xref: /openbmc/qemu/tcg/i386/tcg-target.c.inc (revision bfe964809bf6ce951b2e674929d7b730c754e298)
1/*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25/* Used for function call generation. */
26#define TCG_TARGET_STACK_ALIGN 16
27#if defined(_WIN64)
28#define TCG_TARGET_CALL_STACK_OFFSET 32
29#else
30#define TCG_TARGET_CALL_STACK_OFFSET 0
31#endif
32#define TCG_TARGET_CALL_ARG_I32      TCG_CALL_ARG_NORMAL
33#define TCG_TARGET_CALL_ARG_I64      TCG_CALL_ARG_NORMAL
34#if defined(_WIN64)
35# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_BY_REF
36# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_BY_VEC
37#elif TCG_TARGET_REG_BITS == 64
38# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_NORMAL
39# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_NORMAL
40#else
41# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_NORMAL
42# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_BY_REF
43#endif
44
45#ifdef CONFIG_DEBUG_TCG
46static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
47#if TCG_TARGET_REG_BITS == 64
48    "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
49#else
50    "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
51#endif
52    "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
53    "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
54#if TCG_TARGET_REG_BITS == 64
55    "%xmm8", "%xmm9", "%xmm10", "%xmm11",
56    "%xmm12", "%xmm13", "%xmm14", "%xmm15",
57#endif
58};
59#endif
60
61static const int tcg_target_reg_alloc_order[] = {
62#if TCG_TARGET_REG_BITS == 64
63    TCG_REG_RBP,
64    TCG_REG_RBX,
65    TCG_REG_R12,
66    TCG_REG_R13,
67    TCG_REG_R14,
68    TCG_REG_R15,
69    TCG_REG_R10,
70    TCG_REG_R11,
71    TCG_REG_R9,
72    TCG_REG_R8,
73    TCG_REG_RCX,
74    TCG_REG_RDX,
75    TCG_REG_RSI,
76    TCG_REG_RDI,
77    TCG_REG_RAX,
78#else
79    TCG_REG_EBX,
80    TCG_REG_ESI,
81    TCG_REG_EDI,
82    TCG_REG_EBP,
83    TCG_REG_ECX,
84    TCG_REG_EDX,
85    TCG_REG_EAX,
86#endif
87    TCG_REG_XMM0,
88    TCG_REG_XMM1,
89    TCG_REG_XMM2,
90    TCG_REG_XMM3,
91    TCG_REG_XMM4,
92    TCG_REG_XMM5,
93#ifndef _WIN64
94    /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
95       any of them.  Therefore only allow xmm0-xmm5 to be allocated.  */
96    TCG_REG_XMM6,
97    TCG_REG_XMM7,
98#if TCG_TARGET_REG_BITS == 64
99    TCG_REG_XMM8,
100    TCG_REG_XMM9,
101    TCG_REG_XMM10,
102    TCG_REG_XMM11,
103    TCG_REG_XMM12,
104    TCG_REG_XMM13,
105    TCG_REG_XMM14,
106    TCG_REG_XMM15,
107#endif
108#endif
109};
110
111#define TCG_TMP_VEC  TCG_REG_XMM5
112
113static const int tcg_target_call_iarg_regs[] = {
114#if TCG_TARGET_REG_BITS == 64
115#if defined(_WIN64)
116    TCG_REG_RCX,
117    TCG_REG_RDX,
118#else
119    TCG_REG_RDI,
120    TCG_REG_RSI,
121    TCG_REG_RDX,
122    TCG_REG_RCX,
123#endif
124    TCG_REG_R8,
125    TCG_REG_R9,
126#else
127    /* 32 bit mode uses stack based calling convention (GCC default). */
128#endif
129};
130
131static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
132{
133    switch (kind) {
134    case TCG_CALL_RET_NORMAL:
135        tcg_debug_assert(slot >= 0 && slot <= 1);
136        return slot ? TCG_REG_EDX : TCG_REG_EAX;
137#ifdef _WIN64
138    case TCG_CALL_RET_BY_VEC:
139        tcg_debug_assert(slot == 0);
140        return TCG_REG_XMM0;
141#endif
142    default:
143        g_assert_not_reached();
144    }
145}
146
147/* Constants we accept.  */
148#define TCG_CT_CONST_S32 0x100
149#define TCG_CT_CONST_U32 0x200
150#define TCG_CT_CONST_I32 0x400
151#define TCG_CT_CONST_WSZ 0x800
152#define TCG_CT_CONST_TST 0x1000
153#define TCG_CT_CONST_ZERO 0x2000
154
155/* Registers used with L constraint, which are the first argument
156   registers on x86_64, and two random call clobbered registers on
157   i386. */
158#if TCG_TARGET_REG_BITS == 64
159# define TCG_REG_L0 tcg_target_call_iarg_regs[0]
160# define TCG_REG_L1 tcg_target_call_iarg_regs[1]
161#else
162# define TCG_REG_L0 TCG_REG_EAX
163# define TCG_REG_L1 TCG_REG_EDX
164#endif
165
166#if TCG_TARGET_REG_BITS == 64
167# define ALL_GENERAL_REGS      0x0000ffffu
168# define ALL_VECTOR_REGS       0xffff0000u
169# define ALL_BYTEL_REGS        ALL_GENERAL_REGS
170#else
171# define ALL_GENERAL_REGS      0x000000ffu
172# define ALL_VECTOR_REGS       0x00ff0000u
173# define ALL_BYTEL_REGS        0x0000000fu
174#endif
175#define SOFTMMU_RESERVE_REGS \
176    (tcg_use_softmmu ? (1 << TCG_REG_L0) | (1 << TCG_REG_L1) : 0)
177
178#define have_bmi2       (cpuinfo & CPUINFO_BMI2)
179#define have_lzcnt      (cpuinfo & CPUINFO_LZCNT)
180
181static const tcg_insn_unit *tb_ret_addr;
182
183static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
184                        intptr_t value, intptr_t addend)
185{
186    value += addend;
187    switch(type) {
188    case R_386_PC32:
189        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
190        if (value != (int32_t)value) {
191            return false;
192        }
193        /* FALLTHRU */
194    case R_386_32:
195        tcg_patch32(code_ptr, value);
196        break;
197    case R_386_PC8:
198        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
199        if (value != (int8_t)value) {
200            return false;
201        }
202        tcg_patch8(code_ptr, value);
203        break;
204    default:
205        g_assert_not_reached();
206    }
207    return true;
208}
209
210/* test if a constant matches the constraint */
211static bool tcg_target_const_match(int64_t val, int ct,
212                                   TCGType type, TCGCond cond, int vece)
213{
214    if (ct & TCG_CT_CONST) {
215        return 1;
216    }
217    if (type == TCG_TYPE_I32) {
218        if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 |
219                  TCG_CT_CONST_I32 | TCG_CT_CONST_TST)) {
220            return 1;
221        }
222    } else {
223        if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
224            return 1;
225        }
226        if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
227            return 1;
228        }
229        if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
230            return 1;
231        }
232        /*
233         * This will be used in combination with TCG_CT_CONST_S32,
234         * so "normal" TESTQ is already matched.  Also accept:
235         *    TESTQ -> TESTL   (uint32_t)
236         *    TESTQ -> BT      (is_power_of_2)
237         */
238        if ((ct & TCG_CT_CONST_TST)
239            && is_tst_cond(cond)
240            && (val == (uint32_t)val || is_power_of_2(val))) {
241            return 1;
242        }
243    }
244    if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
245        return 1;
246    }
247    if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
248        return 1;
249    }
250    return 0;
251}
252
253# define LOWREGMASK(x)	((x) & 7)
254
255#define P_EXT		0x100		/* 0x0f opcode prefix */
256#define P_EXT38         0x200           /* 0x0f 0x38 opcode prefix */
257#define P_DATA16        0x400           /* 0x66 opcode prefix */
258#define P_VEXW          0x1000          /* Set VEX.W = 1 */
259#if TCG_TARGET_REG_BITS == 64
260# define P_REXW         P_VEXW          /* Set REX.W = 1; match VEXW */
261# define P_REXB_R       0x2000          /* REG field as byte register */
262# define P_REXB_RM      0x4000          /* R/M field as byte register */
263# define P_GS           0x8000          /* gs segment override */
264#else
265# define P_REXW		0
266# define P_REXB_R	0
267# define P_REXB_RM	0
268# define P_GS           0
269#endif
270#define P_EXT3A         0x10000         /* 0x0f 0x3a opcode prefix */
271#define P_SIMDF3        0x20000         /* 0xf3 opcode prefix */
272#define P_SIMDF2        0x40000         /* 0xf2 opcode prefix */
273#define P_VEXL          0x80000         /* Set VEX.L = 1 */
274#define P_EVEX          0x100000        /* Requires EVEX encoding */
275
276#define OPC_ARITH_EbIb	(0x80)
277#define OPC_ARITH_EvIz	(0x81)
278#define OPC_ARITH_EvIb	(0x83)
279#define OPC_ARITH_GvEv	(0x03)		/* ... plus (ARITH_FOO << 3) */
280#define OPC_ANDN        (0xf2 | P_EXT38)
281#define OPC_ADD_GvEv	(OPC_ARITH_GvEv | (ARITH_ADD << 3))
282#define OPC_AND_GvEv    (OPC_ARITH_GvEv | (ARITH_AND << 3))
283#define OPC_BLENDPS     (0x0c | P_EXT3A | P_DATA16)
284#define OPC_BSF         (0xbc | P_EXT)
285#define OPC_BSR         (0xbd | P_EXT)
286#define OPC_BSWAP	(0xc8 | P_EXT)
287#define OPC_CALL_Jz	(0xe8)
288#define OPC_CMOVCC      (0x40 | P_EXT)  /* ... plus condition code */
289#define OPC_CMP_GvEv	(OPC_ARITH_GvEv | (ARITH_CMP << 3))
290#define OPC_DEC_r32	(0x48)
291#define OPC_IMUL_GvEv	(0xaf | P_EXT)
292#define OPC_IMUL_GvEvIb	(0x6b)
293#define OPC_IMUL_GvEvIz	(0x69)
294#define OPC_INC_r32	(0x40)
295#define OPC_JCC_long	(0x80 | P_EXT)	/* ... plus condition code */
296#define OPC_JCC_short	(0x70)		/* ... plus condition code */
297#define OPC_JMP_long	(0xe9)
298#define OPC_JMP_short	(0xeb)
299#define OPC_LEA         (0x8d)
300#define OPC_LZCNT       (0xbd | P_EXT | P_SIMDF3)
301#define OPC_MOVB_EvGv	(0x88)		/* stores, more or less */
302#define OPC_MOVL_EvGv	(0x89)		/* stores, more or less */
303#define OPC_MOVL_GvEv	(0x8b)		/* loads, more or less */
304#define OPC_MOVB_EvIz   (0xc6)
305#define OPC_MOVL_EvIz	(0xc7)
306#define OPC_MOVB_Ib     (0xb0)
307#define OPC_MOVL_Iv     (0xb8)
308#define OPC_MOVBE_GyMy  (0xf0 | P_EXT38)
309#define OPC_MOVBE_MyGy  (0xf1 | P_EXT38)
310#define OPC_MOVD_VyEy   (0x6e | P_EXT | P_DATA16)
311#define OPC_MOVD_EyVy   (0x7e | P_EXT | P_DATA16)
312#define OPC_MOVDDUP     (0x12 | P_EXT | P_SIMDF2)
313#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
314#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
315#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
316#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
317#define OPC_MOVQ_VqWq   (0x7e | P_EXT | P_SIMDF3)
318#define OPC_MOVQ_WqVq   (0xd6 | P_EXT | P_DATA16)
319#define OPC_MOVSBL	(0xbe | P_EXT)
320#define OPC_MOVSWL	(0xbf | P_EXT)
321#define OPC_MOVSLQ	(0x63 | P_REXW)
322#define OPC_MOVZBL	(0xb6 | P_EXT)
323#define OPC_MOVZWL	(0xb7 | P_EXT)
324#define OPC_PABSB       (0x1c | P_EXT38 | P_DATA16)
325#define OPC_PABSW       (0x1d | P_EXT38 | P_DATA16)
326#define OPC_PABSD       (0x1e | P_EXT38 | P_DATA16)
327#define OPC_VPABSQ      (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
328#define OPC_PACKSSDW    (0x6b | P_EXT | P_DATA16)
329#define OPC_PACKSSWB    (0x63 | P_EXT | P_DATA16)
330#define OPC_PACKUSDW    (0x2b | P_EXT38 | P_DATA16)
331#define OPC_PACKUSWB    (0x67 | P_EXT | P_DATA16)
332#define OPC_PADDB       (0xfc | P_EXT | P_DATA16)
333#define OPC_PADDW       (0xfd | P_EXT | P_DATA16)
334#define OPC_PADDD       (0xfe | P_EXT | P_DATA16)
335#define OPC_PADDQ       (0xd4 | P_EXT | P_DATA16)
336#define OPC_PADDSB      (0xec | P_EXT | P_DATA16)
337#define OPC_PADDSW      (0xed | P_EXT | P_DATA16)
338#define OPC_PADDUB      (0xdc | P_EXT | P_DATA16)
339#define OPC_PADDUW      (0xdd | P_EXT | P_DATA16)
340#define OPC_PAND        (0xdb | P_EXT | P_DATA16)
341#define OPC_PANDN       (0xdf | P_EXT | P_DATA16)
342#define OPC_PBLENDW     (0x0e | P_EXT3A | P_DATA16)
343#define OPC_PCMPEQB     (0x74 | P_EXT | P_DATA16)
344#define OPC_PCMPEQW     (0x75 | P_EXT | P_DATA16)
345#define OPC_PCMPEQD     (0x76 | P_EXT | P_DATA16)
346#define OPC_PCMPEQQ     (0x29 | P_EXT38 | P_DATA16)
347#define OPC_PCMPGTB     (0x64 | P_EXT | P_DATA16)
348#define OPC_PCMPGTW     (0x65 | P_EXT | P_DATA16)
349#define OPC_PCMPGTD     (0x66 | P_EXT | P_DATA16)
350#define OPC_PCMPGTQ     (0x37 | P_EXT38 | P_DATA16)
351#define OPC_PEXTRD      (0x16 | P_EXT3A | P_DATA16)
352#define OPC_PINSRD      (0x22 | P_EXT3A | P_DATA16)
353#define OPC_PMAXSB      (0x3c | P_EXT38 | P_DATA16)
354#define OPC_PMAXSW      (0xee | P_EXT | P_DATA16)
355#define OPC_PMAXSD      (0x3d | P_EXT38 | P_DATA16)
356#define OPC_VPMAXSQ     (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
357#define OPC_PMAXUB      (0xde | P_EXT | P_DATA16)
358#define OPC_PMAXUW      (0x3e | P_EXT38 | P_DATA16)
359#define OPC_PMAXUD      (0x3f | P_EXT38 | P_DATA16)
360#define OPC_VPMAXUQ     (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
361#define OPC_PMINSB      (0x38 | P_EXT38 | P_DATA16)
362#define OPC_PMINSW      (0xea | P_EXT | P_DATA16)
363#define OPC_PMINSD      (0x39 | P_EXT38 | P_DATA16)
364#define OPC_VPMINSQ     (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
365#define OPC_PMINUB      (0xda | P_EXT | P_DATA16)
366#define OPC_PMINUW      (0x3a | P_EXT38 | P_DATA16)
367#define OPC_PMINUD      (0x3b | P_EXT38 | P_DATA16)
368#define OPC_VPMINUQ     (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
369#define OPC_PMOVSXBW    (0x20 | P_EXT38 | P_DATA16)
370#define OPC_PMOVSXWD    (0x23 | P_EXT38 | P_DATA16)
371#define OPC_PMOVSXDQ    (0x25 | P_EXT38 | P_DATA16)
372#define OPC_PMOVZXBW    (0x30 | P_EXT38 | P_DATA16)
373#define OPC_PMOVZXWD    (0x33 | P_EXT38 | P_DATA16)
374#define OPC_PMOVZXDQ    (0x35 | P_EXT38 | P_DATA16)
375#define OPC_PMULLW      (0xd5 | P_EXT | P_DATA16)
376#define OPC_PMULLD      (0x40 | P_EXT38 | P_DATA16)
377#define OPC_VPMULLQ     (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
378#define OPC_POR         (0xeb | P_EXT | P_DATA16)
379#define OPC_PSHUFB      (0x00 | P_EXT38 | P_DATA16)
380#define OPC_PSHUFD      (0x70 | P_EXT | P_DATA16)
381#define OPC_PSHUFLW     (0x70 | P_EXT | P_SIMDF2)
382#define OPC_PSHUFHW     (0x70 | P_EXT | P_SIMDF3)
383#define OPC_PSHIFTW_Ib  (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
384#define OPC_PSHIFTD_Ib  (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */
385#define OPC_PSHIFTQ_Ib  (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
386#define OPC_PSLLW       (0xf1 | P_EXT | P_DATA16)
387#define OPC_PSLLD       (0xf2 | P_EXT | P_DATA16)
388#define OPC_PSLLQ       (0xf3 | P_EXT | P_DATA16)
389#define OPC_PSRAW       (0xe1 | P_EXT | P_DATA16)
390#define OPC_PSRAD       (0xe2 | P_EXT | P_DATA16)
391#define OPC_VPSRAQ      (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX)
392#define OPC_PSRLW       (0xd1 | P_EXT | P_DATA16)
393#define OPC_PSRLD       (0xd2 | P_EXT | P_DATA16)
394#define OPC_PSRLQ       (0xd3 | P_EXT | P_DATA16)
395#define OPC_PSUBB       (0xf8 | P_EXT | P_DATA16)
396#define OPC_PSUBW       (0xf9 | P_EXT | P_DATA16)
397#define OPC_PSUBD       (0xfa | P_EXT | P_DATA16)
398#define OPC_PSUBQ       (0xfb | P_EXT | P_DATA16)
399#define OPC_PSUBSB      (0xe8 | P_EXT | P_DATA16)
400#define OPC_PSUBSW      (0xe9 | P_EXT | P_DATA16)
401#define OPC_PSUBUB      (0xd8 | P_EXT | P_DATA16)
402#define OPC_PSUBUW      (0xd9 | P_EXT | P_DATA16)
403#define OPC_PUNPCKLBW   (0x60 | P_EXT | P_DATA16)
404#define OPC_PUNPCKLWD   (0x61 | P_EXT | P_DATA16)
405#define OPC_PUNPCKLDQ   (0x62 | P_EXT | P_DATA16)
406#define OPC_PUNPCKLQDQ  (0x6c | P_EXT | P_DATA16)
407#define OPC_PUNPCKHBW   (0x68 | P_EXT | P_DATA16)
408#define OPC_PUNPCKHWD   (0x69 | P_EXT | P_DATA16)
409#define OPC_PUNPCKHDQ   (0x6a | P_EXT | P_DATA16)
410#define OPC_PUNPCKHQDQ  (0x6d | P_EXT | P_DATA16)
411#define OPC_PXOR        (0xef | P_EXT | P_DATA16)
412#define OPC_POP_r32	(0x58)
413#define OPC_POPCNT      (0xb8 | P_EXT | P_SIMDF3)
414#define OPC_PUSH_r32	(0x50)
415#define OPC_PUSH_Iv	(0x68)
416#define OPC_PUSH_Ib	(0x6a)
417#define OPC_RET		(0xc3)
418#define OPC_SETCC	(0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
419#define OPC_SHIFT_1	(0xd1)
420#define OPC_SHIFT_Ib	(0xc1)
421#define OPC_SHIFT_cl	(0xd3)
422#define OPC_SARX        (0xf7 | P_EXT38 | P_SIMDF3)
423#define OPC_SHUFPS      (0xc6 | P_EXT)
424#define OPC_SHLX        (0xf7 | P_EXT38 | P_DATA16)
425#define OPC_SHRX        (0xf7 | P_EXT38 | P_SIMDF2)
426#define OPC_SHRD_Ib     (0xac | P_EXT)
427#define OPC_TESTB	(0x84)
428#define OPC_TESTL	(0x85)
429#define OPC_TZCNT       (0xbc | P_EXT | P_SIMDF3)
430#define OPC_UD2         (0x0b | P_EXT)
431#define OPC_VPBLENDD    (0x02 | P_EXT3A | P_DATA16)
432#define OPC_VPBLENDVB   (0x4c | P_EXT3A | P_DATA16)
433#define OPC_VPBLENDMB   (0x66 | P_EXT38 | P_DATA16 | P_EVEX)
434#define OPC_VPBLENDMW   (0x66 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
435#define OPC_VPBLENDMD   (0x64 | P_EXT38 | P_DATA16 | P_EVEX)
436#define OPC_VPBLENDMQ   (0x64 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
437#define OPC_VPCMPB      (0x3f | P_EXT3A | P_DATA16 | P_EVEX)
438#define OPC_VPCMPUB     (0x3e | P_EXT3A | P_DATA16 | P_EVEX)
439#define OPC_VPCMPW      (0x3f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
440#define OPC_VPCMPUW     (0x3e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
441#define OPC_VPCMPD      (0x1f | P_EXT3A | P_DATA16 | P_EVEX)
442#define OPC_VPCMPUD     (0x1e | P_EXT3A | P_DATA16 | P_EVEX)
443#define OPC_VPCMPQ      (0x1f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
444#define OPC_VPCMPUQ     (0x1e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
445#define OPC_VPINSRB     (0x20 | P_EXT3A | P_DATA16)
446#define OPC_VPINSRW     (0xc4 | P_EXT | P_DATA16)
447#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
448#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
449#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
450#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
451#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
452#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
453#define OPC_VPMOVM2B    (0x28 | P_EXT38 | P_SIMDF3 | P_EVEX)
454#define OPC_VPMOVM2W    (0x28 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
455#define OPC_VPMOVM2D    (0x38 | P_EXT38 | P_SIMDF3 | P_EVEX)
456#define OPC_VPMOVM2Q    (0x38 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
457#define OPC_VPERMQ      (0x00 | P_EXT3A | P_DATA16 | P_VEXW)
458#define OPC_VPERM2I128  (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
459#define OPC_VPROLVD     (0x15 | P_EXT38 | P_DATA16 | P_EVEX)
460#define OPC_VPROLVQ     (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
461#define OPC_VPRORVD     (0x14 | P_EXT38 | P_DATA16 | P_EVEX)
462#define OPC_VPRORVQ     (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
463#define OPC_VPSHLDW     (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
464#define OPC_VPSHLDD     (0x71 | P_EXT3A | P_DATA16 | P_EVEX)
465#define OPC_VPSHLDQ     (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
466#define OPC_VPSHLDVW    (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
467#define OPC_VPSHLDVD    (0x71 | P_EXT38 | P_DATA16 | P_EVEX)
468#define OPC_VPSHLDVQ    (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
469#define OPC_VPSHRDVW    (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
470#define OPC_VPSHRDVD    (0x73 | P_EXT38 | P_DATA16 | P_EVEX)
471#define OPC_VPSHRDVQ    (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
472#define OPC_VPSLLVW     (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
473#define OPC_VPSLLVD     (0x47 | P_EXT38 | P_DATA16)
474#define OPC_VPSLLVQ     (0x47 | P_EXT38 | P_DATA16 | P_VEXW)
475#define OPC_VPSRAVW     (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
476#define OPC_VPSRAVD     (0x46 | P_EXT38 | P_DATA16)
477#define OPC_VPSRAVQ     (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
478#define OPC_VPSRLVW     (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
479#define OPC_VPSRLVD     (0x45 | P_EXT38 | P_DATA16)
480#define OPC_VPSRLVQ     (0x45 | P_EXT38 | P_DATA16 | P_VEXW)
481#define OPC_VPTERNLOGQ  (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
482#define OPC_VPTESTMB    (0x26 | P_EXT38 | P_DATA16 | P_EVEX)
483#define OPC_VPTESTMW    (0x26 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
484#define OPC_VPTESTMD    (0x27 | P_EXT38 | P_DATA16 | P_EVEX)
485#define OPC_VPTESTMQ    (0x27 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
486#define OPC_VPTESTNMB   (0x26 | P_EXT38 | P_SIMDF3 | P_EVEX)
487#define OPC_VPTESTNMW   (0x26 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
488#define OPC_VPTESTNMD   (0x27 | P_EXT38 | P_SIMDF3 | P_EVEX)
489#define OPC_VPTESTNMQ   (0x27 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
490#define OPC_VZEROUPPER  (0x77 | P_EXT)
491#define OPC_XCHG_ax_r32	(0x90)
492#define OPC_XCHG_EvGv   (0x87)
493
494#define OPC_GRP3_Eb     (0xf6)
495#define OPC_GRP3_Ev     (0xf7)
496#define OPC_GRP5        (0xff)
497#define OPC_GRP14       (0x73 | P_EXT | P_DATA16)
498#define OPC_GRPBT       (0xba | P_EXT)
499
500#define OPC_GRPBT_BT    4
501#define OPC_GRPBT_BTS   5
502#define OPC_GRPBT_BTR   6
503#define OPC_GRPBT_BTC   7
504
505/* Group 1 opcode extensions for 0x80-0x83.
506   These are also used as modifiers for OPC_ARITH.  */
507#define ARITH_ADD 0
508#define ARITH_OR  1
509#define ARITH_ADC 2
510#define ARITH_SBB 3
511#define ARITH_AND 4
512#define ARITH_SUB 5
513#define ARITH_XOR 6
514#define ARITH_CMP 7
515
516/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3.  */
517#define SHIFT_ROL 0
518#define SHIFT_ROR 1
519#define SHIFT_SHL 4
520#define SHIFT_SHR 5
521#define SHIFT_SAR 7
522
523/* Group 3 opcode extensions for 0xf6, 0xf7.  To be used with OPC_GRP3.  */
524#define EXT3_TESTi 0
525#define EXT3_NOT   2
526#define EXT3_NEG   3
527#define EXT3_MUL   4
528#define EXT3_IMUL  5
529#define EXT3_DIV   6
530#define EXT3_IDIV  7
531
532/* Group 5 opcode extensions for 0xff.  To be used with OPC_GRP5.  */
533#define EXT5_INC_Ev	0
534#define EXT5_DEC_Ev	1
535#define EXT5_CALLN_Ev	2
536#define EXT5_JMPN_Ev	4
537
538/* Condition codes to be added to OPC_JCC_{long,short}.  */
539#define JCC_JMP (-1)
540#define JCC_JO  0x0
541#define JCC_JNO 0x1
542#define JCC_JB  0x2
543#define JCC_JAE 0x3
544#define JCC_JE  0x4
545#define JCC_JNE 0x5
546#define JCC_JBE 0x6
547#define JCC_JA  0x7
548#define JCC_JS  0x8
549#define JCC_JNS 0x9
550#define JCC_JP  0xa
551#define JCC_JNP 0xb
552#define JCC_JL  0xc
553#define JCC_JGE 0xd
554#define JCC_JLE 0xe
555#define JCC_JG  0xf
556
557static const uint8_t tcg_cond_to_jcc[] = {
558    [TCG_COND_EQ] = JCC_JE,
559    [TCG_COND_NE] = JCC_JNE,
560    [TCG_COND_LT] = JCC_JL,
561    [TCG_COND_GE] = JCC_JGE,
562    [TCG_COND_LE] = JCC_JLE,
563    [TCG_COND_GT] = JCC_JG,
564    [TCG_COND_LTU] = JCC_JB,
565    [TCG_COND_GEU] = JCC_JAE,
566    [TCG_COND_LEU] = JCC_JBE,
567    [TCG_COND_GTU] = JCC_JA,
568    [TCG_COND_TSTEQ] = JCC_JE,
569    [TCG_COND_TSTNE] = JCC_JNE,
570};
571
572#if TCG_TARGET_REG_BITS == 64
573static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
574{
575    int rex;
576
577    if (opc & P_GS) {
578        tcg_out8(s, 0x65);
579    }
580    if (opc & P_DATA16) {
581        /* We should never be asking for both 16 and 64-bit operation.  */
582        tcg_debug_assert((opc & P_REXW) == 0);
583        tcg_out8(s, 0x66);
584    }
585    if (opc & P_SIMDF3) {
586        tcg_out8(s, 0xf3);
587    } else if (opc & P_SIMDF2) {
588        tcg_out8(s, 0xf2);
589    }
590
591    rex = 0;
592    rex |= (opc & P_REXW) ? 0x8 : 0x0;  /* REX.W */
593    rex |= (r & 8) >> 1;                /* REX.R */
594    rex |= (x & 8) >> 2;                /* REX.X */
595    rex |= (rm & 8) >> 3;               /* REX.B */
596
597    /* P_REXB_{R,RM} indicates that the given register is the low byte.
598       For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
599       as otherwise the encoding indicates %[abcd]h.  Note that the values
600       that are ORed in merely indicate that the REX byte must be present;
601       those bits get discarded in output.  */
602    rex |= opc & (r >= 4 ? P_REXB_R : 0);
603    rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
604
605    if (rex) {
606        tcg_out8(s, (uint8_t)(rex | 0x40));
607    }
608
609    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
610        tcg_out8(s, 0x0f);
611        if (opc & P_EXT38) {
612            tcg_out8(s, 0x38);
613        } else if (opc & P_EXT3A) {
614            tcg_out8(s, 0x3a);
615        }
616    }
617
618    tcg_out8(s, opc);
619}
620#else
621static void tcg_out_opc(TCGContext *s, int opc)
622{
623    if (opc & P_DATA16) {
624        tcg_out8(s, 0x66);
625    }
626    if (opc & P_SIMDF3) {
627        tcg_out8(s, 0xf3);
628    } else if (opc & P_SIMDF2) {
629        tcg_out8(s, 0xf2);
630    }
631    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
632        tcg_out8(s, 0x0f);
633        if (opc & P_EXT38) {
634            tcg_out8(s, 0x38);
635        } else if (opc & P_EXT3A) {
636            tcg_out8(s, 0x3a);
637        }
638    }
639    tcg_out8(s, opc);
640}
641/* Discard the register arguments to tcg_out_opc early, so as not to penalize
642   the 32-bit compilation paths.  This method works with all versions of gcc,
643   whereas relying on optimization may not be able to exclude them.  */
644#define tcg_out_opc(s, opc, r, rm, x)  (tcg_out_opc)(s, opc)
645#endif
646
647static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
648{
649    tcg_out_opc(s, opc, r, rm, 0);
650    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
651}
652
653static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
654                            int rm, int index)
655{
656    int tmp;
657
658    if (opc & P_GS) {
659        tcg_out8(s, 0x65);
660    }
661    /* Use the two byte form if possible, which cannot encode
662       VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT.  */
663    if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT
664        && ((rm | index) & 8) == 0) {
665        /* Two byte VEX prefix.  */
666        tcg_out8(s, 0xc5);
667
668        tmp = (r & 8 ? 0 : 0x80);              /* VEX.R */
669    } else {
670        /* Three byte VEX prefix.  */
671        tcg_out8(s, 0xc4);
672
673        /* VEX.m-mmmm */
674        if (opc & P_EXT3A) {
675            tmp = 3;
676        } else if (opc & P_EXT38) {
677            tmp = 2;
678        } else if (opc & P_EXT) {
679            tmp = 1;
680        } else {
681            g_assert_not_reached();
682        }
683        tmp |= (r & 8 ? 0 : 0x80);             /* VEX.R */
684        tmp |= (index & 8 ? 0 : 0x40);         /* VEX.X */
685        tmp |= (rm & 8 ? 0 : 0x20);            /* VEX.B */
686        tcg_out8(s, tmp);
687
688        tmp = (opc & P_VEXW ? 0x80 : 0);       /* VEX.W */
689    }
690
691    tmp |= (opc & P_VEXL ? 0x04 : 0);      /* VEX.L */
692    /* VEX.pp */
693    if (opc & P_DATA16) {
694        tmp |= 1;                          /* 0x66 */
695    } else if (opc & P_SIMDF3) {
696        tmp |= 2;                          /* 0xf3 */
697    } else if (opc & P_SIMDF2) {
698        tmp |= 3;                          /* 0xf2 */
699    }
700    tmp |= (~v & 15) << 3;                 /* VEX.vvvv */
701    tcg_out8(s, tmp);
702    tcg_out8(s, opc);
703}
704
705static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v,
706                             int rm, int index, int aaa, bool z)
707{
708    /* The entire 4-byte evex prefix; with R' and V' set. */
709    uint32_t p = 0x08041062;
710    int mm, pp;
711
712    tcg_debug_assert(have_avx512vl);
713
714    /* EVEX.mm */
715    if (opc & P_EXT3A) {
716        mm = 3;
717    } else if (opc & P_EXT38) {
718        mm = 2;
719    } else if (opc & P_EXT) {
720        mm = 1;
721    } else {
722        g_assert_not_reached();
723    }
724
725    /* EVEX.pp */
726    if (opc & P_DATA16) {
727        pp = 1;                          /* 0x66 */
728    } else if (opc & P_SIMDF3) {
729        pp = 2;                          /* 0xf3 */
730    } else if (opc & P_SIMDF2) {
731        pp = 3;                          /* 0xf2 */
732    } else {
733        pp = 0;
734    }
735
736    p = deposit32(p, 8, 2, mm);
737    p = deposit32(p, 13, 1, (rm & 8) == 0);             /* EVEX.RXB.B */
738    p = deposit32(p, 14, 1, (index & 8) == 0);          /* EVEX.RXB.X */
739    p = deposit32(p, 15, 1, (r & 8) == 0);              /* EVEX.RXB.R */
740    p = deposit32(p, 16, 2, pp);
741    p = deposit32(p, 19, 4, ~v);
742    p = deposit32(p, 23, 1, (opc & P_VEXW) != 0);
743    p = deposit32(p, 24, 3, aaa);
744    p = deposit32(p, 29, 2, (opc & P_VEXL) != 0);
745    p = deposit32(p, 31, 1, z);
746
747    tcg_out32(s, p);
748    tcg_out8(s, opc);
749}
750
751static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
752{
753    if (opc & P_EVEX) {
754        tcg_out_evex_opc(s, opc, r, v, rm, 0, 0, false);
755    } else {
756        tcg_out_vex_opc(s, opc, r, v, rm, 0);
757    }
758    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
759}
760
761static void tcg_out_vex_modrm_type(TCGContext *s, int opc,
762                                   int r, int v, int rm, TCGType type)
763{
764    if (type == TCG_TYPE_V256) {
765        opc |= P_VEXL;
766    }
767    tcg_out_vex_modrm(s, opc, r, v, rm);
768}
769
770static void tcg_out_evex_modrm_type(TCGContext *s, int opc, int r, int v,
771                                    int rm, int aaa, bool z, TCGType type)
772{
773    if (type == TCG_TYPE_V256) {
774        opc |= P_VEXL;
775    }
776    tcg_out_evex_opc(s, opc, r, v, rm, 0, aaa, z);
777    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
778}
779
780/* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
781   We handle either RM and INDEX missing with a negative value.  In 64-bit
782   mode for absolute addresses, ~RM is the size of the immediate operand
783   that will follow the instruction.  */
784
785static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
786                               int shift, intptr_t offset)
787{
788    int mod, len;
789
790    if (index < 0 && rm < 0) {
791        if (TCG_TARGET_REG_BITS == 64) {
792            /* Try for a rip-relative addressing mode.  This has replaced
793               the 32-bit-mode absolute addressing encoding.  */
794            intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
795            intptr_t disp = offset - pc;
796            if (disp == (int32_t)disp) {
797                tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
798                tcg_out32(s, disp);
799                return;
800            }
801
802            /* Try for an absolute address encoding.  This requires the
803               use of the MODRM+SIB encoding and is therefore larger than
804               rip-relative addressing.  */
805            if (offset == (int32_t)offset) {
806                tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
807                tcg_out8(s, (4 << 3) | 5);
808                tcg_out32(s, offset);
809                return;
810            }
811
812            /* ??? The memory isn't directly addressable.  */
813            g_assert_not_reached();
814        } else {
815            /* Absolute address.  */
816            tcg_out8(s, (r << 3) | 5);
817            tcg_out32(s, offset);
818            return;
819        }
820    }
821
822    /* Find the length of the immediate addend.  Note that the encoding
823       that would be used for (%ebp) indicates absolute addressing.  */
824    if (rm < 0) {
825        mod = 0, len = 4, rm = 5;
826    } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
827        mod = 0, len = 0;
828    } else if (offset == (int8_t)offset) {
829        mod = 0x40, len = 1;
830    } else {
831        mod = 0x80, len = 4;
832    }
833
834    /* Use a single byte MODRM format if possible.  Note that the encoding
835       that would be used for %esp is the escape to the two byte form.  */
836    if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
837        /* Single byte MODRM format.  */
838        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
839    } else {
840        /* Two byte MODRM+SIB format.  */
841
842        /* Note that the encoding that would place %esp into the index
843           field indicates no index register.  In 64-bit mode, the REX.X
844           bit counts, so %r12 can be used as the index.  */
845        if (index < 0) {
846            index = 4;
847        } else {
848            tcg_debug_assert(index != TCG_REG_ESP);
849        }
850
851        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
852        tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
853    }
854
855    if (len == 1) {
856        tcg_out8(s, offset);
857    } else if (len == 4) {
858        tcg_out32(s, offset);
859    }
860}
861
862static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
863                                     int index, int shift, intptr_t offset)
864{
865    tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
866    tcg_out_sib_offset(s, r, rm, index, shift, offset);
867}
868
869static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
870                                         int rm, int index, int shift,
871                                         intptr_t offset)
872{
873    tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
874    tcg_out_sib_offset(s, r, rm, index, shift, offset);
875}
876
877/* A simplification of the above with no index or shift.  */
878static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
879                                        int rm, intptr_t offset)
880{
881    tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
882}
883
884static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
885                                            int v, int rm, intptr_t offset)
886{
887    tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
888}
889
890/* Output an opcode with an expected reference to the constant pool.  */
891static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
892{
893    tcg_out_opc(s, opc, r, 0, 0);
894    /* Absolute for 32-bit, pc-relative for 64-bit.  */
895    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
896    tcg_out32(s, 0);
897}
898
899/* Output an opcode with an expected reference to the constant pool.  */
900static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
901{
902    tcg_out_vex_opc(s, opc, r, 0, 0, 0);
903    /* Absolute for 32-bit, pc-relative for 64-bit.  */
904    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
905    tcg_out32(s, 0);
906}
907
908/* Generate dest op= src.  Uses the same ARITH_* codes as tgen_arithi.  */
909static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
910{
911    /* Propagate an opcode prefix, such as P_REXW.  */
912    int ext = subop & ~0x7;
913    subop &= 0x7;
914
915    tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
916}
917
918static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
919{
920    int rexw = 0;
921
922    if (arg == ret) {
923        return true;
924    }
925    switch (type) {
926    case TCG_TYPE_I64:
927        rexw = P_REXW;
928        /* fallthru */
929    case TCG_TYPE_I32:
930        if (ret < 16) {
931            if (arg < 16) {
932                tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
933            } else {
934                tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
935            }
936        } else {
937            if (arg < 16) {
938                tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
939            } else {
940                tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
941            }
942        }
943        break;
944
945    case TCG_TYPE_V64:
946        tcg_debug_assert(ret >= 16 && arg >= 16);
947        tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
948        break;
949    case TCG_TYPE_V128:
950        tcg_debug_assert(ret >= 16 && arg >= 16);
951        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
952        break;
953    case TCG_TYPE_V256:
954        tcg_debug_assert(ret >= 16 && arg >= 16);
955        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
956        break;
957
958    default:
959        g_assert_not_reached();
960    }
961    return true;
962}
963
964static const int avx2_dup_insn[4] = {
965    OPC_VPBROADCASTB, OPC_VPBROADCASTW,
966    OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
967};
968
969static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
970                            TCGReg r, TCGReg a)
971{
972    if (have_avx2) {
973        tcg_out_vex_modrm_type(s, avx2_dup_insn[vece], r, 0, a, type);
974    } else {
975        switch (vece) {
976        case MO_8:
977            /* ??? With zero in a register, use PSHUFB.  */
978            tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
979            a = r;
980            /* FALLTHRU */
981        case MO_16:
982            tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
983            a = r;
984            /* FALLTHRU */
985        case MO_32:
986            tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
987            /* imm8 operand: all output lanes selected from input lane 0.  */
988            tcg_out8(s, 0);
989            break;
990        case MO_64:
991            tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
992            break;
993        default:
994            g_assert_not_reached();
995        }
996    }
997    return true;
998}
999
1000static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
1001                             TCGReg r, TCGReg base, intptr_t offset)
1002{
1003    if (have_avx2) {
1004        int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
1005        tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
1006                                 r, 0, base, offset);
1007    } else {
1008        switch (vece) {
1009        case MO_64:
1010            tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
1011            break;
1012        case MO_32:
1013            tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
1014            break;
1015        case MO_16:
1016            tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
1017            tcg_out8(s, 0); /* imm8 */
1018            tcg_out_dup_vec(s, type, vece, r, r);
1019            break;
1020        case MO_8:
1021            tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
1022            tcg_out8(s, 0); /* imm8 */
1023            tcg_out_dup_vec(s, type, vece, r, r);
1024            break;
1025        default:
1026            g_assert_not_reached();
1027        }
1028    }
1029    return true;
1030}
1031
1032static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
1033                             TCGReg ret, int64_t arg)
1034{
1035    int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
1036
1037    if (arg == 0) {
1038        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1039        return;
1040    }
1041    if (arg == -1) {
1042        tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
1043        return;
1044    }
1045
1046    if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) {
1047        if (have_avx2) {
1048            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
1049        } else {
1050            tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
1051        }
1052        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1053    } else {
1054        if (type == TCG_TYPE_V64) {
1055            tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
1056        } else if (have_avx2) {
1057            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
1058        } else {
1059            tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
1060        }
1061        if (TCG_TARGET_REG_BITS == 64) {
1062            new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1063        } else {
1064            new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32);
1065        }
1066    }
1067}
1068
1069static void tcg_out_movi_vec(TCGContext *s, TCGType type,
1070                             TCGReg ret, tcg_target_long arg)
1071{
1072    if (arg == 0) {
1073        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1074        return;
1075    }
1076    if (arg == -1) {
1077        tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret);
1078        return;
1079    }
1080
1081    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
1082    tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret);
1083    if (TCG_TARGET_REG_BITS == 64) {
1084        new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1085    } else {
1086        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1087    }
1088}
1089
1090static void tcg_out_movi_int(TCGContext *s, TCGType type,
1091                             TCGReg ret, tcg_target_long arg)
1092{
1093    tcg_target_long diff;
1094
1095    if (arg == 0) {
1096        tgen_arithr(s, ARITH_XOR, ret, ret);
1097        return;
1098    }
1099    if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
1100        tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
1101        tcg_out32(s, arg);
1102        return;
1103    }
1104    if (arg == (int32_t)arg) {
1105        tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
1106        tcg_out32(s, arg);
1107        return;
1108    }
1109
1110    /* Try a 7 byte pc-relative lea before the 10 byte movq.  */
1111    diff = tcg_pcrel_diff(s, (const void *)arg) - 7;
1112    if (diff == (int32_t)diff) {
1113        tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
1114        tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
1115        tcg_out32(s, diff);
1116        return;
1117    }
1118
1119    tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
1120    tcg_out64(s, arg);
1121}
1122
1123static void tcg_out_movi(TCGContext *s, TCGType type,
1124                         TCGReg ret, tcg_target_long arg)
1125{
1126    switch (type) {
1127    case TCG_TYPE_I32:
1128#if TCG_TARGET_REG_BITS == 64
1129    case TCG_TYPE_I64:
1130#endif
1131        if (ret < 16) {
1132            tcg_out_movi_int(s, type, ret, arg);
1133        } else {
1134            tcg_out_movi_vec(s, type, ret, arg);
1135        }
1136        break;
1137    default:
1138        g_assert_not_reached();
1139    }
1140}
1141
1142static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
1143{
1144    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1145    tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2);
1146    return true;
1147}
1148
1149static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
1150                             tcg_target_long imm)
1151{
1152    /* This function is only used for passing structs by reference. */
1153    tcg_debug_assert(imm == (int32_t)imm);
1154    tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm);
1155}
1156
1157static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
1158{
1159    if (val == (int8_t)val) {
1160        tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
1161        tcg_out8(s, val);
1162    } else if (val == (int32_t)val) {
1163        tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
1164        tcg_out32(s, val);
1165    } else {
1166        g_assert_not_reached();
1167    }
1168}
1169
1170static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
1171{
1172    /* Given the strength of x86 memory ordering, we only need care for
1173       store-load ordering.  Experimentally, "lock orl $0,0(%esp)" is
1174       faster than "mfence", so don't bother with the sse insn.  */
1175    if (a0 & TCG_MO_ST_LD) {
1176        tcg_out8(s, 0xf0);
1177        tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
1178        tcg_out8(s, 0);
1179    }
1180}
1181
1182static inline void tcg_out_push(TCGContext *s, int reg)
1183{
1184    tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
1185}
1186
1187static inline void tcg_out_pop(TCGContext *s, int reg)
1188{
1189    tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
1190}
1191
1192static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1193                       TCGReg arg1, intptr_t arg2)
1194{
1195    switch (type) {
1196    case TCG_TYPE_I32:
1197        if (ret < 16) {
1198            tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
1199        } else {
1200            tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
1201        }
1202        break;
1203    case TCG_TYPE_I64:
1204        if (ret < 16) {
1205            tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
1206            break;
1207        }
1208        /* FALLTHRU */
1209    case TCG_TYPE_V64:
1210        /* There is no instruction that can validate 8-byte alignment.  */
1211        tcg_debug_assert(ret >= 16);
1212        tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
1213        break;
1214    case TCG_TYPE_V128:
1215        /*
1216         * The gvec infrastructure is asserts that v128 vector loads
1217         * and stores use a 16-byte aligned offset.  Validate that the
1218         * final pointer is aligned by using an insn that will SIGSEGV.
