    bool use_movbe = false;
2247    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
2248    int movop = OPC_MOVL_GvEv;
2249
2250    /* Do big-endian loads with movbe.  */
2251    if (memop & MO_BSWAP) {
2252        tcg_debug_assert(have_movbe);
2253        use_movbe = true;
2254        movop = OPC_MOVBE_GyMy;
2255    }
2256
2257    switch (memop & MO_SSIZE) {
2258    case MO_UB:
2259        tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo,
2260                                 h.base, h.index, 0, h.ofs);
2261        break;
2262    case MO_SB:
2263        tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo,
2264                                 h.base, h.index, 0, h.ofs);
2265        break;
2266    case MO_UW:
2267        if (use_movbe) {
2268            /* There is no extending movbe; only low 16-bits are modified.  */
2269            if (datalo != h.base && datalo != h.index) {
2270                /* XOR breaks dependency chains.  */
2271                tgen_arithr(s, ARITH_XOR, datalo, datalo);
2272                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2273                                         datalo, h.base, h.index, 0, h.ofs);
2274            } else {
2275                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2276                                         datalo, h.base, h.index, 0, h.ofs);
2277                tcg_out_ext16u(s, datalo, datalo);
2278            }
2279        } else {
2280            tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo,
2281                                     h.base, h.index, 0, h.ofs);
2282        }
2283        break;
2284    case MO_SW:
2285        if (use_movbe) {
2286            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2287                                     datalo, h.base, h.index, 0, h.ofs);
2288            tcg_out_ext16s(s, type, datalo, datalo);
2289        } else {
2290            tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg,
2291                                     datalo, h.base, h.index, 0, h.ofs);
2292        }
2293        break;
2294    case MO_UL:
2295        tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2296                                 h.base, h.index, 0, h.ofs);
2297        break;
2298#if TCG_TARGET_REG_BITS == 64
2299    case MO_SL:
2300        if (use_movbe) {
2301            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo,
2302                                     h.base, h.index, 0, h.ofs);
2303            tcg_out_ext32s(s, datalo, datalo);
2304        } else {
2305            tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo,
2306                                     h.base, h.index, 0, h.ofs);
2307        }
2308        break;
2309#endif
2310    case MO_UQ:
2311        if (TCG_TARGET_REG_BITS == 64) {
2312            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2313                                     h.base, h.index, 0, h.ofs);
2314            break;
2315        }
2316        if (use_movbe) {
2317            TCGReg t = datalo;
2318            datalo = datahi;
2319            datahi = t;
2320        }
2321        if (h.base == datalo || h.index == datalo) {
2322            tcg_out_modrm_sib_offset(s, OPC_LEA, datahi,
2323                                     h.base, h.index, 0, h.ofs);
2324            tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0);
2325            tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4);
2326        } else {
2327            tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2328                                     h.base, h.index, 0, h.ofs);
2329            tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2330                                     h.base, h.index, 0, h.ofs + 4);
2331        }
2332        break;
2333
2334    case MO_128:
2335        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2336
2337        /*
2338         * Without 16-byte atomicity, use integer regs.
2339         * That is where we want the data, and it allows bswaps.
2340         */
2341        if (h.aa.atom < MO_128) {
2342            if (use_movbe) {
2343                TCGReg t = datalo;
2344                datalo = datahi;
2345                datahi = t;
2346            }
2347            if (h.base == datalo || h.index == datalo) {
2348                tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi,
2349                                         h.base, h.index, 0, h.ofs);
2350                tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2351                                     datalo, datahi, 0);
2352                tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2353                                     datahi, datahi, 8);
2354            } else {
2355                tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2356                                         h.base, h.index, 0, h.ofs);
2357                tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2358                                         h.base, h.index, 0, h.ofs + 8);
2359            }
2360            break;
2361        }
2362
2363        /*
2364         * With 16-byte atomicity, a vector load is required.
2365         * If we already have 16-byte alignment, then VMOVDQA always works.
2366         * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2367         * Else use we require a runtime test for alignment for VMOVDQA;
2368         * use VMOVDQU on the unaligned nonatomic path for simplicity.
2369         */
2370        if (h.aa.align >= MO_128) {
2371            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2372                                         TCG_TMP_VEC, 0,
2373                                         h.base, h.index, 0, h.ofs);
2374        } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2375            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2376                                         TCG_TMP_VEC, 0,
2377                                         h.base, h.index, 0, h.ofs);
2378        } else {
2379            TCGLabel *l1 = gen_new_label();
2380            TCGLabel *l2 = gen_new_label();
2381            int jcc;
2382
2383            jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
2384            tcg_out_jxx(s, jcc, l1, true);
2385
2386            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2387                                         TCG_TMP_VEC, 0,
2388                                         h.base, h.index, 0, h.ofs);
2389            tcg_out_jxx(s, JCC_JMP, l2, true);
2390
2391            tcg_out_label(s, l1);
2392            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2393                                         TCG_TMP_VEC, 0,
2394                                         h.base, h.index, 0, h.ofs);
2395            tcg_out_label(s, l2);
2396        }
2397        tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC);
2398        break;
2399
2400    default:
2401        g_assert_not_reached();
2402    }
2403}
2404
2405static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi,
2406                            TCGReg addr, MemOpIdx oi, TCGType data_type)
2407{
2408    TCGLabelQemuLdst *ldst;
2409    HostAddress h;
2410
2411    ldst = prepare_host_addr(s, &h, addr, oi, true);
2412    tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi));
2413
2414    if (ldst) {
2415        ldst->type = data_type;
2416        ldst->datalo_reg = datalo;
2417        ldst->datahi_reg = datahi;
2418        ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2419    }
2420}
2421
2422static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2423                                   HostAddress h, MemOp memop)
2424{
2425    bool use_movbe = false;
2426    int movop = OPC_MOVL_EvGv;
2427
2428    /*
2429     * Do big-endian stores with movbe or system-mode.
2430     * User-only without movbe will have its swapping done generically.
2431     */
2432    if (memop & MO_BSWAP) {
2433        tcg_debug_assert(have_movbe);
2434        use_movbe = true;
2435        movop = OPC_MOVBE_MyGy;
2436    }
2437
2438    switch (memop & MO_SIZE) {
2439    case MO_8:
2440        /* This is handled with constraints on INDEX_op_qemu_st8_i32. */
2441        tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4);
2442        tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg,
2443                                 datalo, h.base, h.index, 0, h.ofs);
2444        break;
2445    case MO_16:
2446        tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo,
2447                                 h.base, h.index, 0, h.ofs);
2448        break;
2449    case MO_32:
2450        tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2451                                 h.base, h.index, 0, h.ofs);
2452        break;
2453    case MO_64:
2454        if (TCG_TARGET_REG_BITS == 64) {
2455            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2456                                     h.base, h.index, 0, h.ofs);
2457        } else {
2458            if (use_movbe) {
2459                TCGReg t = datalo;
2460                datalo = datahi;
2461                datahi = t;
2462            }
2463            tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2464                                     h.base, h.index, 0, h.ofs);
2465            tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2466                                     h.base, h.index, 0, h.ofs + 4);
2467        }
2468        break;
2469
2470    case MO_128:
2471        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2472
2473        /*
2474         * Without 16-byte atomicity, use integer regs.
2475         * That is where we have the data, and it allows bswaps.
2476         */
2477        if (h.aa.atom < MO_128) {
2478            if (use_movbe) {
2479                TCGReg t = datalo;
2480                datalo = datahi;
2481                datahi = t;
2482            }
2483            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2484                                     h.base, h.index, 0, h.ofs);
2485            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2486                                     h.base, h.index, 0, h.ofs + 8);
2487            break;
2488        }
2489
2490        /*
2491         * With 16-byte atomicity, a vector store is required.
2492         * If we already have 16-byte alignment, then VMOVDQA always works.
2493         * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2494         * Else use we require a runtime test for alignment for VMOVDQA;
2495         * use VMOVDQU on the unaligned nonatomic path for simplicity.
