xref: /openbmc/qemu/tcg/i386/tcg-target.c.inc (revision 97218ae918b1504a63623130f3dc8f4b423b5f1b)
1/*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25/* Used for function call generation. */
26#define TCG_TARGET_STACK_ALIGN 16
27#if defined(_WIN64)
28#define TCG_TARGET_CALL_STACK_OFFSET 32
29#else
30#define TCG_TARGET_CALL_STACK_OFFSET 0
31#endif
32#define TCG_TARGET_CALL_ARG_I32      TCG_CALL_ARG_NORMAL
33#define TCG_TARGET_CALL_ARG_I64      TCG_CALL_ARG_NORMAL
34#if defined(_WIN64)
35# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_BY_REF
36# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_BY_VEC
37#elif TCG_TARGET_REG_BITS == 64
38# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_NORMAL
39# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_NORMAL
40#else
41# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_NORMAL
42# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_BY_REF
43#endif
44
45#ifdef CONFIG_DEBUG_TCG
46static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
47#if TCG_TARGET_REG_BITS == 64
48    "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
49#else
50    "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
51#endif
52    "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
53    "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
54#if TCG_TARGET_REG_BITS == 64
55    "%xmm8", "%xmm9", "%xmm10", "%xmm11",
56    "%xmm12", "%xmm13", "%xmm14", "%xmm15",
57#endif
58};
59#endif
60
61static const int tcg_target_reg_alloc_order[] = {
62#if TCG_TARGET_REG_BITS == 64
63    TCG_REG_RBP,
64    TCG_REG_RBX,
65    TCG_REG_R12,
66    TCG_REG_R13,
67    TCG_REG_R14,
68    TCG_REG_R15,
69    TCG_REG_R10,
70    TCG_REG_R11,
71    TCG_REG_R9,
72    TCG_REG_R8,
73    TCG_REG_RCX,
74    TCG_REG_RDX,
75    TCG_REG_RSI,
76    TCG_REG_RDI,
77    TCG_REG_RAX,
78#else
79    TCG_REG_EBX,
80    TCG_REG_ESI,
81    TCG_REG_EDI,
82    TCG_REG_EBP,
83    TCG_REG_ECX,
84    TCG_REG_EDX,
85    TCG_REG_EAX,
86#endif
87    TCG_REG_XMM0,
88    TCG_REG_XMM1,
89    TCG_REG_XMM2,
90    TCG_REG_XMM3,
91    TCG_REG_XMM4,
92    TCG_REG_XMM5,
93#ifndef _WIN64
94    /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
95       any of them.  Therefore only allow xmm0-xmm5 to be allocated.  */
96    TCG_REG_XMM6,
97    TCG_REG_XMM7,
98#if TCG_TARGET_REG_BITS == 64
99    TCG_REG_XMM8,
100    TCG_REG_XMM9,
101    TCG_REG_XMM10,
102    TCG_REG_XMM11,
103    TCG_REG_XMM12,
104    TCG_REG_XMM13,
105    TCG_REG_XMM14,
106    TCG_REG_XMM15,
107#endif
108#endif
109};
110
111#define TCG_TMP_VEC  TCG_REG_XMM5
112
113static const int tcg_target_call_iarg_regs[] = {
114#if TCG_TARGET_REG_BITS == 64
115#if defined(_WIN64)
116    TCG_REG_RCX,
117    TCG_REG_RDX,
118#else
119    TCG_REG_RDI,
120    TCG_REG_RSI,
121    TCG_REG_RDX,
122    TCG_REG_RCX,
123#endif
124    TCG_REG_R8,
125    TCG_REG_R9,
126#else
127    /* 32 bit mode uses stack based calling convention (GCC default). */
128#endif
129};
130
131static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
132{
133    switch (kind) {
134    case TCG_CALL_RET_NORMAL:
135        tcg_debug_assert(slot >= 0 && slot <= 1);
136        return slot ? TCG_REG_EDX : TCG_REG_EAX;
137#ifdef _WIN64
138    case TCG_CALL_RET_BY_VEC:
139        tcg_debug_assert(slot == 0);
140        return TCG_REG_XMM0;
141#endif
142    default:
143        g_assert_not_reached();
144    }
145}
146
147/* Constants we accept.  */
148#define TCG_CT_CONST_S32 0x100
149#define TCG_CT_CONST_U32 0x200
150#define TCG_CT_CONST_I32 0x400
151#define TCG_CT_CONST_WSZ 0x800
152#define TCG_CT_CONST_TST 0x1000
153#define TCG_CT_CONST_ZERO 0x2000
154
155/* Registers used with L constraint, which are the first argument
156   registers on x86_64, and two random call clobbered registers on
157   i386. */
158#if TCG_TARGET_REG_BITS == 64
159# define TCG_REG_L0 tcg_target_call_iarg_regs[0]
160# define TCG_REG_L1 tcg_target_call_iarg_regs[1]
161#else
162# define TCG_REG_L0 TCG_REG_EAX
163# define TCG_REG_L1 TCG_REG_EDX
164#endif
165
166#if TCG_TARGET_REG_BITS == 64
167# define ALL_GENERAL_REGS      0x0000ffffu
168# define ALL_VECTOR_REGS       0xffff0000u
169# define ALL_BYTEL_REGS        ALL_GENERAL_REGS
170#else
171# define ALL_GENERAL_REGS      0x000000ffu
172# define ALL_VECTOR_REGS       0x00ff0000u
173# define ALL_BYTEL_REGS        0x0000000fu
174#endif
175#define SOFTMMU_RESERVE_REGS \
176    (tcg_use_softmmu ? (1 << TCG_REG_L0) | (1 << TCG_REG_L1) : 0)
177
178#define have_bmi2       (cpuinfo & CPUINFO_BMI2)
179#define have_lzcnt      (cpuinfo & CPUINFO_LZCNT)
180
181static const tcg_insn_unit *tb_ret_addr;
182
183static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
184                        intptr_t value, intptr_t addend)
185{
186    value += addend;
187    switch(type) {
188    case R_386_PC32:
189        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
190        if (value != (int32_t)value) {
191            return false;
192        }
193        /* FALLTHRU */
194    case R_386_32:
195        tcg_patch32(code_ptr, value);
196        break;
197    case R_386_PC8:
198        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
199        if (value != (int8_t)value) {
200            return false;
201        }
202        tcg_patch8(code_ptr, value);
203        break;
204    default:
205        g_assert_not_reached();
206    }
207    return true;
208}
209
210/* test if a constant matches the constraint */
211static bool tcg_target_const_match(int64_t val, int ct,
212                                   TCGType type, TCGCond cond, int vece)
213{
214    if (ct & TCG_CT_CONST) {
215        return 1;
216    }
217    if (type == TCG_TYPE_I32) {
218        if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 |
219                  TCG_CT_CONST_I32 | TCG_CT_CONST_TST)) {
220            return 1;
221        }
222    } else {
223        if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
224            return 1;
225        }
226        if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
227            return 1;
228        }
229        if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
230            return 1;
231        }
232        /*
233         * This will be used in combination with TCG_CT_CONST_S32,
234         * so "normal" TESTQ is already matched.  Also accept:
235         *    TESTQ -> TESTL   (uint32_t)
236         *    TESTQ -> BT      (is_power_of_2)
237         */
238        if ((ct & TCG_CT_CONST_TST)
239            && is_tst_cond(cond)
240            && (val == (uint32_t)val || is_power_of_2(val))) {
241            return 1;
242        }
243    }
244    if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
245        return 1;
246    }
247    if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
248        return 1;
249    }
250    return 0;
251}
252
253# define LOWREGMASK(x)	((x) & 7)
254
255#define P_EXT		0x100		/* 0x0f opcode prefix */
256#define P_EXT38         0x200           /* 0x0f 0x38 opcode prefix */
257#define P_DATA16        0x400           /* 0x66 opcode prefix */
258#define P_VEXW          0x1000          /* Set VEX.W = 1 */
259#if TCG_TARGET_REG_BITS == 64
260# define P_REXW         P_VEXW          /* Set REX.W = 1; match VEXW */
261# define P_REXB_R       0x2000          /* REG field as byte register */
262# define P_REXB_RM      0x4000          /* R/M field as byte register */
263# define P_GS           0x8000          /* gs segment override */
264#else
265# define P_REXW		0
266# define P_REXB_R	0
267# define P_REXB_RM	0
268# define P_GS           0
269#endif
270#define P_EXT3A         0x10000         /* 0x0f 0x3a opcode prefix */
271#define P_SIMDF3        0x20000         /* 0xf3 opcode prefix */
272#define P_SIMDF2        0x40000         /* 0xf2 opcode prefix */
273#define P_VEXL          0x80000         /* Set VEX.L = 1 */
274#define P_EVEX          0x100000        /* Requires EVEX encoding */
275
276#define OPC_ARITH_EbIb	(0x80)
277#define OPC_ARITH_EvIz	(0x81)
278#define OPC_ARITH_EvIb	(0x83)
279#define OPC_ARITH_GvEv	(0x03)		/* ... plus (ARITH_FOO << 3) */
280#define OPC_ANDN        (0xf2 | P_EXT38)
281#define OPC_ADD_GvEv	(OPC_ARITH_GvEv | (ARITH_ADD << 3))
282#define OPC_AND_GvEv    (OPC_ARITH_GvEv | (ARITH_AND << 3))
283#define OPC_BLENDPS     (0x0c | P_EXT3A | P_DATA16)
284#define OPC_BSF         (0xbc | P_EXT)
285#define OPC_BSR         (0xbd | P_EXT)
286#define OPC_BSWAP	(0xc8 | P_EXT)
287#define OPC_CALL_Jz	(0xe8)
288#define OPC_CMOVCC      (0x40 | P_EXT)  /* ... plus condition code */
289#define OPC_CMP_GvEv	(OPC_ARITH_GvEv | (ARITH_CMP << 3))
290#define OPC_DEC_r32	(0x48)
291#define OPC_IMUL_GvEv	(0xaf | P_EXT)
292#define OPC_IMUL_GvEvIb	(0x6b)
293#define OPC_IMUL_GvEvIz	(0x69)
294#define OPC_INC_r32	(0x40)
295#define OPC_JCC_long	(0x80 | P_EXT)	/* ... plus condition code */
296#define OPC_JCC_short	(0x70)		/* ... plus condition code */
297#define OPC_JMP_long	(0xe9)
298#define OPC_JMP_short	(0xeb)
299#define OPC_LEA         (0x8d)
300#define OPC_LZCNT       (0xbd | P_EXT | P_SIMDF3)
301#define OPC_MOVB_EvGv	(0x88)		/* stores, more or less */
302#define OPC_MOVL_EvGv	(0x89)		/* stores, more or less */
303#define OPC_MOVL_GvEv	(0x8b)		/* loads, more or less */
304#define OPC_MOVB_EvIz   (0xc6)
305#define OPC_MOVL_EvIz	(0xc7)
306#define OPC_MOVB_Ib     (0xb0)
307#define OPC_MOVL_Iv     (0xb8)
308#define OPC_MOVBE_GyMy  (0xf0 | P_EXT38)
309#define OPC_MOVBE_MyGy  (0xf1 | P_EXT38)
310#define OPC_MOVD_VyEy   (0x6e | P_EXT | P_DATA16)
311#define OPC_MOVD_EyVy   (0x7e | P_EXT | P_DATA16)
312#define OPC_MOVDDUP     (0x12 | P_EXT | P_SIMDF2)
313#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
314#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
315#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
316#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
317#define OPC_MOVQ_VqWq   (0x7e | P_EXT | P_SIMDF3)
318#define OPC_MOVQ_WqVq   (0xd6 | P_EXT | P_DATA16)
319#define OPC_MOVSBL	(0xbe | P_EXT)
320#define OPC_MOVSWL	(0xbf | P_EXT)
321#define OPC_MOVSLQ	(0x63 | P_REXW)
322#define OPC_MOVZBL	(0xb6 | P_EXT)
323#define OPC_MOVZWL	(0xb7 | P_EXT)
324#define OPC_PABSB       (0x1c | P_EXT38 | P_DATA16)
325#define OPC_PABSW       (0x1d | P_EXT38 | P_DATA16)
326#define OPC_PABSD       (0x1e | P_EXT38 | P_DATA16)
327#define OPC_VPABSQ      (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
328#define OPC_PACKSSDW    (0x6b | P_EXT | P_DATA16)
329#define OPC_PACKSSWB    (0x63 | P_EXT | P_DATA16)
330#define OPC_PACKUSDW    (0x2b | P_EXT38 | P_DATA16)
331#define OPC_PACKUSWB    (0x67 | P_EXT | P_DATA16)
332#define OPC_PADDB       (0xfc | P_EXT | P_DATA16)
333#define OPC_PADDW       (0xfd | P_EXT | P_DATA16)
334#define OPC_PADDD       (0xfe | P_EXT | P_DATA16)
335#define OPC_PADDQ       (0xd4 | P_EXT | P_DATA16)
336#define OPC_PADDSB      (0xec | P_EXT | P_DATA16)
337#define OPC_PADDSW      (0xed | P_EXT | P_DATA16)
338#define OPC_PADDUB      (0xdc | P_EXT | P_DATA16)
339#define OPC_PADDUW      (0xdd | P_EXT | P_DATA16)
340#define OPC_PAND        (0xdb | P_EXT | P_DATA16)
341#define OPC_PANDN       (0xdf | P_EXT | P_DATA16)
342#define OPC_PBLENDW     (0x0e | P_EXT3A | P_DATA16)
343#define OPC_PCMPEQB     (0x74 | P_EXT | P_DATA16)
344#define OPC_PCMPEQW     (0x75 | P_EXT | P_DATA16)
345#define OPC_PCMPEQD     (0x76 | P_EXT | P_DATA16)
346#define OPC_PCMPEQQ     (0x29 | P_EXT38 | P_DATA16)
347#define OPC_PCMPGTB     (0x64 | P_EXT | P_DATA16)
348#define OPC_PCMPGTW     (0x65 | P_EXT | P_DATA16)
349#define OPC_PCMPGTD     (0x66 | P_EXT | P_DATA16)
350#define OPC_PCMPGTQ     (0x37 | P_EXT38 | P_DATA16)
351#define OPC_PEXTRD      (0x16 | P_EXT3A | P_DATA16)
352#define OPC_PINSRD      (0x22 | P_EXT3A | P_DATA16)
353#define OPC_PMAXSB      (0x3c | P_EXT38 | P_DATA16)
354#define OPC_PMAXSW      (0xee | P_EXT | P_DATA16)
355#define OPC_PMAXSD      (0x3d | P_EXT38 | P_DATA16)
356#define OPC_VPMAXSQ     (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
357#define OPC_PMAXUB      (0xde | P_EXT | P_DATA16)
358#define OPC_PMAXUW      (0x3e | P_EXT38 | P_DATA16)
359#define OPC_PMAXUD      (0x3f | P_EXT38 | P_DATA16)
360#define OPC_VPMAXUQ     (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
361#define OPC_PMINSB      (0x38 | P_EXT38 | P_DATA16)
362#define OPC_PMINSW      (0xea | P_EXT | P_DATA16)
363#define OPC_PMINSD      (0x39 | P_EXT38 | P_DATA16)
364#define OPC_VPMINSQ     (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
365#define OPC_PMINUB      (0xda | P_EXT | P_DATA16)
366#define OPC_PMINUW      (0x3a | P_EXT38 | P_DATA16)
367#define OPC_PMINUD      (0x3b | P_EXT38 | P_DATA16)
368#define OPC_VPMINUQ     (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
369#define OPC_PMOVSXBW    (0x20 | P_EXT38 | P_DATA16)
370#define OPC_PMOVSXWD    (0x23 | P_EXT38 | P_DATA16)
371#define OPC_PMOVSXDQ    (0x25 | P_EXT38 | P_DATA16)
372#define OPC_PMOVZXBW    (0x30 | P_EXT38 | P_DATA16)
373#define OPC_PMOVZXWD    (0x33 | P_EXT38 | P_DATA16)
374#define OPC_PMOVZXDQ    (0x35 | P_EXT38 | P_DATA16)
375#define OPC_PMULLW      (0xd5 | P_EXT | P_DATA16)
376#define OPC_PMULLD      (0x40 | P_EXT38 | P_DATA16)
377#define OPC_VPMULLQ     (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
378#define OPC_POR         (0xeb | P_EXT | P_DATA16)
379#define OPC_PSHUFB      (0x00 | P_EXT38 | P_DATA16)
380#define OPC_PSHUFD      (0x70 | P_EXT | P_DATA16)
381#define OPC_PSHUFLW     (0x70 | P_EXT | P_SIMDF2)
382#define OPC_PSHUFHW     (0x70 | P_EXT | P_SIMDF3)
383#define OPC_PSHIFTW_Ib  (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
384#define OPC_PSHIFTD_Ib  (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */
385#define OPC_PSHIFTQ_Ib  (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
386#define OPC_PSLLW       (0xf1 | P_EXT | P_DATA16)
387#define OPC_PSLLD       (0xf2 | P_EXT | P_DATA16)
388#define OPC_PSLLQ       (0xf3 | P_EXT | P_DATA16)
389#define OPC_PSRAW       (0xe1 | P_EXT | P_DATA16)
390#define OPC_PSRAD       (0xe2 | P_EXT | P_DATA16)
391#define OPC_VPSRAQ      (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX)
392#define OPC_PSRLW       (0xd1 | P_EXT | P_DATA16)
393#define OPC_PSRLD       (0xd2 | P_EXT | P_DATA16)
394#define OPC_PSRLQ       (0xd3 | P_EXT | P_DATA16)
395#define OPC_PSUBB       (0xf8 | P_EXT | P_DATA16)
396#define OPC_PSUBW       (0xf9 | P_EXT | P_DATA16)
397#define OPC_PSUBD       (0xfa | P_EXT | P_DATA16)
398#define OPC_PSUBQ       (0xfb | P_EXT | P_DATA16)
399#define OPC_PSUBSB      (0xe8 | P_EXT | P_DATA16)
400#define OPC_PSUBSW      (0xe9 | P_EXT | P_DATA16)
401#define OPC_PSUBUB      (0xd8 | P_EXT | P_DATA16)
402#define OPC_PSUBUW      (0xd9 | P_EXT | P_DATA16)
403#define OPC_PUNPCKLBW   (0x60 | P_EXT | P_DATA16)
404#define OPC_PUNPCKLWD   (0x61 | P_EXT | P_DATA16)
405#define OPC_PUNPCKLDQ   (0x62 | P_EXT | P_DATA16)
406#define OPC_PUNPCKLQDQ  (0x6c | P_EXT | P_DATA16)
407#define OPC_PUNPCKHBW   (0x68 | P_EXT | P_DATA16)
408#define OPC_PUNPCKHWD   (0x69 | P_EXT | P_DATA16)
409#define OPC_PUNPCKHDQ   (0x6a | P_EXT | P_DATA16)
410#define OPC_PUNPCKHQDQ  (0x6d | P_EXT | P_DATA16)
411#define OPC_PXOR        (0xef | P_EXT | P_DATA16)
412#define OPC_POP_r32	(0x58)
413#define OPC_POPCNT      (0xb8 | P_EXT | P_SIMDF3)
414#define OPC_PUSH_r32	(0x50)
415#define OPC_PUSH_Iv	(0x68)
416#define OPC_PUSH_Ib	(0x6a)
417#define OPC_RET		(0xc3)
418#define OPC_SETCC	(0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
419#define OPC_SHIFT_1	(0xd1)
420#define OPC_SHIFT_Ib	(0xc1)
421#define OPC_SHIFT_cl	(0xd3)
422#define OPC_SARX        (0xf7 | P_EXT38 | P_SIMDF3)
423#define OPC_SHUFPS      (0xc6 | P_EXT)
424#define OPC_SHLX        (0xf7 | P_EXT38 | P_DATA16)
425#define OPC_SHRX        (0xf7 | P_EXT38 | P_SIMDF2)
426#define OPC_SHRD_Ib     (0xac | P_EXT)
427#define OPC_TESTB	(0x84)
428#define OPC_TESTL	(0x85)
429#define OPC_TZCNT       (0xbc | P_EXT | P_SIMDF3)
430#define OPC_UD2         (0x0b | P_EXT)
431#define OPC_VPBLENDD    (0x02 | P_EXT3A | P_DATA16)
432#define OPC_VPBLENDVB   (0x4c | P_EXT3A | P_DATA16)
433#define OPC_VPBLENDMB   (0x66 | P_EXT38 | P_DATA16 | P_EVEX)
434#define OPC_VPBLENDMW   (0x66 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
435#define OPC_VPBLENDMD   (0x64 | P_EXT38 | P_DATA16 | P_EVEX)
436#define OPC_VPBLENDMQ   (0x64 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
437#define OPC_VPCMPB      (0x3f | P_EXT3A | P_DATA16 | P_EVEX)
438#define OPC_VPCMPUB     (0x3e | P_EXT3A | P_DATA16 | P_EVEX)
439#define OPC_VPCMPW      (0x3f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
440#define OPC_VPCMPUW     (0x3e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
441#define OPC_VPCMPD      (0x1f | P_EXT3A | P_DATA16 | P_EVEX)
442#define OPC_VPCMPUD     (0x1e | P_EXT3A | P_DATA16 | P_EVEX)
443#define OPC_VPCMPQ      (0x1f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
444#define OPC_VPCMPUQ     (0x1e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
445#define OPC_VPINSRB     (0x20 | P_EXT3A | P_DATA16)
446#define OPC_VPINSRW     (0xc4 | P_EXT | P_DATA16)
447#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
448#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
449#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
450#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
451#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
452#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
453#define OPC_VPMOVM2B    (0x28 | P_EXT38 | P_SIMDF3 | P_EVEX)
454#define OPC_VPMOVM2W    (0x28 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
455#define OPC_VPMOVM2D    (0x38 | P_EXT38 | P_SIMDF3 | P_EVEX)
456#define OPC_VPMOVM2Q    (0x38 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
457#define OPC_VPERMQ      (0x00 | P_EXT3A | P_DATA16 | P_VEXW)
458#define OPC_VPERM2I128  (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
459#define OPC_VPROLVD     (0x15 | P_EXT38 | P_DATA16 | P_EVEX)
460#define OPC_VPROLVQ     (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
461#define OPC_VPRORVD     (0x14 | P_EXT38 | P_DATA16 | P_EVEX)
462#define OPC_VPRORVQ     (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
463#define OPC_VPSHLDW     (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
464#define OPC_VPSHLDD     (0x71 | P_EXT3A | P_DATA16 | P_EVEX)
465#define OPC_VPSHLDQ     (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
466#define OPC_VPSHLDVW    (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
467#define OPC_VPSHLDVD    (0x71 | P_EXT38 | P_DATA16 | P_EVEX)
468#define OPC_VPSHLDVQ    (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
469#define OPC_VPSHRDVW    (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
470#define OPC_VPSHRDVD    (0x73 | P_EXT38 | P_DATA16 | P_EVEX)
471#define OPC_VPSHRDVQ    (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
472#define OPC_VPSLLVW     (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
473#define OPC_VPSLLVD     (0x47 | P_EXT38 | P_DATA16)
474#define OPC_VPSLLVQ     (0x47 | P_EXT38 | P_DATA16 | P_VEXW)
475#define OPC_VPSRAVW     (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
476#define OPC_VPSRAVD     (0x46 | P_EXT38 | P_DATA16)
477#define OPC_VPSRAVQ     (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
478#define OPC_VPSRLVW     (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
479#define OPC_VPSRLVD     (0x45 | P_EXT38 | P_DATA16)
480#define OPC_VPSRLVQ     (0x45 | P_EXT38 | P_DATA16 | P_VEXW)
481#define OPC_VPTERNLOGQ  (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
482#define OPC_VPTESTMB    (0x26 | P_EXT38 | P_DATA16 | P_EVEX)
483#define OPC_VPTESTMW    (0x26 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
484#define OPC_VPTESTMD    (0x27 | P_EXT38 | P_DATA16 | P_EVEX)
485#define OPC_VPTESTMQ    (0x27 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
486#define OPC_VPTESTNMB   (0x26 | P_EXT38 | P_SIMDF3 | P_EVEX)
487#define OPC_VPTESTNMW   (0x26 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
488#define OPC_VPTESTNMD   (0x27 | P_EXT38 | P_SIMDF3 | P_EVEX)
489#define OPC_VPTESTNMQ   (0x27 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
490#define OPC_VZEROUPPER  (0x77 | P_EXT)
491#define OPC_XCHG_ax_r32	(0x90)
492#define OPC_XCHG_EvGv   (0x87)
493
494#define OPC_GRP3_Eb     (0xf6)
495#define OPC_GRP3_Ev     (0xf7)
496#define OPC_GRP5        (0xff)
497#define OPC_GRP14       (0x73 | P_EXT | P_DATA16)
498#define OPC_GRPBT       (0xba | P_EXT)
499
500#define OPC_GRPBT_BT    4
501#define OPC_GRPBT_BTS   5
502#define OPC_GRPBT_BTR   6
503#define OPC_GRPBT_BTC   7
504
505/* Group 1 opcode extensions for 0x80-0x83.
