1/* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25/* Used for function call generation. */ 26#define TCG_TARGET_STACK_ALIGN 16 27#if defined(_WIN64) 28#define TCG_TARGET_CALL_STACK_OFFSET 32 29#else 30#define TCG_TARGET_CALL_STACK_OFFSET 0 31#endif 32#define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL 33#define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL 34#if defined(_WIN64) 35# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_BY_REF 36# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_BY_VEC 37#elif TCG_TARGET_REG_BITS == 64 38# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL 39# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_NORMAL 40#else 41# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL 42# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_BY_REF 43#endif 44 45#ifdef CONFIG_DEBUG_TCG 46static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { 47#if TCG_TARGET_REG_BITS == 64 48 "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi", 49#else 50 "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi", 51#endif 52 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", 53 "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7", 54#if TCG_TARGET_REG_BITS == 64 55 "%xmm8", "%xmm9", "%xmm10", "%xmm11", 56 "%xmm12", "%xmm13", "%xmm14", "%xmm15", 57#endif 58}; 59#endif 60 61static const int tcg_target_reg_alloc_order[] = { 62#if TCG_TARGET_REG_BITS == 64 63 TCG_REG_RBP, 64 TCG_REG_RBX, 65 TCG_REG_R12, 66 TCG_REG_R13, 67 TCG_REG_R14, 68 TCG_REG_R15, 69 TCG_REG_R10, 70 TCG_REG_R11, 71 TCG_REG_R9, 72 TCG_REG_R8, 73 TCG_REG_RCX, 74 TCG_REG_RDX, 75 TCG_REG_RSI, 76 TCG_REG_RDI, 77 TCG_REG_RAX, 78#else 79 TCG_REG_EBX, 80 TCG_REG_ESI, 81 TCG_REG_EDI, 82 TCG_REG_EBP, 83 TCG_REG_ECX, 84 TCG_REG_EDX, 85 TCG_REG_EAX, 86#endif 87 TCG_REG_XMM0, 88 TCG_REG_XMM1, 89 TCG_REG_XMM2, 90 TCG_REG_XMM3, 91 TCG_REG_XMM4, 92 TCG_REG_XMM5, 93#ifndef _WIN64 94 /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save 95 any of them. Therefore only allow xmm0-xmm5 to be allocated. */ 96 TCG_REG_XMM6, 97 TCG_REG_XMM7, 98#if TCG_TARGET_REG_BITS == 64 99 TCG_REG_XMM8, 100 TCG_REG_XMM9, 101 TCG_REG_XMM10, 102 TCG_REG_XMM11, 103 TCG_REG_XMM12, 104 TCG_REG_XMM13, 105 TCG_REG_XMM14, 106 TCG_REG_XMM15, 107#endif 108#endif 109}; 110 111#define TCG_TMP_VEC TCG_REG_XMM5 112 113static const int tcg_target_call_iarg_regs[] = { 114#if TCG_TARGET_REG_BITS == 64 115#if defined(_WIN64) 116 TCG_REG_RCX, 117 TCG_REG_RDX, 118#else 119 TCG_REG_RDI, 120 TCG_REG_RSI, 121 TCG_REG_RDX, 122 TCG_REG_RCX, 123#endif 124 TCG_REG_R8, 125 TCG_REG_R9, 126#else 127 /* 32 bit mode uses stack based calling convention (GCC default). */ 128#endif 129}; 130 131static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) 132{ 133 switch (kind) { 134 case TCG_CALL_RET_NORMAL: 135 tcg_debug_assert(slot >= 0 && slot <= 1); 136 return slot ? TCG_REG_EDX : TCG_REG_EAX; 137#ifdef _WIN64 138 case TCG_CALL_RET_BY_VEC: 139 tcg_debug_assert(slot == 0); 140 return TCG_REG_XMM0; 141#endif 142 default: 143 g_assert_not_reached(); 144 } 145} 146 147/* Constants we accept. */ 148#define TCG_CT_CONST_S32 0x100 149#define TCG_CT_CONST_U32 0x200 150#define TCG_CT_CONST_I32 0x400 151#define TCG_CT_CONST_WSZ 0x800 152#define TCG_CT_CONST_TST 0x1000 153#define TCG_CT_CONST_ZERO 0x2000 154 155/* Registers used with L constraint, which are the first argument 156 registers on x86_64, and two random call clobbered registers on 157 i386. */ 158#if TCG_TARGET_REG_BITS == 64 159# define TCG_REG_L0 tcg_target_call_iarg_regs[0] 160# define TCG_REG_L1 tcg_target_call_iarg_regs[1] 161#else 162# define TCG_REG_L0 TCG_REG_EAX 163# define TCG_REG_L1 TCG_REG_EDX 164#endif 165 166#if TCG_TARGET_REG_BITS == 64 167# define ALL_GENERAL_REGS 0x0000ffffu 168# define ALL_VECTOR_REGS 0xffff0000u 169# define ALL_BYTEL_REGS ALL_GENERAL_REGS 170#else 171# define ALL_GENERAL_REGS 0x000000ffu 172# define ALL_VECTOR_REGS 0x00ff0000u 173# define ALL_BYTEL_REGS 0x0000000fu 174#endif 175#define SOFTMMU_RESERVE_REGS \ 176 (tcg_use_softmmu ? (1 << TCG_REG_L0) | (1 << TCG_REG_L1) : 0) 177 178#define have_bmi2 (cpuinfo & CPUINFO_BMI2) 179#define have_lzcnt (cpuinfo & CPUINFO_LZCNT) 180 181static const tcg_insn_unit *tb_ret_addr; 182 183static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 184 intptr_t value, intptr_t addend) 185{ 186 value += addend; 187 switch(type) { 188 case R_386_PC32: 189 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr); 190 if (value != (int32_t)value) { 191 return false; 192 } 193 /* FALLTHRU */ 194 case R_386_32: 195 tcg_patch32(code_ptr, value); 196 break; 197 case R_386_PC8: 198 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr); 199 if (value != (int8_t)value) { 200 return false; 201 } 202 tcg_patch8(code_ptr, value); 203 break; 204 default: 205 g_assert_not_reached(); 206 } 207 return true; 208} 209 210/* test if a constant matches the constraint */ 211static bool tcg_target_const_match(int64_t val, int ct, 212 TCGType type, TCGCond cond, int vece) 213{ 214 if (ct & TCG_CT_CONST) { 215 return 1; 216 } 217 if (type == TCG_TYPE_I32) { 218 if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 | 219 TCG_CT_CONST_I32 | TCG_CT_CONST_TST)) { 220 return 1; 221 } 222 } else { 223 if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) { 224 return 1; 225 } 226 if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) { 227 return 1; 228 } 229 if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) { 230 return 1; 231 } 232 /* 233 * This will be used in combination with TCG_CT_CONST_S32, 234 * so "normal" TESTQ is already matched. Also accept: 235 * TESTQ -> TESTL (uint32_t) 236 * TESTQ -> BT (is_power_of_2) 237 */ 238 if ((ct & TCG_CT_CONST_TST) 239 && is_tst_cond(cond) 240 && (val == (uint32_t)val || is_power_of_2(val))) { 241 return 1; 242 } 243 } 244 if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) { 245 return 1; 246 } 247 if ((ct & TCG_CT_CONST_ZERO) && val == 0) { 248 return 1; 249 } 250 return 0; 251} 252 253# define LOWREGMASK(x) ((x) & 7) 254 255#define P_EXT 0x100 /* 0x0f opcode prefix */ 256#define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */ 257#define P_DATA16 0x400 /* 0x66 opcode prefix */ 258#define P_VEXW 0x1000 /* Set VEX.W = 1 */ 259#if TCG_TARGET_REG_BITS == 64 260# define P_REXW P_VEXW /* Set REX.W = 1; match VEXW */ 261# define P_REXB_R 0x2000 /* REG field as byte register */ 262# define P_REXB_RM 0x4000 /* R/M field as byte register */ 263# define P_GS 0x8000 /* gs segment override */ 264#else 265# define P_REXW 0 266# define P_REXB_R 0 267# define P_REXB_RM 0 268# define P_GS 0 269#endif 270#define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */ 271#define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */ 272#define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */ 273#define P_VEXL 0x80000 /* Set VEX.L = 1 */ 274#define P_EVEX 0x100000 /* Requires EVEX encoding */ 275 276#define OPC_ARITH_EbIb (0x80) 277#define OPC_ARITH_EvIz (0x81) 278#define OPC_ARITH_EvIb (0x83) 279#define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */ 280#define OPC_ANDN (0xf2 | P_EXT38) 281#define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3)) 282#define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3)) 283#define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16) 284#define OPC_BSF (0xbc | P_EXT) 285#define OPC_BSR (0xbd | P_EXT) 286#define OPC_BSWAP (0xc8 | P_EXT) 287#define OPC_CALL_Jz (0xe8) 288#define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */ 289#define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3)) 290#define OPC_DEC_r32 (0x48) 291#define OPC_IMUL_GvEv (0xaf | P_EXT) 292#define OPC_IMUL_GvEvIb (0x6b) 293#define OPC_IMUL_GvEvIz (0x69) 294#define OPC_INC_r32 (0x40) 295#define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */ 296#define OPC_JCC_short (0x70) /* ... plus condition code */ 297#define OPC_JMP_long (0xe9) 298#define OPC_JMP_short (0xeb) 299#define OPC_LEA (0x8d) 300#define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3) 301#define OPC_MOVB_EvGv (0x88) /* stores, more or less */ 302#define OPC_MOVL_EvGv (0x89) /* stores, more or less */ 303#define OPC_MOVL_GvEv (0x8b) /* loads, more or less */ 304#define OPC_MOVB_EvIz (0xc6) 305#define OPC_MOVL_EvIz (0xc7) 306#define OPC_MOVB_Ib (0xb0) 307#define OPC_MOVL_Iv (0xb8) 308#define OPC_MOVBE_GyMy (0xf0 | P_EXT38) 309#define OPC_MOVBE_MyGy (0xf1 | P_EXT38) 310#define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16) 311#define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16) 312#define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2) 313#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16) 314#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16) 315#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3) 316#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3) 317#define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3) 318#define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16) 319#define OPC_MOVSBL (0xbe | P_EXT) 320#define OPC_MOVSWL (0xbf | P_EXT) 321#define OPC_MOVSLQ (0x63 | P_REXW) 322#define OPC_MOVZBL (0xb6 | P_EXT) 323#define OPC_MOVZWL (0xb7 | P_EXT) 324#define OPC_PABSB (0x1c | P_EXT38 | P_DATA16) 325#define OPC_PABSW (0x1d | P_EXT38 | P_DATA16) 326#define OPC_PABSD (0x1e | P_EXT38 | P_DATA16) 327#define OPC_VPABSQ (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 328#define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16) 329#define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16) 330#define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16) 331#define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16) 332#define OPC_PADDB (0xfc | P_EXT | P_DATA16) 333#define OPC_PADDW (0xfd | P_EXT | P_DATA16) 334#define OPC_PADDD (0xfe | P_EXT | P_DATA16) 335#define OPC_PADDQ (0xd4 | P_EXT | P_DATA16) 336#define OPC_PADDSB (0xec | P_EXT | P_DATA16) 337#define OPC_PADDSW (0xed | P_EXT | P_DATA16) 338#define OPC_PADDUB (0xdc | P_EXT | P_DATA16) 339#define OPC_PADDUW (0xdd | P_EXT | P_DATA16) 340#define OPC_PAND (0xdb | P_EXT | P_DATA16) 341#define OPC_PANDN (0xdf | P_EXT | P_DATA16) 342#define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16) 343#define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16) 344#define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16) 345#define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16) 346#define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16) 347#define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16) 348#define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16) 349#define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16) 350#define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16) 351#define OPC_PEXTRD (0x16 | P_EXT3A | P_DATA16) 352#define OPC_PINSRD (0x22 | P_EXT3A | P_DATA16) 353#define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16) 354#define OPC_PMAXSW (0xee | P_EXT | P_DATA16) 355#define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16) 356#define OPC_VPMAXSQ (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 357#define OPC_PMAXUB (0xde | P_EXT | P_DATA16) 358#define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16) 359#define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16) 360#define OPC_VPMAXUQ (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 361#define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16) 362#define OPC_PMINSW (0xea | P_EXT | P_DATA16) 363#define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16) 364#define OPC_VPMINSQ (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 365#define OPC_PMINUB (0xda | P_EXT | P_DATA16) 366#define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16) 367#define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16) 368#define OPC_VPMINUQ (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 369#define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16) 370#define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16) 371#define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16) 372#define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16) 373#define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16) 374#define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16) 375#define OPC_PMULLW (0xd5 | P_EXT | P_DATA16) 376#define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16) 377#define OPC_VPMULLQ (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 378#define OPC_POR (0xeb | P_EXT | P_DATA16) 379#define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16) 380#define OPC_PSHUFD (0x70 | P_EXT | P_DATA16) 381#define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2) 382#define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3) 383#define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */ 384#define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */ 385#define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */ 386#define OPC_PSLLW (0xf1 | P_EXT | P_DATA16) 387#define OPC_PSLLD (0xf2 | P_EXT | P_DATA16) 388#define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16) 389#define OPC_PSRAW (0xe1 | P_EXT | P_DATA16) 390#define OPC_PSRAD (0xe2 | P_EXT | P_DATA16) 391#define OPC_VPSRAQ (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX) 392#define OPC_PSRLW (0xd1 | P_EXT | P_DATA16) 393#define OPC_PSRLD (0xd2 | P_EXT | P_DATA16) 394#define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16) 395#define OPC_PSUBB (0xf8 | P_EXT | P_DATA16) 396#define OPC_PSUBW (0xf9 | P_EXT | P_DATA16) 397#define OPC_PSUBD (0xfa | P_EXT | P_DATA16) 398#define OPC_PSUBQ (0xfb | P_EXT | P_DATA16) 399#define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16) 400#define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16) 401#define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16) 402#define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16) 403#define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16) 404#define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16) 405#define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16) 406#define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16) 407#define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16) 408#define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16) 409#define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16) 410#define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16) 411#define OPC_PXOR (0xef | P_EXT | P_DATA16) 412#define OPC_POP_r32 (0x58) 413#define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3) 414#define OPC_PUSH_r32 (0x50) 415#define OPC_PUSH_Iv (0x68) 416#define OPC_PUSH_Ib (0x6a) 417#define OPC_RET (0xc3) 418#define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */ 419#define OPC_SHIFT_1 (0xd1) 420#define OPC_SHIFT_Ib (0xc1) 421#define OPC_SHIFT_cl (0xd3) 422#define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3) 423#define OPC_SHUFPS (0xc6 | P_EXT) 424#define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16) 425#define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2) 426#define OPC_SHRD_Ib (0xac | P_EXT) 427#define OPC_TESTB (0x84) 428#define OPC_TESTL (0x85) 429#define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3) 430#define OPC_UD2 (0x0b | P_EXT) 431#define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16) 432#define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16) 433#define OPC_VPBLENDMB (0x66 | P_EXT38 | P_DATA16 | P_EVEX) 434#define OPC_VPBLENDMW (0x66 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 435#define OPC_VPBLENDMD (0x64 | P_EXT38 | P_DATA16 | P_EVEX) 436#define OPC_VPBLENDMQ (0x64 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 437#define OPC_VPCMPB (0x3f | P_EXT3A | P_DATA16 | P_EVEX) 438#define OPC_VPCMPUB (0x3e | P_EXT3A | P_DATA16 | P_EVEX) 439#define OPC_VPCMPW (0x3f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 440#define OPC_VPCMPUW (0x3e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 441#define OPC_VPCMPD (0x1f | P_EXT3A | P_DATA16 | P_EVEX) 442#define OPC_VPCMPUD (0x1e | P_EXT3A | P_DATA16 | P_EVEX) 443#define OPC_VPCMPQ (0x1f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 444#define OPC_VPCMPUQ (0x1e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 445#define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16) 446#define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16) 447#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16) 448#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16) 449#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16) 450#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16) 451#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16) 452#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16) 453#define OPC_VPMOVM2B (0x28 | P_EXT38 | P_SIMDF3 | P_EVEX) 454#define OPC_VPMOVM2W (0x28 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX) 455#define OPC_VPMOVM2D (0x38 | P_EXT38 | P_SIMDF3 | P_EVEX) 456#define OPC_VPMOVM2Q (0x38 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX) 457#define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_VEXW) 458#define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL) 459#define OPC_VPROLVD (0x15 | P_EXT38 | P_DATA16 | P_EVEX) 460#define OPC_VPROLVQ (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 461#define OPC_VPRORVD (0x14 | P_EXT38 | P_DATA16 | P_EVEX) 462#define OPC_VPRORVQ (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 463#define OPC_VPSHLDW (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 464#define OPC_VPSHLDD (0x71 | P_EXT3A | P_DATA16 | P_EVEX) 465#define OPC_VPSHLDQ (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 466#define OPC_VPSHLDVW (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 467#define OPC_VPSHLDVD (0x71 | P_EXT38 | P_DATA16 | P_EVEX) 468#define OPC_VPSHLDVQ (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 469#define OPC_VPSHRDVW (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 470#define OPC_VPSHRDVD (0x73 | P_EXT38 | P_DATA16 | P_EVEX) 471#define OPC_VPSHRDVQ (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 472#define OPC_VPSLLVW (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 473#define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16) 474#define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_VEXW) 475#define OPC_VPSRAVW (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 476#define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16) 477#define OPC_VPSRAVQ (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 478#define OPC_VPSRLVW (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 479#define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16) 480#define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_VEXW) 481#define OPC_VPTERNLOGQ (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 482#define OPC_VPTESTMB (0x26 | P_EXT38 | P_DATA16 | P_EVEX) 483#define OPC_VPTESTMW (0x26 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 484#define OPC_VPTESTMD (0x27 | P_EXT38 | P_DATA16 | P_EVEX) 485#define OPC_VPTESTMQ (0x27 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 486#define OPC_VPTESTNMB (0x26 | P_EXT38 | P_SIMDF3 | P_EVEX) 487#define OPC_VPTESTNMW (0x26 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX) 488#define OPC_VPTESTNMD (0x27 | P_EXT38 | P_SIMDF3 | P_EVEX) 489#define OPC_VPTESTNMQ (0x27 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX) 490#define OPC_VZEROUPPER (0x77 | P_EXT) 491#define OPC_XCHG_ax_r32 (0x90) 492#define OPC_XCHG_EvGv (0x87) 493 494#define OPC_GRP3_Eb (0xf6) 495#define OPC_GRP3_Ev (0xf7) 496#define OPC_GRP5 (0xff) 497#define OPC_GRP14 (0x73 | P_EXT | P_DATA16) 498#define OPC_GRPBT (0xba | P_EXT) 499 500#define OPC_GRPBT_BT 4 501#define OPC_GRPBT_BTS 5 502#define OPC_GRPBT_BTR 6 503#define OPC_GRPBT_BTC 7 504 505/* Group 1 opcode extensions for 0x80-0x83. 506 These are also used as modifiers for OPC_ARITH. */ 507#define ARITH_ADD 0 508#define ARITH_OR 1 509#define ARITH_ADC 2 510#define ARITH_SBB 3 511#define ARITH_AND 4 512#define ARITH_SUB 5 513#define ARITH_XOR 6 514#define ARITH_CMP 7 515 516/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */ 517#define SHIFT_ROL 0 518#define SHIFT_ROR 1 519#define SHIFT_SHL 4 520#define SHIFT_SHR 5 521#define SHIFT_SAR 7 522 523/* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */ 524#define EXT3_TESTi 0 525#define EXT3_NOT 2 526#define EXT3_NEG 3 527#define EXT3_MUL 4 528#define EXT3_IMUL 5 529#define EXT3_DIV 6 530#define EXT3_IDIV 7 531 532/* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */ 533#define EXT5_INC_Ev 0 534#define EXT5_DEC_Ev 1 535#define EXT5_CALLN_Ev 2 536#define EXT5_JMPN_Ev 4 537 538/* Condition codes to be added to OPC_JCC_{long,short}. */ 539#define JCC_JMP (-1) 540#define JCC_JO 0x0 541#define JCC_JNO 0x1 542#define JCC_JB 0x2 543#define JCC_JAE 0x3 544#define JCC_JE 0x4 545#define JCC_JNE 0x5 546#define JCC_JBE 0x6 547#define JCC_JA 0x7 548#define JCC_JS 0x8 549#define JCC_JNS 0x9 550#define JCC_JP 0xa 551#define JCC_JNP 0xb 552#define JCC_JL 0xc 553#define JCC_JGE 0xd 554#define JCC_JLE 0xe 555#define JCC_JG 0xf 556 557static const uint8_t tcg_cond_to_jcc[] = { 558 [TCG_COND_EQ] = JCC_JE, 559 [TCG_COND_NE] = JCC_JNE, 560 [TCG_COND_LT] = JCC_JL, 561 [TCG_COND_GE] = JCC_JGE, 562 [TCG_COND_LE] = JCC_JLE, 563 [TCG_COND_GT] = JCC_JG, 564 [TCG_COND_LTU] = JCC_JB, 565 [TCG_COND_GEU] = JCC_JAE, 566 [TCG_COND_LEU] = JCC_JBE, 567 [TCG_COND_GTU] = JCC_JA, 568 [TCG_COND_TSTEQ] = JCC_JE, 569 [TCG_COND_TSTNE] = JCC_JNE, 570}; 571 572#if TCG_TARGET_REG_BITS == 64 573static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x) 574{ 575 int rex; 576 577 if (opc & P_GS) { 578 tcg_out8(s, 0x65); 579 } 580 if (opc & P_DATA16) { 581 /* We should never be asking for both 16 and 64-bit operation. */ 582 tcg_debug_assert((opc & P_REXW) == 0); 583 tcg_out8(s, 0x66); 584 } 585 if (opc & P_SIMDF3) { 586 tcg_out8(s, 0xf3); 587 } else if (opc & P_SIMDF2) { 588 tcg_out8(s, 0xf2); 589 } 590 591 rex = 0; 592 rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */ 593 rex |= (r & 8) >> 1; /* REX.R */ 594 rex |= (x & 8) >> 2; /* REX.X */ 595 rex |= (rm & 8) >> 3; /* REX.B */ 596 597 /* P_REXB_{R,RM} indicates that the given register is the low byte. 598 For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do, 599 as otherwise the encoding indicates %[abcd]h. Note that the values 600 that are ORed in merely indicate that the REX byte must be present; 601 those bits get discarded in output. */ 602 rex |= opc & (r >= 4 ? P_REXB_R : 0); 603 rex |= opc & (rm >= 4 ? P_REXB_RM : 0); 604 605 if (rex) { 606 tcg_out8(s, (uint8_t)(rex | 0x40)); 607 } 608 609 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) { 610 tcg_out8(s, 0x0f); 611 if (opc & P_EXT38) { 612 tcg_out8(s, 0x38); 613 } else if (opc & P_EXT3A) { 614 tcg_out8(s, 0x3a); 615 } 616 } 617 618 tcg_out8(s, opc); 619} 620#else 621static void tcg_out_opc(TCGContext *s, int opc) 622{ 623 if (opc & P_DATA16) { 624 tcg_out8(s, 0x66); 625 } 626 if (opc & P_SIMDF3) { 627 tcg_out8(s, 0xf3); 628 } else if (opc & P_SIMDF2) { 629 tcg_out8(s, 0xf2); 630 } 631 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) { 632 tcg_out8(s, 0x0f); 633 if (opc & P_EXT38) { 634 tcg_out8(s, 0x38); 635 } else if (opc & P_EXT3A) { 636 tcg_out8(s, 0x3a); 637 } 638 } 639 tcg_out8(s, opc); 640} 641/* Discard the register arguments to tcg_out_opc early, so as not to penalize 642 the 32-bit compilation paths. This method works with all versions of gcc, 643 whereas relying on optimization may not be able to exclude them. */ 644#define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc) 645#endif 646 647static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm) 648{ 649 tcg_out_opc(s, opc, r, rm, 0); 650 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 651} 652 653static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v, 654 int rm, int index) 655{ 656 int tmp; 657 658 if (opc & P_GS) { 659 tcg_out8(s, 0x65); 660 } 661 /* Use the two byte form if possible, which cannot encode 662 VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */ 663 if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT 664 && ((rm | index) & 8) == 0) { 665 /* Two byte VEX prefix. */ 666 tcg_out8(s, 0xc5); 667 668 tmp = (r & 8 ? 0 : 0x80); /* VEX.R */ 669 } else { 670 /* Three byte VEX prefix. */ 671 tcg_out8(s, 0xc4); 672 673 /* VEX.m-mmmm */ 674 if (opc & P_EXT3A) { 675 tmp = 3; 676 } else if (opc & P_EXT38) { 677 tmp = 2; 678 } else if (opc & P_EXT) { 679 tmp = 1; 680 } else { 681 g_assert_not_reached(); 682 } 683 tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */ 684 tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */ 685 tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */ 686 tcg_out8(s, tmp); 687 688 tmp = (opc & P_VEXW ? 0x80 : 0); /* VEX.W */ 689 } 690 691 tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */ 692 /* VEX.pp */ 693 if (opc & P_DATA16) { 694 tmp |= 1; /* 0x66 */ 695 } else if (opc & P_SIMDF3) { 696 tmp |= 2; /* 0xf3 */ 697 } else if (opc & P_SIMDF2) { 698 tmp |= 3; /* 0xf2 */ 699 } 700 tmp |= (~v & 15) << 3; /* VEX.vvvv */ 701 tcg_out8(s, tmp); 702 tcg_out8(s, opc); 703} 704 705static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v, 706 int rm, int index, int aaa, bool z) 707{ 708 /* The entire 4-byte evex prefix; with R' and V' set. */ 709 uint32_t p = 0x08041062; 710 int mm, pp; 711 712 tcg_debug_assert(have_avx512vl); 713 714 /* EVEX.mm */ 715 if (opc & P_EXT3A) { 716 mm = 3; 717 } else if (opc & P_EXT38) { 718 mm = 2; 719 } else if (opc & P_EXT) { 720 mm = 1; 721 } else { 722 g_assert_not_reached(); 723 } 724 725 /* EVEX.pp */ 726 if (opc & P_DATA16) { 727 pp = 1; /* 0x66 */ 728 } else if (opc & P_SIMDF3) { 729 pp = 2; /* 0xf3 */ 730 } else if (opc & P_SIMDF2) { 731 pp = 3; /* 0xf2 */ 732 } else { 733 pp = 0; 734 } 735 736 p = deposit32(p, 8, 2, mm); 737 p = deposit32(p, 13, 1, (rm & 8) == 0); /* EVEX.RXB.B */ 738 p = deposit32(p, 14, 1, (index & 8) == 0); /* EVEX.RXB.X */ 739 p = deposit32(p, 15, 1, (r & 8) == 0); /* EVEX.RXB.R */ 740 p = deposit32(p, 16, 2, pp); 741 p = deposit32(p, 19, 4, ~v); 742 p = deposit32(p, 23, 1, (opc & P_VEXW) != 0); 743 p = deposit32(p, 24, 3, aaa); 744 p = deposit32(p, 29, 2, (opc & P_VEXL) != 0); 745 p = deposit32(p, 31, 1, z); 746 747 tcg_out32(s, p); 748 tcg_out8(s, opc); 749} 750 751static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm) 752{ 753 if (opc & P_EVEX) { 754 tcg_out_evex_opc(s, opc, r, v, rm, 0, 0, false); 755 } else { 756 tcg_out_vex_opc(s, opc, r, v, rm, 0); 757 } 758 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 759} 760 761static void tcg_out_vex_modrm_type(TCGContext *s, int opc, 762 int r, int v, int rm, TCGType type) 763{ 764 if (type == TCG_TYPE_V256) { 765 opc |= P_VEXL; 766 } 767 tcg_out_vex_modrm(s, opc, r, v, rm); 768} 769 770static void tcg_out_evex_modrm_type(TCGContext *s, int opc, int r, int v, 771 int rm, int aaa, bool z, TCGType type) 772{ 773 if (type == TCG_TYPE_V256) { 774 opc |= P_VEXL; 775 } 776 tcg_out_evex_opc(s, opc, r, v, rm, 0, aaa, z); 777 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 778} 779 780/* Output an opcode with a full "rm + (index<<shift) + offset" address mode. 781 We handle either RM and INDEX missing with a negative value. In 64-bit 782 mode for absolute addresses, ~RM is the size of the immediate operand 783 that will follow the instruction. */ 784 785static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index, 786 int shift, intptr_t offset) 787{ 788 int mod, len; 789 790 if (index < 0 && rm < 0) { 791 if (TCG_TARGET_REG_BITS == 64) { 792 /* Try for a rip-relative addressing mode. This has replaced 793 the 32-bit-mode absolute addressing encoding. */ 794 intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm; 795 intptr_t disp = offset - pc; 796 if (disp == (int32_t)disp) { 797 tcg_out8(s, (LOWREGMASK(r) << 3) | 5); 798 tcg_out32(s, disp); 799 return; 800 } 801 802 /* Try for an absolute address encoding. This requires the 803 use of the MODRM+SIB encoding and is therefore larger than 804 rip-relative addressing. */ 805 if (offset == (int32_t)offset) { 806 tcg_out8(s, (LOWREGMASK(r) << 3) | 4); 807 tcg_out8(s, (4 << 3) | 5); 808 tcg_out32(s, offset); 809 return; 810 } 811 812 /* ??? The memory isn't directly addressable. */ 813 g_assert_not_reached(); 814 } else { 815 /* Absolute address. */ 816 tcg_out8(s, (r << 3) | 5); 817 tcg_out32(s, offset); 818 return; 819 } 820 } 821 822 /* Find the length of the immediate addend. Note that the encoding 823 that would be used for (%ebp) indicates absolute addressing. */ 824 if (rm < 0) { 825 mod = 0, len = 4, rm = 5; 826 } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) { 827 mod = 0, len = 0; 828 } else if (offset == (int8_t)offset) { 829 mod = 0x40, len = 1; 830 } else { 831 mod = 0x80, len = 4; 832 } 833 834 /* Use a single byte MODRM format if possible. Note that the encoding 835 that would be used for %esp is the escape to the two byte form. */ 836 if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) { 837 /* Single byte MODRM format. */ 838 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 839 } else { 840 /* Two byte MODRM+SIB format. */ 841 842 /* Note that the encoding that would place %esp into the index 843 field indicates no index register. In 64-bit mode, the REX.X 844 bit counts, so %r12 can be used as the index. */ 845 if (index < 0) { 846 index = 4; 847 } else { 848 tcg_debug_assert(index != TCG_REG_ESP); 849 } 850 851 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4); 852 tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm)); 853 } 854 855 if (len == 1) { 856 tcg_out8(s, offset); 857 } else if (len == 4) { 858 tcg_out32(s, offset); 859 } 860} 861 862static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm, 863 int index, int shift, intptr_t offset) 864{ 865 tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index); 866 tcg_out_sib_offset(s, r, rm, index, shift, offset); 867} 868 869static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v, 870 int rm, int index, int shift, 871 intptr_t offset) 872{ 873 tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index); 874 tcg_out_sib_offset(s, r, rm, index, shift, offset); 875} 876 877/* A simplification of the above with no index or shift. */ 878static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r, 879 int rm, intptr_t offset) 880{ 881 tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset); 882} 883 884static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r, 885 int v, int rm, intptr_t offset) 886{ 887 tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset); 888} 889 890/* Output an opcode with an expected reference to the constant pool. */ 891static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r) 892{ 893 tcg_out_opc(s, opc, r, 0, 0); 894 /* Absolute for 32-bit, pc-relative for 64-bit. */ 895 tcg_out8(s, LOWREGMASK(r) << 3 | 5); 896 tcg_out32(s, 0); 897} 898 899/* Output an opcode with an expected reference to the constant pool. */ 900static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r) 901{ 902 tcg_out_vex_opc(s, opc, r, 0, 0, 0); 903 /* Absolute for 32-bit, pc-relative for 64-bit. */ 904 tcg_out8(s, LOWREGMASK(r) << 3 | 5); 905 tcg_out32(s, 0); 906} 907 908/* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */ 909static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src) 910{ 911 /* Propagate an opcode prefix, such as P_REXW. */ 912 int ext = subop & ~0x7; 913 subop &= 0x7; 914 915 tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src); 916} 917 918static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 919{ 920 int rexw = 0; 921 922 if (arg == ret) { 923 return true; 924 } 925 switch (type) { 926 case TCG_TYPE_I64: 927 rexw = P_REXW; 928 /* fallthru */ 929 case TCG_TYPE_I32: 930 if (ret < 16) { 931 if (arg < 16) { 932 tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg); 933 } else { 934 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret); 935 } 936 } else { 937 if (arg < 16) { 938 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg); 939 } else { 940 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg); 941 } 942 } 943 break; 944 945 case TCG_TYPE_V64: 946 tcg_debug_assert(ret >= 16 && arg >= 16); 947 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg); 948 break; 949 case TCG_TYPE_V128: 950 tcg_debug_assert(ret >= 16 && arg >= 16); 951 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg); 952 break; 953 case TCG_TYPE_V256: 954 tcg_debug_assert(ret >= 16 && arg >= 16); 955 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg); 956 break; 957 958 default: 959 g_assert_not_reached(); 960 } 961 return true; 962} 963 964static const int avx2_dup_insn[4] = { 965 OPC_VPBROADCASTB, OPC_VPBROADCASTW, 966 OPC_VPBROADCASTD, OPC_VPBROADCASTQ, 967}; 968 969static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 970 TCGReg r, TCGReg a) 971{ 972 if (have_avx2) { 973 tcg_out_vex_modrm_type(s, avx2_dup_insn[vece], r, 0, a, type); 974 } else { 975 switch (vece) { 976 case MO_8: 977 /* ??? With zero in a register, use PSHUFB. */ 978 tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a); 979 a = r; 980 /* FALLTHRU */ 981 case MO_16: 982 tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a); 983 a = r; 984 /* FALLTHRU */ 985 case MO_32: 986 tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a); 987 /* imm8 operand: all output lanes selected from input lane 0. */ 988 tcg_out8(s, 0); 989 break; 990 case MO_64: 991 tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a); 992 break; 993 default: 994 g_assert_not_reached(); 995 } 996 } 997 return true; 998} 999 1000static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 1001 TCGReg r, TCGReg base, intptr_t offset) 1002{ 1003 if (have_avx2) { 1004 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); 1005 tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l, 1006 r, 0, base, offset); 1007 } else { 1008 switch (vece) { 1009 case MO_64: 1010 tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset); 1011 break; 1012 case MO_32: 1013 tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset); 1014 break; 1015 case MO_16: 1016 tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset); 1017 tcg_out8(s, 0); /* imm8 */ 1018 tcg_out_dup_vec(s, type, vece, r, r); 1019 break; 1020 case MO_8: 1021 tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset); 1022 tcg_out8(s, 0); /* imm8 */ 1023 tcg_out_dup_vec(s, type, vece, r, r); 1024 break; 1025 default: 1026 g_assert_not_reached(); 1027 } 1028 } 1029 return