2496         */
2497        tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi);
2498        if (h.aa.align >= MO_128) {
2499            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2500                                         TCG_TMP_VEC, 0,
2501                                         h.base, h.index, 0, h.ofs);
2502        } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2503            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2504                                         TCG_TMP_VEC, 0,
2505                                         h.base, h.index, 0, h.ofs);
2506        } else {
2507            TCGLabel *l1 = gen_new_label();
2508            TCGLabel *l2 = gen_new_label();
2509            int jcc;
2510
2511            jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
2512            tcg_out_jxx(s, jcc, l1, true);
2513
2514            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2515                                         TCG_TMP_VEC, 0,
2516                                         h.base, h.index, 0, h.ofs);
2517            tcg_out_jxx(s, JCC_JMP, l2, true);
2518
2519            tcg_out_label(s, l1);
2520            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2521                                         TCG_TMP_VEC, 0,
2522                                         h.base, h.index, 0, h.ofs);
2523            tcg_out_label(s, l2);
2524        }
2525        break;
2526
2527    default:
2528        g_assert_not_reached();
2529    }
2530}
2531
2532static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi,
2533                            TCGReg addr, MemOpIdx oi, TCGType data_type)
2534{
2535    TCGLabelQemuLdst *ldst;
2536    HostAddress h;
2537
2538    ldst = prepare_host_addr(s, &h, addr, oi, false);
2539    tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi));
2540
2541    if (ldst) {
2542        ldst->type = data_type;
2543        ldst->datalo_reg = datalo;
2544        ldst->datahi_reg = datahi;
2545        ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2546    }
2547}
2548
2549static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
2550{
2551    /* Reuse the zeroing that exists for goto_ptr.  */
2552    if (a0 == 0) {
2553        tcg_out_jmp(s, tcg_code_gen_epilogue);
2554    } else {
2555        tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
2556        tcg_out_jmp(s, tb_ret_addr);
2557    }
2558}
2559
2560static void tcg_out_goto_tb(TCGContext *s, int which)
2561{
2562    /*
2563     * Jump displacement must be aligned for atomic patching;
2564     * see if we need to add extra nops before jump
2565     */
2566    int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr;
2567    if (gap != 1) {
2568        tcg_out_nopn(s, gap - 1);
2569    }
2570    tcg_out8(s, OPC_JMP_long); /* jmp im */
2571    set_jmp_insn_offset(s, which);
2572    tcg_out32(s, 0);
2573    set_jmp_reset_offset(s, which);
2574}
2575
2576void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
2577                              uintptr_t jmp_rx, uintptr_t jmp_rw)
2578{
2579    /* patch the branch destination */
2580    uintptr_t addr = tb->jmp_target_addr[n];
2581    qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4));
2582    /* no need to flush icache explicitly */
2583}
2584
2585
2586static void tgen_add(TCGContext *s, TCGType type,
2587                     TCGReg a0, TCGReg a1, TCGReg a2)
2588{
2589    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2590
2591    if (a0 == a1) {
2592        tgen_arithr(s, ARITH_ADD + rexw, a0, a2);
2593    } else if (a0 == a2) {
2594        tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
2595    } else {
2596        tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, 0);
2597    }
2598}
2599
2600static void tgen_addi(TCGContext *s, TCGType type,
2601                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2602{
2603    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2604
2605    if (a0 == a1) {
2606        tgen_arithi(s, ARITH_ADD + rexw, a0, a2, false);
2607    } else {
2608        tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, -1, 0, a2);
2609    }
2610}
2611
2612static const TCGOutOpBinary outop_add = {
2613    .base.static_constraint = C_O1_I2(r, r, re),
2614    .out_rrr = tgen_add,
2615    .out_rri = tgen_addi,
2616};
2617
2618static void tgen_and(TCGContext *s, TCGType type,
2619                     TCGReg a0, TCGReg a1, TCGReg a2)
2620{
2621    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2622    tgen_arithr(s, ARITH_AND + rexw, a0, a2);
2623}
2624
2625static void tgen_andi(TCGContext *s, TCGType type,
2626                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2627{
2628    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2629    tgen_arithi(s, ARITH_AND + rexw, a0, a2, false);
2630}
2631
2632static const TCGOutOpBinary outop_and = {
2633    .base.static_constraint = C_O1_I2(r, 0, reZ),
2634    .out_rrr = tgen_and,
2635    .out_rri = tgen_andi,
2636};
2637
2638static void tgen_andc(TCGContext *s, TCGType type,
2639                      TCGReg a0, TCGReg a1, TCGReg a2)
2640{
2641    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2642    tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2643}
2644
2645static TCGConstraintSetIndex cset_andc(TCGType type, unsigned flags)
2646{
2647    return have_bmi1 ? C_O1_I2(r, r, r) : C_NotImplemented;
2648}
2649
2650static const TCGOutOpBinary outop_andc = {
2651    .base.static_constraint = C_Dynamic,
2652    .base.dynamic_constraint = cset_andc,
2653    .out_rrr = tgen_andc,
2654};
2655
2656static void tgen_clz(TCGContext *s, TCGType type,
2657                     TCGReg a0, TCGReg a1, TCGReg a2)
2658{
2659    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2660    int jcc;
2661
2662    if (have_lzcnt) {
2663        tcg_out_modrm(s, OPC_LZCNT + rexw, a0, a1);
2664        jcc = JCC_JB;
2665    } else {
2666        /* Recall that the output of BSR is the index not the count.  */
2667        tcg_out_modrm(s, OPC_BSR + rexw, a0, a1);
2668        tgen_arithi(s, ARITH_XOR + rexw, a0, rexw ? 63 : 31, 0);
2669
2670        /* Since we have destroyed the flags from BSR, we have to re-test.  */
2671        jcc = tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, rexw);
2672    }
2673    tcg_out_cmov(s, jcc, rexw, a0, a2);
2674}
2675
2676static void tgen_clzi(TCGContext *s, TCGType type,
2677                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2678{
2679    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2680    tcg_out_modrm(s, OPC_LZCNT + rexw, a0, a1);
2681}
2682
2683static TCGConstraintSetIndex cset_clz(TCGType type, unsigned flags)
2684{
2685    return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
2686}
2687
2688static const TCGOutOpBinary outop_clz = {
2689    .base.static_constraint = C_Dynamic,
2690    .base.dynamic_constraint = cset_clz,
2691    .out_rrr = tgen_clz,
2692    .out_rri = tgen_clzi,
2693};
2694
2695static void tgen_ctpop(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
2696{
2697    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2698    tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2699}
2700
2701static TCGConstraintSetIndex cset_ctpop(TCGType type, unsigned flags)
2702{
2703    return have_popcnt ? C_O1_I1(r, r) : C_NotImplemented;
2704}
2705
2706static const TCGOutOpUnary outop_ctpop = {
2707    .base.static_constraint = C_Dynamic,
2708    .base.dynamic_constraint = cset_ctpop,
2709    .out_rr = tgen_ctpop,
2710};
2711
2712static void tgen_ctz(TCGContext *s, TCGType type,
2713                     TCGReg a0, TCGReg a1, TCGReg a2)
2714{
2715    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2716    int jcc;
2717
2718    if (have_bmi1) {
2719        tcg_out_modrm(s, OPC_TZCNT + rexw, a0, a1);
2720        jcc = JCC_JB;
2721    } else {
2722        tcg_out_modrm(s, OPC_BSF + rexw, a0, a1);
2723        jcc = JCC_JE;
2724    }
2725    tcg_out_cmov(s, jcc, rexw, a0, a2);
2726}
2727
2728static void tgen_ctzi(TCGContext *s, TCGType type,
2729                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2730{
2731    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2732    tcg_out_modrm(s, OPC_TZCNT + rexw, a0, a1);
2733}
2734
2735static TCGConstraintSetIndex cset_ctz(TCGType type, unsigned flags)
2736{
2737    return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
2738}
2739
2740static const TCGOutOpBinary outop_ctz = {
2741    .base.static_constraint = C_Dynamic,
2742    .base.dynamic_constraint = cset_ctz,
2743    .out_rrr = tgen_ctz,
2744    .out_rri = tgen_ctzi,
2745};
2746
2747static const TCGOutOpBinary outop_divs = {
2748    .base.static_constraint = C_NotImplemented,
2749};
2750
2751static void tgen_divs2(TCGContext *s, TCGType type,
2752                       TCGReg a0, TCGReg a1, TCGReg a4)
2753{
2754    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2755    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, a4);
2756}
2757
2758static const TCGOutOpDivRem outop_divs2 = {
2759    .base.static_constraint = C_O2_I3(a, d, 0, 1, r),
2760    .out_rr01r = tgen_divs2,
2761};
2762
2763static const TCGOutOpBinary outop_divu = {
2764    .base.static_constraint = C_NotImplemented,
2765};
2766
2767static void tgen_divu2(TCGContext *s, TCGType type,
2768                       TCGReg a0, TCGReg a1, TCGReg a4)
2769{
2770    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2771    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, a4);
2772}
2773
2774static const TCGOutOpDivRem outop_divu2 = {
2775    .base.static_constraint = C_O2_I3(a, d, 0, 1, r),
2776    .out_rr01r = tgen_divu2,
2777};
2778
2779static const TCGOutOpBinary outop_eqv = {
2780    .base.static_constraint = C_NotImplemented,
2781};
2782
2783static void tgen_mul(TCGContext *s, TCGType type,
2784                     TCGReg a0, TCGReg a1, TCGReg a2)
2785{
2786    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2787    tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2788}
2789
2790static void tgen_muli(TCGContext *s, TCGType type,
2791                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2792{
2793    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2794
2795    if (a2 == (int8_t)a2) {
2796        tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2797        tcg_out8(s, a2);
2798    } else {
2799        tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2800        tcg_out32(s, a2);
2801    }
2802}
2803
2804static const TCGOutOpBinary outop_mul = {
2805    .base.static_constraint = C_O1_I2(r, 0, re),
2806    .out_rrr = tgen_mul,
2807    .out_rri = tgen_muli,
2808};
2809
2810static void tgen_muls2(TCGContext *s, TCGType type,
2811                       TCGReg a0, TCGReg a1, TCGReg a2, TCGReg a3)
2812{
2813    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2814    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, a3);
2815}
2816
2817static const TCGOutOpMul2 outop_muls2 = {
2818    .base.static_constraint = C_O2_I2(a, d, a, r),
2819    .out_rrrr = tgen_muls2,
2820};
2821
2822static const TCGOutOpBinary outop_mulsh = {
2823    .base.static_constraint = C_NotImplemented,
2824};
2825
2826static const TCGOutOpBinary outop_muluh = {
2827    .base.static_constraint = C_NotImplemented,
2828};
2829
2830static void tgen_mulu2(TCGContext *s, TCGType type,
2831                       TCGReg a0, TCGReg a1, TCGReg a2, TCGReg a3)
2832{
2833    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2834    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, a3);
2835}
2836
2837static const TCGOutOpMul2 outop_mulu2 = {
2838    .base.static_constraint = C_O2_I2(a, d, a, r),
2839    .out_rrrr = tgen_mulu2,
2840};
2841
2842static const TCGOutOpBinary outop_nand = {
2843    .base.static_constraint = C_NotImplemented,
2844};
2845
2846static const TCGOutOpBinary outop_nor = {
2847    .base.static_constraint = C_NotImplemented,
2848};
2849
2850static void tgen_or(TCGContext *s, TCGType type,
2851                    TCGReg a0, TCGReg a1, TCGReg a2)
2852{
2853    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2854    tgen_arithr(s, ARITH_OR + rexw, a0, a2);
2855}
2856
2857static void tgen_ori(TCGContext *s, TCGType type,
2858                     TCGReg a0, TCGReg a1, tcg_target_long a2)
2859{
2860    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2861    tgen_arithi(s, ARITH_OR + rexw, a0, a2, false);
2862}
2863
2864static const TCGOutOpBinary outop_or = {
2865    .base.static_constraint = C_O1_I2(r, 0, re),
2866    .out_rrr = tgen_or,
2867    .out_rri = tgen_ori,
2868};
2869
2870static const TCGOutOpBinary outop_orc = {
2871    .base.static_constraint = C_NotImplemented,
2872};
2873
2874static const TCGOutOpBinary outop_rems = {
2875    .base.static_constraint = C_NotImplemented,
2876};
2877
2878static const TCGOutOpBinary outop_remu = {
2879    .base.static_constraint = C_NotImplemented,
2880};
2881
2882static void tgen_rotl(TCGContext *s, TCGType type,
2883                     TCGReg a0, TCGReg a1, TCGReg a2)
2884{
2885    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2886    tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_ROL, a0);
2887}
2888
2889static void tgen_rotli(TCGContext *s, TCGType type,
2890                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2891{
2892    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2893    tcg_out_shifti(s, SHIFT_ROL + rexw, a0, a2);
2894}
2895
2896static const TCGOutOpBinary outop_rotl = {
2897    .base.static_constraint = C_O1_I2(r, 0, ci),
2898    .out_rrr = tgen_rotl,
2899    .out_rri = tgen_rotli,
2900};
2901
2902static void tgen_rotr(TCGContext *s, TCGType type,
2903                     TCGReg a0, TCGReg a1, TCGReg a2)
2904{
2905    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2906    tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_ROR, a0);
2907}
2908
2909static void tgen_rotri(TCGContext *s, TCGType type,
2910                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2911{
2912    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2913    tcg_out_shifti(s, SHIFT_ROR + rexw, a0, a2);
2914}
2915
2916static const TCGOutOpBinary outop_rotr = {
