xref: /openbmc/qemu/tcg/i386/tcg-target.c.inc (revision d2c3ecadea89832ab82566e881bc3a288b020473)
1/*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25/* Used for function call generation. */
26#define TCG_TARGET_STACK_ALIGN 16
27#if defined(_WIN64)
28#define TCG_TARGET_CALL_STACK_OFFSET 32
29#else
30#define TCG_TARGET_CALL_STACK_OFFSET 0
31#endif
32#define TCG_TARGET_CALL_ARG_I32      TCG_CALL_ARG_NORMAL
33#define TCG_TARGET_CALL_ARG_I64      TCG_CALL_ARG_NORMAL
34#if defined(_WIN64)
35# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_BY_REF
36# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_BY_VEC
37#elif TCG_TARGET_REG_BITS == 64
38# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_NORMAL
39# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_NORMAL
40#else
41# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_NORMAL
42# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_BY_REF
43#endif
44
45#ifdef CONFIG_DEBUG_TCG
46static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
47#if TCG_TARGET_REG_BITS == 64
48    "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
49#else
50    "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
51#endif
52    "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
53    "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
54#if TCG_TARGET_REG_BITS == 64
55    "%xmm8", "%xmm9", "%xmm10", "%xmm11",
56    "%xmm12", "%xmm13", "%xmm14", "%xmm15",
57#endif
58};
59#endif
60
61static const int tcg_target_reg_alloc_order[] = {
62#if TCG_TARGET_REG_BITS == 64
63    TCG_REG_RBP,
64    TCG_REG_RBX,
65    TCG_REG_R12,
66    TCG_REG_R13,
67    TCG_REG_R14,
68    TCG_REG_R15,
69    TCG_REG_R10,
70    TCG_REG_R11,
71    TCG_REG_R9,
72    TCG_REG_R8,
73    TCG_REG_RCX,
74    TCG_REG_RDX,
75    TCG_REG_RSI,
76    TCG_REG_RDI,
77    TCG_REG_RAX,
78#else
79    TCG_REG_EBX,
80    TCG_REG_ESI,
81    TCG_REG_EDI,
82    TCG_REG_EBP,
83    TCG_REG_ECX,
84    TCG_REG_EDX,
85    TCG_REG_EAX,
86#endif
87    TCG_REG_XMM0,
88    TCG_REG_XMM1,
89    TCG_REG_XMM2,
90    TCG_REG_XMM3,
91    TCG_REG_XMM4,
92    TCG_REG_XMM5,
93#ifndef _WIN64
94    /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
95       any of them.  Therefore only allow xmm0-xmm5 to be allocated.  */
96    TCG_REG_XMM6,
97    TCG_REG_XMM7,
98#if TCG_TARGET_REG_BITS == 64
99    TCG_REG_XMM8,
100    TCG_REG_XMM9,
101    TCG_REG_XMM10,
102    TCG_REG_XMM11,
103    TCG_REG_XMM12,
104    TCG_REG_XMM13,
105    TCG_REG_XMM14,
106    TCG_REG_XMM15,
107#endif
108#endif
109};
110
111#define TCG_TMP_VEC  TCG_REG_XMM5
112
113static const int tcg_target_call_iarg_regs[] = {
114#if TCG_TARGET_REG_BITS == 64
115#if defined(_WIN64)
116    TCG_REG_RCX,
117    TCG_REG_RDX,
118#else
119    TCG_REG_RDI,
120    TCG_REG_RSI,
121    TCG_REG_RDX,
122    TCG_REG_RCX,
123#endif
124    TCG_REG_R8,
125    TCG_REG_R9,
126#else
127    /* 32 bit mode uses stack based calling convention (GCC default). */
128#endif
129};
130
131static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
132{
133    switch (kind) {
134    case TCG_CALL_RET_NORMAL:
135        tcg_debug_assert(slot >= 0 && slot <= 1);
136        return slot ? TCG_REG_EDX : TCG_REG_EAX;
137#ifdef _WIN64
138    case TCG_CALL_RET_BY_VEC:
139        tcg_debug_assert(slot == 0);
140        return TCG_REG_XMM0;
141#endif
142    default:
143        g_assert_not_reached();
144    }
145}
146
147/* Constants we accept.  */
148#define TCG_CT_CONST_S32 0x100
149#define TCG_CT_CONST_U32 0x200
150#define TCG_CT_CONST_I32 0x400
151#define TCG_CT_CONST_WSZ 0x800
152#define TCG_CT_CONST_TST 0x1000
153#define TCG_CT_CONST_ZERO 0x2000
154
155/* Registers used with L constraint, which are the first argument
156   registers on x86_64, and two random call clobbered registers on
157   i386. */
158#if TCG_TARGET_REG_BITS == 64
159# define TCG_REG_L0 tcg_target_call_iarg_regs[0]
160# define TCG_REG_L1 tcg_target_call_iarg_regs[1]
161#else
162# define TCG_REG_L0 TCG_REG_EAX
163# define TCG_REG_L1 TCG_REG_EDX
164#endif
165
166#if TCG_TARGET_REG_BITS == 64
167# define ALL_GENERAL_REGS      0x0000ffffu
168# define ALL_VECTOR_REGS       0xffff0000u
169# define ALL_BYTEL_REGS        ALL_GENERAL_REGS
170#else
171# define ALL_GENERAL_REGS      0x000000ffu
172# define ALL_VECTOR_REGS       0x00ff0000u
173# define ALL_BYTEL_REGS        0x0000000fu
174#endif
175#define SOFTMMU_RESERVE_REGS \
176    (tcg_use_softmmu ? (1 << TCG_REG_L0) | (1 << TCG_REG_L1) : 0)
177
178#define have_bmi2       (cpuinfo & CPUINFO_BMI2)
179#define have_lzcnt      (cpuinfo & CPUINFO_LZCNT)
180
181static const tcg_insn_unit *tb_ret_addr;
182
183static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
184                        intptr_t value, intptr_t addend)
185{
186    value += addend;
187    switch(type) {
188    case R_386_PC32:
189        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
190        if (value != (int32_t)value) {
191            return false;
192        }
193        /* FALLTHRU */
194    case R_386_32:
195        tcg_patch32(code_ptr, value);
196        break;
197    case R_386_PC8:
198        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
199        if (value != (int8_t)value) {
200            return false;
201        }
202        tcg_patch8(code_ptr, value);
203        break;
204    default:
205        g_assert_not_reached();
206    }
207    return true;
208}
209
210/* test if a constant matches the constraint */
211static bool tcg_target_const_match(int64_t val, int ct,
212                                   TCGType type, TCGCond cond, int vece)
213{
214    if (ct & TCG_CT_CONST) {
215        return 1;
216    }
217    if (type == TCG_TYPE_I32) {
218        if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 |
219                  TCG_CT_CONST_I32 | TCG_CT_CONST_TST)) {
220            return 1;
221        }
222    } else {
223        if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
224            return 1;
225        }
226        if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
227            return 1;
228        }
229        if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
230            return 1;
231        }
232        /*
233         * This will be used in combination with TCG_CT_CONST_S32,
234         * so "normal" TESTQ is already matched.  Also accept:
235         *    TESTQ -> TESTL   (uint32_t)
236         *    TESTQ -> BT      (is_power_of_2)
237         */
238        if ((ct & TCG_CT_CONST_TST)
239            && is_tst_cond(cond)
240            && (val == (uint32_t)val || is_power_of_2(val))) {
241            return 1;
242        }
243    }
244    if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
245        return 1;
246    }
247    if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
248        return 1;
249    }
250    return 0;
251}
252
253# define LOWREGMASK(x)	((x) & 7)
254
255#define P_EXT		0x100		/* 0x0f opcode prefix */
256#define P_EXT38         0x200           /* 0x0f 0x38 opcode prefix */
257#define P_DATA16        0x400           /* 0x66 opcode prefix */
258#define P_VEXW          0x1000          /* Set VEX.W = 1 */
259#if TCG_TARGET_REG_BITS == 64
260# define P_REXW         P_VEXW          /* Set REX.W = 1; match VEXW */
261# define P_REXB_R       0x2000          /* REG field as byte register */
262# define P_REXB_RM      0x4000          /* R/M field as byte register */
263# define P_GS           0x8000          /* gs segment override */
264#else
265# define P_REXW		0
266# define P_REXB_R	0
267# define P_REXB_RM	0
268# define P_GS           0
269#endif
270#define P_EXT3A         0x10000         /* 0x0f 0x3a opcode prefix */
271#define P_SIMDF3        0x20000         /* 0xf3 opcode prefix */
272#define P_SIMDF2        0x40000         /* 0xf2 opcode prefix */
273#define P_VEXL          0x80000         /* Set VEX.L = 1 */
274#define P_EVEX          0x100000        /* Requires EVEX encoding */
275
276#define OPC_ARITH_EbIb	(0x80)
277#define OPC_ARITH_EvIz	(0x81)
278#define OPC_ARITH_EvIb	(0x83)
279#define OPC_ARITH_GvEv	(0x03)		/* ... plus (ARITH_FOO << 3) */
280#define OPC_ANDN        (0xf2 | P_EXT38)
281#define OPC_ADD_GvEv	(OPC_ARITH_GvEv | (ARITH_ADD << 3))
282#define OPC_AND_GvEv    (OPC_ARITH_GvEv | (ARITH_AND << 3))
283#define OPC_BLENDPS     (0x0c | P_EXT3A | P_DATA16)
284#define OPC_BSF         (0xbc | P_EXT)
285#define OPC_BSR         (0xbd | P_EXT)
286#define OPC_BSWAP	(0xc8 | P_EXT)
287#define OPC_CALL_Jz	(0xe8)
288#define OPC_CMOVCC      (0x40 | P_EXT)  /* ... plus condition code */
289#define OPC_CMP_GvEv	(OPC_ARITH_GvEv | (ARITH_CMP << 3))
290#define OPC_DEC_r32	(0x48)
291#define OPC_IMUL_GvEv	(0xaf | P_EXT)
292#define OPC_IMUL_GvEvIb	(0x6b)
293#define OPC_IMUL_GvEvIz	(0x69)
294#define OPC_INC_r32	(0x40)
295#define OPC_JCC_long	(0x80 | P_EXT)	/* ... plus condition code */
296#define OPC_JCC_short	(0x70)		/* ... plus condition code */
297#define OPC_JMP_long	(0xe9)
298#define OPC_JMP_short	(0xeb)
299#define OPC_LEA         (0x8d)
300#define OPC_LZCNT       (0xbd | P_EXT | P_SIMDF3)
301#define OPC_MOVB_EvGv	(0x88)		/* stores, more or less */
302#define OPC_MOVL_EvGv	(0x89)		/* stores, more or less */
303#define OPC_MOVL_GvEv	(0x8b)		/* loads, more or less */
304#define OPC_MOVB_EvIz   (0xc6)
305#define OPC_MOVL_EvIz	(0xc7)
306#define OPC_MOVB_Ib     (0xb0)
307#define OPC_MOVL_Iv     (0xb8)
308#define OPC_MOVBE_GyMy  (0xf0 | P_EXT38)
309#define OPC_MOVBE_MyGy  (0xf1 | P_EXT38)
310#define OPC_MOVD_VyEy   (0x6e | P_EXT | P_DATA16)
311#define OPC_MOVD_EyVy   (0x7e | P_EXT | P_DATA16)
312#define OPC_MOVDDUP     (0x12 | P_EXT | P_SIMDF2)
313#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
314#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
315#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
316#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
317#define OPC_MOVQ_VqWq   (0x7e | P_EXT | P_SIMDF3)
318#define OPC_MOVQ_WqVq   (0xd6 | P_EXT | P_DATA16)
319#define OPC_MOVSBL	(0xbe | P_EXT)
320#define OPC_MOVSWL	(0xbf | P_EXT)
321#define OPC_MOVSLQ	(0x63 | P_REXW)
322#define OPC_MOVZBL	(0xb6 | P_EXT)
323#define OPC_MOVZWL	(0xb7 | P_EXT)
324#define OPC_PABSB       (0x1c | P_EXT38 | P_DATA16)
325#define OPC_PABSW       (0x1d | P_EXT38 | P_DATA16)
326#define OPC_PABSD       (0x1e | P_EXT38 | P_DATA16)
327#define OPC_VPABSQ      (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
328#define OPC_PACKSSDW    (0x6b | P_EXT | P_DATA16)
329#define OPC_PACKSSWB    (0x63 | P_EXT | P_DATA16)
330#define OPC_PACKUSDW    (0x2b | P_EXT38 | P_DATA16)
331#define OPC_PACKUSWB    (0x67 | P_EXT | P_DATA16)
332#define OPC_PADDB       (0xfc | P_EXT | P_DATA16)
333#define OPC_PADDW       (0xfd | P_EXT | P_DATA16)
334#define OPC_PADDD       (0xfe | P_EXT | P_DATA16)
335#define OPC_PADDQ       (0xd4 | P_EXT | P_DATA16)
336#define OPC_PADDSB      (0xec | P_EXT | P_DATA16)
337#define OPC_PADDSW      (0xed | P_EXT | P_DATA16)
338#define OPC_PADDUB      (0xdc | P_EXT | P_DATA16)
339#define OPC_PADDUW      (0xdd | P_EXT | P_DATA16)
340#define OPC_PAND        (0xdb | P_EXT | P_DATA16)
341#define OPC_PANDN       (0xdf | P_EXT | P_DATA16)
342#define OPC_PBLENDW     (0x0e | P_EXT3A | P_DATA16)
343#define OPC_PCMPEQB     (0x74 | P_EXT | P_DATA16)
344#define OPC_PCMPEQW     (0x75 | P_EXT | P_DATA16)
345#define OPC_PCMPEQD     (0x76 | P_EXT | P_DATA16)
346#define OPC_PCMPEQQ     (0x29 | P_EXT38 | P_DATA16)
347#define OPC_PCMPGTB     (0x64 | P_EXT | P_DATA16)
348#define OPC_PCMPGTW     (0x65 | P_EXT | P_DATA16)
349#define OPC_PCMPGTD     (0x66 | P_EXT | P_DATA16)
350#define OPC_PCMPGTQ     (0x37 | P_EXT38 | P_DATA16)
351#define OPC_PEXTRD      (0x16 | P_EXT3A | P_DATA16)
352#define OPC_PINSRD      (0x22 | P_EXT3A | P_DATA16)
353#define OPC_PMAXSB      (0x3c | P_EXT38 | P_DATA16)
354#define OPC_PMAXSW      (0xee | P_EXT | P_DATA16)
355#define OPC_PMAXSD      (0x3d | P_EXT38 | P_DATA16)
356#define OPC_VPMAXSQ     (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
357#define OPC_PMAXUB      (0xde | P_EXT | P_DATA16)
358#define OPC_PMAXUW      (0x3e | P_EXT38 | P_DATA16)
359#define OPC_PMAXUD      (0x3f | P_EXT38 | P_DATA16)
360#define OPC_VPMAXUQ     (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
361#define OPC_PMINSB      (0x38 | P_EXT38 | P_DATA16)
362#define OPC_PMINSW      (0xea | P_EXT | P_DATA16)
363#define OPC_PMINSD      (0x39 | P_EXT38 | P_DATA16)
364#define OPC_VPMINSQ     (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
365#define OPC_PMINUB      (0xda | P_EXT | P_DATA16)
366#define OPC_PMINUW      (0x3a | P_EXT38 | P_DATA16)
367#define OPC_PMINUD      (0x3b | P_EXT38 | P_DATA16)
368#define OPC_VPMINUQ     (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
369#define OPC_PMOVSXBW    (0x20 | P_EXT38 | P_DATA16)
370#define OPC_PMOVSXWD    (0x23 | P_EXT38 | P_DATA16)
371#define OPC_PMOVSXDQ    (0x25 | P_EXT38 | P_DATA16)
372#define OPC_PMOVZXBW    (0x30 | P_EXT38 | P_DATA16)
373#define OPC_PMOVZXWD    (0x33 | P_EXT38 | P_DATA16)
374#define OPC_PMOVZXDQ    (0x35 | P_EXT38 | P_DATA16)
375#define OPC_PMULLW      (0xd5 | P_EXT | P_DATA16)
376#define OPC_PMULLD      (0x40 | P_EXT38 | P_DATA16)
377#define OPC_VPMULLQ     (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
378#define OPC_POR         (0xeb | P_EXT | P_DATA16)
379#define OPC_PSHUFB      (0x00 | P_EXT38 | P_DATA16)
380#define OPC_PSHUFD      (0x70 | P_EXT | P_DATA16)
381#define OPC_PSHUFLW     (0x70 | P_EXT | P_SIMDF2)
382#define OPC_PSHUFHW     (0x70 | P_EXT | P_SIMDF3)
383#define OPC_PSHIFTW_Ib  (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
384#define OPC_PSHIFTD_Ib  (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */
385#define OPC_PSHIFTQ_Ib  (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
386#define OPC_PSLLW       (0xf1 | P_EXT | P_DATA16)
387#define OPC_PSLLD       (0xf2 | P_EXT | P_DATA16)
388#define OPC_PSLLQ       (0xf3 | P_EXT | P_DATA16)
389#define OPC_PSRAW       (0xe1 | P_EXT | P_DATA16)
390#define OPC_PSRAD       (0xe2 | P_EXT | P_DATA16)
391#define OPC_VPSRAQ      (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX)
392#define OPC_PSRLW       (0xd1 | P_EXT | P_DATA16)
393#define OPC_PSRLD       (0xd2 | P_EXT | P_DATA16)
394#define OPC_PSRLQ       (0xd3 | P_EXT | P_DATA16)
395#define OPC_PSUBB       (0xf8 | P_EXT | P_DATA16)
396#define OPC_PSUBW       (0xf9 | P_EXT | P_DATA16)
397#define OPC_PSUBD       (0xfa | P_EXT | P_DATA16)
398#define OPC_PSUBQ       (0xfb | P_EXT | P_DATA16)
399#define OPC_PSUBSB      (0xe8 | P_EXT | P_DATA16)
400#define OPC_PSUBSW      (0xe9 | P_EXT | P_DATA16)
401#define OPC_PSUBUB      (0xd8 | P_EXT | P_DATA16)
402#define OPC_PSUBUW      (0xd9 | P_EXT | P_DATA16)
403#define OPC_PUNPCKLBW   (0x60 | P_EXT | P_DATA16)
404#define OPC_PUNPCKLWD   (0x61 | P_EXT | P_DATA16)
405#define OPC_PUNPCKLDQ   (0x62 | P_EXT | P_DATA16)
406#define OPC_PUNPCKLQDQ  (0x6c | P_EXT | P_DATA16)
407#define OPC_PUNPCKHBW   (0x68 | P_EXT | P_DATA16)
408#define OPC_PUNPCKHWD   (0x69 | P_EXT | P_DATA16)
409#define OPC_PUNPCKHDQ   (0x6a | P_EXT | P_DATA16)
410#define OPC_PUNPCKHQDQ  (0x6d | P_EXT | P_DATA16)
411#define OPC_PXOR        (0xef | P_EXT | P_DATA16)
412#define OPC_POP_r32	(0x58)
413#define OPC_POPCNT      (0xb8 | P_EXT | P_SIMDF3)
414#define OPC_PUSH_r32	(0x50)
415#define OPC_PUSH_Iv	(0x68)
416#define OPC_PUSH_Ib	(0x6a)
417#define OPC_RET		(0xc3)
418#define OPC_SETCC	(0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
419#define OPC_SHIFT_1	(0xd1)
420#define OPC_SHIFT_Ib	(0xc1)
421#define OPC_SHIFT_cl	(0xd3)
422#define OPC_SARX        (0xf7 | P_EXT38 | P_SIMDF3)
423#define OPC_SHUFPS      (0xc6 | P_EXT)
424#define OPC_SHLX        (0xf7 | P_EXT38 | P_DATA16)
425#define OPC_SHRX        (0xf7 | P_EXT38 | P_SIMDF2)
426#define OPC_SHRD_Ib     (0xac | P_EXT)
427#define OPC_TESTB	(0x84)
428#define OPC_TESTL	(0x85)
429#define OPC_TZCNT       (0xbc | P_EXT | P_SIMDF3)
430#define OPC_UD2         (0x0b | P_EXT)
431#define OPC_VPBLENDD    (0x02 | P_EXT3A | P_DATA16)
432#define OPC_VPBLENDVB   (0x4c | P_EXT3A | P_DATA16)
433#define OPC_VPBLENDMB   (0x66 | P_EXT38 | P_DATA16 | P_EVEX)
434#define OPC_VPBLENDMW   (0x66 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
435#define OPC_VPBLENDMD   (0x64 | P_EXT38 | P_DATA16 | P_EVEX)
436#define OPC_VPBLENDMQ   (0x64 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
437#define OPC_VPCMPB      (0x3f | P_EXT3A | P_DATA16 | P_EVEX)
438#define OPC_VPCMPUB     (0x3e | P_EXT3A | P_DATA16 | P_EVEX)
439#define OPC_VPCMPW      (0x3f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
440#define OPC_VPCMPUW     (0x3e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
441#define OPC_VPCMPD      (0x1f | P_EXT3A | P_DATA16 | P_EVEX)
442#define OPC_VPCMPUD     (0x1e | P_EXT3A | P_DATA16 | P_EVEX)
443#define OPC_VPCMPQ      (0x1f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
444#define OPC_VPCMPUQ     (0x1e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
445#define OPC_VPINSRB     (0x20 | P_EXT3A | P_DATA16)
446#define OPC_VPINSRW     (0xc4 | P_EXT | P_DATA16)
447#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
448#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
449#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
450#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
451#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
452#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
453#define OPC_VPMOVM2B    (0x28 | P_EXT38 | P_SIMDF3 | P_EVEX)
454#define OPC_VPMOVM2W    (0x28 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
455#define OPC_VPMOVM2D    (0x38 | P_EXT38 | P_SIMDF3 | P_EVEX)
456#define OPC_VPMOVM2Q    (0x38 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
457#define OPC_VPERMQ      (0x00 | P_EXT3A | P_DATA16 | P_VEXW)
458#define OPC_VPERM2I128  (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
459#define OPC_VPROLVD     (0x15 | P_EXT38 | P_DATA16 | P_EVEX)
460#define OPC_VPROLVQ     (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
461#define OPC_VPRORVD     (0x14 | P_EXT38 | P_DATA16 | P_EVEX)
462#define OPC_VPRORVQ     (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
463#define OPC_VPSHLDW     (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
464#define OPC_VPSHLDD     (0x71 | P_EXT3A | P_DATA16 | P_EVEX)
465#define OPC_VPSHLDQ     (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
466#define OPC_VPSHLDVW    (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
467#define OPC_VPSHLDVD    (0x71 | P_EXT38 | P_DATA16 | P_EVEX)
468#define OPC_VPSHLDVQ    (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
469#define OPC_VPSHRDVW    (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
470#define OPC_VPSHRDVD    (0x73 | P_EXT38 | P_DATA16 | P_EVEX)
471#define OPC_VPSHRDVQ    (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
472#define OPC_VPSLLVW     (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
473#define OPC_VPSLLVD     (0x47 | P_EXT38 | P_DATA16)
474#define OPC_VPSLLVQ     (0x47 | P_EXT38 | P_DATA16 | P_VEXW)
475#define OPC_VPSRAVW     (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
476#define OPC_VPSRAVD     (0x46 | P_EXT38 | P_DATA16)
477#define OPC_VPSRAVQ     (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
478#define OPC_VPSRLVW     (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
479#define OPC_VPSRLVD     (0x45 | P_EXT38 | P_DATA16)
480#define OPC_VPSRLVQ     (0x45 | P_EXT38 | P_DATA16 | P_VEXW)
481#define OPC_VPTERNLOGQ  (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
482#define OPC_VPTESTMB    (0x26 | P_EXT38 | P_DATA16 | P_EVEX)
483#define OPC_VPTESTMW    (0x26 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
484#define OPC_VPTESTMD    (0x27 | P_EXT38 | P_DATA16 | P_EVEX)
485#define OPC_VPTESTMQ    (0x27 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
486#define OPC_VPTESTNMB   (0x26 | P_EXT38 | P_SIMDF3 | P_EVEX)
487#define OPC_VPTESTNMW   (0x26 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
488#define OPC_VPTESTNMD   (0x27 | P_EXT38 | P_SIMDF3 | P_EVEX)
489#define OPC_VPTESTNMQ   (0x27 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
490#define OPC_VZEROUPPER  (0x77 | P_EXT)
491#define OPC_XCHG_ax_r32	(0x90)
492#define OPC_XCHG_EvGv   (0x87)
493
494#define OPC_GRP3_Eb     (0xf6)
495#define OPC_GRP3_Ev     (0xf7)
496#define OPC_GRP5        (0xff)
497#define OPC_GRP14       (0x73 | P_EXT | P_DATA16)
498#define OPC_GRPBT       (0xba | P_EXT)
499
500#define OPC_GRPBT_BT    4
501#define OPC_GRPBT_BTS   5
502#define OPC_GRPBT_BTR   6
503#define OPC_GRPBT_BTC   7
504
505/* Group 1 opcode extensions for 0x80-0x83.