true; 1030} 1031 1032static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 1033 TCGReg ret, int64_t arg) 1034{ 1035 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); 1036 1037 if (arg == 0) { 1038 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret); 1039 return; 1040 } 1041 if (arg == -1) { 1042 tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret); 1043 return; 1044 } 1045 1046 if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) { 1047 if (have_avx2) { 1048 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret); 1049 } else { 1050 tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret); 1051 } 1052 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0); 1053 } else { 1054 if (type == TCG_TYPE_V64) { 1055 tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret); 1056 } else if (have_avx2) { 1057 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret); 1058 } else { 1059 tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret); 1060 } 1061 if (TCG_TARGET_REG_BITS == 64) { 1062 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4); 1063 } else { 1064 new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32); 1065 } 1066 } 1067} 1068 1069static void tcg_out_movi_vec(TCGContext *s, TCGType type, 1070 TCGReg ret, tcg_target_long arg) 1071{ 1072 if (arg == 0) { 1073 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret); 1074 return; 1075 } 1076 if (arg == -1) { 1077 tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret); 1078 return; 1079 } 1080 1081 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW); 1082 tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret); 1083 if (TCG_TARGET_REG_BITS == 64) { 1084 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4); 1085 } else { 1086 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0); 1087 } 1088} 1089 1090static void tcg_out_movi_int(TCGContext *s, TCGType type, 1091 TCGReg ret, tcg_target_long arg) 1092{ 1093 tcg_target_long diff; 1094 1095 if (arg == 0) { 1096 tgen_arithr(s, ARITH_XOR, ret, ret); 1097 return; 1098 } 1099 if (arg == (uint32_t)arg || type == TCG_TYPE_I32) { 1100 tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0); 1101 tcg_out32(s, arg); 1102 return; 1103 } 1104 if (arg == (int32_t)arg) { 1105 tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret); 1106 tcg_out32(s, arg); 1107 return; 1108 } 1109 1110 /* Try a 7 byte pc-relative lea before the 10 byte movq. */ 1111 diff = tcg_pcrel_diff(s, (const void *)arg) - 7; 1112 if (diff == (int32_t)diff) { 1113 tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0); 1114 tcg_out8(s, (LOWREGMASK(ret) << 3) | 5); 1115 tcg_out32(s, diff); 1116 return; 1117 } 1118 1119 tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0); 1120 tcg_out64(s, arg); 1121} 1122 1123static void tcg_out_movi(TCGContext *s, TCGType type, 1124 TCGReg ret, tcg_target_long arg) 1125{ 1126 switch (type) { 1127 case TCG_TYPE_I32: 1128#if TCG_TARGET_REG_BITS == 64 1129 case TCG_TYPE_I64: 1130#endif 1131 if (ret < 16) { 1132 tcg_out_movi_int(s, type, ret, arg); 1133 } else { 1134 tcg_out_movi_vec(s, type, ret, arg); 1135 } 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140} 1141 1142static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) 1143{ 1144 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1145 tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2); 1146 return true; 1147} 1148 1149static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, 1150 tcg_target_long imm) 1151{ 1152 /* This function is only used for passing structs by reference. */ 1153 tcg_debug_assert(imm == (int32_t)imm); 1154 tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm); 1155} 1156 1157static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val) 1158{ 1159 if (val == (int8_t)val) { 1160 tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0); 1161 tcg_out8(s, val); 1162 } else if (val == (int32_t)val) { 1163 tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0); 1164 tcg_out32(s, val); 1165 } else { 1166 g_assert_not_reached(); 1167 } 1168} 1169 1170static inline void tcg_out_mb(TCGContext *s, TCGArg a0) 1171{ 1172 /* Given the strength of x86 memory ordering, we only need care for 1173 store-load ordering. Experimentally, "lock orl $0,0(%esp)" is 1174 faster than "mfence", so don't bother with the sse insn. */ 1175 if (a0 & TCG_MO_ST_LD) { 1176 tcg_out8(s, 0xf0); 1177 tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0); 1178 tcg_out8(s, 0); 1179 } 1180} 1181 1182static inline void tcg_out_push(TCGContext *s, int reg) 1183{ 1184 tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0); 1185} 1186 1187static inline void tcg_out_pop(TCGContext *s, int reg) 1188{ 1189 tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0); 1190} 1191 1192static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, 1193 TCGReg arg1, intptr_t arg2) 1194{ 1195 switch (type) { 1196 case TCG_TYPE_I32: 1197 if (ret < 16) { 1198 tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2); 1199 } else { 1200 tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2); 1201 } 1202 break; 1203 case TCG_TYPE_I64: 1204 if (ret < 16) { 1205 tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2); 1206 break; 1207 } 1208 /* FALLTHRU */ 1209 case TCG_TYPE_V64: 1210 /* There is no instruction that can validate 8-byte alignment. */ 1211 tcg_debug_assert(ret >= 16); 1212 tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2); 1213 break; 1214 case TCG_TYPE_V128: 1215 /* 1216 * The gvec infrastructure is asserts that v128 vector loads 1217 * and stores use a 16-byte aligned offset. Validate that the 1218 * final pointer is aligned by using an insn that will SIGSEGV. 1219 */ 1220 tcg_debug_assert(ret >= 16); 1221 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2); 1222 break; 1223 case TCG_TYPE_V256: 1224 /* 1225 * The gvec infrastructure only requires 16-byte alignment, 1226 * so here we must use an unaligned load. 1227 */ 1228 tcg_debug_assert(ret >= 16); 1229 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL, 1230 ret, 0, arg1, arg2); 1231 break; 1232 default: 1233 g_assert_not_reached(); 1234 } 1235} 1236 1237static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, 1238 TCGReg arg1, intptr_t arg2) 1239{ 1240 switch (type) { 1241 case TCG_TYPE_I32: 1242 if (arg < 16) { 1243 tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2); 1244 } else { 1245 tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2); 1246 } 1247 break; 1248 case TCG_TYPE_I64: 1249 if (arg < 16) { 1250 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2); 1251 break; 1252 } 1253 /* FALLTHRU */ 1254 case TCG_TYPE_V64: 1255 /* There is no instruction that can validate 8-byte alignment. */ 1256 tcg_debug_assert(arg >= 16); 1257 tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2); 1258 break; 1259 case TCG_TYPE_V128: 1260 /* 1261 * The gvec infrastructure is asserts that v128 vector loads 1262 * and stores use a 16-byte aligned offset. Validate that the 1263 * final pointer is aligned by using an insn that will SIGSEGV. 1264 * 1265 * This specific instance is also used by TCG_CALL_RET_BY_VEC, 1266 * for _WIN64, which must have SSE2 but may not have AVX. 1267 */ 1268 tcg_debug_assert(arg >= 16); 1269 if (have_avx1) { 1270 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2); 1271 } else { 1272 tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2); 1273 } 1274 break; 1275 case TCG_TYPE_V256: 1276 /* 1277 * The gvec infrastructure only requires 16-byte alignment, 1278 * so here we must use an unaligned store. 1279 */ 1280 tcg_debug_assert(arg >= 16); 1281 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL, 1282 arg, 0, arg1, arg2); 1283 break; 1284 default: 1285 g_assert_not_reached(); 1286 } 1287} 1288 1289static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 1290 TCGReg base, intptr_t ofs) 1291{ 1292 int rexw = 0; 1293 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) { 1294 if (val != (int32_t)val) { 1295 return false; 1296 } 1297 rexw = P_REXW; 1298 } else if (type != TCG_TYPE_I32) { 1299 return false; 1300 } 1301 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs); 1302 tcg_out32(s, val); 1303 return true; 1304} 1305 1306static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count) 1307{ 1308 /* Propagate an opcode prefix, such as P_DATA16. */ 1309 int ext = subopc & ~0x7; 1310 subopc &= 0x7; 1311 1312 if (count == 1) { 1313 tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg); 1314 } else { 1315 tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg); 1316 tcg_out8(s, count); 1317 } 1318} 1319 1320static inline void tcg_out_bswap32(TCGContext *s, int reg) 1321{ 1322 tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0); 1323} 1324 1325static inline void tcg_out_rolw_8(TCGContext *s, int reg) 1326{ 1327 tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8); 1328} 1329 1330static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src) 1331{ 1332 if (TCG_TARGET_REG_BITS == 32 && src >= 4) { 1333 tcg_out_mov(s, TCG_TYPE_I32, dest, src); 1334 if (dest >= 4) { 1335 tcg_out_modrm(s, OPC_ARITH_EvIz, ARITH_AND, dest); 1336 tcg_out32(s, 0xff); 1337 return; 1338 } 1339 src = dest; 1340 } 1341 tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src); 1342} 1343 1344static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) 1345{ 1346 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1347 1348 if (TCG_TARGET_REG_BITS == 32 && src >= 4) { 1349 tcg_out_mov(s, TCG_TYPE_I32, dest, src); 1350 if (dest >= 4) { 1351 tcg_out_shifti(s, SHIFT_SHL, dest, 24); 1352 tcg_out_shifti(s, SHIFT_SAR, dest, 24); 1353 return; 1354 } 1355 src = dest; 1356 } 1357 tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src); 1358} 1359 1360static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src) 1361{ 1362 /* movzwl */ 1363 tcg_out_modrm(s, OPC_MOVZWL, dest, src); 1364} 1365 1366static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) 1367{ 1368 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1369 /* movsw[lq] */ 1370 tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src); 1371} 1372 1373static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src) 1374{ 1375 /* 32-bit mov zero extends. */ 1376 tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src); 1377} 1378 1379static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src) 1380{ 1381 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 1382 tcg_out_modrm(s, OPC_MOVSLQ, dest, src); 1383} 1384 1385static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src) 1386{ 1387 tcg_out_ext32s(s, dest, src); 1388} 1389 1390static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src) 1391{ 1392 if (dest != src) { 1393 tcg_out_ext32u(s, dest, src); 1394 } 1395} 1396 1397static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src) 1398{ 1399 tcg_out_ext32u(s, dest, src); 1400} 1401 1402static inline void tcg_out_bswap64(TCGContext *s, int reg) 1403{ 1404 tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0); 1405} 1406 1407static void tgen_arithi(TCGContext *s, int c, int r0, 1408 tcg_target_long val, int cf) 1409{ 1410 int rexw = 0; 1411 1412 if (TCG_TARGET_REG_BITS == 64) { 1413 rexw = c & -8; 1414 c &= 7; 1415 } 1416 1417 switch (c) { 1418 case ARITH_ADD: 1419 case ARITH_SUB: 1420 if (!cf) { 1421 /* 1422 * ??? While INC is 2 bytes shorter than ADDL $1, they also induce 1423 * partial flags update stalls on Pentium4 and are not recommended 1424 * by current Intel optimization manuals. 1425 */ 1426 if (val == 1 || val == -1) { 1427 int is_inc = (c == ARITH_ADD) ^ (val < 0); 1428 if (TCG_TARGET_REG_BITS == 64) { 1429 /* 1430 * The single-byte increment encodings are re-tasked 1431 * as the REX prefixes. Use the MODRM encoding. 1432 */ 1433 tcg_out_modrm(s, OPC_GRP5 + rexw, 1434 (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0); 1435 } else { 1436 tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0); 1437 } 1438 return; 1439 } 1440 if (val == 128) { 1441 /* 1442 * Facilitate using an 8-bit immediate. Carry is inverted 1443 * by this transformation, so do it only if cf == 0. 1444 */ 1445 c ^= ARITH_ADD ^ ARITH_SUB; 1446 val = -128; 1447 } 1448 } 1449 break; 1450 1451 case ARITH_AND: 1452 if (TCG_TARGET_REG_BITS == 64) { 1453 if (val == 0xffffffffu) { 1454 tcg_out_ext32u(s, r0, r0); 1455 return; 1456 } 1457 if (val == (uint32_t)val) { 1458 /* AND with no high bits set can use a 32-bit operation. */ 1459 rexw = 0; 1460 } 1461 } 1462 if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) { 1463 tcg_out_ext8u(s, r0, r0); 1464 return; 1465 } 1466 if (val == 0xffffu) { 1467 tcg_out_ext16u(s, r0, r0); 1468 return; 1469 } 1470 break; 1471 1472 case ARITH_OR: 1473 case ARITH_XOR: 1474 if (val >= 0x80 && val <= 0xff 1475 && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) { 1476 tcg_out_modrm(s, OPC_ARITH_EbIb + P_REXB_RM, c, r0); 1477 tcg_out8(s, val); 1478 return; 1479 } 1480 break; 1481 } 1482 1483 if (val == (int8_t)val) { 1484 tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0); 1485 tcg_out8(s, val); 1486 return; 1487 } 1488 if (rexw == 0 || val == (int32_t)val) { 1489 tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0); 1490 tcg_out32(s, val); 1491 return; 1492 } 1493 1494 g_assert_not_reached(); 1495} 1496 1497static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val) 1498{ 1499 if (val != 0) { 1500 tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0); 1501 } 1502} 1503 1504/* Set SMALL to force a short forward branch. */ 1505static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small) 1506{ 1507 int32_t val, val1; 1508 1509 if (l->has_value) { 1510 val = tcg_pcrel_diff(s, l->u.value_ptr); 1511 val1 = val - 2; 1512 if ((int8_t)val1 == val1) { 1513 if (opc == -1) { 1514 tcg_out8(s, OPC_JMP_short); 1515 } else { 1516 tcg_out8(s, OPC_JCC_short + opc); 1517 } 1518 tcg_out8(s, val1); 1519 } else { 1520 tcg_debug_assert(!small); 1521 if (opc == -1) { 1522 tcg_out8(s, OPC_JMP_long); 1523 tcg_out32(s, val - 5); 1524 } else { 1525 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0); 1526 tcg_out32(s, val - 6); 1527 } 1528 } 1529 } else if (small) { 1530 if (opc == -1) { 1531 tcg_out8(s, OPC_JMP_short); 1532 } else { 1533 tcg_out8(s, OPC_JCC_short + opc); 1534 } 1535 tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1); 1536 s->code_ptr += 1; 1537 } else { 1538 if (opc == -1) { 1539 tcg_out8(s, OPC_JMP_long); 1540 } else { 1541 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0); 1542 } 1543 tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4); 1544 s->code_ptr += 4; 1545 } 1546} 1547 1548static int tcg_out_cmp(TCGContext *s, TCGCond cond, TCGArg arg1, 1549 TCGArg arg2, int const_arg2, int rexw) 1550{ 1551 int jz, js; 1552 1553 if (!is_tst_cond(cond)) { 1554 if (!const_arg2) { 1555 tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2); 1556 } else if (arg2 == 0) { 1557 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1); 1558 } else { 1559 tcg_debug_assert(!rexw || arg2 == (int32_t)arg2); 1560 tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0); 1561 } 1562 return tcg_cond_to_jcc[cond]; 1563 } 1564 1565 jz = tcg_cond_to_jcc[cond]; 1566 js = (cond == TCG_COND_TSTNE ? JCC_JS : JCC_JNS); 1567 1568 if (!const_arg2) { 1569 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg2); 1570 return jz; 1571 } 1572 1573 if (arg2 <= 0xff && (TCG_TARGET_REG_BITS == 64 || arg1 < 4)) { 1574 if (arg2 == 0x80) { 1575 tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1); 1576 return js; 1577 } 1578 if (arg2 == 0xff) { 1579 tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1); 1580 return jz; 1581 } 1582 tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, arg1); 1583 tcg_out8(s, arg2); 1584 return jz; 1585 } 1586 1587 if ((arg2 & ~0xff00) == 0 && arg1 < 4) { 1588 if (arg2 == 0x8000) { 1589 tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4); 1590 return js; 1591 } 1592 if (arg2 == 0xff00) { 1593 tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4); 1594 return jz; 1595 } 1596 tcg_out_modrm(s, OPC_GRP3_Eb, EXT3_TESTi, arg1 + 4); 1597 tcg_out8(s, arg2 >> 8); 1598 return jz; 1599 } 1600 1601 if (arg2 == 0xffff) { 1602 tcg_out_modrm(s, OPC_TESTL | P_DATA16, arg1, arg1); 1603 return jz; 1604 } 1605 if (arg2 == 0xffffffffu) { 1606 tcg_out_modrm(s, OPC_TESTL, arg1, arg1); 1607 return jz; 1608 } 1609 1610 if (is_power_of_2(rexw ? arg2 : (uint32_t)arg2)) { 1611 int jc = (cond == TCG_COND_TSTNE ? JCC_JB : JCC_JAE); 1612 int sh = ctz64(arg2); 1613 1614 rexw = (sh & 32 ? P_REXW : 0); 1615 if ((sh & 31) == 31) { 1616 tcg_out_modrm(s, OPC_TESTL | rexw, arg1, arg1); 1617 return js; 1618 } else { 1619 tcg_out_modrm(s, OPC_GRPBT | rexw, OPC_GRPBT_BT, arg1); 1620 tcg_out8(s, sh); 1621 return jc; 1622 } 1623 } 1624 1625 if (rexw) { 1626 if (arg2 == (uint32_t)arg2) { 1627 rexw = 0; 1628 } else { 1629 tcg_debug_assert(arg2 == (int32_t)arg2); 1630 } 1631 } 1632 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_TESTi, arg1); 1633 tcg_out32(s, arg2); 1634 return jz; 1635} 1636 1637static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond, 1638 TCGArg arg1, TCGArg arg2, int const_arg2, 1639 TCGLabel *label, bool small) 1640{ 1641 int jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, rexw); 1642 tcg_out_jxx(s, jcc, label, small); 1643} 1644 1645#if TCG_TARGET_REG_BITS == 32 1646static void tcg_out_brcond2(TCGContext *s, const TCGArg *args, 1647 const int *const_args, bool small) 1648{ 1649 TCGLabel *label_next = gen_new_label(); 1650 TCGLabel *label_this = arg_label(args[5]); 1651 TCGCond cond = args[4]; 1652 1653 switch (cond) { 1654 case TCG_COND_EQ: 1655 case TCG_COND_TSTEQ: 1656 tcg_out_brcond(s, 0, tcg_invert_cond(cond), 1657 args[0], args[2], const_args[2], label_next, 1); 1658 tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3], 1659 label_this, small); 1660 break; 1661 1662 case TCG_COND_NE: 1663 case TCG_COND_TSTNE: 1664 tcg_out_brcond(s, 0, cond, args[0], args[2], const_args[2], 1665 label_this, small); 1666 tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3], 1667 label_this, small); 1668 break; 1669 1670 default: 1671 tcg_out_brcond(s, 0, tcg_high_cond(cond), args[1], 1672 args[3], const_args[3], label_this, small); 1673 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1674 tcg_out_brcond(s, 0, tcg_unsigned_cond(cond), args[0], 1675 args[2], const_args[2], label_this, small); 1676 break; 1677 } 1678 tcg_out_label(s, label_next); 1679} 1680#endif 1681 1682static void tcg_out_setcond(TCGContext *s, int rexw, TCGCond cond, 1683 TCGArg dest, TCGArg arg1, TCGArg arg2, 1684 int const_arg2, bool neg) 1685{ 1686 int cmp_rexw = rexw; 1687 bool inv = false; 1688 bool cleared; 1689 int jcc; 1690 1691 switch (cond) { 1692 case TCG_COND_NE: 1693 inv = true; 1694 /* fall through */ 1695 case TCG_COND_EQ: 1696 /* If arg2 is 0, convert to LTU/GEU vs 1. */ 1697 if (const_arg2 && arg2 == 0) { 1698 arg2 = 1; 1699 goto do_ltu; 1700 } 1701 break; 1702 1703 case TCG_COND_TSTNE: 1704 inv = true; 1705 /* fall through */ 1706 case TCG_COND_TSTEQ: 1707 /* If arg2 is -1, convert to LTU/GEU vs 1. */ 1708 if (const_arg2 && arg2 == 0xffffffffu) { 1709 arg2 = 1; 1710 cmp_rexw = 0; 1711 goto do_ltu; 1712 } 1713 break; 1714 1715 case TCG_COND_LEU: 1716 inv = true; 1717 /* fall through */ 1718 case TCG_COND_GTU: 1719 /* If arg2 is a register, swap for LTU/GEU. */ 1720 if (!const_arg2) { 1721 TCGReg t = arg1; 1722 arg1 = arg2; 1723 arg2 = t; 1724 goto do_ltu; 1725 } 1726 break; 1727 1728 case TCG_COND_GEU: 1729 inv = true; 1730 /* fall through */ 1731 case TCG_COND_LTU: 1732 do_ltu: 1733 /* 1734 * Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU. 1735 * We can then use NEG or INC to produce the desired result. 