2917    .base.static_constraint = C_O1_I2(r, 0, ci),
2918    .out_rrr = tgen_rotr,
2919    .out_rri = tgen_rotri,
2920};
2921
2922static TCGConstraintSetIndex cset_shift(TCGType type, unsigned flags)
2923{
2924    return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci);
2925}
2926
2927static void tgen_sar(TCGContext *s, TCGType type,
2928                     TCGReg a0, TCGReg a1, TCGReg a2)
2929{
2930    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2931    if (have_bmi2) {
2932        tcg_out_vex_modrm(s, OPC_SARX + rexw, a0, a2, a1);
2933    } else {
2934        tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SAR, a0);
2935    }
2936}
2937
2938static void tgen_sari(TCGContext *s, TCGType type,
2939                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2940{
2941    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2942
2943    tcg_out_mov(s, type, a0, a1);
2944    tcg_out_shifti(s, SHIFT_SAR + rexw, a0, a2);
2945}
2946
2947static const TCGOutOpBinary outop_sar = {
2948    .base.static_constraint = C_Dynamic,
2949    .base.dynamic_constraint = cset_shift,
2950    .out_rrr = tgen_sar,
2951    .out_rri = tgen_sari,
2952};
2953
2954static void tgen_shl(TCGContext *s, TCGType type,
2955                     TCGReg a0, TCGReg a1, TCGReg a2)
2956{
2957    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2958    if (have_bmi2) {
2959        tcg_out_vex_modrm(s, OPC_SHLX + rexw, a0, a2, a1);
2960    } else {
2961        tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SHL, a0);
2962    }
2963}
2964
2965static void tgen_shli(TCGContext *s, TCGType type,
2966                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2967{
2968    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2969
2970    /* For small constant 3-operand shift, use LEA.  */
2971    if (a0 != a1 && a2 >= 1 && a2 <= 3) {
2972        if (a2 == 1) {
2973            /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2974            tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2975        } else {
2976            /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2977            tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2978        }
2979        return;
2980    }
2981    tcg_out_mov(s, type, a0, a1);
2982    tcg_out_shifti(s, SHIFT_SHL + rexw, a0, a2);
2983}
2984
2985static const TCGOutOpBinary outop_shl = {
2986    .base.static_constraint = C_Dynamic,
2987    .base.dynamic_constraint = cset_shift,
2988    .out_rrr = tgen_shl,
2989    .out_rri = tgen_shli,
2990};
2991
2992static void tgen_shr(TCGContext *s, TCGType type,
2993                     TCGReg a0, TCGReg a1, TCGReg a2)
2994{
2995    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2996    if (have_bmi2) {
2997        tcg_out_vex_modrm(s, OPC_SHRX + rexw, a0, a2, a1);
2998    } else {
2999        tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SHR, a0);
3000    }
3001}
3002
3003static void tgen_shri(TCGContext *s, TCGType type,
3004                      TCGReg a0, TCGReg a1, tcg_target_long a2)
3005{
3006    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
3007
3008    tcg_out_mov(s, type, a0, a1);
3009    tcg_out_shifti(s, SHIFT_SHR + rexw, a0, a2);
3010}
3011
3012static const TCGOutOpBinary outop_shr = {
3013    .base.static_constraint = C_Dynamic,
3014    .base.dynamic_constraint = cset_shift,
3015    .out_rrr = tgen_shr,
3016    .out_rri = tgen_shri,
3017};
3018
3019static void tgen_sub(TCGContext *s, TCGType type,
3020                      TCGReg a0, TCGReg a1, TCGReg a2)
3021{
3022    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
3023    tgen_arithr(s, ARITH_SUB + rexw, a0, a2);
3024}
3025
3026static const TCGOutOpSubtract outop_sub = {
3027    .base.static_constraint = C_O1_I2(r, 0, r),
3028    .out_rrr = tgen_sub,
3029};
3030
3031static void tgen_xor(TCGContext *s, TCGType type,
3032                     TCGReg a0, TCGReg a1, TCGReg a2)
3033{
3034    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
3035    tgen_arithr(s, ARITH_XOR + rexw, a0, a2);
3036}
3037
3038static void tgen_xori(TCGContext *s, TCGType type,
3039                      TCGReg a0, TCGReg a1, tcg_target_long a2)
3040{
3041    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
3042    tgen_arithi(s, ARITH_XOR + rexw, a0, a2, false);
3043}
3044
3045static const TCGOutOpBinary outop_xor = {
3046    .base.static_constraint = C_O1_I2(r, 0, re),
3047    .out_rrr = tgen_xor,
3048    .out_rri = tgen_xori,
3049};
3050
3051static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
3052{
3053    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
3054    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
3055}
3056
3057static const TCGOutOpUnary outop_neg = {
3058    .base.static_constraint = C_O1_I1(r, 0),
3059    .out_rr = tgen_neg,
3060};
3061
3062static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
3063{
3064    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
3065    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
3066}
3067
3068static const TCGOutOpUnary outop_not = {
3069    .base.static_constraint = C_O1_I1(r, 0),
3070    .out_rr = tgen_not,
3071};
3072
3073
3074static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType type,
3075                       const TCGArg args[TCG_MAX_OP_ARGS],
3076                       const int const_args[TCG_MAX_OP_ARGS])
3077{
3078    TCGArg a0, a1, a2;
3079    int const_a2, rexw;
3080
3081#if TCG_TARGET_REG_BITS == 64
3082# define OP_32_64(x) \
3083        case glue(glue(INDEX_op_, x), _i64): \
3084        case glue(glue(INDEX_op_, x), _i32)
3085#else
3086# define OP_32_64(x) \
3087        case glue(glue(INDEX_op_, x), _i32)
3088#endif
3089
3090    /* Hoist the loads of the most common arguments.  */
3091    a0 = args[0];
3092    a1 = args[1];
3093    a2 = args[2];
3094    const_a2 = const_args[2];
3095    rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
3096
3097    switch (opc) {
3098    case INDEX_op_goto_ptr:
3099        /* jmp to the given host address (could be epilogue) */
3100        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
3101        break;
3102    case INDEX_op_br:
3103        tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
3104        break;
3105    OP_32_64(ld8u):
3106        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
3107        tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
3108        break;
3109    OP_32_64(ld8s):
3110        tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
3111        break;
3112    OP_32_64(ld16u):
3113        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
3114        tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
3115        break;
3116    OP_32_64(ld16s):
3117        tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
3118        break;
3119#if TCG_TARGET_REG_BITS == 64
3120    case INDEX_op_ld32u_i64:
3121#endif
3122    case INDEX_op_ld_i32:
3123        tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
3124        break;
3125
3126    OP_32_64(st8):
3127        if (const_args[0]) {
3128            tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
3129            tcg_out8(s, a0);
3130        } else {
3131            tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
3132        }
3133        break;
3134    OP_32_64(st16):
3135        if (const_args[0]) {
3136            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
3137            tcg_out16(s, a0);
3138        } else {
3139            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
3140        }
3141        break;
3142#if TCG_TARGET_REG_BITS == 64
3143    case INDEX_op_st32_i64:
3144#endif
3145    case INDEX_op_st_i32:
3146        if (const_args[0]) {
3147            tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
3148            tcg_out32(s, a0);
3149        } else {
3150            tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
3151        }
3152        break;
3153
3154    OP_32_64(bswap16):
3155        if (a2 & TCG_BSWAP_OS) {
3156            /* Output must be sign-extended. */
3157            if (rexw) {
3158                tcg_out_bswap64(s, a0);
3159                tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48);
3160            } else {
3161                tcg_out_bswap32(s, a0);
3162                tcg_out_shifti(s, SHIFT_SAR, a0, 16);
3163            }
3164        } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
3165            /* Output must be zero-extended, but input isn't. */
3166            tcg_out_bswap32(s, a0);
3167            tcg_out_shifti(s, SHIFT_SHR, a0, 16);
3168        } else {
3169            tcg_out_rolw_8(s, a0);
3170        }
3171        break;
3172    OP_32_64(bswap32):
3173        tcg_out_bswap32(s, a0);
3174        if (rexw && (a2 & TCG_BSWAP_OS)) {
3175            tcg_out_ext32s(s, a0, a0);
3176        }
3177        break;
3178
3179    case INDEX_op_qemu_ld_i32:
3180        tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I32);
3181        break;
3182    case INDEX_op_qemu_ld_i64:
3183        if (TCG_TARGET_REG_BITS == 64) {
3184            tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I64);
3185        } else {
3186            tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I64);
3187        }
3188        break;
3189    case INDEX_op_qemu_ld_i128:
3190        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3191        tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I128);
3192        break;
3193
3194    case INDEX_op_qemu_st_i32:
3195    case INDEX_op_qemu_st8_i32:
3196        tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I32);
3197        break;
3198    case INDEX_op_qemu_st_i64:
3199        if (TCG_TARGET_REG_BITS == 64) {
3200            tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I64);
3201        } else {
3202            tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I64);
3203        }
3204        break;
3205    case INDEX_op_qemu_st_i128:
3206        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3207        tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I128);
3208        break;
3209
3210    OP_32_64(add2):
3211        if (const_args[4]) {
3212            tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
3213        } else {
3214            tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
3215        }
3216        if (const_args[5]) {
3217            tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
3218        } else {
3219            tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
3220        }
3221        break;
3222    OP_32_64(sub2):
3223        if (const_args[4]) {
3224            tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
3225        } else {
3226            tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
3227        }
3228        if (const_args[5]) {
3229            tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
3230        } else {
3231            tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
3232        }
3233        break;
3234
3235#if TCG_TARGET_REG_BITS == 32
3236    case INDEX_op_brcond2_i32:
3237        tcg_out_brcond2(s, args, const_args, 0);
3238        break;
3239    case INDEX_op_setcond2_i32:
3240        tcg_out_setcond2(s, args, const_args);
3241        break;
3242#else /* TCG_TARGET_REG_BITS == 64 */
3243    case INDEX_op_ld32s_i64:
3244        tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
3245        break;
3246    case INDEX_op_ld_i64:
3247        tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
3248        break;
3249    case INDEX_op_st_i64:
3250        if (const_args[0]) {
3251            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
3252            tcg_out32(s, a0);
3253        } else {
3254            tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
3255        }
3256        break;
3257
3258    case INDEX_op_bswap64_i64:
3259        tcg_out_bswap64(s, a0);
3260        break;
3261    case INDEX_op_extrh_i64_i32:
3262        tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
3263        break;
3264#endif
3265
3266    OP_32_64(deposit):
3267        if (args[3] == 0 && args[4] == 8) {
3268            /* load bits 0..7 */
3269            if (const_a2) {
3270                tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0),
3271                            0, a0, 0);
3272                tcg_out8(s, a2);
3273            } else {
3274                tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
3275            }
3276        } else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) {
3277            /* load bits 8..15 */
3278            if (const_a2) {
3279                tcg_out8(s, OPC_MOVB_Ib + a0 + 4);
3280                tcg_out8(s, a2);
3281            } else {
3282                tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
3283            }
3284        } else if (args[3] == 0 && args[4] == 16) {
3285            /* load bits 0..15 */
3286            if (const_a2) {
3287                tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0),
3288                            0, a0, 0);
3289                tcg_out16(s, a2);
3290            } else {
3291                tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
3292            }
3293        } else {
3294            g_assert_not_reached();
3295        }
3296        break;
3297
3298    case INDEX_op_extract_i64:
3299        if (a2 + args[3] == 32) {
3300            if (a2 == 0) {
3301                tcg_out_ext32u(s, a0, a1);
3302                break;
3303            }
3304            /* This is a 32-bit zero-extending right shift.  */
3305            tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
3306            tcg_out_shifti(s, SHIFT_SHR, a0, a2);
3307            break;
3308        }
3309        /* FALLTHRU */
3310    case INDEX_op_extract_i32:
3311        if (a2 == 0 && args[3] == 8) {
3312            tcg_out_ext8u(s, a0, a1);
3313        } else if (a2 == 0 && args[3] == 16) {
3314            tcg_out_ext16u(s, a0, a1);
3315        } else if (a2 == 8 && args[3] == 8) {
3316            /*
3317             * On the off-chance that we can use the high-byte registers.