506   These are also used as modifiers for OPC_ARITH.  */
507#define ARITH_ADD 0
508#define ARITH_OR  1
509#define ARITH_ADC 2
510#define ARITH_SBB 3
511#define ARITH_AND 4
512#define ARITH_SUB 5
513#define ARITH_XOR 6
514#define ARITH_CMP 7
515
516/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3.  */
517#define SHIFT_ROL 0
518#define SHIFT_ROR 1
519#define SHIFT_SHL 4
520#define SHIFT_SHR 5
521#define SHIFT_SAR 7
522
523/* Group 3 opcode extensions for 0xf6, 0xf7.  To be used with OPC_GRP3.  */
524#define EXT3_TESTi 0
525#define EXT3_NOT   2
526#define EXT3_NEG   3
527#define EXT3_MUL   4
528#define EXT3_IMUL  5
529#define EXT3_DIV   6
530#define EXT3_IDIV  7
531
532/* Group 5 opcode extensions for 0xff.  To be used with OPC_GRP5.  */
533#define EXT5_INC_Ev	0
534#define EXT5_DEC_Ev	1
535#define EXT5_CALLN_Ev	2
536#define EXT5_JMPN_Ev	4
537
538/* Condition codes to be added to OPC_JCC_{long,short}.  */
539#define JCC_JMP (-1)
540#define JCC_JO  0x0
541#define JCC_JNO 0x1
542#define JCC_JB  0x2
543#define JCC_JAE 0x3
544#define JCC_JE  0x4
545#define JCC_JNE 0x5
546#define JCC_JBE 0x6
547#define JCC_JA  0x7
548#define JCC_JS  0x8
549#define JCC_JNS 0x9
550#define JCC_JP  0xa
551#define JCC_JNP 0xb
552#define JCC_JL  0xc
553#define JCC_JGE 0xd
554#define JCC_JLE 0xe
555#define JCC_JG  0xf
556
557static const uint8_t tcg_cond_to_jcc[] = {
558    [TCG_COND_EQ] = JCC_JE,
559    [TCG_COND_NE] = JCC_JNE,
560    [TCG_COND_LT] = JCC_JL,
561    [TCG_COND_GE] = JCC_JGE,
562    [TCG_COND_LE] = JCC_JLE,
563    [TCG_COND_GT] = JCC_JG,
564    [TCG_COND_LTU] = JCC_JB,
565    [TCG_COND_GEU] = JCC_JAE,
566    [TCG_COND_LEU] = JCC_JBE,
567    [TCG_COND_GTU] = JCC_JA,
568    [TCG_COND_TSTEQ] = JCC_JE,
569    [TCG_COND_TSTNE] = JCC_JNE,
570};
571
572#if TCG_TARGET_REG_BITS == 64
573static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
574{
575    int rex;
576
577    if (opc & P_GS) {
578        tcg_out8(s, 0x65);
579    }
580    if (opc & P_DATA16) {
581        /* We should never be asking for both 16 and 64-bit operation.  */
582        tcg_debug_assert((opc & P_REXW) == 0);
583        tcg_out8(s, 0x66);
584    }
585    if (opc & P_SIMDF3) {
586        tcg_out8(s, 0xf3);
587    } else if (opc & P_SIMDF2) {
588        tcg_out8(s, 0xf2);
589    }
590
591    rex = 0;
592    rex |= (opc & P_REXW) ? 0x8 : 0x0;  /* REX.W */
593    rex |= (r & 8) >> 1;                /* REX.R */
594    rex |= (x & 8) >> 2;                /* REX.X */
595    rex |= (rm & 8) >> 3;               /* REX.B */
596
597    /* P_REXB_{R,RM} indicates that the given register is the low byte.
598       For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
599       as otherwise the encoding indicates %[abcd]h.  Note that the values
600       that are ORed in merely indicate that the REX byte must be present;
601       those bits get discarded in output.  */
602    rex |= opc & (r >= 4 ? P_REXB_R : 0);
603    rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
604
605    if (rex) {
606        tcg_out8(s, (uint8_t)(rex | 0x40));
607    }
608
609    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
610        tcg_out8(s, 0x0f);
611        if (opc & P_EXT38) {
612            tcg_out8(s, 0x38);
613        } else if (opc & P_EXT3A) {
614            tcg_out8(s, 0x3a);
615        }
616    }
617
618    tcg_out8(s, opc);
619}
620#else
621static void tcg_out_opc(TCGContext *s, int opc)
622{
623    if (opc & P_DATA16) {
624        tcg_out8(s, 0x66);
625    }
626    if (opc & P_SIMDF3) {
627        tcg_out8(s, 0xf3);
628    } else if (opc & P_SIMDF2) {
629        tcg_out8(s, 0xf2);
630    }
631    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
632        tcg_out8(s, 0x0f);
633        if (opc & P_EXT38) {
634            tcg_out8(s, 0x38);
635        } else if (opc & P_EXT3A) {
636            tcg_out8(s, 0x3a);
637        }
638    }
639    tcg_out8(s, opc);
640}
641/* Discard the register arguments to tcg_out_opc early, so as not to penalize
642   the 32-bit compilation paths.  This method works with all versions of gcc,
643   whereas relying on optimization may not be able to exclude them.  */
644#define tcg_out_opc(s, opc, r, rm, x)  (tcg_out_opc)(s, opc)
645#endif
646
647static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
648{
649    tcg_out_opc(s, opc, r, rm, 0);
650    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
651}
652
653static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
654                            int rm, int index)
655{
656    int tmp;
657
658    if (opc & P_GS) {
659        tcg_out8(s, 0x65);
660    }
661    /* Use the two byte form if possible, which cannot encode
662       VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT.  */
663    if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT
664        && ((rm | index) & 8) == 0) {
665        /* Two byte VEX prefix.  */
666        tcg_out8(s, 0xc5);
667
668        tmp = (r & 8 ? 0 : 0x80);              /* VEX.R */
669    } else {
670        /* Three byte VEX prefix.  */
671        tcg_out8(s, 0xc4);
672
673        /* VEX.m-mmmm */
674        if (opc & P_EXT3A) {
675            tmp = 3;
676        } else if (opc & P_EXT38) {
677            tmp = 2;
678        } else if (opc & P_EXT) {
679            tmp = 1;
680        } else {
681            g_assert_not_reached();
682        }
683        tmp |= (r & 8 ? 0 : 0x80);             /* VEX.R */
684        tmp |= (index & 8 ? 0 : 0x40);         /* VEX.X */
685        tmp |= (rm & 8 ? 0 : 0x20);            /* VEX.B */
686        tcg_out8(s, tmp);
687
688        tmp = (opc & P_VEXW ? 0x80 : 0);       /* VEX.W */
689    }
690
691    tmp |= (opc & P_VEXL ? 0x04 : 0);      /* VEX.L */
692    /* VEX.pp */
693    if (opc & P_DATA16) {
694        tmp |= 1;                          /* 0x66 */
695    } else if (opc & P_SIMDF3) {
696        tmp |= 2;                          /* 0xf3 */
697    } else if (opc & P_SIMDF2) {
698        tmp |= 3;                          /* 0xf2 */
699    }
700    tmp |= (~v & 15) << 3;                 /* VEX.vvvv */
701    tcg_out8(s, tmp);
702    tcg_out8(s, opc);
703}
704
705static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v,
706                             int rm, int index, int aaa, bool z)
707{
708    /* The entire 4-byte evex prefix; with R' and V' set. */
709    uint32_t p = 0x08041062;
710    int mm, pp;
711
712    tcg_debug_assert(have_avx512vl);
713
714    /* EVEX.mm */
715    if (opc & P_EXT3A) {
716        mm = 3;
717    } else if (opc & P_EXT38) {
718        mm = 2;
719    } else if (opc & P_EXT) {
720        mm = 1;
721    } else {
722        g_assert_not_reached();
723    }
724
725    /* EVEX.pp */
726    if (opc & P_DATA16) {
727        pp = 1;                          /* 0x66 */
728    } else if (opc & P_SIMDF3) {
729        pp = 2;                          /* 0xf3 */
730    } else if (opc & P_SIMDF2) {
731        pp = 3;                          /* 0xf2 */
732    } else {
733        pp = 0;
734    }
735
736    p = deposit32(p, 8, 2, mm);
737    p = deposit32(p, 13, 1, (rm & 8) == 0);             /* EVEX.RXB.B */
738    p = deposit32(p, 14, 1, (index & 8) == 0);          /* EVEX.RXB.X */
739    p = deposit32(p, 15, 1, (r & 8) == 0);              /* EVEX.RXB.R */
740    p = deposit32(p, 16, 2, pp);
741    p = deposit32(p, 19, 4, ~v);
742    p = deposit32(p, 23, 1, (opc & P_VEXW) != 0);
743    p = deposit32(p, 24, 3, aaa);
744    p = deposit32(p, 29, 2, (opc & P_VEXL) != 0);
745    p = deposit32(p, 31, 1, z);
746
747    tcg_out32(s, p);
748    tcg_out8(s, opc);
749}
750
751static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
752{
753    if (opc & P_EVEX) {
754        tcg_out_evex_opc(s, opc, r, v, rm, 0, 0, false);
755    } else {
756        tcg_out_vex_opc(s, opc, r, v, rm, 0);
757    }
758    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
759}
760
761static void tcg_out_vex_modrm_type(TCGContext *s, int opc,
762                                   int r, int v, int rm, TCGType type)
763{
764    if (type == TCG_TYPE_V256) {
765        opc |= P_VEXL;
766    }
767    tcg_out_vex_modrm(s, opc, r, v, rm);
768}
769
770static void tcg_out_evex_modrm_type(TCGContext *s, int opc, int r, int v,
771                                    int rm, int aaa, bool z, TCGType type)
772{
773    if (type == TCG_TYPE_V256) {
774        opc |= P_VEXL;
775    }
776    tcg_out_evex_opc(s, opc, r, v, rm, 0, aaa, z);
777    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
778}
779
780/* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
781   We handle either RM and INDEX missing with a negative value.  In 64-bit
782   mode for absolute addresses, ~RM is the size of the immediate operand
783   that will follow the instruction.  */
784
785static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
786                               int shift, intptr_t offset)
787{
788    int mod, len;
789
790    if (index < 0 && rm < 0) {
791        if (TCG_TARGET_REG_BITS == 64) {
792            /* Try for a rip-relative addressing mode.  This has replaced
793               the 32-bit-mode absolute addressing encoding.  */
794            intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
795            intptr_t disp = offset - pc;
796            if (disp == (int32_t)disp) {
797                tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
798                tcg_out32(s, disp);
799                return;
800            }
801
802            /* Try for an absolute address encoding.  This requires the
803               use of the MODRM+SIB encoding and is therefore larger than
804               rip-relative addressing.  */
805            if (offset == (int32_t)offset) {
806                tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
807                tcg_out8(s, (4 << 3) | 5);
808                tcg_out32(s, offset);
809                return;
810            }
811
812            /* ??? The memory isn't directly addressable.  */
813            g_assert_not_reached();
814        } else {
815            /* Absolute address.  */
816            tcg_out8(s, (r << 3) | 5);
817            tcg_out32(s, offset);
818            return;
819        }
820    }
821
822    /* Find the length of the immediate addend.  Note that the encoding
823       that would be used for (%ebp) indicates absolute addressing.  */
824    if (rm < 0) {
825        mod = 0, len = 4, rm = 5;
826    } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
827        mod = 0, len = 0;
828    } else if (offset == (int8_t)offset) {
829        mod = 0x40, len = 1;
830    } else {
831        mod = 0x80, len = 4;
832    }
833
834    /* Use a single byte MODRM format if possible.  Note that the encoding
835       that would be used for %esp is the escape to the two byte form.  */
836    if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
837        /* Single byte MODRM format.  */
838        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
839    } else {
840        /* Two byte MODRM+SIB format.  */
841
842        /* Note that the encoding that would place %esp into the index
843           field indicates no index register.  In 64-bit mode, the REX.X
844           bit counts, so %r12 can be used as the index.  */
845        if (index < 0) {
846            index = 4;
847        } else {
848            tcg_debug_assert(index != TCG_REG_ESP);
849        }
850
851        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
852        tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
853    }
854
855    if (len == 1) {
856        tcg_out8(s, offset);
857    } else if (len == 4) {
858        tcg_out32(s, offset);
859    }
860}
861
862static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
863                                     int index, int shift, intptr_t offset)
864{
865    tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
866    tcg_out_sib_offset(s, r, rm, index, shift, offset);
867}
868
869static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
870                                         int rm, int index, int shift,
871                                         intptr_t offset)
872{
873    tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
874    tcg_out_sib_offset(s, r, rm, index, shift, offset);
875}
876
877/* A simplification of the above with no index or shift.  */
878static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
879                                        int rm, intptr_t offset)
880{
881    tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
882}
883
884static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
885                                            int v, int rm, intptr_t offset)
886{
887    tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
888}
889
890/* Output an opcode with an expected reference to the constant pool.  */
891static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
892{
893    tcg_out_opc(s, opc, r, 0, 0);
894    /* Absolute for 32-bit, pc-relative for 64-bit.  */
895    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
896    tcg_out32(s, 0);
897}
898
899/* Output an opcode with an expected reference to the constant pool.  */
900static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
901{
902    tcg_out_vex_opc(s, opc, r, 0, 0, 0);
903    /* Absolute for 32-bit, pc-relative for 64-bit.  */
904    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
905    tcg_out32(s, 0);
906}
907
908/* Generate dest op= src.  Uses the same ARITH_* codes as tgen_arithi.  */
909static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
910{
911    /* Propagate an opcode prefix, such as P_REXW.  */
912    int ext = subop & ~0x7;
913    subop &= 0x7;
914
915    tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
916}
917
918static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
919{
920    int rexw = 0;
921
922    if (arg == ret) {
923        return true;
924    }
925    switch (type) {
926    case TCG_TYPE_I64:
927        rexw = P_REXW;
928        /* fallthru */
929    case TCG_TYPE_I32:
930        if (ret < 16) {
931            if (arg < 16) {
932                tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
933            } else {
934                tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
935            }
936        } else {
937            if (arg < 16) {
938                tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
939            } else {
940                tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
941            }
942        }
943        break;
944
945    case TCG_TYPE_V64:
946        tcg_debug_assert(ret >= 16 && arg >= 16);
947        tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
948        break;
949    case TCG_TYPE_V128:
950        tcg_debug_assert(ret >= 16 && arg >= 16);
951        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
952        break;
953    case TCG_TYPE_V256:
954        tcg_debug_assert(ret >= 16 && arg >= 16);
955        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
956        break;
957
958    default:
959        g_assert_not_reached();
960    }
961    return true;
962}
963
964static const int avx2_dup_insn[4] = {
965    OPC_VPBROADCASTB, OPC_VPBROADCASTW,
966    OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
967};
968
969static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
970                            TCGReg r, TCGReg a)
971{
972    if (have_avx2) {
973        tcg_out_vex_modrm_type(s, avx2_dup_insn[vece], r, 0, a, type);
974    } else {
975        switch (vece) {
976        case MO_8:
977            /* ??? With zero in a register, use PSHUFB.  */
978            tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
979            a = r;
980            /* FALLTHRU */
981        case MO_16:
982            tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
983            a = r;
984            /* FALLTHRU */
985        case MO_32:
986            tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
987            /* imm8 operand: all output lanes selected from input lane 0.  */
988            tcg_out8(s, 0);
989            break;
990        case MO_64:
991            tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
992            break;
993        default:
994            g_assert_not_reached();
995        }
996    }
997    return true;
998}
999
1000static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
1001                             TCGReg r, TCGReg base, intptr_t offset)
1002{
1003    if (have_avx2) {
1004        int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
1005        tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
1006                                 r, 0, base, offset);
1007    } else {
1008        switch (vece) {
1009        case MO_64:
1010            tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
1011            break;
1012        case MO_32:
1013            tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
1014            break;
1015        case MO_16:
1016            tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
1017            tcg_out8(s, 0); /* imm8 */
1018            tcg_out_dup_vec(s, type, vece, r, r);
1019            break;
1020        case MO_8:
1021            tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
1022            tcg_out8(s, 0); /* imm8 */
1023            tcg_out_dup_vec(s, type, vece, r, r);
1024            break;
1025        default:
1026            g_assert_not_reached();
1027        }
1028    }
1029    return true;
1030}
1031
1032static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
1033                             TCGReg ret, int64_t arg)
1034{
1035    int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
1036
1037    if (arg == 0) {
1038        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1039        return;
1040    }
1041    if (arg == -1) {
1042        tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
1043        return;
1044    }
1045
1046    if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) {
1047        if (have_avx2) {
1048            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
1049        } else {
1050            tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
1051        }
1052        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1053    } else {
1054        if (type == TCG_TYPE_V64) {
1055            tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
1056        } else if (have_avx2) {
1057            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
1058        } else {
1059            tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
1060        }
1061        if (TCG_TARGET_REG_BITS == 64) {
1062            new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1063        } else {
1064            new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32);
1065        }
1066    }
1067}
1068
1069static void tcg_out_movi_vec(TCGContext *s, TCGType type,
1070                             TCGReg ret, tcg_target_long arg)
1071{
1072    if (arg == 0) {
1073        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1074        return;
1075    }
1076    if (arg == -1) {
1077        tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret);
1078        return;
1079    }
1080
1081    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
1082    tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret);
1083    if (TCG_TARGET_REG_BITS == 64) {
1084        new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1085    } else {
1086        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1087    }
1088}
1089
1090static void tcg_out_movi_int(TCGContext *s, TCGType type,
1091                             TCGReg ret, tcg_target_long arg)
1092{
1093    tcg_target_long diff;
1094
1095    if (arg == 0) {
1096        tgen_arithr(s, ARITH_XOR, ret, ret);
1097        return;
1098    }
1099    if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
1100        tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
1101        tcg_out32(s, arg);
1102        return;
1103    }
1104    if (arg == (int32_t)arg) {
1105        tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
1106        tcg_out32(s, arg);
1107        return;
1108    }
1109
1110    /* Try a 7 byte pc-relative lea before the 10 byte movq.  */
1111    diff = tcg_pcrel_diff(s, (const void *)arg) - 7;
1112    if (diff == (int32_t)diff) {
1113        tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
1114        tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
1115        tcg_out32(s, diff);
1116        return;
1117    }
1118
1119    tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
1120    tcg_out64(s, arg);
1121}
1122
1123static void tcg_out_movi(TCGContext *s, TCGType type,
1124                         TCGReg ret, tcg_target_long arg)
1125{
1126    switch (type) {
1127    case TCG_TYPE_I32:
1128#if TCG_TARGET_REG_BITS == 64
1129    case TCG_TYPE_I64:
1130#endif
1131        if (ret < 16) {
1132            tcg_out_movi_int(s, type, ret, arg);
1133        } else {
1134            tcg_out_movi_vec(s, type, ret, arg);
1135        }
1136        break;
1137    default:
1138        g_assert_not_reached();
1139    }
1140}
1141
1142static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
1143{
1144    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1145    tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2);
1146    return true;
1147}
1148
1149static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
1150                             tcg_target_long imm)
1151{
1152    /* This function is only used for passing structs by reference. */
1153    tcg_debug_assert(imm == (int32_t)imm);
1154    tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm);
1155}
1156
1157static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
1158{
1159    if (val == (int8_t)val) {
1160        tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
1161        tcg_out8(s, val);
1162    } else if (val == (int32_t)val) {
1163        tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
1164        tcg_out32(s, val);
1165    } else {
1166        g_assert_not_reached();
1167    }
1168}
1169
1170static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
1171{
1172    /* Given the strength of x86 memory ordering, we only need care for
1173       store-load ordering.  Experimentally, "lock orl $0,0(%esp)" is
1174       faster than "mfence", so don't bother with the sse insn.  */
1175    if (a0 & TCG_MO_ST_LD) {
1176        tcg_out8(s, 0xf0);
1177        tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
1178        tcg_out8(s, 0);
1179    }
1180}
1181
1182static inline void tcg_out_push(TCGContext *s, int reg)
1183{
1184    tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
1185}
1186
1187static inline void tcg_out_pop(TCGContext *s, int reg)
1188{
1189    tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
1190}
1191
1192static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1193                       TCGReg arg1, intptr_t arg2)
1194{
1195    switch (type) {
1196    case TCG_TYPE_I32:
1197        if (ret < 16) {
1198            tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
1199        } else {
1200            tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
1201        }
1202        break;
1203    case TCG_TYPE_I64:
1204        if (ret < 16) {
1205            tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
1206            break;
1207        }
1208        /* FALLTHRU */
1209    case TCG_TYPE_V64:
1210        /* There is no instruction that can validate 8-byte alignment.  */
1211        tcg_debug_assert(ret >= 16);
1212        tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
1213        break;
1214    case TCG_TYPE_V128:
1215        /*
1216         * The gvec infrastructure is asserts that v128 vector loads
1217         * and stores use a 16-byte aligned offset.  Validate that the
1218         * final pointer is aligned by using an insn that will SIGSEGV.