1219         */
1220        tcg_debug_assert(ret >= 16);
1221        tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
1222        break;
1223    case TCG_TYPE_V256:
1224        /*
1225         * The gvec infrastructure only requires 16-byte alignment,
1226         * so here we must use an unaligned load.
1227         */
1228        tcg_debug_assert(ret >= 16);
1229        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
1230                                 ret, 0, arg1, arg2);
1231        break;
1232    default:
1233        g_assert_not_reached();
1234    }
1235}
1236
1237static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1238                       TCGReg arg1, intptr_t arg2)
1239{
1240    switch (type) {
1241    case TCG_TYPE_I32:
1242        if (arg < 16) {
1243            tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
1244        } else {
1245            tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
1246        }
1247        break;
1248    case TCG_TYPE_I64:
1249        if (arg < 16) {
1250            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
1251            break;
1252        }
1253        /* FALLTHRU */
1254    case TCG_TYPE_V64:
1255        /* There is no instruction that can validate 8-byte alignment.  */
1256        tcg_debug_assert(arg >= 16);
1257        tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
1258        break;
1259    case TCG_TYPE_V128:
1260        /*
1261         * The gvec infrastructure is asserts that v128 vector loads
1262         * and stores use a 16-byte aligned offset.  Validate that the
1263         * final pointer is aligned by using an insn that will SIGSEGV.
1264         *
1265         * This specific instance is also used by TCG_CALL_RET_BY_VEC,
1266         * for _WIN64, which must have SSE2 but may not have AVX.
1267         */
1268        tcg_debug_assert(arg >= 16);
1269        if (have_avx1) {
1270            tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
1271        } else {
1272            tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2);
1273        }
1274        break;
1275    case TCG_TYPE_V256:
1276        /*
1277         * The gvec infrastructure only requires 16-byte alignment,
1278         * so here we must use an unaligned store.
1279         */
1280        tcg_debug_assert(arg >= 16);
1281        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
1282                                 arg, 0, arg1, arg2);
1283        break;
1284    default:
1285        g_assert_not_reached();
1286    }
1287}
1288
1289static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1290                        TCGReg base, intptr_t ofs)
1291{
1292    int rexw = 0;
1293    if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
1294        if (val != (int32_t)val) {
1295            return false;
1296        }
1297        rexw = P_REXW;
1298    } else if (type != TCG_TYPE_I32) {
1299        return false;
1300    }
1301    tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
1302    tcg_out32(s, val);
1303    return true;
1304}
1305
1306static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
1307{
1308    /* Propagate an opcode prefix, such as P_DATA16.  */
1309    int ext = subopc & ~0x7;
1310    subopc &= 0x7;
1311
1312    if (count == 1) {
1313        tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
1314    } else {
1315        tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
1316        tcg_out8(s, count);
1317    }
1318}
1319
1320static inline void tcg_out_bswap32(TCGContext *s, int reg)
1321{
1322    tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
1323}
1324
1325static inline void tcg_out_rolw_8(TCGContext *s, int reg)
1326{
1327    tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
1328}
1329
1330static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src)
1331{
1332    if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
1333        tcg_out_mov(s, TCG_TYPE_I32, dest, src);
1334        if (dest >= 4) {
1335            tcg_out_modrm(s, OPC_ARITH_EvIz, ARITH_AND, dest);
1336            tcg_out32(s, 0xff);
1337            return;
1338        }
1339        src = dest;
1340    }
1341    tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
1342}
1343
1344static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1345{
1346    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1347
1348    if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
1349        tcg_out_mov(s, TCG_TYPE_I32, dest, src);
1350        if (dest >= 4) {
1351            tcg_out_shifti(s, SHIFT_SHL, dest, 24);
1352            tcg_out_shifti(s, SHIFT_SAR, dest, 24);
1353            return;
1354        }
1355        src = dest;
1356    }
1357    tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
1358}
1359
1360static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src)
1361{
1362    /* movzwl */
1363    tcg_out_modrm(s, OPC_MOVZWL, dest, src);
1364}
1365
1366static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1367{
1368    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1369    /* movsw[lq] */
1370    tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
1371}
1372
1373static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
1374{
1375    /* 32-bit mov zero extends.  */
1376    tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
1377}
1378
1379static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
1380{
1381    tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1382    tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
1383}
1384
1385static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1386{
1387    tcg_out_ext32s(s, dest, src);
1388}
1389
1390static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1391{
1392    if (dest != src) {
1393        tcg_out_ext32u(s, dest, src);
1394    }
1395}
1396
1397static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src)
1398{
1399    tcg_out_ext32u(s, dest, src);
1400}
1401
1402static inline void tcg_out_bswap64(TCGContext *s, int reg)
1403{
1404    tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
1405}
1406
1407static void tgen_arithi(TCGContext *s, int c, int r0,
1408                        tcg_target_long val, int cf)
1409{
1410    int rexw = 0;
1411
1412    if (TCG_TARGET_REG_BITS == 64) {
1413        rexw = c & -8;
1414        c &= 7;
1415    }
1416
1417    switch (c) {
1418    case ARITH_ADD:
1419    case ARITH_SUB:
1420        if (!cf) {
1421            /*
1422             * ??? While INC is 2 bytes shorter than ADDL $1, they also induce
1423             * partial flags update stalls on Pentium4 and are not recommended
1424             * by current Intel optimization manuals.
1425             */
1426            if (val == 1 || val == -1) {
1427                int is_inc = (c == ARITH_ADD) ^ (val < 0);
1428                if (TCG_TARGET_REG_BITS == 64) {
1429                    /*
1430                     * The single-byte increment encodings are re-tasked
1431                     * as the REX prefixes.  Use the MODRM encoding.
1432                     */
1433                    tcg_out_modrm(s, OPC_GRP5 + rexw,
1434                                  (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
1435                } else {
1436                    tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
1437                }
1438                return;
1439            }
1440            if (val == 128) {
1441                /*
1442                 * Facilitate using an 8-bit immediate.  Carry is inverted
1443                 * by this transformation, so do it only if cf == 0.
1444                 */
1445                c ^= ARITH_ADD ^ ARITH_SUB;
1446                val = -128;
1447            }
1448        }
1449        break;
1450
1451    case ARITH_AND:
1452        if (TCG_TARGET_REG_BITS == 64) {
1453            if (val == 0xffffffffu) {
1454                tcg_out_ext32u(s, r0, r0);
1455                return;
1456            }
1457            if (val == (uint32_t)val) {
1458                /* AND with no high bits set can use a 32-bit operation.  */
1459                rexw = 0;
1460            }
1461        }
1462        if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1463            tcg_out_ext8u(s, r0, r0);
1464            return;
1465        }
1466        if (val == 0xffffu) {
1467            tcg_out_ext16u(s, r0, r0);
1468            return;
1469        }
1470        break;
1471
1472    case ARITH_OR:
1473    case ARITH_XOR:
1474        if (val >= 0x80 && val <= 0xff
1475            && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1476            tcg_out_modrm(s, OPC_ARITH_EbIb + P_REXB_RM, c, r0);
1477            tcg_out8(s, val);
1478            return;
1479        }
1480        break;
1481    }
1482
1483    if (val == (int8_t)val) {
1484        tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
1485        tcg_out8(s, val);
1486        return;
1487    }
1488    if (rexw == 0 || val == (int32_t)val) {
1489        tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
1490        tcg_out32(s, val);
1491        return;
1492    }
1493
1494    g_assert_not_reached();
1495}
1496
1497static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
1498{
1499    if (val != 0) {
1500        tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
1501    }
1502}
1503
1504/* Set SMALL to force a short forward branch.  */
1505static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small)
1506{
1507    int32_t val, val1;
1508
1509    if (l->has_value) {
1510        val = tcg_pcrel_diff(s, l->u.value_ptr);
1511        val1 = val - 2;
1512        if ((int8_t)val1 == val1) {
1513            if (opc == -1) {
1514                tcg_out8(s, OPC_JMP_short);
1515            } else {
1516                tcg_out8(s, OPC_JCC_short + opc);
1517            }
1518            tcg_out8(s, val1);
1519        } else {
1520            tcg_debug_assert(!small);
1521            if (opc == -1) {
1522                tcg_out8(s, OPC_JMP_long);
1523                tcg_out32(s, val - 5);
1524            } else {
1525                tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1526                tcg_out32(s, val - 6);
1527            }
1528        }
1529    } else if (small) {
1530        if (opc == -1) {
1531            tcg_out8(s, OPC_JMP_short);
1532        } else {
1533            tcg_out8(s, OPC_JCC_short + opc);
1534        }
1535        tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
1536        s->code_ptr += 1;
1537    } else {
1538        if (opc == -1) {
1539            tcg_out8(s, OPC_JMP_long);
1540        } else {
1541            tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1542        }
1543        tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
1544        s->code_ptr += 4;
1545    }
1546}
1547
1548static int tcg_out_cmp(TCGContext *s, TCGCond cond, TCGArg arg1,
1549                       TCGArg arg2, int const_arg2, int rexw)
1550{
1551    int jz, js;
1552
1553    if (!is_tst_cond(cond)) {
1554        if (!const_arg2) {
1555            tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
1556        } else if (arg2 == 0) {
1557            tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
1558        } else {
1559            tcg_debug_assert(!rexw || arg2 == (int32_t)arg2);
1560            tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
1561        }
1562        return tcg_cond_to_jcc[cond];
1563    }
1564
1565    jz = tcg_cond_to_jcc[cond];
1566    js = (cond == TCG_COND_TSTNE ? JCC_JS : JCC_JNS);
1567
1568    if (!const_arg2) {
1569        tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg2);
1570        return jz;
1571    }
1572
1573    if (arg2 <= 0xff && (TCG_TARGET_REG_BITS == 64 || arg1 < 4)) {
1574        if (arg2 == 0x80) {
1575            tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
1576            return js;
1577        }
1578        if (arg2 == 0xff) {
1579            tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
1580            return jz;
1581        }
1582        tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, arg1);
1583        tcg_out8(s, arg2);
1584        return jz;
1585    }
1586
1587    if ((arg2 & ~0xff00) == 0 && arg1 < 4) {
1588        if (arg2 == 0x8000) {
1589            tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
1590            return js;
1591        }
1592        if (arg2 == 0xff00) {
1593            tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
1594            return jz;
1595        }
1596        tcg_out_modrm(s, OPC_GRP3_Eb, EXT3_TESTi, arg1 + 4);
1597        tcg_out8(s, arg2 >> 8);
1598        return jz;
1599    }
1600
1601    if (arg2 == 0xffff) {
1602        tcg_out_modrm(s, OPC_TESTL | P_DATA16, arg1, arg1);
1603        return jz;
1604    }
1605    if (arg2 == 0xffffffffu) {
1606        tcg_out_modrm(s, OPC_TESTL, arg1, arg1);
1607        return jz;
1608    }
1609
1610    if (is_power_of_2(rexw ? arg2 : (uint32_t)arg2)) {
1611        int jc = (cond == TCG_COND_TSTNE ? JCC_JB : JCC_JAE);
1612        int sh = ctz64(arg2);
1613
1614        rexw = (sh & 32 ? P_REXW : 0);
1615        if ((sh & 31) == 31) {
1616            tcg_out_modrm(s, OPC_TESTL | rexw, arg1, arg1);
1617            return js;
1618        } else {
1619            tcg_out_modrm(s, OPC_GRPBT | rexw, OPC_GRPBT_BT, arg1);
1620            tcg_out8(s, sh);
1621            return jc;
1622        }
1623    }
1624
1625    if (rexw) {
1626        if (arg2 == (uint32_t)arg2) {
1627            rexw = 0;
1628        } else {
1629            tcg_debug_assert(arg2 == (int32_t)arg2);
1630        }
1631    }
1632    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_TESTi, arg1);
1633    tcg_out32(s, arg2);
1634    return jz;
1635}
1636
1637static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond,
1638                           TCGArg arg1, TCGArg arg2, int const_arg2,
1639                           TCGLabel *label, bool small)
1640{
1641    int jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, rexw);
1642    tcg_out_jxx(s, jcc, label, small);
1643}
1644
1645#if TCG_TARGET_REG_BITS == 32
1646static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
1647                            const int *const_args, bool small)
1648{
1649    TCGLabel *label_next = gen_new_label();
1650    TCGLabel *label_this = arg_label(args[5]);
1651    TCGCond cond = args[4];
1652
1653    switch (cond) {
1654    case TCG_COND_EQ:
1655    case TCG_COND_TSTEQ:
1656        tcg_out_brcond(s, 0, tcg_invert_cond(cond),
1657                       args[0], args[2], const_args[2], label_next, 1);
1658        tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3],
1659                       label_this, small);
1660        break;
1661
1662    case TCG_COND_NE:
1663    case TCG_COND_TSTNE:
1664        tcg_out_brcond(s, 0, cond, args[0], args[2], const_args[2],
1665                       label_this, small);
1666        tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3],
1667                       label_this, small);
1668        break;
1669
1670    default:
1671        tcg_out_brcond(s, 0, tcg_high_cond(cond), args[1],
1672                       args[3], const_args[3], label_this, small);
1673        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1674        tcg_out_brcond(s, 0, tcg_unsigned_cond(cond), args[0],
1675                       args[2], const_args[2], label_this, small);
1676        break;
1677    }
1678    tcg_out_label(s, label_next);
1679}
1680#endif
1681
1682static void tcg_out_setcond(TCGContext *s, int rexw, TCGCond cond,
1683                            TCGArg dest, TCGArg arg1, TCGArg arg2,
1684                            int const_arg2, bool neg)
1685{
1686    int cmp_rexw = rexw;
1687    bool inv = false;
1688    bool cleared;
1689    int jcc;
1690
1691    switch (cond) {
1692    case TCG_COND_NE:
1693        inv = true;
1694        /* fall through */
1695    case TCG_COND_EQ:
1696        /* If arg2 is 0, convert to LTU/GEU vs 1. */
1697        if (const_arg2 && arg2 == 0) {
1698            arg2 = 1;
1699            goto do_ltu;
1700        }
1701        break;
1702
1703    case TCG_COND_TSTNE:
1704        inv = true;
1705        /* fall through */
1706    case TCG_COND_TSTEQ:
1707        /* If arg2 is -1, convert to LTU/GEU vs 1. */
1708        if (const_arg2 && arg2 == 0xffffffffu) {
1709            arg2 = 1;
1710            cmp_rexw = 0;
1711            goto do_ltu;
1712        }
1713        break;
1714
1715    case TCG_COND_LEU:
1716        inv = true;
1717        /* fall through */
1718    case TCG_COND_GTU:
1719        /* If arg2 is a register, swap for LTU/GEU. */
1720        if (!const_arg2) {
1721            TCGReg t = arg1;
1722            arg1 = arg2;
1723            arg2 = t;
1724            goto do_ltu;
1725        }
1726        break;
1727
1728    case TCG_COND_GEU:
1729        inv = true;
1730        /* fall through */
1731    case TCG_COND_LTU:
1732    do_ltu:
1733        /*
1734         * Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU.