3318             * Otherwise we emit the same ext16 + shift pattern that we
3319             * would have gotten from the normal tcg-op.c expansion.
3320             */
3321            if (a1 < 4 && a0 < 8) {
3322                tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
3323            } else {
3324                tcg_out_ext16u(s, a0, a1);
3325                tcg_out_shifti(s, SHIFT_SHR, a0, 8);
3326            }
3327        } else {
3328            g_assert_not_reached();
3329        }
3330        break;
3331
3332    case INDEX_op_sextract_i64:
3333        if (a2 == 0 && args[3] == 8) {
3334            tcg_out_ext8s(s, TCG_TYPE_I64, a0, a1);
3335        } else if (a2 == 0 && args[3] == 16) {
3336            tcg_out_ext16s(s, TCG_TYPE_I64, a0, a1);
3337        } else if (a2 == 0 && args[3] == 32) {
3338            tcg_out_ext32s(s, a0, a1);
3339        } else {
3340            g_assert_not_reached();
3341        }
3342        break;
3343
3344    case INDEX_op_sextract_i32:
3345        if (a2 == 0 && args[3] == 8) {
3346            tcg_out_ext8s(s, TCG_TYPE_I32, a0, a1);
3347        } else if (a2 == 0 && args[3] == 16) {
3348            tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
3349        } else if (a2 == 8 && args[3] == 8) {
3350            if (a1 < 4 && a0 < 8) {
3351                tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
3352            } else {
3353                tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
3354                tcg_out_shifti(s, SHIFT_SAR, a0, 8);
3355            }
3356        } else {
3357            g_assert_not_reached();
3358        }
3359        break;
3360
3361    OP_32_64(extract2):
3362        /* Note that SHRD outputs to the r/m operand.  */
3363        tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
3364        tcg_out8(s, args[3]);
3365        break;
3366
3367    case INDEX_op_mb:
3368        tcg_out_mb(s, a0);
3369        break;
3370    case INDEX_op_call:     /* Always emitted via tcg_out_call.  */
3371    case INDEX_op_exit_tb:  /* Always emitted via tcg_out_exit_tb.  */
3372    case INDEX_op_goto_tb:  /* Always emitted via tcg_out_goto_tb.  */
3373    case INDEX_op_ext_i32_i64:  /* Always emitted via tcg_reg_alloc_op.  */
3374    case INDEX_op_extu_i32_i64:
3375    case INDEX_op_extrl_i64_i32:
3376    default:
3377        g_assert_not_reached();
3378    }
3379
3380#undef OP_32_64
3381}
3382
3383static int const umin_insn[4] = {
3384    OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ
3385};
3386
3387static int const umax_insn[4] = {
3388    OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ
3389};
3390
3391static bool tcg_out_cmp_vec_noinv(TCGContext *s, TCGType type, unsigned vece,
3392                                  TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
3393{
3394    static int const cmpeq_insn[4] = {
3395        OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
3396    };
3397    static int const cmpgt_insn[4] = {
3398        OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
3399    };
3400
3401    enum {
3402        NEED_INV  = 1,
3403        NEED_SWAP = 2,
3404        NEED_UMIN = 4,
3405        NEED_UMAX = 8,
3406        INVALID   = 16,
3407    };
3408    static const uint8_t cond_fixup[16] = {
3409        [0 ... 15] = INVALID,
3410        [TCG_COND_EQ] = 0,
3411        [TCG_COND_GT] = 0,
3412        [TCG_COND_NE] = NEED_INV,
3413        [TCG_COND_LE] = NEED_INV,
3414        [TCG_COND_LT] = NEED_SWAP,
3415        [TCG_COND_GE] = NEED_SWAP | NEED_INV,
3416        [TCG_COND_LEU] = NEED_UMIN,
3417        [TCG_COND_GTU] = NEED_UMIN | NEED_INV,
3418        [TCG_COND_GEU] = NEED_UMAX,
3419        [TCG_COND_LTU] = NEED_UMAX | NEED_INV,
3420    };
3421    int fixup = cond_fixup[cond];
3422
3423    assert(!(fixup & INVALID));
3424
3425    if (fixup & NEED_INV) {
3426        cond = tcg_invert_cond(cond);
3427    }
3428
3429    if (fixup & NEED_SWAP) {
3430        TCGReg swap = v1;
3431        v1 = v2;
3432        v2 = swap;
3433        cond = tcg_swap_cond(cond);
3434    }
3435
3436    if (fixup & (NEED_UMIN | NEED_UMAX)) {
3437        int op = (fixup & NEED_UMIN ? umin_insn[vece] : umax_insn[vece]);
3438
3439        /* avx2 does not have 64-bit min/max; adjusted during expand. */
3440        assert(vece <= MO_32);
3441
3442        tcg_out_vex_modrm_type(s, op, TCG_TMP_VEC, v1, v2, type);
3443        v2 = TCG_TMP_VEC;
3444        cond = TCG_COND_EQ;
3445    }
3446
3447    switch (cond) {
3448    case TCG_COND_EQ:
3449        tcg_out_vex_modrm_type(s, cmpeq_insn[vece], v0, v1, v2, type);
3450        break;
3451    case TCG_COND_GT:
3452        tcg_out_vex_modrm_type(s, cmpgt_insn[vece], v0, v1, v2, type);
3453        break;
3454    default:
3455        g_assert_not_reached();
3456    }
3457    return fixup & NEED_INV;
3458}
3459
3460static void tcg_out_cmp_vec_k1(TCGContext *s, TCGType type, unsigned vece,
3461                               TCGReg v1, TCGReg v2, TCGCond cond)
3462{
3463    static const int cmpm_insn[2][4] = {
3464        { OPC_VPCMPB, OPC_VPCMPW, OPC_VPCMPD, OPC_VPCMPQ },
3465        { OPC_VPCMPUB, OPC_VPCMPUW, OPC_VPCMPUD, OPC_VPCMPUQ }
3466    };
3467    static const int testm_insn[4] = {
3468        OPC_VPTESTMB, OPC_VPTESTMW, OPC_VPTESTMD, OPC_VPTESTMQ
3469    };
3470    static const int testnm_insn[4] = {
3471        OPC_VPTESTNMB, OPC_VPTESTNMW, OPC_VPTESTNMD, OPC_VPTESTNMQ
3472    };
3473
3474    static const int cond_ext[16] = {
3475        [TCG_COND_EQ] = 0,
3476        [TCG_COND_NE] = 4,
3477        [TCG_COND_LT] = 1,
3478        [TCG_COND_LTU] = 1,
3479        [TCG_COND_LE] = 2,
3480        [TCG_COND_LEU] = 2,
3481        [TCG_COND_NEVER] = 3,
3482        [TCG_COND_GE] = 5,
3483        [TCG_COND_GEU] = 5,
3484        [TCG_COND_GT] = 6,
3485        [TCG_COND_GTU] = 6,
3486        [TCG_COND_ALWAYS] = 7,
3487    };
3488
3489    switch (cond) {
3490    case TCG_COND_TSTNE:
3491        tcg_out_vex_modrm_type(s, testm_insn[vece], /* k1 */ 1, v1, v2, type);
3492        break;
3493    case TCG_COND_TSTEQ:
3494        tcg_out_vex_modrm_type(s, testnm_insn[vece], /* k1 */ 1, v1, v2, type);
3495        break;
3496    default:
3497        tcg_out_vex_modrm_type(s, cmpm_insn[is_unsigned_cond(cond)][vece],
3498                               /* k1 */ 1, v1, v2, type);
3499        tcg_out8(s, cond_ext[cond]);
3500        break;
3501    }
3502}
3503
3504static void tcg_out_k1_to_vec(TCGContext *s, TCGType type,
3505                              unsigned vece, TCGReg dest)
3506{
3507    static const int movm_insn[] = {
3508        OPC_VPMOVM2B, OPC_VPMOVM2W, OPC_VPMOVM2D, OPC_VPMOVM2Q
3509    };
3510    tcg_out_vex_modrm_type(s, movm_insn[vece], dest, 0, /* k1 */ 1, type);
3511}
3512
3513static void tcg_out_cmp_vec(TCGContext *s, TCGType type, unsigned vece,
3514                            TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
3515{
3516    /*
3517     * With avx512, we have a complete set of comparisons into mask.
3518     * Unless there's a single insn expansion for the comparision,
3519     * expand via a mask in k1.