1219         */
1220        tcg_debug_assert(ret >= 16);
1221        tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
1222        break;
1223    case TCG_TYPE_V256:
1224        /*
1225         * The gvec infrastructure only requires 16-byte alignment,
1226         * so here we must use an unaligned load.
1227         */
1228        tcg_debug_assert(ret >= 16);
1229        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
1230                                 ret, 0, arg1, arg2);
1231        break;
1232    default:
1233        g_assert_not_reached();
1234    }
1235}
1236
1237static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1238                       TCGReg arg1, intptr_t arg2)
1239{
1240    switch (type) {
1241    case TCG_TYPE_I32:
1242        if (arg < 16) {
1243            tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
1244        } else {
1245            tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
1246        }
1247        break;
1248    case TCG_TYPE_I64:
1249        if (arg < 16) {
1250            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
1251            break;
1252        }
1253        /* FALLTHRU */
1254    case TCG_TYPE_V64:
1255        /* There is no instruction that can validate 8-byte alignment.  */
1256        tcg_debug_assert(arg >= 16);
1257        tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
1258        break;
1259    case TCG_TYPE_V128:
1260        /*
1261         * The gvec infrastructure is asserts that v128 vector loads
1262         * and stores use a 16-byte aligned offset.  Validate that the
1263         * final pointer is aligned by using an insn that will SIGSEGV.
1264         *
1265         * This specific instance is also used by TCG_CALL_RET_BY_VEC,
1266         * for _WIN64, which must have SSE2 but may not have AVX.
1267         */
1268        tcg_debug_assert(arg >= 16);
1269        if (have_avx1) {
1270            tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
1271        } else {
1272            tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2);
1273        }
1274        break;
1275    case TCG_TYPE_V256:
1276        /*
1277         * The gvec infrastructure only requires 16-byte alignment,
1278         * so here we must use an unaligned store.
1279         */
1280        tcg_debug_assert(arg >= 16);
1281        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
1282                                 arg, 0, arg1, arg2);
1283        break;
1284    default:
1285        g_assert_not_reached();
1286    }
1287}
1288
1289static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1290                        TCGReg base, intptr_t ofs)
1291{
1292    int rexw = 0;
1293    if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
1294        if (val != (int32_t)val) {
1295            return false;
1296        }
1297        rexw = P_REXW;
1298    } else if (type != TCG_TYPE_I32) {
1299        return false;
1300    }
1301    tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
1302    tcg_out32(s, val);
1303    return true;
1304}
1305
1306static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
1307{
1308    /* Propagate an opcode prefix, such as P_DATA16.  */
1309    int ext = subopc & ~0x7;
1310    subopc &= 0x7;
1311
1312    if (count == 1) {
1313        tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
1314    } else {
1315        tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
1316        tcg_out8(s, count);
1317    }
1318}
1319
1320static inline void tcg_out_bswap32(TCGContext *s, int reg)
1321{
1322    tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
1323}
1324
1325static inline void tcg_out_rolw_8(TCGContext *s, int reg)
1326{
1327    tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
1328}
1329
1330static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src)
1331{
1332    if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
1333        tcg_out_mov(s, TCG_TYPE_I32, dest, src);
1334        if (dest >= 4) {
1335            tcg_out_modrm(s, OPC_ARITH_EvIz, ARITH_AND, dest);
1336            tcg_out32(s, 0xff);
1337            return;
1338        }
1339        src = dest;
1340    }
1341    tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
1342}
1343
1344static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1345{
1346    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1347
1348    if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
1349        tcg_out_mov(s, TCG_TYPE_I32, dest, src);
1350        if (dest >= 4) {
1351            tcg_out_shifti(s, SHIFT_SHL, dest, 24);
1352            tcg_out_shifti(s, SHIFT_SAR, dest, 24);
1353            return;
1354        }
1355        src = dest;
1356    }
1357    tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
1358}
1359
1360static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src)
1361{
1362    /* movzwl */
1363    tcg_out_modrm(s, OPC_MOVZWL, dest, src);
1364}
1365
1366static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1367{
1368    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1369    /* movsw[lq] */
1370    tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
1371}
1372
1373static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
1374{
1375    /* 32-bit mov zero extends.  */
1376    tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
1377}
1378
1379static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
1380{
1381    tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1382    tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
1383}
1384
1385static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1386{
1387    tcg_out_ext32s(s, dest, src);
1388}
1389
1390static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1391{
1392    if (dest != src) {
1393        tcg_out_ext32u(s, dest, src);
1394    }
1395}
1396
1397static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src)
1398{
1399    tcg_out_ext32u(s, dest, src);
1400}
1401
1402static inline void tcg_out_bswap64(TCGContext *s, int reg)
1403{
1404    tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
1405}
1406
1407static void tgen_arithi(TCGContext *s, int c, int r0,
1408                        tcg_target_long val, int cf)
1409{
1410    int rexw = 0;
1411
1412    if (TCG_TARGET_REG_BITS == 64) {
1413        rexw = c & -8;
1414        c &= 7;
1415    }
1416
1417    switch (c) {
1418    case ARITH_ADD:
1419    case ARITH_SUB:
1420        if (!cf) {
1421            /*
1422             * ??? While INC is 2 bytes shorter than ADDL $1, they also induce
1423             * partial flags update stalls on Pentium4 and are not recommended
1424             * by current Intel optimization manuals.
1425             */
1426            if (val == 1 || val == -1) {
1427                int is_inc = (c == ARITH_ADD) ^ (val < 0);
1428                if (TCG_TARGET_REG_BITS == 64) {
1429                    /*
1430                     * The single-byte increment encodings are re-tasked
1431                     * as the REX prefixes.  Use the MODRM encoding.
1432                     */
1433                    tcg_out_modrm(s, OPC_GRP5 + rexw,
1434                                  (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
1435                } else {
1436                    tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
1437                }
1438                return;
1439            }
1440            if (val == 128) {
1441                /*
1442                 * Facilitate using an 8-bit immediate.  Carry is inverted
1443                 * by this transformation, so do it only if cf == 0.
1444                 */
1445                c ^= ARITH_ADD ^ ARITH_SUB;
1446                val = -128;
1447            }
1448        }
1449        break;
1450
1451    case ARITH_AND:
1452        if (TCG_TARGET_REG_BITS == 64) {
1453            if (val == 0xffffffffu) {
1454                tcg_out_ext32u(s, r0, r0);
1455                return;
1456            }
1457            if (val == (uint32_t)val) {
1458                /* AND with no high bits set can use a 32-bit operation.  */
1459                rexw = 0;
1460            }
1461        }
1462        if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1463            tcg_out_ext8u(s, r0, r0);
1464            return;
1465        }
1466        if (val == 0xffffu) {
1467            tcg_out_ext16u(s, r0, r0);
1468            return;
1469        }
1470        break;
1471
1472    case ARITH_OR:
1473    case ARITH_XOR:
1474        if (val >= 0x80 && val <= 0xff
1475            && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1476            tcg_out_modrm(s, OPC_ARITH_EbIb + P_REXB_RM, c, r0);
1477            tcg_out8(s, val);
1478            return;
1479        }
1480        break;
1481    }
1482
1483    if (val == (int8_t)val) {
1484        tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
1485        tcg_out8(s, val);
1486        return;
1487    }
1488    if (rexw == 0 || val == (int32_t)val) {
1489        tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
1490        tcg_out32(s, val);
1491        return;
1492    }
1493
1494    g_assert_not_reached();
1495}
1496
1497static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
1498{
1499    if (val != 0) {
1500        tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
1501    }
1502}
1503
1504/* Set SMALL to force a short forward branch.  */
1505static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small)
1506{
1507    int32_t val, val1;
1508
1509    if (l->has_value) {
1510        val = tcg_pcrel_diff(s, l->u.value_ptr);
1511        val1 = val - 2;
1512        if ((int8_t)val1 == val1) {
1513            if (opc == -1) {
1514                tcg_out8(s, OPC_JMP_short);
1515            } else {
1516                tcg_out8(s, OPC_JCC_short + opc);
1517            }
1518            tcg_out8(s, val1);
1519        } else {
1520            tcg_debug_assert(!small);
1521            if (opc == -1) {
1522                tcg_out8(s, OPC_JMP_long);
1523                tcg_out32(s, val - 5);
1524            } else {
1525                tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1526                tcg_out32(s, val - 6);
1527            }
1528        }
1529    } else if (small) {
1530        if (opc == -1) {
1531            tcg_out8(s, OPC_JMP_short);
1532        } else {
1533            tcg_out8(s, OPC_JCC_short + opc);
1534        }
1535        tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
1536        s->code_ptr += 1;
1537    } else {
1538        if (opc == -1) {
1539            tcg_out8(s, OPC_JMP_long);
1540        } else {
1541            tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1542        }
1543        tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
1544        s->code_ptr += 4;
1545    }
1546}
1547
1548static int tcg_out_cmp(TCGContext *s, TCGCond cond, TCGArg arg1,
1549                       TCGArg arg2, int const_arg2, int rexw)
1550{
1551    int jz, js;
1552
1553    if (!is_tst_cond(cond)) {
1554        if (!const_arg2) {
1555            tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
1556        } else if (arg2 == 0) {
1557            tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
1558        } else {
1559            tcg_debug_assert(!rexw || arg2 == (int32_t)arg2);
1560            tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
1561        }
1562        return tcg_cond_to_jcc[cond];
1563    }
1564
1565    jz = tcg_cond_to_jcc[cond];
1566    js = (cond == TCG_COND_TSTNE ? JCC_JS : JCC_JNS);
1567
1568    if (!const_arg2) {
1569        tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg2);
1570        return jz;
1571    }
1572
1573    if (arg2 <= 0xff && (TCG_TARGET_REG_BITS == 64 || arg1 < 4)) {
1574        if (arg2 == 0x80) {
1575            tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
1576            return js;
1577        }
1578        if (arg2 == 0xff) {
1579            tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
1580            return jz;
1581        }
1582        tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, arg1);
1583        tcg_out8(s, arg2);
1584        return jz;
1585    }
1586
1587    if ((arg2 & ~0xff00) == 0 && arg1 < 4) {
1588        if (arg2 == 0x8000) {
1589            tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
1590            return js;
1591        }
1592        if (arg2 == 0xff00) {
1593            tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
1594            return jz;
1595        }
1596        tcg_out_modrm(s, OPC_GRP3_Eb, EXT3_TESTi, arg1 + 4);
1597        tcg_out8(s, arg2 >> 8);
1598        return jz;
1599    }
1600
1601    if (arg2 == 0xffff) {
1602        tcg_out_modrm(s, OPC_TESTL | P_DATA16, arg1, arg1);
1603        return jz;
1604    }
1605    if (arg2 == 0xffffffffu) {
1606        tcg_out_modrm(s, OPC_TESTL, arg1, arg1);
1607        return jz;
1608    }
1609
1610    if (is_power_of_2(rexw ? arg2 : (uint32_t)arg2)) {
1611        int jc = (cond == TCG_COND_TSTNE ? JCC_JB : JCC_JAE);
1612        int sh = ctz64(arg2);
1613
1614        rexw = (sh & 32 ? P_REXW : 0);
1615        if ((sh & 31) == 31) {
1616            tcg_out_modrm(s, OPC_TESTL | rexw, arg1, arg1);
1617            return js;
1618        } else {
1619            tcg_out_modrm(s, OPC_GRPBT | rexw, OPC_GRPBT_BT, arg1);
1620            tcg_out8(s, sh);
1621            return jc;
1622        }
1623    }
1624
1625    if (rexw) {
1626        if (arg2 == (uint32_t)arg2) {
1627            rexw = 0;
1628        } else {
1629            tcg_debug_assert(arg2 == (int32_t)arg2);
1630        }
1631    }
1632    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_TESTi, arg1);
1633    tcg_out32(s, arg2);
1634    return jz;
1635}
1636
1637static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond,
1638                           TCGArg arg1, TCGArg arg2, int const_arg2,
1639                           TCGLabel *label, bool small)
1640{
1641    int jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, rexw);
1642    tcg_out_jxx(s, jcc, label, small);
1643}
1644
1645#if TCG_TARGET_REG_BITS == 32
1646static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
1647                            const int *const_args, bool small)
1648{
1649    TCGLabel *label_next = gen_new_label();
1650    TCGLabel *label_this = arg_label(args[5]);
1651    TCGCond cond = args[4];
1652
1653    switch (cond) {
1654    case TCG_COND_EQ:
1655    case TCG_COND_TSTEQ:
1656        tcg_out_brcond(s, 0, tcg_invert_cond(cond),
1657                       args[0], args[2], const_args[2], label_next, 1);
1658        tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3],
1659                       label_this, small);
1660        break;
1661
1662    case TCG_COND_NE:
1663    case TCG_COND_TSTNE:
1664        tcg_out_brcond(s, 0, cond, args[0], args[2], const_args[2],
1665                       label_this, small);
1666        tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3],
1667                       label_this, small);
1668        break;
1669
1670    default:
1671        tcg_out_brcond(s, 0, tcg_high_cond(cond), args[1],
1672                       args[3], const_args[3], label_this, small);
1673        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1674        tcg_out_brcond(s, 0, tcg_unsigned_cond(cond), args[0],
1675                       args[2], const_args[2], label_this, small);
1676        break;
1677    }
1678    tcg_out_label(s, label_next);
1679}
1680#endif
1681
1682static void tcg_out_setcond(TCGContext *s, int rexw, TCGCond cond,
1683                            TCGArg dest, TCGArg arg1, TCGArg arg2,
1684                            int const_arg2, bool neg)
1685{
1686    int cmp_rexw = rexw;
1687    bool inv = false;
1688    bool cleared;
1689    int jcc;
1690
1691    switch (cond) {
1692    case TCG_COND_NE:
1693        inv = true;
1694        /* fall through */
1695    case TCG_COND_EQ:
1696        /* If arg2 is 0, convert to LTU/GEU vs 1. */
1697        if (const_arg2 && arg2 == 0) {
1698            arg2 = 1;
1699            goto do_ltu;
1700        }
1701        break;
1702
1703    case TCG_COND_TSTNE:
1704        inv = true;
1705        /* fall through */
1706    case TCG_COND_TSTEQ:
1707        /* If arg2 is -1, convert to LTU/GEU vs 1. */
1708        if (const_arg2 && arg2 == 0xffffffffu) {
1709            arg2 = 1;
1710            cmp_rexw = 0;
1711            goto do_ltu;
1712        }
1713        break;
1714
1715    case TCG_COND_LEU:
1716        inv = true;
1717        /* fall through */
1718    case TCG_COND_GTU:
1719        /* If arg2 is a register, swap for LTU/GEU. */
1720        if (!const_arg2) {
1721            TCGReg t = arg1;
1722            arg1 = arg2;
1723            arg2 = t;
1724            goto do_ltu;
1725        }
1726        break;
1727
1728    case TCG_COND_GEU:
1729        inv = true;
1730        /* fall through */
1731    case TCG_COND_LTU:
1732    do_ltu:
1733        /*
1734         * Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU.