1735         * We can then use NEG or INC to produce the desired result.
1736         * This is always smaller than the SETCC expansion.
1737         */
1738        tcg_out_cmp(s, TCG_COND_LTU, arg1, arg2, const_arg2, cmp_rexw);
1739
1740        /* X - X - C = -C = (C ? -1 : 0) */
1741        tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest);
1742        if (inv && neg) {
1743            /* ~(C ? -1 : 0) = (C ? 0 : -1) */
1744            tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
1745        } else if (inv) {
1746            /* (C ? -1 : 0) + 1 = (C ? 0 : 1) */
1747            tgen_arithi(s, ARITH_ADD, dest, 1, 0);
1748        } else if (!neg) {
1749            /* -(C ? -1 : 0) = (C ? 1 : 0) */
1750            tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest);
1751        }
1752        return;
1753
1754    case TCG_COND_GE:
1755        inv = true;
1756        /* fall through */
1757    case TCG_COND_LT:
1758        /* If arg2 is 0, extract the sign bit. */
1759        if (const_arg2 && arg2 == 0) {
1760            tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, dest, arg1);
1761            if (inv) {
1762                tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
1763            }
1764            tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw,
1765                           dest, rexw ? 63 : 31);
1766            return;
1767        }
1768        break;
1769
1770    default:
1771        break;
1772    }
1773
1774    /*
1775     * If dest does not overlap the inputs, clearing it first is preferred.
1776     * The XOR breaks any false dependency for the low-byte write to dest,
1777     * and is also one byte smaller than MOVZBL.
1778     */
1779    cleared = false;
1780    if (dest != arg1 && (const_arg2 || dest != arg2)) {
1781        tgen_arithr(s, ARITH_XOR, dest, dest);
1782        cleared = true;
1783    }
1784
1785    jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, cmp_rexw);
1786    tcg_out_modrm(s, OPC_SETCC | jcc, 0, dest);
1787
1788    if (!cleared) {
1789        tcg_out_ext8u(s, dest, dest);
1790    }
1791    if (neg) {
1792        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest);
1793    }
1794}
1795
1796#if TCG_TARGET_REG_BITS == 32
1797static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1798                             const int *const_args)
1799{
1800    TCGArg new_args[6];
1801    TCGLabel *label_true, *label_over;
1802
1803    memcpy(new_args, args+1, 5*sizeof(TCGArg));
1804
1805    if (args[0] == args[1] || args[0] == args[2]
1806        || (!const_args[3] && args[0] == args[3])
1807        || (!const_args[4] && args[0] == args[4])) {
1808        /* When the destination overlaps with one of the argument
1809           registers, don't do anything tricky.  */
1810        label_true = gen_new_label();
1811        label_over = gen_new_label();
1812
1813        new_args[5] = label_arg(label_true);
1814        tcg_out_brcond2(s, new_args, const_args+1, 1);
1815
1816        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1817        tcg_out_jxx(s, JCC_JMP, label_over, 1);
1818        tcg_out_label(s, label_true);
1819
1820        tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1821        tcg_out_label(s, label_over);
1822    } else {
1823        /* When the destination does not overlap one of the arguments,
1824           clear the destination first, jump if cond false, and emit an
1825           increment in the true case.  This results in smaller code.  */
1826
1827        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1828
1829        label_over = gen_new_label();
1830        new_args[4] = tcg_invert_cond(new_args[4]);
1831        new_args[5] = label_arg(label_over);
1832        tcg_out_brcond2(s, new_args, const_args+1, 1);
1833
1834        tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1835        tcg_out_label(s, label_over);
1836    }
1837}
1838#endif
1839
1840static void tcg_out_cmov(TCGContext *s, int jcc, int rexw,
1841                         TCGReg dest, TCGReg v1)
1842{
1843    tcg_out_modrm(s, OPC_CMOVCC | jcc | rexw, dest, v1);
1844}
1845
1846static void tcg_out_movcond(TCGContext *s, int rexw, TCGCond cond,
1847                            TCGReg dest, TCGReg c1, TCGArg c2, int const_c2,
1848                            TCGReg v1)
1849{
1850    int jcc = tcg_out_cmp(s, cond, c1, c2, const_c2, rexw);
1851    tcg_out_cmov(s, jcc, rexw, dest, v1);
1852}
1853
1854static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest)
1855{
1856    intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1857
1858    if (disp == (int32_t)disp) {
1859        tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1860        tcg_out32(s, disp);
1861    } else {
1862        /* rip-relative addressing into the constant pool.
1863           This is 6 + 8 = 14 bytes, as compared to using an
1864           immediate load 10 + 6 = 16 bytes, plus we may
1865           be able to re-use the pool constant for more calls.  */
1866        tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
1867        tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
1868        new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
1869        tcg_out32(s, 0);
1870    }
1871}
1872
1873static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
1874                         const TCGHelperInfo *info)
1875{
1876    tcg_out_branch(s, 1, dest);
1877
1878#ifndef _WIN32
1879    if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) {
1880        /*
1881         * The sysv i386 abi for struct return places a reference as the
1882         * first argument of the stack, and pops that argument with the
1883         * return statement.  Since we want to retain the aligned stack
1884         * pointer for the callee, we do not want to actually push that
1885         * argument before the call but rely on the normal store to the
1886         * stack slot.  But we do need to compensate for the pop in order
1887         * to reset our correct stack pointer value.
1888         * Pushing a garbage value back onto the stack is quickest.
1889         */
1890        tcg_out_push(s, TCG_REG_EAX);
1891    }
1892#endif
1893}
1894
1895static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest)
1896{
1897    tcg_out_branch(s, 0, dest);
1898}
1899
1900static void tcg_out_nopn(TCGContext *s, int n)
1901{
1902    int i;
1903    /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1904     * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1905     * duplicate prefix, and all of the interesting recent cores can
1906     * decode and discard the duplicates in a single cycle.
1907     */
1908    tcg_debug_assert(n >= 1);
1909    for (i = 1; i < n; ++i) {
1910        tcg_out8(s, 0x66);
1911    }
1912    tcg_out8(s, 0x90);
1913}
1914
1915typedef struct {
1916    TCGReg base;
1917    int index;
1918    int ofs;
1919    int seg;
1920    TCGAtomAlign aa;
1921} HostAddress;
1922
1923bool tcg_target_has_memory_bswap(MemOp memop)
1924{
1925    TCGAtomAlign aa;
1926
1927    if (!have_movbe) {
1928        return false;
1929    }
1930    if ((memop & MO_SIZE) < MO_128) {
1931        return true;
1932    }
1933
1934    /*
1935     * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA,
1936     * but do allow a pair of 64-bit operations, i.e. MOVBEQ.
1937     */
1938    aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true);
1939    return aa.atom < MO_128;
1940}
1941
1942/*
1943 * Because i686 has no register parameters and because x86_64 has xchg
1944 * to handle addr/data register overlap, we have placed all input arguments
1945 * before we need might need a scratch reg.
1946 *
1947 * Even then, a scratch is only needed for l->raddr.  Rather than expose
1948 * a general-purpose scratch when we don't actually know it's available,
1949 * use the ra_gen hook to load into RAX if needed.
1950 */
1951#if TCG_TARGET_REG_BITS == 64
1952static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg)
1953{
1954    if (arg < 0) {
1955        arg = TCG_REG_RAX;
1956    }
1957    tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr);
1958    return arg;
1959}
1960static const TCGLdstHelperParam ldst_helper_param = {
1961    .ra_gen = ldst_ra_gen
1962};
1963#else
1964static const TCGLdstHelperParam ldst_helper_param = { };
1965#endif
1966
1967static void tcg_out_vec_to_pair(TCGContext *s, TCGType type,
1968                                TCGReg l, TCGReg h, TCGReg v)
1969{
1970    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1971
1972    /* vpmov{d,q} %v, %l */
1973    tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l);
1974    /* vpextr{d,q} $1, %v, %h */
1975    tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h);
1976    tcg_out8(s, 1);
1977}
1978
1979static void tcg_out_pair_to_vec(TCGContext *s, TCGType type,
1980                                TCGReg v, TCGReg l, TCGReg h)
1981{
1982    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1983
1984    /* vmov{d,q} %l, %v */
1985    tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l);
1986    /* vpinsr{d,q} $1, %h, %v, %v */
1987    tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h);
1988    tcg_out8(s, 1);
1989}
1990
1991/*
1992 * Generate code for the slow path for a load at the end of block
1993 */
1994static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1995{
1996    MemOp opc = get_memop(l->oi);
1997    tcg_insn_unit **label_ptr = &l->label_ptr[0];
1998
1999    /* resolve label address */
2000    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
2001    if (label_ptr[1]) {
2002        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
2003    }
2004
2005    tcg_out_ld_helper_args(s, l, &ldst_helper_param);
2006    tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]);
2007    tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param);
2008
2009    tcg_out_jmp(s, l->raddr);
2010    return true;
2011}
2012
2013/*
2014 * Generate code for the slow path for a store at the end of block
2015 */
2016static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2017{
2018    MemOp opc = get_memop(l->oi);
2019    tcg_insn_unit **label_ptr = &l->label_ptr[0];
2020
2021    /* resolve label address */
2022    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
2023    if (label_ptr[1]) {
2024        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
2025    }
2026
2027    tcg_out_st_helper_args(s, l, &ldst_helper_param);
2028    tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]);
2029
2030    tcg_out_jmp(s, l->raddr);
2031    return true;
2032}
2033
2034#ifdef CONFIG_USER_ONLY
2035static HostAddress x86_guest_base = {
2036    .index = -1
2037};
2038
2039#if defined(__x86_64__) && defined(__linux__)
2040# include <asm/prctl.h>
2041# include <sys/prctl.h>
2042int arch_prctl(int code, unsigned long addr);
2043static inline int setup_guest_base_seg(void)
2044{
2045    if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
2046        return P_GS;
2047    }
2048    return 0;
2049}
2050#define setup_guest_base_seg  setup_guest_base_seg
2051#elif defined(__x86_64__) && \
2052      (defined (__FreeBSD__) || defined (__FreeBSD_kernel__))
2053# include <machine/sysarch.h>
2054static inline int setup_guest_base_seg(void)
2055{
2056    if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
2057        return P_GS;
2058    }
2059    return 0;
2060}
2061#define setup_guest_base_seg  setup_guest_base_seg
2062#endif
2063#else
2064# define x86_guest_base (*(HostAddress *)({ qemu_build_not_reached(); NULL; }))
2065#endif /* CONFIG_USER_ONLY */
2066#ifndef setup_guest_base_seg
2067# define setup_guest_base_seg()  0
2068#endif
2069
2070#define MIN_TLB_MASK_TABLE_OFS  INT_MIN
2071
2072/*
2073 * For softmmu, perform the TLB load and compare.
2074 * For useronly, perform any required alignment tests.
2075 * In both cases, return a TCGLabelQemuLdst structure if the slow path
2076 * is required and fill in @h with the host address for the fast path.
2077 */
2078static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
2079                                           TCGReg addr, MemOpIdx oi, bool is_ld)
2080{
2081    TCGLabelQemuLdst *ldst = NULL;
2082    MemOp opc = get_memop(oi);
2083    MemOp s_bits = opc & MO_SIZE;
2084    unsigned a_mask;
2085
2086    if (tcg_use_softmmu) {
2087        h->index = TCG_REG_L0;
2088        h->ofs = 0;
2089        h->seg = 0;
2090    } else {
2091        *h = x86_guest_base;
2092    }
2093    h->base = addr;
2094    h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128);
2095    a_mask = (1 << h->aa.align) - 1;
2096
2097    if (tcg_use_softmmu) {
2098        int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read)
2099                            : offsetof(CPUTLBEntry, addr_write);
2100        TCGType ttype = TCG_TYPE_I32;
2101        TCGType tlbtype = TCG_TYPE_I32;
2102        int trexw = 0, hrexw = 0, tlbrexw = 0;
2103        unsigned mem_index = get_mmuidx(oi);
2104        unsigned s_mask = (1 << s_bits) - 1;
2105        int fast_ofs = tlb_mask_table_ofs(s, mem_index);
2106        int tlb_mask;
2107
2108        ldst = new_ldst_label(s);
2109        ldst->is_ld = is_ld;
2110        ldst->oi = oi;
2111        ldst->addr_reg = addr;
2112
2113        if (TCG_TARGET_REG_BITS == 64) {
2114            ttype = s->addr_type;
2115            trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW);
2116            if (TCG_TYPE_PTR == TCG_TYPE_I64) {
2117                hrexw = P_REXW;
2118                if (s->page_bits + s->tlb_dyn_max_bits > 32) {
2119                    tlbtype = TCG_TYPE_I64;
2120                    tlbrexw = P_REXW;
2121                }
2122            }
2123        }
2124
2125        tcg_out_mov(s, tlbtype, TCG_REG_L0, addr);
2126        tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0,
2127                       s->page_bits - CPU_TLB_ENTRY_BITS);
2128
2129        tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0,
2130                             fast_ofs + offsetof(CPUTLBDescFast, mask));
2131
2132        tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0,
2133                             fast_ofs + offsetof(CPUTLBDescFast, table));
2134
2135        /*
2136         * If the required alignment is at least as large as the access,
2137         * simply copy the address and mask.  For lesser alignments,
2138         * check that we don't cross pages for the complete access.
2139         */
2140        if (a_mask >= s_mask) {
2141            tcg_out_mov(s, ttype, TCG_REG_L1, addr);
2142        } else {
2143            tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1,
2144                                 addr, s_mask - a_mask);
2145        }
2146        tlb_mask = s->page_mask | a_mask;
2147        tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0);
2148
2149        /* cmp 0(TCG_REG_L0), TCG_REG_L1 */
2150        tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw,
2151                             TCG_REG_L1, TCG_REG_L0, cmp_ofs);
2152
2153        /* jne slow_path */
2154        tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
2155        ldst->label_ptr[0] = s->code_ptr;
2156        s->code_ptr += 4;
2157
2158        /* TLB Hit.  */
2159        tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0,
2160                   offsetof(CPUTLBEntry, addend));
2161    } else if (a_mask) {
2162        int jcc;
2163
2164        ldst = new_ldst_label(s);
2165        ldst->is_ld = is_ld;
2166        ldst->oi = oi;
2167        ldst->addr_reg = addr;
2168
2169        /* jne slow_path */
2170        jcc = tcg_out_cmp(s, TCG_COND_TSTNE, addr, a_mask, true, false);
2171        tcg_out_opc(s, OPC_JCC_long + jcc, 0, 0, 0);
2172        ldst->label_ptr[0] = s->code_ptr;
2173        s->code_ptr += 4;
2174    }
2175
2176    return ldst;
2177}
2178
2179static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2180                                   HostAddress h, TCGType type, MemOp memop)
2181{
2182    bool use_movbe = false;
2183    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
2184    int movop = OPC_MOVL_GvEv;
2185
2186    /* Do big-endian loads with movbe.  */
2187    if (memop & MO_BSWAP) {
2188        tcg_debug_assert(have_movbe);
2189        use_movbe = true;
2190        movop = OPC_MOVBE_GyMy;
2191    }
2192
2193    switch (memop & MO_SSIZE) {
2194    case MO_UB:
2195        tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo,
2196                                 h.base, h.index, 0, h.ofs);
2197        break;
2198    case MO_SB:
2199        tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo,
2200                                 h.base, h.index, 0, h.ofs);
2201        break;
2202    case MO_UW:
2203        if (use_movbe) {
2204            /* There is no extending movbe; only low 16-bits are modified.  */
2205            if (datalo != h.base && datalo != h.index) {
2206                /* XOR breaks dependency chains.  */
2207                tgen_arithr(s, ARITH_XOR, datalo, datalo);
2208                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2209                                         datalo, h.base, h.index, 0, h.ofs);
2210            } else {
2211                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2212                                         datalo, h.base, h.index, 0, h.ofs);
2213                tcg_out_ext16u(s, datalo, datalo);
2214            }
2215        } else {
2216            tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo,
2217                                     h.base, h.index, 0, h.ofs);
2218        }
2219        break;
2220    case MO_SW:
2221        if (use_movbe) {
2222            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2223                                     datalo, h.base, h.index, 0, h.ofs);
2224            tcg_out_ext16s(s, type, datalo, datalo);
2225        } else {
2226            tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg,
2227                                     datalo, h.base, h.index, 0, h.ofs);
2228        }
2229        break;
2230    case MO_UL:
2231        tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2232                                 h.base, h.index, 0, h.ofs);
2233        break;
2234#if TCG_TARGET_REG_BITS == 64
2235    case MO_SL:
2236        if (use_movbe) {
2237            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo,
2238                                     h.base, h.index, 0, h.ofs);
2239            tcg_out_ext32s(s, datalo, datalo);
2240        } else {
2241            tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo,
2242                                     h.base, h.index, 0, h.ofs);
2243        }
2244        break;
2245#endif
2246    case MO_UQ:
2247        if (TCG_TARGET_REG_BITS == 64) {
2248            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2249                                     h.base, h.index, 0, h.ofs);
2250            break;
2251        }
2252        if (use_movbe) {
2253            TCGReg t = datalo;
2254            datalo = datahi;
2255            datahi = t;
2256        }
2257        if (h.base == datalo || h.index == datalo) {
2258            tcg_out_modrm_sib_offset(s, OPC_LEA, datahi,
2259                                     h.base, h.index, 0, h.ofs);
2260            tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0);
2261            tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4);
2262        } else {
2263            tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2264                                     h.base, h.index, 0, h.ofs);
2265            tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2266                                     h.base, h.index, 0, h.ofs + 4);
2267        }
2268        break;
2269
2270    case MO_128:
2271        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2272
2273        /*
2274         * Without 16-byte atomicity, use integer regs.
2275         * That is where we want the data, and it allows bswaps.
2276         */
2277        if (h.aa.atom < MO_128) {
2278            if (use_movbe) {
2279                TCGReg t = datalo;
2280                datalo = datahi;
2281                datahi = t;
2282            }
2283            if (h.base == datalo || h.index == datalo) {
2284                tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi,
2285                                         h.base, h.index, 0, h.ofs);
2286                tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2287                                     datalo, datahi, 0);
2288                tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2289                                     datahi, datahi, 8);
2290            } else {
2291                tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2292                                         h.base, h.index, 0, h.ofs);
2293                tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2294                                         h.base, h.index, 0, h.ofs + 8);
2295            }
2296            break;
2297        }
2298
2299        /*
2300         * With 16-byte atomicity, a vector load is required.
2301         * If we already have 16-byte alignment, then VMOVDQA always works.
2302         * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2303         * Else use we require a runtime test for alignment for VMOVDQA;
2304         * use VMOVDQU on the unaligned nonatomic path for simplicity.
2305         */
2306        if (h.aa.align >= MO_128) {
2307            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2308                                         TCG_TMP_VEC, 0,
2309                                         h.base, h.index, 0, h.ofs);
2310        } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2311            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2312                                         TCG_TMP_VEC, 0,
2313                                         h.base, h.index, 0, h.ofs);
2314        } else {
2315            TCGLabel *l1 = gen_new_label();
2316            TCGLabel *l2 = gen_new_label();
2317            int jcc;
2318
2319            jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
2320            tcg_out_jxx(s, jcc, l1, true);
2321
2322            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2323                                         TCG_TMP_VEC, 0,
2324                                         h.base, h.index, 0, h.ofs);
2325            tcg_out_jxx(s, JCC_JMP, l2, true);
2326
2327            tcg_out_label(s, l1);
2328            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2329                                         TCG_TMP_VEC, 0,
2330                                         h.base, h.index, 0, h.ofs);
2331            tcg_out_label(s, l2);
2332        }
2333        tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC);
2334        break;
2335
2336    default:
2337        g_assert_not_reached();
2338    }
2339}
2340
2341static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi,
2342                            TCGReg addr, MemOpIdx oi, TCGType data_type)
2343{
2344    TCGLabelQemuLdst *ldst;
2345    HostAddress h;
2346
2347    ldst = prepare_host_addr(s, &h, addr, oi, true);
2348    tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi));
2349
2350    if (ldst) {
2351        ldst->type = data_type;
2352        ldst->datalo_reg = datalo;
2353        ldst->datahi_reg = datahi;
2354        ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2355    }
2356}
2357
2358static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2359                                   HostAddress h, MemOp memop)
2360{
2361    bool use_movbe = false;
2362    int movop = OPC_MOVL_EvGv;
2363
2364    /*
2365     * Do big-endian stores with movbe or system-mode.