1736 * This is always smaller than the SETCC expansion. 1737 */ 1738 tcg_out_cmp(s, TCG_COND_LTU, arg1, arg2, const_arg2, cmp_rexw); 1739 1740 /* X - X - C = -C = (C ? -1 : 0) */ 1741 tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest); 1742 if (inv && neg) { 1743 /* ~(C ? -1 : 0) = (C ? 0 : -1) */ 1744 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest); 1745 } else if (inv) { 1746 /* (C ? -1 : 0) + 1 = (C ? 0 : 1) */ 1747 tgen_arithi(s, ARITH_ADD, dest, 1, 0); 1748 } else if (!neg) { 1749 /* -(C ? -1 : 0) = (C ? 1 : 0) */ 1750 tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest); 1751 } 1752 return; 1753 1754 case TCG_COND_GE: 1755 inv = true; 1756 /* fall through */ 1757 case TCG_COND_LT: 1758 /* If arg2 is 0, extract the sign bit. */ 1759 if (const_arg2 && arg2 == 0) { 1760 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, dest, arg1); 1761 if (inv) { 1762 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest); 1763 } 1764 tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw, 1765 dest, rexw ? 63 : 31); 1766 return; 1767 } 1768 break; 1769 1770 default: 1771 break; 1772 } 1773 1774 /* 1775 * If dest does not overlap the inputs, clearing it first is preferred. 1776 * The XOR breaks any false dependency for the low-byte write to dest, 1777 * and is also one byte smaller than MOVZBL. 1778 */ 1779 cleared = false; 1780 if (dest != arg1 && (const_arg2 || dest != arg2)) { 1781 tgen_arithr(s, ARITH_XOR, dest, dest); 1782 cleared = true; 1783 } 1784 1785 jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, cmp_rexw); 1786 tcg_out_modrm(s, OPC_SETCC | jcc, 0, dest); 1787 1788 if (!cleared) { 1789 tcg_out_ext8u(s, dest, dest); 1790 } 1791 if (neg) { 1792 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest); 1793 } 1794} 1795 1796#if TCG_TARGET_REG_BITS == 32 1797static void tcg_out_setcond2(TCGContext *s, const TCGArg *args, 1798 const int *const_args) 1799{ 1800 TCGArg new_args[6]; 1801 TCGLabel *label_true, *label_over; 1802 1803 memcpy(new_args, args+1, 5*sizeof(TCGArg)); 1804 1805 if (args[0] == args[1] || args[0] == args[2] 1806 || (!const_args[3] && args[0] == args[3]) 1807 || (!const_args[4] && args[0] == args[4])) { 1808 /* When the destination overlaps with one of the argument 1809 registers, don't do anything tricky. */ 1810 label_true = gen_new_label(); 1811 label_over = gen_new_label(); 1812 1813 new_args[5] = label_arg(label_true); 1814 tcg_out_brcond2(s, new_args, const_args+1, 1); 1815 1816 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0); 1817 tcg_out_jxx(s, JCC_JMP, label_over, 1); 1818 tcg_out_label(s, label_true); 1819 1820 tcg_out_movi(s, TCG_TYPE_I32, args[0], 1); 1821 tcg_out_label(s, label_over); 1822 } else { 1823 /* When the destination does not overlap one of the arguments, 1824 clear the destination first, jump if cond false, and emit an 1825 increment in the true case. This results in smaller code. */ 1826 1827 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0); 1828 1829 label_over = gen_new_label(); 1830 new_args[4] = tcg_invert_cond(new_args[4]); 1831 new_args[5] = label_arg(label_over); 1832 tcg_out_brcond2(s, new_args, const_args+1, 1); 1833 1834 tgen_arithi(s, ARITH_ADD, args[0], 1, 0); 1835 tcg_out_label(s, label_over); 1836 } 1837} 1838#endif 1839 1840static void tcg_out_cmov(TCGContext *s, int jcc, int rexw, 1841 TCGReg dest, TCGReg v1) 1842{ 1843 tcg_out_modrm(s, OPC_CMOVCC | jcc | rexw, dest, v1); 1844} 1845 1846static void tcg_out_movcond(TCGContext *s, int rexw, TCGCond cond, 1847 TCGReg dest, TCGReg c1, TCGArg c2, int const_c2, 1848 TCGReg v1) 1849{ 1850 int jcc = tcg_out_cmp(s, cond, c1, c2, const_c2, rexw); 1851 tcg_out_cmov(s, jcc, rexw, dest, v1); 1852} 1853 1854static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1, 1855 TCGArg arg2, bool const_a2) 1856{ 1857 if (have_bmi1) { 1858 tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1); 1859 if (const_a2) { 1860 tcg_debug_assert(arg2 == (rexw ? 64 : 32)); 1861 } else { 1862 tcg_debug_assert(dest != arg2); 1863 tcg_out_cmov(s, JCC_JB, rexw, dest, arg2); 1864 } 1865 } else { 1866 tcg_debug_assert(dest != arg2); 1867 tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1); 1868 tcg_out_cmov(s, JCC_JE, rexw, dest, arg2); 1869 } 1870} 1871 1872static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1, 1873 TCGArg arg2, bool const_a2) 1874{ 1875 if (have_lzcnt) { 1876 tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1); 1877 if (const_a2) { 1878 tcg_debug_assert(arg2 == (rexw ? 64 : 32)); 1879 } else { 1880 tcg_debug_assert(dest != arg2); 1881 tcg_out_cmov(s, JCC_JB, rexw, dest, arg2); 1882 } 1883 } else { 1884 tcg_debug_assert(!const_a2); 1885 tcg_debug_assert(dest != arg1); 1886 tcg_debug_assert(dest != arg2); 1887 1888 /* Recall that the output of BSR is the index not the count. */ 1889 tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1); 1890 tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0); 1891 1892 /* Since we have destroyed the flags from BSR, we have to re-test. */ 1893 int jcc = tcg_out_cmp(s, TCG_COND_EQ, arg1, 0, 1, rexw); 1894 tcg_out_cmov(s, jcc, rexw, dest, arg2); 1895 } 1896} 1897 1898static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest) 1899{ 1900 intptr_t disp = tcg_pcrel_diff(s, dest) - 5; 1901 1902 if (disp == (int32_t)disp) { 1903 tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0); 1904 tcg_out32(s, disp); 1905 } else { 1906 /* rip-relative addressing into the constant pool. 1907 This is 6 + 8 = 14 bytes, as compared to using an 1908 immediate load 10 + 6 = 16 bytes, plus we may 1909 be able to re-use the pool constant for more calls. */ 1910 tcg_out_opc(s, OPC_GRP5, 0, 0, 0); 1911 tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5); 1912 new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4); 1913 tcg_out32(s, 0); 1914 } 1915} 1916 1917static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest, 1918 const TCGHelperInfo *info) 1919{ 1920 tcg_out_branch(s, 1, dest); 1921 1922#ifndef _WIN32 1923 if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) { 1924 /* 1925 * The sysv i386 abi for struct return places a reference as the 1926 * first argument of the stack, and pops that argument with the 1927 * return statement. Since we want to retain the aligned stack 1928 * pointer for the callee, we do not want to actually push that 1929 * argument before the call but rely on the normal store to the 1930 * stack slot. But we do need to compensate for the pop in order 1931 * to reset our correct stack pointer value. 1932 * Pushing a garbage value back onto the stack is quickest. 1933 */ 1934 tcg_out_push(s, TCG_REG_EAX); 1935 } 1936#endif 1937} 1938 1939static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest) 1940{ 1941 tcg_out_branch(s, 0, dest); 1942} 1943 1944static void tcg_out_nopn(TCGContext *s, int n) 1945{ 1946 int i; 1947 /* Emit 1 or 2 operand size prefixes for the standard one byte nop, 1948 * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the 1949 * duplicate prefix, and all of the interesting recent cores can 1950 * decode and discard the duplicates in a single cycle. 1951 */ 1952 tcg_debug_assert(n >= 1); 1953 for (i = 1; i < n; ++i) { 1954 tcg_out8(s, 0x66); 1955 } 1956 tcg_out8(s, 0x90); 1957} 1958 1959typedef struct { 1960 TCGReg base; 1961 int index; 1962 int ofs; 1963 int seg; 1964 TCGAtomAlign aa; 1965} HostAddress; 1966 1967bool tcg_target_has_memory_bswap(MemOp memop) 1968{ 1969 TCGAtomAlign aa; 1970 1971 if (!have_movbe) { 1972 return false; 1973 } 1974 if ((memop & MO_SIZE) < MO_128) { 1975 return true; 1976 } 1977 1978 /* 1979 * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA, 1980 * but do allow a pair of 64-bit operations, i.e. MOVBEQ. 1981 */ 1982 aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true); 1983 return aa.atom < MO_128; 1984} 1985 1986/* 1987 * Because i686 has no register parameters and because x86_64 has xchg 1988 * to handle addr/data register overlap, we have placed all input arguments 1989 * before we need might need a scratch reg. 1990 * 1991 * Even then, a scratch is only needed for l->raddr. Rather than expose 1992 * a general-purpose scratch when we don't actually know it's available, 1993 * use the ra_gen hook to load into RAX if needed. 1994 */ 1995#if TCG_TARGET_REG_BITS == 64 1996static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg) 1997{ 1998 if (arg < 0) { 1999 arg = TCG_REG_RAX; 2000 } 2001 tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr); 2002 return arg; 2003} 2004static const TCGLdstHelperParam ldst_helper_param = { 2005 .ra_gen = ldst_ra_gen 2006}; 2007#else 2008static const TCGLdstHelperParam ldst_helper_param = { }; 2009#endif 2010 2011static void tcg_out_vec_to_pair(TCGContext *s, TCGType type, 2012 TCGReg l, TCGReg h, TCGReg v) 2013{ 2014 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2015 2016 /* vpmov{d,q} %v, %l */ 2017 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l); 2018 /* vpextr{d,q} $1, %v, %h */ 2019 tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h); 2020 tcg_out8(s, 1); 2021} 2022 2023static void tcg_out_pair_to_vec(TCGContext *s, TCGType type, 2024 TCGReg v, TCGReg l, TCGReg h) 2025{ 2026 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2027 2028 /* vmov{d,q} %l, %v */ 2029 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l); 2030 /* vpinsr{d,q} $1, %h, %v, %v */ 2031 tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h); 2032 tcg_out8(s, 1); 2033} 2034 2035/* 2036 * Generate code for the slow path for a load at the end of block 2037 */ 2038static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 2039{ 2040 MemOp opc = get_memop(l->oi); 2041 tcg_insn_unit **label_ptr = &l->label_ptr[0]; 2042 2043 /* resolve label address */ 2044 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4); 2045 if (label_ptr[1]) { 2046 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4); 2047 } 2048 2049 tcg_out_ld_helper_args(s, l, &ldst_helper_param); 2050 tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]); 2051 tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param); 2052 2053 tcg_out_jmp(s, l->raddr); 2054 return true; 2055} 2056 2057/* 2058 * Generate code for the slow path for a store at the end of block 2059 */ 2060static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 2061{ 2062 MemOp opc = get_memop(l->oi); 2063 tcg_insn_unit **label_ptr = &l->label_ptr[0]; 2064 2065 /* resolve label address */ 2066 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4); 2067 if (label_ptr[1]) { 2068 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4); 2069 } 2070 2071 tcg_out_st_helper_args(s, l, &ldst_helper_param); 2072 tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]); 2073 2074 tcg_out_jmp(s, l->raddr); 2075 return true; 2076} 2077 2078#ifdef CONFIG_USER_ONLY 2079static HostAddress x86_guest_base = { 2080 .index = -1 2081}; 2082 2083#if defined(__x86_64__) && defined(__linux__) 2084# include <asm/prctl.h> 2085# include <sys/prctl.h> 2086int arch_prctl(int code, unsigned long addr); 2087static inline int setup_guest_base_seg(void) 2088{ 2089 if (arch_prctl(ARCH_SET_GS, guest_base) == 0) { 2090 return P_GS; 2091 } 2092 return 0; 2093} 2094#define setup_guest_base_seg setup_guest_base_seg 2095#elif defined(__x86_64__) && \ 2096 (defined (__FreeBSD__) || defined (__FreeBSD_kernel__)) 2097# include <machine/sysarch.h> 2098static inline int setup_guest_base_seg(void) 2099{ 2100 if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) { 2101 return P_GS; 2102 } 2103 return 0; 2104} 2105#define setup_guest_base_seg setup_guest_base_seg 2106#endif 2107#else 2108# define x86_guest_base (*(HostAddress *)({ qemu_build_not_reached(); NULL; })) 2109#endif /* CONFIG_USER_ONLY */ 2110#ifndef setup_guest_base_seg 2111# define setup_guest_base_seg() 0 2112#endif 2113 2114#define MIN_TLB_MASK_TABLE_OFS INT_MIN 2115 2116/* 2117 * For softmmu, perform the TLB load and compare. 2118 * For useronly, perform any required alignment tests. 2119 * In both cases, return a TCGLabelQemuLdst structure if the slow path 2120 * is required and fill in @h with the host address for the fast path. 2121 */ 2122static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h, 2123 TCGReg addr, MemOpIdx oi, bool is_ld) 2124{ 2125 TCGLabelQemuLdst *ldst = NULL; 2126 MemOp opc = get_memop(oi); 2127 MemOp s_bits = opc & MO_SIZE; 2128 unsigned a_mask; 2129 2130 if (tcg_use_softmmu) { 2131 h->index = TCG_REG_L0; 2132 h->ofs = 0; 2133 h->seg = 0; 2134 } else { 2135 *h = x86_guest_base; 2136 } 2137 h->base = addr; 2138 h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128); 2139 a_mask = (1 << h->aa.align) - 1; 2140 2141 if (tcg_use_softmmu) { 2142 int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read) 2143 : offsetof(CPUTLBEntry, addr_write); 2144 TCGType ttype = TCG_TYPE_I32; 2145 TCGType tlbtype = TCG_TYPE_I32; 2146 int trexw = 0, hrexw = 0, tlbrexw = 0; 2147 unsigned mem_index = get_mmuidx(oi); 2148 unsigned s_mask = (1 << s_bits) - 1; 2149 int fast_ofs = tlb_mask_table_ofs(s, mem_index); 2150 int tlb_mask; 2151 2152 ldst = new_ldst_label(s); 2153 ldst->is_ld = is_ld; 2154 ldst->oi = oi; 2155 ldst->addr_reg = addr; 2156 2157 if (TCG_TARGET_REG_BITS == 64) { 2158 ttype = s->addr_type; 2159 trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW); 2160 if (TCG_TYPE_PTR == TCG_TYPE_I64) { 2161 hrexw = P_REXW; 2162 if (s->page_bits + s->tlb_dyn_max_bits > 32) { 2163 tlbtype = TCG_TYPE_I64; 2164 tlbrexw = P_REXW; 2165 } 2166 } 2167 } 2168 2169 tcg_out_mov(s, tlbtype, TCG_REG_L0, addr); 2170 tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0, 2171 s->page_bits - CPU_TLB_ENTRY_BITS); 2172 2173 tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0, 2174 fast_ofs + offsetof(CPUTLBDescFast, mask)); 2175 2176 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0, 2177 fast_ofs + offsetof(CPUTLBDescFast, table)); 2178 2179 /* 2180 * If the required alignment is at least as large as the access, 2181 * simply copy the address and mask. For lesser alignments, 2182 * check that we don't cross pages for the complete access. 