3520     */
3521    if ((vece <= MO_16 ? have_avx512bw : have_avx512dq)
3522        && cond != TCG_COND_EQ
3523        && cond != TCG_COND_LT
3524        && cond != TCG_COND_GT) {
3525        tcg_out_cmp_vec_k1(s, type, vece, v1, v2, cond);
3526        tcg_out_k1_to_vec(s, type, vece, v0);
3527        return;
3528    }
3529
3530    if (tcg_out_cmp_vec_noinv(s, type, vece, v0, v1, v2, cond)) {
3531        tcg_out_dupi_vec(s, type, vece, TCG_TMP_VEC, -1);
3532        tcg_out_vex_modrm_type(s, OPC_PXOR, v0, v0, TCG_TMP_VEC, type);
3533    }
3534}
3535
3536static void tcg_out_cmpsel_vec_k1(TCGContext *s, TCGType type, unsigned vece,
3537                                  TCGReg v0, TCGReg c1, TCGReg c2,
3538                                  TCGReg v3, TCGReg v4, TCGCond cond)
3539{
3540    static const int vpblendm_insn[] = {
3541        OPC_VPBLENDMB, OPC_VPBLENDMW, OPC_VPBLENDMD, OPC_VPBLENDMQ
3542    };
3543    bool z = false;
3544
3545    /* Swap to place constant in V4 to take advantage of zero-masking. */
3546    if (!v3) {
3547        z = true;
3548        v3 = v4;
3549        cond = tcg_invert_cond(cond);
3550    }
3551
3552    tcg_out_cmp_vec_k1(s, type, vece, c1, c2, cond);
3553    tcg_out_evex_modrm_type(s, vpblendm_insn[vece], v0, v4, v3,
3554                            /* k1 */1, z, type);
3555}
3556
3557static void tcg_out_cmpsel_vec(TCGContext *s, TCGType type, unsigned vece,
3558                               TCGReg v0, TCGReg c1, TCGReg c2,
3559                               TCGReg v3, TCGReg v4, TCGCond cond)
3560{
3561    bool inv;
3562
3563    if (vece <= MO_16 ? have_avx512bw : have_avx512vl) {
3564        tcg_out_cmpsel_vec_k1(s, type, vece, v0, c1, c2, v3, v4, cond);
3565        return;
3566    }
3567
3568    inv = tcg_out_cmp_vec_noinv(s, type, vece, TCG_TMP_VEC, c1, c2, cond);
3569
3570    /*
3571     * Since XMM0 is 16, the only way we get 0 into V3
3572     * is via the constant zero constraint.
3573     */
3574    if (!v3) {
3575        if (inv) {
3576            tcg_out_vex_modrm_type(s, OPC_PAND, v0, TCG_TMP_VEC, v4, type);
3577        } else {
3578            tcg_out_vex_modrm_type(s, OPC_PANDN, v0, TCG_TMP_VEC, v4, type);
3579        }
3580    } else {
3581        if (inv) {
3582            TCGReg swap = v3;
3583            v3 = v4;
3584            v4 = swap;
3585        }
3586        tcg_out_vex_modrm_type(s, OPC_VPBLENDVB, v0, v4, v3, type);
3587        tcg_out8(s, (TCG_TMP_VEC - TCG_REG_XMM0) << 4);
3588    }
3589}
3590
3591static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
3592                           unsigned vecl, unsigned vece,
3593                           const TCGArg args[TCG_MAX_OP_ARGS],
3594                           const int const_args[TCG_MAX_OP_ARGS])
3595{
3596    static int const add_insn[4] = {
3597        OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
3598    };
3599    static int const ssadd_insn[4] = {
3600        OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
3601    };
3602    static int const usadd_insn[4] = {
3603        OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
3604    };
3605    static int const sub_insn[4] = {
3606        OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
3607    };
3608    static int const sssub_insn[4] = {
3609        OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
3610    };
3611    static int const ussub_insn[4] = {
3612        OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
3613    };
3614    static int const mul_insn[4] = {
3615        OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ
3616    };
3617    static int const shift_imm_insn[4] = {
3618        OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
3619    };
3620    static int const punpckl_insn[4] = {
3621        OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
3622    };
3623    static int const punpckh_insn[4] = {
3624        OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
3625    };
3626    static int const packss_insn[4] = {
3627        OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
3628    };
3629    static int const packus_insn[4] = {
3630        OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
3631    };
3632    static int const smin_insn[4] = {
3633        OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ
3634    };
3635    static int const smax_insn[4] = {
3636        OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ
3637    };
3638    static int const rotlv_insn[4] = {
3639        OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ
3640    };
3641    static int const rotrv_insn[4] = {
3642        OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ
3643    };
3644    static int const shlv_insn[4] = {
3645        OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ
3646    };
3647    static int const shrv_insn[4] = {
3648        OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ
3649    };
3650    static int const sarv_insn[4] = {
3651        OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ
3652    };
3653    static int const shls_insn[4] = {
3654        OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
3655    };
3656    static int const shrs_insn[4] = {
3657        OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
3658    };
3659    static int const sars_insn[4] = {
3660        OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ
3661    };
3662    static int const vpshldi_insn[4] = {
3663        OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ
3664    };
3665    static int const vpshldv_insn[4] = {
3666        OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ
3667    };
3668    static int const vpshrdv_insn[4] = {
3669        OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ
3670    };
3671    static int const abs_insn[4] = {
3672        OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ
3673    };
3674
3675    TCGType type = vecl + TCG_TYPE_V64;
3676    int insn, sub;
3677    TCGArg a0, a1, a2, a3;
3678
3679    a0 = args[0];
3680    a1 = args[1];
3681    a2 = args[2];
3682
3683    switch (opc) {
3684    case INDEX_op_add_vec:
3685        insn = add_insn[vece];
3686        goto gen_simd;
3687    case INDEX_op_ssadd_vec:
3688        insn = ssadd_insn[vece];
3689        goto gen_simd;
3690    case INDEX_op_usadd_vec:
3691        insn = usadd_insn[vece];
3692        goto gen_simd;
3693    case INDEX_op_sub_vec:
3694        insn = sub_insn[vece];
3695        goto gen_simd;
3696    case INDEX_op_sssub_vec:
3697        insn = sssub_insn[vece];
3698        goto gen_simd;
3699    case INDEX_op_ussub_vec:
3700        insn = ussub_insn[vece];
3701        goto gen_simd;
3702    case INDEX_op_mul_vec:
3703        insn = mul_insn[vece];
3704        goto gen_simd;
3705    case INDEX_op_and_vec:
3706        insn = OPC_PAND;
3707        goto gen_simd;
3708    case INDEX_op_or_vec:
3709        insn = OPC_POR;
3710        goto gen_simd;
3711    case INDEX_op_xor_vec:
3712        insn = OPC_PXOR;
3713        goto gen_simd;
3714    case INDEX_op_smin_vec:
3715        insn = smin_insn[vece];
3716        goto gen_simd;
3717    case INDEX_op_umin_vec:
3718        insn = umin_insn[vece];
3719        goto gen_simd;
3720    case INDEX_op_smax_vec:
3721        insn = smax_insn[vece];
3722        goto gen_simd;
3723    case INDEX_op_umax_vec:
3724        insn = umax_insn[vece];
3725        goto gen_simd;
3726    case INDEX_op_shlv_vec:
3727        insn = shlv_insn[vece];
3728        goto gen_simd;
3729    case INDEX_op_shrv_vec:
3730        insn = shrv_insn[vece];
3731        goto gen_simd;
3732    case INDEX_op_sarv_vec:
3733        insn = sarv_insn[vece];
3734        goto gen_simd;
3735    case INDEX_op_rotlv_vec:
3736        insn = rotlv_insn[vece];
3737        goto gen_simd;
3738    case INDEX_op_rotrv_vec:
3739        insn = rotrv_insn[vece];
3740        goto gen_simd;
3741    case INDEX_op_shls_vec:
3742        insn = shls_insn[vece];
3743        goto gen_simd;
3744    case INDEX_op_shrs_vec:
3745        insn = shrs_insn[vece];
3746        goto gen_simd;
3747    case INDEX_op_sars_vec:
3748        insn = sars_insn[vece];
3749        goto gen_simd;
3750    case INDEX_op_x86_punpckl_vec:
3751        insn = punpckl_insn[vece];
3752        goto gen_simd;
3753    case INDEX_op_x86_punpckh_vec:
3754        insn = punpckh_insn[vece];
3755        goto gen_simd;
3756    case INDEX_op_x86_packss_vec:
3757        insn = packss_insn[vece];
3758        goto gen_simd;
3759    case INDEX_op_x86_packus_vec:
3760        insn = packus_insn[vece];
3761        goto gen_simd;
3762    case INDEX_op_x86_vpshldv_vec:
3763        insn = vpshldv_insn[vece];
3764        a1 = a2;
3765        a2 = args[3];
3766        goto gen_simd;
3767    case INDEX_op_x86_vpshrdv_vec:
3768        insn = vpshrdv_insn[vece];
3769        a1 = a2;
3770        a2 = args[3];
3771        goto gen_simd;
3772#if TCG_TARGET_REG_BITS == 32
3773    case INDEX_op_dup2_vec:
3774        /* First merge the two 32-bit inputs to a single 64-bit element. */
3775        tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
3776        /* Then replicate the 64-bit elements across the rest of the vector. */
3777        if (type != TCG_TYPE_V64) {
3778            tcg_out_dup_vec(s, type, MO_64, a0, a0);
3779        }
3780        break;
3781#endif
3782    case INDEX_op_abs_vec:
3783        insn = abs_insn[vece];
3784        a2 = a1;
3785        a1 = 0;
3786        goto gen_simd;
3787    gen_simd:
3788        tcg_debug_assert(insn != OPC_UD2);
3789        tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
3790        break;
3791
3792    case INDEX_op_cmp_vec:
3793        tcg_out_cmp_vec(s, type, vece, a0, a1, a2, args[3]);
3794        break;
3795
3796    case INDEX_op_cmpsel_vec:
3797        tcg_out_cmpsel_vec(s, type, vece, a0, a1, a2,
3798                           args[3], args[4], args[5]);
3799        break;
3800
3801    case INDEX_op_andc_vec:
3802        insn = OPC_PANDN;
3803        tcg_out_vex_modrm_type(s, insn, a0, a2, a1, type);