2366     * User-only without movbe will have its swapping done generically.
2367     */
2368    if (memop & MO_BSWAP) {
2369        tcg_debug_assert(have_movbe);
2370        use_movbe = true;
2371        movop = OPC_MOVBE_MyGy;
2372    }
2373
2374    switch (memop & MO_SIZE) {
2375    case MO_8:
2376        /* This is handled with constraints on INDEX_op_qemu_st8_i32. */
2377        tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4);
2378        tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg,
2379                                 datalo, h.base, h.index, 0, h.ofs);
2380        break;
2381    case MO_16:
2382        tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo,
2383                                 h.base, h.index, 0, h.ofs);
2384        break;
2385    case MO_32:
2386        tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2387                                 h.base, h.index, 0, h.ofs);
2388        break;
2389    case MO_64:
2390        if (TCG_TARGET_REG_BITS == 64) {
2391            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2392                                     h.base, h.index, 0, h.ofs);
2393        } else {
2394            if (use_movbe) {
2395                TCGReg t = datalo;
2396                datalo = datahi;
2397                datahi = t;
2398            }
2399            tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2400                                     h.base, h.index, 0, h.ofs);
2401            tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2402                                     h.base, h.index, 0, h.ofs + 4);
2403        }
2404        break;
2405
2406    case MO_128:
2407        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2408
2409        /*
2410         * Without 16-byte atomicity, use integer regs.
2411         * That is where we have the data, and it allows bswaps.
2412         */
2413        if (h.aa.atom < MO_128) {
2414            if (use_movbe) {
2415                TCGReg t = datalo;
2416                datalo = datahi;
2417                datahi = t;
2418            }
2419            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2420                                     h.base, h.index, 0, h.ofs);
2421            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2422                                     h.base, h.index, 0, h.ofs + 8);
2423            break;
2424        }
2425
2426        /*
2427         * With 16-byte atomicity, a vector store is required.
2428         * If we already have 16-byte alignment, then VMOVDQA always works.
2429         * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2430         * Else use we require a runtime test for alignment for VMOVDQA;
2431         * use VMOVDQU on the unaligned nonatomic path for simplicity.
2432         */
2433        tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi);
2434        if (h.aa.align >= MO_128) {
2435            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2436                                         TCG_TMP_VEC, 0,
2437                                         h.base, h.index, 0, h.ofs);
2438        } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2439            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2440                                         TCG_TMP_VEC, 0,
2441                                         h.base, h.index, 0, h.ofs);
2442        } else {
2443            TCGLabel *l1 = gen_new_label();
2444            TCGLabel *l2 = gen_new_label();
2445            int jcc;
2446
2447            jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
2448            tcg_out_jxx(s, jcc, l1, true);
2449
2450            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2451                                         TCG_TMP_VEC, 0,
2452                                         h.base, h.index, 0, h.ofs);
2453            tcg_out_jxx(s, JCC_JMP, l2, true);
2454
2455            tcg_out_label(s, l1);
2456            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2457                                         TCG_TMP_VEC, 0,
2458                                         h.base, h.index, 0, h.ofs);
2459            tcg_out_label(s, l2);
2460        }
2461        break;
2462
2463    default:
2464        g_assert_not_reached();
2465    }
2466}
2467
2468static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi,
2469                            TCGReg addr, MemOpIdx oi, TCGType data_type)
2470{
2471    TCGLabelQemuLdst *ldst;
2472    HostAddress h;
2473
2474    ldst = prepare_host_addr(s, &h, addr, oi, false);
2475    tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi));
2476
2477    if (ldst) {
2478        ldst->type = data_type;
2479        ldst->datalo_reg = datalo;
2480        ldst->datahi_reg = datahi;
2481        ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2482    }
2483}
2484
2485static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
2486{
2487    /* Reuse the zeroing that exists for goto_ptr.  */
2488    if (a0 == 0) {
2489        tcg_out_jmp(s, tcg_code_gen_epilogue);
2490    } else {
2491        tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
2492        tcg_out_jmp(s, tb_ret_addr);
2493    }
2494}
2495
2496static void tcg_out_goto_tb(TCGContext *s, int which)
2497{
2498    /*
2499     * Jump displacement must be aligned for atomic patching;
2500     * see if we need to add extra nops before jump
2501     */
2502    int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr;
2503    if (gap != 1) {
2504        tcg_out_nopn(s, gap - 1);
2505    }
2506    tcg_out8(s, OPC_JMP_long); /* jmp im */
2507    set_jmp_insn_offset(s, which);
2508    tcg_out32(s, 0);
2509    set_jmp_reset_offset(s, which);
2510}
2511
2512void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
2513                              uintptr_t jmp_rx, uintptr_t jmp_rw)
2514{
2515    /* patch the branch destination */
2516    uintptr_t addr = tb->jmp_target_addr[n];
2517    qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4));
2518    /* no need to flush icache explicitly */
2519}
2520
2521
2522static void tgen_add(TCGContext *s, TCGType type,
2523                     TCGReg a0, TCGReg a1, TCGReg a2)
2524{
2525    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2526
2527    if (a0 == a1) {
2528        tgen_arithr(s, ARITH_ADD + rexw, a0, a2);
2529    } else if (a0 == a2) {
2530        tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
2531    } else {
2532        tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, 0);
2533    }
2534}
2535
2536static void tgen_addi(TCGContext *s, TCGType type,
2537                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2538{
2539    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2540
2541    if (a0 == a1) {
2542        tgen_arithi(s, ARITH_ADD + rexw, a0, a2, false);
2543    } else {
2544        tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, -1, 0, a2);
2545    }
2546}
2547
2548static const TCGOutOpBinary outop_add = {
2549    .base.static_constraint = C_O1_I2(r, r, re),
2550    .out_rrr = tgen_add,
2551    .out_rri = tgen_addi,
2552};
2553
2554static void tgen_and(TCGContext *s, TCGType type,
2555                     TCGReg a0, TCGReg a1, TCGReg a2)
2556{
2557    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2558    tgen_arithr(s, ARITH_AND + rexw, a0, a2);
2559}
2560
2561static void tgen_andi(TCGContext *s, TCGType type,
2562                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2563{
2564    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2565    tgen_arithi(s, ARITH_AND + rexw, a0, a2, false);
2566}
2567
2568static const TCGOutOpBinary outop_and = {
2569    .base.static_constraint = C_O1_I2(r, 0, reZ),
2570    .out_rrr = tgen_and,
2571    .out_rri = tgen_andi,
2572};
2573
2574static void tgen_andc(TCGContext *s, TCGType type,
2575                      TCGReg a0, TCGReg a1, TCGReg a2)
2576{
2577    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2578    tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2579}
2580
2581static TCGConstraintSetIndex cset_andc(TCGType type, unsigned flags)
2582{
2583    return have_bmi1 ? C_O1_I2(r, r, r) : C_NotImplemented;
2584}
2585
2586static const TCGOutOpBinary outop_andc = {
2587    .base.static_constraint = C_Dynamic,
2588    .base.dynamic_constraint = cset_andc,
2589    .out_rrr = tgen_andc,
2590};
2591
2592static void tgen_clz(TCGContext *s, TCGType type,
2593                     TCGReg a0, TCGReg a1, TCGReg a2)
2594{
2595    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2596    int jcc;
2597
2598    if (have_lzcnt) {
2599        tcg_out_modrm(s, OPC_LZCNT + rexw, a0, a1);
2600        jcc = JCC_JB;
2601    } else {
2602        /* Recall that the output of BSR is the index not the count.  */
2603        tcg_out_modrm(s, OPC_BSR + rexw, a0, a1);
2604        tgen_arithi(s, ARITH_XOR + rexw, a0, rexw ? 63 : 31, 0);
2605
2606        /* Since we have destroyed the flags from BSR, we have to re-test.  */
2607        jcc = tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, rexw);
2608    }
2609    tcg_out_cmov(s, jcc, rexw, a0, a2);
2610}
2611
2612static void tgen_clzi(TCGContext *s, TCGType type,
2613                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2614{
2615    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2616    tcg_out_modrm(s, OPC_LZCNT + rexw, a0, a1);
2617}
2618
2619static TCGConstraintSetIndex cset_clz(TCGType type, unsigned flags)
2620{
2621    return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
2622}
2623
2624static const TCGOutOpBinary outop_clz = {
2625    .base.static_constraint = C_Dynamic,
2626    .base.dynamic_constraint = cset_clz,
2627    .out_rrr = tgen_clz,
2628    .out_rri = tgen_clzi,
2629};
2630
2631static void tgen_ctpop(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
2632{
2633    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2634    tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2635}
2636
2637static TCGConstraintSetIndex cset_ctpop(TCGType type, unsigned flags)
2638{
2639    return have_popcnt ? C_O1_I1(r, r) : C_NotImplemented;
2640}
2641
2642static const TCGOutOpUnary outop_ctpop = {
2643    .base.static_constraint = C_Dynamic,
2644    .base.dynamic_constraint = cset_ctpop,
2645    .out_rr = tgen_ctpop,
2646};
2647
2648static void tgen_ctz(TCGContext *s, TCGType type,
2649                     TCGReg a0, TCGReg a1, TCGReg a2)
2650{
2651    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2652    int jcc;
2653
2654    if (have_bmi1) {
2655        tcg_out_modrm(s, OPC_TZCNT + rexw, a0, a1);
2656        jcc = JCC_JB;
2657    } else {
2658        tcg_out_modrm(s, OPC_BSF + rexw, a0, a1);
2659        jcc = JCC_JE;
2660    }
2661    tcg_out_cmov(s, jcc, rexw, a0, a2);
2662}
2663
2664static void tgen_ctzi(TCGContext *s, TCGType type,
2665                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2666{
2667    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2668    tcg_out_modrm(s, OPC_TZCNT + rexw, a0, a1);
2669}
2670
2671static TCGConstraintSetIndex cset_ctz(TCGType type, unsigned flags)
2672{
2673    return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
2674}
2675
2676static const TCGOutOpBinary outop_ctz = {
2677    .base.static_constraint = C_Dynamic,
2678    .base.dynamic_constraint = cset_ctz,
2679    .out_rrr = tgen_ctz,
2680    .out_rri = tgen_ctzi,
2681};
2682
2683static const TCGOutOpBinary outop_divs = {
2684    .base.static_constraint = C_NotImplemented,
2685};
2686
2687static void tgen_divs2(TCGContext *s, TCGType type,
2688                       TCGReg a0, TCGReg a1, TCGReg a4)
2689{
2690    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2691    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, a4);
2692}
2693
2694static const TCGOutOpDivRem outop_divs2 = {
2695    .base.static_constraint = C_O2_I3(a, d, 0, 1, r),
2696    .out_rr01r = tgen_divs2,
2697};
2698
2699static const TCGOutOpBinary outop_divu = {
2700    .base.static_constraint = C_NotImplemented,
2701};
2702
2703static void tgen_divu2(TCGContext *s, TCGType type,
2704                       TCGReg a0, TCGReg a1, TCGReg a4)
2705{
2706    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2707    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, a4);
2708}
2709
2710static const TCGOutOpDivRem outop_divu2 = {
2711    .base.static_constraint = C_O2_I3(a, d, 0, 1, r),
2712    .out_rr01r = tgen_divu2,
2713};
2714
2715static const TCGOutOpBinary outop_eqv = {
2716    .base.static_constraint = C_NotImplemented,
2717};
2718
2719static void tgen_mul(TCGContext *s, TCGType type,
2720                     TCGReg a0, TCGReg a1, TCGReg a2)
2721{
2722    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2723    tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2724}
2725
2726static void tgen_muli(TCGContext *s, TCGType type,
2727                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2728{
2729    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2730
2731    if (a2 == (int8_t)a2) {
2732        tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2733        tcg_out8(s, a2);
2734    } else {
2735        tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2736        tcg_out32(s, a2);
2737    }
2738}
2739
2740static const TCGOutOpBinary outop_mul = {
2741    .base.static_constraint = C_O1_I2(r, 0, re),
2742    .out_rrr = tgen_mul,
2743    .out_rri = tgen_muli,
2744};
2745
2746static void tgen_muls2(TCGContext *s, TCGType type,
2747                       TCGReg a0, TCGReg a1, TCGReg a2, TCGReg a3)
2748{
2749    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2750    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, a3);
2751}
2752
2753static const TCGOutOpMul2 outop_muls2 = {
2754    .base.static_constraint = C_O2_I2(a, d, a, r),
2755    .out_rrrr = tgen_muls2,
2756};
2757
2758static const TCGOutOpBinary outop_mulsh = {
2759    .base.static_constraint = C_NotImplemented,
2760};
2761
2762static const TCGOutOpBinary outop_muluh = {
2763    .base.static_constraint = C_NotImplemented,
2764};
2765
2766static const TCGOutOpBinary outop_nand = {
2767    .base.static_constraint = C_NotImplemented,
2768};
2769
2770static const TCGOutOpBinary outop_nor = {
2771    .base.static_constraint = C_NotImplemented,
2772};
2773
2774static void tgen_or(TCGContext *s, TCGType type,
2775                    TCGReg a0, TCGReg a1, TCGReg a2)
2776{
2777    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2778    tgen_arithr(s, ARITH_OR + rexw, a0, a2);
2779}
2780
2781static void tgen_ori(TCGContext *s, TCGType type,
2782                     TCGReg a0, TCGReg a1, tcg_target_long a2)
2783{
2784    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2785    tgen_arithi(s, ARITH_OR + rexw, a0, a2, false);
2786}
2787
2788static const TCGOutOpBinary outop_or = {
2789    .base.static_constraint = C_O1_I2(r, 0, re),
2790    .out_rrr = tgen_or,
2791    .out_rri = tgen_ori,
2792};
2793
2794static const TCGOutOpBinary outop_orc = {
2795    .base.static_constraint = C_NotImplemented,
2796};
2797
2798static const TCGOutOpBinary outop_rems = {
2799    .base.static_constraint = C_NotImplemented,
2800};
2801
2802static const TCGOutOpBinary outop_remu = {
2803    .base.static_constraint = C_NotImplemented,
2804};
2805
2806static void tgen_rotl(TCGContext *s, TCGType type,
2807                     TCGReg a0, TCGReg a1, TCGReg a2)
2808{
2809    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2810    tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_ROL, a0);
2811}
2812
2813static void tgen_rotli(TCGContext *s, TCGType type,
2814                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2815{
2816    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2817    tcg_out_shifti(s, SHIFT_ROL + rexw, a0, a2);
2818}
2819
2820static const TCGOutOpBinary outop_rotl = {
2821    .base.static_constraint = C_O1_I2(r, 0, ci),
2822    .out_rrr = tgen_rotl,
2823    .out_rri = tgen_rotli,
2824};
2825
2826static void tgen_rotr(TCGContext *s, TCGType type,
2827                     TCGReg a0, TCGReg a1, TCGReg a2)
2828{
2829    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2830    tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_ROR, a0);
2831}
2832
2833static void tgen_rotri(TCGContext *s, TCGType type,
2834                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2835{
2836    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2837    tcg_out_shifti(s, SHIFT_ROR + rexw, a0, a2);
2838}
2839
2840static const TCGOutOpBinary outop_rotr = {
2841    .base.static_constraint = C_O1_I2(r, 0, ci),
2842    .out_rrr = tgen_rotr,
2843    .out_rri = tgen_rotri,
2844};
2845
2846static TCGConstraintSetIndex cset_shift(TCGType type, unsigned flags)
2847{
2848    return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci);
2849}
2850
2851static void tgen_sar(TCGContext *s, TCGType type,
2852                     TCGReg a0, TCGReg a1, TCGReg a2)
2853{
2854    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2855    if (have_bmi2) {
2856        tcg_out_vex_modrm(s, OPC_SARX + rexw, a0, a2, a1);
2857    } else {
2858        tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SAR, a0);
2859    }
2860}
2861
2862static void tgen_sari(TCGContext *s, TCGType type,
2863                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2864{
2865    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2866
2867    tcg_out_mov(s, type, a0, a1);
2868    tcg_out_shifti(s, SHIFT_SAR + rexw, a0, a2);
2869}
2870
2871static const TCGOutOpBinary outop_sar = {
2872    .base.static_constraint = C_Dynamic,
2873    .base.dynamic_constraint = cset_shift,
2874    .out_rrr = tgen_sar,
2875    .out_rri = tgen_sari,
2876};
2877
2878static void tgen_shl(TCGContext *s, TCGType type,
2879                     TCGReg a0, TCGReg a1, TCGReg a2)
2880{
2881    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2882    if (have_bmi2) {
2883        tcg_out_vex_modrm(s, OPC_SHLX + rexw, a0, a2, a1);
2884    } else {
2885        tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SHL, a0);
2886    }
2887}
2888
2889static void tgen_shli(TCGContext *s, TCGType type,
2890                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2891{
2892    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2893
2894    /* For small constant 3-operand shift, use LEA.  */
2895    if (a0 != a1 && a2 >= 1 && a2 <= 3) {
2896        if (a2 == 1) {
2897            /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2898            tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2899        } else {
2900            /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2901            tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2902        }
2903        return;
2904    }
2905    tcg_out_mov(s, type, a0, a1);
2906    tcg_out_shifti(s, SHIFT_SHL + rexw, a0, a2);
2907}
2908
2909static const TCGOutOpBinary outop_shl = {
2910    .base.static_constraint = C_Dynamic,
2911    .base.dynamic_constraint = cset_shift,
2912    .out_rrr = tgen_shl,
2913    .out_rri = tgen_shli,
2914};
2915
2916static void tgen_shr(TCGContext *s, TCGType type,
2917                     TCGReg a0, TCGReg a1, TCGReg a2)
2918{
2919    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2920    if (have_bmi2) {
2921        tcg_out_vex_modrm(s, OPC_SHRX + rexw, a0, a2, a1);
2922    } else {
2923        tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SHR, a0);
2924    }
2925}
2926
2927static void tgen_shri(TCGContext *s, TCGType type,
2928                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2929{
2930    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2931
2932    tcg_out_mov(s, type, a0, a1);
2933    tcg_out_shifti(s, SHIFT_SHR + rexw, a0, a2);
2934}
2935
2936static const TCGOutOpBinary outop_shr = {
2937    .base.static_constraint = C_Dynamic,
2938    .base.dynamic_constraint = cset_shift,
2939    .out_rrr = tgen_shr,
2940    .out_rri = tgen_shri,
2941};
2942
2943static void tgen_sub(TCGContext *s, TCGType type,
2944                      TCGReg a0, TCGReg a1, TCGReg a2)
2945{
2946    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2947    tgen_arithr(s, ARITH_SUB + rexw, a0, a2);