2183 */ 2184 if (a_mask >= s_mask) { 2185 tcg_out_mov(s, ttype, TCG_REG_L1, addr); 2186 } else { 2187 tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1, 2188 addr, s_mask - a_mask); 2189 } 2190 tlb_mask = s->page_mask | a_mask; 2191 tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0); 2192 2193 /* cmp 0(TCG_REG_L0), TCG_REG_L1 */ 2194 tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, 2195 TCG_REG_L1, TCG_REG_L0, cmp_ofs); 2196 2197 /* jne slow_path */ 2198 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); 2199 ldst->label_ptr[0] = s->code_ptr; 2200 s->code_ptr += 4; 2201 2202 /* TLB Hit. */ 2203 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0, 2204 offsetof(CPUTLBEntry, addend)); 2205 } else if (a_mask) { 2206 int jcc; 2207 2208 ldst = new_ldst_label(s); 2209 ldst->is_ld = is_ld; 2210 ldst->oi = oi; 2211 ldst->addr_reg = addr; 2212 2213 /* jne slow_path */ 2214 jcc = tcg_out_cmp(s, TCG_COND_TSTNE, addr, a_mask, true, false); 2215 tcg_out_opc(s, OPC_JCC_long + jcc, 0, 0, 0); 2216 ldst->label_ptr[0] = s->code_ptr; 2217 s->code_ptr += 4; 2218 } 2219 2220 return ldst; 2221} 2222 2223static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, 2224 HostAddress h, TCGType type, MemOp memop) 2225{ 2226 bool use_movbe = false; 2227 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW); 2228 int movop = OPC_MOVL_GvEv; 2229 2230 /* Do big-endian loads with movbe. */ 2231 if (memop & MO_BSWAP) { 2232 tcg_debug_assert(have_movbe); 2233 use_movbe = true; 2234 movop = OPC_MOVBE_GyMy; 2235 } 2236 2237 switch (memop & MO_SSIZE) { 2238 case MO_UB: 2239 tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo, 2240 h.base, h.index, 0, h.ofs); 2241 break; 2242 case MO_SB: 2243 tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo, 2244 h.base, h.index, 0, h.ofs); 2245 break; 2246 case MO_UW: 2247 if (use_movbe) { 2248 /* There is no extending movbe; only low 16-bits are modified. */ 2249 if (datalo != h.base && datalo != h.index) { 2250 /* XOR breaks dependency chains. */ 2251 tgen_arithr(s, ARITH_XOR, datalo, datalo); 2252 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2253 datalo, h.base, h.index, 0, h.ofs); 2254 } else { 2255 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2256 datalo, h.base, h.index, 0, h.ofs); 2257 tcg_out_ext16u(s, datalo, datalo); 2258 } 2259 } else { 2260 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo, 2261 h.base, h.index, 0, h.ofs); 2262 } 2263 break; 2264 case MO_SW: 2265 if (use_movbe) { 2266 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2267 datalo, h.base, h.index, 0, h.ofs); 2268 tcg_out_ext16s(s, type, datalo, datalo); 2269 } else { 2270 tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg, 2271 datalo, h.base, h.index, 0, h.ofs); 2272 } 2273 break; 2274 case MO_UL: 2275 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2276 h.base, h.index, 0, h.ofs); 2277 break; 2278#if TCG_TARGET_REG_BITS == 64 2279 case MO_SL: 2280 if (use_movbe) { 2281 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo, 2282 h.base, h.index, 0, h.ofs); 2283 tcg_out_ext32s(s, datalo, datalo); 2284 } else { 2285 tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo, 2286 h.base, h.index, 0, h.ofs); 2287 } 2288 break; 2289#endif 2290 case MO_UQ: 2291 if (TCG_TARGET_REG_BITS == 64) { 2292 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2293 h.base, h.index, 0, h.ofs); 2294 break; 2295 } 2296 if (use_movbe) { 2297 TCGReg t = datalo; 2298 datalo = datahi; 2299 datahi = t; 2300 } 2301 if (h.base == datalo || h.index == datalo) { 2302 tcg_out_modrm_sib_offset(s, OPC_LEA, datahi, 2303 h.base, h.index, 0, h.ofs); 2304 tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0); 2305 tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4); 2306 } else { 2307 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2308 h.base, h.index, 0, h.ofs); 2309 tcg_out_modrm_sib_offset(s, movop + h.seg, datahi, 2310 h.base, h.index, 0, h.ofs + 4); 2311 } 2312 break; 2313 2314 case MO_128: 2315 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2316 2317 /* 2318 * Without 16-byte atomicity, use integer regs. 2319 * That is where we want the data, and it allows bswaps. 2320 */ 2321 if (h.aa.atom < MO_128) { 2322 if (use_movbe) { 2323 TCGReg t = datalo; 2324 datalo = datahi; 2325 datahi = t; 2326 } 2327 if (h.base == datalo || h.index == datalo) { 2328 tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi, 2329 h.base, h.index, 0, h.ofs); 2330 tcg_out_modrm_offset(s, movop + P_REXW + h.seg, 2331 datalo, datahi, 0); 2332 tcg_out_modrm_offset(s, movop + P_REXW + h.seg, 2333 datahi, datahi, 8); 2334 } else { 2335 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2336 h.base, h.index, 0, h.ofs); 2337 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi, 2338 h.base, h.index, 0, h.ofs + 8); 2339 } 2340 break; 2341 } 2342 2343 /* 2344 * With 16-byte atomicity, a vector load is required. 2345 * If we already have 16-byte alignment, then VMOVDQA always works. 2346 * Else if VMOVDQU has atomicity with dynamic alignment, use that. 2347 * Else use we require a runtime test for alignment for VMOVDQA; 2348 * use VMOVDQU on the unaligned nonatomic path for simplicity. 2349 */ 2350 if (h.aa.align >= MO_128) { 2351 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg, 2352 TCG_TMP_VEC, 0, 2353 h.base, h.index, 0, h.ofs); 2354 } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) { 2355 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg, 2356 TCG_TMP_VEC, 0, 2357 h.base, h.index, 0, h.ofs); 2358 } else { 2359 TCGLabel *l1 = gen_new_label(); 2360 TCGLabel *l2 = gen_new_label(); 2361 int jcc; 2362 2363 jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false); 2364 tcg_out_jxx(s, jcc, l1, true); 2365 2366 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg, 2367 TCG_TMP_VEC, 0, 2368 h.base, h.index, 0, h.ofs); 2369 tcg_out_jxx(s, JCC_JMP, l2, true); 2370 2371 tcg_out_label(s, l1); 2372 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg, 2373 TCG_TMP_VEC, 0, 2374 h.base, h.index, 0, h.ofs); 2375 tcg_out_label(s, l2); 2376 } 2377 tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC); 2378 break; 2379 2380 default: 2381 g_assert_not_reached(); 2382 } 2383} 2384 2385static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi, 2386 TCGReg addr, MemOpIdx oi, TCGType data_type) 2387{ 2388 TCGLabelQemuLdst *ldst; 2389 HostAddress h; 2390 2391 ldst = prepare_host_addr(s, &h, addr, oi, true); 2392 tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi)); 2393 2394 if (ldst) { 2395 ldst->type = data_type; 2396 ldst->datalo_reg = datalo; 2397 ldst->datahi_reg = datahi; 2398 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 2399 } 2400} 2401 2402static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, 2403 HostAddress h, MemOp memop) 2404{ 2405 bool use_movbe = false; 2406 int movop = OPC_MOVL_EvGv; 2407 2408 /* 2409 * Do big-endian stores with movbe or system-mode. 2410 * User-only without movbe will have its swapping done generically. 2411 */ 2412 if (memop & MO_BSWAP) { 2413 tcg_debug_assert(have_movbe); 2414 use_movbe = true; 2415 movop = OPC_MOVBE_MyGy; 2416 } 2417 2418 switch (memop & MO_SIZE) { 2419 case MO_8: 2420 /* This is handled with constraints on INDEX_op_qemu_st8_i32. */ 2421 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4); 2422 tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg, 2423 datalo, h.base, h.index, 0, h.ofs); 2424 break; 2425 case MO_16: 2426 tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo, 2427 h.base, h.index, 0, h.ofs); 2428 break; 2429 case MO_32: 2430 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2431 h.base, h.index, 0, h.ofs); 2432 break; 2433 case MO_64: 2434 if (TCG_TARGET_REG_BITS == 64) { 2435 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2436 h.base, h.index, 0, h.ofs); 2437 } else { 2438 if (use_movbe) { 2439 TCGReg t = datalo; 2440 datalo = datahi; 2441 datahi = t; 2442 } 2443 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2444 h.base, h.index, 0, h.ofs); 2445 tcg_out_modrm_sib_offset(s, movop + h.seg, datahi, 2446 h.base, h.index, 0, h.ofs + 4); 2447 } 2448 break; 2449 2450 case MO_128: 2451 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2452 2453 /* 2454 * Without 16-byte atomicity, use integer regs. 2455 * That is where we have the data, and it allows bswaps. 2456 */ 2457 if (h.aa.atom < MO_128) { 2458 if (use_movbe) { 2459 TCGReg t = datalo; 2460 datalo = datahi; 2461 datahi = t; 2462 } 2463 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2464 h.base, h.index, 0, h.ofs); 2465 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi, 2466 h.base, h.index, 0, h.ofs + 8); 2467 break; 2468 } 2469 2470 /* 2471 * With 16-byte atomicity, a vector store is required. 2472 * If we already have 16-byte alignment, then VMOVDQA always works. 2473 * Else if VMOVDQU has atomicity with dynamic alignment, use that. 2474 * Else use we require a runtime test for alignment for VMOVDQA; 2475 * use VMOVDQU on the unaligned nonatomic path for simplicity. 2476 */ 2477 tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi); 2478 if (h.aa.align >= MO_128) { 2479 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg, 2480 TCG_TMP_VEC, 0, 2481 h.base, h.index, 0, h.ofs); 2482 } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) { 2483 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg, 2484 TCG_TMP_VEC, 0, 2485 h.base, h.index, 0, h.ofs); 2486 } else { 2487 TCGLabel *l1 = gen_new_label(); 2488 TCGLabel *l2 = gen_new_label(); 2489 int jcc; 2490 2491 jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false); 2492 tcg_out_jxx(s, jcc, l1, true); 2493 2494 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg, 2495 TCG_TMP_VEC, 0, 2496 h.base, h.index, 0, h.ofs); 2497 tcg_out_jxx(s, JCC_JMP, l2, true); 2498 2499 tcg_out_label(s, l1); 2500 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg, 2501 TCG_TMP_VEC, 0, 2502 h.base, h.index, 0, h.ofs); 2503 tcg_out_label(s, l2); 2504 } 2505 break; 2506 2507 default: 2508 g_assert_not_reached(); 2509 } 2510} 2511 2512static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi, 2513 TCGReg addr, MemOpIdx oi, TCGType data_type) 2514{ 2515 TCGLabelQemuLdst *ldst; 2516 HostAddress h; 2517 2518 ldst = prepare_host_addr(s, &h, addr, oi, false); 2519 tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi)); 2520 2521 if (ldst) { 2522 ldst->type = data_type; 2523 ldst->datalo_reg = datalo; 2524 ldst->datahi_reg = datahi; 2525 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 2526 } 2527} 2528 2529static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0) 2530{ 2531 /* Reuse the zeroing that exists for goto_ptr. */ 2532 if (a0 == 0) { 2533 tcg_out_jmp(s, tcg_code_gen_epilogue); 2534 } else { 2535 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0); 2536 tcg_out_jmp(s, tb_ret_addr); 2537 } 2538} 2539 2540static void tcg_out_goto_tb(TCGContext *s, int which) 2541{ 2542 /* 2543 * Jump displacement must be aligned for atomic patching; 2544 * see if we need to add extra nops before jump 2545 */ 2546 int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr; 2547 if (gap != 1) { 2548 tcg_out_nopn(s, gap - 1); 2549 } 2550 tcg_out8(s, OPC_JMP_long); /* jmp im */ 2551 set_jmp_insn_offset(s, which); 2552 tcg_out32(s, 0); 2553 set_jmp_reset_offset(s, which); 2554} 2555 2556void tb_target_set_jmp_target(const TranslationBlock *tb, int n, 2557 uintptr_t jmp_rx, uintptr_t jmp_rw) 2558{ 2559 /* patch the branch destination */ 2560 uintptr_t addr = tb->jmp_target_addr[n]; 2561 qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4)); 2562 /* no need to flush icache explicitly */ 2563} 2564 2565 2566static void tgen_add(TCGContext *s, TCGType type, 2567 TCGReg a0, TCGReg a1, TCGReg a2) 2568{ 2569 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2570 2571 if (a0 == a1) { 2572 tgen_arithr(s, ARITH_ADD + rexw, a0, a2); 2573 } else if (a0 == a2) { 2574 tgen_arithr(s, ARITH_ADD + rexw, a0, a1); 2575 } else { 2576 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, 0); 2577 } 2578} 2579 2580static void tgen_addi(TCGContext *s, TCGType type, 2581 TCGReg a0, TCGReg a1, tcg_target_long a2) 2582{ 2583 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2584 2585 if (a0 == a1) { 2586 tgen_arithi(s, ARITH_ADD + rexw, a0, a2, false); 2587 } else { 2588 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, -1, 0, a2); 2589 } 2590} 2591 2592static const TCGOutOpBinary outop_add = { 2593 .base.static_constraint = C_O1_I2(r, r, re), 2594 .out_rrr = tgen_add, 2595 .out_rri = tgen_addi, 2596}; 2597 2598static void tgen_and(TCGContext *s, TCGType type, 2599 TCGReg a0, TCGReg a1, TCGReg a2) 2600{ 2601 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2602 tgen_arithr(s, ARITH_AND + rexw, a0, a2); 2603} 2604 2605static void tgen_andi(TCGContext *s, TCGType type, 2606 TCGReg a0, TCGReg a1, tcg_target_long a2) 2607{ 2608 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2609 tgen_arithi(s, ARITH_AND + rexw, a0, a2, false); 2610} 2611 2612static const TCGOutOpBinary outop_and = { 2613 .base.static_constraint = C_O1_I2(r, 0, reZ), 2614 .out_rrr = tgen_and, 2615 .out_rri = tgen_andi, 2616}; 2617 2618static void tgen_andc(TCGContext *s, TCGType type, 2619 TCGReg a0, TCGReg a1, TCGReg a2) 2620{ 2621 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2622 tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1); 2623} 2624 2625static TCGConstraintSetIndex cset_andc(TCGType type, unsigned flags) 2626{ 2627 return have_bmi1 ? C_O1_I2(r, r, r) : C_NotImplemented; 2628} 2629 2630static const TCGOutOpBinary outop_andc = { 2631 .base.static_constraint = C_Dynamic, 2632 .base.dynamic_constraint = cset_andc, 2633 .out_rrr = tgen_andc, 2634}; 2635 2636static const TCGOutOpBinary outop_eqv = { 2637 .base.static_constraint = C_NotImplemented, 2638}; 2639 2640static const TCGOutOpBinary outop_nand = { 2641 .base.static_constraint = C_NotImplemented, 2642}; 2643 2644static void tgen_or(TCGContext *s, TCGType type, 2645 TCGReg a0, TCGReg a1, TCGReg a2) 2646{ 2647 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2648 tgen_arithr(s, ARITH_OR + rexw, a0, a2); 2649} 2650 2651static void tgen_ori(TCGContext *s, TCGType type, 2652 TCGReg a0, TCGReg a1, tcg_target_long a2) 2653{ 2654 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2655 tgen_arithi(s, ARITH_OR + rexw, a0, a2, false); 2656} 2657 2658static const TCGOutOpBinary outop_or = { 2659 .base.static_constraint = C_O1_I2(r, 0, re), 2660 .out_rrr = tgen_or, 2661 .out_rri = tgen_ori, 2662}; 2663 2664static const TCGOutOpBinary outop_orc = { 2665 .base.static_constraint = C_NotImplemented, 2666}; 2667 2668static void tgen_xor(TCGContext *s, TCGType type, 2669 TCGReg a0, TCGReg a1, TCGReg a2) 2670{ 2671 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2672 tgen_arithr(s, ARITH_XOR + rexw, a0, a2); 2673} 2674 2675static void tgen_xori(TCGContext *s, TCGType type, 2676 TCGReg a0, TCGReg a1, tcg_target_long a2) 2677{ 2678 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2679 tgen_arithi(s, ARITH_XOR + rexw, a0, a2, false); 2680} 2681 2682static const TCGOutOpBinary outop_xor = { 2683 .base.static_constraint = C_O1_I2(r, 0, re), 2684 .out_rrr = tgen_xor, 2685 .out_rri = tgen_xori, 2686}; 2687 2688 2689static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType type, 2690 const TCGArg args[TCG_MAX_OP_ARGS], 2691 const int const_args[TCG_MAX_OP_ARGS]) 2692{ 2693 TCGArg a0, a1, a2; 2694 int c, const_a2, vexop, rexw; 2695 2696#if TCG_TARGET_REG_BITS == 64 2697# define OP_32_64(x) \ 2698 case glue(glue(INDEX_op_, x), _i64): \ 2699 case glue(glue(INDEX_op_, x), _i32) 2700#else 2701# define OP_32_64(x) \ 2702 case glue(glue(INDEX_op_, x), _i32) 2703#endif 2704 2705 /* Hoist the loads of the most common arguments. */ 2706 a0 = args[0]; 2707 a1 = args[1]; 2708 a2 = args[2]; 2709 const_a2 = const_args[2]; 2710 rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2711 2712 switch (opc) { 2713 case INDEX_op_goto_ptr: 2714 /* jmp to the given host address (could be epilogue) */ 2715 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0); 2716 break; 2717 case INDEX_op_br: 2718 tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0); 2719 break; 2720 OP_32_64(ld8u): 2721 /* Note that we can ignore REXW for the zero-extend to 64-bit. */ 2722 tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2); 2723 break; 2724 OP_32_64(ld8s): 2725 tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2); 2726 break; 2727 OP_32_64(ld16u): 2728 /* Note that we can ignore REXW for the zero-extend to 64-bit. */ 2729 tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2); 2730 break; 2731 OP_32_64(ld16s): 2732 tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2); 2733 break; 2734#if TCG_TARGET_REG_BITS == 64 2735 case INDEX_op_ld32u_i64: 2736#endif 2737 case INDEX_op_ld_i32: 2738 tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2); 2739 break; 2740 2741 OP_32_64(st8): 2742 if (const_args[0]) { 2743 tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2); 2744 tcg_out8(s, a0); 2745 } else { 2746 tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2); 2747 } 2748 break; 2749 OP_32_64(st16): 2750 if (const_args[0]) { 2751 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2); 2752 tcg_out16(s, a0); 2753 } else { 2754 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2); 2755 } 2756 break; 2757#if TCG_TARGET_REG_BITS == 64 2758 case INDEX_op_st32_i64: 2759#endif 2760 case INDEX_op_st_i32: 2761 if (const_args[0]) { 2762 tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2); 2763 tcg_out32(s, a0); 2764 } else { 2765 tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2); 2766 } 2767 break; 2768 2769 OP_32_64(sub): 2770 c = ARITH_SUB; 2771 if (const_a2) { 2772 tgen_arithi(s, c + rexw, a0, a2, 0); 2773 } else { 2774 tgen_arithr(s, c + rexw, a0, a2); 2775 } 2776 break; 2777 2778 OP_32_64(mul): 2779 if (const_a2) { 2780 int32_t val; 2781 val = a2; 2782 if (val == (int8_t)val) { 2783 tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0); 2784 tcg_out8(s, val); 2785 } else { 2786 tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0); 2787 tcg_out32(s, val); 