1735         * We can then use NEG or INC to produce the desired result.
1736         * This is always smaller than the SETCC expansion.
1737         */
1738        tcg_out_cmp(s, TCG_COND_LTU, arg1, arg2, const_arg2, cmp_rexw);
1739
1740        /* X - X - C = -C = (C ? -1 : 0) */
1741        tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest);
1742        if (inv && neg) {
1743            /* ~(C ? -1 : 0) = (C ? 0 : -1) */
1744            tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
1745        } else if (inv) {
1746            /* (C ? -1 : 0) + 1 = (C ? 0 : 1) */
1747            tgen_arithi(s, ARITH_ADD, dest, 1, 0);
1748        } else if (!neg) {
1749            /* -(C ? -1 : 0) = (C ? 1 : 0) */
1750            tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest);
1751        }
1752        return;
1753
1754    case TCG_COND_GE:
1755        inv = true;
1756        /* fall through */
1757    case TCG_COND_LT:
1758        /* If arg2 is 0, extract the sign bit. */
1759        if (const_arg2 && arg2 == 0) {
1760            tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, dest, arg1);
1761            if (inv) {
1762                tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
1763            }
1764            tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw,
1765                           dest, rexw ? 63 : 31);
1766            return;
1767        }
1768        break;
1769
1770    default:
1771        break;
1772    }
1773
1774    /*
1775     * If dest does not overlap the inputs, clearing it first is preferred.
1776     * The XOR breaks any false dependency for the low-byte write to dest,
1777     * and is also one byte smaller than MOVZBL.
1778     */
1779    cleared = false;
1780    if (dest != arg1 && (const_arg2 || dest != arg2)) {
1781        tgen_arithr(s, ARITH_XOR, dest, dest);
1782        cleared = true;
1783    }
1784
1785    jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, cmp_rexw);
1786    tcg_out_modrm(s, OPC_SETCC | jcc, 0, dest);
1787
1788    if (!cleared) {
1789        tcg_out_ext8u(s, dest, dest);
1790    }
1791    if (neg) {
1792        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest);
1793    }
1794}
1795
1796#if TCG_TARGET_REG_BITS == 32
1797static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1798                             const int *const_args)
1799{
1800    TCGArg new_args[6];
1801    TCGLabel *label_true, *label_over;
1802
1803    memcpy(new_args, args+1, 5*sizeof(TCGArg));
1804
1805    if (args[0] == args[1] || args[0] == args[2]
1806        || (!const_args[3] && args[0] == args[3])
1807        || (!const_args[4] && args[0] == args[4])) {
1808        /* When the destination overlaps with one of the argument
1809           registers, don't do anything tricky.  */
1810        label_true = gen_new_label();
1811        label_over = gen_new_label();
1812
1813        new_args[5] = label_arg(label_true);
1814        tcg_out_brcond2(s, new_args, const_args+1, 1);
1815
1816        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1817        tcg_out_jxx(s, JCC_JMP, label_over, 1);
1818        tcg_out_label(s, label_true);
1819
1820        tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1821        tcg_out_label(s, label_over);
1822    } else {
1823        /* When the destination does not overlap one of the arguments,
1824           clear the destination first, jump if cond false, and emit an
1825           increment in the true case.  This results in smaller code.  */
1826
1827        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1828
1829        label_over = gen_new_label();
1830        new_args[4] = tcg_invert_cond(new_args[4]);
1831        new_args[5] = label_arg(label_over);
1832        tcg_out_brcond2(s, new_args, const_args+1, 1);
1833
1834        tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1835        tcg_out_label(s, label_over);
1836    }
1837}
1838#endif
1839
1840static void tcg_out_cmov(TCGContext *s, int jcc, int rexw,
1841                         TCGReg dest, TCGReg v1)
1842{
1843    tcg_out_modrm(s, OPC_CMOVCC | jcc | rexw, dest, v1);
1844}
1845
1846static void tcg_out_movcond(TCGContext *s, int rexw, TCGCond cond,
1847                            TCGReg dest, TCGReg c1, TCGArg c2, int const_c2,
1848                            TCGReg v1)
1849{
1850    int jcc = tcg_out_cmp(s, cond, c1, c2, const_c2, rexw);
1851    tcg_out_cmov(s, jcc, rexw, dest, v1);
1852}
1853
1854static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest)
1855{
1856    intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1857
1858    if (disp == (int32_t)disp) {
1859        tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1860        tcg_out32(s, disp);
1861    } else {
1862        /* rip-relative addressing into the constant pool.
1863           This is 6 + 8 = 14 bytes, as compared to using an
1864           immediate load 10 + 6 = 16 bytes, plus we may
1865           be able to re-use the pool constant for more calls.  */
1866        tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
1867        tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
1868        new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
1869        tcg_out32(s, 0);
1870    }
1871}
1872
1873static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
1874                         const TCGHelperInfo *info)
1875{
1876    tcg_out_branch(s, 1, dest);
1877
1878#ifndef _WIN32
1879    if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) {
1880        /*
1881         * The sysv i386 abi for struct return places a reference as the
1882         * first argument of the stack, and pops that argument with the
1883         * return statement.  Since we want to retain the aligned stack
1884         * pointer for the callee, we do not want to actually push that
1885         * argument before the call but rely on the normal store to the
1886         * stack slot.  But we do need to compensate for the pop in order
1887         * to reset our correct stack pointer value.
1888         * Pushing a garbage value back onto the stack is quickest.
1889         */
1890        tcg_out_push(s, TCG_REG_EAX);
1891    }
1892#endif
1893}
1894
1895static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest)
1896{
1897    tcg_out_branch(s, 0, dest);
1898}
1899
1900static void tcg_out_nopn(TCGContext *s, int n)
1901{
1902    int i;
1903    /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1904     * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1905     * duplicate prefix, and all of the interesting recent cores can
1906     * decode and discard the duplicates in a single cycle.
1907     */
1908    tcg_debug_assert(n >= 1);
1909    for (i = 1; i < n; ++i) {
1910        tcg_out8(s, 0x66);
1911    }
1912    tcg_out8(s, 0x90);
1913}
1914
1915typedef struct {
1916    TCGReg base;
1917    int index;
1918    int ofs;
1919    int seg;
1920    TCGAtomAlign aa;
1921} HostAddress;
1922
1923bool tcg_target_has_memory_bswap(MemOp memop)
1924{
1925    TCGAtomAlign aa;
1926
1927    if (!have_movbe) {
1928        return false;
1929    }
1930    if ((memop & MO_SIZE) < MO_128) {
1931        return true;
1932    }
1933
1934    /*
1935     * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA,
1936     * but do allow a pair of 64-bit operations, i.e. MOVBEQ.
1937     */
1938    aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true);
1939    return aa.atom < MO_128;
1940}
1941
1942/*
1943 * Because i686 has no register parameters and because x86_64 has xchg
1944 * to handle addr/data register overlap, we have placed all input arguments
1945 * before we need might need a scratch reg.
1946 *
1947 * Even then, a scratch is only needed for l->raddr.  Rather than expose
1948 * a general-purpose scratch when we don't actually know it's available,
1949 * use the ra_gen hook to load into RAX if needed.
1950 */
1951#if TCG_TARGET_REG_BITS == 64
1952static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg)
1953{
1954    if (arg < 0) {
1955        arg = TCG_REG_RAX;
1956    }
1957    tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr);
1958    return arg;
1959}
1960static const TCGLdstHelperParam ldst_helper_param = {
1961    .ra_gen = ldst_ra_gen
1962};
1963#else
1964static const TCGLdstHelperParam ldst_helper_param = { };
1965#endif
1966
1967static void tcg_out_vec_to_pair(TCGContext *s, TCGType type,
1968                                TCGReg l, TCGReg h, TCGReg v)
1969{
1970    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1971
1972    /* vpmov{d,q} %v, %l */
1973    tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l);
1974    /* vpextr{d,q} $1, %v, %h */
1975    tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h);
1976    tcg_out8(s, 1);
1977}
1978
1979static void tcg_out_pair_to_vec(TCGContext *s, TCGType type,
1980                                TCGReg v, TCGReg l, TCGReg h)
1981{
1982    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1983
1984    /* vmov{d,q} %l, %v */
1985    tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l);
1986    /* vpinsr{d,q} $1, %h, %v, %v */
1987    tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h);
1988    tcg_out8(s, 1);
1989}
1990
1991/*
1992 * Generate code for the slow path for a load at the end of block
1993 */
1994static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1995{
1996    MemOp opc = get_memop(l->oi);
1997    tcg_insn_unit **label_ptr = &l->label_ptr[0];
1998
1999    /* resolve label address */
2000    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
2001    if (label_ptr[1]) {
2002        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
2003    }
2004
2005    tcg_out_ld_helper_args(s, l, &ldst_helper_param);
2006    tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]);
2007    tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param);
2008
2009    tcg_out_jmp(s, l->raddr);
2010    return true;
2011}
2012
2013/*
2014 * Generate code for the slow path for a store at the end of block
2015 */
2016static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2017{
2018    MemOp opc = get_memop(l->oi);
2019    tcg_insn_unit **label_ptr = &l->label_ptr[0];
2020
2021    /* resolve label address */
2022    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
2023    if (label_ptr[1]) {
2024        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
2025    }
2026
2027    tcg_out_st_helper_args(s, l, &ldst_helper_param);
2028    tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]);
2029
2030    tcg_out_jmp(s, l->raddr);
2031    return true;
2032}
2033
2034#ifdef CONFIG_USER_ONLY
2035static HostAddress x86_guest_base = {
2036    .index = -1
2037};
2038
2039#if defined(__x86_64__) && defined(__linux__)
2040# include <asm/prctl.h>
2041# include <sys/prctl.h>
2042int arch_prctl(int code, unsigned long addr);
2043static inline int setup_guest_base_seg(void)
2044{
2045    if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
2046        return P_GS;
2047    }
2048    return 0;
2049}
2050#define setup_guest_base_seg  setup_guest_base_seg
2051#elif defined(__x86_64__) && \
2052      (defined (__FreeBSD__) || defined (__FreeBSD_kernel__))
2053# include <machine/sysarch.h>
2054static inline int setup_guest_base_seg(void)
2055{
2056    if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
2057        return P_GS;
2058    }
2059    return 0;
2060}
2061#define setup_guest_base_seg  setup_guest_base_seg
2062#endif
2063#else
2064# define x86_guest_base (*(HostAddress *)({ qemu_build_not_reached(); NULL; }))
2065#endif /* CONFIG_USER_ONLY */
2066#ifndef setup_guest_base_seg
2067# define setup_guest_base_seg()  0
2068#endif
2069
2070#define MIN_TLB_MASK_TABLE_OFS  INT_MIN
2071
2072/*
2073 * For softmmu, perform the TLB load and compare.
2074 * For useronly, perform any required alignment tests.
2075 * In both cases, return a TCGLabelQemuLdst structure if the slow path
2076 * is required and fill in @h with the host address for the fast path.
2077 */
2078static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
2079                                           TCGReg addr, MemOpIdx oi, bool is_ld)
2080{
2081    TCGLabelQemuLdst *ldst = NULL;
2082    MemOp opc = get_memop(oi);
2083    MemOp s_bits = opc & MO_SIZE;
2084    unsigned a_mask;
2085
2086    if (tcg_use_softmmu) {
2087        h->index = TCG_REG_L0;
2088        h->ofs = 0;
2089        h->seg = 0;
2090    } else {
2091        *h = x86_guest_base;
2092    }
2093    h->base = addr;
2094    h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128);
2095    a_mask = (1 << h->aa.align) - 1;
2096
2097    if (tcg_use_softmmu) {
2098        int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read)
2099                            : offsetof(CPUTLBEntry, addr_write);
2100        TCGType ttype = TCG_TYPE_I32;
2101        TCGType tlbtype = TCG_TYPE_I32;
2102        int trexw = 0, hrexw = 0, tlbrexw = 0;
2103        unsigned mem_index = get_mmuidx(oi);
2104        unsigned s_mask = (1 << s_bits) - 1;
2105        int fast_ofs = tlb_mask_table_ofs(s, mem_index);
2106        int tlb_mask;
2107
2108        ldst = new_ldst_label(s);
2109        ldst->is_ld = is_ld;
2110        ldst->oi = oi;
2111        ldst->addr_reg = addr;
2112
2113        if (TCG_TARGET_REG_BITS == 64) {
2114            ttype = s->addr_type;
2115            trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW);
2116            if (TCG_TYPE_PTR == TCG_TYPE_I64) {
2117                hrexw = P_REXW;
2118                if (s->page_bits + s->tlb_dyn_max_bits > 32) {
2119                    tlbtype = TCG_TYPE_I64;
2120                    tlbrexw = P_REXW;
2121                }
2122            }
2123        }
2124
2125        tcg_out_mov(s, tlbtype, TCG_REG_L0, addr);
2126        tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0,
2127                       s->page_bits - CPU_TLB_ENTRY_BITS);
2128
2129        tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0,
2130                             fast_ofs + offsetof(CPUTLBDescFast, mask));
2131
2132        tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0,
2133                             fast_ofs + offsetof(CPUTLBDescFast, table));
2134
2135        /*
2136         * If the required alignment is at least as large as the access,
2137         * simply copy the address and mask.  For lesser alignments,
2138         * check that we don't cross pages for the complete access.
2139         */
2140        if (a_mask >= s_mask) {
2141            tcg_out_mov(s, ttype, TCG_REG_L1, addr);
2142        } else {
2143            tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1,
2144                                 addr, s_mask - a_mask);
2145        }
2146        tlb_mask = s->page_mask | a_mask;
2147        tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0);
2148
2149        /* cmp 0(TCG_REG_L0), TCG_REG_L1 */
2150        tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw,
2151                             TCG_REG_L1, TCG_REG_L0, cmp_ofs);
2152
2153        /* jne slow_path */
2154        tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
2155        ldst->label_ptr[0] = s->code_ptr;
2156        s->code_ptr += 4;
2157
2158        /* TLB Hit.  */
2159        tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0,
2160                   offsetof(CPUTLBEntry, addend));
2161    } else if (a_mask) {
2162        int jcc;
2163
2164        ldst = new_ldst_label(s);
2165        ldst->is_ld = is_ld;
2166        ldst->oi = oi;
2167        ldst->addr_reg = addr;
2168
2169        /* jne slow_path */
2170        jcc = tcg_out_cmp(s, TCG_COND_TSTNE, addr, a_mask, true, false);
2171        tcg_out_opc(s, OPC_JCC_long + jcc, 0, 0, 0);
2172        ldst->label_ptr[0] = s->code_ptr;
2173        s->code_ptr += 4;
2174    }
2175
2176    return ldst;
2177}
2178
2179static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2180                                   HostAddress h, TCGType type, MemOp memop)
2181{
2182    bool use_movbe = false;
2183    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
2184    int movop = OPC_MOVL_GvEv;
2185
2186    /* Do big-endian loads with movbe.  */
2187    if (memop & MO_BSWAP) {
2188        tcg_debug_assert(have_movbe);
2189        use_movbe = true;
2190        movop = OPC_MOVBE_GyMy;
2191    }
2192
2193    switch (memop & MO_SSIZE) {
2194    case MO_UB:
2195        tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo,
2196                                 h.base, h.index, 0, h.ofs);
2197        break;
2198    case MO_SB:
2199        tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo,
2200                                 h.base, h.index, 0, h.ofs);
2201        break;
2202    case MO_UW:
2203        if (use_movbe) {
2204            /* There is no extending movbe; only low 16-bits are modified.  */
2205            if (datalo != h.base && datalo != h.index) {
2206                /* XOR breaks dependency chains.  */
2207                tgen_arithr(s, ARITH_XOR, datalo, datalo);
2208                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2209                                         datalo, h.base, h.index, 0, h.ofs);
2210            } else {
2211                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2212                                         datalo, h.base, h.index, 0, h.ofs);
2213                tcg_out_ext16u(s, datalo, datalo);
2214            }
2215        } else {
2216            tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo,
2217                                     h.base, h.index, 0, h.ofs);
2218        }
2219        break;
2220    case MO_SW:
2221        if (use_movbe) {
2222            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2223                                     datalo, h.base, h.index, 0, h.ofs);
2224            tcg_out_ext16s(s, type, datalo, datalo);
2225        } else {
2226            tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg,
2227                                     datalo, h.base, h.index, 0, h.ofs);
2228        }
2229        break;
2230    case MO_UL:
2231        tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2232                                 h.base, h.index, 0, h.ofs);
2233        break;
2234#if TCG_TARGET_REG_BITS == 64
2235    case MO_SL:
2236        if (use_movbe) {
2237            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo,
2238                                     h.base, h.index, 0, h.ofs);
2239            tcg_out_ext32s(s, datalo, datalo);
2240        } else {
2241            tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo,
2242                                     h.base, h.index, 0, h.ofs);
2243        }
2244        break;
2245#endif
2246    case MO_UQ:
2247        if (TCG_TARGET_REG_BITS == 64) {
2248            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2249                                     h.base, h.index, 0, h.ofs);
2250            break;
2251        }
2252        if (use_movbe) {
2253            TCGReg t = datalo;
2254            datalo = datahi;
2255            datahi = t;
2256        }
2257        if (h.base == datalo || h.index == datalo) {
2258            tcg_out_modrm_sib_offset(s, OPC_LEA, datahi,
2259                                     h.base, h.index, 0, h.ofs);
2260            tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0);
2261            tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4);
2262        } else {
2263            tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2264                                     h.base, h.index, 0, h.ofs);
2265            tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2266                                     h.base, h.index, 0, h.ofs + 4);
2267        }
2268        break;
2269
2270    case MO_128:
2271        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2272
2273        /*
2274         * Without 16-byte atomicity, use integer regs.
2275         * That is where we want the data, and it allows bswaps.
2276         */
2277        if (h.aa.atom < MO_128) {
2278            if (use_movbe) {
2279                TCGReg t = datalo;
2280                datalo = datahi;
2281                datahi = t;
2282            }
2283            if (h.base == datalo || h.index == datalo) {
2284                tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi,
2285                                         h.base, h.index, 0, h.ofs);
2286                tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2287                                     datalo, datahi, 0);
2288                tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2289                                     datahi, datahi, 8);
2290            } else {
2291                tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2292                                         h.base, h.index, 0, h.ofs);
2293                tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2294                                         h.base, h.index, 0, h.ofs + 8);
2295            }
2296            break;
2297        }
2298
2299        /*
2300         * With 16-byte atomicity, a vector load is required.
2301         * If we already have 16-byte alignment, then VMOVDQA always works.
2302         * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2303         * Else use we require a runtime test for alignment for VMOVDQA;
2304         * use VMOVDQU on the unaligned nonatomic path for simplicity.
2305         */
2306        if (h.aa.align >= MO_128) {
2307            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2308                                         TCG_TMP_VEC, 0,
2309                                         h.base, h.index, 0, h.ofs);
2310        } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2311            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2312                                         TCG_TMP_VEC, 0,
2313                                         h.base, h.index, 0, h.ofs);
2314        } else {
2315            TCGLabel *l1 = gen_new_label();
2316            TCGLabel *l2 = gen_new_label();
2317            int jcc;
2318
2319            jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
2320            tcg_out_jxx(s, jcc, l1, true);
2321
2322            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2323                                         TCG_TMP_VEC, 0,
2324                                         h.base, h.index, 0, h.ofs);
2325            tcg_out_jxx(s, JCC_JMP, l2, true);
2326
2327            tcg_out_label(s, l1);
2328            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2329                                         TCG_TMP_VEC, 0,
2330                                         h.base, h.index, 0, h.ofs);
2331            tcg_out_label(s, l2);
2332        }
2333        tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC);
2334        break;
2335
2336    default:
2337        g_assert_not_reached();
2338    }
2339}
2340
2341static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi,
2342                            TCGReg addr, MemOpIdx oi, TCGType data_type)
2343{
2344    TCGLabelQemuLdst *ldst;
2345    HostAddress h;
2346
2347    ldst = prepare_host_addr(s, &h, addr, oi, true);
2348    tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi));
2349
2350    if (ldst) {
2351        ldst->type = data_type;
2352        ldst->datalo_reg = datalo;
2353        ldst->datahi_reg = datahi;
2354        ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2355    }
2356}
2357
2358static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2359                                   HostAddress h, MemOp memop)
2360{
2361    bool use_movbe = false;
2362    int movop = OPC_MOVL_EvGv;
2363
2364    /*
2365     * Do big-endian stores with movbe or system-mode.