2948}
2949
2950static const TCGOutOpSubtract outop_sub = {
2951    .base.static_constraint = C_O1_I2(r, 0, r),
2952    .out_rrr = tgen_sub,
2953};
2954
2955static void tgen_xor(TCGContext *s, TCGType type,
2956                     TCGReg a0, TCGReg a1, TCGReg a2)
2957{
2958    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2959    tgen_arithr(s, ARITH_XOR + rexw, a0, a2);
2960}
2961
2962static void tgen_xori(TCGContext *s, TCGType type,
2963                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2964{
2965    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2966    tgen_arithi(s, ARITH_XOR + rexw, a0, a2, false);
2967}
2968
2969static const TCGOutOpBinary outop_xor = {
2970    .base.static_constraint = C_O1_I2(r, 0, re),
2971    .out_rrr = tgen_xor,
2972    .out_rri = tgen_xori,
2973};
2974
2975static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
2976{
2977    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2978    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
2979}
2980
2981static const TCGOutOpUnary outop_neg = {
2982    .base.static_constraint = C_O1_I1(r, 0),
2983    .out_rr = tgen_neg,
2984};
2985
2986static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
2987{
2988    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2989    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
2990}
2991
2992static const TCGOutOpUnary outop_not = {
2993    .base.static_constraint = C_O1_I1(r, 0),
2994    .out_rr = tgen_not,
2995};
2996
2997
2998static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType type,
2999                       const TCGArg args[TCG_MAX_OP_ARGS],
3000                       const int const_args[TCG_MAX_OP_ARGS])
3001{
3002    TCGArg a0, a1, a2;
3003    int const_a2, rexw;
3004
3005#if TCG_TARGET_REG_BITS == 64
3006# define OP_32_64(x) \
3007        case glue(glue(INDEX_op_, x), _i64): \
3008        case glue(glue(INDEX_op_, x), _i32)
3009#else
3010# define OP_32_64(x) \
3011        case glue(glue(INDEX_op_, x), _i32)
3012#endif
3013
3014    /* Hoist the loads of the most common arguments.  */
3015    a0 = args[0];
3016    a1 = args[1];
3017    a2 = args[2];
3018    const_a2 = const_args[2];
3019    rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
3020
3021    switch (opc) {
3022    case INDEX_op_goto_ptr:
3023        /* jmp to the given host address (could be epilogue) */
3024        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
3025        break;
3026    case INDEX_op_br:
3027        tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
3028        break;
3029    OP_32_64(ld8u):
3030        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
3031        tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
3032        break;
3033    OP_32_64(ld8s):
3034        tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
3035        break;
3036    OP_32_64(ld16u):
3037        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
3038        tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
3039        break;
3040    OP_32_64(ld16s):
3041        tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
3042        break;
3043#if TCG_TARGET_REG_BITS == 64
3044    case INDEX_op_ld32u_i64:
3045#endif
3046    case INDEX_op_ld_i32:
3047        tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
3048        break;
3049
3050    OP_32_64(st8):
3051        if (const_args[0]) {
3052            tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
3053            tcg_out8(s, a0);
3054        } else {
3055            tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
3056        }
3057        break;
3058    OP_32_64(st16):
3059        if (const_args[0]) {
3060            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
3061            tcg_out16(s, a0);
3062        } else {
3063            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
3064        }
3065        break;
3066#if TCG_TARGET_REG_BITS == 64
3067    case INDEX_op_st32_i64:
3068#endif
3069    case INDEX_op_st_i32:
3070        if (const_args[0]) {
3071            tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
3072            tcg_out32(s, a0);
3073        } else {
3074            tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
3075        }
3076        break;
3077
3078    OP_32_64(brcond):
3079        tcg_out_brcond(s, rexw, a2, a0, a1, const_args[1],
3080                       arg_label(args[3]), 0);
3081        break;
3082    OP_32_64(setcond):
3083        tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, false);
3084        break;
3085    OP_32_64(negsetcond):
3086        tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, true);
3087        break;
3088    OP_32_64(movcond):
3089        tcg_out_movcond(s, rexw, args[5], a0, a1, a2, const_a2, args[3]);
3090        break;
3091
3092    OP_32_64(bswap16):
3093        if (a2 & TCG_BSWAP_OS) {
3094            /* Output must be sign-extended. */
3095            if (rexw) {
3096                tcg_out_bswap64(s, a0);
3097                tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48);
3098            } else {
3099                tcg_out_bswap32(s, a0);
3100                tcg_out_shifti(s, SHIFT_SAR, a0, 16);
3101            }
3102        } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
3103            /* Output must be zero-extended, but input isn't. */
3104            tcg_out_bswap32(s, a0);
3105            tcg_out_shifti(s, SHIFT_SHR, a0, 16);
3106        } else {
3107            tcg_out_rolw_8(s, a0);
3108        }
3109        break;
3110    OP_32_64(bswap32):
3111        tcg_out_bswap32(s, a0);
3112        if (rexw && (a2 & TCG_BSWAP_OS)) {
3113            tcg_out_ext32s(s, a0, a0);
3114        }
3115        break;
3116
3117    case INDEX_op_qemu_ld_i32:
3118        tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I32);
3119        break;
3120    case INDEX_op_qemu_ld_i64:
3121        if (TCG_TARGET_REG_BITS == 64) {
3122            tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I64);
3123        } else {
3124            tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I64);
3125        }
3126        break;
3127    case INDEX_op_qemu_ld_i128:
3128        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3129        tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I128);
3130        break;
3131
3132    case INDEX_op_qemu_st_i32:
3133    case INDEX_op_qemu_st8_i32:
3134        tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I32);
3135        break;
3136    case INDEX_op_qemu_st_i64:
3137        if (TCG_TARGET_REG_BITS == 64) {
3138            tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I64);
3139        } else {
3140            tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I64);
3141        }
3142        break;
3143    case INDEX_op_qemu_st_i128:
3144        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3145        tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I128);
3146        break;
3147
3148    OP_32_64(mulu2):
3149        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
3150        break;
3151    OP_32_64(add2):
3152        if (const_args[4]) {
3153            tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
3154        } else {
3155            tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
3156        }
3157        if (const_args[5]) {
3158            tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
3159        } else {
3160            tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
3161        }
3162        break;
3163    OP_32_64(sub2):
3164        if (const_args[4]) {
3165            tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
3166        } else {
3167            tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
3168        }
3169        if (const_args[5]) {
3170            tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
3171        } else {
3172            tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
3173        }
3174        break;
3175
3176#if TCG_TARGET_REG_BITS == 32
3177    case INDEX_op_brcond2_i32:
3178        tcg_out_brcond2(s, args, const_args, 0);
3179        break;
3180    case INDEX_op_setcond2_i32:
3181        tcg_out_setcond2(s, args, const_args);
3182        break;
3183#else /* TCG_TARGET_REG_BITS == 64 */
3184    case INDEX_op_ld32s_i64:
3185        tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
3186        break;
3187    case INDEX_op_ld_i64:
3188        tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
3189        break;
3190    case INDEX_op_st_i64:
3191        if (const_args[0]) {
3192            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
3193            tcg_out32(s, a0);
3194        } else {
3195            tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
3196        }
3197        break;
3198
3199    case INDEX_op_bswap64_i64:
3200        tcg_out_bswap64(s, a0);
3201        break;
3202    case INDEX_op_extrh_i64_i32:
3203        tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
3204        break;
3205#endif
3206
3207    OP_32_64(deposit):
3208        if (args[3] == 0 && args[4] == 8) {
3209            /* load bits 0..7 */
3210            if (const_a2) {
3211                tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0),
3212                            0, a0, 0);
3213                tcg_out8(s, a2);
3214            } else {
3215                tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
3216            }
3217        } else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) {
3218            /* load bits 8..15 */
3219            if (const_a2) {
3220                tcg_out8(s, OPC_MOVB_Ib + a0 + 4);
3221                tcg_out8(s, a2);
3222            } else {
3223                tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
3224            }
3225        } else if (args[3] == 0 && args[4] == 16) {
3226            /* load bits 0..15 */
3227            if (const_a2) {
3228                tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0),
3229                            0, a0, 0);
3230                tcg_out16(s, a2);
3231            } else {
3232                tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
3233            }
3234        } else {
3235            g_assert_not_reached();
3236        }
3237        break;
3238
3239    case INDEX_op_extract_i64:
3240        if (a2 + args[3] == 32) {
3241            if (a2 == 0) {
3242                tcg_out_ext32u(s, a0, a1);
3243                break;
3244            }
3245            /* This is a 32-bit zero-extending right shift.  */
3246            tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
3247            tcg_out_shifti(s, SHIFT_SHR, a0, a2);
3248            break;
3249        }
3250        /* FALLTHRU */
3251    case INDEX_op_extract_i32:
3252        if (a2 == 0 && args[3] == 8) {
3253            tcg_out_ext8u(s, a0, a1);
3254        } else if (a2 == 0 && args[3] == 16) {
3255            tcg_out_ext16u(s, a0, a1);
3256        } else if (a2 == 8 && args[3] == 8) {
3257            /*
3258             * On the off-chance that we can use the high-byte registers.
3259             * Otherwise we emit the same ext16 + shift pattern that we
3260             * would have gotten from the normal tcg-op.c expansion.
3261             */
3262            if (a1 < 4 && a0 < 8) {
3263                tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
3264            } else {
3265                tcg_out_ext16u(s, a0, a1);
3266                tcg_out_shifti(s, SHIFT_SHR, a0, 8);
3267            }
3268        } else {
3269            g_assert_not_reached();
3270        }
3271        break;
3272
3273    case INDEX_op_sextract_i64:
3274        if (a2 == 0 && args[3] == 8) {
3275            tcg_out_ext8s(s, TCG_TYPE_I64, a0, a1);
3276        } else if (a2 == 0 && args[3] == 16) {
3277            tcg_out_ext16s(s, TCG_TYPE_I64, a0, a1);
3278        } else if (a2 == 0 && args[3] == 32) {
3279            tcg_out_ext32s(s, a0, a1);
3280        } else {
3281            g_assert_not_reached();
3282        }
3283        break;
3284
3285    case INDEX_op_sextract_i32:
3286        if (a2 == 0 && args[3] == 8) {
3287            tcg_out_ext8s(s, TCG_TYPE_I32, a0, a1);
3288        } else if (a2 == 0 && args[3] == 16) {
3289            tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
3290        } else if (a2 == 8 && args[3] == 8) {
3291            if (a1 < 4 && a0 < 8) {
3292                tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
3293            } else {
3294                tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
3295                tcg_out_shifti(s, SHIFT_SAR, a0, 8);
3296            }
3297        } else {
3298            g_assert_not_reached();
3299        }
3300        break;
3301
3302    OP_32_64(extract2):
3303        /* Note that SHRD outputs to the r/m operand.  */
3304        tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
3305        tcg_out8(s, args[3]);
3306        break;
3307
3308    case INDEX_op_mb:
3309        tcg_out_mb(s, a0);
3310        break;
3311    case INDEX_op_call:     /* Always emitted via tcg_out_call.  */
3312    case INDEX_op_exit_tb:  /* Always emitted via tcg_out_exit_tb.  */
3313    case INDEX_op_goto_tb:  /* Always emitted via tcg_out_goto_tb.  */
3314    case INDEX_op_ext_i32_i64:  /* Always emitted via tcg_reg_alloc_op.  */
3315    case INDEX_op_extu_i32_i64:
3316    case INDEX_op_extrl_i64_i32:
3317    default:
3318        g_assert_not_reached();
3319    }
3320
3321#undef OP_32_64
3322}
3323
3324static int const umin_insn[4] = {
3325    OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ
3326};
3327
3328static int const umax_insn[4] = {
3329    OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ
3330};
3331
3332static bool tcg_out_cmp_vec_noinv(TCGContext *s, TCGType type, unsigned vece,
3333                                  TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
3334{
3335    static int const cmpeq_insn[4] = {
3336        OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
3337    };
3338    static int const cmpgt_insn[4] = {
3339        OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
3340    };
3341
3342    enum {
3343        NEED_INV  = 1,
3344        NEED_SWAP = 2,
3345        NEED_UMIN = 4,
3346        NEED_UMAX = 8,
3347        INVALID   = 16,
3348    };
3349    static const uint8_t cond_fixup[16] = {
3350        [0 ... 15] = INVALID,
3351        [TCG_COND_EQ] = 0,
3352        [TCG_COND_GT] = 0,
3353        [TCG_COND_NE] = NEED_INV,
3354        [TCG_COND_LE] = NEED_INV,
3355        [TCG_COND_LT] = NEED_SWAP,
3356        [TCG_COND_GE] = NEED_SWAP | NEED_INV,
3357        [TCG_COND_LEU] = NEED_UMIN,
3358        [TCG_COND_GTU] = NEED_UMIN | NEED_INV,
3359        [TCG_COND_GEU] = NEED_UMAX,
3360        [TCG_COND_LTU] = NEED_UMAX | NEED_INV,
3361    };
3362    int fixup = cond_fixup[cond];
3363
3364    assert(!(fixup & INVALID));
3365
3366    if (fixup & NEED_INV) {
3367        cond = tcg_invert_cond(cond);
3368    }
3369
3370    if (fixup & NEED_SWAP) {
3371        TCGReg swap = v1;
3372        v1 = v2;
3373        v2 = swap;
3374        cond = tcg_swap_cond(cond);
3375    }
3376
3377    if (fixup & (NEED_UMIN | NEED_UMAX)) {
3378        int op = (fixup & NEED_UMIN ? umin_insn[vece] : umax_insn[vece]);
3379
3380        /* avx2 does not have 64-bit min/max; adjusted during expand. */
3381        assert(vece <= MO_32);
3382
3383        tcg_out_vex_modrm_type(s, op, TCG_TMP_VEC, v1, v2, type);
3384        v2 = TCG_TMP_VEC;
3385        cond = TCG_COND_EQ;
3386    }
3387
3388    switch (cond) {
3389    case TCG_COND_EQ:
3390        tcg_out_vex_modrm_type(s, cmpeq_insn[vece], v0, v1, v2, type);
3391        break;
3392    case TCG_COND_GT:
3393        tcg_out_vex_modrm_type(s, cmpgt_insn[vece], v0, v1, v2, type);
3394        break;
3395    default:
3396        g_assert_not_reached();
3397    }
3398    return fixup & NEED_INV;
3399}
3400
3401static void tcg_out_cmp_vec_k1(TCGContext *s, TCGType type, unsigned vece,
3402                               TCGReg v1, TCGReg v2, TCGCond cond)
3403{
3404    static const int cmpm_insn[2][4] = {
3405        { OPC_VPCMPB, OPC_VPCMPW, OPC_VPCMPD, OPC_VPCMPQ },
3406        { OPC_VPCMPUB, OPC_VPCMPUW, OPC_VPCMPUD, OPC_VPCMPUQ }
3407    };
3408    static const int testm_insn[4] = {
3409        OPC_VPTESTMB, OPC_VPTESTMW, OPC_VPTESTMD, OPC_VPTESTMQ
3410    };
3411    static const int testnm_insn[4] = {
3412        OPC_VPTESTNMB, OPC_VPTESTNMW, OPC_VPTESTNMD, OPC_VPTESTNMQ
3413    };
3414
3415    static const int cond_ext[16] = {
3416        [TCG_COND_EQ] = 0,
3417        [TCG_COND_NE] = 4,
3418        [TCG_COND_LT] = 1,
3419        [TCG_COND_LTU] = 1,
3420        [TCG_COND_LE] = 2,
3421        [TCG_COND_LEU] = 2,
3422        [TCG_COND_NEVER] = 3,
3423        [TCG_COND_GE] = 5,
3424        [TCG_COND_GEU] = 5,
3425        [TCG_COND_GT] = 6,
3426        [TCG_COND_GTU] = 6,
3427        [TCG_COND_ALWAYS] = 7,
3428    };
3429
3430    switch (cond) {
3431    case TCG_COND_TSTNE:
3432        tcg_out_vex_modrm_type(s, testm_insn[vece], /* k1 */ 1, v1, v2, type);
3433        break;
3434    case TCG_COND_TSTEQ:
3435        tcg_out_vex_modrm_type(s, testnm_insn[vece], /* k1 */ 1, v1, v2, type);
3436        break;
3437    default:
3438        tcg_out_vex_modrm_type(s, cmpm_insn[is_unsigned_cond(cond)][vece],
3439                               /* k1 */ 1, v1, v2, type);
3440        tcg_out8(s, cond_ext[cond]);
3441        break;
3442    }
3443}
3444
3445static void tcg_out_k1_to_vec(TCGContext *s, TCGType type,
3446                              unsigned vece, TCGReg dest)
3447{
3448    static const int movm_insn[] = {
3449        OPC_VPMOVM2B, OPC_VPMOVM2W, OPC_VPMOVM2D, OPC_VPMOVM2Q
3450    };
3451    tcg_out_vex_modrm_type(s, movm_insn[vece], dest, 0, /* k1 */ 1, type);
3452}
3453
3454static void tcg_out_cmp_vec(TCGContext *s, TCGType type, unsigned vece,
3455                            TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
3456{
3457    /*
3458     * With avx512, we have a complete set of comparisons into mask.
3459     * Unless there's a single insn expansion for the comparision,
3460     * expand via a mask in k1.
3461     */
3462    if ((vece <= MO_16 ? have_avx512bw : have_avx512dq)
3463        && cond != TCG_COND_EQ
3464        && cond != TCG_COND_LT
3465        && cond != TCG_COND_GT) {
3466        tcg_out_cmp_vec_k1(s, type, vece, v1, v2, cond);
3467        tcg_out_k1_to_vec(s, type, vece, v0);
3468        return;
3469    }
3470
3471    if (tcg_out_cmp_vec_noinv(s, type, vece, v0, v1, v2, cond)) {
3472        tcg_out_dupi_vec(s, type, vece, TCG_TMP_VEC, -1);
3473        tcg_out_vex_modrm_type(s, OPC_PXOR, v0, v0, TCG_TMP_VEC, type);
3474    }
3475}
3476
3477static void tcg_out_cmpsel_vec_k1(TCGContext *s, TCGType type, unsigned vece,
3478                                  TCGReg v0, TCGReg c1, TCGReg c2,
3479                                  TCGReg v3, TCGReg v4, TCGCond cond)
3480{
3481    static const int vpblendm_insn[] = {
3482        OPC_VPBLENDMB, OPC_VPBLENDMW, OPC_VPBLENDMD, OPC_VPBLENDMQ
3483    };
3484    bool z = false;
3485
3486    /* Swap to place constant in V4 to take advantage of zero-masking. */
3487    if (!v3) {
3488        z = true;
3489        v3 = v4;
3490        cond = tcg_invert_cond(cond);
3491    }
3492
3493    tcg_out_cmp_vec_k1(s, type, vece, c1, c2, cond);
3494    tcg_out_evex_modrm_type(s, vpblendm_insn[vece], v0, v4, v3,
3495                            /* k1 */1, z, type);
3496}
3497
3498static void tcg_out_cmpsel_vec(TCGContext *s, TCGType type, unsigned vece,
3499                               TCGReg v0, TCGReg c1, TCGReg c2,
3500                               TCGReg v3, TCGReg v4, TCGCond cond)
3501{
3502    bool inv;
3503
3504    if (vece <= MO_16 ? have_avx512bw : have_avx512vl) {
3505        tcg_out_cmpsel_vec_k1(s, type, vece, v0, c1, c2, v3, v4, cond);
3506        return;
3507    }
3508
3509    inv = tcg_out_cmp_vec_noinv(s, type, vece, TCG_TMP_VEC, c1, c2, cond);
3510
3511    /*
3512     * Since XMM0 is 16, the only way we get 0 into V3
3513     * is via the constant zero constraint.