2788 } 2789 } else { 2790 tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2); 2791 } 2792 break; 2793 2794 OP_32_64(div2): 2795 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]); 2796 break; 2797 OP_32_64(divu2): 2798 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]); 2799 break; 2800 2801 OP_32_64(shl): 2802 /* For small constant 3-operand shift, use LEA. */ 2803 if (const_a2 && a0 != a1 && (a2 - 1) < 3) { 2804 if (a2 - 1 == 0) { 2805 /* shl $1,a1,a0 -> lea (a1,a1),a0 */ 2806 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0); 2807 } else { 2808 /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */ 2809 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0); 2810 } 2811 break; 2812 } 2813 c = SHIFT_SHL; 2814 vexop = OPC_SHLX; 2815 goto gen_shift_maybe_vex; 2816 OP_32_64(shr): 2817 c = SHIFT_SHR; 2818 vexop = OPC_SHRX; 2819 goto gen_shift_maybe_vex; 2820 OP_32_64(sar): 2821 c = SHIFT_SAR; 2822 vexop = OPC_SARX; 2823 goto gen_shift_maybe_vex; 2824 OP_32_64(rotl): 2825 c = SHIFT_ROL; 2826 goto gen_shift; 2827 OP_32_64(rotr): 2828 c = SHIFT_ROR; 2829 goto gen_shift; 2830 gen_shift_maybe_vex: 2831 if (have_bmi2) { 2832 if (!const_a2) { 2833 tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1); 2834 break; 2835 } 2836 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1); 2837 } 2838 /* FALLTHRU */ 2839 gen_shift: 2840 if (const_a2) { 2841 tcg_out_shifti(s, c + rexw, a0, a2); 2842 } else { 2843 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0); 2844 } 2845 break; 2846 2847 OP_32_64(ctz): 2848 tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]); 2849 break; 2850 OP_32_64(clz): 2851 tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]); 2852 break; 2853 OP_32_64(ctpop): 2854 tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1); 2855 break; 2856 2857 OP_32_64(brcond): 2858 tcg_out_brcond(s, rexw, a2, a0, a1, const_args[1], 2859 arg_label(args[3]), 0); 2860 break; 2861 OP_32_64(setcond): 2862 tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, false); 2863 break; 2864 OP_32_64(negsetcond): 2865 tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, true); 2866 break; 2867 OP_32_64(movcond): 2868 tcg_out_movcond(s, rexw, args[5], a0, a1, a2, const_a2, args[3]); 2869 break; 2870 2871 OP_32_64(bswap16): 2872 if (a2 & TCG_BSWAP_OS) { 2873 /* Output must be sign-extended. */ 2874 if (rexw) { 2875 tcg_out_bswap64(s, a0); 2876 tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48); 2877 } else { 2878 tcg_out_bswap32(s, a0); 2879 tcg_out_shifti(s, SHIFT_SAR, a0, 16); 2880 } 2881 } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { 2882 /* Output must be zero-extended, but input isn't. */ 2883 tcg_out_bswap32(s, a0); 2884 tcg_out_shifti(s, SHIFT_SHR, a0, 16); 2885 } else { 2886 tcg_out_rolw_8(s, a0); 2887 } 2888 break; 2889 OP_32_64(bswap32): 2890 tcg_out_bswap32(s, a0); 2891 if (rexw && (a2 & TCG_BSWAP_OS)) { 2892 tcg_out_ext32s(s, a0, a0); 2893 } 2894 break; 2895 2896 OP_32_64(neg): 2897 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0); 2898 break; 2899 OP_32_64(not): 2900 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0); 2901 break; 2902 2903 case INDEX_op_qemu_ld_i32: 2904 tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I32); 2905 break; 2906 case INDEX_op_qemu_ld_i64: 2907 if (TCG_TARGET_REG_BITS == 64) { 2908 tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I64); 2909 } else { 2910 tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I64); 2911 } 2912 break; 2913 case INDEX_op_qemu_ld_i128: 2914 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2915 tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I128); 2916 break; 2917 2918 case INDEX_op_qemu_st_i32: 2919 case INDEX_op_qemu_st8_i32: 2920 tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I32); 2921 break; 2922 case INDEX_op_qemu_st_i64: 2923 if (TCG_TARGET_REG_BITS == 64) { 2924 tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I64); 2925 } else { 2926 tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I64); 2927 } 2928 break; 2929 case INDEX_op_qemu_st_i128: 2930 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2931 tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I128); 2932 break; 2933 2934 OP_32_64(mulu2): 2935 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]); 2936 break; 2937 OP_32_64(muls2): 2938 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]); 2939 break; 2940 OP_32_64(add2): 2941 if (const_args[4]) { 2942 tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1); 2943 } else { 2944 tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]); 2945 } 2946 if (const_args[5]) { 2947 tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1); 2948 } else { 2949 tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]); 2950 } 2951 break; 2952 OP_32_64(sub2): 2953 if (const_args[4]) { 2954 tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1); 2955 } else { 2956 tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]); 2957 } 2958 if (const_args[5]) { 2959 tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1); 2960 } else { 2961 tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]); 2962 } 2963 break; 2964 2965#if TCG_TARGET_REG_BITS == 32 2966 case INDEX_op_brcond2_i32: 2967 tcg_out_brcond2(s, args, const_args, 0); 2968 break; 2969 case INDEX_op_setcond2_i32: 2970 tcg_out_setcond2(s, args, const_args); 2971 break; 2972#else /* TCG_TARGET_REG_BITS == 64 */ 2973 case INDEX_op_ld32s_i64: 2974 tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2); 2975 break; 2976 case INDEX_op_ld_i64: 2977 tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2); 2978 break; 2979 case INDEX_op_st_i64: 2980 if (const_args[0]) { 2981 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2); 2982 tcg_out32(s, a0); 2983 } else { 2984 tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2); 2985 } 2986 break; 2987 2988 case INDEX_op_bswap64_i64: 2989 tcg_out_bswap64(s, a0); 2990 break; 2991 case INDEX_op_extrh_i64_i32: 2992 tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32); 2993 break; 2994#endif 2995 2996 OP_32_64(deposit): 2997 if (args[3] == 0 && args[4] == 8) { 2998 /* load bits 0..7 */ 2999 if (const_a2) { 3000 tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0), 3001 0, a0, 0); 3002 tcg_out8(s, a2); 3003 } else { 3004 tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0); 3005 } 3006 } else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) { 3007 /* load bits 8..15 */ 3008 if (const_a2) { 3009 tcg_out8(s, OPC_MOVB_Ib + a0 + 4); 3010 tcg_out8(s, a2); 3011 } else { 3012 tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4); 3013 } 3014 } else if (args[3] == 0 && args[4] == 16) { 3015 /* load bits 0..15 */ 3016 if (const_a2) { 3017 tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0), 3018 0, a0, 0); 3019 tcg_out16(s, a2); 3020 } else { 3021 tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0); 3022 } 3023 } else { 3024 g_assert_not_reached(); 3025 } 3026 break; 3027 3028 case INDEX_op_extract_i64: 3029 if (a2 + args[3] == 32) { 3030 if (a2 == 0) { 3031 tcg_out_ext32u(s, a0, a1); 3032 break; 3033 } 3034 /* This is a 32-bit zero-extending right shift. */ 3035 tcg_out_mov(s, TCG_TYPE_I32, a0, a1); 3036 tcg_out_shifti(s, SHIFT_SHR, a0, a2); 3037 break; 3038 } 3039 /* FALLTHRU */ 3040 case INDEX_op_extract_i32: 3041 if (a2 == 0 && args[3] == 8) { 3042 tcg_out_ext8u(s, a0, a1); 3043 } else if (a2 == 0 && args[3] == 16) { 3044 tcg_out_ext16u(s, a0, a1); 3045 } else if (a2 == 8 && args[3] == 8) { 3046 /* 3047 * On the off-chance that we can use the high-byte registers. 3048 * Otherwise we emit the same ext16 + shift pattern that we 3049 * would have gotten from the normal tcg-op.c expansion. 3050 */ 3051 if (a1 < 4 && a0 < 8) { 3052 tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4); 3053 } else { 3054 tcg_out_ext16u(s, a0, a1); 3055 tcg_out_shifti(s, SHIFT_SHR, a0, 8); 3056 } 3057 } else { 3058 g_assert_not_reached(); 3059 } 3060 break; 3061 3062 case INDEX_op_sextract_i64: 3063 if (a2 == 0 && args[3] == 8) { 3064 tcg_out_ext8s(s, TCG_TYPE_I64, a0, a1); 3065 } else if (a2 == 0 && args[3] == 16) { 3066 tcg_out_ext16s(s, TCG_TYPE_I64, a0, a1); 3067 } else if (a2 == 0 && args[3] == 32) { 3068 tcg_out_ext32s(s, a0, a1); 3069 } else { 3070 g_assert_not_reached(); 3071 } 3072 break; 3073 3074 case INDEX_op_sextract_i32: 3075 if (a2 == 0 && args[3] == 8) { 3076 tcg_out_ext8s(s, TCG_TYPE_I32, a0, a1); 3077 } else if (a2 == 0 && args[3] == 16) { 3078 tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1); 3079 } else if (a2 == 8 && args[3] == 8) { 3080 if (a1 < 4 && a0 < 8) { 3081 tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4); 3082 } else { 3083 tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1); 3084 tcg_out_shifti(s, SHIFT_SAR, a0, 8); 3085 } 3086 } else { 3087 g_assert_not_reached(); 3088 } 3089 break; 3090 3091 OP_32_64(extract2): 3092 /* Note that SHRD outputs to the r/m operand. */ 3093 tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0); 3094 tcg_out8(s, args[3]); 3095 break; 3096 3097 case INDEX_op_mb: 3098 tcg_out_mb(s, a0); 3099 break; 3100 case INDEX_op_call: /* Always emitted via tcg_out_call. */ 3101 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ 3102 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ 3103 case INDEX_op_ext_i32_i64: /* Always emitted via tcg_reg_alloc_op. */ 3104 case INDEX_op_extu_i32_i64: 3105 case INDEX_op_extrl_i64_i32: 3106 default: 3107 g_assert_not_reached(); 3108 } 3109 3110#undef OP_32_64 3111} 3112 3113static int const umin_insn[4] = { 3114 OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ 3115}; 3116 3117static int const umax_insn[4] = { 3118 OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ 3119}; 3120 3121static bool tcg_out_cmp_vec_noinv(TCGContext *s, TCGType type, unsigned vece, 3122 TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond) 3123{ 3124 static int const cmpeq_insn[4] = { 3125 OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ 3126 }; 3127 static int const cmpgt_insn[4] = { 3128 OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ 3129 }; 3130 3131 enum { 3132 NEED_INV = 1, 3133 NEED_SWAP = 2, 3134 NEED_UMIN = 4, 3135 NEED_UMAX = 8, 3136 INVALID = 16, 3137 }; 3138 static const uint8_t cond_fixup[16] = { 3139 [0 ... 15] = INVALID, 3140 [TCG_COND_EQ] = 0, 3141 [TCG_COND_GT] = 0, 3142 [TCG_COND_NE] = NEED_INV, 3143 [TCG_COND_LE] = NEED_INV, 3144 [TCG_COND_LT] = NEED_SWAP, 3145 [TCG_COND_GE] = NEED_SWAP | NEED_INV, 3146 [TCG_COND_LEU] = NEED_UMIN, 3147 [TCG_COND_GTU] = NEED_UMIN | NEED_INV, 3148 [TCG_COND_GEU] = NEED_UMAX, 3149 [TCG_COND_LTU] = NEED_UMAX | NEED_INV, 3150 }; 3151 int fixup = cond_fixup[cond]; 3152 3153 assert(!(fixup & INVALID)); 3154 3155 if (fixup & NEED_INV) { 3156 cond = tcg_invert_cond(cond); 3157 } 3158 3159 if (fixup & NEED_SWAP) { 3160 TCGReg swap = v1; 3161 v1 = v2; 3162 v2 = swap; 3163 cond = tcg_swap_cond(cond); 3164 } 3165 3166 if (fixup & (NEED_UMIN | NEED_UMAX)) { 3167 int op = (fixup & NEED_UMIN ? umin_insn[vece] : umax_insn[vece]); 3168 3169 /* avx2 does not have 64-bit min/max; adjusted during expand. */ 3170 assert(vece <= MO_32); 3171 3172 tcg_out_vex_modrm_type(s, op, TCG_TMP_VEC, v1, v2, type); 3173 v2 = TCG_TMP_VEC; 3174 cond = TCG_COND_EQ; 3175 } 3176 3177 switch (cond) { 3178 case TCG_COND_EQ: 3179 tcg_out_vex_modrm_type(s, cmpeq_insn[vece], v0, v1, v2, type); 3180 break; 3181 case TCG_COND_GT: 3182 tcg_out_vex_modrm_type(s, cmpgt_insn[vece], v0, v1, v2, type); 3183 break; 3184 default: 3185 g_assert_not_reached(); 3186 } 3187 return fixup & NEED_INV; 3188} 3189 3190static void tcg_out_cmp_vec_k1(TCGContext *s, TCGType type, unsigned vece, 3191 TCGReg v1, TCGReg v2, TCGCond cond) 3192{ 3193 static const int cmpm_insn[2][4] = { 3194 { OPC_VPCMPB, OPC_VPCMPW, OPC_VPCMPD, OPC_VPCMPQ }, 3195 { OPC_VPCMPUB, OPC_VPCMPUW, OPC_VPCMPUD, OPC_VPCMPUQ } 3196 }; 3197 static const int testm_insn[4] = { 3198 OPC_VPTESTMB, OPC_VPTESTMW, OPC_VPTESTMD, OPC_VPTESTMQ 3199 }; 3200 static const int testnm_insn[4] = { 3201 OPC_VPTESTNMB, OPC_VPTESTNMW, OPC_VPTESTNMD, OPC_VPTESTNMQ 3202 }; 3203 3204 static const int cond_ext[16] = { 3205 [TCG_COND_EQ] = 0, 3206 [TCG_COND_NE] = 4, 3207 [TCG_COND_LT] = 1, 3208 [TCG_COND_LTU] = 1, 3209 [TCG_COND_LE] = 2, 3210 [TCG_COND_LEU] = 2, 3211 [TCG_COND_NEVER] = 3, 3212 [TCG_COND_GE] = 5, 3213 [TCG_COND_GEU] = 5, 3214 [TCG_COND_GT] = 6, 3215 [TCG_COND_GTU] = 6, 3216 [TCG_COND_ALWAYS] = 7, 3217 }; 3218 3219 switch (cond) { 3220 case TCG_COND_TSTNE: 3221 tcg_out_vex_modrm_type(s, testm_insn[vece], /* k1 */ 1, v1, v2, type); 3222 break; 3223 case TCG_COND_TSTEQ: 3224 tcg_out_vex_modrm_type(s, testnm_insn[vece], /* k1 */ 1, v1, v2, type); 3225 break; 3226 default: 3227 tcg_out_vex_modrm_type(s, cmpm_insn[is_unsigned_cond(cond)][vece], 3228 /* k1 */ 1, v1, v2, type); 3229 tcg_out8(s, cond_ext[cond]); 3230 break; 3231 } 3232} 3233 3234static void tcg_out_k1_to_vec(TCGContext *s, TCGType type, 3235 unsigned vece, TCGReg dest) 3236{ 3237 static const int movm_insn[] = { 3238 OPC_VPMOVM2B, OPC_VPMOVM2W, OPC_VPMOVM2D, OPC_VPMOVM2Q 3239 }; 3240 tcg_out_vex_modrm_type(s, movm_insn[vece], dest, 0, /* k1 */ 1, type); 3241} 3242 3243static void tcg_out_cmp_vec(TCGContext *s, TCGType type, unsigned vece, 3244 TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond) 3245{ 3246 /* 3247 * With avx512, we have a complete set of comparisons into mask. 3248 * Unless there's a single insn expansion for the comparision, 3249 * expand via a mask in k1. 3250 */ 3251 if ((vece <= MO_16 ? have_avx512bw : have_avx512dq) 3252 && cond != TCG_COND_EQ 3253 && cond != TCG_COND_LT 3254 && cond != TCG_COND_GT) { 3255 tcg_out_cmp_vec_k1(s, type, vece, v1, v2, cond); 3256 tcg_out_k1_to_vec(s, type, vece, v0); 3257 return; 3258 } 3259 3260 if (tcg_out_cmp_vec_noinv(s, type, vece, v0, v1, v2, cond)) { 3261 tcg_out_dupi_vec(s, type, vece, TCG_TMP_VEC, -1); 3262 tcg_out_vex_modrm_type(s, OPC_PXOR, v0, v0, TCG_TMP_VEC, type); 3263 } 3264} 3265 3266static void tcg_out_cmpsel_vec_k1(TCGContext *s, TCGType type, unsigned vece, 3267 TCGReg v0, TCGReg c1, TCGReg c2, 3268 TCGReg v3, TCGReg v4, TCGCond cond) 3269{ 3270 static const int vpblendm_insn[] = { 3271 OPC_VPBLENDMB, OPC_VPBLENDMW, OPC_VPBLENDMD, OPC_VPBLENDMQ 3272 }; 3273 bool z = false; 3274 3275 /* Swap to place constant in V4 to take advantage of zero-masking. */ 3276 if (!v3) { 3277 z = true; 3278 v3 = v4; 3279 cond = tcg_invert_cond(cond); 3280 } 3281 3282 tcg_out_cmp_vec_k1(s, type, vece, c1, c2, cond); 3283 tcg_out_evex_modrm_type(s, vpblendm_insn[vece], v0, v4, v3, 3284 /* k1 */1, z, type); 3285} 3286 3287static void tcg_out_cmpsel_vec(TCGContext *s, TCGType type, unsigned vece, 3288 TCGReg v0, TCGReg c1, TCGReg c2, 3289 TCGReg v3, TCGReg v4, TCGCond cond) 3290{ 3291 bool inv; 3292 3293 if (vece <= MO_16 ? have_avx512bw : have_avx512vl) { 3294 tcg_out_cmpsel_vec_k1(s, type, vece, v0, c1, c2, v3, v4, cond); 3295 return; 3296 } 3297 3298 inv = tcg_out_cmp_vec_noinv(s, type, vece, TCG_TMP_VEC, c1, c2, cond); 3299 3300 /* 3301 * Since XMM0 is 16, the only way we get 0 into V3 3302 * is via the constant zero constraint. 