3804        break;
3805
3806    case INDEX_op_shli_vec:
3807        insn = shift_imm_insn[vece];
3808        sub = 6;
3809        goto gen_shift;
3810    case INDEX_op_shri_vec:
3811        insn = shift_imm_insn[vece];
3812        sub = 2;
3813        goto gen_shift;
3814    case INDEX_op_sari_vec:
3815        if (vece == MO_64) {
3816            insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX;
3817        } else {
3818            insn = shift_imm_insn[vece];
3819        }
3820        sub = 4;
3821        goto gen_shift;
3822    case INDEX_op_rotli_vec:
3823        insn = OPC_PSHIFTD_Ib | P_EVEX;  /* VPROL[DQ] */
3824        if (vece == MO_64) {
3825            insn |= P_VEXW;
3826        }
3827        sub = 1;
3828        goto gen_shift;
3829    gen_shift:
3830        tcg_debug_assert(vece != MO_8);
3831        tcg_out_vex_modrm_type(s, insn, sub, a0, a1, type);
3832        tcg_out8(s, a2);
3833        break;
3834
3835    case INDEX_op_ld_vec:
3836        tcg_out_ld(s, type, a0, a1, a2);
3837        break;
3838    case INDEX_op_st_vec:
3839        tcg_out_st(s, type, a0, a1, a2);
3840        break;
3841    case INDEX_op_dupm_vec:
3842        tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3843        break;
3844
3845    case INDEX_op_x86_shufps_vec:
3846        insn = OPC_SHUFPS;
3847        sub = args[3];
3848        goto gen_simd_imm8;
3849    case INDEX_op_x86_blend_vec:
3850        if (vece == MO_16) {
3851            insn = OPC_PBLENDW;
3852        } else if (vece == MO_32) {
3853            insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
3854        } else {
3855            g_assert_not_reached();
3856        }
3857        sub = args[3];
3858        goto gen_simd_imm8;
3859    case INDEX_op_x86_vperm2i128_vec:
3860        insn = OPC_VPERM2I128;
3861        sub = args[3];
3862        goto gen_simd_imm8;
3863    case INDEX_op_x86_vpshldi_vec:
3864        insn = vpshldi_insn[vece];
3865        sub = args[3];
3866        goto gen_simd_imm8;
3867
3868    case INDEX_op_not_vec:
3869        insn = OPC_VPTERNLOGQ;
3870        a2 = a1;
3871        sub = 0x33; /* !B */
3872        goto gen_simd_imm8;
3873    case INDEX_op_nor_vec:
3874        insn = OPC_VPTERNLOGQ;
3875        sub = 0x11; /* norCB */
3876        goto gen_simd_imm8;
3877    case INDEX_op_nand_vec:
3878        insn = OPC_VPTERNLOGQ;
3879        sub = 0x77; /* nandCB */
3880        goto gen_simd_imm8;
3881    case INDEX_op_eqv_vec:
3882        insn = OPC_VPTERNLOGQ;
3883        sub = 0x99; /* xnorCB */
3884        goto gen_simd_imm8;
3885    case INDEX_op_orc_vec:
3886        insn = OPC_VPTERNLOGQ;
3887        sub = 0xdd; /* orB!C */
3888        goto gen_simd_imm8;
3889
3890    case INDEX_op_bitsel_vec:
3891        insn = OPC_VPTERNLOGQ;
3892        a3 = args[3];
3893        if (a0 == a1) {
3894            a1 = a2;
3895            a2 = a3;
3896            sub = 0xca; /* A?B:C */
3897        } else if (a0 == a2) {
3898            a2 = a3;
3899            sub = 0xe2; /* B?A:C */
3900        } else {
3901            tcg_out_mov(s, type, a0, a3);
3902            sub = 0xb8; /* B?C:A */
3903        }
3904        goto gen_simd_imm8;
3905
3906    gen_simd_imm8:
3907        tcg_debug_assert(insn != OPC_UD2);
3908        tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
3909        tcg_out8(s, sub);
3910        break;
3911
3912    case INDEX_op_x86_psrldq_vec:
3913        tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
3914        tcg_out8(s, a2);
3915        break;
3916
3917    case INDEX_op_mov_vec:  /* Always emitted via tcg_out_mov.  */
3918    case INDEX_op_dup_vec:  /* Always emitted via tcg_out_dup_vec.  */
3919    default:
3920        g_assert_not_reached();
3921    }
3922}
3923
3924static TCGConstraintSetIndex
3925tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags)
3926{
3927    switch (op) {
3928    case INDEX_op_goto_ptr:
3929        return C_O0_I1(r);
3930
3931    case INDEX_op_ld8u_i32:
3932    case INDEX_op_ld8u_i64:
3933    case INDEX_op_ld8s_i32:
3934    case INDEX_op_ld8s_i64:
3935    case INDEX_op_ld16u_i32:
3936    case INDEX_op_ld16u_i64:
3937    case INDEX_op_ld16s_i32:
3938    case INDEX_op_ld16s_i64:
3939    case INDEX_op_ld_i32:
3940    case INDEX_op_ld32u_i64:
3941    case INDEX_op_ld32s_i64:
3942    case INDEX_op_ld_i64:
3943        return C_O1_I1(r, r);
3944
3945    case INDEX_op_st8_i32:
3946    case INDEX_op_st8_i64:
3947        return C_O0_I2(qi, r);
3948
3949    case INDEX_op_st16_i32:
3950    case INDEX_op_st16_i64:
3951    case INDEX_op_st_i32:
3952    case INDEX_op_st32_i64:
3953        return C_O0_I2(ri, r);
3954
3955    case INDEX_op_st_i64:
3956        return C_O0_I2(re, r);
3957
3958    case INDEX_op_bswap16_i32:
3959    case INDEX_op_bswap16_i64:
3960    case INDEX_op_bswap32_i32:
3961    case INDEX_op_bswap32_i64:
3962    case INDEX_op_bswap64_i64:
3963    case INDEX_op_extrh_i64_i32:
3964        return C_O1_I1(r, 0);
3965
3966    case INDEX_op_ext_i32_i64:
3967    case INDEX_op_extu_i32_i64:
3968    case INDEX_op_extrl_i64_i32:
3969    case INDEX_op_extract_i32:
3970    case INDEX_op_extract_i64:
3971    case INDEX_op_sextract_i32:
3972    case INDEX_op_sextract_i64:
3973        return C_O1_I1(r, r);
3974
3975    case INDEX_op_extract2_i32:
3976    case INDEX_op_extract2_i64:
3977        return C_O1_I2(r, 0, r);
3978
3979    case INDEX_op_deposit_i32:
3980    case INDEX_op_deposit_i64:
3981        return C_O1_I2(q, 0, qi);
3982
3983    case INDEX_op_add2_i32:
3984    case INDEX_op_add2_i64:
3985    case INDEX_op_sub2_i32:
3986    case INDEX_op_sub2_i64:
3987        return C_N1_O1_I4(r, r, 0, 1, re, re);
3988
3989    case INDEX_op_qemu_ld_i32:
3990        return C_O1_I1(r, L);
3991
3992    case INDEX_op_qemu_st_i32:
3993        return C_O0_I2(L, L);
3994    case INDEX_op_qemu_st8_i32:
3995        return C_O0_I2(s, L);
3996
3997    case INDEX_op_qemu_ld_i64:
3998        return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L);
3999
4000    case INDEX_op_qemu_st_i64:
4001        return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L);
4002
4003    case INDEX_op_qemu_ld_i128:
4004        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
4005        return C_O2_I1(r, r, L);
4006    case INDEX_op_qemu_st_i128:
4007        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
4008        return C_O0_I3(L, L, L);
4009
4010    case INDEX_op_brcond2_i32:
4011        return C_O0_I4(r, r, ri, ri);
4012
4013    case INDEX_op_setcond2_i32:
4014        return C_O1_I4(r, r, r, ri, ri);
4015
4016    case INDEX_op_ld_vec:
4017    case INDEX_op_dupm_vec:
4018        return C_O1_I1(x, r);
4019
4020    case INDEX_op_st_vec:
4021        return C_O0_I2(x, r);
4022
4023    case INDEX_op_add_vec:
4024    case INDEX_op_sub_vec:
4025    case INDEX_op_mul_vec:
4026    case INDEX_op_and_vec:
4027    case INDEX_op_or_vec:
4028    case INDEX_op_xor_vec:
4029    case INDEX_op_andc_vec:
4030    case INDEX_op_orc_vec:
4031    case INDEX_op_nand_vec:
4032    case INDEX_op_nor_vec:
4033    case INDEX_op_eqv_vec:
4034    case INDEX_op_ssadd_vec:
4035    case INDEX_op_usadd_vec:
4036    case INDEX_op_sssub_vec:
4037    case INDEX_op_ussub_vec:
4038    case INDEX_op_smin_vec:
4039    case INDEX_op_umin_vec:
4040    case INDEX_op_smax_vec:
4041    case INDEX_op_umax_vec:
4042    case INDEX_op_shlv_vec:
4043    case INDEX_op_shrv_vec:
4044    case INDEX_op_sarv_vec:
4045    case INDEX_op_rotlv_vec:
4046    case INDEX_op_rotrv_vec:
4047    case INDEX_op_shls_vec:
4048    case INDEX_op_shrs_vec:
4049    case INDEX_op_sars_vec:
4050    case INDEX_op_cmp_vec:
4051    case INDEX_op_x86_shufps_vec:
4052    case INDEX_op_x86_blend_vec:
4053    case INDEX_op_x86_packss_vec:
4054    case INDEX_op_x86_packus_vec:
4055    case INDEX_op_x86_vperm2i128_vec:
4056    case INDEX_op_x86_punpckl_vec:
4057    case INDEX_op_x86_punpckh_vec:
4058    case INDEX_op_x86_vpshldi_vec:
4059#if TCG_TARGET_REG_BITS == 32
4060    case INDEX_op_dup2_vec:
4061#endif
4062        return C_O1_I2(x, x, x);
4063
4064    case INDEX_op_abs_vec:
4065    case INDEX_op_dup_vec:
4066    case INDEX_op_not_vec:
4067    case INDEX_op_shli_vec:
4068    case INDEX_op_shri_vec:
4069    case INDEX_op_sari_vec:
4070    case INDEX_op_rotli_vec:
4071    case INDEX_op_x86_psrldq_vec:
4072        return C_O1_I1(x, x);
4073
4074    case INDEX_op_x86_vpshldv_vec:
4075    case INDEX_op_x86_vpshrdv_vec:
4076        return C_O1_I3(x, 0, x, x);
4077
4078    case INDEX_op_bitsel_vec:
4079        return C_O1_I3(x, x, x, x);
4080    case INDEX_op_cmpsel_vec:
4081        return C_O1_I4(x, x, x, xO, x);
4082
4083    default:
4084        return C_NotImplemented;
4085    }
4086}
4087
4088int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
4089{
4090    switch (opc) {
4091    case INDEX_op_add_vec:
4092    case INDEX_op_sub_vec:
4093    case INDEX_op_and_vec:
4094    case INDEX_op_or_vec:
4095    case INDEX_op_xor_vec:
4096    case INDEX_op_andc_vec:
4097    case INDEX_op_orc_vec:
4098    case INDEX_op_nand_vec:
4099    case INDEX_op_nor_vec:
4100    case INDEX_op_eqv_vec:
4101    case INDEX_op_not_vec:
4102    case INDEX_op_bitsel_vec:
4103        return 1;
4104    case INDEX_op_cmp_vec:
4105    case INDEX_op_cmpsel_vec:
4106        return -1;
4107
4108    case INDEX_op_rotli_vec:
4109        return have_avx512vl && vece >= MO_32 ? 1 : -1;
4110
4111    case INDEX_op_shli_vec:
4112    case INDEX_op_shri_vec:
4113        /* We must expand the operation for MO_8.  */
4114        return vece == MO_8 ? -1 : 1;
4115
4116    case INDEX_op_sari_vec:
4117        switch (vece) {
4118        case MO_8:
4119            return -1;
4120        case MO_16:
4121        case MO_32:
4122            return 1;
4123        case MO_64:
4124            if (have_avx512vl) {
4125                return 1;
4126            }
4127            /*
4128             * We can emulate this for MO_64, but it does not pay off
4129             * unless we're producing at least 4 values.