506   These are also used as modifiers for OPC_ARITH.  */
507#define ARITH_ADD 0
508#define ARITH_OR  1
509#define ARITH_ADC 2
510#define ARITH_SBB 3
511#define ARITH_AND 4
512#define ARITH_SUB 5
513#define ARITH_XOR 6
514#define ARITH_CMP 7
515
516/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3.  */
517#define SHIFT_ROL 0
518#define SHIFT_ROR 1
519#define SHIFT_SHL 4
520#define SHIFT_SHR 5
521#define SHIFT_SAR 7
522
523/* Group 3 opcode extensions for 0xf6, 0xf7.  To be used with OPC_GRP3.  */
524#define EXT3_TESTi 0
525#define EXT3_NOT   2
526#define EXT3_NEG   3
527#define EXT3_MUL   4
528#define EXT3_IMUL  5
529#define EXT3_DIV   6
530#define EXT3_IDIV  7
531
532/* Group 5 opcode extensions for 0xff.  To be used with OPC_GRP5.  */
533#define EXT5_INC_Ev	0
534#define EXT5_DEC_Ev	1
535#define EXT5_CALLN_Ev	2
536#define EXT5_JMPN_Ev	4
537
538/* Condition codes to be added to OPC_JCC_{long,short}.  */
539#define JCC_JMP (-1)
540#define JCC_JO  0x0
541#define JCC_JNO 0x1
542#define JCC_JB  0x2
543#define JCC_JAE 0x3
544#define JCC_JE  0x4
545#define JCC_JNE 0x5
546#define JCC_JBE 0x6
547#define JCC_JA  0x7
548#define JCC_JS  0x8
549#define JCC_JNS 0x9
550#define JCC_JP  0xa
551#define JCC_JNP 0xb
552#define JCC_JL  0xc
553#define JCC_JGE 0xd
554#define JCC_JLE 0xe
555#define JCC_JG  0xf
556
557static const uint8_t tcg_cond_to_jcc[] = {
558    [TCG_COND_EQ] = JCC_JE,
559    [TCG_COND_NE] = JCC_JNE,
560    [TCG_COND_LT] = JCC_JL,
561    [TCG_COND_GE] = JCC_JGE,
562    [TCG_COND_LE] = JCC_JLE,
563    [TCG_COND_GT] = JCC_JG,
564    [TCG_COND_LTU] = JCC_JB,
565    [TCG_COND_GEU] = JCC_JAE,
566    [TCG_COND_LEU] = JCC_JBE,
567    [TCG_COND_GTU] = JCC_JA,
568    [TCG_COND_TSTEQ] = JCC_JE,
569    [TCG_COND_TSTNE] = JCC_JNE,
570};
571
572#if TCG_TARGET_REG_BITS == 64
573static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
574{
575    int rex;
576
577    if (opc & P_GS) {
578        tcg_out8(s, 0x65);
579    }
580    if (opc & P_DATA16) {
581        /* We should never be asking for both 16 and 64-bit operation.  */
582        tcg_debug_assert((opc & P_REXW) == 0);
583        tcg_out8(s, 0x66);
584    }
585    if (opc & P_SIMDF3) {
586        tcg_out8(s, 0xf3);
587    } else if (opc & P_SIMDF2) {
588        tcg_out8(s, 0xf2);
589    }
590
591    rex = 0;
592    rex |= (opc & P_REXW) ? 0x8 : 0x0;  /* REX.W */
593    rex |= (r & 8) >> 1;                /* REX.R */
594    rex |= (x & 8) >> 2;                /* REX.X */
595    rex |= (rm & 8) >> 3;               /* REX.B */
596
597    /* P_REXB_{R,RM} indicates that the given register is the low byte.
598       For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
599       as otherwise the encoding indicates %[abcd]h.  Note that the values
600       that are ORed in merely indicate that the REX byte must be present;
601       those bits get discarded in output.  */
602    rex |= opc & (r >= 4 ? P_REXB_R : 0);
603    rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
604
605    if (rex) {
606        tcg_out8(s, (uint8_t)(rex | 0x40));
607    }
608
609    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
610        tcg_out8(s, 0x0f);
611        if (opc & P_EXT38) {
612            tcg_out8(s, 0x38);
613        } else if (opc & P_EXT3A) {
614            tcg_out8(s, 0x3a);
615        }
616    }
617
618    tcg_out8(s, opc);
619}
620#else
621static void tcg_out_opc(TCGContext *s, int opc)
622{
623    if (opc & P_DATA16) {
624        tcg_out8(s, 0x66);
625    }
626    if (opc & P_SIMDF3) {
627        tcg_out8(s, 0xf3);
628    } else if (opc & P_SIMDF2) {
629        tcg_out8(s, 0xf2);
630    }
631    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
632        tcg_out8(s, 0x0f);
633        if (opc & P_EXT38) {
634            tcg_out8(s, 0x38);
635        } else if (opc & P_EXT3A) {
636            tcg_out8(s, 0x3a);
637        }
638    }
639    tcg_out8(s, opc);
640}
641/* Discard the register arguments to tcg_out_opc early, so as not to penalize
642   the 32-bit compilation paths.  This method works with all versions of gcc,
643   whereas relying on optimization may not be able to exclude them.  */
644#define tcg_out_opc(s, opc, r, rm, x)  (tcg_out_opc)(s, opc)
645#endif
646
647static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
648{
649    tcg_out_opc(s, opc, r, rm, 0);
650    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
651}
652
653static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
654                            int rm, int index)
655{
656    int tmp;
657
658    if (opc & P_GS) {
659        tcg_out8(s, 0x65);
660    }
661    /* Use the two byte form if possible, which cannot encode
662       VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT.  */
663    if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT
664        && ((rm | index) & 8) == 0) {
665        /* Two byte VEX prefix.  */
666        tcg_out8(s, 0xc5);
667
668        tmp = (r & 8 ? 0 : 0x80);              /* VEX.R */
669    } else {
670        /* Three byte VEX prefix.  */
671        tcg_out8(s, 0xc4);
672
673        /* VEX.m-mmmm */
674        if (opc & P_EXT3A) {
675            tmp = 3;
676        } else if (opc & P_EXT38) {
677            tmp = 2;
678        } else if (opc & P_EXT) {
679            tmp = 1;
680        } else {
681            g_assert_not_reached();
682        }
683        tmp |= (r & 8 ? 0 : 0x80);             /* VEX.R */
684        tmp |= (index & 8 ? 0 : 0x40);         /* VEX.X */
685        tmp |= (rm & 8 ? 0 : 0x20);            /* VEX.B */
686        tcg_out8(s, tmp);
687
688        tmp = (opc & P_VEXW ? 0x80 : 0);       /* VEX.W */
689    }
690
691    tmp |= (opc & P_VEXL ? 0x04 : 0);      /* VEX.L */
692    /* VEX.pp */
693    if (opc & P_DATA16) {
694        tmp |= 1;                          /* 0x66 */
695    } else if (opc & P_SIMDF3) {
696        tmp |= 2;                          /* 0xf3 */
697    } else if (opc & P_SIMDF2) {
698        tmp |= 3;                          /* 0xf2 */
699    }
700    tmp |= (~v & 15) << 3;                 /* VEX.vvvv */
701    tcg_out8(s, tmp);
702    tcg_out8(s, opc);
703}
704
705static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v,
706                             int rm, int index, int aaa, bool z)
707{
708    /* The entire 4-byte evex prefix; with R' and V' set. */
709    uint32_t p = 0x08041062;
710    int mm, pp;
711
712    tcg_debug_assert(have_avx512vl);
713
714    /* EVEX.mm */
715    if (opc & P_EXT3A) {
716        mm = 3;
717    } else if (opc & P_EXT38) {
718        mm = 2;
719    } else if (opc & P_EXT) {
720        mm = 1;
721    } else {
722        g_assert_not_reached();
723    }
724
725    /* EVEX.pp */
726    if (opc & P_DATA16) {
727        pp = 1;                          /* 0x66 */
728    } else if (opc & P_SIMDF3) {
729        pp = 2;                          /* 0xf3 */
730    } else if (opc & P_SIMDF2) {
731        pp = 3;                          /* 0xf2 */
732    } else {
733        pp = 0;
734    }
735
736    p = deposit32(p, 8, 2, mm);
737    p = deposit32(p, 13, 1, (rm & 8) == 0);             /* EVEX.RXB.B */
738    p = deposit32(p, 14, 1, (index & 8) == 0);          /* EVEX.RXB.X */
739    p = deposit32(p, 15, 1, (r & 8) == 0);              /* EVEX.RXB.R */
740    p = deposit32(p, 16, 2, pp);
741    p = deposit32(p, 19, 4, ~v);
742    p = deposit32(p, 23, 1, (opc & P_VEXW) != 0);
743    p = deposit32(p, 24, 3, aaa);
744    p = deposit32(p, 29, 2, (opc & P_VEXL) != 0);
745    p = deposit32(p, 31, 1, z);
746
747    tcg_out32(s, p);
748    tcg_out8(s, opc);
749}
750
751static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
752{
753    if (opc & P_EVEX) {
754        tcg_out_evex_opc(s, opc, r, v, rm, 0, 0, false);
755    } else {
756        tcg_out_vex_opc(s, opc, r, v, rm, 0);
757    }
758    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
759}
760
761static void tcg_out_vex_modrm_type(TCGContext *s, int opc,
762                                   int r, int v, int rm, TCGType type)
763{
764    if (type == TCG_TYPE_V256) {
765        opc |= P_VEXL;
766    }
767    tcg_out_vex_modrm(s, opc, r, v, rm);
768}
769
770static void tcg_out_evex_modrm_type(TCGContext *s, int opc, int r, int v,
771                                    int rm, int aaa, bool z, TCGType type)
772{
773    if (type == TCG_TYPE_V256) {
774        opc |= P_VEXL;
775    }
776    tcg_out_evex_opc(s, opc, r, v, rm, 0, aaa, z);
777    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
778}
779
780/* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
781   We handle either RM and INDEX missing with a negative value.  In 64-bit
782   mode for absolute addresses, ~RM is the size of the immediate operand
783   that will follow the instruction.  */
784
785static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
786                               int shift, intptr_t offset)
787{
788    int mod, len;
789
790    if (index < 0 && rm < 0) {
791        if (TCG_TARGET_REG_BITS == 64) {
792            /* Try for a rip-relative addressing mode.  This has replaced
793               the 32-bit-mode absolute addressing encoding.  */
794            intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
795            intptr_t disp = offset - pc;
796            if (disp == (int32_t)disp) {
797                tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
798                tcg_out32(s, disp);
799                return;
800            }
801
802            /* Try for an absolute address encoding.  This requires the
803               use of the MODRM+SIB encoding and is therefore larger than
804               rip-relative addressing.  */
805            if (offset == (int32_t)offset) {
806                tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
807                tcg_out8(s, (4 << 3) | 5);
808                tcg_out32(s, offset);
809                return;
810            }
811
812            /* ??? The memory isn't directly addressable.  */
813            g_assert_not_reached();
814        } else {
815            /* Absolute address.  */
816            tcg_out8(s, (r << 3) | 5);
817            tcg_out32(s, offset);
818            return;
819        }
820    }
821
822    /* Find the length of the immediate addend.  Note that the encoding
823       that would be used for (%ebp) indicates absolute addressing.  */
824    if (rm < 0) {
825        mod = 0, len = 4, rm = 5;
826    } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
827        mod = 0, len = 0;
828    } else if (offset == (int8_t)offset) {
829        mod = 0x40, len = 1;
830    } else {
831        mod = 0x80, len = 4;
832    }
833
834    /* Use a single byte MODRM format if possible.  Note that the encoding
835       that would be used for %esp is the escape to the two byte form.  */
836    if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
837        /* Single byte MODRM format.  */
838        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
839    } else {
840        /* Two byte MODRM+SIB format.  */
841
842        /* Note that the encoding that would place %esp into the index
843           field indicates no index register.  In 64-bit mode, the REX.X
844           bit counts, so %r12 can be used as the index.  */
845        if (index < 0) {
846            index = 4;
847        } else {
848            tcg_debug_assert(index != TCG_REG_ESP);
849        }
850
851        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
852        tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
853    }
854
855    if (len == 1) {
856        tcg_out8(s, offset);
857    } else if (len == 4) {
858        tcg_out32(s, offset);
859    }
860}
861
862static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
863                                     int index, int shift, intptr_t offset)
864{
865    tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
866    tcg_out_sib_offset(s, r, rm, index, shift, offset);
867}
868
869static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
870                                         int rm, int index, int shift,
871                                         intptr_t offset)
872{
873    tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
874    tcg_out_sib_offset(s, r, rm, index, shift, offset);
875}
876
877/* A simplification of the above with no index or shift.  */
878static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
879                                        int rm, intptr_t offset)
880{
881    tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
882}
883
884static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
885                                            int v, int rm, intptr_t offset)
886{
887    tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
888}
889
890/* Output an opcode with an expected reference to the constant pool.  */
891static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
892{
893    tcg_out_opc(s, opc, r, 0, 0);
894    /* Absolute for 32-bit, pc-relative for 64-bit.  */
895    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
896    tcg_out32(s, 0);
897}
898
899/* Output an opcode with an expected reference to the constant pool.  */
900static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
901{
902    tcg_out_vex_opc(s, opc, r, 0, 0, 0);
903    /* Absolute for 32-bit, pc-relative for 64-bit.  */
904    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
905    tcg_out32(s, 0);
906}
907
908/* Generate dest op= src.  Uses the same ARITH_* codes as tgen_arithi.  */
909static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
910{
911    /* Propagate an opcode prefix, such as P_REXW.  */
912    int ext = subop & ~0x7;
913    subop &= 0x7;
914
915    tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
916}
917
918static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
919{
920    int rexw = 0;
921
922    if (arg == ret) {
923        return true;
924    }
925    switch (type) {
926    case TCG_TYPE_I64:
927        rexw = P_REXW;
928        /* fallthru */
929    case TCG_TYPE_I32:
930        if (ret < 16) {
931            if (arg < 16) {
932                tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
933            } else {
934                tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
935            }
936        } else {
937            if (arg < 16) {
938                tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
939            } else {
940                tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
941            }
942        }
943        break;
944
945    case TCG_TYPE_V64:
946        tcg_debug_assert(ret >= 16 && arg >= 16);
947        tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
948        break;
949    case TCG_TYPE_V128:
950        tcg_debug_assert(ret >= 16 && arg >= 16);
951        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
952        break;
953    case TCG_TYPE_V256:
954        tcg_debug_assert(ret >= 16 && arg >= 16);
955        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
956        break;
957
958    default:
959        g_assert_not_reached();
960    }
961    return true;
962}
963
964static const int avx2_dup_insn[4] = {
965    OPC_VPBROADCASTB, OPC_VPBROADCASTW,
966    OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
967};
968
969static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
970                            TCGReg r, TCGReg a)
971{
972    if (have_avx2) {
973        tcg_out_vex_modrm_type(s, avx2_dup_insn[vece], r, 0, a, type);
974    } else {
975        switch (vece) {
976        case MO_8:
977            /* ??? With zero in a register, use PSHUFB.  */
978            tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
979            a = r;
980            /* FALLTHRU */
981        case MO_16:
982            tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
983            a = r;
984            /* FALLTHRU */
985        case MO_32:
986            tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
987            /* imm8 operand: all output lanes selected from input lane 0.  */
988            tcg_out8(s, 0);
989            break;
990        case MO_64:
991            tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
992            break;
993        default:
994            g_assert_not_reached();
995        }
996    }
997    return true;
998}
999
1000static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
1001                             TCGReg r, TCGReg base, intptr_t offset)
1002{
1003    if (have_avx2) {
1004        int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
1005        tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
1006                                 r, 0, base, offset);
1007    } else {
1008        switch (vece) {
1009        case MO_64:
1010            tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
1011            break;
1012        case MO_32:
1013            tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
1014            break;
1015        case MO_16:
1016            tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
1017            tcg_out8(s, 0); /* imm8 */
1018            tcg_out_dup_vec(s, type, vece, r, r);
1019            break;
1020        case MO_8:
1021            tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
1022            tcg_out8(s, 0); /* imm8 */
1023            tcg_out_dup_vec(s, type, vece, r, r);
1024            break;
1025        default:
1026            g_assert_not_reached();
1027        }
1028    }
1029    return true;
1030}
1031
1032static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
1033                             TCGReg ret, int64_t arg)
1034{
1035    int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
1036
1037    if (arg == 0) {
1038        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1039        return;
1040    }
1041    if (arg == -1) {
1042        tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
1043        return;
1044    }
1045
1046    if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) {
1047        if (have_avx2) {
1048            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
1049        } else {
1050            tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
1051        }
1052        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1053    } else {
1054        if (type == TCG_TYPE_V64) {
1055            tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
1056        } else if (have_avx2) {
1057            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
1058        } else {
1059            tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
1060        }
1061        if (TCG_TARGET_REG_BITS == 64) {
1062            new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1063        } else {
1064            new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32);
1065        }
1066    }
1067}
1068
1069static void tcg_out_movi_vec(TCGContext *s, TCGType type,
1070                             TCGReg ret, tcg_target_long arg)
1071{
1072    if (arg == 0) {
1073        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1074        return;
1075    }
1076    if (arg == -1) {
1077        tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret);
1078        return;
1079    }
1080
1081    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
1082    tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret);
1083    if (TCG_TARGET_REG_BITS == 64) {
1084        new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1085    } else {
1086        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1087    }
1088}
1089
1090static void tcg_out_movi_int(TCGContext *s, TCGType type,
1091                             TCGReg ret, tcg_target_long arg)
1092{
1093    tcg_target_long diff;
1094
1095    if (arg == 0) {
1096        tgen_arithr(s, ARITH_XOR, ret, ret);
1097        return;
1098    }
1099    if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
1100        tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
1101        tcg_out32(s, arg);
1102        return;
1103    }
1104    if (arg == (int32_t)arg) {
1105        tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
1106        tcg_out32(s, arg);
1107        return;
1108    }
1109
1110    /* Try a 7 byte pc-relative lea before the 10 byte movq.  */
1111    diff = tcg_pcrel_diff(s, (const void *)arg) - 7;
1112    if (diff == (int32_t)diff) {
1113        tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
1114        tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