3303 */ 3304 if (!v3) { 3305 if (inv) { 3306 tcg_out_vex_modrm_type(s, OPC_PAND, v0, TCG_TMP_VEC, v4, type); 3307 } else { 3308 tcg_out_vex_modrm_type(s, OPC_PANDN, v0, TCG_TMP_VEC, v4, type); 3309 } 3310 } else { 3311 if (inv) { 3312 TCGReg swap = v3; 3313 v3 = v4; 3314 v4 = swap; 3315 } 3316 tcg_out_vex_modrm_type(s, OPC_VPBLENDVB, v0, v4, v3, type); 3317 tcg_out8(s, (TCG_TMP_VEC - TCG_REG_XMM0) << 4); 3318 } 3319} 3320 3321static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 3322 unsigned vecl, unsigned vece, 3323 const TCGArg args[TCG_MAX_OP_ARGS], 3324 const int const_args[TCG_MAX_OP_ARGS]) 3325{ 3326 static int const add_insn[4] = { 3327 OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ 3328 }; 3329 static int const ssadd_insn[4] = { 3330 OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2 3331 }; 3332 static int const usadd_insn[4] = { 3333 OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2 3334 }; 3335 static int const sub_insn[4] = { 3336 OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ 3337 }; 3338 static int const sssub_insn[4] = { 3339 OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2 3340 }; 3341 static int const ussub_insn[4] = { 3342 OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2 3343 }; 3344 static int const mul_insn[4] = { 3345 OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ 3346 }; 3347 static int const shift_imm_insn[4] = { 3348 OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib 3349 }; 3350 static int const punpckl_insn[4] = { 3351 OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ 3352 }; 3353 static int const punpckh_insn[4] = { 3354 OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ 3355 }; 3356 static int const packss_insn[4] = { 3357 OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2 3358 }; 3359 static int const packus_insn[4] = { 3360 OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2 3361 }; 3362 static int const smin_insn[4] = { 3363 OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ 3364 }; 3365 static int const smax_insn[4] = { 3366 OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ 3367 }; 3368 static int const rotlv_insn[4] = { 3369 OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ 3370 }; 3371 static int const rotrv_insn[4] = { 3372 OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ 3373 }; 3374 static int const shlv_insn[4] = { 3375 OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ 3376 }; 3377 static int const shrv_insn[4] = { 3378 OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ 3379 }; 3380 static int const sarv_insn[4] = { 3381 OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ 3382 }; 3383 static int const shls_insn[4] = { 3384 OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ 3385 }; 3386 static int const shrs_insn[4] = { 3387 OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ 3388 }; 3389 static int const sars_insn[4] = { 3390 OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ 3391 }; 3392 static int const vpshldi_insn[4] = { 3393 OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ 3394 }; 3395 static int const vpshldv_insn[4] = { 3396 OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ 3397 }; 3398 static int const vpshrdv_insn[4] = { 3399 OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ 3400 }; 3401 static int const abs_insn[4] = { 3402 OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ 3403 }; 3404 3405 TCGType type = vecl + TCG_TYPE_V64; 3406 int insn, sub; 3407 TCGArg a0, a1, a2, a3; 3408 3409 a0 = args[0]; 3410 a1 = args[1]; 3411 a2 = args[2]; 3412 3413 switch (opc) { 3414 case INDEX_op_add_vec: 3415 insn = add_insn[vece]; 3416 goto gen_simd; 3417 case INDEX_op_ssadd_vec: 3418 insn = ssadd_insn[vece]; 3419 goto gen_simd; 3420 case INDEX_op_usadd_vec: 3421 insn = usadd_insn[vece]; 3422 goto gen_simd; 3423 case INDEX_op_sub_vec: 3424 insn = sub_insn[vece]; 3425 goto gen_simd; 3426 case INDEX_op_sssub_vec: 3427 insn = sssub_insn[vece]; 3428 goto gen_simd; 3429 case INDEX_op_ussub_vec: 3430 insn = ussub_insn[vece]; 3431 goto gen_simd; 3432 case INDEX_op_mul_vec: 3433 insn = mul_insn[vece]; 3434 goto gen_simd; 3435 case INDEX_op_and_vec: 3436 insn = OPC_PAND; 3437 goto gen_simd; 3438 case INDEX_op_or_vec: 3439 insn = OPC_POR; 3440 goto gen_simd; 3441 case INDEX_op_xor_vec: 3442 insn = OPC_PXOR; 3443 goto gen_simd; 3444 case INDEX_op_smin_vec: 3445 insn = smin_insn[vece]; 3446 goto gen_simd; 3447 case INDEX_op_umin_vec: 3448 insn = umin_insn[vece]; 3449 goto gen_simd; 3450 case INDEX_op_smax_vec: 3451 insn = smax_insn[vece]; 3452 goto gen_simd; 3453 case INDEX_op_umax_vec: 3454 insn = umax_insn[vece]; 3455 goto gen_simd; 3456 case INDEX_op_shlv_vec: 3457 insn = shlv_insn[vece]; 3458 goto gen_simd; 3459 case INDEX_op_shrv_vec: 3460 insn = shrv_insn[vece]; 3461 goto gen_simd; 3462 case INDEX_op_sarv_vec: 3463 insn = sarv_insn[vece]; 3464 goto gen_simd; 3465 case INDEX_op_rotlv_vec: 3466 insn = rotlv_insn[vece]; 3467 goto gen_simd; 3468 case INDEX_op_rotrv_vec: 3469 insn = rotrv_insn[vece]; 3470 goto gen_simd; 3471 case INDEX_op_shls_vec: 3472 insn = shls_insn[vece]; 3473 goto gen_simd; 3474 case INDEX_op_shrs_vec: 3475 insn = shrs_insn[vece]; 3476 goto gen_simd; 3477 case INDEX_op_sars_vec: 3478 insn = sars_insn[vece]; 3479 goto gen_simd; 3480 case INDEX_op_x86_punpckl_vec: 3481 insn = punpckl_insn[vece]; 3482 goto gen_simd; 3483 case INDEX_op_x86_punpckh_vec: 3484 insn = punpckh_insn[vece]; 3485 goto gen_simd; 3486 case INDEX_op_x86_packss_vec: 3487 insn = packss_insn[vece]; 3488 goto gen_simd; 3489 case INDEX_op_x86_packus_vec: 3490 insn = packus_insn[vece]; 3491 goto gen_simd; 3492 case INDEX_op_x86_vpshldv_vec: 3493 insn = vpshldv_insn[vece]; 3494 a1 = a2; 3495 a2 = args[3]; 3496 goto gen_simd; 3497 case INDEX_op_x86_vpshrdv_vec: 3498 insn = vpshrdv_insn[vece]; 3499 a1 = a2; 3500 a2 = args[3]; 3501 goto gen_simd; 3502#if TCG_TARGET_REG_BITS == 32 3503 case INDEX_op_dup2_vec: 3504 /* First merge the two 32-bit inputs to a single 64-bit element. */ 3505 tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2); 3506 /* Then replicate the 64-bit elements across the rest of the vector. */ 3507 if (type != TCG_TYPE_V64) { 3508 tcg_out_dup_vec(s, type, MO_64, a0, a0); 3509 } 3510 break; 3511#endif 3512 case INDEX_op_abs_vec: 3513 insn = abs_insn[vece]; 3514 a2 = a1; 3515 a1 = 0; 3516 goto gen_simd; 3517 gen_simd: 3518 tcg_debug_assert(insn != OPC_UD2); 3519 tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type); 3520 break; 3521 3522 case INDEX_op_cmp_vec: 3523 tcg_out_cmp_vec(s, type, vece, a0, a1, a2, args[3]); 3524 break; 3525 3526 case INDEX_op_cmpsel_vec: 3527 tcg_out_cmpsel_vec(s, type, vece, a0, a1, a2, 3528 args[3], args[4], args[5]); 3529 break; 3530 3531 case INDEX_op_andc_vec: 3532 insn = OPC_PANDN; 3533 tcg_out_vex_modrm_type(s, insn, a0, a2, a1, type); 3534 break; 3535 3536 case INDEX_op_shli_vec: 3537 insn = shift_imm_insn[vece]; 3538 sub = 6; 3539 goto gen_shift; 3540 case INDEX_op_shri_vec: 3541 insn = shift_imm_insn[vece]; 3542 sub = 2; 3543 goto gen_shift; 3544 case INDEX_op_sari_vec: 3545 if (vece == MO_64) { 3546 insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX; 3547 } else { 3548 insn = shift_imm_insn[vece]; 3549 } 3550 sub = 4; 3551 goto gen_shift; 3552 case INDEX_op_rotli_vec: 3553 insn = OPC_PSHIFTD_Ib | P_EVEX; /* VPROL[DQ] */ 3554 if (vece == MO_64) { 3555 insn |= P_VEXW; 3556 } 3557 sub = 1; 3558 goto gen_shift; 3559 gen_shift: 3560 tcg_debug_assert(vece != MO_8); 3561 tcg_out_vex_modrm_type(s, insn, sub, a0, a1, type); 3562 tcg_out8(s, a2); 3563 break; 3564 3565 case INDEX_op_ld_vec: 3566 tcg_out_ld(s, type, a0, a1, a2); 3567 break; 3568 case INDEX_op_st_vec: 3569 tcg_out_st(s, type, a0, a1, a2); 3570 break; 3571 case INDEX_op_dupm_vec: 3572 tcg_out_dupm_vec(s, type, vece, a0, a1, a2); 3573 break; 3574 3575 case INDEX_op_x86_shufps_vec: 3576 insn = OPC_SHUFPS; 3577 sub = args[3]; 3578 goto gen_simd_imm8; 3579 case INDEX_op_x86_blend_vec: 3580 if (vece == MO_16) { 3581 insn = OPC_PBLENDW; 3582 } else if (vece == MO_32) { 3583 insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS); 3584 } else { 3585 g_assert_not_reached(); 3586 } 3587 sub = args[3]; 3588 goto gen_simd_imm8; 3589 case INDEX_op_x86_vperm2i128_vec: 3590 insn = OPC_VPERM2I128; 3591 sub = args[3]; 3592 goto gen_simd_imm8; 3593 case INDEX_op_x86_vpshldi_vec: 3594 insn = vpshldi_insn[vece]; 3595 sub = args[3]; 3596 goto gen_simd_imm8; 3597 3598 case INDEX_op_not_vec: 3599 insn = OPC_VPTERNLOGQ; 3600 a2 = a1; 3601 sub = 0x33; /* !B */ 3602 goto gen_simd_imm8; 3603 case INDEX_op_nor_vec: 3604 insn = OPC_VPTERNLOGQ; 3605 sub = 0x11; /* norCB */ 3606 goto gen_simd_imm8; 3607 case INDEX_op_nand_vec: 3608 insn = OPC_VPTERNLOGQ; 3609 sub = 0x77; /* nandCB */ 3610 goto gen_simd_imm8; 3611 case INDEX_op_eqv_vec: 3612 insn = OPC_VPTERNLOGQ; 3613 sub = 0x99; /* xnorCB */ 3614 goto gen_simd_imm8; 3615 case INDEX_op_orc_vec: 3616 insn = OPC_VPTERNLOGQ; 3617 sub = 0xdd; /* orB!C */ 3618 goto gen_simd_imm8; 3619 3620 case INDEX_op_bitsel_vec: 3621 insn = OPC_VPTERNLOGQ; 3622 a3 = args[3]; 3623 if (a0 == a1) { 3624 a1 = a2; 3625 a2 = a3; 3626 sub = 0xca; /* A?B:C */ 3627 } else if (a0 == a2) { 3628 a2 = a3; 3629 sub = 0xe2; /* B?A:C */ 3630 } else { 3631 tcg_out_mov(s, type, a0, a3); 3632 sub = 0xb8; /* B?C:A */ 3633 } 3634 goto gen_simd_imm8; 3635 3636 gen_simd_imm8: 3637 tcg_debug_assert(insn != OPC_UD2); 3638 tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type); 3639 tcg_out8(s, sub); 3640 break; 3641 3642 case INDEX_op_x86_psrldq_vec: 3643 tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1); 3644 tcg_out8(s, a2); 3645 break; 3646 3647 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ 3648 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ 3649 default: 3650 g_assert_not_reached(); 3651 } 3652} 3653 3654static TCGConstraintSetIndex 3655tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags) 3656{ 3657 switch (op) { 3658 case INDEX_op_goto_ptr: 3659 return C_O0_I1(r); 3660 3661 case INDEX_op_ld8u_i32: 3662 case INDEX_op_ld8u_i64: 3663 case INDEX_op_ld8s_i32: 3664 case INDEX_op_ld8s_i64: 3665 case INDEX_op_ld16u_i32: 3666 case INDEX_op_ld16u_i64: 3667 case INDEX_op_ld16s_i32: 3668 case INDEX_op_ld16s_i64: 3669 case INDEX_op_ld_i32: 3670 case INDEX_op_ld32u_i64: 3671 case INDEX_op_ld32s_i64: 3672 case INDEX_op_ld_i64: 3673 return C_O1_I1(r, r); 3674 3675 case INDEX_op_st8_i32: 3676 case INDEX_op_st8_i64: 3677 return C_O0_I2(qi, r); 3678 3679 case INDEX_op_st16_i32: 3680 case INDEX_op_st16_i64: 3681 case INDEX_op_st_i32: 3682 case INDEX_op_st32_i64: 3683 return C_O0_I2(ri, r); 3684 3685 case INDEX_op_st_i64: 3686 return C_O0_I2(re, r); 3687 3688 case INDEX_op_sub_i32: 3689 case INDEX_op_sub_i64: 3690 case INDEX_op_mul_i32: 3691 case INDEX_op_mul_i64: 3692 return C_O1_I2(r, 0, re); 3693 3694 case INDEX_op_shl_i32: 3695 case INDEX_op_shl_i64: 3696 case INDEX_op_shr_i32: 3697 case INDEX_op_shr_i64: 3698 case INDEX_op_sar_i32: 3699 case INDEX_op_sar_i64: 3700 return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci); 3701 3702 case INDEX_op_rotl_i32: 3703 case INDEX_op_rotl_i64: 3704 case INDEX_op_rotr_i32: 3705 case INDEX_op_rotr_i64: 3706 return C_O1_I2(r, 0, ci); 3707 3708 case INDEX_op_brcond_i32: 3709 case INDEX_op_brcond_i64: 3710 return C_O0_I2(r, reT); 3711 3712 case INDEX_op_bswap16_i32: 3713 case INDEX_op_bswap16_i64: 3714 case INDEX_op_bswap32_i32: 3715 case INDEX_op_bswap32_i64: 3716 case INDEX_op_bswap64_i64: 3717 case INDEX_op_neg_i32: 3718 case INDEX_op_neg_i64: 3719 case INDEX_op_not_i32: 3720 case INDEX_op_not_i64: 3721 case INDEX_op_extrh_i64_i32: 3722 return C_O1_I1(r, 0); 3723 3724 case INDEX_op_ext_i32_i64: 3725 case INDEX_op_extu_i32_i64: 3726 case INDEX_op_extrl_i64_i32: 3727 case INDEX_op_extract_i32: 3728 case INDEX_op_extract_i64: 3729 case INDEX_op_sextract_i32: 3730 case INDEX_op_sextract_i64: 3731 case INDEX_op_ctpop_i32: 3732 case INDEX_op_ctpop_i64: 3733 return C_O1_I1(r, r); 3734 3735 case INDEX_op_extract2_i32: 3736 case INDEX_op_extract2_i64: 3737 return C_O1_I2(r, 0, r); 3738 3739 case INDEX_op_deposit_i32: 3740 case INDEX_op_deposit_i64: 3741 return C_O1_I2(q, 0, qi); 3742 3743 case INDEX_op_setcond_i32: 3744 case INDEX_op_setcond_i64: 3745 case INDEX_op_negsetcond_i32: 3746 case INDEX_op_negsetcond_i64: 3747 return C_O1_I2(q, r, reT); 3748 3749 case INDEX_op_movcond_i32: 3750 case INDEX_op_movcond_i64: 3751 return C_O1_I4(r, r, reT, r, 0); 3752 3753 case INDEX_op_div2_i32: 3754 case INDEX_op_div2_i64: 3755 case INDEX_op_divu2_i32: 3756 case INDEX_op_divu2_i64: 3757 return C_O2_I3(a, d, 0, 1, r); 3758 3759 case INDEX_op_mulu2_i32: 3760 case INDEX_op_mulu2_i64: 3761 case INDEX_op_muls2_i32: 3762 case INDEX_op_muls2_i64: 3763 return C_O2_I2(a, d, a, r); 3764 3765 case INDEX_op_add2_i32: 3766 case INDEX_op_add2_i64: 3767 case INDEX_op_sub2_i32: 3768 case INDEX_op_sub2_i64: 3769 return C_N1_O1_I4(r, r, 0, 1, re, re); 3770 3771 case INDEX_op_ctz_i32: 3772 case INDEX_op_ctz_i64: 3773 return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r); 3774 3775 case INDEX_op_clz_i32: 3776 case INDEX_op_clz_i64: 3777 return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r); 3778 3779 case INDEX_op_qemu_ld_i32: 3780 return C_O1_I1(r, L); 3781 3782 case INDEX_op_qemu_st_i32: 3783 return C_O0_I2(L, L); 3784 case INDEX_op_qemu_st8_i32: 3785 return C_O0_I2(s, L); 3786 3787 case INDEX_op_qemu_ld_i64: 3788 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L); 3789 3790 case INDEX_op_qemu_st_i64: 3791 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L); 3792 3793 case INDEX_op_qemu_ld_i128: 3794 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 3795 return C_O2_I1(r, r, L); 3796 case INDEX_op_qemu_st_i128: 3797 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 3798 return C_O0_I3(L, L, L); 3799 3800 case INDEX_op_brcond2_i32: 3801 return C_O0_I4(r, r, ri, ri); 3802 3803 case INDEX_op_setcond2_i32: 3804 return C_O1_I4(r, r, r, ri, ri); 3805 3806 case INDEX_op_ld_vec: 3807 case INDEX_op_dupm_vec: 3808 return C_O1_I1(x, r); 3809 3810 case INDEX_op_st_vec: 3811 return C_O0_I2(x, r); 3812 3813 case INDEX_op_add_vec: 3814 case INDEX_op_sub_vec: 3815 case INDEX_op_mul_vec: 3816 case INDEX_op_and_vec: 3817 case INDEX_op_or_vec: 3818 case INDEX_op_xor_vec: 3819 case INDEX_op_andc_vec: 3820 case INDEX_op_orc_vec: 3821 case INDEX_op_nand_vec: 3822 case INDEX_op_nor_vec: 3823 case INDEX_op_eqv_vec: 3824 case INDEX_op_ssadd_vec: 3825 case INDEX_op_usadd_vec: 3826 case INDEX_op_sssub_vec: 3827 case INDEX_op_ussub_vec: 3828 case INDEX_op_smin_vec: 3829 case INDEX_op_umin_vec: 3830 case INDEX_op_smax_vec: 3831 case INDEX_op_umax_vec: 3832 case INDEX_op_shlv_vec: 3833 case INDEX_op_shrv_vec: 3834 case INDEX_op_sarv_vec: 3835 case INDEX_op_rotlv_vec: 3836 case INDEX_op_rotrv_vec: 3837 case INDEX_op_shls_vec: 3838 case INDEX_op_shrs_vec: 3839 case INDEX_op_sars_vec: 3840 case INDEX_op_cmp_vec: 3841 case INDEX_op_x86_shufps_vec: 3842 case INDEX_op_x86_blend_vec: 3843 case INDEX_op_x86_packss_vec: 3844 case INDEX_op_x86_packus_vec: 3845 case INDEX_op_x86_vperm2i128_vec: 3846 case INDEX_op_x86_punpckl_vec: 3847 case INDEX_op_x86_punpckh_vec: 3848 case INDEX_op_x86_vpshldi_vec: 3849#if TCG_TARGET_REG_BITS == 32 3850 case INDEX_op_dup2_vec: 3851#endif 3852 return C_O1_I2(x, x, x); 3853 3854 case INDEX_op_abs_vec: 3855 case INDEX_op_dup_vec: 3856 case INDEX_op_not_vec: 3857 case INDEX_op_shli_vec: 3858 case INDEX_op_shri_vec: 3859 case INDEX_op_sari_vec: 3860 case INDEX_op_rotli_vec: 3861 case INDEX_op_x86_psrldq_vec: 3862 return C_O1_I1(x, x); 3863 3864 case INDEX_op_x86_vpshldv_vec: 3865 case INDEX_op_x86_vpshrdv_vec: 3866 return C_O1_I3(x, 0, x, x); 3867 3868 case INDEX_op_bitsel_vec: 3869 return C_O1_I3(x, x, x, x); 3870 case INDEX_op_cmpsel_vec: 3871 return C_O1_I4(x, x, x, xO, x); 3872 3873 default: 3874 return C_NotImplemented; 3875 } 3876} 3877 3878int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) 3879{ 3880 switch (opc) { 3881 case INDEX_op_add_vec: 3882 case INDEX_op_sub_vec: 3883 case INDEX_op_and_vec: 3884 case INDEX_op_or_vec: 3885 case INDEX_op_xor_vec: 3886 case INDEX_op_andc_vec: 3887 case INDEX_op_orc_vec: 3888 case INDEX_op_nand_vec: 3889 case INDEX_op_nor_vec: 3890 case INDEX_op_eqv_vec: 3891 case INDEX_op_not_vec: 3892 case INDEX_op_bitsel_vec: 3893 return 1; 3894 case INDEX_op_cmp_vec: 3895 case INDEX_op_cmpsel_vec: 3896 return -1; 3897 3898 case INDEX_op_rotli_vec: 3899 return have_avx512vl && vece >= MO_32 ? 1 : -1; 3900 3901 case INDEX_op_shli_vec: 3902 case INDEX_op_shri_vec: 3903 /* We must expand the operation for MO_8. */ 3904 return vece == MO_8 ? -1 : 1; 3905 3906 case INDEX_op_sari_vec: 3907 switch (vece) { 3908 case MO_8: 3909 return -1; 3910 case MO_16: 3911 case MO_32: 3912 return 1; 3913 case MO_64: 3914 if (have_avx512vl) { 3915 return 1; 3916 } 3917 /* 3918 * We can emulate this for MO_64, but it does not pay off 3919 * unless we're producing at least 4 values. 3920 */ 3921 return type >= TCG_TYPE_V256 ? -1 : 0; 3922 } 3923 return 0; 3924 3925 case INDEX_op_shls_vec: 3926 case INDEX_op_shrs_vec: 3927 return vece >= MO_16; 3928 case INDEX_op_sars_vec: 3929 switch (vece) { 3930 case MO_16: 3931 case MO_32: 3932 return 1; 3933 case MO_64: 3934 return have_avx512vl; 3935 } 3936 return 0; 3937 case INDEX_op_rotls_vec: 3938 return vece >= MO_16 ? -1 : 0; 3939 3940 case INDEX_op_shlv_vec: 3941 case INDEX_op_shrv_vec: 3942 switch (vece) { 3943 case MO_16: 3944 return have_avx512bw; 3945 case MO_32: 3946 case MO_64: 3947 return have_avx2; 3948 } 3949 return 0; 3950 case INDEX_op_sarv_vec: 3951 switch (vece) { 3952 case MO_16: 3953 return have_avx512bw; 3954 case MO_32: 3955 return have_avx2; 3956 case MO_64: 3957 return have_avx512vl; 3958 } 3959 return 0; 3960 case INDEX_op_rotlv_vec: 3961 case INDEX_op_rotrv_vec: 3962 switch (vece) { 3963 case MO_16: 3964 return have_avx512vbmi2 ? -1 : 0; 3965 case MO_32: 3966 case MO_64: 3967 return have_avx512vl ? 1 : have_avx2 ? -1 : 0; 3968 } 3969 return 0; 3970 3971 case INDEX_op_mul_vec: 3972 switch (vece) { 3973 case MO_8: 3974 return -1; 3975 case MO_64: 3976 return have_avx512dq; 3977 } 3978 return 1; 3979 3980 case INDEX_op_ssadd_vec: 3981 case INDEX_op_usadd_vec: 3982 case INDEX_op_sssub_vec: 3983 case INDEX_op_ussub_vec: 3984 return vece <= MO_16; 3985 case INDEX_op_smin_vec: 3986 case INDEX_op_smax_vec: 3987 case INDEX_op_umin_vec: 3988 case INDEX_op_umax_vec: 3989 case INDEX_op_abs_vec: 3990 return vece <= MO_32 || have_avx512vl; 3991 3992 default: 3993 return 0; 3994 } 3995} 3996 3997static void expand_vec_shi(TCGType type, unsigned vece, bool right, 3998 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 3999{ 4000 uint8_t mask; 4001 4002 tcg_debug_assert(vece == MO_8); 4003 if (right) { 4004 mask = 0xff >> imm; 4005 tcg_gen_shri_vec(MO_16, v0, v1, imm); 4006 } else { 4007 mask = 0xff << imm; 4008 tcg_gen_shli_vec(MO_16, v0, v1, imm); 4009 } 4010 tcg_gen_and_vec(MO_8, v0, v0, tcg_constant_vec(type, MO_8, mask)); 4011} 4012 4013static void expand_vec_sari(TCGType type, unsigned vece, 4014 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 4015{ 4016 TCGv_vec t1, t2; 4017 4018 switch (vece) { 4019 case MO_8: 4020 /* Unpack to 16-bit, shift, and repack. */ 4021 t1 = tcg_temp_new_vec(type); 4022 t2 = tcg_temp_new_vec(type); 4023 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 4024 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 4025 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 4026 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 4027 tcg_gen_sari_vec(MO_16, t1, t1, imm + 8); 4028 tcg_gen_sari_vec(MO_16, t2, t2, imm + 8); 4029 vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8, 4030 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2)); 4031 tcg_temp_free_vec(t1); 4032 tcg_temp_free_vec(t2); 4033 break; 4034 4035 case MO_64: 4036 t1 = tcg_temp_new_vec(type); 4037 if (imm <= 32) { 4038 /* 4039 * We can emulate a small sign extend by performing an arithmetic 4040 * 32-bit shift and overwriting the high half of a 64-bit logical 4041 * shift. Note that the ISA says shift of 32 is valid, but TCG 4042 * does not, so we have to bound the smaller shift -- we get the 4043 * same result in the high half either way. 4044 */ 4045 tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31)); 4046 tcg_gen_shri_vec(MO_64, v0, v1, imm); 4047 vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32, 4048 tcgv_vec_arg(v0), tcgv_vec_arg(v0), 4049 tcgv_vec_arg(t1), 0xaa); 4050 } else { 4051 /* Otherwise we will need to use a compare vs 0 to produce 4052 * the sign-extend, shift and merge. 