4130             */
4131            return type >= TCG_TYPE_V256 ? -1 : 0;
4132        }
4133        return 0;
4134
4135    case INDEX_op_shls_vec:
4136    case INDEX_op_shrs_vec:
4137        return vece >= MO_16;
4138    case INDEX_op_sars_vec:
4139        switch (vece) {
4140        case MO_16:
4141        case MO_32:
4142            return 1;
4143        case MO_64:
4144            return have_avx512vl;
4145        }
4146        return 0;
4147    case INDEX_op_rotls_vec:
4148        return vece >= MO_16 ? -1 : 0;
4149
4150    case INDEX_op_shlv_vec:
4151    case INDEX_op_shrv_vec:
4152        switch (vece) {
4153        case MO_16:
4154            return have_avx512bw;
4155        case MO_32:
4156        case MO_64:
4157            return have_avx2;
4158        }
4159        return 0;
4160    case INDEX_op_sarv_vec:
4161        switch (vece) {
4162        case MO_16:
4163            return have_avx512bw;
4164        case MO_32:
4165            return have_avx2;
4166        case MO_64:
4167            return have_avx512vl;
4168        }
4169        return 0;
4170    case INDEX_op_rotlv_vec:
4171    case INDEX_op_rotrv_vec:
4172        switch (vece) {
4173        case MO_16:
4174            return have_avx512vbmi2 ? -1 : 0;
4175        case MO_32:
4176        case MO_64:
4177            return have_avx512vl ? 1 : have_avx2 ? -1 : 0;
4178        }
4179        return 0;
4180
4181    case INDEX_op_mul_vec:
4182        switch (vece) {
4183        case MO_8:
4184            return -1;
4185        case MO_64:
4186            return have_avx512dq;
4187        }
4188        return 1;
4189
4190    case INDEX_op_ssadd_vec:
4191    case INDEX_op_usadd_vec:
4192    case INDEX_op_sssub_vec:
4193    case INDEX_op_ussub_vec:
4194        return vece <= MO_16;
4195    case INDEX_op_smin_vec:
4196    case INDEX_op_smax_vec:
4197    case INDEX_op_umin_vec:
4198    case INDEX_op_umax_vec:
4199    case INDEX_op_abs_vec:
4200        return vece <= MO_32 || have_avx512vl;
4201
4202    default:
4203        return 0;
4204    }
4205}
4206
4207static void expand_vec_shi(TCGType type, unsigned vece, bool right,
4208                           TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4209{
4210    uint8_t mask;
4211
4212    tcg_debug_assert(vece == MO_8);
4213    if (right) {
4214        mask = 0xff >> imm;
4215        tcg_gen_shri_vec(MO_16, v0, v1, imm);
4216    } else {
4217        mask = 0xff << imm;
4218        tcg_gen_shli_vec(MO_16, v0, v1, imm);
4219    }
4220    tcg_gen_and_vec(MO_8, v0, v0, tcg_constant_vec(type, MO_8, mask));
4221}
4222
4223static void expand_vec_sari(TCGType type, unsigned vece,
4224                            TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4225{
4226    TCGv_vec t1, t2;
4227
4228    switch (vece) {
4229    case MO_8:
4230        /* Unpack to 16-bit, shift, and repack.  */
4231        t1 = tcg_temp_new_vec(type);
4232        t2 = tcg_temp_new_vec(type);
4233        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4234                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
4235        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4236                  tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
4237        tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
4238        tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
4239        vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
4240                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
4241        tcg_temp_free_vec(t1);
4242        tcg_temp_free_vec(t2);
4243        break;
4244
4245    case MO_64:
4246        t1 = tcg_temp_new_vec(type);
4247        if (imm <= 32) {
4248            /*
4249             * We can emulate a small sign extend by performing an arithmetic
4250             * 32-bit shift and overwriting the high half of a 64-bit logical
4251             * shift.  Note that the ISA says shift of 32 is valid, but TCG
4252             * does not, so we have to bound the smaller shift -- we get the
4253             * same result in the high half either way.
4254             */
4255            tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
4256            tcg_gen_shri_vec(MO_64, v0, v1, imm);
4257            vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
4258                      tcgv_vec_arg(v0), tcgv_vec_arg(v0),
4259                      tcgv_vec_arg(t1), 0xaa);
4260        } else {
4261            /* Otherwise we will need to use a compare vs 0 to produce
4262             * the sign-extend, shift and merge.
4263             */
4264            tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1,
4265                            tcg_constant_vec(type, MO_64, 0), v1);
4266            tcg_gen_shri_vec(MO_64, v0, v1, imm);
4267            tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
4268            tcg_gen_or_vec(MO_64, v0, v0, t1);
4269        }
4270        tcg_temp_free_vec(t1);
4271        break;
4272
4273    default:
4274        g_assert_not_reached();
4275    }
4276}
4277
4278static void expand_vec_rotli(TCGType type, unsigned vece,
4279                             TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4280{
4281    TCGv_vec t;
4282
4283    if (vece != MO_8 && have_avx512vbmi2) {
4284        vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece,
4285                  tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm);
4286        return;
4287    }
4288
4289    t = tcg_temp_new_vec(type);
4290    tcg_gen_shli_vec(vece, t, v1, imm);
4291    tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
4292    tcg_gen_or_vec(vece, v0, v0, t);
4293    tcg_temp_free_vec(t);
4294}
4295
4296static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
4297                            TCGv_vec v1, TCGv_vec sh, bool right)
4298{
4299    TCGv_vec t;
4300
4301    if (have_avx512vbmi2) {
4302        vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec,
4303                  type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1),
4304                  tcgv_vec_arg(v1), tcgv_vec_arg(sh));
4305        return;
4306    }
4307
4308    t = tcg_temp_new_vec(type);
4309    tcg_gen_dupi_vec(vece, t, 8 << vece);
4310    tcg_gen_sub_vec(vece, t, t, sh);
4311    if (right) {
4312        tcg_gen_shlv_vec(vece, t, v1, t);
4313        tcg_gen_shrv_vec(vece, v0, v1, sh);
4314    } else {
4315        tcg_gen_shrv_vec(vece, t, v1, t);
4316        tcg_gen_shlv_vec(vece, v0, v1, sh);
4317    }
4318    tcg_gen_or_vec(vece, v0, v0, t);
4319    tcg_temp_free_vec(t);
4320}
4321
4322static void expand_vec_rotls(TCGType type, unsigned vece,
4323                             TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
4324{
4325    TCGv_vec t = tcg_temp_new_vec(type);
4326
4327    tcg_debug_assert(vece != MO_8);
4328
4329    if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) {
4330        tcg_gen_dup_i32_vec(vece, t, lsh);
4331        if (vece >= MO_32) {
4332            tcg_gen_rotlv_vec(vece, v0, v1, t);
4333        } else {
4334            expand_vec_rotv(type, vece, v0, v1, t, false);
4335        }
4336    } else {
4337        TCGv_i32 rsh = tcg_temp_new_i32();
4338
4339        tcg_gen_neg_i32(rsh, lsh);
4340        tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
4341        tcg_gen_shls_vec(vece, t, v1, lsh);
4342        tcg_gen_shrs_vec(vece, v0, v1, rsh);
4343        tcg_gen_or_vec(vece, v0, v0, t);
4344
4345        tcg_temp_free_i32(rsh);
4346    }
4347
4348    tcg_temp_free_vec(t);
4349}
4350
4351static void expand_vec_mul(TCGType type, unsigned vece,
4352                           TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
4353{
4354    TCGv_vec t1, t2, t3, t4, zero;
4355
4356    tcg_debug_assert(vece == MO_8);
4357
4358    /*
4359     * Unpack v1 bytes to words, 0 | x.
4360     * Unpack v2 bytes to words, y | 0.
4361     * This leaves the 8-bit result, x * y, with 8 bits of right padding.
4362     * Shift logical right by 8 bits to clear the high 8 bytes before
4363     * using an unsigned saturated pack.
4364     *
4365     * The difference between the V64, V128 and V256 cases is merely how
4366     * we distribute the expansion between temporaries.
4367     */
4368    switch (type) {
4369    case TCG_TYPE_V64:
4370        t1 = tcg_temp_new_vec(TCG_TYPE_V128);
4371        t2 = tcg_temp_new_vec(TCG_TYPE_V128);
4372        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
4373        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
4374                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4375        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
4376                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4377        tcg_gen_mul_vec(MO_16, t1, t1, t2);
4378        tcg_gen_shri_vec(MO_16, t1, t1, 8);
4379        vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
4380                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
4381        tcg_temp_free_vec(t1);
4382        tcg_temp_free_vec(t2);
4383        break;
4384
4385    case TCG_TYPE_V128:
4386    case TCG_TYPE_V256:
4387        t1 = tcg_temp_new_vec(type);
4388        t2 = tcg_temp_new_vec(type);
4389        t3 = tcg_temp_new_vec(type);
4390        t4 = tcg_temp_new_vec(type);
4391        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
4392        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4393                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4394        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4395                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4396        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4397                  tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4398        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4399                  tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4400        tcg_gen_mul_vec(MO_16, t1, t1, t2);
4401        tcg_gen_mul_vec(MO_16, t3, t3, t4);
4402        tcg_gen_shri_vec(MO_16, t1, t1, 8);
4403        tcg_gen_shri_vec(MO_16, t3, t3, 8);
4404        vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
4405                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
4406        tcg_temp_free_vec(t1);
4407        tcg_temp_free_vec(t2);
4408        tcg_temp_free_vec(t3);
4409        tcg_temp_free_vec(t4);
4410        break;
4411
4412    default:
4413        g_assert_not_reached();
4414    }
4415}
4416
4417static TCGCond expand_vec_cond(TCGType type, unsigned vece,
4418                               TCGArg *a1, TCGArg *a2, TCGCond cond)
4419{
4420    /*
4421     * Without AVX512, there are no 64-bit unsigned comparisons.
4422     * We must bias the inputs so that they become signed.
4423     * All other swapping and inversion are handled during code generation.