2366     * User-only without movbe will have its swapping done generically.
2367     */
2368    if (memop & MO_BSWAP) {
2369        tcg_debug_assert(have_movbe);
2370        use_movbe = true;
2371        movop = OPC_MOVBE_MyGy;
2372    }
2373
2374    switch (memop & MO_SIZE) {
2375    case MO_8:
2376        /* This is handled with constraints on INDEX_op_qemu_st8_i32. */
2377        tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4);
2378        tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg,
2379                                 datalo, h.base, h.index, 0, h.ofs);
2380        break;
2381    case MO_16:
2382        tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo,
2383                                 h.base, h.index, 0, h.ofs);
2384        break;
2385    case MO_32:
2386        tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2387                                 h.base, h.index, 0, h.ofs);
2388        break;
2389    case MO_64:
2390        if (TCG_TARGET_REG_BITS == 64) {
2391            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2392                                     h.base, h.index, 0, h.ofs);
2393        } else {
2394            if (use_movbe) {
2395                TCGReg t = datalo;
2396                datalo = datahi;
2397                datahi = t;
2398            }
2399            tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2400                                     h.base, h.index, 0, h.ofs);
2401            tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2402                                     h.base, h.index, 0, h.ofs + 4);
2403        }
2404        break;
2405
2406    case MO_128:
2407        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2408
2409        /*
2410         * Without 16-byte atomicity, use integer regs.
2411         * That is where we have the data, and it allows bswaps.
2412         */
2413        if (h.aa.atom < MO_128) {
2414            if (use_movbe) {
2415                TCGReg t = datalo;
2416                datalo = datahi;
2417                datahi = t;
2418            }
2419            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2420                                     h.base, h.index, 0, h.ofs);
2421            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2422                                     h.base, h.index, 0, h.ofs + 8);
2423            break;
2424        }
2425
2426        /*
2427         * With 16-byte atomicity, a vector store is required.
2428         * If we already have 16-byte alignment, then VMOVDQA always works.
2429         * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2430         * Else use we require a runtime test for alignment for VMOVDQA;
2431         * use VMOVDQU on the unaligned nonatomic path for simplicity.
2432         */
2433        tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi);
2434        if (h.aa.align >= MO_128) {
2435            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2436                                         TCG_TMP_VEC, 0,
2437                                         h.base, h.index, 0, h.ofs);
2438        } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2439            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2440                                         TCG_TMP_VEC, 0,
2441                                         h.base, h.index, 0, h.ofs);
2442        } else {
2443            TCGLabel *l1 = gen_new_label();
2444            TCGLabel *l2 = gen_new_label();
2445            int jcc;
2446
2447            jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
2448            tcg_out_jxx(s, jcc, l1, true);
2449
2450            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2451                                         TCG_TMP_VEC, 0,
2452                                         h.base, h.index, 0, h.ofs);
2453            tcg_out_jxx(s, JCC_JMP, l2, true);
2454
2455            tcg_out_label(s, l1);
2456            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2457                                         TCG_TMP_VEC, 0,
2458                                         h.base, h.index, 0, h.ofs);
2459            tcg_out_label(s, l2);
2460        }
2461        break;
2462
2463    default:
2464        g_assert_not_reached();
2465    }
2466}
2467
2468static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi,
2469                            TCGReg addr, MemOpIdx oi, TCGType data_type)
2470{
2471    TCGLabelQemuLdst *ldst;
2472    HostAddress h;
2473
2474    ldst = prepare_host_addr(s, &h, addr, oi, false);
2475    tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi));
2476
2477    if (ldst) {
2478        ldst->type = data_type;
2479        ldst->datalo_reg = datalo;
2480        ldst->datahi_reg = datahi;
2481        ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2482    }
2483}
2484
2485static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
2486{
2487    /* Reuse the zeroing that exists for goto_ptr.  */
2488    if (a0 == 0) {
2489        tcg_out_jmp(s, tcg_code_gen_epilogue);
2490    } else {
2491        tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
2492        tcg_out_jmp(s, tb_ret_addr);
2493    }
2494}
2495
2496static void tcg_out_goto_tb(TCGContext *s, int which)
2497{
2498    /*
2499     * Jump displacement must be aligned for atomic patching;
2500     * see if we need to add extra nops before jump
2501     */
2502    int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr;
2503    if (gap != 1) {
2504        tcg_out_nopn(s, gap - 1);
2505    }
2506    tcg_out8(s, OPC_JMP_long); /* jmp im */
2507    set_jmp_insn_offset(s, which);
2508    tcg_out32(s, 0);
2509    set_jmp_reset_offset(s, which);
2510}
2511
2512void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
2513                              uintptr_t jmp_rx, uintptr_t jmp_rw)
2514{
2515    /* patch the branch destination */
2516    uintptr_t addr = tb->jmp_target_addr[n];
2517    qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4));
2518    /* no need to flush icache explicitly */
2519}
2520
2521
2522static void tgen_add(TCGContext *s, TCGType type,
2523                     TCGReg a0, TCGReg a1, TCGReg a2)
2524{
2525    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2526
2527    if (a0 == a1) {
2528        tgen_arithr(s, ARITH_ADD + rexw, a0, a2);
2529    } else if (a0 == a2) {
2530        tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
2531    } else {
2532        tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, 0);
2533    }
2534}
2535
2536static void tgen_addi(TCGContext *s, TCGType type,
2537                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2538{
2539    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2540
2541    if (a0 == a1) {
2542        tgen_arithi(s, ARITH_ADD + rexw, a0, a2, false);
2543    } else {
2544        tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, -1, 0, a2);
2545    }
2546}
2547
2548static const TCGOutOpBinary outop_add = {
2549    .base.static_constraint = C_O1_I2(r, r, re),
2550    .out_rrr = tgen_add,
2551    .out_rri = tgen_addi,
2552};
2553
2554static void tgen_and(TCGContext *s, TCGType type,
2555                     TCGReg a0, TCGReg a1, TCGReg a2)
2556{
2557    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2558    tgen_arithr(s, ARITH_AND + rexw, a0, a2);
2559}
2560
2561static void tgen_andi(TCGContext *s, TCGType type,
2562                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2563{
2564    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2565    tgen_arithi(s, ARITH_AND + rexw, a0, a2, false);
2566}
2567
2568static const TCGOutOpBinary outop_and = {
2569    .base.static_constraint = C_O1_I2(r, 0, reZ),
2570    .out_rrr = tgen_and,
2571    .out_rri = tgen_andi,
2572};
2573
2574static void tgen_andc(TCGContext *s, TCGType type,
2575                      TCGReg a0, TCGReg a1, TCGReg a2)
2576{
2577    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2578    tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2579}
2580
2581static TCGConstraintSetIndex cset_andc(TCGType type, unsigned flags)
2582{
2583    return have_bmi1 ? C_O1_I2(r, r, r) : C_NotImplemented;
2584}
2585
2586static const TCGOutOpBinary outop_andc = {
2587    .base.static_constraint = C_Dynamic,
2588    .base.dynamic_constraint = cset_andc,
2589    .out_rrr = tgen_andc,
2590};
2591
2592static void tgen_clz(TCGContext *s, TCGType type,
2593                     TCGReg a0, TCGReg a1, TCGReg a2)
2594{
2595    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2596    int jcc;
2597
2598    if (have_lzcnt) {
2599        tcg_out_modrm(s, OPC_LZCNT + rexw, a0, a1);
2600        jcc = JCC_JB;
2601    } else {
2602        /* Recall that the output of BSR is the index not the count.  */
2603        tcg_out_modrm(s, OPC_BSR + rexw, a0, a1);
2604        tgen_arithi(s, ARITH_XOR + rexw, a0, rexw ? 63 : 31, 0);
2605
2606        /* Since we have destroyed the flags from BSR, we have to re-test.  */
2607        jcc = tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, rexw);
2608    }
2609    tcg_out_cmov(s, jcc, rexw, a0, a2);
2610}
2611
2612static void tgen_clzi(TCGContext *s, TCGType type,
2613                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2614{
2615    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2616    tcg_out_modrm(s, OPC_LZCNT + rexw, a0, a1);
2617}
2618
2619static TCGConstraintSetIndex cset_clz(TCGType type, unsigned flags)
2620{
2621    return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
2622}
2623
2624static const TCGOutOpBinary outop_clz = {
2625    .base.static_constraint = C_Dynamic,
2626    .base.dynamic_constraint = cset_clz,
2627    .out_rrr = tgen_clz,
2628    .out_rri = tgen_clzi,
2629};
2630
2631static void tgen_ctpop(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
2632{
2633    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2634    tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2635}
2636
2637static TCGConstraintSetIndex cset_ctpop(TCGType type, unsigned flags)
2638{
2639    return have_popcnt ? C_O1_I1(r, r) : C_NotImplemented;
2640}
2641
2642static const TCGOutOpUnary outop_ctpop = {
2643    .base.static_constraint = C_Dynamic,
2644    .base.dynamic_constraint = cset_ctpop,
2645    .out_rr = tgen_ctpop,
2646};
2647
2648static void tgen_ctz(TCGContext *s, TCGType type,
2649                     TCGReg a0, TCGReg a1, TCGReg a2)
2650{
2651    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2652    int jcc;
2653
2654    if (have_bmi1) {
2655        tcg_out_modrm(s, OPC_TZCNT + rexw, a0, a1);
2656        jcc = JCC_JB;
2657    } else {
2658        tcg_out_modrm(s, OPC_BSF + rexw, a0, a1);
2659        jcc = JCC_JE;
2660    }
2661    tcg_out_cmov(s, jcc, rexw, a0, a2);
2662}
2663
2664static void tgen_ctzi(TCGContext *s, TCGType type,
2665                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2666{
2667    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2668    tcg_out_modrm(s, OPC_TZCNT + rexw, a0, a1);
2669}
2670
2671static TCGConstraintSetIndex cset_ctz(TCGType type, unsigned flags)
2672{
2673    return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
2674}
2675
2676static const TCGOutOpBinary outop_ctz = {
2677    .base.static_constraint = C_Dynamic,
2678    .base.dynamic_constraint = cset_ctz,
2679    .out_rrr = tgen_ctz,
2680    .out_rri = tgen_ctzi,
2681};
2682
2683static const TCGOutOpBinary outop_divs = {
2684    .base.static_constraint = C_NotImplemented,
2685};
2686
2687static void tgen_divs2(TCGContext *s, TCGType type,
2688                       TCGReg a0, TCGReg a1, TCGReg a4)
2689{
2690    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2691    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, a4);
2692}
2693
2694static const TCGOutOpDivRem outop_divs2 = {
2695    .base.static_constraint = C_O2_I3(a, d, 0, 1, r),
2696    .out_rr01r = tgen_divs2,
2697};
2698
2699static const TCGOutOpBinary outop_divu = {
2700    .base.static_constraint = C_NotImplemented,
2701};
2702
2703static void tgen_divu2(TCGContext *s, TCGType type,
2704                       TCGReg a0, TCGReg a1, TCGReg a4)
2705{
2706    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2707    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, a4);
2708}
2709
2710static const TCGOutOpDivRem outop_divu2 = {
2711    .base.static_constraint = C_O2_I3(a, d, 0, 1, r),
2712    .out_rr01r = tgen_divu2,
2713};
2714
2715static const TCGOutOpBinary outop_eqv = {
2716    .base.static_constraint = C_NotImplemented,
2717};
2718
2719static void tgen_mul(TCGContext *s, TCGType type,
2720                     TCGReg a0, TCGReg a1, TCGReg a2)
2721{
2722    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2723    tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2724}
2725
2726static void tgen_muli(TCGContext *s, TCGType type,
2727                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2728{
2729    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2730
2731    if (a2 == (int8_t)a2) {
2732        tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2733        tcg_out8(s, a2);
2734    } else {
2735        tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2736        tcg_out32(s, a2);
2737    }
2738}
2739
2740static const TCGOutOpBinary outop_mul = {
2741    .base.static_constraint = C_O1_I2(r, 0, re),
2742    .out_rrr = tgen_mul,
2743    .out_rri = tgen_muli,
2744};
2745
2746static const TCGOutOpBinary outop_mulsh = {
2747    .base.static_constraint = C_NotImplemented,
2748};
2749
2750static const TCGOutOpBinary outop_muluh = {
2751    .base.static_constraint = C_NotImplemented,
2752};
2753
2754static const TCGOutOpBinary outop_nand = {
2755    .base.static_constraint = C_NotImplemented,
2756};
2757
2758static const TCGOutOpBinary outop_nor = {
2759    .base.static_constraint = C_NotImplemented,
2760};
2761
2762static void tgen_or(TCGContext *s, TCGType type,
2763                    TCGReg a0, TCGReg a1, TCGReg a2)
2764{
2765    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2766    tgen_arithr(s, ARITH_OR + rexw, a0, a2);
2767}
2768
2769static void tgen_ori(TCGContext *s, TCGType type,
2770                     TCGReg a0, TCGReg a1, tcg_target_long a2)
2771{
2772    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2773    tgen_arithi(s, ARITH_OR + rexw, a0, a2, false);
2774}
2775
2776static const TCGOutOpBinary outop_or = {
2777    .base.static_constraint = C_O1_I2(r, 0, re),
2778    .out_rrr = tgen_or,
2779    .out_rri = tgen_ori,
2780};
2781
2782static const TCGOutOpBinary outop_orc = {
2783    .base.static_constraint = C_NotImplemented,
2784};
2785
2786static const TCGOutOpBinary outop_rems = {
2787    .base.static_constraint = C_NotImplemented,
2788};
2789
2790static const TCGOutOpBinary outop_remu = {
2791    .base.static_constraint = C_NotImplemented,
2792};
2793
2794static void tgen_rotl(TCGContext *s, TCGType type,
2795                     TCGReg a0, TCGReg a1, TCGReg a2)
2796{
2797    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2798    tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_ROL, a0);
2799}
2800
2801static void tgen_rotli(TCGContext *s, TCGType type,
2802                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2803{
2804    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2805    tcg_out_shifti(s, SHIFT_ROL + rexw, a0, a2);
2806}
2807
2808static const TCGOutOpBinary outop_rotl = {
2809    .base.static_constraint = C_O1_I2(r, 0, ci),
2810    .out_rrr = tgen_rotl,
2811    .out_rri = tgen_rotli,
2812};
2813
2814static void tgen_rotr(TCGContext *s, TCGType type,
2815                     TCGReg a0, TCGReg a1, TCGReg a2)
2816{
2817    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2818    tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_ROR, a0);
2819}
2820
2821static void tgen_rotri(TCGContext *s, TCGType type,
2822                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2823{
2824    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2825    tcg_out_shifti(s, SHIFT_ROR + rexw, a0, a2);
2826}
2827
2828static const TCGOutOpBinary outop_rotr = {
2829    .base.static_constraint = C_O1_I2(r, 0, ci),
2830    .out_rrr = tgen_rotr,
2831    .out_rri = tgen_rotri,
2832};
2833
2834static TCGConstraintSetIndex cset_shift(TCGType type, unsigned flags)
2835{
2836    return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci);
2837}
2838
2839static void tgen_sar(TCGContext *s, TCGType type,
2840                     TCGReg a0, TCGReg a1, TCGReg a2)
2841{
2842    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2843    if (have_bmi2) {
2844        tcg_out_vex_modrm(s, OPC_SARX + rexw, a0, a2, a1);
2845    } else {
2846        tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SAR, a0);
2847    }
2848}
2849
2850static void tgen_sari(TCGContext *s, TCGType type,
2851                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2852{
2853    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2854
2855    tcg_out_mov(s, type, a0, a1);
2856    tcg_out_shifti(s, SHIFT_SAR + rexw, a0, a2);
2857}
2858
2859static const TCGOutOpBinary outop_sar = {
2860    .base.static_constraint = C_Dynamic,
2861    .base.dynamic_constraint = cset_shift,
2862    .out_rrr = tgen_sar,
2863    .out_rri = tgen_sari,
2864};
2865
2866static void tgen_shl(TCGContext *s, TCGType type,
2867                     TCGReg a0, TCGReg a1, TCGReg a2)
2868{
2869    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2870    if (have_bmi2) {
2871        tcg_out_vex_modrm(s, OPC_SHLX + rexw, a0, a2, a1);
2872    } else {
2873        tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SHL, a0);
2874    }
2875}
2876
2877static void tgen_shli(TCGContext *s, TCGType type,
2878                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2879{
2880    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2881
2882    /* For small constant 3-operand shift, use LEA.  */
2883    if (a0 != a1 && a2 >= 1 && a2 <= 3) {
2884        if (a2 == 1) {
2885            /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2886            tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2887        } else {
2888            /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2889            tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2890        }
2891        return;
2892    }
2893    tcg_out_mov(s, type, a0, a1);
2894    tcg_out_shifti(s, SHIFT_SHL + rexw, a0, a2);
2895}
2896
2897static const TCGOutOpBinary outop_shl = {
2898    .base.static_constraint = C_Dynamic,
2899    .base.dynamic_constraint = cset_shift,
2900    .out_rrr = tgen_shl,
2901    .out_rri = tgen_shli,
2902};
2903
2904static void tgen_shr(TCGContext *s, TCGType type,
2905                     TCGReg a0, TCGReg a1, TCGReg a2)
2906{
2907    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2908    if (have_bmi2) {
2909        tcg_out_vex_modrm(s, OPC_SHRX + rexw, a0, a2, a1);
2910    } else {
2911        tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SHR, a0);
2912    }
2913}
2914
2915static void tgen_shri(TCGContext *s, TCGType type,
2916                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2917{
2918    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2919
2920    tcg_out_mov(s, type, a0, a1);
2921    tcg_out_shifti(s, SHIFT_SHR + rexw, a0, a2);
2922}
2923
2924static const TCGOutOpBinary outop_shr = {
2925    .base.static_constraint = C_Dynamic,
2926    .base.dynamic_constraint = cset_shift,
2927    .out_rrr = tgen_shr,
2928    .out_rri = tgen_shri,
2929};
2930
2931static void tgen_sub(TCGContext *s, TCGType type,
2932                      TCGReg a0, TCGReg a1, TCGReg a2)
2933{
2934    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2935    tgen_arithr(s, ARITH_SUB + rexw, a0, a2);
2936}
2937
2938static const TCGOutOpSubtract outop_sub = {
2939    .base.static_constraint = C_O1_I2(r, 0, r),
2940    .out_rrr = tgen_sub,
2941};
2942
2943static void tgen_xor(TCGContext *s, TCGType type,
2944                     TCGReg a0, TCGReg a1, TCGReg a2)