1115        tcg_out32(s, diff);
1116        return;
1117    }
1118
1119    tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
1120    tcg_out64(s, arg);
1121}
1122
1123static void tcg_out_movi(TCGContext *s, TCGType type,
1124                         TCGReg ret, tcg_target_long arg)
1125{
1126    switch (type) {
1127    case TCG_TYPE_I32:
1128#if TCG_TARGET_REG_BITS == 64
1129    case TCG_TYPE_I64:
1130#endif
1131        if (ret < 16) {
1132            tcg_out_movi_int(s, type, ret, arg);
1133        } else {
1134            tcg_out_movi_vec(s, type, ret, arg);
1135        }
1136        break;
1137    default:
1138        g_assert_not_reached();
1139    }
1140}
1141
1142static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
1143{
1144    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1145    tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2);
1146    return true;
1147}
1148
1149static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
1150                             tcg_target_long imm)
1151{
1152    /* This function is only used for passing structs by reference. */
1153    tcg_debug_assert(imm == (int32_t)imm);
1154    tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm);
1155}
1156
1157static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
1158{
1159    if (val == (int8_t)val) {
1160        tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
1161        tcg_out8(s, val);
1162    } else if (val == (int32_t)val) {
1163        tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
1164        tcg_out32(s, val);
1165    } else {
1166        g_assert_not_reached();
1167    }
1168}
1169
1170static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
1171{
1172    /* Given the strength of x86 memory ordering, we only need care for
1173       store-load ordering.  Experimentally, "lock orl $0,0(%esp)" is
1174       faster than "mfence", so don't bother with the sse insn.  */
1175    if (a0 & TCG_MO_ST_LD) {
1176        tcg_out8(s, 0xf0);
1177        tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
1178        tcg_out8(s, 0);
1179    }
1180}
1181
1182static inline void tcg_out_push(TCGContext *s, int reg)
1183{
1184    tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
1185}
1186
1187static inline void tcg_out_pop(TCGContext *s, int reg)
1188{
1189    tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
1190}
1191
1192static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1193                       TCGReg arg1, intptr_t arg2)
1194{
1195    switch (type) {
1196    case TCG_TYPE_I32:
1197        if (ret < 16) {
1198            tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
1199        } else {
1200            tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
1201        }
1202        break;
1203    case TCG_TYPE_I64:
1204        if (ret < 16) {
1205            tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
1206            break;
1207        }
1208        /* FALLTHRU */
1209    case TCG_TYPE_V64:
1210        /* There is no instruction that can validate 8-byte alignment.  */
1211        tcg_debug_assert(ret >= 16);
1212        tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
1213        break;
1214    case TCG_TYPE_V128:
1215        /*
1216         * The gvec infrastructure is asserts that v128 vector loads
1217         * and stores use a 16-byte aligned offset.  Validate that the
1218         * final pointer is aligned by using an insn that will SIGSEGV.
1219         */
1220        tcg_debug_assert(ret >= 16);
1221        tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
1222        break;
1223    case TCG_TYPE_V256:
1224        /*
1225         * The gvec infrastructure only requires 16-byte alignment,
1226         * so here we must use an unaligned load.
1227         */
1228        tcg_debug_assert(ret >= 16);
1229        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
1230                                 ret, 0, arg1, arg2);
1231        break;
1232    default:
1233        g_assert_not_reached();
1234    }
1235}
1236
1237static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1238                       TCGReg arg1, intptr_t arg2)
1239{
1240    switch (type) {
1241    case TCG_TYPE_I32:
1242        if (arg < 16) {
1243            tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
1244        } else {
1245            tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
1246        }
1247        break;
1248    case TCG_TYPE_I64:
1249        if (arg < 16) {
1250            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
1251            break;
1252        }
1253        /* FALLTHRU */
1254    case TCG_TYPE_V64:
1255        /* There is no instruction that can validate 8-byte alignment.  */
1256        tcg_debug_assert(arg >= 16);
1257        tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
1258        break;
1259    case TCG_TYPE_V128:
1260        /*
1261         * The gvec infrastructure is asserts that v128 vector loads
1262         * and stores use a 16-byte aligned offset.  Validate that the
1263         * final pointer is aligned by using an insn that will SIGSEGV.
1264         *
1265         * This specific instance is also used by TCG_CALL_RET_BY_VEC,
1266         * for _WIN64, which must have SSE2 but may not have AVX.
1267         */
1268        tcg_debug_assert(arg >= 16);
1269        if (have_avx1) {
1270            tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
1271        } else {
1272            tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2);
1273        }
1274        break;
1275    case TCG_TYPE_V256:
1276        /*
1277         * The gvec infrastructure only requires 16-byte alignment,
1278         * so here we must use an unaligned store.
1279         */
1280        tcg_debug_assert(arg >= 16);
1281        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
1282                                 arg, 0, arg1, arg2);
1283        break;
1284    default:
1285        g_assert_not_reached();
1286    }
1287}
1288
1289static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1290                        TCGReg base, intptr_t ofs)
1291{
1292    int rexw = 0;
1293    if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
1294        if (val != (int32_t)val) {
1295            return false;
1296        }
1297        rexw = P_REXW;
1298    } else if (type != TCG_TYPE_I32) {
1299        return false;
1300    }
1301    tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
1302    tcg_out32(s, val);
1303    return true;
1304}
1305
1306static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
1307{
1308    /* Propagate an opcode prefix, such as P_DATA16.  */
1309    int ext = subopc & ~0x7;
1310    subopc &= 0x7;
1311
1312    if (count == 1) {
1313        tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
1314    } else {
1315        tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
1316        tcg_out8(s, count);
1317    }
1318}
1319
1320static inline void tcg_out_bswap32(TCGContext *s, int reg)
1321{
1322    tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
1323}
1324
1325static inline void tcg_out_rolw_8(TCGContext *s, int reg)
1326{
1327    tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
1328}
1329
1330static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src)
1331{
1332    if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
1333        tcg_out_mov(s, TCG_TYPE_I32, dest, src);
1334        if (dest >= 4) {
1335            tcg_out_modrm(s, OPC_ARITH_EvIz, ARITH_AND, dest);
1336            tcg_out32(s, 0xff);
1337            return;
1338        }
1339        src = dest;
1340    }
1341    tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
1342}
1343
1344static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1345{
1346    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1347
1348    if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
1349        tcg_out_mov(s, TCG_TYPE_I32, dest, src);
1350        if (dest >= 4) {
1351            tcg_out_shifti(s, SHIFT_SHL, dest, 24);
1352            tcg_out_shifti(s, SHIFT_SAR, dest, 24);
1353            return;
1354        }
1355        src = dest;
1356    }
1357    tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
1358}
1359
1360static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src)
1361{
1362    /* movzwl */
1363    tcg_out_modrm(s, OPC_MOVZWL, dest, src);
1364}
1365
1366static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1367{
1368    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1369    /* movsw[lq] */
1370    tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
1371}
1372
1373static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
1374{
1375    /* 32-bit mov zero extends.  */
1376    tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
1377}
1378
1379static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
1380{
1381    tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1382    tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
1383}
1384
1385static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1386{
1387    tcg_out_ext32s(s, dest, src);
1388}
1389
1390static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1391{
1392    if (dest != src) {
1393        tcg_out_ext32u(s, dest, src);
1394    }
1395}
1396
1397static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src)
1398{
1399    tcg_out_ext32u(s, dest, src);
1400}
1401
1402static inline void tcg_out_bswap64(TCGContext *s, int reg)
1403{
1404    tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
1405}
1406
1407static void tgen_arithi(TCGContext *s, int c, int r0,
1408                        tcg_target_long val, int cf)
1409{
1410    int rexw = 0;
1411
1412    if (TCG_TARGET_REG_BITS == 64) {
1413        rexw = c & -8;
1414        c &= 7;
1415    }
1416
1417    switch (c) {
1418    case ARITH_ADD:
1419    case ARITH_SUB:
1420        if (!cf) {
1421            /*
1422             * ??? While INC is 2 bytes shorter than ADDL $1, they also induce
1423             * partial flags update stalls on Pentium4 and are not recommended
1424             * by current Intel optimization manuals.
1425             */
1426            if (val == 1 || val == -1) {
1427                int is_inc = (c == ARITH_ADD) ^ (val < 0);
1428                if (TCG_TARGET_REG_BITS == 64) {
1429                    /*
1430                     * The single-byte increment encodings are re-tasked
1431                     * as the REX prefixes.  Use the MODRM encoding.
1432                     */
1433                    tcg_out_modrm(s, OPC_GRP5 + rexw,
1434                                  (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
1435                } else {
1436                    tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
1437                }
1438                return;
1439            }
1440            if (val == 128) {
1441                /*
1442                 * Facilitate using an 8-bit immediate.  Carry is inverted
1443                 * by this transformation, so do it only if cf == 0.
1444                 */
1445                c ^= ARITH_ADD ^ ARITH_SUB;
1446                val = -128;
1447            }
1448        }
1449        break;
1450
1451    case ARITH_AND:
1452        if (TCG_TARGET_REG_BITS == 64) {
1453            if (val == 0xffffffffu) {
1454                tcg_out_ext32u(s, r0, r0);
1455                return;
1456            }
1457            if (val == (uint32_t)val) {
1458                /* AND with no high bits set can use a 32-bit operation.  */
1459                rexw = 0;
1460            }
1461        }
1462        if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1463            tcg_out_ext8u(s, r0, r0);
1464            return;
1465        }
1466        if (val == 0xffffu) {
1467            tcg_out_ext16u(s, r0, r0);
1468            return;
1469        }
1470        break;
1471
1472    case ARITH_OR:
1473    case ARITH_XOR:
1474        if (val >= 0x80 && val <= 0xff
1475            && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1476            tcg_out_modrm(s, OPC_ARITH_EbIb + P_REXB_RM, c, r0);
1477            tcg_out8(s, val);
1478            return;
1479        }
1480        break;
1481    }
1482
1483    if (val == (int8_t)val) {
1484        tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
1485        tcg_out8(s, val);
1486        return;
1487    }
1488    if (rexw == 0 || val == (int32_t)val) {
1489        tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
1490        tcg_out32(s, val);
1491        return;
1492    }
1493
1494    g_assert_not_reached();
1495}
1496
1497static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
1498{
1499    if (val != 0) {
1500        tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
1501    }
1502}
1503
1504/* Set SMALL to force a short forward branch.  */
1505static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small)
1506{
1507    int32_t val, val1;
1508
1509    if (l->has_value) {
1510        val = tcg_pcrel_diff(s, l->u.value_ptr);
1511        val1 = val - 2;
1512        if ((int8_t)val1 == val1) {
1513            if (opc == -1) {
1514                tcg_out8(s, OPC_JMP_short);
1515            } else {
1516                tcg_out8(s, OPC_JCC_short + opc);
1517            }
1518            tcg_out8(s, val1);
1519        } else {
1520            tcg_debug_assert(!small);
1521            if (opc == -1) {
1522                tcg_out8(s, OPC_JMP_long);
1523                tcg_out32(s, val - 5);
1524            } else {
1525                tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1526                tcg_out32(s, val - 6);
1527            }
1528        }
1529    } else if (small) {
1530        if (opc == -1) {
1531            tcg_out8(s, OPC_JMP_short);
1532        } else {
1533            tcg_out8(s, OPC_JCC_short + opc);
1534        }
1535        tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
1536        s->code_ptr += 1;
1537    } else {
1538        if (opc == -1) {
1539            tcg_out8(s, OPC_JMP_long);
1540        } else {
1541            tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1542        }
1543        tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
1544        s->code_ptr += 4;
1545    }
1546}
1547
1548static int tcg_out_cmp(TCGContext *s, TCGCond cond, TCGArg arg1,
1549                       TCGArg arg2, int const_arg2, int rexw)
1550{
1551    int jz, js;
1552
1553    if (!is_tst_cond(cond)) {
1554        if (!const_arg2) {
1555            tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
1556        } else if (arg2 == 0) {
1557            tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
1558        } else {
1559            tcg_debug_assert(!rexw || arg2 == (int32_t)arg2);
1560            tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
1561        }
1562        return tcg_cond_to_jcc[cond];
1563    }
1564
1565    jz = tcg_cond_to_jcc[cond];
1566    js = (cond == TCG_COND_TSTNE ? JCC_JS : JCC_JNS);
1567
1568    if (!const_arg2) {
1569        tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg2);
1570        return jz;
1571    }
1572
1573    if (arg2 <= 0xff && (TCG_TARGET_REG_BITS == 64 || arg1 < 4)) {
1574        if (arg2 == 0x80) {
1575            tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
1576            return js;
1577        }
1578        if (arg2 == 0xff) {
1579            tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
1580            return jz;
1581        }
1582        tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, arg1);
1583        tcg_out8(s, arg2);
1584        return jz;
1585    }
1586
1587    if ((arg2 & ~0xff00) == 0 && arg1 < 4) {
1588        if (arg2 == 0x8000) {
1589            tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
1590            return js;
1591        }
1592        if (arg2 == 0xff00) {
1593            tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
1594            return jz;
1595        }
1596        tcg_out_modrm(s, OPC_GRP3_Eb, EXT3_TESTi, arg1 + 4);
1597        tcg_out8(s, arg2 >> 8);
1598        return jz;
1599    }
1600
1601    if (arg2 == 0xffff) {
1602        tcg_out_modrm(s, OPC_TESTL | P_DATA16, arg1, arg1);
1603        return jz;
1604    }
1605    if (arg2 == 0xffffffffu) {
1606        tcg_out_modrm(s, OPC_TESTL, arg1, arg1);
1607        return jz;
1608    }
1609
1610    if (is_power_of_2(rexw ? arg2 : (uint32_t)arg2)) {
1611        int jc = (cond == TCG_COND_TSTNE ? JCC_JB : JCC_JAE);
1612        int sh = ctz64(arg2);
1613
1614        rexw = (sh & 32 ? P_REXW : 0);
1615        if ((sh & 31) == 31) {
1616            tcg_out_modrm(s, OPC_TESTL | rexw, arg1, arg1);
1617            return js;
1618        } else {
1619            tcg_out_modrm(s, OPC_GRPBT | rexw, OPC_GRPBT_BT, arg1);
1620            tcg_out8(s, sh);
1621            return jc;
1622        }
1623    }
1624
1625    if (rexw) {
1626        if (arg2 == (uint32_t)arg2) {
1627            rexw = 0;
1628        } else {
1629            tcg_debug_assert(arg2 == (int32_t)arg2);
1630        }
1631    }
1632    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_TESTi, arg1);
1633    tcg_out32(s, arg2);
1634    return jz;
1635}
1636
1637static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond,
1638                           TCGArg arg1, TCGArg arg2, int const_arg2,
1639                           TCGLabel *label, bool small)
1640{
1641    int jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, rexw);
1642    tcg_out_jxx(s, jcc, label, small);
1643}
1644
1645#if TCG_TARGET_REG_BITS == 32
1646static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
1647                            const int *const_args, bool small)
1648{
1649    TCGLabel *label_next = gen_new_label();
1650    TCGLabel *label_this = arg_label(args[5]);
1651    TCGCond cond = args[4];
1652
1653    switch (cond) {
1654    case TCG_COND_EQ:
1655    case TCG_COND_TSTEQ:
1656        tcg_out_brcond(s, 0, tcg_invert_cond(cond),
1657                       args[0], args[2], const_args[2], label_next, 1);
1658        tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3],
1659                       label_this, small);
1660        break;
1661
1662    case TCG_COND_NE:
1663    case TCG_COND_TSTNE:
1664        tcg_out_brcond(s, 0, cond, args[0], args[2], const_args[2],
1665                       label_this, small);
1666        tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3],
1667                       label_this, small);
1668        break;
1669
1670    default:
1671        tcg_out_brcond(s, 0, tcg_high_cond(cond), args[1],
1672                       args[3], const_args[3], label_this, small);
1673        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1674        tcg_out_brcond(s, 0, tcg_unsigned_cond(cond), args[0],
1675                       args[2], const_args[2], label_this, small);
1676        break;
1677    }
1678    tcg_out_label(s, label_next);
1679}
1680#endif
1681
1682static void tcg_out_setcond(TCGContext *s, int rexw, TCGCond cond,
1683                            TCGArg dest, TCGArg arg1, TCGArg arg2,
1684                            int const_arg2, bool neg)
1685{
1686    int cmp_rexw = rexw;
1687    bool inv = false;
1688    bool cleared;
1689    int jcc;
1690
1691    switch (cond) {
1692    case TCG_COND_NE:
1693        inv = true;
1694        /* fall through */
1695    case TCG_COND_EQ:
1696        /* If arg2 is 0, convert to LTU/GEU vs 1. */
1697        if (const_arg2 && arg2 == 0) {
1698            arg2 = 1;
1699            goto do_ltu;
1700        }
1701        break;
1702
1703    case TCG_COND_TSTNE:
1704        inv = true;
1705        /* fall through */
1706    case TCG_COND_TSTEQ:
1707        /* If arg2 is -1, convert to LTU/GEU vs 1. */
1708        if (const_arg2 && arg2 == 0xffffffffu) {
1709            arg2 = 1;
1710            cmp_rexw = 0;
1711            goto do_ltu;
1712        }
1713        break;
1714
1715    case TCG_COND_LEU:
1716        inv = true;
1717        /* fall through */
1718    case TCG_COND_GTU:
1719        /* If arg2 is a register, swap for LTU/GEU. */
1720        if (!const_arg2) {
1721            TCGReg t = arg1;
1722            arg1 = arg2;
1723            arg2 = t;
1724            goto do_ltu;
1725        }
1726        break;
1727
1728    case TCG_COND_GEU:
1729        inv = true;
1730        /* fall through */
1731    case TCG_COND_LTU:
1732    do_ltu:
1733        /*
1734         * Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU.