3514     */
3515    if (!v3) {
3516        if (inv) {
3517            tcg_out_vex_modrm_type(s, OPC_PAND, v0, TCG_TMP_VEC, v4, type);
3518        } else {
3519            tcg_out_vex_modrm_type(s, OPC_PANDN, v0, TCG_TMP_VEC, v4, type);
3520        }
3521    } else {
3522        if (inv) {
3523            TCGReg swap = v3;
3524            v3 = v4;
3525            v4 = swap;
3526        }
3527        tcg_out_vex_modrm_type(s, OPC_VPBLENDVB, v0, v4, v3, type);
3528        tcg_out8(s, (TCG_TMP_VEC - TCG_REG_XMM0) << 4);
3529    }
3530}
3531
3532static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
3533                           unsigned vecl, unsigned vece,
3534                           const TCGArg args[TCG_MAX_OP_ARGS],
3535                           const int const_args[TCG_MAX_OP_ARGS])
3536{
3537    static int const add_insn[4] = {
3538        OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
3539    };
3540    static int const ssadd_insn[4] = {
3541        OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
3542    };
3543    static int const usadd_insn[4] = {
3544        OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
3545    };
3546    static int const sub_insn[4] = {
3547        OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
3548    };
3549    static int const sssub_insn[4] = {
3550        OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
3551    };
3552    static int const ussub_insn[4] = {
3553        OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
3554    };
3555    static int const mul_insn[4] = {
3556        OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ
3557    };
3558    static int const shift_imm_insn[4] = {
3559        OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
3560    };
3561    static int const punpckl_insn[4] = {
3562        OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
3563    };
3564    static int const punpckh_insn[4] = {
3565        OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
3566    };
3567    static int const packss_insn[4] = {
3568        OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
3569    };
3570    static int const packus_insn[4] = {
3571        OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
3572    };
3573    static int const smin_insn[4] = {
3574        OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ
3575    };
3576    static int const smax_insn[4] = {
3577        OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ
3578    };
3579    static int const rotlv_insn[4] = {
3580        OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ
3581    };
3582    static int const rotrv_insn[4] = {
3583        OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ
3584    };
3585    static int const shlv_insn[4] = {
3586        OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ
3587    };
3588    static int const shrv_insn[4] = {
3589        OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ
3590    };
3591    static int const sarv_insn[4] = {
3592        OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ
3593    };
3594    static int const shls_insn[4] = {
3595        OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
3596    };
3597    static int const shrs_insn[4] = {
3598        OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
3599    };
3600    static int const sars_insn[4] = {
3601        OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ
3602    };
3603    static int const vpshldi_insn[4] = {
3604        OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ
3605    };
3606    static int const vpshldv_insn[4] = {
3607        OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ
3608    };
3609    static int const vpshrdv_insn[4] = {
3610        OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ
3611    };
3612    static int const abs_insn[4] = {
3613        OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ
3614    };
3615
3616    TCGType type = vecl + TCG_TYPE_V64;
3617    int insn, sub;
3618    TCGArg a0, a1, a2, a3;
3619
3620    a0 = args[0];
3621    a1 = args[1];
3622    a2 = args[2];
3623
3624    switch (opc) {
3625    case INDEX_op_add_vec:
3626        insn = add_insn[vece];
3627        goto gen_simd;
3628    case INDEX_op_ssadd_vec:
3629        insn = ssadd_insn[vece];
3630        goto gen_simd;
3631    case INDEX_op_usadd_vec:
3632        insn = usadd_insn[vece];
3633        goto gen_simd;
3634    case INDEX_op_sub_vec:
3635        insn = sub_insn[vece];
3636        goto gen_simd;
3637    case INDEX_op_sssub_vec:
3638        insn = sssub_insn[vece];
3639        goto gen_simd;
3640    case INDEX_op_ussub_vec:
3641        insn = ussub_insn[vece];
3642        goto gen_simd;
3643    case INDEX_op_mul_vec:
3644        insn = mul_insn[vece];
3645        goto gen_simd;
3646    case INDEX_op_and_vec:
3647        insn = OPC_PAND;
3648        goto gen_simd;
3649    case INDEX_op_or_vec:
3650        insn = OPC_POR;
3651        goto gen_simd;
3652    case INDEX_op_xor_vec:
3653        insn = OPC_PXOR;
3654        goto gen_simd;
3655    case INDEX_op_smin_vec:
3656        insn = smin_insn[vece];
3657        goto gen_simd;
3658    case INDEX_op_umin_vec:
3659        insn = umin_insn[vece];
3660        goto gen_simd;
3661    case INDEX_op_smax_vec:
3662        insn = smax_insn[vece];
3663        goto gen_simd;
3664    case INDEX_op_umax_vec:
3665        insn = umax_insn[vece];
3666        goto gen_simd;
3667    case INDEX_op_shlv_vec:
3668        insn = shlv_insn[vece];
3669        goto gen_simd;
3670    case INDEX_op_shrv_vec:
3671        insn = shrv_insn[vece];
3672        goto gen_simd;
3673    case INDEX_op_sarv_vec:
3674        insn = sarv_insn[vece];
3675        goto gen_simd;
3676    case INDEX_op_rotlv_vec:
3677        insn = rotlv_insn[vece];
3678        goto gen_simd;
3679    case INDEX_op_rotrv_vec:
3680        insn = rotrv_insn[vece];
3681        goto gen_simd;
3682    case INDEX_op_shls_vec:
3683        insn = shls_insn[vece];
3684        goto gen_simd;
3685    case INDEX_op_shrs_vec:
3686        insn = shrs_insn[vece];
3687        goto gen_simd;
3688    case INDEX_op_sars_vec:
3689        insn = sars_insn[vece];
3690        goto gen_simd;
3691    case INDEX_op_x86_punpckl_vec:
3692        insn = punpckl_insn[vece];
3693        goto gen_simd;
3694    case INDEX_op_x86_punpckh_vec:
3695        insn = punpckh_insn[vece];
3696        goto gen_simd;
3697    case INDEX_op_x86_packss_vec:
3698        insn = packss_insn[vece];
3699        goto gen_simd;
3700    case INDEX_op_x86_packus_vec:
3701        insn = packus_insn[vece];
3702        goto gen_simd;
3703    case INDEX_op_x86_vpshldv_vec:
3704        insn = vpshldv_insn[vece];
3705        a1 = a2;
3706        a2 = args[3];
3707        goto gen_simd;
3708    case INDEX_op_x86_vpshrdv_vec:
3709        insn = vpshrdv_insn[vece];
3710        a1 = a2;
3711        a2 = args[3];
3712        goto gen_simd;
3713#if TCG_TARGET_REG_BITS == 32
3714    case INDEX_op_dup2_vec:
3715        /* First merge the two 32-bit inputs to a single 64-bit element. */
3716        tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
3717        /* Then replicate the 64-bit elements across the rest of the vector. */
3718        if (type != TCG_TYPE_V64) {
3719            tcg_out_dup_vec(s, type, MO_64, a0, a0);
3720        }
3721        break;
3722#endif
3723    case INDEX_op_abs_vec:
3724        insn = abs_insn[vece];
3725        a2 = a1;
3726        a1 = 0;
3727        goto gen_simd;
3728    gen_simd:
3729        tcg_debug_assert(insn != OPC_UD2);
3730        tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
3731        break;
3732
3733    case INDEX_op_cmp_vec:
3734        tcg_out_cmp_vec(s, type, vece, a0, a1, a2, args[3]);
3735        break;
3736
3737    case INDEX_op_cmpsel_vec:
3738        tcg_out_cmpsel_vec(s, type, vece, a0, a1, a2,
3739                           args[3], args[4], args[5]);
3740        break;
3741
3742    case INDEX_op_andc_vec:
3743        insn = OPC_PANDN;
3744        tcg_out_vex_modrm_type(s, insn, a0, a2, a1, type);
3745        break;
3746
3747    case INDEX_op_shli_vec:
3748        insn = shift_imm_insn[vece];
3749        sub = 6;
3750        goto gen_shift;
3751    case INDEX_op_shri_vec:
3752        insn = shift_imm_insn[vece];
3753        sub = 2;
3754        goto gen_shift;
3755    case INDEX_op_sari_vec:
3756        if (vece == MO_64) {
3757            insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX;
3758        } else {
3759            insn = shift_imm_insn[vece];
3760        }
3761        sub = 4;
3762        goto gen_shift;
3763    case INDEX_op_rotli_vec:
3764        insn = OPC_PSHIFTD_Ib | P_EVEX;  /* VPROL[DQ] */
3765        if (vece == MO_64) {
3766            insn |= P_VEXW;
3767        }
3768        sub = 1;
3769        goto gen_shift;
3770    gen_shift:
3771        tcg_debug_assert(vece != MO_8);
3772        tcg_out_vex_modrm_type(s, insn, sub, a0, a1, type);
3773        tcg_out8(s, a2);
3774        break;
3775
3776    case INDEX_op_ld_vec:
3777        tcg_out_ld(s, type, a0, a1, a2);
3778        break;
3779    case INDEX_op_st_vec:
3780        tcg_out_st(s, type, a0, a1, a2);
3781        break;
3782    case INDEX_op_dupm_vec:
3783        tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3784        break;
3785
3786    case INDEX_op_x86_shufps_vec:
3787        insn = OPC_SHUFPS;
3788        sub = args[3];
3789        goto gen_simd_imm8;
3790    case INDEX_op_x86_blend_vec:
3791        if (vece == MO_16) {
3792            insn = OPC_PBLENDW;
3793        } else if (vece == MO_32) {
3794            insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
3795        } else {
3796            g_assert_not_reached();
3797        }
3798        sub = args[3];
3799        goto gen_simd_imm8;
3800    case INDEX_op_x86_vperm2i128_vec:
3801        insn = OPC_VPERM2I128;
3802        sub = args[3];
3803        goto gen_simd_imm8;
3804    case INDEX_op_x86_vpshldi_vec:
3805        insn = vpshldi_insn[vece];
3806        sub = args[3];
3807        goto gen_simd_imm8;
3808
3809    case INDEX_op_not_vec:
3810        insn = OPC_VPTERNLOGQ;
3811        a2 = a1;
3812        sub = 0x33; /* !B */
3813        goto gen_simd_imm8;
3814    case INDEX_op_nor_vec:
3815        insn = OPC_VPTERNLOGQ;
3816        sub = 0x11; /* norCB */
3817        goto gen_simd_imm8;
3818    case INDEX_op_nand_vec:
3819        insn = OPC_VPTERNLOGQ;
3820        sub = 0x77; /* nandCB */
3821        goto gen_simd_imm8;
3822    case INDEX_op_eqv_vec:
3823        insn = OPC_VPTERNLOGQ;
3824        sub = 0x99; /* xnorCB */
3825        goto gen_simd_imm8;
3826    case INDEX_op_orc_vec:
3827        insn = OPC_VPTERNLOGQ;
3828        sub = 0xdd; /* orB!C */
3829        goto gen_simd_imm8;
3830
3831    case INDEX_op_bitsel_vec:
3832        insn = OPC_VPTERNLOGQ;
3833        a3 = args[3];
3834        if (a0 == a1) {
3835            a1 = a2;
3836            a2 = a3;
3837            sub = 0xca; /* A?B:C */
3838        } else if (a0 == a2) {
3839            a2 = a3;
3840            sub = 0xe2; /* B?A:C */
3841        } else {
3842            tcg_out_mov(s, type, a0, a3);
3843            sub = 0xb8; /* B?C:A */
3844        }
3845        goto gen_simd_imm8;
3846
3847    gen_simd_imm8:
3848        tcg_debug_assert(insn != OPC_UD2);
3849        tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
3850        tcg_out8(s, sub);
3851        break;
3852
3853    case INDEX_op_x86_psrldq_vec:
3854        tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
3855        tcg_out8(s, a2);
3856        break;
3857
3858    case INDEX_op_mov_vec:  /* Always emitted via tcg_out_mov.  */
3859    case INDEX_op_dup_vec:  /* Always emitted via tcg_out_dup_vec.  */
3860    default:
3861        g_assert_not_reached();
3862    }
3863}
3864
3865static TCGConstraintSetIndex
3866tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags)
3867{
3868    switch (op) {
3869    case INDEX_op_goto_ptr:
3870        return C_O0_I1(r);
3871
3872    case INDEX_op_ld8u_i32:
3873    case INDEX_op_ld8u_i64:
3874    case INDEX_op_ld8s_i32:
3875    case INDEX_op_ld8s_i64:
3876    case INDEX_op_ld16u_i32:
3877    case INDEX_op_ld16u_i64:
3878    case INDEX_op_ld16s_i32:
3879    case INDEX_op_ld16s_i64:
3880    case INDEX_op_ld_i32:
3881    case INDEX_op_ld32u_i64:
3882    case INDEX_op_ld32s_i64:
3883    case INDEX_op_ld_i64:
3884        return C_O1_I1(r, r);
3885
3886    case INDEX_op_st8_i32:
3887    case INDEX_op_st8_i64:
3888        return C_O0_I2(qi, r);
3889
3890    case INDEX_op_st16_i32:
3891    case INDEX_op_st16_i64:
3892    case INDEX_op_st_i32:
3893    case INDEX_op_st32_i64:
3894        return C_O0_I2(ri, r);
3895
3896    case INDEX_op_st_i64:
3897        return C_O0_I2(re, r);
3898
3899    case INDEX_op_brcond_i32:
3900    case INDEX_op_brcond_i64:
3901        return C_O0_I2(r, reT);
3902
3903    case INDEX_op_bswap16_i32:
3904    case INDEX_op_bswap16_i64:
3905    case INDEX_op_bswap32_i32:
3906    case INDEX_op_bswap32_i64:
3907    case INDEX_op_bswap64_i64:
3908    case INDEX_op_extrh_i64_i32:
3909        return C_O1_I1(r, 0);
3910
3911    case INDEX_op_ext_i32_i64:
3912    case INDEX_op_extu_i32_i64:
3913    case INDEX_op_extrl_i64_i32:
3914    case INDEX_op_extract_i32:
3915    case INDEX_op_extract_i64:
3916    case INDEX_op_sextract_i32:
3917    case INDEX_op_sextract_i64:
3918        return C_O1_I1(r, r);
3919
3920    case INDEX_op_extract2_i32:
3921    case INDEX_op_extract2_i64:
3922        return C_O1_I2(r, 0, r);
3923
3924    case INDEX_op_deposit_i32:
3925    case INDEX_op_deposit_i64:
3926        return C_O1_I2(q, 0, qi);
3927
3928    case INDEX_op_setcond_i32:
3929    case INDEX_op_setcond_i64:
3930    case INDEX_op_negsetcond_i32:
3931    case INDEX_op_negsetcond_i64:
3932        return C_O1_I2(q, r, reT);
3933
3934    case INDEX_op_movcond_i32:
3935    case INDEX_op_movcond_i64:
3936        return C_O1_I4(r, r, reT, r, 0);
3937
3938    case INDEX_op_mulu2_i32:
3939    case INDEX_op_mulu2_i64:
3940        return C_O2_I2(a, d, a, r);
3941
3942    case INDEX_op_add2_i32:
3943    case INDEX_op_add2_i64:
3944    case INDEX_op_sub2_i32:
3945    case INDEX_op_sub2_i64:
3946        return C_N1_O1_I4(r, r, 0, 1, re, re);
3947
3948    case INDEX_op_qemu_ld_i32:
3949        return C_O1_I1(r, L);
3950
3951    case INDEX_op_qemu_st_i32:
3952        return C_O0_I2(L, L);
3953    case INDEX_op_qemu_st8_i32:
3954        return C_O0_I2(s, L);
3955
3956    case INDEX_op_qemu_ld_i64:
3957        return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L);
3958
3959    case INDEX_op_qemu_st_i64:
3960        return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L);
3961
3962    case INDEX_op_qemu_ld_i128:
3963        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3964        return C_O2_I1(r, r, L);
3965    case INDEX_op_qemu_st_i128:
3966        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3967        return C_O0_I3(L, L, L);
3968
3969    case INDEX_op_brcond2_i32:
3970        return C_O0_I4(r, r, ri, ri);
3971
3972    case INDEX_op_setcond2_i32:
3973        return C_O1_I4(r, r, r, ri, ri);
3974
3975    case INDEX_op_ld_vec:
3976    case INDEX_op_dupm_vec:
3977        return C_O1_I1(x, r);
3978
3979    case INDEX_op_st_vec:
3980        return C_O0_I2(x, r);
3981
3982    case INDEX_op_add_vec:
3983    case INDEX_op_sub_vec:
3984    case INDEX_op_mul_vec:
3985    case INDEX_op_and_vec:
3986    case INDEX_op_or_vec:
3987    case INDEX_op_xor_vec:
3988    case INDEX_op_andc_vec:
3989    case INDEX_op_orc_vec:
3990    case INDEX_op_nand_vec:
3991    case INDEX_op_nor_vec:
3992    case INDEX_op_eqv_vec:
3993    case INDEX_op_ssadd_vec:
3994    case INDEX_op_usadd_vec:
3995    case INDEX_op_sssub_vec:
3996    case INDEX_op_ussub_vec:
3997    case INDEX_op_smin_vec:
3998    case INDEX_op_umin_vec:
3999    case INDEX_op_smax_vec:
4000    case INDEX_op_umax_vec:
4001    case INDEX_op_shlv_vec:
4002    case INDEX_op_shrv_vec:
4003    case INDEX_op_sarv_vec:
4004    case INDEX_op_rotlv_vec:
4005    case INDEX_op_rotrv_vec:
4006    case INDEX_op_shls_vec:
4007    case INDEX_op_shrs_vec:
4008    case INDEX_op_sars_vec:
4009    case INDEX_op_cmp_vec:
4010    case INDEX_op_x86_shufps_vec:
4011    case INDEX_op_x86_blend_vec:
4012    case INDEX_op_x86_packss_vec:
4013    case INDEX_op_x86_packus_vec:
4014    case INDEX_op_x86_vperm2i128_vec:
4015    case INDEX_op_x86_punpckl_vec:
4016    case INDEX_op_x86_punpckh_vec:
4017    case INDEX_op_x86_vpshldi_vec:
4018#if TCG_TARGET_REG_BITS == 32
4019    case INDEX_op_dup2_vec:
4020#endif
4021        return C_O1_I2(x, x, x);
4022
4023    case INDEX_op_abs_vec:
4024    case INDEX_op_dup_vec:
4025    case INDEX_op_not_vec:
4026    case INDEX_op_shli_vec:
4027    case INDEX_op_shri_vec:
4028    case INDEX_op_sari_vec:
4029    case INDEX_op_rotli_vec:
4030    case INDEX_op_x86_psrldq_vec:
4031        return C_O1_I1(x, x);
4032
4033    case INDEX_op_x86_vpshldv_vec:
4034    case INDEX_op_x86_vpshrdv_vec:
4035        return C_O1_I3(x, 0, x, x);
4036
4037    case INDEX_op_bitsel_vec:
4038        return C_O1_I3(x, x, x, x);
4039    case INDEX_op_cmpsel_vec:
4040        return C_O1_I4(x, x, x, xO, x);
4041
4042    default:
4043        return C_NotImplemented;
4044    }
4045}
4046
4047int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
4048{
4049    switch (opc) {
4050    case INDEX_op_add_vec:
4051    case INDEX_op_sub_vec:
4052    case INDEX_op_and_vec:
4053    case INDEX_op_or_vec:
4054    case INDEX_op_xor_vec:
4055    case INDEX_op_andc_vec:
4056    case INDEX_op_orc_vec:
4057    case INDEX_op_nand_vec:
4058    case INDEX_op_nor_vec:
4059    case INDEX_op_eqv_vec:
4060    case INDEX_op_not_vec:
4061    case INDEX_op_bitsel_vec:
4062        return 1;
4063    case INDEX_op_cmp_vec:
4064    case INDEX_op_cmpsel_vec:
4065        return -1;
4066
4067    case INDEX_op_rotli_vec:
4068        return have_avx512vl && vece >= MO_32 ? 1 : -1;
4069
4070    case INDEX_op_shli_vec:
4071    case INDEX_op_shri_vec:
4072        /* We must expand the operation for MO_8.  */
4073        return vece == MO_8 ? -1 : 1;
4074
4075    case INDEX_op_sari_vec:
4076        switch (vece) {
4077        case MO_8:
4078            return -1;
4079        case MO_16:
4080        case MO_32:
4081            return 1;
4082        case MO_64:
4083            if (have_avx512vl) {
4084                return 1;
4085            }
4086            /*
4087             * We can emulate this for MO_64, but it does not pay off
4088             * unless we're producing at least 4 values.