2945{
2946    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2947    tgen_arithr(s, ARITH_XOR + rexw, a0, a2);
2948}
2949
2950static void tgen_xori(TCGContext *s, TCGType type,
2951                      TCGReg a0, TCGReg a1, tcg_target_long a2)
2952{
2953    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2954    tgen_arithi(s, ARITH_XOR + rexw, a0, a2, false);
2955}
2956
2957static const TCGOutOpBinary outop_xor = {
2958    .base.static_constraint = C_O1_I2(r, 0, re),
2959    .out_rrr = tgen_xor,
2960    .out_rri = tgen_xori,
2961};
2962
2963static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
2964{
2965    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2966    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
2967}
2968
2969static const TCGOutOpUnary outop_neg = {
2970    .base.static_constraint = C_O1_I1(r, 0),
2971    .out_rr = tgen_neg,
2972};
2973
2974static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
2975{
2976    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2977    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
2978}
2979
2980static const TCGOutOpUnary outop_not = {
2981    .base.static_constraint = C_O1_I1(r, 0),
2982    .out_rr = tgen_not,
2983};
2984
2985
2986static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType type,
2987                       const TCGArg args[TCG_MAX_OP_ARGS],
2988                       const int const_args[TCG_MAX_OP_ARGS])
2989{
2990    TCGArg a0, a1, a2;
2991    int const_a2, rexw;
2992
2993#if TCG_TARGET_REG_BITS == 64
2994# define OP_32_64(x) \
2995        case glue(glue(INDEX_op_, x), _i64): \
2996        case glue(glue(INDEX_op_, x), _i32)
2997#else
2998# define OP_32_64(x) \
2999        case glue(glue(INDEX_op_, x), _i32)
3000#endif
3001
3002    /* Hoist the loads of the most common arguments.  */
3003    a0 = args[0];
3004    a1 = args[1];
3005    a2 = args[2];
3006    const_a2 = const_args[2];
3007    rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
3008
3009    switch (opc) {
3010    case INDEX_op_goto_ptr:
3011        /* jmp to the given host address (could be epilogue) */
3012        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
3013        break;
3014    case INDEX_op_br:
3015        tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
3016        break;
3017    OP_32_64(ld8u):
3018        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
3019        tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
3020        break;
3021    OP_32_64(ld8s):
3022        tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
3023        break;
3024    OP_32_64(ld16u):
3025        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
3026        tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
3027        break;
3028    OP_32_64(ld16s):
3029        tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
3030        break;
3031#if TCG_TARGET_REG_BITS == 64
3032    case INDEX_op_ld32u_i64:
3033#endif
3034    case INDEX_op_ld_i32:
3035        tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
3036        break;
3037
3038    OP_32_64(st8):
3039        if (const_args[0]) {
3040            tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
3041            tcg_out8(s, a0);
3042        } else {
3043            tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
3044        }
3045        break;
3046    OP_32_64(st16):
3047        if (const_args[0]) {
3048            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
3049            tcg_out16(s, a0);
3050        } else {
3051            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
3052        }
3053        break;
3054#if TCG_TARGET_REG_BITS == 64
3055    case INDEX_op_st32_i64:
3056#endif
3057    case INDEX_op_st_i32:
3058        if (const_args[0]) {
3059            tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
3060            tcg_out32(s, a0);
3061        } else {
3062            tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
3063        }
3064        break;
3065
3066    OP_32_64(brcond):
3067        tcg_out_brcond(s, rexw, a2, a0, a1, const_args[1],
3068                       arg_label(args[3]), 0);
3069        break;
3070    OP_32_64(setcond):
3071        tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, false);
3072        break;
3073    OP_32_64(negsetcond):
3074        tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, true);
3075        break;
3076    OP_32_64(movcond):
3077        tcg_out_movcond(s, rexw, args[5], a0, a1, a2, const_a2, args[3]);
3078        break;
3079
3080    OP_32_64(bswap16):
3081        if (a2 & TCG_BSWAP_OS) {
3082            /* Output must be sign-extended. */
3083            if (rexw) {
3084                tcg_out_bswap64(s, a0);
3085                tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48);
3086            } else {
3087                tcg_out_bswap32(s, a0);
3088                tcg_out_shifti(s, SHIFT_SAR, a0, 16);
3089            }
3090        } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
3091            /* Output must be zero-extended, but input isn't. */
3092            tcg_out_bswap32(s, a0);
3093            tcg_out_shifti(s, SHIFT_SHR, a0, 16);
3094        } else {
3095            tcg_out_rolw_8(s, a0);
3096        }
3097        break;
3098    OP_32_64(bswap32):
3099        tcg_out_bswap32(s, a0);
3100        if (rexw && (a2 & TCG_BSWAP_OS)) {
3101            tcg_out_ext32s(s, a0, a0);
3102        }
3103        break;
3104
3105    case INDEX_op_qemu_ld_i32:
3106        tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I32);
3107        break;
3108    case INDEX_op_qemu_ld_i64:
3109        if (TCG_TARGET_REG_BITS == 64) {
3110            tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I64);
3111        } else {
3112            tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I64);
3113        }
3114        break;
3115    case INDEX_op_qemu_ld_i128:
3116        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3117        tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I128);
3118        break;
3119
3120    case INDEX_op_qemu_st_i32:
3121    case INDEX_op_qemu_st8_i32:
3122        tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I32);
3123        break;
3124    case INDEX_op_qemu_st_i64:
3125        if (TCG_TARGET_REG_BITS == 64) {
3126            tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I64);
3127        } else {
3128            tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I64);
3129        }
3130        break;
3131    case INDEX_op_qemu_st_i128:
3132        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3133        tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I128);
3134        break;
3135
3136    OP_32_64(mulu2):
3137        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
3138        break;
3139    OP_32_64(muls2):
3140        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]);
3141        break;
3142    OP_32_64(add2):
3143        if (const_args[4]) {
3144            tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
3145        } else {
3146            tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
3147        }
3148        if (const_args[5]) {
3149            tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
3150        } else {
3151            tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
3152        }
3153        break;
3154    OP_32_64(sub2):
3155        if (const_args[4]) {
3156            tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
3157        } else {
3158            tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
3159        }
3160        if (const_args[5]) {
3161            tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
3162        } else {
3163            tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
3164        }
3165        break;
3166
3167#if TCG_TARGET_REG_BITS == 32
3168    case INDEX_op_brcond2_i32:
3169        tcg_out_brcond2(s, args, const_args, 0);
3170        break;
3171    case INDEX_op_setcond2_i32:
3172        tcg_out_setcond2(s, args, const_args);
3173        break;
3174#else /* TCG_TARGET_REG_BITS == 64 */
3175    case INDEX_op_ld32s_i64:
3176        tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
3177        break;
3178    case INDEX_op_ld_i64:
3179        tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
3180        break;
3181    case INDEX_op_st_i64:
3182        if (const_args[0]) {
3183            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
3184            tcg_out32(s, a0);
3185        } else {
3186            tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
3187        }
3188        break;
3189
3190    case INDEX_op_bswap64_i64:
3191        tcg_out_bswap64(s, a0);
3192        break;
3193    case INDEX_op_extrh_i64_i32:
3194        tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
3195        break;
3196#endif
3197
3198    OP_32_64(deposit):
3199        if (args[3] == 0 && args[4] == 8) {
3200            /* load bits 0..7 */
3201            if (const_a2) {
3202                tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0),
3203                            0, a0, 0);
3204                tcg_out8(s, a2);
3205            } else {
3206                tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
3207            }
3208        } else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) {
3209            /* load bits 8..15 */
3210            if (const_a2) {
3211                tcg_out8(s, OPC_MOVB_Ib + a0 + 4);
3212                tcg_out8(s, a2);
3213            } else {
3214                tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
3215            }
3216        } else if (args[3] == 0 && args[4] == 16) {
3217            /* load bits 0..15 */
3218            if (const_a2) {
3219                tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0),
3220                            0, a0, 0);
3221                tcg_out16(s, a2);
3222            } else {
3223                tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
3224            }
3225        } else {
3226            g_assert_not_reached();
3227        }
3228        break;
3229
3230    case INDEX_op_extract_i64:
3231        if (a2 + args[3] == 32) {
3232            if (a2 == 0) {
3233                tcg_out_ext32u(s, a0, a1);
3234                break;
3235            }
3236            /* This is a 32-bit zero-extending right shift.  */
3237            tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
3238            tcg_out_shifti(s, SHIFT_SHR, a0, a2);
3239            break;
3240        }
3241        /* FALLTHRU */
3242    case INDEX_op_extract_i32:
3243        if (a2 == 0 && args[3] == 8) {
3244            tcg_out_ext8u(s, a0, a1);
3245        } else if (a2 == 0 && args[3] == 16) {
3246            tcg_out_ext16u(s, a0, a1);
3247        } else if (a2 == 8 && args[3] == 8) {
3248            /*
3249             * On the off-chance that we can use the high-byte registers.
3250             * Otherwise we emit the same ext16 + shift pattern that we
3251             * would have gotten from the normal tcg-op.c expansion.
3252             */
3253            if (a1 < 4 && a0 < 8) {
3254                tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
3255            } else {
3256                tcg_out_ext16u(s, a0, a1);
3257                tcg_out_shifti(s, SHIFT_SHR, a0, 8);
3258            }
3259        } else {
3260            g_assert_not_reached();
3261        }
3262        break;
3263
3264    case INDEX_op_sextract_i64:
3265        if (a2 == 0 && args[3] == 8) {
3266            tcg_out_ext8s(s, TCG_TYPE_I64, a0, a1);
3267        } else if (a2 == 0 && args[3] == 16) {
3268            tcg_out_ext16s(s, TCG_TYPE_I64, a0, a1);
3269        } else if (a2 == 0 && args[3] == 32) {
3270            tcg_out_ext32s(s, a0, a1);
3271        } else {
3272            g_assert_not_reached();
3273        }
3274        break;
3275
3276    case INDEX_op_sextract_i32:
3277        if (a2 == 0 && args[3] == 8) {
3278            tcg_out_ext8s(s, TCG_TYPE_I32, a0, a1);
3279        } else if (a2 == 0 && args[3] == 16) {
3280            tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
3281        } else if (a2 == 8 && args[3] == 8) {
3282            if (a1 < 4 && a0 < 8) {
3283                tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
3284            } else {
3285                tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
3286                tcg_out_shifti(s, SHIFT_SAR, a0, 8);
3287            }
3288        } else {
3289            g_assert_not_reached();
3290        }
3291        break;
3292
3293    OP_32_64(extract2):
3294        /* Note that SHRD outputs to the r/m operand.  */
3295        tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
3296        tcg_out8(s, args[3]);
3297        break;
3298
3299    case INDEX_op_mb:
3300        tcg_out_mb(s, a0);
3301        break;
3302    case INDEX_op_call:     /* Always emitted via tcg_out_call.  */
3303    case INDEX_op_exit_tb:  /* Always emitted via tcg_out_exit_tb.  */
3304    case INDEX_op_goto_tb:  /* Always emitted via tcg_out_goto_tb.  */
3305    case INDEX_op_ext_i32_i64:  /* Always emitted via tcg_reg_alloc_op.  */
3306    case INDEX_op_extu_i32_i64:
3307    case INDEX_op_extrl_i64_i32:
3308    default:
3309        g_assert_not_reached();
3310    }
3311
3312#undef OP_32_64
3313}
3314
3315static int const umin_insn[4] = {
3316    OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ
3317};
3318
3319static int const umax_insn[4] = {
3320    OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ
3321};
3322
3323static bool tcg_out_cmp_vec_noinv(TCGContext *s, TCGType type, unsigned vece,
3324                                  TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
3325{
3326    static int const cmpeq_insn[4] = {
3327        OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
3328    };
3329    static int const cmpgt_insn[4] = {
3330        OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
3331    };
3332
3333    enum {
3334        NEED_INV  = 1,
3335        NEED_SWAP = 2,
3336        NEED_UMIN = 4,
3337        NEED_UMAX = 8,
3338        INVALID   = 16,
3339    };
3340    static const uint8_t cond_fixup[16] = {
3341        [0 ... 15] = INVALID,
3342        [TCG_COND_EQ] = 0,
3343        [TCG_COND_GT] = 0,
3344        [TCG_COND_NE] = NEED_INV,
3345        [TCG_COND_LE] = NEED_INV,
3346        [TCG_COND_LT] = NEED_SWAP,
3347        [TCG_COND_GE] = NEED_SWAP | NEED_INV,
3348        [TCG_COND_LEU] = NEED_UMIN,
3349        [TCG_COND_GTU] = NEED_UMIN | NEED_INV,
3350        [TCG_COND_GEU] = NEED_UMAX,
3351        [TCG_COND_LTU] = NEED_UMAX | NEED_INV,
3352    };
3353    int fixup = cond_fixup[cond];
3354
3355    assert(!(fixup & INVALID));
3356
3357    if (fixup & NEED_INV) {
3358        cond = tcg_invert_cond(cond);
3359    }
3360
3361    if (fixup & NEED_SWAP) {
3362        TCGReg swap = v1;
3363        v1 = v2;
3364        v2 = swap;
3365        cond = tcg_swap_cond(cond);
3366    }
3367
3368    if (fixup & (NEED_UMIN | NEED_UMAX)) {
3369        int op = (fixup & NEED_UMIN ? umin_insn[vece] : umax_insn[vece]);
3370
3371        /* avx2 does not have 64-bit min/max; adjusted during expand. */
3372        assert(vece <= MO_32);
3373
3374        tcg_out_vex_modrm_type(s, op, TCG_TMP_VEC, v1, v2, type);
3375        v2 = TCG_TMP_VEC;
3376        cond = TCG_COND_EQ;
3377    }
3378
3379    switch (cond) {
3380    case TCG_COND_EQ:
3381        tcg_out_vex_modrm_type(s, cmpeq_insn[vece], v0, v1, v2, type);
3382        break;
3383    case TCG_COND_GT:
3384        tcg_out_vex_modrm_type(s, cmpgt_insn[vece], v0, v1, v2, type);
3385        break;
3386    default:
3387        g_assert_not_reached();
3388    }
3389    return fixup & NEED_INV;
3390}
3391
3392static void tcg_out_cmp_vec_k1(TCGContext *s, TCGType type, unsigned vece,
3393                               TCGReg v1, TCGReg v2, TCGCond cond)
3394{
3395    static const int cmpm_insn[2][4] = {
3396        { OPC_VPCMPB, OPC_VPCMPW, OPC_VPCMPD, OPC_VPCMPQ },
3397        { OPC_VPCMPUB, OPC_VPCMPUW, OPC_VPCMPUD, OPC_VPCMPUQ }
3398    };
3399    static const int testm_insn[4] = {
3400        OPC_VPTESTMB, OPC_VPTESTMW, OPC_VPTESTMD, OPC_VPTESTMQ
3401    };
3402    static const int testnm_insn[4] = {
3403        OPC_VPTESTNMB, OPC_VPTESTNMW, OPC_VPTESTNMD, OPC_VPTESTNMQ
3404    };
3405
3406    static const int cond_ext[16] = {
3407        [TCG_COND_EQ] = 0,
3408        [TCG_COND_NE] = 4,
3409        [TCG_COND_LT] = 1,
3410        [TCG_COND_LTU] = 1,
3411        [TCG_COND_LE] = 2,
3412        [TCG_COND_LEU] = 2,
3413        [TCG_COND_NEVER] = 3,
3414        [TCG_COND_GE] = 5,
3415        [TCG_COND_GEU] = 5,
3416        [TCG_COND_GT] = 6,
3417        [TCG_COND_GTU] = 6,
3418        [TCG_COND_ALWAYS] = 7,
3419    };
3420
3421    switch (cond) {
3422    case TCG_COND_TSTNE:
3423        tcg_out_vex_modrm_type(s, testm_insn[vece], /* k1 */ 1, v1, v2, type);
3424        break;
3425    case TCG_COND_TSTEQ:
3426        tcg_out_vex_modrm_type(s, testnm_insn[vece], /* k1 */ 1, v1, v2, type);
3427        break;
3428    default:
3429        tcg_out_vex_modrm_type(s, cmpm_insn[is_unsigned_cond(cond)][vece],
3430                               /* k1 */ 1, v1, v2, type);
3431        tcg_out8(s, cond_ext[cond]);
3432        break;
3433    }
3434}
3435
3436static void tcg_out_k1_to_vec(TCGContext *s, TCGType type,
3437                              unsigned vece, TCGReg dest)
3438{
3439    static const int movm_insn[] = {
3440        OPC_VPMOVM2B, OPC_VPMOVM2W, OPC_VPMOVM2D, OPC_VPMOVM2Q
3441    };
3442    tcg_out_vex_modrm_type(s, movm_insn[vece], dest, 0, /* k1 */ 1, type);
3443}
3444
3445static void tcg_out_cmp_vec(TCGContext *s, TCGType type, unsigned vece,
3446                            TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
3447{
3448    /*
3449     * With avx512, we have a complete set of comparisons into mask.
3450     * Unless there's a single insn expansion for the comparision,
3451     * expand via a mask in k1.
3452     */
3453    if ((vece <= MO_16 ? have_avx512bw : have_avx512dq)
3454        && cond != TCG_COND_EQ
3455        && cond != TCG_COND_LT
3456        && cond != TCG_COND_GT) {
3457        tcg_out_cmp_vec_k1(s, type, vece, v1, v2, cond);
3458        tcg_out_k1_to_vec(s, type, vece, v0);
3459        return;
3460    }
3461
3462    if (tcg_out_cmp_vec_noinv(s, type, vece, v0, v1, v2, cond)) {
3463        tcg_out_dupi_vec(s, type, vece, TCG_TMP_VEC, -1);
3464        tcg_out_vex_modrm_type(s, OPC_PXOR, v0, v0, TCG_TMP_VEC, type);
3465    }
3466}
3467
3468static void tcg_out_cmpsel_vec_k1(TCGContext *s, TCGType type, unsigned vece,
3469                                  TCGReg v0, TCGReg c1, TCGReg c2,
3470                                  TCGReg v3, TCGReg v4, TCGCond cond)
3471{
3472    static const int vpblendm_insn[] = {
3473        OPC_VPBLENDMB, OPC_VPBLENDMW, OPC_VPBLENDMD, OPC_VPBLENDMQ
3474    };
3475    bool z = false;
3476
3477    /* Swap to place constant in V4 to take advantage of zero-masking. */
3478    if (!v3) {
3479        z = true;
3480        v3 = v4;
3481        cond = tcg_invert_cond(cond);
3482    }
3483
3484    tcg_out_cmp_vec_k1(s, type, vece, c1, c2, cond);
3485    tcg_out_evex_modrm_type(s, vpblendm_insn[vece], v0, v4, v3,
3486                            /* k1 */1, z, type);
3487}
3488
3489static void tcg_out_cmpsel_vec(TCGContext *s, TCGType type, unsigned vece,
3490                               TCGReg v0, TCGReg c1, TCGReg c2,
3491                               TCGReg v3, TCGReg v4, TCGCond cond)
3492{
3493    bool inv;
3494
3495    if (vece <= MO_16 ? have_avx512bw : have_avx512vl) {
3496        tcg_out_cmpsel_vec_k1(s, type, vece, v0, c1, c2, v3, v4, cond);
3497        return;
3498    }
3499
3500    inv = tcg_out_cmp_vec_noinv(s, type, vece, TCG_TMP_VEC, c1, c2, cond);
3501
3502    /*
3503     * Since XMM0 is 16, the only way we get 0 into V3
3504     * is via the constant zero constraint.