1735         * We can then use NEG or INC to produce the desired result.
1736         * This is always smaller than the SETCC expansion.
1737         */
1738        tcg_out_cmp(s, TCG_COND_LTU, arg1, arg2, const_arg2, cmp_rexw);
1739
1740        /* X - X - C = -C = (C ? -1 : 0) */
1741        tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest);
1742        if (inv && neg) {
1743            /* ~(C ? -1 : 0) = (C ? 0 : -1) */
1744            tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
1745        } else if (inv) {
1746            /* (C ? -1 : 0) + 1 = (C ? 0 : 1) */
1747            tgen_arithi(s, ARITH_ADD, dest, 1, 0);
1748        } else if (!neg) {
1749            /* -(C ? -1 : 0) = (C ? 1 : 0) */
1750            tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest);
1751        }
1752        return;
1753
1754    case TCG_COND_GE:
1755        inv = true;
1756        /* fall through */
1757    case TCG_COND_LT:
1758        /* If arg2 is 0, extract the sign bit. */
1759        if (const_arg2 && arg2 == 0) {
1760            tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, dest, arg1);
1761            if (inv) {
1762                tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
1763            }
1764            tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw,
1765                           dest, rexw ? 63 : 31);
1766            return;
1767        }
1768        break;
1769
1770    default:
1771        break;
1772    }
1773
1774    /*
1775     * If dest does not overlap the inputs, clearing it first is preferred.
1776     * The XOR breaks any false dependency for the low-byte write to dest,
1777     * and is also one byte smaller than MOVZBL.
1778     */
1779    cleared = false;
1780    if (dest != arg1 && (const_arg2 || dest != arg2)) {
1781        tgen_arithr(s, ARITH_XOR, dest, dest);
1782        cleared = true;
1783    }
1784
1785    jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, cmp_rexw);
1786    tcg_out_modrm(s, OPC_SETCC | jcc, 0, dest);
1787
1788    if (!cleared) {
1789        tcg_out_ext8u(s, dest, dest);
1790    }
1791    if (neg) {
1792        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest);
1793    }
1794}
1795
1796#if TCG_TARGET_REG_BITS == 32
1797static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1798                             const int *const_args)
1799{
1800    TCGArg new_args[6];
1801    TCGLabel *label_true, *label_over;
1802
1803    memcpy(new_args, args+1, 5*sizeof(TCGArg));
1804
1805    if (args[0] == args[1] || args[0] == args[2]
1806        || (!const_args[3] && args[0] == args[3])
1807        || (!const_args[4] && args[0] == args[4])) {
1808        /* When the destination overlaps with one of the argument
1809           registers, don't do anything tricky.  */
1810        label_true = gen_new_label();
1811        label_over = gen_new_label();
1812
1813        new_args[5] = label_arg(label_true);
1814        tcg_out_brcond2(s, new_args, const_args+1, 1);
1815
1816        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1817        tcg_out_jxx(s, JCC_JMP, label_over, 1);
1818        tcg_out_label(s, label_true);
1819
1820        tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1821        tcg_out_label(s, label_over);
1822    } else {
1823        /* When the destination does not overlap one of the arguments,
1824           clear the destination first, jump if cond false, and emit an
1825           increment in the true case.  This results in smaller code.  */
1826
1827        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1828
1829        label_over = gen_new_label();
1830        new_args[4] = tcg_invert_cond(new_args[4]);
1831        new_args[5] = label_arg(label_over);
1832        tcg_out_brcond2(s, new_args, const_args+1, 1);
1833
1834        tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1835        tcg_out_label(s, label_over);
1836    }
1837}
1838#endif
1839
1840static void tcg_out_cmov(TCGContext *s, int jcc, int rexw,
1841                         TCGReg dest, TCGReg v1)
1842{
1843    tcg_out_modrm(s, OPC_CMOVCC | jcc | rexw, dest, v1);
1844}
1845
1846static void tcg_out_movcond(TCGContext *s, int rexw, TCGCond cond,
1847                            TCGReg dest, TCGReg c1, TCGArg c2, int const_c2,
1848                            TCGReg v1)
1849{
1850    int jcc = tcg_out_cmp(s, cond, c1, c2, const_c2, rexw);
1851    tcg_out_cmov(s, jcc, rexw, dest, v1);
1852}
1853
1854static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1855                        TCGArg arg2, bool const_a2)
1856{
1857    if (have_bmi1) {
1858        tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1);
1859        if (const_a2) {
1860            tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1861        } else {
1862            tcg_debug_assert(dest != arg2);
1863            tcg_out_cmov(s, JCC_JB, rexw, dest, arg2);
1864        }
1865    } else {
1866        tcg_debug_assert(dest != arg2);
1867        tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1);
1868        tcg_out_cmov(s, JCC_JE, rexw, dest, arg2);
1869    }
1870}
1871
1872static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1873                        TCGArg arg2, bool const_a2)
1874{
1875    if (have_lzcnt) {
1876        tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1);
1877        if (const_a2) {
1878            tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1879        } else {
1880            tcg_debug_assert(dest != arg2);
1881            tcg_out_cmov(s, JCC_JB, rexw, dest, arg2);
1882        }
1883    } else {
1884        tcg_debug_assert(!const_a2);
1885        tcg_debug_assert(dest != arg1);
1886        tcg_debug_assert(dest != arg2);
1887
1888        /* Recall that the output of BSR is the index not the count.  */
1889        tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1);
1890        tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0);
1891
1892        /* Since we have destroyed the flags from BSR, we have to re-test.  */
1893        int jcc = tcg_out_cmp(s, TCG_COND_EQ, arg1, 0, 1, rexw);
1894        tcg_out_cmov(s, jcc, rexw, dest, arg2);
1895    }
1896}
1897
1898static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest)
1899{
1900    intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1901
1902    if (disp == (int32_t)disp) {
1903        tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1904        tcg_out32(s, disp);
1905    } else {
1906        /* rip-relative addressing into the constant pool.
1907           This is 6 + 8 = 14 bytes, as compared to using an
1908           immediate load 10 + 6 = 16 bytes, plus we may
1909           be able to re-use the pool constant for more calls.  */
1910        tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
1911        tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
1912        new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
1913        tcg_out32(s, 0);
1914    }
1915}
1916
1917static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
1918                         const TCGHelperInfo *info)
1919{
1920    tcg_out_branch(s, 1, dest);
1921
1922#ifndef _WIN32
1923    if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) {
1924        /*
1925         * The sysv i386 abi for struct return places a reference as the
1926         * first argument of the stack, and pops that argument with the
1927         * return statement.  Since we want to retain the aligned stack
1928         * pointer for the callee, we do not want to actually push that
1929         * argument before the call but rely on the normal store to the
1930         * stack slot.  But we do need to compensate for the pop in order
1931         * to reset our correct stack pointer value.
1932         * Pushing a garbage value back onto the stack is quickest.
1933         */
1934        tcg_out_push(s, TCG_REG_EAX);
1935    }
1936#endif
1937}
1938
1939static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest)
1940{
1941    tcg_out_branch(s, 0, dest);
1942}
1943
1944static void tcg_out_nopn(TCGContext *s, int n)
1945{
1946    int i;
1947    /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1948     * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1949     * duplicate prefix, and all of the interesting recent cores can
1950     * decode and discard the duplicates in a single cycle.
1951     */
1952    tcg_debug_assert(n >= 1);
1953    for (i = 1; i < n; ++i) {
1954        tcg_out8(s, 0x66);
1955    }
1956    tcg_out8(s, 0x90);
1957}
1958
1959typedef struct {
1960    TCGReg base;
1961    int index;
1962    int ofs;
1963    int seg;
1964    TCGAtomAlign aa;
1965} HostAddress;
1966
1967bool tcg_target_has_memory_bswap(MemOp memop)
1968{
1969    TCGAtomAlign aa;
1970
1971    if (!have_movbe) {
1972        return false;
1973    }
1974    if ((memop & MO_SIZE) < MO_128) {
1975        return true;
1976    }
1977
1978    /*
1979     * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA,
1980     * but do allow a pair of 64-bit operations, i.e. MOVBEQ.
1981     */
1982    aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true);
1983    return aa.atom < MO_128;
1984}
1985
1986/*
1987 * Because i686 has no register parameters and because x86_64 has xchg
1988 * to handle addr/data register overlap, we have placed all input arguments
1989 * before we need might need a scratch reg.
1990 *
1991 * Even then, a scratch is only needed for l->raddr.  Rather than expose
1992 * a general-purpose scratch when we don't actually know it's available,
1993 * use the ra_gen hook to load into RAX if needed.
1994 */
1995#if TCG_TARGET_REG_BITS == 64
1996static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg)
1997{
1998    if (arg < 0) {
1999        arg = TCG_REG_RAX;
2000    }
2001    tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr);
2002    return arg;
2003}
2004static const TCGLdstHelperParam ldst_helper_param = {
2005    .ra_gen = ldst_ra_gen
2006};
2007#else
2008static const TCGLdstHelperParam ldst_helper_param = { };
2009#endif
2010
2011static void tcg_out_vec_to_pair(TCGContext *s, TCGType type,
2012                                TCGReg l, TCGReg h, TCGReg v)
2013{
2014    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2015
2016    /* vpmov{d,q} %v, %l */
2017    tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l);
2018    /* vpextr{d,q} $1, %v, %h */
2019    tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h);
2020    tcg_out8(s, 1);
2021}
2022
2023static void tcg_out_pair_to_vec(TCGContext *s, TCGType type,
2024                                TCGReg v, TCGReg l, TCGReg h)
2025{
2026    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2027
2028    /* vmov{d,q} %l, %v */
2029    tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l);
2030    /* vpinsr{d,q} $1, %h, %v, %v */
2031    tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h);
2032    tcg_out8(s, 1);
2033}
2034
2035/*
2036 * Generate code for the slow path for a load at the end of block
2037 */
2038static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2039{
2040    MemOp opc = get_memop(l->oi);
2041    tcg_insn_unit **label_ptr = &l->label_ptr[0];
2042
2043    /* resolve label address */
2044    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
2045    if (label_ptr[1]) {
2046        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
2047    }
2048
2049    tcg_out_ld_helper_args(s, l, &ldst_helper_param);
2050    tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]);
2051    tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param);
2052
2053    tcg_out_jmp(s, l->raddr);
2054    return true;
2055}
2056
2057/*
2058 * Generate code for the slow path for a store at the end of block
2059 */
2060static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2061{
2062    MemOp opc = get_memop(l->oi);
2063    tcg_insn_unit **label_ptr = &l->label_ptr[0];
2064
2065    /* resolve label address */
2066    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
2067    if (label_ptr[1]) {
2068        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
2069    }
2070
2071    tcg_out_st_helper_args(s, l, &ldst_helper_param);
2072    tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]);
2073
2074    tcg_out_jmp(s, l->raddr);
2075    return true;
2076}
2077
2078#ifdef CONFIG_USER_ONLY
2079static HostAddress x86_guest_base = {
2080    .index = -1
2081};
2082
2083#if defined(__x86_64__) && defined(__linux__)
2084# include <asm/prctl.h>
2085# include <sys/prctl.h>
2086int arch_prctl(int code, unsigned long addr);
2087static inline int setup_guest_base_seg(void)
2088{
2089    if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
2090        return P_GS;
2091    }
2092    return 0;
2093}
2094#define setup_guest_base_seg  setup_guest_base_seg
2095#elif defined(__x86_64__) && \
2096      (defined (__FreeBSD__) || defined (__FreeBSD_kernel__))
2097# include <machine/sysarch.h>
2098static inline int setup_guest_base_seg(void)
2099{
2100    if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
2101        return P_GS;
2102    }
2103    return 0;
2104}
2105#define setup_guest_base_seg  setup_guest_base_seg
2106#endif
2107#else
2108# define x86_guest_base (*(HostAddress *)({ qemu_build_not_reached(); NULL; }))
2109#endif /* CONFIG_USER_ONLY */
2110#ifndef setup_guest_base_seg
2111# define setup_guest_base_seg()  0
2112#endif
2113
2114#define MIN_TLB_MASK_TABLE_OFS  INT_MIN
2115
2116/*
2117 * For softmmu, perform the TLB load and compare.
2118 * For useronly, perform any required alignment tests.
2119 * In both cases, return a TCGLabelQemuLdst structure if the slow path
2120 * is required and fill in @h with the host address for the fast path.
2121 */
2122static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
2123                                           TCGReg addr, MemOpIdx oi, bool is_ld)
2124{
2125    TCGLabelQemuLdst *ldst = NULL;
2126    MemOp opc = get_memop(oi);
2127    MemOp s_bits = opc & MO_SIZE;
2128    unsigned a_mask;
2129
2130    if (tcg_use_softmmu) {
2131        h->index = TCG_REG_L0;
2132        h->ofs = 0;
2133        h->seg = 0;
2134    } else {
2135        *h = x86_guest_base;
2136    }
2137    h->base = addr;
2138    h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128);
2139    a_mask = (1 << h->aa.align) - 1;
2140
2141    if (tcg_use_softmmu) {
2142        int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read)
2143                            : offsetof(CPUTLBEntry, addr_write);
2144        TCGType ttype = TCG_TYPE_I32;
2145        TCGType tlbtype = TCG_TYPE_I32;
2146        int trexw = 0, hrexw = 0, tlbrexw = 0;
2147        unsigned mem_index = get_mmuidx(oi);
2148        unsigned s_mask = (1 << s_bits) - 1;
2149        int fast_ofs = tlb_mask_table_ofs(s, mem_index);
2150        int tlb_mask;
2151
2152        ldst = new_ldst_label(s);
2153        ldst->is_ld = is_ld;
2154        ldst->oi = oi;
2155        ldst->addr_reg = addr;
2156
2157        if (TCG_TARGET_REG_BITS == 64) {
2158            ttype = s->addr_type;
2159            trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW);
2160            if (TCG_TYPE_PTR == TCG_TYPE_I64) {
2161                hrexw = P_REXW;
2162                if (s->page_bits + s->tlb_dyn_max_bits > 32) {
2163                    tlbtype = TCG_TYPE_I64;
2164                    tlbrexw = P_REXW;
2165                }
2166            }
2167        }
2168
2169        tcg_out_mov(s, tlbtype, TCG_REG_L0, addr);
2170        tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0,
2171                       s->page_bits - CPU_TLB_ENTRY_BITS);
2172
2173        tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0,
2174                             fast_ofs + offsetof(CPUTLBDescFast, mask));
2175
2176        tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0,
2177                             fast_ofs + offsetof(CPUTLBDescFast, table));
2178
2179        /*
2180         * If the required alignment is at least as large as the access,
2181         * simply copy the address and mask.  For lesser alignments,
2182         * check that we don't cross pages for the complete access.
2183         */
2184        if (a_mask >= s_mask) {
2185            tcg_out_mov(s, ttype, TCG_REG_L1, addr);
2186        } else {
2187            tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1,
2188                                 addr, s_mask - a_mask);
2189        }
2190        tlb_mask = s->page_mask | a_mask;
2191        tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0);
2192
2193        /* cmp 0(TCG_REG_L0), TCG_REG_L1 */
2194        tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw,
2195                             TCG_REG_L1, TCG_REG_L0, cmp_ofs);
2196
2197        /* jne slow_path */
2198        tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
2199        ldst->label_ptr[0] = s->code_ptr;
2200        s->code_ptr += 4;
2201
2202        /* TLB Hit.  */
2203        tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0,
2204                   offsetof(CPUTLBEntry, addend));
2205    } else if (a_mask) {
2206        int jcc;
2207
2208        ldst = new_ldst_label(s);
2209        ldst->is_ld = is_ld;
2210        ldst->oi = oi;
2211        ldst->addr_reg = addr;
2212
2213        /* jne slow_path */
2214        jcc = tcg_out_cmp(s, TCG_COND_TSTNE, addr, a_mask, true, false);
2215        tcg_out_opc(s, OPC_JCC_long + jcc, 0, 0, 0);
2216        ldst->label_ptr[0] = s->code_ptr;
2217        s->code_ptr += 4;
2218    }
2219
2220    return ldst;
2221}
2222
2223static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2224                                   HostAddress h, TCGType type, MemOp memop)
2225{
2226    bool use_movbe = false;
2227    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
2228    int movop = OPC_MOVL_GvEv;
2229
2230    /* Do big-endian loads with movbe.  */
2231    if (memop & MO_BSWAP) {
2232        tcg_debug_assert(have_movbe);
2233        use_movbe = true;
2234        movop = OPC_MOVBE_GyMy;
2235    }
2236
2237    switch (memop & MO_SSIZE) {
2238    case MO_UB:
2239        tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo,
2240                                 h.base, h.index, 0, h.ofs);
2241        break;
2242    case MO_SB:
2243        tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo,
2244                                 h.base, h.index, 0, h.ofs);
2245        break;
2246    case MO_UW:
2247        if (use_movbe) {
2248            /* There is no extending movbe; only low 16-bits are modified.  */
2249            if (datalo != h.base && datalo != h.index) {
2250                /* XOR breaks dependency chains.  */
2251                tgen_arithr(s, ARITH_XOR, datalo, datalo);
2252                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2253                                         datalo, h.base, h.index, 0, h.ofs);
2254            } else {
2255                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2256                                         datalo, h.base, h.index, 0, h.ofs);
2257                tcg_out_ext16u(s, datalo, datalo);
2258            }
2259        } else {
2260            tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo,
2261                                     h.base, h.index, 0, h.ofs);
2262        }
2263        break;
2264    case MO_SW:
2265        if (use_movbe) {
2266            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2267                                     datalo, h.base, h.index, 0, h.ofs);
2268            tcg_out_ext16s(s, type, datalo, datalo);
2269        } else {
2270            tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg,
2271                                     datalo, h.base, h.index, 0, h.ofs);
2272        }
2273        break;
2274    case MO_UL:
2275        tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2276                                 h.base, h.index, 0, h.ofs);
2277        break;
2278#if TCG_TARGET_REG_BITS == 64
2279    case MO_SL:
2280        if (use_movbe) {
2281            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo,
2282                                     h.base, h.index, 0, h.ofs);
2283            tcg_out_ext32s(s, datalo, datalo);
2284        } else {
2285            tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo,
2286                                     h.base, h.index, 0, h.ofs);
2287        }
2288        break;
2289#endif
2290    case MO_UQ:
2291        if (TCG_TARGET_REG_BITS == 64) {
2292            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2293                                     h.base, h.index, 0, h.ofs);
2294            break;
2295        }
2296        if (use_movbe) {
2297            TCGReg t = datalo;
2298            datalo = datahi;
2299            datahi = t;
2300        }
2301        if (h.base == datalo || h.index == datalo) {
2302            tcg_out_modrm_sib_offset(s, OPC_LEA, datahi,
2303                                     h.base, h.index, 0, h.ofs);
2304            tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0);
2305            tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4);
2306        } else {
2307            tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2308                                     h.base, h.index, 0, h.ofs);
2309            tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2310                                     h.base, h.index, 0, h.ofs + 4);
2311        }
2312        break;
2313
2314    case MO_128:
2315        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2316
2317        /*
2318         * Without 16-byte atomicity, use integer regs.