4424     */
4425    if (vece == MO_64 && !have_avx512dq && is_unsigned_cond(cond)) {
4426        TCGv_vec v1 = temp_tcgv_vec(arg_temp(*a1));
4427        TCGv_vec v2 = temp_tcgv_vec(arg_temp(*a2));
4428        TCGv_vec t1 = tcg_temp_new_vec(type);
4429        TCGv_vec t2 = tcg_temp_new_vec(type);
4430        TCGv_vec t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1));
4431
4432        tcg_gen_sub_vec(vece, t1, v1, t3);
4433        tcg_gen_sub_vec(vece, t2, v2, t3);
4434        *a1 = tcgv_vec_arg(t1);
4435        *a2 = tcgv_vec_arg(t2);
4436        cond = tcg_signed_cond(cond);
4437    }
4438    return cond;
4439}
4440
4441static void expand_vec_cmp(TCGType type, unsigned vece, TCGArg a0,
4442                           TCGArg a1, TCGArg a2, TCGCond cond)
4443{
4444    cond = expand_vec_cond(type, vece, &a1, &a2, cond);
4445    /* Expand directly; do not recurse.  */
4446    vec_gen_4(INDEX_op_cmp_vec, type, vece, a0, a1, a2, cond);
4447}
4448
4449static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGArg a0,
4450                              TCGArg a1, TCGArg a2,
4451                              TCGArg a3, TCGArg a4, TCGCond cond)
4452{
4453    cond = expand_vec_cond(type, vece, &a1, &a2, cond);
4454    /* Expand directly; do not recurse.  */
4455    vec_gen_6(INDEX_op_cmpsel_vec, type, vece, a0, a1, a2, a3, a4, cond);
4456}
4457
4458void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
4459                       TCGArg a0, ...)
4460{
4461    va_list va;
4462    TCGArg a1, a2, a3, a4, a5;
4463    TCGv_vec v0, v1, v2;
4464
4465    va_start(va, a0);
4466    a1 = va_arg(va, TCGArg);
4467    a2 = va_arg(va, TCGArg);
4468    v0 = temp_tcgv_vec(arg_temp(a0));
4469    v1 = temp_tcgv_vec(arg_temp(a1));
4470
4471    switch (opc) {
4472    case INDEX_op_shli_vec:
4473        expand_vec_shi(type, vece, false, v0, v1, a2);
4474        break;
4475    case INDEX_op_shri_vec:
4476        expand_vec_shi(type, vece, true, v0, v1, a2);
4477        break;
4478    case INDEX_op_sari_vec:
4479        expand_vec_sari(type, vece, v0, v1, a2);
4480        break;
4481
4482    case INDEX_op_rotli_vec:
4483        expand_vec_rotli(type, vece, v0, v1, a2);
4484        break;
4485
4486    case INDEX_op_rotls_vec:
4487        expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
4488        break;
4489
4490    case INDEX_op_rotlv_vec:
4491        v2 = temp_tcgv_vec(arg_temp(a2));
4492        expand_vec_rotv(type, vece, v0, v1, v2, false);
4493        break;
4494    case INDEX_op_rotrv_vec:
4495        v2 = temp_tcgv_vec(arg_temp(a2));
4496        expand_vec_rotv(type, vece, v0, v1, v2, true);
4497        break;
4498
4499    case INDEX_op_mul_vec:
4500        v2 = temp_tcgv_vec(arg_temp(a2));
4501        expand_vec_mul(type, vece, v0, v1, v2);
4502        break;
4503
4504    case INDEX_op_cmp_vec:
4505        a3 = va_arg(va, TCGArg);
4506        expand_vec_cmp(type, vece, a0, a1, a2, a3);
4507        break;
4508
4509    case INDEX_op_cmpsel_vec:
4510        a3 = va_arg(va, TCGArg);
4511        a4 = va_arg(va, TCGArg);
4512        a5 = va_arg(va, TCGArg);
4513        expand_vec_cmpsel(type, vece, a0, a1, a2, a3, a4, a5);
4514        break;
4515
4516    default:
4517        break;
4518    }
4519
4520    va_end(va);
4521}
4522
4523static const int tcg_target_callee_save_regs[] = {
4524#if TCG_TARGET_REG_BITS == 64
4525    TCG_REG_RBP,
4526    TCG_REG_RBX,
4527#if defined(_WIN64)
4528    TCG_REG_RDI,
4529    TCG_REG_RSI,
4530#endif
4531    TCG_REG_R12,
4532    TCG_REG_R13,
4533    TCG_REG_R14, /* Currently used for the global env. */
4534    TCG_REG_R15,
4535#else
4536    TCG_REG_EBP, /* Currently used for the global env. */
4537    TCG_REG_EBX,
4538    TCG_REG_ESI,
4539    TCG_REG_EDI,
4540#endif
4541};
4542
4543/* Compute frame size via macros, to share between tcg_target_qemu_prologue
4544   and tcg_register_jit.  */
4545
4546#define PUSH_SIZE \
4547    ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
4548     * (TCG_TARGET_REG_BITS / 8))
4549
4550#define FRAME_SIZE \
4551    ((PUSH_SIZE \
4552      + TCG_STATIC_CALL_ARGS_SIZE \
4553      + CPU_TEMP_BUF_NLONGS * sizeof(long) \
4554      + TCG_TARGET_STACK_ALIGN - 1) \
4555     & ~(TCG_TARGET_STACK_ALIGN - 1))
4556
4557/* Generate global QEMU prologue and epilogue code */
4558static void tcg_target_qemu_prologue(TCGContext *s)
4559{
4560    int i, stack_addend;
4561
4562    /* TB prologue */
4563
4564    /* Reserve some stack space, also for TCG temps.  */
4565    stack_addend = FRAME_SIZE - PUSH_SIZE;
4566    tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
4567                  CPU_TEMP_BUF_NLONGS * sizeof(long));
4568
4569    /* Save all callee saved registers.  */
4570    for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
4571        tcg_out_push(s, tcg_target_callee_save_regs[i]);
4572    }
4573
4574    if (!tcg_use_softmmu && guest_base) {
4575        int seg = setup_guest_base_seg();
4576        if (seg != 0) {
4577            x86_guest_base.seg = seg;
4578        } else if (guest_base == (int32_t)guest_base) {
4579            x86_guest_base.ofs = guest_base;
4580        } else {
4581            assert(TCG_TARGET_REG_BITS == 64);
4582            /* Choose R12 because, as a base, it requires a SIB byte. */
4583            x86_guest_base.index = TCG_REG_R12;
4584            tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base);
4585            tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index);
4586        }
4587    }
4588
4589    if (TCG_TARGET_REG_BITS == 32) {
4590        tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
4591                   (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
4592        tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4593        /* jmp *tb.  */
4594        tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
4595                             (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
4596                             + stack_addend);
4597    } else {
4598        tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
4599        tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4600        /* jmp *tb.  */
4601        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
4602    }
4603
4604    /*
4605     * Return path for goto_ptr. Set return value to 0, a-la exit_tb,
4606     * and fall through to the rest of the epilogue.
4607     */
4608    tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
4609    tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
4610
4611    /* TB epilogue */
4612    tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
4613
4614    tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
4615
4616    if (have_avx2) {
4617        tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
4618    }
4619    for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
4620        tcg_out_pop(s, tcg_target_callee_save_regs[i]);
4621    }
4622    tcg_out_opc(s, OPC_RET, 0, 0, 0);
4623}
4624
4625static void tcg_out_tb_start(TCGContext *s)
4626{
4627    /* nothing to do */
4628}
4629
4630static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
4631{
4632    memset(p, 0x90, count);
4633}
4634
4635static void tcg_target_init(TCGContext *s)
4636{
4637    tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
4638    if (TCG_TARGET_REG_BITS == 64) {
4639        tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
4640    }
4641    if (have_avx1) {
4642        tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
4643        tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
4644    }
4645    if (have_avx2) {
4646        tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
4647    }
4648
4649    tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
4650    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
4651    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
4652    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
4653    if (TCG_TARGET_REG_BITS == 64) {
4654#if !defined(_WIN64)
4655        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
4656        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
4657#endif
4658        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
4659        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
4660        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
4661        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
4662    }
4663
4664    s->reserved_regs = 0;
4665    tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
4666    tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC);
4667#ifdef _WIN64
4668    /* These are call saved, and we don't save them, so don't use them. */
4669    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6);
4670    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7);
4671    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8);
4672    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9);
4673    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10);
4674    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11);
4675    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12);
4676    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13);
4677    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14);
4678    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15);
4679#endif
4680}
4681
4682typedef struct {
4683    DebugFrameHeader h;
4684    uint8_t fde_def_cfa[4];
4685    uint8_t fde_reg_ofs[14];
4686} DebugFrame;
4687
4688/* We're expecting a 2 byte uleb128 encoded value.  */
4689QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
4690
4691#if !defined(__ELF__)
4692    /* Host machine without ELF. */
4693#elif TCG_TARGET_REG_BITS == 64
4694#define ELF_HOST_MACHINE EM_X86_64
4695static const DebugFrame debug_frame = {
4696    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4697    .h.cie.id = -1,
4698    .h.cie.version = 1,
4699    .h.cie.code_align = 1,
4700    .h.cie.data_align = 0x78,             /* sleb128 -8 */
4701    .h.cie.return_column = 16,
4702
4703    /* Total FDE size does not include the "len" member.  */
4704    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4705
4706    .fde_def_cfa = {
4707        12, 7,                          /* DW_CFA_def_cfa %rsp, ... */
4708        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4709        (FRAME_SIZE >> 7)
4710    },
4711    .fde_reg_ofs = {
4712        0x90, 1,                        /* DW_CFA_offset, %rip, -8 */
4713        /* The following ordering must match tcg_target_callee_save_regs.  */
4714        0x86, 2,                        /* DW_CFA_offset, %rbp, -16 */
4715        0x83, 3,                        /* DW_CFA_offset, %rbx, -24 */
4716        0x8c, 4,                        /* DW_CFA_offset, %r12, -32 */
4717        0x8d, 5,                        /* DW_CFA_offset, %r13, -40 */
4718        0x8e, 6,                        /* DW_CFA_offset, %r14, -48 */
4719        0x8f, 7,                        /* DW_CFA_offset, %r15, -56 */
4720    }
4721};
4722#else
4723#define ELF_HOST_MACHINE EM_386
4724static const DebugFrame debug_frame = {
4725    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4726    .h.cie.id = -1,
4727    .h.cie.version = 1,
4728    .h.cie.code_align = 1,
4729    .h.cie.data_align = 0x7c,             /* sleb128 -4 */
4730    .h.cie.return_column = 8,
4731
4732    /* Total FDE size does not include the "len" member.  */
4733    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4734
4735    .fde_def_cfa = {
4736        12, 4,                          /* DW_CFA_def_cfa %esp, ... */
4737        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4738        (FRAME_SIZE >> 7)
4739    },
4740    .fde_reg_ofs = {
4741        0x88, 1,                        /* DW_CFA_offset, %eip, -4 */
4742        /* The following ordering must match tcg_target_callee_save_regs.  */
4743        0x85, 2,                        /* DW_CFA_offset, %ebp, -8 */
4744        0x83, 3,                        /* DW_CFA_offset, %ebx, -12 */
4745        0x86, 4,                        /* DW_CFA_offset, %esi, -16 */
4746        0x87, 5,                        /* DW_CFA_offset, %edi, -20 */
4747    }
4748};
4749#endif
4750
4751#if defined(ELF_HOST_MACHINE)
4752void tcg_register_jit(const void *buf, size_t buf_size)
4753{
4754    tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
4755}
4756#endif
4757