3505     */
3506    if (!v3) {
3507        if (inv) {
3508            tcg_out_vex_modrm_type(s, OPC_PAND, v0, TCG_TMP_VEC, v4, type);
3509        } else {
3510            tcg_out_vex_modrm_type(s, OPC_PANDN, v0, TCG_TMP_VEC, v4, type);
3511        }
3512    } else {
3513        if (inv) {
3514            TCGReg swap = v3;
3515            v3 = v4;
3516            v4 = swap;
3517        }
3518        tcg_out_vex_modrm_type(s, OPC_VPBLENDVB, v0, v4, v3, type);
3519        tcg_out8(s, (TCG_TMP_VEC - TCG_REG_XMM0) << 4);
3520    }
3521}
3522
3523static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
3524                           unsigned vecl, unsigned vece,
3525                           const TCGArg args[TCG_MAX_OP_ARGS],
3526                           const int const_args[TCG_MAX_OP_ARGS])
3527{
3528    static int const add_insn[4] = {
3529        OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
3530    };
3531    static int const ssadd_insn[4] = {
3532        OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
3533    };
3534    static int const usadd_insn[4] = {
3535        OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
3536    };
3537    static int const sub_insn[4] = {
3538        OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
3539    };
3540    static int const sssub_insn[4] = {
3541        OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
3542    };
3543    static int const ussub_insn[4] = {
3544        OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
3545    };
3546    static int const mul_insn[4] = {
3547        OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ
3548    };
3549    static int const shift_imm_insn[4] = {
3550        OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
3551    };
3552    static int const punpckl_insn[4] = {
3553        OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
3554    };
3555    static int const punpckh_insn[4] = {
3556        OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
3557    };
3558    static int const packss_insn[4] = {
3559        OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
3560    };
3561    static int const packus_insn[4] = {
3562        OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
3563    };
3564    static int const smin_insn[4] = {
3565        OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ
3566    };
3567    static int const smax_insn[4] = {
3568        OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ
3569    };
3570    static int const rotlv_insn[4] = {
3571        OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ
3572    };
3573    static int const rotrv_insn[4] = {
3574        OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ
3575    };
3576    static int const shlv_insn[4] = {
3577        OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ
3578    };
3579    static int const shrv_insn[4] = {
3580        OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ
3581    };
3582    static int const sarv_insn[4] = {
3583        OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ
3584    };
3585    static int const shls_insn[4] = {
3586        OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
3587    };
3588    static int const shrs_insn[4] = {
3589        OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
3590    };
3591    static int const sars_insn[4] = {
3592        OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ
3593    };
3594    static int const vpshldi_insn[4] = {
3595        OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ
3596    };
3597    static int const vpshldv_insn[4] = {
3598        OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ
3599    };
3600    static int const vpshrdv_insn[4] = {
3601        OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ
3602    };
3603    static int const abs_insn[4] = {
3604        OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ
3605    };
3606
3607    TCGType type = vecl + TCG_TYPE_V64;
3608    int insn, sub;
3609    TCGArg a0, a1, a2, a3;
3610
3611    a0 = args[0];
3612    a1 = args[1];
3613    a2 = args[2];
3614
3615    switch (opc) {
3616    case INDEX_op_add_vec:
3617        insn = add_insn[vece];
3618        goto gen_simd;
3619    case INDEX_op_ssadd_vec:
3620        insn = ssadd_insn[vece];
3621        goto gen_simd;
3622    case INDEX_op_usadd_vec:
3623        insn = usadd_insn[vece];
3624        goto gen_simd;
3625    case INDEX_op_sub_vec:
3626        insn = sub_insn[vece];
3627        goto gen_simd;
3628    case INDEX_op_sssub_vec:
3629        insn = sssub_insn[vece];
3630        goto gen_simd;
3631    case INDEX_op_ussub_vec:
3632        insn = ussub_insn[vece];
3633        goto gen_simd;
3634    case INDEX_op_mul_vec:
3635        insn = mul_insn[vece];
3636        goto gen_simd;
3637    case INDEX_op_and_vec:
3638        insn = OPC_PAND;
3639        goto gen_simd;
3640    case INDEX_op_or_vec:
3641        insn = OPC_POR;
3642        goto gen_simd;
3643    case INDEX_op_xor_vec:
3644        insn = OPC_PXOR;
3645        goto gen_simd;
3646    case INDEX_op_smin_vec:
3647        insn = smin_insn[vece];
3648        goto gen_simd;
3649    case INDEX_op_umin_vec:
3650        insn = umin_insn[vece];
3651        goto gen_simd;
3652    case INDEX_op_smax_vec:
3653        insn = smax_insn[vece];
3654        goto gen_simd;
3655    case INDEX_op_umax_vec:
3656        insn = umax_insn[vece];
3657        goto gen_simd;
3658    case INDEX_op_shlv_vec:
3659        insn = shlv_insn[vece];
3660        goto gen_simd;
3661    case INDEX_op_shrv_vec:
3662        insn = shrv_insn[vece];
3663        goto gen_simd;
3664    case INDEX_op_sarv_vec:
3665        insn = sarv_insn[vece];
3666        goto gen_simd;
3667    case INDEX_op_rotlv_vec:
3668        insn = rotlv_insn[vece];
3669        goto gen_simd;
3670    case INDEX_op_rotrv_vec:
3671        insn = rotrv_insn[vece];
3672        goto gen_simd;
3673    case INDEX_op_shls_vec:
3674        insn = shls_insn[vece];
3675        goto gen_simd;
3676    case INDEX_op_shrs_vec:
3677        insn = shrs_insn[vece];
3678        goto gen_simd;
3679    case INDEX_op_sars_vec:
3680        insn = sars_insn[vece];
3681        goto gen_simd;
3682    case INDEX_op_x86_punpckl_vec:
3683        insn = punpckl_insn[vece];
3684        goto gen_simd;
3685    case INDEX_op_x86_punpckh_vec:
3686        insn = punpckh_insn[vece];
3687        goto gen_simd;
3688    case INDEX_op_x86_packss_vec:
3689        insn = packss_insn[vece];
3690        goto gen_simd;
3691    case INDEX_op_x86_packus_vec:
3692        insn = packus_insn[vece];
3693        goto gen_simd;
3694    case INDEX_op_x86_vpshldv_vec:
3695        insn = vpshldv_insn[vece];
3696        a1 = a2;
3697        a2 = args[3];
3698        goto gen_simd;
3699    case INDEX_op_x86_vpshrdv_vec:
3700        insn = vpshrdv_insn[vece];
3701        a1 = a2;
3702        a2 = args[3];
3703        goto gen_simd;
3704#if TCG_TARGET_REG_BITS == 32
3705    case INDEX_op_dup2_vec:
3706        /* First merge the two 32-bit inputs to a single 64-bit element. */
3707        tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
3708        /* Then replicate the 64-bit elements across the rest of the vector. */
3709        if (type != TCG_TYPE_V64) {
3710            tcg_out_dup_vec(s, type, MO_64, a0, a0);
3711        }
3712        break;
3713#endif
3714    case INDEX_op_abs_vec:
3715        insn = abs_insn[vece];
3716        a2 = a1;
3717        a1 = 0;
3718        goto gen_simd;
3719    gen_simd:
3720        tcg_debug_assert(insn != OPC_UD2);
3721        tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
3722        break;
3723
3724    case INDEX_op_cmp_vec:
3725        tcg_out_cmp_vec(s, type, vece, a0, a1, a2, args[3]);
3726        break;
3727
3728    case INDEX_op_cmpsel_vec:
3729        tcg_out_cmpsel_vec(s, type, vece, a0, a1, a2,
3730                           args[3], args[4], args[5]);
3731        break;
3732
3733    case INDEX_op_andc_vec:
3734        insn = OPC_PANDN;
3735        tcg_out_vex_modrm_type(s, insn, a0, a2, a1, type);
3736        break;
3737
3738    case INDEX_op_shli_vec:
3739        insn = shift_imm_insn[vece];
3740        sub = 6;
3741        goto gen_shift;
3742    case INDEX_op_shri_vec:
3743        insn = shift_imm_insn[vece];
3744        sub = 2;
3745        goto gen_shift;
3746    case INDEX_op_sari_vec:
3747        if (vece == MO_64) {
3748            insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX;
3749        } else {
3750            insn = shift_imm_insn[vece];
3751        }
3752        sub = 4;
3753        goto gen_shift;
3754    case INDEX_op_rotli_vec:
3755        insn = OPC_PSHIFTD_Ib | P_EVEX;  /* VPROL[DQ] */
3756        if (vece == MO_64) {
3757            insn |= P_VEXW;
3758        }
3759        sub = 1;
3760        goto gen_shift;
3761    gen_shift:
3762        tcg_debug_assert(vece != MO_8);
3763        tcg_out_vex_modrm_type(s, insn, sub, a0, a1, type);
3764        tcg_out8(s, a2);
3765        break;
3766
3767    case INDEX_op_ld_vec:
3768        tcg_out_ld(s, type, a0, a1, a2);
3769        break;
3770    case INDEX_op_st_vec:
3771        tcg_out_st(s, type, a0, a1, a2);
3772        break;
3773    case INDEX_op_dupm_vec:
3774        tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3775        break;
3776
3777    case INDEX_op_x86_shufps_vec:
3778        insn = OPC_SHUFPS;
3779        sub = args[3];
3780        goto gen_simd_imm8;
3781    case INDEX_op_x86_blend_vec:
3782        if (vece == MO_16) {
3783            insn = OPC_PBLENDW;
3784        } else if (vece == MO_32) {
3785            insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
3786        } else {
3787            g_assert_not_reached();
3788        }
3789        sub = args[3];
3790        goto gen_simd_imm8;
3791    case INDEX_op_x86_vperm2i128_vec:
3792        insn = OPC_VPERM2I128;
3793        sub = args[3];
3794        goto gen_simd_imm8;
3795    case INDEX_op_x86_vpshldi_vec:
3796        insn = vpshldi_insn[vece];
3797        sub = args[3];
3798        goto gen_simd_imm8;
3799
3800    case INDEX_op_not_vec:
3801        insn = OPC_VPTERNLOGQ;
3802        a2 = a1;
3803        sub = 0x33; /* !B */
3804        goto gen_simd_imm8;
3805    case INDEX_op_nor_vec:
3806        insn = OPC_VPTERNLOGQ;
3807        sub = 0x11; /* norCB */
3808        goto gen_simd_imm8;
3809    case INDEX_op_nand_vec:
3810        insn = OPC_VPTERNLOGQ;
3811        sub = 0x77; /* nandCB */
3812        goto gen_simd_imm8;
3813    case INDEX_op_eqv_vec:
3814        insn = OPC_VPTERNLOGQ;
3815        sub = 0x99; /* xnorCB */
3816        goto gen_simd_imm8;
3817    case INDEX_op_orc_vec:
3818        insn = OPC_VPTERNLOGQ;
3819        sub = 0xdd; /* orB!C */
3820        goto gen_simd_imm8;
3821
3822    case INDEX_op_bitsel_vec:
3823        insn = OPC_VPTERNLOGQ;
3824        a3 = args[3];
3825        if (a0 == a1) {
3826            a1 = a2;
3827            a2 = a3;
3828            sub = 0xca; /* A?B:C */
3829        } else if (a0 == a2) {
3830            a2 = a3;
3831            sub = 0xe2; /* B?A:C */
3832        } else {
3833            tcg_out_mov(s, type, a0, a3);
3834            sub = 0xb8; /* B?C:A */
3835        }
3836        goto gen_simd_imm8;
3837
3838    gen_simd_imm8:
3839        tcg_debug_assert(insn != OPC_UD2);
3840        tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
3841        tcg_out8(s, sub);
3842        break;
3843
3844    case INDEX_op_x86_psrldq_vec:
3845        tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
3846        tcg_out8(s, a2);
3847        break;
3848
3849    case INDEX_op_mov_vec:  /* Always emitted via tcg_out_mov.  */
3850    case INDEX_op_dup_vec:  /* Always emitted via tcg_out_dup_vec.  */
3851    default:
3852        g_assert_not_reached();
3853    }
3854}
3855
3856static TCGConstraintSetIndex
3857tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags)
3858{
3859    switch (op) {
3860    case INDEX_op_goto_ptr:
3861        return C_O0_I1(r);
3862
3863    case INDEX_op_ld8u_i32:
3864    case INDEX_op_ld8u_i64:
3865    case INDEX_op_ld8s_i32:
3866    case INDEX_op_ld8s_i64:
3867    case INDEX_op_ld16u_i32:
3868    case INDEX_op_ld16u_i64:
3869    case INDEX_op_ld16s_i32:
3870    case INDEX_op_ld16s_i64:
3871    case INDEX_op_ld_i32:
3872    case INDEX_op_ld32u_i64:
3873    case INDEX_op_ld32s_i64:
3874    case INDEX_op_ld_i64:
3875        return C_O1_I1(r, r);
3876
3877    case INDEX_op_st8_i32:
3878    case INDEX_op_st8_i64:
3879        return C_O0_I2(qi, r);
3880
3881    case INDEX_op_st16_i32:
3882    case INDEX_op_st16_i64:
3883    case INDEX_op_st_i32:
3884    case INDEX_op_st32_i64:
3885        return C_O0_I2(ri, r);
3886
3887    case INDEX_op_st_i64:
3888        return C_O0_I2(re, r);
3889
3890    case INDEX_op_brcond_i32:
3891    case INDEX_op_brcond_i64:
3892        return C_O0_I2(r, reT);
3893
3894    case INDEX_op_bswap16_i32:
3895    case INDEX_op_bswap16_i64:
3896    case INDEX_op_bswap32_i32:
3897    case INDEX_op_bswap32_i64:
3898    case INDEX_op_bswap64_i64:
3899    case INDEX_op_extrh_i64_i32:
3900        return C_O1_I1(r, 0);
3901
3902    case INDEX_op_ext_i32_i64:
3903    case INDEX_op_extu_i32_i64:
3904    case INDEX_op_extrl_i64_i32:
3905    case INDEX_op_extract_i32:
3906    case INDEX_op_extract_i64:
3907    case INDEX_op_sextract_i32:
3908    case INDEX_op_sextract_i64:
3909        return C_O1_I1(r, r);
3910
3911    case INDEX_op_extract2_i32:
3912    case INDEX_op_extract2_i64:
3913        return C_O1_I2(r, 0, r);
3914
3915    case INDEX_op_deposit_i32:
3916    case INDEX_op_deposit_i64:
3917        return C_O1_I2(q, 0, qi);
3918
3919    case INDEX_op_setcond_i32:
3920    case INDEX_op_setcond_i64:
3921    case INDEX_op_negsetcond_i32:
3922    case INDEX_op_negsetcond_i64:
3923        return C_O1_I2(q, r, reT);
3924
3925    case INDEX_op_movcond_i32:
3926    case INDEX_op_movcond_i64:
3927        return C_O1_I4(r, r, reT, r, 0);
3928
3929    case INDEX_op_mulu2_i32:
3930    case INDEX_op_mulu2_i64:
3931    case INDEX_op_muls2_i32:
3932    case INDEX_op_muls2_i64:
3933        return C_O2_I2(a, d, a, r);
3934
3935    case INDEX_op_add2_i32:
3936    case INDEX_op_add2_i64:
3937    case INDEX_op_sub2_i32:
3938    case INDEX_op_sub2_i64:
3939        return C_N1_O1_I4(r, r, 0, 1, re, re);
3940
3941    case INDEX_op_qemu_ld_i32:
3942        return C_O1_I1(r, L);
3943
3944    case INDEX_op_qemu_st_i32:
3945        return C_O0_I2(L, L);
3946    case INDEX_op_qemu_st8_i32:
3947        return C_O0_I2(s, L);
3948
3949    case INDEX_op_qemu_ld_i64:
3950        return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L);
3951
3952    case INDEX_op_qemu_st_i64:
3953        return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L);
3954
3955    case INDEX_op_qemu_ld_i128:
3956        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3957        return C_O2_I1(r, r, L);
3958    case INDEX_op_qemu_st_i128:
3959        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3960        return C_O0_I3(L, L, L);
3961
3962    case INDEX_op_brcond2_i32:
3963        return C_O0_I4(r, r, ri, ri);
3964
3965    case INDEX_op_setcond2_i32:
3966        return C_O1_I4(r, r, r, ri, ri);
3967
3968    case INDEX_op_ld_vec:
3969    case INDEX_op_dupm_vec:
3970        return C_O1_I1(x, r);
3971
3972    case INDEX_op_st_vec:
3973        return C_O0_I2(x, r);
3974
3975    case INDEX_op_add_vec:
3976    case INDEX_op_sub_vec:
3977    case INDEX_op_mul_vec:
3978    case INDEX_op_and_vec:
3979    case INDEX_op_or_vec:
3980    case INDEX_op_xor_vec:
3981    case INDEX_op_andc_vec:
3982    case INDEX_op_orc_vec:
3983    case INDEX_op_nand_vec:
3984    case INDEX_op_nor_vec:
3985    case INDEX_op_eqv_vec:
3986    case INDEX_op_ssadd_vec:
3987    case INDEX_op_usadd_vec:
3988    case INDEX_op_sssub_vec:
3989    case INDEX_op_ussub_vec:
3990    case INDEX_op_smin_vec:
3991    case INDEX_op_umin_vec:
3992    case INDEX_op_smax_vec:
3993    case INDEX_op_umax_vec:
3994    case INDEX_op_shlv_vec:
3995    case INDEX_op_shrv_vec:
3996    case INDEX_op_sarv_vec:
3997    case INDEX_op_rotlv_vec:
3998    case INDEX_op_rotrv_vec:
3999    case INDEX_op_shls_vec:
4000    case INDEX_op_shrs_vec:
4001    case INDEX_op_sars_vec:
4002    case INDEX_op_cmp_vec:
4003    case INDEX_op_x86_shufps_vec:
4004    case INDEX_op_x86_blend_vec:
4005    case INDEX_op_x86_packss_vec:
4006    case INDEX_op_x86_packus_vec:
4007    case INDEX_op_x86_vperm2i128_vec:
4008    case INDEX_op_x86_punpckl_vec:
4009    case INDEX_op_x86_punpckh_vec:
4010    case INDEX_op_x86_vpshldi_vec:
4011#if TCG_TARGET_REG_BITS == 32
4012    case INDEX_op_dup2_vec:
4013#endif
4014        return C_O1_I2(x, x, x);
4015
4016    case INDEX_op_abs_vec:
4017    case INDEX_op_dup_vec:
4018    case INDEX_op_not_vec:
4019    case INDEX_op_shli_vec:
4020    case INDEX_op_shri_vec:
4021    case INDEX_op_sari_vec:
4022    case INDEX_op_rotli_vec:
4023    case INDEX_op_x86_psrldq_vec:
4024        return C_O1_I1(x, x);
4025
4026    case INDEX_op_x86_vpshldv_vec:
4027    case INDEX_op_x86_vpshrdv_vec:
4028        return C_O1_I3(x, 0, x, x);
4029
4030    case INDEX_op_bitsel_vec:
4031        return C_O1_I3(x, x, x, x);
4032    case INDEX_op_cmpsel_vec:
4033        return C_O1_I4(x, x, x, xO, x);
4034
4035    default:
4036        return C_NotImplemented;
4037    }
4038}
4039
4040int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
4041{
4042    switch (opc) {
4043    case INDEX_op_add_vec:
4044    case INDEX_op_sub_vec:
4045    case INDEX_op_and_vec:
4046    case INDEX_op_or_vec:
4047    case INDEX_op_xor_vec:
4048    case INDEX_op_andc_vec:
4049    case INDEX_op_orc_vec:
4050    case INDEX_op_nand_vec:
4051    case INDEX_op_nor_vec:
4052    case INDEX_op_eqv_vec:
4053    case INDEX_op_not_vec:
4054    case INDEX_op_bitsel_vec:
4055        return 1;
4056    case INDEX_op_cmp_vec:
4057    case INDEX_op_cmpsel_vec:
4058        return -1;
4059
4060    case INDEX_op_rotli_vec:
4061        return have_avx512vl && vece >= MO_32 ? 1 : -1;
4062
4063    case INDEX_op_shli_vec:
4064    case INDEX_op_shri_vec:
4065        /* We must expand the operation for MO_8.  */
4066        return vece == MO_8 ? -1 : 1;
4067
4068    case INDEX_op_sari_vec:
4069        switch (vece) {
4070        case MO_8:
4071            return -1;
4072        case MO_16:
4073        case MO_32:
4074            return 1;
4075        case MO_64:
4076            if (have_avx512vl) {
4077                return 1;
4078            }
4079            /*
4080             * We can emulate this for MO_64, but it does not pay off
4081             * unless we're producing at least 4 values.