2319         * That is where we want the data, and it allows bswaps.
2320         */
2321        if (h.aa.atom < MO_128) {
2322            if (use_movbe) {
2323                TCGReg t = datalo;
2324                datalo = datahi;
2325                datahi = t;
2326            }
2327            if (h.base == datalo || h.index == datalo) {
2328                tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi,
2329                                         h.base, h.index, 0, h.ofs);
2330                tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2331                                     datalo, datahi, 0);
2332                tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2333                                     datahi, datahi, 8);
2334            } else {
2335                tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2336                                         h.base, h.index, 0, h.ofs);
2337                tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2338                                         h.base, h.index, 0, h.ofs + 8);
2339            }
2340            break;
2341        }
2342
2343        /*
2344         * With 16-byte atomicity, a vector load is required.
2345         * If we already have 16-byte alignment, then VMOVDQA always works.
2346         * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2347         * Else use we require a runtime test for alignment for VMOVDQA;
2348         * use VMOVDQU on the unaligned nonatomic path for simplicity.
2349         */
2350        if (h.aa.align >= MO_128) {
2351            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2352                                         TCG_TMP_VEC, 0,
2353                                         h.base, h.index, 0, h.ofs);
2354        } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2355            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2356                                         TCG_TMP_VEC, 0,
2357                                         h.base, h.index, 0, h.ofs);
2358        } else {
2359            TCGLabel *l1 = gen_new_label();
2360            TCGLabel *l2 = gen_new_label();
2361            int jcc;
2362
2363            jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
2364            tcg_out_jxx(s, jcc, l1, true);
2365
2366            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2367                                         TCG_TMP_VEC, 0,
2368                                         h.base, h.index, 0, h.ofs);
2369            tcg_out_jxx(s, JCC_JMP, l2, true);
2370
2371            tcg_out_label(s, l1);
2372            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2373                                         TCG_TMP_VEC, 0,
2374                                         h.base, h.index, 0, h.ofs);
2375            tcg_out_label(s, l2);
2376        }
2377        tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC);
2378        break;
2379
2380    default:
2381        g_assert_not_reached();
2382    }
2383}
2384
2385static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi,
2386                            TCGReg addr, MemOpIdx oi, TCGType data_type)
2387{
2388    TCGLabelQemuLdst *ldst;
2389    HostAddress h;
2390
2391    ldst = prepare_host_addr(s, &h, addr, oi, true);
2392    tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi));
2393
2394    if (ldst) {
2395        ldst->type = data_type;
2396        ldst->datalo_reg = datalo;
2397        ldst->datahi_reg = datahi;
2398        ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2399    }
2400}
2401
2402static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2403                                   HostAddress h, MemOp memop)
2404{
2405    bool use_movbe = false;
2406    int movop = OPC_MOVL_EvGv;
2407
2408    /*
2409     * Do big-endian stores with movbe or system-mode.
2410     * User-only without movbe will have its swapping done generically.
2411     */
2412    if (memop & MO_BSWAP) {
2413        tcg_debug_assert(have_movbe);
2414        use_movbe = true;
2415        movop = OPC_MOVBE_MyGy;
2416    }
2417
2418    switch (memop & MO_SIZE) {
2419    case MO_8:
2420        /* This is handled with constraints on INDEX_op_qemu_st8_i32. */
2421        tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4);
2422        tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg,
2423                                 datalo, h.base, h.index, 0, h.ofs);
2424        break;
2425    case MO_16:
2426        tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo,
2427                                 h.base, h.index, 0, h.ofs);
2428        break;
2429    case MO_32:
2430        tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2431                                 h.base, h.index, 0, h.ofs);
2432        break;
2433    case MO_64:
2434        if (TCG_TARGET_REG_BITS == 64) {
2435            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2436                                     h.base, h.index, 0, h.ofs);
2437        } else {
2438            if (use_movbe) {
2439                TCGReg t = datalo;
2440                datalo = datahi;
2441                datahi = t;
2442            }
2443            tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2444                                     h.base, h.index, 0, h.ofs);
2445            tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2446                                     h.base, h.index, 0, h.ofs + 4);
2447        }
2448        break;
2449
2450    case MO_128:
2451        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2452
2453        /*
2454         * Without 16-byte atomicity, use integer regs.
2455         * That is where we have the data, and it allows bswaps.
2456         */
2457        if (h.aa.atom < MO_128) {
2458            if (use_movbe) {
2459                TCGReg t = datalo;
2460                datalo = datahi;
2461                datahi = t;
2462            }
2463            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2464                                     h.base, h.index, 0, h.ofs);
2465            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2466                                     h.base, h.index, 0, h.ofs + 8);
2467            break;
2468        }
2469
2470        /*
2471         * With 16-byte atomicity, a vector store is required.
2472         * If we already have 16-byte alignment, then VMOVDQA always works.
2473         * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2474         * Else use we require a runtime test for alignment for VMOVDQA;
2475         * use VMOVDQU on the unaligned nonatomic path for simplicity.
2476         */
2477        tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi);
2478        if (h.aa.align >= MO_128) {
2479            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2480                                         TCG_TMP_VEC, 0,
2481                                         h.base, h.index, 0, h.ofs);
2482        } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2483            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2484                                         TCG_TMP_VEC, 0,
2485                                         h.base, h.index, 0, h.ofs);
2486        } else {
2487            TCGLabel *l1 = gen_new_label();
2488            TCGLabel *l2 = gen_new_label();
2489            int jcc;
2490
2491            jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
2492            tcg_out_jxx(s, jcc, l1, true);
2493
2494            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2495                                         TCG_TMP_VEC, 0,
2496                                         h.base, h.index, 0, h.ofs);
2497            tcg_out_jxx(s, JCC_JMP, l2, true);
2498
2499            tcg_out_label(s, l1);
2500            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2501                                         TCG_TMP_VEC, 0,
2502                                         h.base, h.index, 0, h.ofs);
2503            tcg_out_label(s, l2);
2504        }
2505        break;
2506
2507    default:
2508        g_assert_not_reached();
2509    }
2510}
2511
2512static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi,
2513                            TCGReg addr, MemOpIdx oi, TCGType data_type)
2514{
2515    TCGLabelQemuLdst *ldst;
2516    HostAddress h;
2517
2518    ldst = prepare_host_addr(s, &h, addr, oi, false);
2519    tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi));
2520
2521    if (ldst) {
2522        ldst->type = data_type;
2523        ldst->datalo_reg = datalo;
2524        ldst->datahi_reg = datahi;
2525        ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2526    }
2527}
2528
2529static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
2530{
2531    /* Reuse the zeroing that exists for goto_ptr.  */
2532    if (a0 == 0) {
2533        tcg_out_jmp(s, tcg_code_gen_epilogue);
2534    } else {
2535        tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
2536        tcg_out_jmp(s, tb_ret_addr);
2537    }
2538}
2539
2540static void tcg_out_goto_tb(TCGContext *s, int which)
2541{
2542    /*
2543     * Jump displacement must be aligned for atomic patching;
2544     * see if we need to add extra nops before jump
2545     */
2546    int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr;
2547    if (gap != 1) {
2548        tcg_out_nopn(s, gap - 1);
2549    }
2550    tcg_out8(s, OPC_JMP_long); /* jmp im */
2551    set_jmp_insn_offset(s, which);
2552    tcg_out32(s, 0);
2553    set_jmp_reset_offset(s, which);
2554}
2555
2556void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
2557                              uintptr_t jmp_rx, uintptr_t jmp_rw)
2558{
2559    /* patch the branch destination */
2560    uintptr_t addr = tb->jmp_target_addr[n];
2561    qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4));
2562    /* no need to flush icache explicitly */
2563}
2564
2565
2566static void tgen_add(TCGContext *s, TCGType type,
2567                     TCGReg a0, TCGReg a1, TCGReg a2)
2568{
2569    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2570
2571    if (a0 == a1) {
2572        tgen_arithr(s, ARITH_ADD + rexw, a0, a2);
2573    } else if (a0 == a2) {
2574        tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
2575    } else {
2576        tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, 0);
2577    }
2578}
2579
2580static void tgen_addi(TCGContext *s, TCGType type,
2581                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2582{
2583    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2584
2585    if (a0 == a1) {
2586        tgen_arithi(s, ARITH_ADD + rexw, a0, a2, false);
2587    } else {
2588        tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, -1, 0, a2);
2589    }
2590}
2591
2592static const TCGOutOpBinary outop_add = {
2593    .base.static_constraint = C_O1_I2(r, r, re),
2594    .out_rrr = tgen_add,
2595    .out_rri = tgen_addi,
2596};
2597
2598static void tgen_and(TCGContext *s, TCGType type,
2599                     TCGReg a0, TCGReg a1, TCGReg a2)
2600{
2601    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2602    tgen_arithr(s, ARITH_AND + rexw, a0, a2);
2603}
2604
2605static void tgen_andi(TCGContext *s, TCGType type,
2606                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2607{
2608    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2609    tgen_arithi(s, ARITH_AND + rexw, a0, a2, false);
2610}
2611
2612static const TCGOutOpBinary outop_and = {
2613    .base.static_constraint = C_O1_I2(r, 0, reZ),
2614    .out_rrr = tgen_and,
2615    .out_rri = tgen_andi,
2616};
2617
2618static void tgen_andc(TCGContext *s, TCGType type,
2619                      TCGReg a0, TCGReg a1, TCGReg a2)
2620{
2621    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2622    tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2623}
2624
2625static TCGConstraintSetIndex cset_andc(TCGType type, unsigned flags)
2626{
2627    return have_bmi1 ? C_O1_I2(r, r, r) : C_NotImplemented;
2628}
2629
2630static const TCGOutOpBinary outop_andc = {
2631    .base.static_constraint = C_Dynamic,
2632    .base.dynamic_constraint = cset_andc,
2633    .out_rrr = tgen_andc,
2634};
2635
2636static const TCGOutOpBinary outop_eqv = {
2637    .base.static_constraint = C_NotImplemented,
2638};
2639
2640static void tgen_mul(TCGContext *s, TCGType type,
2641                     TCGReg a0, TCGReg a1, TCGReg a2)
2642{
2643    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2644    tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2645}
2646
2647static void tgen_muli(TCGContext *s, TCGType type,
2648                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2649{
2650    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2651
2652    if (a2 == (int8_t)a2) {
2653        tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2654        tcg_out8(s, a2);
2655    } else {
2656        tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2657        tcg_out32(s, a2);
2658    }
2659}
2660
2661static const TCGOutOpBinary outop_mul = {
2662    .base.static_constraint = C_O1_I2(r, 0, re),
2663    .out_rrr = tgen_mul,
2664    .out_rri = tgen_muli,
2665};
2666
2667static const TCGOutOpBinary outop_nand = {
2668    .base.static_constraint = C_NotImplemented,
2669};
2670
2671static const TCGOutOpBinary outop_nor = {
2672    .base.static_constraint = C_NotImplemented,
2673};
2674
2675static void tgen_or(TCGContext *s, TCGType type,
2676                    TCGReg a0, TCGReg a1, TCGReg a2)
2677{
2678    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2679    tgen_arithr(s, ARITH_OR + rexw, a0, a2);
2680}
2681
2682static void tgen_ori(TCGContext *s, TCGType type,
2683                     TCGReg a0, TCGReg a1, tcg_target_long a2)
2684{
2685    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2686    tgen_arithi(s, ARITH_OR + rexw, a0, a2, false);
2687}
2688
2689static const TCGOutOpBinary outop_or = {
2690    .base.static_constraint = C_O1_I2(r, 0, re),
2691    .out_rrr = tgen_or,
2692    .out_rri = tgen_ori,
2693};
2694
2695static const TCGOutOpBinary outop_orc = {
2696    .base.static_constraint = C_NotImplemented,
2697};
2698
2699static void tgen_sub(TCGContext *s, TCGType type,
2700                      TCGReg a0, TCGReg a1, TCGReg a2)
2701{
2702    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2703    tgen_arithr(s, ARITH_SUB + rexw, a0, a2);
2704}
2705
2706static const TCGOutOpSubtract outop_sub = {
2707    .base.static_constraint = C_O1_I2(r, 0, r),
2708    .out_rrr = tgen_sub,
2709};
2710
2711static void tgen_xor(TCGContext *s, TCGType type,
2712                     TCGReg a0, TCGReg a1, TCGReg a2)
2713{
2714    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2715    tgen_arithr(s, ARITH_XOR + rexw, a0, a2);
2716}
2717
2718static void tgen_xori(TCGContext *s, TCGType type,
2719                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2720{
2721    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2722    tgen_arithi(s, ARITH_XOR + rexw, a0, a2, false);
2723}
2724
2725static const TCGOutOpBinary outop_xor = {
2726    .base.static_constraint = C_O1_I2(r, 0, re),
2727    .out_rrr = tgen_xor,
2728    .out_rri = tgen_xori,
2729};
2730
2731static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
2732{
2733    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2734    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
2735}
2736
2737static const TCGOutOpUnary outop_neg = {
2738    .base.static_constraint = C_O1_I1(r, 0),
2739    .out_rr = tgen_neg,
2740};
2741
2742static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
2743{
2744    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2745    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
2746}
2747
2748static const TCGOutOpUnary outop_not = {
2749    .base.static_constraint = C_O1_I1(r, 0),
2750    .out_rr = tgen_not,
2751};
2752
2753
2754static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType type,
2755                       const TCGArg args[TCG_MAX_OP_ARGS],
2756                       const int const_args[TCG_MAX_OP_ARGS])
2757{
2758    TCGArg a0, a1, a2;
2759    int c, const_a2, vexop, rexw;
2760
2761#if TCG_TARGET_REG_BITS == 64
2762# define OP_32_64(x) \
2763        case glue(glue(INDEX_op_, x), _i64): \
2764        case glue(glue(INDEX_op_, x), _i32)
2765#else
2766# define OP_32_64(x) \
2767        case glue(glue(INDEX_op_, x), _i32)
2768#endif
2769
2770    /* Hoist the loads of the most common arguments.  */
2771    a0 = args[0];
2772    a1 = args[1];
2773    a2 = args[2];
2774    const_a2 = const_args[2];
2775    rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2776
2777    switch (opc) {
2778    case INDEX_op_goto_ptr:
2779        /* jmp to the given host address (could be epilogue) */
2780        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
2781        break;
2782    case INDEX_op_br:
2783        tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
2784        break;
2785    OP_32_64(ld8u):
2786        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
2787        tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
2788        break;
2789    OP_32_64(ld8s):
2790        tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
2791        break;
2792    OP_32_64(ld16u):
2793        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
2794        tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
2795        break;
2796    OP_32_64(ld16s):
2797        tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
2798        break;
2799#if TCG_TARGET_REG_BITS == 64
2800    case INDEX_op_ld32u_i64:
2801#endif
2802    case INDEX_op_ld_i32:
2803        tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
2804        break;
2805
2806    OP_32_64(st8):
2807        if (const_args[0]) {
2808            tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
2809            tcg_out8(s, a0);
2810        } else {
2811            tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
2812        }
2813        break;
2814    OP_32_64(st16):
2815        if (const_args[0]) {
2816            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
2817            tcg_out16(s, a0);
2818        } else {
2819            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
2820        }
2821        break;
2822#if TCG_TARGET_REG_BITS == 64
2823    case INDEX_op_st32_i64:
2824#endif
2825    case INDEX_op_st_i32:
2826        if (const_args[0]) {
2827            tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
2828            tcg_out32(s, a0);
2829        } else {
2830            tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
2831        }
2832        break;
2833
2834    OP_32_64(div2):
2835        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]);
2836        break;
2837    OP_32_64(divu2):
2838        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]);
2839        break;
2840
2841    OP_32_64(shl):
2842        /* For small constant 3-operand shift, use LEA.  */
2843        if (const_a2 && a0 != a1 && (a2 - 1) < 3) {
2844            if (a2 - 1 == 0) {
2845                /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2846                tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2847            } else {
2848                /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2849                tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2850            }
2851            break;
2852        }
2853        c = SHIFT_SHL;
2854        vexop = OPC_SHLX;
2855        goto gen_shift_maybe_vex;
2856    OP_32_64(shr):
2857        c = SHIFT_SHR;
2858        vexop = OPC_SHRX;
2859        goto gen_shift_maybe_vex;
2860    OP_32_64(sar):
2861        c = SHIFT_SAR;
2862        vexop = OPC_SARX;
2863        goto gen_shift_maybe_vex;
2864    OP_32_64(rotl):
2865        c = SHIFT_ROL;
2866        goto gen_shift;
2867    OP_32_64(rotr):
2868        c = SHIFT_ROR;
2869        goto gen_shift;
2870    gen_shift_maybe_vex:
2871        if (have_bmi2) {
2872            if (!const_a2) {
2873                tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1);
2874                break;
2875            }
2876            tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2877        }
2878        /* FALLTHRU */
2879    gen_shift:
2880        if (const_a2) {
2881            tcg_out_shifti(s, c + rexw, a0, a2);
2882        } else {
2883            tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0);
2884        }
2885        break;
2886
2887    OP_32_64(ctz):
2888        tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]);
2889        break;
2890    OP_32_64(clz):
2891        tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]);
2892        break;
2893    OP_32_64(ctpop):
2894        tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2895        break;
2896
2897    OP_32_64(brcond):
2898        tcg_out_brcond(s, rexw, a2, a0, a1, const_args[1],
2899                       arg_label(args[3]), 0);
2900        break;
2901    OP_32_64(setcond):
2902        tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, false);
2903        break;
2904    OP_32_64(negsetcond):
2905        tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, true);
2906        break;
2907    OP_32_64(movcond):
2908        tcg_out_movcond(s, rexw, args[5], a0, a1, a2, const_a2, args[3]);
2909        break;
2910
2911    OP_32_64(bswap16):
2912        if (a2 & TCG_BSWAP_OS) {
2913            /* Output must be sign-extended. */
2914            if (rexw) {
2915                tcg_out_bswap64(s, a0);
2916                tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48);
2917            } else {
2918                tcg_out_bswap32(s, a0);
2919                tcg_out_shifti(s, SHIFT_SAR, a0, 16);
2920            }
2921        } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
2922            /* Output must be zero-extended, but input isn't. */
2923            tcg_out_bswap32(s, a0);
2924            tcg_out_shifti(s, SHIFT_SHR, a0, 16);
2925        } else {
2926            tcg_out_rolw_8(s, a0);
2927        }
2928        break;
2929    OP_32_64(bswap32):
2930        tcg_out_bswap32(s, a0);
2931        if (rexw && (a2 & TCG_BSWAP_OS)) {
2932            tcg_out_ext32s(s, a0, a0);
2933        }
2934        break;
2935
2936    case INDEX_op_qemu_ld_i32:
2937        tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I32);
2938        break;
2939    case INDEX_op_qemu_ld_i64:
2940        if (TCG_TARGET_REG_BITS == 64) {
2941            tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I64);
2942        } else {
2943            tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I64);
2944        }
2945        break;
2946    case INDEX_op_qemu_ld_i128:
2947        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2948        tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I128);
2949        break;
2950
2951    case INDEX_op_qemu_st_i32:
2952    case INDEX_op_qemu_st8_i32:
2953        tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I32);
2954        break;
2955    case INDEX_op_qemu_st_i64:
2956        if (TCG_TARGET_REG_BITS == 64) {
2957            tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I64);
2958        } else {
2959            tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I64);
2960        }
2961        break;
2962    case INDEX_op_qemu_st_i128:
2963        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2964        tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I128);
2965        break;
2966
2967    OP_32_64(mulu2):
2968        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
2969        break;
2970    OP_32_64(muls2):
2971        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]);
2972        break;
2973    OP_32_64(add2):
2974        if (const_args[4]) {
2975            tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
2976        } else {
2977            tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
2978        }
2979        if (const_args[5]) {
2980            tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
2981        } else {
2982            tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
2983        }
2984        break;
2985    OP_32_64(sub2):
2986        if (const_args[4]) {
2987            tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
2988        } else {
2989            tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
2990        }
2991        if (const_args[5]) {
2992            tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
2993        } else {
2994            tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
2995        }
2996        break;
2997
2998#if TCG_TARGET_REG_BITS == 32
2999    case INDEX_op_brcond2_i32:
3000        tcg_out_brcond2(s, args, const_args, 0);
3001        break;
3002    case INDEX_op_setcond2_i32:
3003        tcg_out_setcond2(s, args, const_args);
3004        break;
3005#else /* TCG_TARGET_REG_BITS == 64 */
3006    case INDEX_op_ld32s_i64:
3007        tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
3008        break;
3009    case INDEX_op_ld_i64:
3010        tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
3011        break;
3012    case INDEX_op_st_i64:
3013        if (const_args[0]) {
3014            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
3015            tcg_out32(s, a0);
3016        } else {
3017            tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
3018        }
3019        break;
3020
3021    case INDEX_op_bswap64_i64:
3022        tcg_out_bswap64(s, a0);
3023        break;
3024    case INDEX_op_extrh_i64_i32:
3025        tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
3026        break;
3027#endif
3028
3029    OP_32_64(deposit):
3030        if (args[3] == 0 && args[4] == 8) {
3031            /* load bits 0..7 */
3032            if (const_a2) {
3033                tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0),
3034                            0, a0, 0);
3035                tcg_out8(s, a2);
3036            } else {
3037                tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
3038            }
3039        } else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) {
3040            /* load bits 8..15 */
3041            if (const_a2) {
3042                tcg_out8(s, OPC_MOVB_Ib + a0 + 4);
3043                tcg_out8(s, a2);
3044            } else {
3045                tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
3046            }
3047        } else if (args[3] == 0 && args[4] == 16) {
3048            /* load bits 0..15 */
3049            if (const_a2) {
3050                tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0),
3051                            0, a0, 0);
3052                tcg_out16(s, a2);
3053            } else {
3054                tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
3055            }
3056        } else {
3057            g_assert_not_reached();
3058        }
3059        break;
3060
3061    case INDEX_op_extract_i64:
3062        if (a2 + args[3] == 32) {
3063            if (a2 == 0) {
3064                tcg_out_ext32u(s, a0, a1);
3065                break;
3066            }
3067            /* This is a 32-bit zero-extending right shift.  */
3068            tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
3069            tcg_out_shifti(s, SHIFT_SHR, a0, a2);
3070            break;
3071        }
3072        /* FALLTHRU */
3073    case INDEX_op_extract_i32:
3074        if (a2 == 0 && args[3] == 8) {
3075            tcg_out_ext8u(s, a0, a1);
3076        } else if (a2 == 0 && args[3] == 16) {
3077            tcg_out_ext16u(s, a0, a1);
3078        } else if (a2 == 8 && args[3] == 8) {
3079            /*
3080             * On the off-chance that we can use the high-byte registers.