4089             */
4090            return type >= TCG_TYPE_V256 ? -1 : 0;
4091        }
4092        return 0;
4093
4094    case INDEX_op_shls_vec:
4095    case INDEX_op_shrs_vec:
4096        return vece >= MO_16;
4097    case INDEX_op_sars_vec:
4098        switch (vece) {
4099        case MO_16:
4100        case MO_32:
4101            return 1;
4102        case MO_64:
4103            return have_avx512vl;
4104        }
4105        return 0;
4106    case INDEX_op_rotls_vec:
4107        return vece >= MO_16 ? -1 : 0;
4108
4109    case INDEX_op_shlv_vec:
4110    case INDEX_op_shrv_vec:
4111        switch (vece) {
4112        case MO_16:
4113            return have_avx512bw;
4114        case MO_32:
4115        case MO_64:
4116            return have_avx2;
4117        }
4118        return 0;
4119    case INDEX_op_sarv_vec:
4120        switch (vece) {
4121        case MO_16:
4122            return have_avx512bw;
4123        case MO_32:
4124            return have_avx2;
4125        case MO_64:
4126            return have_avx512vl;
4127        }
4128        return 0;
4129    case INDEX_op_rotlv_vec:
4130    case INDEX_op_rotrv_vec:
4131        switch (vece) {
4132        case MO_16:
4133            return have_avx512vbmi2 ? -1 : 0;
4134        case MO_32:
4135        case MO_64:
4136            return have_avx512vl ? 1 : have_avx2 ? -1 : 0;
4137        }
4138        return 0;
4139
4140    case INDEX_op_mul_vec:
4141        switch (vece) {
4142        case MO_8:
4143            return -1;
4144        case MO_64:
4145            return have_avx512dq;
4146        }
4147        return 1;
4148
4149    case INDEX_op_ssadd_vec:
4150    case INDEX_op_usadd_vec:
4151    case INDEX_op_sssub_vec:
4152    case INDEX_op_ussub_vec:
4153        return vece <= MO_16;
4154    case INDEX_op_smin_vec:
4155    case INDEX_op_smax_vec:
4156    case INDEX_op_umin_vec:
4157    case INDEX_op_umax_vec:
4158    case INDEX_op_abs_vec:
4159        return vece <= MO_32 || have_avx512vl;
4160
4161    default:
4162        return 0;
4163    }
4164}
4165
4166static void expand_vec_shi(TCGType type, unsigned vece, bool right,
4167                           TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4168{
4169    uint8_t mask;
4170
4171    tcg_debug_assert(vece == MO_8);
4172    if (right) {
4173        mask = 0xff >> imm;
4174        tcg_gen_shri_vec(MO_16, v0, v1, imm);
4175    } else {
4176        mask = 0xff << imm;
4177        tcg_gen_shli_vec(MO_16, v0, v1, imm);
4178    }
4179    tcg_gen_and_vec(MO_8, v0, v0, tcg_constant_vec(type, MO_8, mask));
4180}
4181
4182static void expand_vec_sari(TCGType type, unsigned vece,
4183                            TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4184{
4185    TCGv_vec t1, t2;
4186
4187    switch (vece) {
4188    case MO_8:
4189        /* Unpack to 16-bit, shift, and repack.  */
4190        t1 = tcg_temp_new_vec(type);
4191        t2 = tcg_temp_new_vec(type);
4192        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4193                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
4194        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4195                  tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
4196        tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
4197        tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
4198        vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
4199                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
4200        tcg_temp_free_vec(t1);
4201        tcg_temp_free_vec(t2);
4202        break;
4203
4204    case MO_64:
4205        t1 = tcg_temp_new_vec(type);
4206        if (imm <= 32) {
4207            /*
4208             * We can emulate a small sign extend by performing an arithmetic
4209             * 32-bit shift and overwriting the high half of a 64-bit logical
4210             * shift.  Note that the ISA says shift of 32 is valid, but TCG
4211             * does not, so we have to bound the smaller shift -- we get the
4212             * same result in the high half either way.
4213             */
4214            tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
4215            tcg_gen_shri_vec(MO_64, v0, v1, imm);
4216            vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
4217                      tcgv_vec_arg(v0), tcgv_vec_arg(v0),
4218                      tcgv_vec_arg(t1), 0xaa);
4219        } else {
4220            /* Otherwise we will need to use a compare vs 0 to produce
4221             * the sign-extend, shift and merge.
4222             */
4223            tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1,
4224                            tcg_constant_vec(type, MO_64, 0), v1);
4225            tcg_gen_shri_vec(MO_64, v0, v1, imm);
4226            tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
4227            tcg_gen_or_vec(MO_64, v0, v0, t1);
4228        }
4229        tcg_temp_free_vec(t1);
4230        break;
4231
4232    default:
4233        g_assert_not_reached();
4234    }
4235}
4236
4237static void expand_vec_rotli(TCGType type, unsigned vece,
4238                             TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4239{
4240    TCGv_vec t;
4241
4242    if (vece != MO_8 && have_avx512vbmi2) {
4243        vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece,
4244                  tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm);
4245        return;
4246    }
4247
4248    t = tcg_temp_new_vec(type);
4249    tcg_gen_shli_vec(vece, t, v1, imm);
4250    tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
4251    tcg_gen_or_vec(vece, v0, v0, t);
4252    tcg_temp_free_vec(t);
4253}
4254
4255static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
4256                            TCGv_vec v1, TCGv_vec sh, bool right)
4257{
4258    TCGv_vec t;
4259
4260    if (have_avx512vbmi2) {
4261        vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec,
4262                  type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1),
4263                  tcgv_vec_arg(v1), tcgv_vec_arg(sh));
4264        return;
4265    }
4266
4267    t = tcg_temp_new_vec(type);
4268    tcg_gen_dupi_vec(vece, t, 8 << vece);
4269    tcg_gen_sub_vec(vece, t, t, sh);
4270    if (right) {
4271        tcg_gen_shlv_vec(vece, t, v1, t);
4272        tcg_gen_shrv_vec(vece, v0, v1, sh);
4273    } else {
4274        tcg_gen_shrv_vec(vece, t, v1, t);
4275        tcg_gen_shlv_vec(vece, v0, v1, sh);
4276    }
4277    tcg_gen_or_vec(vece, v0, v0, t);
4278    tcg_temp_free_vec(t);
4279}
4280
4281static void expand_vec_rotls(TCGType type, unsigned vece,
4282                             TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
4283{
4284    TCGv_vec t = tcg_temp_new_vec(type);
4285
4286    tcg_debug_assert(vece != MO_8);
4287
4288    if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) {
4289        tcg_gen_dup_i32_vec(vece, t, lsh);
4290        if (vece >= MO_32) {
4291            tcg_gen_rotlv_vec(vece, v0, v1, t);
4292        } else {
4293            expand_vec_rotv(type, vece, v0, v1, t, false);
4294        }
4295    } else {
4296        TCGv_i32 rsh = tcg_temp_new_i32();
4297
4298        tcg_gen_neg_i32(rsh, lsh);
4299        tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
4300        tcg_gen_shls_vec(vece, t, v1, lsh);
4301        tcg_gen_shrs_vec(vece, v0, v1, rsh);
4302        tcg_gen_or_vec(vece, v0, v0, t);
4303
4304        tcg_temp_free_i32(rsh);
4305    }
4306
4307    tcg_temp_free_vec(t);
4308}
4309
4310static void expand_vec_mul(TCGType type, unsigned vece,
4311                           TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
4312{
4313    TCGv_vec t1, t2, t3, t4, zero;
4314
4315    tcg_debug_assert(vece == MO_8);
4316
4317    /*
4318     * Unpack v1 bytes to words, 0 | x.
4319     * Unpack v2 bytes to words, y | 0.
4320     * This leaves the 8-bit result, x * y, with 8 bits of right padding.
4321     * Shift logical right by 8 bits to clear the high 8 bytes before
4322     * using an unsigned saturated pack.
4323     *
4324     * The difference between the V64, V128 and V256 cases is merely how
4325     * we distribute the expansion between temporaries.
4326     */
4327    switch (type) {
4328    case TCG_TYPE_V64:
4329        t1 = tcg_temp_new_vec(TCG_TYPE_V128);
4330        t2 = tcg_temp_new_vec(TCG_TYPE_V128);
4331        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
4332        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
4333                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4334        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
4335                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4336        tcg_gen_mul_vec(MO_16, t1, t1, t2);
4337        tcg_gen_shri_vec(MO_16, t1, t1, 8);
4338        vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
4339                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
4340        tcg_temp_free_vec(t1);
4341        tcg_temp_free_vec(t2);
4342        break;
4343
4344    case TCG_TYPE_V128:
4345    case TCG_TYPE_V256:
4346        t1 = tcg_temp_new_vec(type);
4347        t2 = tcg_temp_new_vec(type);
4348        t3 = tcg_temp_new_vec(type);
4349        t4 = tcg_temp_new_vec(type);
4350        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
4351        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4352                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4353        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4354                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4355        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4356                  tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4357        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4358                  tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4359        tcg_gen_mul_vec(MO_16, t1, t1, t2);
4360        tcg_gen_mul_vec(MO_16, t3, t3, t4);
4361        tcg_gen_shri_vec(MO_16, t1, t1, 8);
4362        tcg_gen_shri_vec(MO_16, t3, t3, 8);
4363        vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
4364                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
4365        tcg_temp_free_vec(t1);
4366        tcg_temp_free_vec(t2);
4367        tcg_temp_free_vec(t3);
4368        tcg_temp_free_vec(t4);
4369        break;
4370
4371    default:
4372        g_assert_not_reached();
4373    }
4374}
4375
4376static TCGCond expand_vec_cond(TCGType type, unsigned vece,
4377                               TCGArg *a1, TCGArg *a2, TCGCond cond)
4378{
4379    /*
4380     * Without AVX512, there are no 64-bit unsigned comparisons.
4381     * We must bias the inputs so that they become signed.
4382     * All other swapping and inversion are handled during code generation.
4383     */
4384    if (vece == MO_64 && !have_avx512dq && is_unsigned_cond(cond)) {
4385        TCGv_vec v1 = temp_tcgv_vec(arg_temp(*a1));
4386        TCGv_vec v2 = temp_tcgv_vec(arg_temp(*a2));
4387        TCGv_vec t1 = tcg_temp_new_vec(type);
4388        TCGv_vec t2 = tcg_temp_new_vec(type);
4389        TCGv_vec t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1));
4390
4391        tcg_gen_sub_vec(vece, t1, v1, t3);
4392        tcg_gen_sub_vec(vece, t2, v2, t3);
4393        *a1 = tcgv_vec_arg(t1);
4394        *a2 = tcgv_vec_arg(t2);
4395        cond = tcg_signed_cond(cond);
4396    }
4397    return cond;
4398}
4399
4400static void expand_vec_cmp(TCGType type, unsigned vece, TCGArg a0,
4401                           TCGArg a1, TCGArg a2, TCGCond cond)
4402{
4403    cond = expand_vec_cond(type, vece, &a1, &a2, cond);
4404    /* Expand directly; do not recurse.  */
4405    vec_gen_4(INDEX_op_cmp_vec, type, vece, a0, a1, a2, cond);
4406}
4407
4408static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGArg a0,
4409                              TCGArg a1, TCGArg a2,
4410                              TCGArg a3, TCGArg a4, TCGCond cond)
4411{
4412    cond = expand_vec_cond(type, vece, &a1, &a2, cond);
4413    /* Expand directly; do not recurse.  */
4414    vec_gen_6(INDEX_op_cmpsel_vec, type, vece, a0, a1, a2, a3, a4, cond);
4415}
4416
4417void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
4418                       TCGArg a0, ...)
4419{
4420    va_list va;
4421    TCGArg a1, a2, a3, a4, a5;
4422    TCGv_vec v0, v1, v2;
4423
4424    va_start(va, a0);
4425    a1 = va_arg(va, TCGArg);
4426    a2 = va_arg(va, TCGArg);
4427    v0 = temp_tcgv_vec(arg_temp(a0));
4428    v1 = temp_tcgv_vec(arg_temp(a1));
4429
4430    switch (opc) {
4431    case INDEX_op_shli_vec:
4432        expand_vec_shi(type, vece, false, v0, v1, a2);
4433        break;
4434    case INDEX_op_shri_vec:
4435        expand_vec_shi(type, vece, true, v0, v1, a2);
4436        break;
4437    case INDEX_op_sari_vec:
4438        expand_vec_sari(type, vece, v0, v1, a2);
4439        break;
4440
4441    case INDEX_op_rotli_vec:
4442        expand_vec_rotli(type, vece, v0, v1, a2);
4443        break;
4444
4445    case INDEX_op_rotls_vec:
4446        expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
4447        break;
4448
4449    case INDEX_op_rotlv_vec:
4450        v2 = temp_tcgv_vec(arg_temp(a2));
4451        expand_vec_rotv(type, vece, v0, v1, v2, false);
4452        break;
4453    case INDEX_op_rotrv_vec:
4454        v2 = temp_tcgv_vec(arg_temp(a2));
4455        expand_vec_rotv(type, vece, v0, v1, v2, true);
4456        break;
4457
4458    case INDEX_op_mul_vec:
4459        v2 = temp_tcgv_vec(arg_temp(a2));
4460        expand_vec_mul(type, vece, v0, v1, v2);
4461        break;
4462
4463    case INDEX_op_cmp_vec:
4464        a3 = va_arg(va, TCGArg);
4465        expand_vec_cmp(type, vece, a0, a1, a2, a3);
4466        break;
4467
4468    case INDEX_op_cmpsel_vec:
4469        a3 = va_arg(va, TCGArg);
4470        a4 = va_arg(va, TCGArg);
4471        a5 = va_arg(va, TCGArg);
4472        expand_vec_cmpsel(type, vece, a0, a1, a2, a3, a4, a5);
4473        break;
4474
4475    default:
4476        break;
4477    }
4478
4479    va_end(va);
4480}
4481
4482static const int tcg_target_callee_save_regs[] = {
4483#if TCG_TARGET_REG_BITS == 64
4484    TCG_REG_RBP,
4485    TCG_REG_RBX,
4486#if defined(_WIN64)
4487    TCG_REG_RDI,
4488    TCG_REG_RSI,
4489#endif
4490    TCG_REG_R12,
4491    TCG_REG_R13,
4492    TCG_REG_R14, /* Currently used for the global env. */
4493    TCG_REG_R15,
4494#else
4495    TCG_REG_EBP, /* Currently used for the global env. */
4496    TCG_REG_EBX,
4497    TCG_REG_ESI,
4498    TCG_REG_EDI,
4499#endif
4500};
4501
4502/* Compute frame size via macros, to share between tcg_target_qemu_prologue
4503   and tcg_register_jit.  */
4504
4505#define PUSH_SIZE \
4506    ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
4507     * (TCG_TARGET_REG_BITS / 8))
4508
4509#define FRAME_SIZE \
4510    ((PUSH_SIZE \
4511      + TCG_STATIC_CALL_ARGS_SIZE \
4512      + CPU_TEMP_BUF_NLONGS * sizeof(long) \
4513      + TCG_TARGET_STACK_ALIGN - 1) \
4514     & ~(TCG_TARGET_STACK_ALIGN - 1))
4515
4516/* Generate global QEMU prologue and epilogue code */
4517static void tcg_target_qemu_prologue(TCGContext *s)
4518{
4519    int i, stack_addend;
4520
4521    /* TB prologue */
4522
4523    /* Reserve some stack space, also for TCG temps.  */
4524    stack_addend = FRAME_SIZE - PUSH_SIZE;
4525    tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
4526                  CPU_TEMP_BUF_NLONGS * sizeof(long));
4527
4528    /* Save all callee saved registers.  */
4529    for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
4530        tcg_out_push(s, tcg_target_callee_save_regs[i]);
4531    }
4532
4533    if (!tcg_use_softmmu && guest_base) {
4534        int seg = setup_guest_base_seg();
4535        if (seg != 0) {
4536            x86_guest_base.seg = seg;
4537        } else if (guest_base == (int32_t)guest_base) {
4538            x86_guest_base.ofs = guest_base;
4539        } else {
4540            assert(TCG_TARGET_REG_BITS == 64);
4541            /* Choose R12 because, as a base, it requires a SIB byte. */
4542            x86_guest_base.index = TCG_REG_R12;
4543            tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base);
4544            tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index);
4545        }
4546    }
4547
4548    if (TCG_TARGET_REG_BITS == 32) {
4549        tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
4550                   (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
4551        tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4552        /* jmp *tb.  */
4553        tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
4554                             (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
4555                             + stack_addend);
4556    } else {
4557        tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
4558        tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4559        /* jmp *tb.  */
4560        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
4561    }
4562
4563    /*
4564     * Return path for goto_ptr. Set return value to 0, a-la exit_tb,
4565     * and fall through to the rest of the epilogue.
4566     */
4567    tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
4568    tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
4569
4570    /* TB epilogue */
4571    tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
4572
4573    tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
4574
4575    if (have_avx2) {
4576        tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
4577    }
4578    for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
4579        tcg_out_pop(s, tcg_target_callee_save_regs[i]);
4580    }
4581    tcg_out_opc(s, OPC_RET, 0, 0, 0);
4582}
4583
4584static void tcg_out_tb_start(TCGContext *s)
4585{
4586    /* nothing to do */
4587}
4588
4589static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
4590{
4591    memset(p, 0x90, count);
4592}
4593
4594static void tcg_target_init(TCGContext *s)
4595{
4596    tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
4597    if (TCG_TARGET_REG_BITS == 64) {
4598        tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
4599    }
4600    if (have_avx1) {
4601        tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
4602        tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
4603    }
4604    if (have_avx2) {
4605        tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
4606    }
4607
4608    tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
4609    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
4610    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
4611    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
4612    if (TCG_TARGET_REG_BITS == 64) {
4613#if !defined(_WIN64)
4614        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
4615        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
4616#endif
4617        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
4618        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
4619        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
4620        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
4621    }
4622
4623    s->reserved_regs = 0;
4624    tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
4625    tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC);
4626#ifdef _WIN64
4627    /* These are call saved, and we don't save them, so don't use them. */
4628    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6);
4629    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7);
4630    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8);
4631    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9);
4632    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10);
4633    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11);
4634    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12);
4635    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13);
4636    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14);
4637    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15);
4638#endif
4639}
4640
4641typedef struct {
4642    DebugFrameHeader h;
4643    uint8_t fde_def_cfa[4];
4644    uint8_t fde_reg_ofs[14];
4645} DebugFrame;
4646
4647/* We're expecting a 2 byte uleb128 encoded value.  */
4648QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
4649
4650#if !defined(__ELF__)
4651    /* Host machine without ELF. */
4652#elif TCG_TARGET_REG_BITS == 64
4653#define ELF_HOST_MACHINE EM_X86_64
4654static const DebugFrame debug_frame = {
4655    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4656    .h.cie.id = -1,
4657    .h.cie.version = 1,
4658    .h.cie.code_align = 1,
4659    .h.cie.data_align = 0x78,             /* sleb128 -8 */
4660    .h.cie.return_column = 16,
4661
4662    /* Total FDE size does not include the "len" member.  */
4663    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4664
4665    .fde_def_cfa = {
4666        12, 7,                          /* DW_CFA_def_cfa %rsp, ... */
4667        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4668        (FRAME_SIZE >> 7)
4669    },
4670    .fde_reg_ofs = {
4671        0x90, 1,                        /* DW_CFA_offset, %rip, -8 */
4672        /* The following ordering must match tcg_target_callee_save_regs.  */
4673        0x86, 2,                        /* DW_CFA_offset, %rbp, -16 */
4674        0x83, 3,                        /* DW_CFA_offset, %rbx, -24 */
4675        0x8c, 4,                        /* DW_CFA_offset, %r12, -32 */
4676        0x8d, 5,                        /* DW_CFA_offset, %r13, -40 */
4677        0x8e, 6,                        /* DW_CFA_offset, %r14, -48 */
4678        0x8f, 7,                        /* DW_CFA_offset, %r15, -56 */
4679    }
4680};
4681#else
4682#define ELF_HOST_MACHINE EM_386
4683static const DebugFrame debug_frame = {
4684    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4685    .h.cie.id = -1,
4686    .h.cie.version = 1,
4687    .h.cie.code_align = 1,
4688    .h.cie.data_align = 0x7c,             /* sleb128 -4 */
4689    .h.cie.return_column = 8,
4690
4691    /* Total FDE size does not include the "len" member.  */
4692    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4693
4694    .fde_def_cfa = {
4695        12, 4,                          /* DW_CFA_def_cfa %esp, ... */
4696        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4697        (FRAME_SIZE >> 7)
4698    },
4699    .fde_reg_ofs = {
4700        0x88, 1,                        /* DW_CFA_offset, %eip, -4 */
4701        /* The following ordering must match tcg_target_callee_save_regs.  */
4702        0x85, 2,                        /* DW_CFA_offset, %ebp, -8 */
4703        0x83, 3,                        /* DW_CFA_offset, %ebx, -12 */
4704        0x86, 4,                        /* DW_CFA_offset, %esi, -16 */
4705        0x87, 5,                        /* DW_CFA_offset, %edi, -20 */
4706    }
4707};
4708#endif
4709
4710#if defined(ELF_HOST_MACHINE)
4711void tcg_register_jit(const void *buf, size_t buf_size)
4712{
4713    tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
4714}
4715#endif
4716