4082             */
4083            return type >= TCG_TYPE_V256 ? -1 : 0;
4084        }
4085        return 0;
4086
4087    case INDEX_op_shls_vec:
4088    case INDEX_op_shrs_vec:
4089        return vece >= MO_16;
4090    case INDEX_op_sars_vec:
4091        switch (vece) {
4092        case MO_16:
4093        case MO_32:
4094            return 1;
4095        case MO_64:
4096            return have_avx512vl;
4097        }
4098        return 0;
4099    case INDEX_op_rotls_vec:
4100        return vece >= MO_16 ? -1 : 0;
4101
4102    case INDEX_op_shlv_vec:
4103    case INDEX_op_shrv_vec:
4104        switch (vece) {
4105        case MO_16:
4106            return have_avx512bw;
4107        case MO_32:
4108        case MO_64:
4109            return have_avx2;
4110        }
4111        return 0;
4112    case INDEX_op_sarv_vec:
4113        switch (vece) {
4114        case MO_16:
4115            return have_avx512bw;
4116        case MO_32:
4117            return have_avx2;
4118        case MO_64:
4119            return have_avx512vl;
4120        }
4121        return 0;
4122    case INDEX_op_rotlv_vec:
4123    case INDEX_op_rotrv_vec:
4124        switch (vece) {
4125        case MO_16:
4126            return have_avx512vbmi2 ? -1 : 0;
4127        case MO_32:
4128        case MO_64:
4129            return have_avx512vl ? 1 : have_avx2 ? -1 : 0;
4130        }
4131        return 0;
4132
4133    case INDEX_op_mul_vec:
4134        switch (vece) {
4135        case MO_8:
4136            return -1;
4137        case MO_64:
4138            return have_avx512dq;
4139        }
4140        return 1;
4141
4142    case INDEX_op_ssadd_vec:
4143    case INDEX_op_usadd_vec:
4144    case INDEX_op_sssub_vec:
4145    case INDEX_op_ussub_vec:
4146        return vece <= MO_16;
4147    case INDEX_op_smin_vec:
4148    case INDEX_op_smax_vec:
4149    case INDEX_op_umin_vec:
4150    case INDEX_op_umax_vec:
4151    case INDEX_op_abs_vec:
4152        return vece <= MO_32 || have_avx512vl;
4153
4154    default:
4155        return 0;
4156    }
4157}
4158
4159static void expand_vec_shi(TCGType type, unsigned vece, bool right,
4160                           TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4161{
4162    uint8_t mask;
4163
4164    tcg_debug_assert(vece == MO_8);
4165    if (right) {
4166        mask = 0xff >> imm;
4167        tcg_gen_shri_vec(MO_16, v0, v1, imm);
4168    } else {
4169        mask = 0xff << imm;
4170        tcg_gen_shli_vec(MO_16, v0, v1, imm);
4171    }
4172    tcg_gen_and_vec(MO_8, v0, v0, tcg_constant_vec(type, MO_8, mask));
4173}
4174
4175static void expand_vec_sari(TCGType type, unsigned vece,
4176                            TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4177{
4178    TCGv_vec t1, t2;
4179
4180    switch (vece) {
4181    case MO_8:
4182        /* Unpack to 16-bit, shift, and repack.  */
4183        t1 = tcg_temp_new_vec(type);
4184        t2 = tcg_temp_new_vec(type);
4185        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4186                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
4187        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4188                  tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
4189        tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
4190        tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
4191        vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
4192                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
4193        tcg_temp_free_vec(t1);
4194        tcg_temp_free_vec(t2);
4195        break;
4196
4197    case MO_64:
4198        t1 = tcg_temp_new_vec(type);
4199        if (imm <= 32) {
4200            /*
4201             * We can emulate a small sign extend by performing an arithmetic
4202             * 32-bit shift and overwriting the high half of a 64-bit logical
4203             * shift.  Note that the ISA says shift of 32 is valid, but TCG
4204             * does not, so we have to bound the smaller shift -- we get the
4205             * same result in the high half either way.
4206             */
4207            tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
4208            tcg_gen_shri_vec(MO_64, v0, v1, imm);
4209            vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
4210                      tcgv_vec_arg(v0), tcgv_vec_arg(v0),
4211                      tcgv_vec_arg(t1), 0xaa);
4212        } else {
4213            /* Otherwise we will need to use a compare vs 0 to produce
4214             * the sign-extend, shift and merge.
4215             */
4216            tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1,
4217                            tcg_constant_vec(type, MO_64, 0), v1);
4218            tcg_gen_shri_vec(MO_64, v0, v1, imm);
4219            tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
4220            tcg_gen_or_vec(MO_64, v0, v0, t1);
4221        }
4222        tcg_temp_free_vec(t1);
4223        break;
4224
4225    default:
4226        g_assert_not_reached();
4227    }
4228}
4229
4230static void expand_vec_rotli(TCGType type, unsigned vece,
4231                             TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4232{
4233    TCGv_vec t;
4234
4235    if (vece != MO_8 && have_avx512vbmi2) {
4236        vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece,
4237                  tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm);
4238        return;
4239    }
4240
4241    t = tcg_temp_new_vec(type);
4242    tcg_gen_shli_vec(vece, t, v1, imm);
4243    tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
4244    tcg_gen_or_vec(vece, v0, v0, t);
4245    tcg_temp_free_vec(t);
4246}
4247
4248static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
4249                            TCGv_vec v1, TCGv_vec sh, bool right)
4250{
4251    TCGv_vec t;
4252
4253    if (have_avx512vbmi2) {
4254        vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec,
4255                  type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1),
4256                  tcgv_vec_arg(v1), tcgv_vec_arg(sh));
4257        return;
4258    }
4259
4260    t = tcg_temp_new_vec(type);
4261    tcg_gen_dupi_vec(vece, t, 8 << vece);
4262    tcg_gen_sub_vec(vece, t, t, sh);
4263    if (right) {
4264        tcg_gen_shlv_vec(vece, t, v1, t);
4265        tcg_gen_shrv_vec(vece, v0, v1, sh);
4266    } else {
4267        tcg_gen_shrv_vec(vece, t, v1, t);
4268        tcg_gen_shlv_vec(vece, v0, v1, sh);
4269    }
4270    tcg_gen_or_vec(vece, v0, v0, t);
4271    tcg_temp_free_vec(t);
4272}
4273
4274static void expand_vec_rotls(TCGType type, unsigned vece,
4275                             TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
4276{
4277    TCGv_vec t = tcg_temp_new_vec(type);
4278
4279    tcg_debug_assert(vece != MO_8);
4280
4281    if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) {
4282        tcg_gen_dup_i32_vec(vece, t, lsh);
4283        if (vece >= MO_32) {
4284            tcg_gen_rotlv_vec(vece, v0, v1, t);
4285        } else {
4286            expand_vec_rotv(type, vece, v0, v1, t, false);
4287        }
4288    } else {
4289        TCGv_i32 rsh = tcg_temp_new_i32();
4290
4291        tcg_gen_neg_i32(rsh, lsh);
4292        tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
4293        tcg_gen_shls_vec(vece, t, v1, lsh);
4294        tcg_gen_shrs_vec(vece, v0, v1, rsh);
4295        tcg_gen_or_vec(vece, v0, v0, t);
4296
4297        tcg_temp_free_i32(rsh);
4298    }
4299
4300    tcg_temp_free_vec(t);
4301}
4302
4303static void expand_vec_mul(TCGType type, unsigned vece,
4304                           TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
4305{
4306    TCGv_vec t1, t2, t3, t4, zero;
4307
4308    tcg_debug_assert(vece == MO_8);
4309
4310    /*
4311     * Unpack v1 bytes to words, 0 | x.
4312     * Unpack v2 bytes to words, y | 0.
4313     * This leaves the 8-bit result, x * y, with 8 bits of right padding.
4314     * Shift logical right by 8 bits to clear the high 8 bytes before
4315     * using an unsigned saturated pack.
4316     *
4317     * The difference between the V64, V128 and V256 cases is merely how
4318     * we distribute the expansion between temporaries.
4319     */
4320    switch (type) {
4321    case TCG_TYPE_V64:
4322        t1 = tcg_temp_new_vec(TCG_TYPE_V128);
4323        t2 = tcg_temp_new_vec(TCG_TYPE_V128);
4324        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
4325        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
4326                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4327        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
4328                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4329        tcg_gen_mul_vec(MO_16, t1, t1, t2);
4330        tcg_gen_shri_vec(MO_16, t1, t1, 8);
4331        vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
4332                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
4333        tcg_temp_free_vec(t1);
4334        tcg_temp_free_vec(t2);
4335        break;
4336
4337    case TCG_TYPE_V128:
4338    case TCG_TYPE_V256:
4339        t1 = tcg_temp_new_vec(type);
4340        t2 = tcg_temp_new_vec(type);
4341        t3 = tcg_temp_new_vec(type);
4342        t4 = tcg_temp_new_vec(type);
4343        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
4344        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4345                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4346        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4347                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4348        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4349                  tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4350        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4351                  tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4352        tcg_gen_mul_vec(MO_16, t1, t1, t2);
4353        tcg_gen_mul_vec(MO_16, t3, t3, t4);
4354        tcg_gen_shri_vec(MO_16, t1, t1, 8);
4355        tcg_gen_shri_vec(MO_16, t3, t3, 8);
4356        vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
4357                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
4358        tcg_temp_free_vec(t1);
4359        tcg_temp_free_vec(t2);
4360        tcg_temp_free_vec(t3);
4361        tcg_temp_free_vec(t4);
4362        break;
4363
4364    default:
4365        g_assert_not_reached();
4366    }
4367}
4368
4369static TCGCond expand_vec_cond(TCGType type, unsigned vece,
4370                               TCGArg *a1, TCGArg *a2, TCGCond cond)
4371{
4372    /*
4373     * Without AVX512, there are no 64-bit unsigned comparisons.
4374     * We must bias the inputs so that they become signed.
4375     * All other swapping and inversion are handled during code generation.
4376     */
4377    if (vece == MO_64 && !have_avx512dq && is_unsigned_cond(cond)) {
4378        TCGv_vec v1 = temp_tcgv_vec(arg_temp(*a1));
4379        TCGv_vec v2 = temp_tcgv_vec(arg_temp(*a2));
4380        TCGv_vec t1 = tcg_temp_new_vec(type);
4381        TCGv_vec t2 = tcg_temp_new_vec(type);
4382        TCGv_vec t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1));
4383
4384        tcg_gen_sub_vec(vece, t1, v1, t3);
4385        tcg_gen_sub_vec(vece, t2, v2, t3);
4386        *a1 = tcgv_vec_arg(t1);
4387        *a2 = tcgv_vec_arg(t2);
4388        cond = tcg_signed_cond(cond);
4389    }
4390    return cond;
4391}
4392
4393static void expand_vec_cmp(TCGType type, unsigned vece, TCGArg a0,
4394                           TCGArg a1, TCGArg a2, TCGCond cond)
4395{
4396    cond = expand_vec_cond(type, vece, &a1, &a2, cond);
4397    /* Expand directly; do not recurse.  */
4398    vec_gen_4(INDEX_op_cmp_vec, type, vece, a0, a1, a2, cond);
4399}
4400
4401static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGArg a0,
4402                              TCGArg a1, TCGArg a2,
4403                              TCGArg a3, TCGArg a4, TCGCond cond)
4404{
4405    cond = expand_vec_cond(type, vece, &a1, &a2, cond);
4406    /* Expand directly; do not recurse.  */
4407    vec_gen_6(INDEX_op_cmpsel_vec, type, vece, a0, a1, a2, a3, a4, cond);
4408}
4409
4410void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
4411                       TCGArg a0, ...)
4412{
4413    va_list va;
4414    TCGArg a1, a2, a3, a4, a5;
4415    TCGv_vec v0, v1, v2;
4416
4417    va_start(va, a0);
4418    a1 = va_arg(va, TCGArg);
4419    a2 = va_arg(va, TCGArg);
4420    v0 = temp_tcgv_vec(arg_temp(a0));
4421    v1 = temp_tcgv_vec(arg_temp(a1));
4422
4423    switch (opc) {
4424    case INDEX_op_shli_vec:
4425        expand_vec_shi(type, vece, false, v0, v1, a2);
4426        break;
4427    case INDEX_op_shri_vec:
4428        expand_vec_shi(type, vece, true, v0, v1, a2);
4429        break;
4430    case INDEX_op_sari_vec:
4431        expand_vec_sari(type, vece, v0, v1, a2);
4432        break;
4433
4434    case INDEX_op_rotli_vec:
4435        expand_vec_rotli(type, vece, v0, v1, a2);
4436        break;
4437
4438    case INDEX_op_rotls_vec:
4439        expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
4440        break;
4441
4442    case INDEX_op_rotlv_vec:
4443        v2 = temp_tcgv_vec(arg_temp(a2));
4444        expand_vec_rotv(type, vece, v0, v1, v2, false);
4445        break;
4446    case INDEX_op_rotrv_vec:
4447        v2 = temp_tcgv_vec(arg_temp(a2));
4448        expand_vec_rotv(type, vece, v0, v1, v2, true);
4449        break;
4450
4451    case INDEX_op_mul_vec:
4452        v2 = temp_tcgv_vec(arg_temp(a2));
4453        expand_vec_mul(type, vece, v0, v1, v2);
4454        break;
4455
4456    case INDEX_op_cmp_vec:
4457        a3 = va_arg(va, TCGArg);
4458        expand_vec_cmp(type, vece, a0, a1, a2, a3);
4459        break;
4460
4461    case INDEX_op_cmpsel_vec:
4462        a3 = va_arg(va, TCGArg);
4463        a4 = va_arg(va, TCGArg);
4464        a5 = va_arg(va, TCGArg);
4465        expand_vec_cmpsel(type, vece, a0, a1, a2, a3, a4, a5);
4466        break;
4467
4468    default:
4469        break;
4470    }
4471
4472    va_end(va);
4473}
4474
4475static const int tcg_target_callee_save_regs[] = {
4476#if TCG_TARGET_REG_BITS == 64
4477    TCG_REG_RBP,
4478    TCG_REG_RBX,
4479#if defined(_WIN64)
4480    TCG_REG_RDI,
4481    TCG_REG_RSI,
4482#endif
4483    TCG_REG_R12,
4484    TCG_REG_R13,
4485    TCG_REG_R14, /* Currently used for the global env. */
4486    TCG_REG_R15,
4487#else
4488    TCG_REG_EBP, /* Currently used for the global env. */
4489    TCG_REG_EBX,
4490    TCG_REG_ESI,
4491    TCG_REG_EDI,
4492#endif
4493};
4494
4495/* Compute frame size via macros, to share between tcg_target_qemu_prologue
4496   and tcg_register_jit.  */
4497
4498#define PUSH_SIZE \
4499    ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
4500     * (TCG_TARGET_REG_BITS / 8))
4501
4502#define FRAME_SIZE \
4503    ((PUSH_SIZE \
4504      + TCG_STATIC_CALL_ARGS_SIZE \
4505      + CPU_TEMP_BUF_NLONGS * sizeof(long) \
4506      + TCG_TARGET_STACK_ALIGN - 1) \
4507     & ~(TCG_TARGET_STACK_ALIGN - 1))
4508
4509/* Generate global QEMU prologue and epilogue code */
4510static void tcg_target_qemu_prologue(TCGContext *s)
4511{
4512    int i, stack_addend;
4513
4514    /* TB prologue */
4515
4516    /* Reserve some stack space, also for TCG temps.  */
4517    stack_addend = FRAME_SIZE - PUSH_SIZE;
4518    tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
4519                  CPU_TEMP_BUF_NLONGS * sizeof(long));
4520
4521    /* Save all callee saved registers.  */
4522    for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
4523        tcg_out_push(s, tcg_target_callee_save_regs[i]);
4524    }
4525
4526    if (!tcg_use_softmmu && guest_base) {
4527        int seg = setup_guest_base_seg();
4528        if (seg != 0) {
4529            x86_guest_base.seg = seg;
4530        } else if (guest_base == (int32_t)guest_base) {
4531            x86_guest_base.ofs = guest_base;
4532        } else {
4533            assert(TCG_TARGET_REG_BITS == 64);
4534            /* Choose R12 because, as a base, it requires a SIB byte. */
4535            x86_guest_base.index = TCG_REG_R12;
4536            tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base);
4537            tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index);
4538        }
4539    }
4540
4541    if (TCG_TARGET_REG_BITS == 32) {
4542        tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
4543                   (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
4544        tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4545        /* jmp *tb.  */
4546        tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
4547                             (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
4548                             + stack_addend);
4549    } else {
4550        tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
4551        tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4552        /* jmp *tb.  */
4553        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
4554    }
4555
4556    /*
4557     * Return path for goto_ptr. Set return value to 0, a-la exit_tb,
4558     * and fall through to the rest of the epilogue.
4559     */
4560    tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
4561    tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
4562
4563    /* TB epilogue */
4564    tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
4565
4566    tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
4567
4568    if (have_avx2) {
4569        tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
4570    }
4571    for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
4572        tcg_out_pop(s, tcg_target_callee_save_regs[i]);
4573    }
4574    tcg_out_opc(s, OPC_RET, 0, 0, 0);
4575}
4576
4577static void tcg_out_tb_start(TCGContext *s)
4578{
4579    /* nothing to do */
4580}
4581
4582static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
4583{
4584    memset(p, 0x90, count);
4585}
4586
4587static void tcg_target_init(TCGContext *s)
4588{
4589    tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
4590    if (TCG_TARGET_REG_BITS == 64) {
4591        tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
4592    }
4593    if (have_avx1) {
4594        tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
4595        tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
4596    }
4597    if (have_avx2) {
4598        tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
4599    }
4600
4601    tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
4602    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
4603    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
4604    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
4605    if (TCG_TARGET_REG_BITS == 64) {
4606#if !defined(_WIN64)
4607        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
4608        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
4609#endif
4610        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
4611        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
4612        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
4613        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
4614    }
4615
4616    s->reserved_regs = 0;
4617    tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
4618    tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC);
4619#ifdef _WIN64
4620    /* These are call saved, and we don't save them, so don't use them. */
4621    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6);
4622    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7);
4623    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8);
4624    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9);
4625    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10);
4626    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11);
4627    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12);
4628    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13);
4629    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14);
4630    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15);
4631#endif
4632}
4633
4634typedef struct {
4635    DebugFrameHeader h;
4636    uint8_t fde_def_cfa[4];
4637    uint8_t fde_reg_ofs[14];
4638} DebugFrame;
4639
4640/* We're expecting a 2 byte uleb128 encoded value.  */
4641QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
4642
4643#if !defined(__ELF__)
4644    /* Host machine without ELF. */
4645#elif TCG_TARGET_REG_BITS == 64
4646#define ELF_HOST_MACHINE EM_X86_64
4647static const DebugFrame debug_frame = {
4648    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4649    .h.cie.id = -1,
4650    .h.cie.version = 1,
4651    .h.cie.code_align = 1,
4652    .h.cie.data_align = 0x78,             /* sleb128 -8 */
4653    .h.cie.return_column = 16,
4654
4655    /* Total FDE size does not include the "len" member.  */
4656    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4657
4658    .fde_def_cfa = {
4659        12, 7,                          /* DW_CFA_def_cfa %rsp, ... */
4660        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4661        (FRAME_SIZE >> 7)
4662    },
4663    .fde_reg_ofs = {
4664        0x90, 1,                        /* DW_CFA_offset, %rip, -8 */
4665        /* The following ordering must match tcg_target_callee_save_regs.  */
4666        0x86, 2,                        /* DW_CFA_offset, %rbp, -16 */
4667        0x83, 3,                        /* DW_CFA_offset, %rbx, -24 */
4668        0x8c, 4,                        /* DW_CFA_offset, %r12, -32 */
4669        0x8d, 5,                        /* DW_CFA_offset, %r13, -40 */
4670        0x8e, 6,                        /* DW_CFA_offset, %r14, -48 */
4671        0x8f, 7,                        /* DW_CFA_offset, %r15, -56 */
4672    }
4673};
4674#else
4675#define ELF_HOST_MACHINE EM_386
4676static const DebugFrame debug_frame = {
4677    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4678    .h.cie.id = -1,
4679    .h.cie.version = 1,
4680    .h.cie.code_align = 1,
4681    .h.cie.data_align = 0x7c,             /* sleb128 -4 */
4682    .h.cie.return_column = 8,
4683
4684    /* Total FDE size does not include the "len" member.  */
4685    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4686
4687    .fde_def_cfa = {
4688        12, 4,                          /* DW_CFA_def_cfa %esp, ... */
4689        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4690        (FRAME_SIZE >> 7)
4691    },
4692    .fde_reg_ofs = {
4693        0x88, 1,                        /* DW_CFA_offset, %eip, -4 */
4694        /* The following ordering must match tcg_target_callee_save_regs.  */
4695        0x85, 2,                        /* DW_CFA_offset, %ebp, -8 */
4696        0x83, 3,                        /* DW_CFA_offset, %ebx, -12 */
4697        0x86, 4,                        /* DW_CFA_offset, %esi, -16 */
4698        0x87, 5,                        /* DW_CFA_offset, %edi, -20 */
4699    }
4700};
4701#endif
4702
4703#if defined(ELF_HOST_MACHINE)
4704void tcg_register_jit(const void *buf, size_t buf_size)
4705{
4706    tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
4707}
4708#endif
4709