3081             * Otherwise we emit the same ext16 + shift pattern that we
3082             * would have gotten from the normal tcg-op.c expansion.
3083             */
3084            if (a1 < 4 && a0 < 8) {
3085                tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
3086            } else {
3087                tcg_out_ext16u(s, a0, a1);
3088                tcg_out_shifti(s, SHIFT_SHR, a0, 8);
3089            }
3090        } else {
3091            g_assert_not_reached();
3092        }
3093        break;
3094
3095    case INDEX_op_sextract_i64:
3096        if (a2 == 0 && args[3] == 8) {
3097            tcg_out_ext8s(s, TCG_TYPE_I64, a0, a1);
3098        } else if (a2 == 0 && args[3] == 16) {
3099            tcg_out_ext16s(s, TCG_TYPE_I64, a0, a1);
3100        } else if (a2 == 0 && args[3] == 32) {
3101            tcg_out_ext32s(s, a0, a1);
3102        } else {
3103            g_assert_not_reached();
3104        }
3105        break;
3106
3107    case INDEX_op_sextract_i32:
3108        if (a2 == 0 && args[3] == 8) {
3109            tcg_out_ext8s(s, TCG_TYPE_I32, a0, a1);
3110        } else if (a2 == 0 && args[3] == 16) {
3111            tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
3112        } else if (a2 == 8 && args[3] == 8) {
3113            if (a1 < 4 && a0 < 8) {
3114                tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
3115            } else {
3116                tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
3117                tcg_out_shifti(s, SHIFT_SAR, a0, 8);
3118            }
3119        } else {
3120            g_assert_not_reached();
3121        }
3122        break;
3123
3124    OP_32_64(extract2):
3125        /* Note that SHRD outputs to the r/m operand.  */
3126        tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
3127        tcg_out8(s, args[3]);
3128        break;
3129
3130    case INDEX_op_mb:
3131        tcg_out_mb(s, a0);
3132        break;
3133    case INDEX_op_call:     /* Always emitted via tcg_out_call.  */
3134    case INDEX_op_exit_tb:  /* Always emitted via tcg_out_exit_tb.  */
3135    case INDEX_op_goto_tb:  /* Always emitted via tcg_out_goto_tb.  */
3136    case INDEX_op_ext_i32_i64:  /* Always emitted via tcg_reg_alloc_op.  */
3137    case INDEX_op_extu_i32_i64:
3138    case INDEX_op_extrl_i64_i32:
3139    default:
3140        g_assert_not_reached();
3141    }
3142
3143#undef OP_32_64
3144}
3145
3146static int const umin_insn[4] = {
3147    OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ
3148};
3149
3150static int const umax_insn[4] = {
3151    OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ
3152};
3153
3154static bool tcg_out_cmp_vec_noinv(TCGContext *s, TCGType type, unsigned vece,
3155                                  TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
3156{
3157    static int const cmpeq_insn[4] = {
3158        OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
3159    };
3160    static int const cmpgt_insn[4] = {
3161        OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
3162    };
3163
3164    enum {
3165        NEED_INV  = 1,
3166        NEED_SWAP = 2,
3167        NEED_UMIN = 4,
3168        NEED_UMAX = 8,
3169        INVALID   = 16,
3170    };
3171    static const uint8_t cond_fixup[16] = {
3172        [0 ... 15] = INVALID,
3173        [TCG_COND_EQ] = 0,
3174        [TCG_COND_GT] = 0,
3175        [TCG_COND_NE] = NEED_INV,
3176        [TCG_COND_LE] = NEED_INV,
3177        [TCG_COND_LT] = NEED_SWAP,
3178        [TCG_COND_GE] = NEED_SWAP | NEED_INV,
3179        [TCG_COND_LEU] = NEED_UMIN,
3180        [TCG_COND_GTU] = NEED_UMIN | NEED_INV,
3181        [TCG_COND_GEU] = NEED_UMAX,
3182        [TCG_COND_LTU] = NEED_UMAX | NEED_INV,
3183    };
3184    int fixup = cond_fixup[cond];
3185
3186    assert(!(fixup & INVALID));
3187
3188    if (fixup & NEED_INV) {
3189        cond = tcg_invert_cond(cond);
3190    }
3191
3192    if (fixup & NEED_SWAP) {
3193        TCGReg swap = v1;
3194        v1 = v2;
3195        v2 = swap;
3196        cond = tcg_swap_cond(cond);
3197    }
3198
3199    if (fixup & (NEED_UMIN | NEED_UMAX)) {
3200        int op = (fixup & NEED_UMIN ? umin_insn[vece] : umax_insn[vece]);
3201
3202        /* avx2 does not have 64-bit min/max; adjusted during expand. */
3203        assert(vece <= MO_32);
3204
3205        tcg_out_vex_modrm_type(s, op, TCG_TMP_VEC, v1, v2, type);
3206        v2 = TCG_TMP_VEC;
3207        cond = TCG_COND_EQ;
3208    }
3209
3210    switch (cond) {
3211    case TCG_COND_EQ:
3212        tcg_out_vex_modrm_type(s, cmpeq_insn[vece], v0, v1, v2, type);
3213        break;
3214    case TCG_COND_GT:
3215        tcg_out_vex_modrm_type(s, cmpgt_insn[vece], v0, v1, v2, type);
3216        break;
3217    default:
3218        g_assert_not_reached();
3219    }
3220    return fixup & NEED_INV;
3221}
3222
3223static void tcg_out_cmp_vec_k1(TCGContext *s, TCGType type, unsigned vece,
3224                               TCGReg v1, TCGReg v2, TCGCond cond)
3225{
3226    static const int cmpm_insn[2][4] = {
3227        { OPC_VPCMPB, OPC_VPCMPW, OPC_VPCMPD, OPC_VPCMPQ },
3228        { OPC_VPCMPUB, OPC_VPCMPUW, OPC_VPCMPUD, OPC_VPCMPUQ }
3229    };
3230    static const int testm_insn[4] = {
3231        OPC_VPTESTMB, OPC_VPTESTMW, OPC_VPTESTMD, OPC_VPTESTMQ
3232    };
3233    static const int testnm_insn[4] = {
3234        OPC_VPTESTNMB, OPC_VPTESTNMW, OPC_VPTESTNMD, OPC_VPTESTNMQ
3235    };
3236
3237    static const int cond_ext[16] = {
3238        [TCG_COND_EQ] = 0,
3239        [TCG_COND_NE] = 4,
3240        [TCG_COND_LT] = 1,
3241        [TCG_COND_LTU] = 1,
3242        [TCG_COND_LE] = 2,
3243        [TCG_COND_LEU] = 2,
3244        [TCG_COND_NEVER] = 3,
3245        [TCG_COND_GE] = 5,
3246        [TCG_COND_GEU] = 5,
3247        [TCG_COND_GT] = 6,
3248        [TCG_COND_GTU] = 6,
3249        [TCG_COND_ALWAYS] = 7,
3250    };
3251
3252    switch (cond) {
3253    case TCG_COND_TSTNE:
3254        tcg_out_vex_modrm_type(s, testm_insn[vece], /* k1 */ 1, v1, v2, type);
3255        break;
3256    case TCG_COND_TSTEQ:
3257        tcg_out_vex_modrm_type(s, testnm_insn[vece], /* k1 */ 1, v1, v2, type);
3258        break;
3259    default:
3260        tcg_out_vex_modrm_type(s, cmpm_insn[is_unsigned_cond(cond)][vece],
3261                               /* k1 */ 1, v1, v2, type);
3262        tcg_out8(s, cond_ext[cond]);
3263        break;
3264    }
3265}
3266
3267static void tcg_out_k1_to_vec(TCGContext *s, TCGType type,
3268                              unsigned vece, TCGReg dest)
3269{
3270    static const int movm_insn[] = {
3271        OPC_VPMOVM2B, OPC_VPMOVM2W, OPC_VPMOVM2D, OPC_VPMOVM2Q
3272    };
3273    tcg_out_vex_modrm_type(s, movm_insn[vece], dest, 0, /* k1 */ 1, type);
3274}
3275
3276static void tcg_out_cmp_vec(TCGContext *s, TCGType type, unsigned vece,
3277                            TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
3278{
3279    /*
3280     * With avx512, we have a complete set of comparisons into mask.
3281     * Unless there's a single insn expansion for the comparision,
3282     * expand via a mask in k1.
3283     */
3284    if ((vece <= MO_16 ? have_avx512bw : have_avx512dq)
3285        && cond != TCG_COND_EQ
3286        && cond != TCG_COND_LT
3287        && cond != TCG_COND_GT) {
3288        tcg_out_cmp_vec_k1(s, type, vece, v1, v2, cond);
3289        tcg_out_k1_to_vec(s, type, vece, v0);
3290        return;
3291    }
3292
3293    if (tcg_out_cmp_vec_noinv(s, type, vece, v0, v1, v2, cond)) {
3294        tcg_out_dupi_vec(s, type, vece, TCG_TMP_VEC, -1);
3295        tcg_out_vex_modrm_type(s, OPC_PXOR, v0, v0, TCG_TMP_VEC, type);
3296    }
3297}
3298
3299static void tcg_out_cmpsel_vec_k1(TCGContext *s, TCGType type, unsigned vece,
3300                                  TCGReg v0, TCGReg c1, TCGReg c2,
3301                                  TCGReg v3, TCGReg v4, TCGCond cond)
3302{
3303    static const int vpblendm_insn[] = {
3304        OPC_VPBLENDMB, OPC_VPBLENDMW, OPC_VPBLENDMD, OPC_VPBLENDMQ
3305    };
3306    bool z = false;
3307
3308    /* Swap to place constant in V4 to take advantage of zero-masking. */
3309    if (!v3) {
3310        z = true;
3311        v3 = v4;
3312        cond = tcg_invert_cond(cond);
3313    }
3314
3315    tcg_out_cmp_vec_k1(s, type, vece, c1, c2, cond);
3316    tcg_out_evex_modrm_type(s, vpblendm_insn[vece], v0, v4, v3,
3317                            /* k1 */1, z, type);
3318}
3319
3320static void tcg_out_cmpsel_vec(TCGContext *s, TCGType type, unsigned vece,
3321                               TCGReg v0, TCGReg c1, TCGReg c2,
3322                               TCGReg v3, TCGReg v4, TCGCond cond)
3323{
3324    bool inv;
3325
3326    if (vece <= MO_16 ? have_avx512bw : have_avx512vl) {
3327        tcg_out_cmpsel_vec_k1(s, type, vece, v0, c1, c2, v3, v4, cond);
3328        return;
3329    }
3330
3331    inv = tcg_out_cmp_vec_noinv(s, type, vece, TCG_TMP_VEC, c1, c2, cond);
3332
3333    /*
3334     * Since XMM0 is 16, the only way we get 0 into V3
3335     * is via the constant zero constraint.