4053 */ 4054 tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1, 4055 tcg_constant_vec(type, MO_64, 0), v1); 4056 tcg_gen_shri_vec(MO_64, v0, v1, imm); 4057 tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm); 4058 tcg_gen_or_vec(MO_64, v0, v0, t1); 4059 } 4060 tcg_temp_free_vec(t1); 4061 break; 4062 4063 default: 4064 g_assert_not_reached(); 4065 } 4066} 4067 4068static void expand_vec_rotli(TCGType type, unsigned vece, 4069 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 4070{ 4071 TCGv_vec t; 4072 4073 if (vece != MO_8 && have_avx512vbmi2) { 4074 vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece, 4075 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm); 4076 return; 4077 } 4078 4079 t = tcg_temp_new_vec(type); 4080 tcg_gen_shli_vec(vece, t, v1, imm); 4081 tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm); 4082 tcg_gen_or_vec(vece, v0, v0, t); 4083 tcg_temp_free_vec(t); 4084} 4085 4086static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0, 4087 TCGv_vec v1, TCGv_vec sh, bool right) 4088{ 4089 TCGv_vec t; 4090 4091 if (have_avx512vbmi2) { 4092 vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec, 4093 type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1), 4094 tcgv_vec_arg(v1), tcgv_vec_arg(sh)); 4095 return; 4096 } 4097 4098 t = tcg_temp_new_vec(type); 4099 tcg_gen_dupi_vec(vece, t, 8 << vece); 4100 tcg_gen_sub_vec(vece, t, t, sh); 4101 if (right) { 4102 tcg_gen_shlv_vec(vece, t, v1, t); 4103 tcg_gen_shrv_vec(vece, v0, v1, sh); 4104 } else { 4105 tcg_gen_shrv_vec(vece, t, v1, t); 4106 tcg_gen_shlv_vec(vece, v0, v1, sh); 4107 } 4108 tcg_gen_or_vec(vece, v0, v0, t); 4109 tcg_temp_free_vec(t); 4110} 4111 4112static void expand_vec_rotls(TCGType type, unsigned vece, 4113 TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh) 4114{ 4115 TCGv_vec t = tcg_temp_new_vec(type); 4116 4117 tcg_debug_assert(vece != MO_8); 4118 4119 if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) { 4120 tcg_gen_dup_i32_vec(vece, t, lsh); 4121 if (vece >= MO_32) { 4122 tcg_gen_rotlv_vec(vece, v0, v1, t); 4123 } else { 4124 expand_vec_rotv(type, vece, v0, v1, t, false); 4125 } 4126 } else { 4127 TCGv_i32 rsh = tcg_temp_new_i32(); 4128 4129 tcg_gen_neg_i32(rsh, lsh); 4130 tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1); 4131 tcg_gen_shls_vec(vece, t, v1, lsh); 4132 tcg_gen_shrs_vec(vece, v0, v1, rsh); 4133 tcg_gen_or_vec(vece, v0, v0, t); 4134 4135 tcg_temp_free_i32(rsh); 4136 } 4137 4138 tcg_temp_free_vec(t); 4139} 4140 4141static void expand_vec_mul(TCGType type, unsigned vece, 4142 TCGv_vec v0, TCGv_vec v1, TCGv_vec v2) 4143{ 4144 TCGv_vec t1, t2, t3, t4, zero; 4145 4146 tcg_debug_assert(vece == MO_8); 4147 4148 /* 4149 * Unpack v1 bytes to words, 0 | x. 4150 * Unpack v2 bytes to words, y | 0. 4151 * This leaves the 8-bit result, x * y, with 8 bits of right padding. 4152 * Shift logical right by 8 bits to clear the high 8 bytes before 4153 * using an unsigned saturated pack. 4154 * 4155 * The difference between the V64, V128 and V256 cases is merely how 4156 * we distribute the expansion between temporaries. 4157 */ 4158 switch (type) { 4159 case TCG_TYPE_V64: 4160 t1 = tcg_temp_new_vec(TCG_TYPE_V128); 4161 t2 = tcg_temp_new_vec(TCG_TYPE_V128); 4162 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0); 4163 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8, 4164 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 4165 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8, 4166 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 4167 tcg_gen_mul_vec(MO_16, t1, t1, t2); 4168 tcg_gen_shri_vec(MO_16, t1, t1, 8); 4169 vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8, 4170 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1)); 4171 tcg_temp_free_vec(t1); 4172 tcg_temp_free_vec(t2); 4173 break; 4174 4175 case TCG_TYPE_V128: 4176 case TCG_TYPE_V256: 4177 t1 = tcg_temp_new_vec(type); 4178 t2 = tcg_temp_new_vec(type); 4179 t3 = tcg_temp_new_vec(type); 4180 t4 = tcg_temp_new_vec(type); 4181 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0); 4182 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 4183 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 4184 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 4185 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 4186 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 4187 tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 4188 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 4189 tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 4190 tcg_gen_mul_vec(MO_16, t1, t1, t2); 4191 tcg_gen_mul_vec(MO_16, t3, t3, t4); 4192 tcg_gen_shri_vec(MO_16, t1, t1, 8); 4193 tcg_gen_shri_vec(MO_16, t3, t3, 8); 4194 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8, 4195 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3)); 4196 tcg_temp_free_vec(t1); 4197 tcg_temp_free_vec(t2); 4198 tcg_temp_free_vec(t3); 4199 tcg_temp_free_vec(t4); 4200 break; 4201 4202 default: 4203 g_assert_not_reached(); 4204 } 4205} 4206 4207static TCGCond expand_vec_cond(TCGType type, unsigned vece, 4208 TCGArg *a1, TCGArg *a2, TCGCond cond) 4209{ 4210 /* 4211 * Without AVX512, there are no 64-bit unsigned comparisons. 4212 * We must bias the inputs so that they become signed. 4213 * All other swapping and inversion are handled during code generation. 4214 */ 4215 if (vece == MO_64 && !have_avx512dq && is_unsigned_cond(cond)) { 4216 TCGv_vec v1 = temp_tcgv_vec(arg_temp(*a1)); 4217 TCGv_vec v2 = temp_tcgv_vec(arg_temp(*a2)); 4218 TCGv_vec t1 = tcg_temp_new_vec(type); 4219 TCGv_vec t2 = tcg_temp_new_vec(type); 4220 TCGv_vec t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1)); 4221 4222 tcg_gen_sub_vec(vece, t1, v1, t3); 4223 tcg_gen_sub_vec(vece, t2, v2, t3); 4224 *a1 = tcgv_vec_arg(t1); 4225 *a2 = tcgv_vec_arg(t2); 4226 cond = tcg_signed_cond(cond); 4227 } 4228 return cond; 4229} 4230 4231static void expand_vec_cmp(TCGType type, unsigned vece, TCGArg a0, 4232 TCGArg a1, TCGArg a2, TCGCond cond) 4233{ 4234 cond = expand_vec_cond(type, vece, &a1, &a2, cond); 4235 /* Expand directly; do not recurse. */ 4236 vec_gen_4(INDEX_op_cmp_vec, type, vece, a0, a1, a2, cond); 4237} 4238 4239static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGArg a0, 4240 TCGArg a1, TCGArg a2, 4241 TCGArg a3, TCGArg a4, TCGCond cond) 4242{ 4243 cond = expand_vec_cond(type, vece, &a1, &a2, cond); 4244 /* Expand directly; do not recurse. */ 4245 vec_gen_6(INDEX_op_cmpsel_vec, type, vece, a0, a1, a2, a3, a4, cond); 4246} 4247 4248void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, 4249 TCGArg a0, ...) 4250{ 4251 va_list va; 4252 TCGArg a1, a2, a3, a4, a5; 4253 TCGv_vec v0, v1, v2; 4254 4255 va_start(va, a0); 4256 a1 = va_arg(va, TCGArg); 4257 a2 = va_arg(va, TCGArg); 4258 v0 = temp_tcgv_vec(arg_temp(a0)); 4259 v1 = temp_tcgv_vec(arg_temp(a1)); 4260 4261 switch (opc) { 4262 case INDEX_op_shli_vec: 4263 expand_vec_shi(type, vece, false, v0, v1, a2); 4264 break; 4265 case INDEX_op_shri_vec: 4266 expand_vec_shi(type, vece, true, v0, v1, a2); 4267 break; 4268 case INDEX_op_sari_vec: 4269 expand_vec_sari(type, vece, v0, v1, a2); 4270 break; 4271 4272 case INDEX_op_rotli_vec: 4273 expand_vec_rotli(type, vece, v0, v1, a2); 4274 break; 4275 4276 case INDEX_op_rotls_vec: 4277 expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2))); 4278 break; 4279 4280 case INDEX_op_rotlv_vec: 4281 v2 = temp_tcgv_vec(arg_temp(a2)); 4282 expand_vec_rotv(type, vece, v0, v1, v2, false); 4283 break; 4284 case INDEX_op_rotrv_vec: 4285 v2 = temp_tcgv_vec(arg_temp(a2)); 4286 expand_vec_rotv(type, vece, v0, v1, v2, true); 4287 break; 4288 4289 case INDEX_op_mul_vec: 4290 v2 = temp_tcgv_vec(arg_temp(a2)); 4291 expand_vec_mul(type, vece, v0, v1, v2); 4292 break; 4293 4294 case INDEX_op_cmp_vec: 4295 a3 = va_arg(va, TCGArg); 4296 expand_vec_cmp(type, vece, a0, a1, a2, a3); 4297 break; 4298 4299 case INDEX_op_cmpsel_vec: 4300 a3 = va_arg(va, TCGArg); 4301 a4 = va_arg(va, TCGArg); 4302 a5 = va_arg(va, TCGArg); 4303 expand_vec_cmpsel(type, vece, a0, a1, a2, a3, a4, a5); 4304 break; 4305 4306 default: 4307 break; 4308 } 4309 4310 va_end(va); 4311} 4312 4313static const int tcg_target_callee_save_regs[] = { 4314#if TCG_TARGET_REG_BITS == 64 4315 TCG_REG_RBP, 4316 TCG_REG_RBX, 4317#if defined(_WIN64) 4318 TCG_REG_RDI, 4319 TCG_REG_RSI, 4320#endif 4321 TCG_REG_R12, 4322 TCG_REG_R13, 4323 TCG_REG_R14, /* Currently used for the global env. */ 4324 TCG_REG_R15, 4325#else 4326 TCG_REG_EBP, /* Currently used for the global env. */ 4327 TCG_REG_EBX, 4328 TCG_REG_ESI, 4329 TCG_REG_EDI, 4330#endif 4331}; 4332 4333/* Compute frame size via macros, to share between tcg_target_qemu_prologue 4334 and tcg_register_jit. */ 4335 4336#define PUSH_SIZE \ 4337 ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \ 4338 * (TCG_TARGET_REG_BITS / 8)) 4339 4340#define FRAME_SIZE \ 4341 ((PUSH_SIZE \ 4342 + TCG_STATIC_CALL_ARGS_SIZE \ 4343 + CPU_TEMP_BUF_NLONGS * sizeof(long) \ 4344 + TCG_TARGET_STACK_ALIGN - 1) \ 4345 & ~(TCG_TARGET_STACK_ALIGN - 1)) 4346 4347/* Generate global QEMU prologue and epilogue code */ 4348static void tcg_target_qemu_prologue(TCGContext *s) 4349{ 4350 int i, stack_addend; 4351 4352 /* TB prologue */ 4353 4354 /* Reserve some stack space, also for TCG temps. */ 4355 stack_addend = FRAME_SIZE - PUSH_SIZE; 4356 tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE, 4357 CPU_TEMP_BUF_NLONGS * sizeof(long)); 4358 4359 /* Save all callee saved registers. */ 4360 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) { 4361 tcg_out_push(s, tcg_target_callee_save_regs[i]); 4362 } 4363 4364 if (!tcg_use_softmmu && guest_base) { 4365 int seg = setup_guest_base_seg(); 4366 if (seg != 0) { 4367 x86_guest_base.seg = seg; 4368 } else if (guest_base == (int32_t)guest_base) { 4369 x86_guest_base.ofs = guest_base; 4370 } else { 4371 assert(TCG_TARGET_REG_BITS == 64); 4372 /* Choose R12 because, as a base, it requires a SIB byte. */ 4373 x86_guest_base.index = TCG_REG_R12; 4374 tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base); 4375 tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index); 4376 } 4377 } 4378 4379 if (TCG_TARGET_REG_BITS == 32) { 4380 tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, 4381 (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4); 4382 tcg_out_addi(s, TCG_REG_ESP, -stack_addend); 4383 /* jmp *tb. */ 4384 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP, 4385 (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4 4386 + stack_addend); 4387 } else { 4388 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); 4389 tcg_out_addi(s, TCG_REG_ESP, -stack_addend); 4390 /* jmp *tb. */ 4391 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]); 4392 } 4393 4394 /* 4395 * Return path for goto_ptr. Set return value to 0, a-la exit_tb, 4396 * and fall through to the rest of the epilogue. 4397 */ 4398 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); 4399 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0); 4400 4401 /* TB epilogue */ 4402 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr); 4403 4404 tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend); 4405 4406 if (have_avx2) { 4407 tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0); 4408 } 4409 for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) { 4410 tcg_out_pop(s, tcg_target_callee_save_regs[i]); 4411 } 4412 tcg_out_opc(s, OPC_RET, 0, 0, 0); 4413} 4414 4415static void tcg_out_tb_start(TCGContext *s) 4416{ 4417 /* nothing to do */ 4418} 4419 4420static void tcg_out_nop_fill(tcg_insn_unit *p, int count) 4421{ 4422 memset(p, 0x90, count); 4423} 4424 4425static void tcg_target_init(TCGContext *s) 4426{ 4427 tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS; 4428 if (TCG_TARGET_REG_BITS == 64) { 4429 tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS; 4430 } 4431 if (have_avx1) { 4432 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS; 4433 tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS; 4434 } 4435 if (have_avx2) { 4436 tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS; 4437 } 4438 4439 tcg_target_call_clobber_regs = ALL_VECTOR_REGS; 4440 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX); 4441 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX); 4442 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX); 4443 if (TCG_TARGET_REG_BITS == 64) { 4444#if !defined(_WIN64) 4445 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI); 4446 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI); 4447#endif 4448 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8); 4449 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9); 4450 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10); 4451 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11); 4452 } 4453 4454 s->reserved_regs = 0; 4455 tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK); 4456 tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC); 4457#ifdef _WIN64 4458 /* These are call saved, and we don't save them, so don't use them. */ 4459 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6); 4460 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7); 4461 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8); 4462 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9); 4463 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10); 4464 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11); 4465 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12); 4466 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13); 4467 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14); 4468 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15); 4469#endif 4470} 4471 4472typedef struct { 4473 DebugFrameHeader h; 4474 uint8_t fde_def_cfa[4]; 4475 uint8_t fde_reg_ofs[14]; 4476} DebugFrame; 4477 4478/* We're expecting a 2 byte uleb128 encoded value. */ 4479QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); 4480 4481#if !defined(__ELF__) 4482 /* Host machine without ELF. */ 4483#elif TCG_TARGET_REG_BITS == 64 4484#define ELF_HOST_MACHINE EM_X86_64 4485static const DebugFrame debug_frame = { 4486 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 4487 .h.cie.id = -1, 4488 .h.cie.version = 1, 4489 .h.cie.code_align = 1, 4490 .h.cie.data_align = 0x78, /* sleb128 -8 */ 4491 .h.cie.return_column = 16, 4492 4493 /* Total FDE size does not include the "len" member. */ 4494 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 4495 4496 .fde_def_cfa = { 4497 12, 7, /* DW_CFA_def_cfa %rsp, ... */ 4498 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 4499 (FRAME_SIZE >> 7) 4500 }, 4501 .fde_reg_ofs = { 4502 0x90, 1, /* DW_CFA_offset, %rip, -8 */ 4503 /* The following ordering must match tcg_target_callee_save_regs. */ 4504 0x86, 2, /* DW_CFA_offset, %rbp, -16 */ 4505 0x83, 3, /* DW_CFA_offset, %rbx, -24 */ 4506 0x8c, 4, /* DW_CFA_offset, %r12, -32 */ 4507 0x8d, 5, /* DW_CFA_offset, %r13, -40 */ 4508 0x8e, 6, /* DW_CFA_offset, %r14, -48 */ 4509 0x8f, 7, /* DW_CFA_offset, %r15, -56 */ 4510 } 4511}; 4512#else 4513#define ELF_HOST_MACHINE EM_386 4514static const DebugFrame debug_frame = { 4515 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 4516 .h.cie.id = -1, 4517 .h.cie.version = 1, 4518 .h.cie.code_align = 1, 4519 .h.cie.data_align = 0x7c, /* sleb128 -4 */ 4520 .h.cie.return_column = 8, 4521 4522 /* Total FDE size does not include the "len" member. */ 4523 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 4524 4525 .fde_def_cfa = { 4526 12, 4, /* DW_CFA_def_cfa %esp, ... */ 4527 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 4528 (FRAME_SIZE >> 7) 4529 }, 4530 .fde_reg_ofs = { 4531 0x88, 1, /* DW_CFA_offset, %eip, -4 */ 4532 /* The following ordering must match tcg_target_callee_save_regs. */ 4533 0x85, 2, /* DW_CFA_offset, %ebp, -8 */ 4534 0x83, 3, /* DW_CFA_offset, %ebx, -12 */ 4535 0x86, 4, /* DW_CFA_offset, %esi, -16 */ 4536 0x87, 5, /* DW_CFA_offset, %edi, -20 */ 4537 } 4538}; 4539#endif 4540 4541#if defined(ELF_HOST_MACHINE) 4542void tcg_register_jit(const void *buf, size_t buf_size) 4543{ 4544 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); 4545} 4546#endif 4547