3336     */
3337    if (!v3) {
3338        if (inv) {
3339            tcg_out_vex_modrm_type(s, OPC_PAND, v0, TCG_TMP_VEC, v4, type);
3340        } else {
3341            tcg_out_vex_modrm_type(s, OPC_PANDN, v0, TCG_TMP_VEC, v4, type);
3342        }
3343    } else {
3344        if (inv) {
3345            TCGReg swap = v3;
3346            v3 = v4;
3347            v4 = swap;
3348        }
3349        tcg_out_vex_modrm_type(s, OPC_VPBLENDVB, v0, v4, v3, type);
3350        tcg_out8(s, (TCG_TMP_VEC - TCG_REG_XMM0) << 4);
3351    }
3352}
3353
3354static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
3355                           unsigned vecl, unsigned vece,
3356                           const TCGArg args[TCG_MAX_OP_ARGS],
3357                           const int const_args[TCG_MAX_OP_ARGS])
3358{
3359    static int const add_insn[4] = {
3360        OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
3361    };
3362    static int const ssadd_insn[4] = {
3363        OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
3364    };
3365    static int const usadd_insn[4] = {
3366        OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
3367    };
3368    static int const sub_insn[4] = {
3369        OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
3370    };
3371    static int const sssub_insn[4] = {
3372        OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
3373    };
3374    static int const ussub_insn[4] = {
3375        OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
3376    };
3377    static int const mul_insn[4] = {
3378        OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ
3379    };
3380    static int const shift_imm_insn[4] = {
3381        OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
3382    };
3383    static int const punpckl_insn[4] = {
3384        OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
3385    };
3386    static int const punpckh_insn[4] = {
3387        OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
3388    };
3389    static int const packss_insn[4] = {
3390        OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
3391    };
3392    static int const packus_insn[4] = {
3393        OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
3394    };
3395    static int const smin_insn[4] = {
3396        OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ
3397    };
3398    static int const smax_insn[4] = {
3399        OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ
3400    };
3401    static int const rotlv_insn[4] = {
3402        OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ
3403    };
3404    static int const rotrv_insn[4] = {
3405        OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ
3406    };
3407    static int const shlv_insn[4] = {
3408        OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ
3409    };
3410    static int const shrv_insn[4] = {
3411        OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ
3412    };
3413    static int const sarv_insn[4] = {
3414        OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ
3415    };
3416    static int const shls_insn[4] = {
3417        OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
3418    };
3419    static int const shrs_insn[4] = {
3420        OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
3421    };
3422    static int const sars_insn[4] = {
3423        OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ
3424    };
3425    static int const vpshldi_insn[4] = {
3426        OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ
3427    };
3428    static int const vpshldv_insn[4] = {
3429        OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ
3430    };
3431    static int const vpshrdv_insn[4] = {
3432        OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ
3433    };
3434    static int const abs_insn[4] = {
3435        OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ
3436    };
3437
3438    TCGType type = vecl + TCG_TYPE_V64;
3439    int insn, sub;
3440    TCGArg a0, a1, a2, a3;
3441
3442    a0 = args[0];
3443    a1 = args[1];
3444    a2 = args[2];
3445
3446    switch (opc) {
3447    case INDEX_op_add_vec:
3448        insn = add_insn[vece];
3449        goto gen_simd;
3450    case INDEX_op_ssadd_vec:
3451        insn = ssadd_insn[vece];
3452        goto gen_simd;
3453    case INDEX_op_usadd_vec:
3454        insn = usadd_insn[vece];
3455        goto gen_simd;
3456    case INDEX_op_sub_vec:
3457        insn = sub_insn[vece];
3458        goto gen_simd;
3459    case INDEX_op_sssub_vec:
3460        insn = sssub_insn[vece];
3461        goto gen_simd;
3462    case INDEX_op_ussub_vec:
3463        insn = ussub_insn[vece];
3464        goto gen_simd;
3465    case INDEX_op_mul_vec:
3466        insn = mul_insn[vece];
3467        goto gen_simd;
3468    case INDEX_op_and_vec:
3469        insn = OPC_PAND;
3470        goto gen_simd;
3471    case INDEX_op_or_vec:
3472        insn = OPC_POR;
3473        goto gen_simd;
3474    case INDEX_op_xor_vec:
3475        insn = OPC_PXOR;
3476        goto gen_simd;
3477    case INDEX_op_smin_vec:
3478        insn = smin_insn[vece];
3479        goto gen_simd;
3480    case INDEX_op_umin_vec:
3481        insn = umin_insn[vece];
3482        goto gen_simd;
3483    case INDEX_op_smax_vec:
3484        insn = smax_insn[vece];
3485        goto gen_simd;
3486    case INDEX_op_umax_vec:
3487        insn = umax_insn[vece];
3488        goto gen_simd;
3489    case INDEX_op_shlv_vec:
3490        insn = shlv_insn[vece];
3491        goto gen_simd;
3492    case INDEX_op_shrv_vec:
3493        insn = shrv_insn[vece];
3494        goto gen_simd;
3495    case INDEX_op_sarv_vec:
3496        insn = sarv_insn[vece];
3497        goto gen_simd;
3498    case INDEX_op_rotlv_vec:
3499        insn = rotlv_insn[vece];
3500        goto gen_simd;
3501    case INDEX_op_rotrv_vec:
3502        insn = rotrv_insn[vece];
3503        goto gen_simd;
3504    case INDEX_op_shls_vec:
3505        insn = shls_insn[vece];
3506        goto gen_simd;
3507    case INDEX_op_shrs_vec:
3508        insn = shrs_insn[vece];
3509        goto gen_simd;
3510    case INDEX_op_sars_vec:
3511        insn = sars_insn[vece];
3512        goto gen_simd;
3513    case INDEX_op_x86_punpckl_vec:
3514        insn = punpckl_insn[vece];
3515        goto gen_simd;
3516    case INDEX_op_x86_punpckh_vec:
3517        insn = punpckh_insn[vece];
3518        goto gen_simd;
3519    case INDEX_op_x86_packss_vec:
3520        insn = packss_insn[vece];
3521        goto gen_simd;
3522    case INDEX_op_x86_packus_vec:
3523        insn = packus_insn[vece];
3524        goto gen_simd;
3525    case INDEX_op_x86_vpshldv_vec:
3526        insn = vpshldv_insn[vece];
3527        a1 = a2;
3528        a2 = args[3];
3529        goto gen_simd;
3530    case INDEX_op_x86_vpshrdv_vec:
3531        insn = vpshrdv_insn[vece];
3532        a1 = a2;
3533        a2 = args[3];
3534        goto gen_simd;
3535#if TCG_TARGET_REG_BITS == 32
3536    case INDEX_op_dup2_vec:
3537        /* First merge the two 32-bit inputs to a single 64-bit element. */
3538        tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
3539        /* Then replicate the 64-bit elements across the rest of the vector. */
3540        if (type != TCG_TYPE_V64) {
3541            tcg_out_dup_vec(s, type, MO_64, a0, a0);
3542        }
3543        break;
3544#endif
3545    case INDEX_op_abs_vec:
3546        insn = abs_insn[vece];
3547        a2 = a1;
3548        a1 = 0;
3549        goto gen_simd;
3550    gen_simd:
3551        tcg_debug_assert(insn != OPC_UD2);
3552        tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
3553        break;
3554
3555    case INDEX_op_cmp_vec:
3556        tcg_out_cmp_vec(s, type, vece, a0, a1, a2, args[3]);
3557        break;
3558
3559    case INDEX_op_cmpsel_vec:
3560        tcg_out_cmpsel_vec(s, type, vece, a0, a1, a2,
3561                           args[3], args[4], args[5]);
3562        break;
3563
3564    case INDEX_op_andc_vec:
3565        insn = OPC_PANDN;
3566        tcg_out_vex_modrm_type(s, insn, a0, a2, a1, type);
3567        break;
3568
3569    case INDEX_op_shli_vec:
3570        insn = shift_imm_insn[vece];
3571        sub = 6;
3572        goto gen_shift;
3573    case INDEX_op_shri_vec:
3574        insn = shift_imm_insn[vece];
3575        sub = 2;
3576        goto gen_shift;
3577    case INDEX_op_sari_vec:
3578        if (vece == MO_64) {
3579            insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX;
3580        } else {
3581            insn = shift_imm_insn[vece];
3582        }
3583        sub = 4;
3584        goto gen_shift;
3585    case INDEX_op_rotli_vec:
3586        insn = OPC_PSHIFTD_Ib | P_EVEX;  /* VPROL[DQ] */
3587        if (vece == MO_64) {
3588            insn |= P_VEXW;
3589        }
3590        sub = 1;
3591        goto gen_shift;
3592    gen_shift:
3593        tcg_debug_assert(vece != MO_8);
3594        tcg_out_vex_modrm_type(s, insn, sub, a0, a1, type);
3595        tcg_out8(s, a2);
3596        break;
3597
3598    case INDEX_op_ld_vec:
3599        tcg_out_ld(s, type, a0, a1, a2);
3600        break;
3601    case INDEX_op_st_vec:
3602        tcg_out_st(s, type, a0, a1, a2);
3603        break;
3604    case INDEX_op_dupm_vec:
3605        tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3606        break;
3607
3608    case INDEX_op_x86_shufps_vec:
3609        insn = OPC_SHUFPS;
3610        sub = args[3];
3611        goto gen_simd_imm8;
3612    case INDEX_op_x86_blend_vec:
3613        if (vece == MO_16) {
3614            insn = OPC_PBLENDW;
3615        } else if (vece == MO_32) {
3616            insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
3617        } else {
3618            g_assert_not_reached();
3619        }
3620        sub = args[3];
3621        goto gen_simd_imm8;
3622    case INDEX_op_x86_vperm2i128_vec:
3623        insn = OPC_VPERM2I128;
3624        sub = args[3];
3625        goto gen_simd_imm8;
3626    case INDEX_op_x86_vpshldi_vec:
3627        insn = vpshldi_insn[vece];
3628        sub = args[3];
3629        goto gen_simd_imm8;
3630
3631    case INDEX_op_not_vec:
3632        insn = OPC_VPTERNLOGQ;
3633        a2 = a1;
3634        sub = 0x33; /* !B */
3635        goto gen_simd_imm8;
3636    case INDEX_op_nor_vec:
3637        insn = OPC_VPTERNLOGQ;
3638        sub = 0x11; /* norCB */
3639        goto gen_simd_imm8;
3640    case INDEX_op_nand_vec:
3641        insn = OPC_VPTERNLOGQ;
3642        sub = 0x77; /* nandCB */
3643        goto gen_simd_imm8;
3644    case INDEX_op_eqv_vec:
3645        insn = OPC_VPTERNLOGQ;
3646        sub = 0x99; /* xnorCB */
3647        goto gen_simd_imm8;
3648    case INDEX_op_orc_vec:
3649        insn = OPC_VPTERNLOGQ;
3650        sub = 0xdd; /* orB!C */
3651        goto gen_simd_imm8;
3652
3653    case INDEX_op_bitsel_vec:
3654        insn = OPC_VPTERNLOGQ;
3655        a3 = args[3];
3656        if (a0 == a1) {
3657            a1 = a2;
3658            a2 = a3;
3659            sub = 0xca; /* A?B:C */
3660        } else if (a0 == a2) {
3661            a2 = a3;
3662            sub = 0xe2; /* B?A:C */
3663        } else {
3664            tcg_out_mov(s, type, a0, a3);
3665            sub = 0xb8; /* B?C:A */
3666        }
3667        goto gen_simd_imm8;
3668
3669    gen_simd_imm8:
3670        tcg_debug_assert(insn != OPC_UD2);
3671        tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
3672        tcg_out8(s, sub);
3673        break;
3674
3675    case INDEX_op_x86_psrldq_vec:
3676        tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
3677        tcg_out8(s, a2);
3678        break;
3679
3680    case INDEX_op_mov_vec:  /* Always emitted via tcg_out_mov.  */
3681    case INDEX_op_dup_vec:  /* Always emitted via tcg_out_dup_vec.  */
3682    default:
3683        g_assert_not_reached();
3684    }
3685}
3686
3687static TCGConstraintSetIndex
3688tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags)
3689{
3690    switch (op) {
3691    case INDEX_op_goto_ptr:
3692        return C_O0_I1(r);
3693
3694    case INDEX_op_ld8u_i32:
3695    case INDEX_op_ld8u_i64:
3696    case INDEX_op_ld8s_i32:
3697    case INDEX_op_ld8s_i64:
3698    case INDEX_op_ld16u_i32:
3699    case INDEX_op_ld16u_i64:
3700    case INDEX_op_ld16s_i32:
3701    case INDEX_op_ld16s_i64:
3702    case INDEX_op_ld_i32:
3703    case INDEX_op_ld32u_i64:
3704    case INDEX_op_ld32s_i64:
3705    case INDEX_op_ld_i64:
3706        return C_O1_I1(r, r);
3707
3708    case INDEX_op_st8_i32:
3709    case INDEX_op_st8_i64:
3710        return C_O0_I2(qi, r);
3711
3712    case INDEX_op_st16_i32:
3713    case INDEX_op_st16_i64:
3714    case INDEX_op_st_i32:
3715    case INDEX_op_st32_i64:
3716        return C_O0_I2(ri, r);
3717
3718    case INDEX_op_st_i64:
3719        return C_O0_I2(re, r);
3720
3721    case INDEX_op_shl_i32:
3722    case INDEX_op_shl_i64:
3723    case INDEX_op_shr_i32:
3724    case INDEX_op_shr_i64:
3725    case INDEX_op_sar_i32:
3726    case INDEX_op_sar_i64:
3727        return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci);
3728
3729    case INDEX_op_rotl_i32:
3730    case INDEX_op_rotl_i64:
3731    case INDEX_op_rotr_i32:
3732    case INDEX_op_rotr_i64:
3733        return C_O1_I2(r, 0, ci);
3734
3735    case INDEX_op_brcond_i32:
3736    case INDEX_op_brcond_i64:
3737        return C_O0_I2(r, reT);
3738
3739    case INDEX_op_bswap16_i32:
3740    case INDEX_op_bswap16_i64:
3741    case INDEX_op_bswap32_i32:
3742    case INDEX_op_bswap32_i64:
3743    case INDEX_op_bswap64_i64:
3744    case INDEX_op_extrh_i64_i32:
3745        return C_O1_I1(r, 0);
3746
3747    case INDEX_op_ext_i32_i64:
3748    case INDEX_op_extu_i32_i64:
3749    case INDEX_op_extrl_i64_i32:
3750    case INDEX_op_extract_i32:
3751    case INDEX_op_extract_i64:
3752    case INDEX_op_sextract_i32:
3753    case INDEX_op_sextract_i64:
3754    case INDEX_op_ctpop_i32:
3755    case INDEX_op_ctpop_i64:
3756        return C_O1_I1(r, r);
3757
3758    case INDEX_op_extract2_i32:
3759    case INDEX_op_extract2_i64:
3760        return C_O1_I2(r, 0, r);
3761
3762    case INDEX_op_deposit_i32:
3763    case INDEX_op_deposit_i64:
3764        return C_O1_I2(q, 0, qi);
3765
3766    case INDEX_op_setcond_i32:
3767    case INDEX_op_setcond_i64:
3768    case INDEX_op_negsetcond_i32:
3769    case INDEX_op_negsetcond_i64:
3770        return C_O1_I2(q, r, reT);
3771
3772    case INDEX_op_movcond_i32:
3773    case INDEX_op_movcond_i64:
3774        return C_O1_I4(r, r, reT, r, 0);
3775
3776    case INDEX_op_div2_i32:
3777    case INDEX_op_div2_i64:
3778    case INDEX_op_divu2_i32:
3779    case INDEX_op_divu2_i64:
3780        return C_O2_I3(a, d, 0, 1, r);
3781
3782    case INDEX_op_mulu2_i32:
3783    case INDEX_op_mulu2_i64:
3784    case INDEX_op_muls2_i32:
3785    case INDEX_op_muls2_i64:
3786        return C_O2_I2(a, d, a, r);
3787
3788    case INDEX_op_add2_i32:
3789    case INDEX_op_add2_i64:
3790    case INDEX_op_sub2_i32:
3791    case INDEX_op_sub2_i64:
3792        return C_N1_O1_I4(r, r, 0, 1, re, re);
3793
3794    case INDEX_op_ctz_i32:
3795    case INDEX_op_ctz_i64:
3796        return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
3797
3798    case INDEX_op_clz_i32:
3799    case INDEX_op_clz_i64:
3800        return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
3801
3802    case INDEX_op_qemu_ld_i32:
3803        return C_O1_I1(r, L);
3804
3805    case INDEX_op_qemu_st_i32:
3806        return C_O0_I2(L, L);
3807    case INDEX_op_qemu_st8_i32:
3808        return C_O0_I2(s, L);
3809
3810    case INDEX_op_qemu_ld_i64:
3811        return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L);
3812
3813    case INDEX_op_qemu_st_i64:
3814        return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L);
3815
3816    case INDEX_op_qemu_ld_i128:
3817        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3818        return C_O2_I1(r, r, L);
3819    case INDEX_op_qemu_st_i128:
3820        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3821        return C_O0_I3(L, L, L);
3822
3823    case INDEX_op_brcond2_i32:
3824        return C_O0_I4(r, r, ri, ri);
3825
3826    case INDEX_op_setcond2_i32:
3827        return C_O1_I4(r, r, r, ri, ri);
3828
3829    case INDEX_op_ld_vec:
3830    case INDEX_op_dupm_vec:
3831        return C_O1_I1(x, r);
3832
3833    case INDEX_op_st_vec:
3834        return C_O0_I2(x, r);
3835
3836    case INDEX_op_add_vec:
3837    case INDEX_op_sub_vec:
3838    case INDEX_op_mul_vec:
3839    case INDEX_op_and_vec:
3840    case INDEX_op_or_vec:
3841    case INDEX_op_xor_vec:
3842    case INDEX_op_andc_vec:
3843    case INDEX_op_orc_vec:
3844    case INDEX_op_nand_vec:
3845    case INDEX_op_nor_vec:
3846    case INDEX_op_eqv_vec:
3847    case INDEX_op_ssadd_vec:
3848    case INDEX_op_usadd_vec:
3849    case INDEX_op_sssub_vec:
3850    case INDEX_op_ussub_vec:
3851    case INDEX_op_smin_vec:
3852    case INDEX_op_umin_vec:
3853    case INDEX_op_smax_vec:
3854    case INDEX_op_umax_vec:
3855    case INDEX_op_shlv_vec:
3856    case INDEX_op_shrv_vec:
3857    case INDEX_op_sarv_vec:
3858    case INDEX_op_rotlv_vec:
3859    case INDEX_op_rotrv_vec:
3860    case INDEX_op_shls_vec:
3861    case INDEX_op_shrs_vec:
3862    case INDEX_op_sars_vec:
3863    case INDEX_op_cmp_vec:
3864    case INDEX_op_x86_shufps_vec:
3865    case INDEX_op_x86_blend_vec:
3866    case INDEX_op_x86_packss_vec:
3867    case INDEX_op_x86_packus_vec:
3868    case INDEX_op_x86_vperm2i128_vec:
3869    case INDEX_op_x86_punpckl_vec:
3870    case INDEX_op_x86_punpckh_vec:
3871    case INDEX_op_x86_vpshldi_vec:
3872#if TCG_TARGET_REG_BITS == 32
3873    case INDEX_op_dup2_vec:
3874#endif
3875        return C_O1_I2(x, x, x);
3876
3877    case INDEX_op_abs_vec:
3878    case INDEX_op_dup_vec:
3879    case INDEX_op_not_vec:
3880    case INDEX_op_shli_vec:
3881    case INDEX_op_shri_vec:
3882    case INDEX_op_sari_vec:
3883    case INDEX_op_rotli_vec:
3884    case INDEX_op_x86_psrldq_vec:
3885        return C_O1_I1(x, x);
3886
3887    case INDEX_op_x86_vpshldv_vec:
3888    case INDEX_op_x86_vpshrdv_vec:
3889        return C_O1_I3(x, 0, x, x);
3890
3891    case INDEX_op_bitsel_vec:
3892        return C_O1_I3(x, x, x, x);
3893    case INDEX_op_cmpsel_vec:
3894        return C_O1_I4(x, x, x, xO, x);
3895
3896    default:
3897        return C_NotImplemented;
3898    }
3899}
3900
3901int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
3902{
3903    switch (opc) {
3904    case INDEX_op_add_vec:
3905    case INDEX_op_sub_vec:
3906    case INDEX_op_and_vec:
3907    case INDEX_op_or_vec:
3908    case INDEX_op_xor_vec:
3909    case INDEX_op_andc_vec:
3910    case INDEX_op_orc_vec:
3911    case INDEX_op_nand_vec:
3912    case INDEX_op_nor_vec:
3913    case INDEX_op_eqv_vec:
3914    case INDEX_op_not_vec:
3915    case INDEX_op_bitsel_vec:
3916        return 1;
3917    case INDEX_op_cmp_vec:
3918    case INDEX_op_cmpsel_vec:
3919        return -1;
3920
3921    case INDEX_op_rotli_vec:
3922        return have_avx512vl && vece >= MO_32 ? 1 : -1;
3923
3924    case INDEX_op_shli_vec:
3925    case INDEX_op_shri_vec:
3926        /* We must expand the operation for MO_8.  */
3927        return vece == MO_8 ? -1 : 1;
3928
3929    case INDEX_op_sari_vec:
3930        switch (vece) {
3931        case MO_8:
3932            return -1;
3933        case MO_16:
3934        case MO_32:
3935            return 1;
3936        case MO_64:
3937            if (have_avx512vl) {
3938                return 1;
3939            }
3940            /*
3941             * We can emulate this for MO_64, but it does not pay off
3942             * unless we're producing at least 4 values.
3943             */
3944            return type >= TCG_TYPE_V256 ? -1 : 0;
3945        }
3946        return 0;
3947
3948    case INDEX_op_shls_vec:
3949    case INDEX_op_shrs_vec:
3950        return vece >= MO_16;
3951    case INDEX_op_sars_vec:
3952        switch (vece) {
3953        case MO_16:
3954        case MO_32:
3955            return 1;
3956        case MO_64:
3957            return have_avx512vl;
3958        }
3959        return 0;
3960    case INDEX_op_rotls_vec:
3961        return vece >= MO_16 ? -1 : 0;
3962
3963    case INDEX_op_shlv_vec:
3964    case INDEX_op_shrv_vec:
3965        switch (vece) {
3966        case MO_16:
3967            return have_avx512bw;
3968        case MO_32:
3969        case MO_64:
3970            return have_avx2;
3971        }
3972        return 0;
3973    case INDEX_op_sarv_vec:
3974        switch (vece) {
3975        case MO_16:
3976            return have_avx512bw;
3977        case MO_32:
3978            return have_avx2;
3979        case MO_64:
3980            return have_avx512vl;
3981        }
3982        return 0;
3983    case INDEX_op_rotlv_vec:
3984    case INDEX_op_rotrv_vec:
3985        switch (vece) {
3986        case MO_16:
3987            return have_avx512vbmi2 ? -1 : 0;
3988        case MO_32:
3989        case MO_64:
3990            return have_avx512vl ? 1 : have_avx2 ? -1 : 0;
3991        }
3992        return 0;
3993
3994    case INDEX_op_mul_vec:
3995        switch (vece) {
3996        case MO_8:
3997            return -1;
3998        case MO_64:
3999            return have_avx512dq;
4000        }
4001        return 1;
4002
4003    case INDEX_op_ssadd_vec:
4004    case INDEX_op_usadd_vec:
4005    case INDEX_op_sssub_vec:
4006    case INDEX_op_ussub_vec:
4007        return vece <= MO_16;
4008    case INDEX_op_smin_vec:
4009    case INDEX_op_smax_vec:
4010    case INDEX_op_umin_vec:
4011    case INDEX_op_umax_vec:
4012    case INDEX_op_abs_vec:
4013        return vece <= MO_32 || have_avx512vl;
4014
4015    default:
4016        return 0;
4017    }
4018}
4019
4020static void expand_vec_shi(TCGType type, unsigned vece, bool right,
4021                           TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4022{
4023    uint8_t mask;
4024
4025    tcg_debug_assert(vece == MO_8);
4026    if (right) {
4027        mask = 0xff >> imm;
4028        tcg_gen_shri_vec(MO_16, v0, v1, imm);
4029    } else {
4030        mask = 0xff << imm;
4031        tcg_gen_shli_vec(MO_16, v0, v1, imm);
4032    }
4033    tcg_gen_and_vec(MO_8, v0, v0, tcg_constant_vec(type, MO_8, mask));
4034}
4035
4036static void expand_vec_sari(TCGType type, unsigned vece,
4037                            TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4038{
4039    TCGv_vec t1, t2;
4040
4041    switch (vece) {
4042    case MO_8:
4043        /* Unpack to 16-bit, shift, and repack.  */
4044        t1 = tcg_temp_new_vec(type);
4045        t2 = tcg_temp_new_vec(type);
4046        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4047                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
4048        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4049                  tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
4050        tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
4051        tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
4052        vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
4053                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
4054        tcg_temp_free_vec(t1);
4055        tcg_temp_free_vec(t2);
4056        break;
4057
4058    case MO_64:
4059        t1 = tcg_temp_new_vec(type);
4060        if (imm <= 32) {
4061            /*
4062             * We can emulate a small sign extend by performing an arithmetic
4063             * 32-bit shift and overwriting the high half of a 64-bit logical
4064             * shift.  Note that the ISA says shift of 32 is valid, but TCG
4065             * does not, so we have to bound the smaller shift -- we get the
4066             * same result in the high half either way.
4067             */
4068            tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
4069            tcg_gen_shri_vec(MO_64, v0, v1, imm);
4070            vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
4071                      tcgv_vec_arg(v0), tcgv_vec_arg(v0),
4072                      tcgv_vec_arg(t1), 0xaa);
4073        } else {
4074            /* Otherwise we will need to use a compare vs 0 to produce
4075             * the sign-extend, shift and merge.
4076             */
4077            tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1,
4078                            tcg_constant_vec(type, MO_64, 0), v1);
4079            tcg_gen_shri_vec(MO_64, v0, v1, imm);
4080            tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
4081            tcg_gen_or_vec(MO_64, v0, v0, t1);
4082        }
4083        tcg_temp_free_vec(t1);
4084        break;
4085
4086    default:
4087        g_assert_not_reached();
4088    }
4089}
4090
4091static void expand_vec_rotli(TCGType type, unsigned vece,
4092                             TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4093{
4094    TCGv_vec t;
4095
4096    if (vece != MO_8 && have_avx512vbmi2) {
4097        vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece,
4098                  tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm);
4099        return;
4100    }
4101
4102    t = tcg_temp_new_vec(type);
4103    tcg_gen_shli_vec(vece, t, v1, imm);
4104    tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
4105    tcg_gen_or_vec(vece, v0, v0, t);
4106    tcg_temp_free_vec(t);
4107}
4108
4109static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
4110                            TCGv_vec v1, TCGv_vec sh, bool right)
4111{
4112    TCGv_vec t;
4113
4114    if (have_avx512vbmi2) {
4115        vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec,
4116                  type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1),
4117                  tcgv_vec_arg(v1), tcgv_vec_arg(sh));
4118        return;
4119    }
4120
4121    t = tcg_temp_new_vec(type);
4122    tcg_gen_dupi_vec(vece, t, 8 << vece);
4123    tcg_gen_sub_vec(vece, t, t, sh);
4124    if (right) {
4125        tcg_gen_shlv_vec(vece, t, v1, t);
4126        tcg_gen_shrv_vec(vece, v0, v1, sh);
4127    } else {
4128        tcg_gen_shrv_vec(vece, t, v1, t);
4129        tcg_gen_shlv_vec(vece, v0, v1, sh);
4130    }
4131    tcg_gen_or_vec(vece, v0, v0, t);
4132    tcg_temp_free_vec(t);
4133}
4134
4135static void expand_vec_rotls(TCGType type, unsigned vece,
4136                             TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
4137{
4138    TCGv_vec t = tcg_temp_new_vec(type);
4139
4140    tcg_debug_assert(vece != MO_8);
4141
4142    if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) {
4143        tcg_gen_dup_i32_vec(vece, t, lsh);
4144        if (vece >= MO_32) {
4145            tcg_gen_rotlv_vec(vece, v0, v1, t);
4146        } else {
4147            expand_vec_rotv(type, vece, v0, v1, t, false);
4148        }
4149    } else {
4150        TCGv_i32 rsh = tcg_temp_new_i32();
4151
4152        tcg_gen_neg_i32(rsh, lsh);
4153        tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
4154        tcg_gen_shls_vec(vece, t, v1, lsh);
4155        tcg_gen_shrs_vec(vece, v0, v1, rsh);
4156        tcg_gen_or_vec(vece, v0, v0, t);
4157
4158        tcg_temp_free_i32(rsh);
4159    }
4160
4161    tcg_temp_free_vec(t);
4162}
4163
4164static void expand_vec_mul(TCGType type, unsigned vece,
4165                           TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
4166{
4167    TCGv_vec t1, t2, t3, t4, zero;
4168
4169    tcg_debug_assert(vece == MO_8);
4170
4171    /*
4172     * Unpack v1 bytes to words, 0 | x.
4173     * Unpack v2 bytes to words, y | 0.
4174     * This leaves the 8-bit result, x * y, with 8 bits of right padding.
4175     * Shift logical right by 8 bits to clear the high 8 bytes before
4176     * using an unsigned saturated pack.
4177     *
4178     * The difference between the V64, V128 and V256 cases is merely how
4179     * we distribute the expansion between temporaries.
4180     */
4181    switch (type) {
4182    case TCG_TYPE_V64:
4183        t1 = tcg_temp_new_vec(TCG_TYPE_V128);
4184        t2 = tcg_temp_new_vec(TCG_TYPE_V128);
4185        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
4186        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
4187                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4188        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
4189                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4190        tcg_gen_mul_vec(MO_16, t1, t1, t2);
4191        tcg_gen_shri_vec(MO_16, t1, t1, 8);
4192        vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
4193                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
4194        tcg_temp_free_vec(t1);
4195        tcg_temp_free_vec(t2);
4196        break;
4197
4198    case TCG_TYPE_V128:
4199    case TCG_TYPE_V256:
4200        t1 = tcg_temp_new_vec(type);
4201        t2 = tcg_temp_new_vec(type);
4202        t3 = tcg_temp_new_vec(type);
4203        t4 = tcg_temp_new_vec(type);
4204        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
4205        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4206                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4207        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4208                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4209        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4210                  tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4211        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4212                  tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4213        tcg_gen_mul_vec(MO_16, t1, t1, t2);
4214        tcg_gen_mul_vec(MO_16, t3, t3, t4);
4215        tcg_gen_shri_vec(MO_16, t1, t1, 8);
4216        tcg_gen_shri_vec(MO_16, t3, t3, 8);
4217        vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
4218                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
4219        tcg_temp_free_vec(t1);
4220        tcg_temp_free_vec(t2);
4221        tcg_temp_free_vec(t3);
4222        tcg_temp_free_vec(t4);
4223        break;
4224
4225    default:
4226        g_assert_not_reached();
4227    }
4228}
4229
4230static TCGCond expand_vec_cond(TCGType type, unsigned vece,
4231                               TCGArg *a1, TCGArg *a2, TCGCond cond)
4232{
4233    /*
4234     * Without AVX512, there are no 64-bit unsigned comparisons.
4235     * We must bias the inputs so that they become signed.
4236     * All other swapping and inversion are handled during code generation.
4237     */
4238    if (vece == MO_64 && !have_avx512dq && is_unsigned_cond(cond)) {
4239        TCGv_vec v1 = temp_tcgv_vec(arg_temp(*a1));
4240        TCGv_vec v2 = temp_tcgv_vec(arg_temp(*a2));
4241        TCGv_vec t1 = tcg_temp_new_vec(type);
4242        TCGv_vec t2 = tcg_temp_new_vec(type);
4243        TCGv_vec t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1));
4244
4245        tcg_gen_sub_vec(vece, t1, v1, t3);
4246        tcg_gen_sub_vec(vece, t2, v2, t3);
4247        *a1 = tcgv_vec_arg(t1);
4248        *a2 = tcgv_vec_arg(t2);
4249        cond = tcg_signed_cond(cond);
4250    }
4251    return cond;
4252}
4253
4254static void expand_vec_cmp(TCGType type, unsigned vece, TCGArg a0,
4255                           TCGArg a1, TCGArg a2, TCGCond cond)
4256{
4257    cond = expand_vec_cond(type, vece, &a1, &a2, cond);
4258    /* Expand directly; do not recurse.  */
4259    vec_gen_4(INDEX_op_cmp_vec, type, vece, a0, a1, a2, cond);
4260}
4261
4262static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGArg a0,
4263                              TCGArg a1, TCGArg a2,
4264                              TCGArg a3, TCGArg a4, TCGCond cond)
4265{
4266    cond = expand_vec_cond(type, vece, &a1, &a2, cond);
4267    /* Expand directly; do not recurse.  */
4268    vec_gen_6(INDEX_op_cmpsel_vec, type, vece, a0, a1, a2, a3, a4, cond);
4269}
4270
4271void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
4272                       TCGArg a0, ...)
4273{
4274    va_list va;
4275    TCGArg a1, a2, a3, a4, a5;
4276    TCGv_vec v0, v1, v2;
4277
4278    va_start(va, a0);
4279    a1 = va_arg(va, TCGArg);
4280    a2 = va_arg(va, TCGArg);
4281    v0 = temp_tcgv_vec(arg_temp(a0));
4282    v1 = temp_tcgv_vec(arg_temp(a1));
4283
4284    switch (opc) {
4285    case INDEX_op_shli_vec:
4286        expand_vec_shi(type, vece, false, v0, v1, a2);
4287        break;
4288    case INDEX_op_shri_vec:
4289        expand_vec_shi(type, vece, true, v0, v1, a2);
4290        break;
4291    case INDEX_op_sari_vec:
4292        expand_vec_sari(type, vece, v0, v1, a2);
4293        break;
4294
4295    case INDEX_op_rotli_vec:
4296        expand_vec_rotli(type, vece, v0, v1, a2);
4297        break;
4298
4299    case INDEX_op_rotls_vec:
4300        expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
4301        break;
4302
4303    case INDEX_op_rotlv_vec:
4304        v2 = temp_tcgv_vec(arg_temp(a2));
4305        expand_vec_rotv(type, vece, v0, v1, v2, false);
4306        break;
4307    case INDEX_op_rotrv_vec:
4308        v2 = temp_tcgv_vec(arg_temp(a2));
4309        expand_vec_rotv(type, vece, v0, v1, v2, true);
4310        break;
4311
4312    case INDEX_op_mul_vec:
4313        v2 = temp_tcgv_vec(arg_temp(a2));
4314        expand_vec_mul(type, vece, v0, v1, v2);
4315        break;
4316
4317    case INDEX_op_cmp_vec:
4318        a3 = va_arg(va, TCGArg);
4319        expand_vec_cmp(type, vece, a0, a1, a2, a3);
4320        break;
4321
4322    case INDEX_op_cmpsel_vec:
4323        a3 = va_arg(va, TCGArg);
4324        a4 = va_arg(va, TCGArg);
4325        a5 = va_arg(va, TCGArg);
4326        expand_vec_cmpsel(type, vece, a0, a1, a2, a3, a4, a5);
4327        break;
4328
4329    default:
4330        break;
4331    }
4332
4333    va_end(va);
4334}
4335
4336static const int tcg_target_callee_save_regs[] = {
4337#if TCG_TARGET_REG_BITS == 64
4338    TCG_REG_RBP,
4339    TCG_REG_RBX,
4340#if defined(_WIN64)
4341    TCG_REG_RDI,
4342    TCG_REG_RSI,
4343#endif
4344    TCG_REG_R12,
4345    TCG_REG_R13,
4346    TCG_REG_R14, /* Currently used for the global env. */
4347    TCG_REG_R15,
4348#else
4349    TCG_REG_EBP, /* Currently used for the global env. */
4350    TCG_REG_EBX,
4351    TCG_REG_ESI,
4352    TCG_REG_EDI,
4353#endif
4354};
4355
4356/* Compute frame size via macros, to share between tcg_target_qemu_prologue
4357   and tcg_register_jit.  */
4358
4359#define PUSH_SIZE \
4360    ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
4361     * (TCG_TARGET_REG_BITS / 8))
4362
4363#define FRAME_SIZE \
4364    ((PUSH_SIZE \
4365      + TCG_STATIC_CALL_ARGS_SIZE \
4366      + CPU_TEMP_BUF_NLONGS * sizeof(long) \
4367      + TCG_TARGET_STACK_ALIGN - 1) \
4368     & ~(TCG_TARGET_STACK_ALIGN - 1))
4369
4370/* Generate global QEMU prologue and epilogue code */
4371static void tcg_target_qemu_prologue(TCGContext *s)
4372{
4373    int i, stack_addend;
4374
4375    /* TB prologue */
4376
4377    /* Reserve some stack space, also for TCG temps.  */
4378    stack_addend = FRAME_SIZE - PUSH_SIZE;
4379    tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
4380                  CPU_TEMP_BUF_NLONGS * sizeof(long));
4381
4382    /* Save all callee saved registers.  */
4383    for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
4384        tcg_out_push(s, tcg_target_callee_save_regs[i]);
4385    }
4386
4387    if (!tcg_use_softmmu && guest_base) {
4388        int seg = setup_guest_base_seg();
4389        if (seg != 0) {
4390            x86_guest_base.seg = seg;
4391        } else if (guest_base == (int32_t)guest_base) {
4392            x86_guest_base.ofs = guest_base;
4393        } else {
4394            assert(TCG_TARGET_REG_BITS == 64);
4395            /* Choose R12 because, as a base, it requires a SIB byte. */
4396            x86_guest_base.index = TCG_REG_R12;
4397            tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base);
4398            tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index);
4399        }
4400    }
4401
4402    if (TCG_TARGET_REG_BITS == 32) {
4403        tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
4404                   (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
4405        tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4406        /* jmp *tb.  */
4407        tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
4408                             (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
4409                             + stack_addend);
4410    } else {
4411        tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
4412        tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4413        /* jmp *tb.  */
4414        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
4415    }
4416
4417    /*
4418     * Return path for goto_ptr. Set return value to 0, a-la exit_tb,
4419     * and fall through to the rest of the epilogue.
4420     */
4421    tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
4422    tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
4423
4424    /* TB epilogue */
4425    tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
4426
4427    tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
4428
4429    if (have_avx2) {
4430        tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
4431    }
4432    for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
4433        tcg_out_pop(s, tcg_target_callee_save_regs[i]);
4434    }
4435    tcg_out_opc(s, OPC_RET, 0, 0, 0);
4436}
4437
4438static void tcg_out_tb_start(TCGContext *s)
4439{
4440    /* nothing to do */
4441}
4442
4443static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
4444{
4445    memset(p, 0x90, count);
4446}
4447
4448static void tcg_target_init(TCGContext *s)
4449{
4450    tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
4451    if (TCG_TARGET_REG_BITS == 64) {
4452        tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
4453    }
4454    if (have_avx1) {
4455        tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
4456        tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
4457    }
4458    if (have_avx2) {
4459        tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
4460    }
4461
4462    tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
4463    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
4464    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
4465    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
4466    if (TCG_TARGET_REG_BITS == 64) {
4467#if !defined(_WIN64)
4468        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
4469        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
4470#endif
4471        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
4472        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
4473        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
4474        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
4475    }
4476
4477    s->reserved_regs = 0;
4478    tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
4479    tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC);
4480#ifdef _WIN64
4481    /* These are call saved, and we don't save them, so don't use them. */
4482    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6);
4483    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7);
4484    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8);
4485    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9);
4486    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10);
4487    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11);
4488    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12);
4489    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13);
4490    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14);
4491    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15);
4492#endif
4493}
4494
4495typedef struct {
4496    DebugFrameHeader h;
4497    uint8_t fde_def_cfa[4];
4498    uint8_t fde_reg_ofs[14];
4499} DebugFrame;
4500
4501/* We're expecting a 2 byte uleb128 encoded value.  */
4502QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
4503
4504#if !defined(__ELF__)
4505    /* Host machine without ELF. */
4506#elif TCG_TARGET_REG_BITS == 64
4507#define ELF_HOST_MACHINE EM_X86_64
4508static const DebugFrame debug_frame = {
4509    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4510    .h.cie.id = -1,
4511    .h.cie.version = 1,
4512    .h.cie.code_align = 1,
4513    .h.cie.data_align = 0x78,             /* sleb128 -8 */
4514    .h.cie.return_column = 16,
4515
4516    /* Total FDE size does not include the "len" member.  */
4517    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4518
4519    .fde_def_cfa = {
4520        12, 7,                          /* DW_CFA_def_cfa %rsp, ... */
4521        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4522        (FRAME_SIZE >> 7)
4523    },
4524    .fde_reg_ofs = {
4525        0x90, 1,                        /* DW_CFA_offset, %rip, -8 */
4526        /* The following ordering must match tcg_target_callee_save_regs.  */
4527        0x86, 2,                        /* DW_CFA_offset, %rbp, -16 */
4528        0x83, 3,                        /* DW_CFA_offset, %rbx, -24 */
4529        0x8c, 4,                        /* DW_CFA_offset, %r12, -32 */
4530        0x8d, 5,                        /* DW_CFA_offset, %r13, -40 */
4531        0x8e, 6,                        /* DW_CFA_offset, %r14, -48 */
4532        0x8f, 7,                        /* DW_CFA_offset, %r15, -56 */
4533    }
4534};
4535#else
4536#define ELF_HOST_MACHINE EM_386
4537static const DebugFrame debug_frame = {
4538    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4539    .h.cie.id = -1,
4540    .h.cie.version = 1,
4541    .h.cie.code_align = 1,
4542    .h.cie.data_align = 0x7c,             /* sleb128 -4 */
4543    .h.cie.return_column = 8,
4544
4545    /* Total FDE size does not include the "len" member.  */
4546    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4547
4548    .fde_def_cfa = {
4549        12, 4,                          /* DW_CFA_def_cfa %esp, ... */
4550        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4551        (FRAME_SIZE >> 7)
4552    },
4553    .fde_reg_ofs = {
4554        0x88, 1,                        /* DW_CFA_offset, %eip, -4 */
4555        /* The following ordering must match tcg_target_callee_save_regs.  */
4556        0x85, 2,                        /* DW_CFA_offset, %ebp, -8 */
4557        0x83, 3,                        /* DW_CFA_offset, %ebx, -12 */
4558        0x86, 4,                        /* DW_CFA_offset, %esi, -16 */
4559        0x87, 5,                        /* DW_CFA_offset, %edi, -20 */
4560    }
4561};
4562#endif
4563
4564#if defined(ELF_HOST_MACHINE)
4565void tcg_register_jit(const void *buf, size_t buf_size)
4566{
4567    tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
4568}
4569#endif
4570