xref: /openbmc/qemu/tcg/i386/tcg-target.c.inc (revision 48e8de684aff7ad112aafcf74f776d2a66ef192e)
1/*
2 * Tiny Code Generator for QEMU
3 *
4 * Copyright (c) 2008 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25/* Used for function call generation. */
26#define TCG_TARGET_STACK_ALIGN 16
27#if defined(_WIN64)
28#define TCG_TARGET_CALL_STACK_OFFSET 32
29#else
30#define TCG_TARGET_CALL_STACK_OFFSET 0
31#endif
32#define TCG_TARGET_CALL_ARG_I32      TCG_CALL_ARG_NORMAL
33#define TCG_TARGET_CALL_ARG_I64      TCG_CALL_ARG_NORMAL
34#if defined(_WIN64)
35# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_BY_REF
36# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_BY_VEC
37#elif TCG_TARGET_REG_BITS == 64
38# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_NORMAL
39# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_NORMAL
40#else
41# define TCG_TARGET_CALL_ARG_I128    TCG_CALL_ARG_NORMAL
42# define TCG_TARGET_CALL_RET_I128    TCG_CALL_RET_BY_REF
43#endif
44
45#ifdef CONFIG_DEBUG_TCG
46static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
47#if TCG_TARGET_REG_BITS == 64
48    "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
49#else
50    "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
51#endif
52    "%r8",  "%r9",  "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
53    "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
54#if TCG_TARGET_REG_BITS == 64
55    "%xmm8", "%xmm9", "%xmm10", "%xmm11",
56    "%xmm12", "%xmm13", "%xmm14", "%xmm15",
57#endif
58};
59#endif
60
61static const int tcg_target_reg_alloc_order[] = {
62#if TCG_TARGET_REG_BITS == 64
63    TCG_REG_RBP,
64    TCG_REG_RBX,
65    TCG_REG_R12,
66    TCG_REG_R13,
67    TCG_REG_R14,
68    TCG_REG_R15,
69    TCG_REG_R10,
70    TCG_REG_R11,
71    TCG_REG_R9,
72    TCG_REG_R8,
73    TCG_REG_RCX,
74    TCG_REG_RDX,
75    TCG_REG_RSI,
76    TCG_REG_RDI,
77    TCG_REG_RAX,
78#else
79    TCG_REG_EBX,
80    TCG_REG_ESI,
81    TCG_REG_EDI,
82    TCG_REG_EBP,
83    TCG_REG_ECX,
84    TCG_REG_EDX,
85    TCG_REG_EAX,
86#endif
87    TCG_REG_XMM0,
88    TCG_REG_XMM1,
89    TCG_REG_XMM2,
90    TCG_REG_XMM3,
91    TCG_REG_XMM4,
92    TCG_REG_XMM5,
93#ifndef _WIN64
94    /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
95       any of them.  Therefore only allow xmm0-xmm5 to be allocated.  */
96    TCG_REG_XMM6,
97    TCG_REG_XMM7,
98#if TCG_TARGET_REG_BITS == 64
99    TCG_REG_XMM8,
100    TCG_REG_XMM9,
101    TCG_REG_XMM10,
102    TCG_REG_XMM11,
103    TCG_REG_XMM12,
104    TCG_REG_XMM13,
105    TCG_REG_XMM14,
106    TCG_REG_XMM15,
107#endif
108#endif
109};
110
111#define TCG_TMP_VEC  TCG_REG_XMM5
112
113static const int tcg_target_call_iarg_regs[] = {
114#if TCG_TARGET_REG_BITS == 64
115#if defined(_WIN64)
116    TCG_REG_RCX,
117    TCG_REG_RDX,
118#else
119    TCG_REG_RDI,
120    TCG_REG_RSI,
121    TCG_REG_RDX,
122    TCG_REG_RCX,
123#endif
124    TCG_REG_R8,
125    TCG_REG_R9,
126#else
127    /* 32 bit mode uses stack based calling convention (GCC default). */
128#endif
129};
130
131static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
132{
133    switch (kind) {
134    case TCG_CALL_RET_NORMAL:
135        tcg_debug_assert(slot >= 0 && slot <= 1);
136        return slot ? TCG_REG_EDX : TCG_REG_EAX;
137#ifdef _WIN64
138    case TCG_CALL_RET_BY_VEC:
139        tcg_debug_assert(slot == 0);
140        return TCG_REG_XMM0;
141#endif
142    default:
143        g_assert_not_reached();
144    }
145}
146
147/* Constants we accept.  */
148#define TCG_CT_CONST_S32 0x100
149#define TCG_CT_CONST_U32 0x200
150#define TCG_CT_CONST_I32 0x400
151#define TCG_CT_CONST_WSZ 0x800
152#define TCG_CT_CONST_TST 0x1000
153#define TCG_CT_CONST_ZERO 0x2000
154
155/* Registers used with L constraint, which are the first argument
156   registers on x86_64, and two random call clobbered registers on
157   i386. */
158#if TCG_TARGET_REG_BITS == 64
159# define TCG_REG_L0 tcg_target_call_iarg_regs[0]
160# define TCG_REG_L1 tcg_target_call_iarg_regs[1]
161#else
162# define TCG_REG_L0 TCG_REG_EAX
163# define TCG_REG_L1 TCG_REG_EDX
164#endif
165
166#if TCG_TARGET_REG_BITS == 64
167# define ALL_GENERAL_REGS      0x0000ffffu
168# define ALL_VECTOR_REGS       0xffff0000u
169# define ALL_BYTEL_REGS        ALL_GENERAL_REGS
170#else
171# define ALL_GENERAL_REGS      0x000000ffu
172# define ALL_VECTOR_REGS       0x00ff0000u
173# define ALL_BYTEL_REGS        0x0000000fu
174#endif
175#define SOFTMMU_RESERVE_REGS \
176    (tcg_use_softmmu ? (1 << TCG_REG_L0) | (1 << TCG_REG_L1) : 0)
177
178#define have_bmi2       (cpuinfo & CPUINFO_BMI2)
179#define have_lzcnt      (cpuinfo & CPUINFO_LZCNT)
180
181static const tcg_insn_unit *tb_ret_addr;
182
183static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
184                        intptr_t value, intptr_t addend)
185{
186    value += addend;
187    switch(type) {
188    case R_386_PC32:
189        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
190        if (value != (int32_t)value) {
191            return false;
192        }
193        /* FALLTHRU */
194    case R_386_32:
195        tcg_patch32(code_ptr, value);
196        break;
197    case R_386_PC8:
198        value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
199        if (value != (int8_t)value) {
200            return false;
201        }
202        tcg_patch8(code_ptr, value);
203        break;
204    default:
205        g_assert_not_reached();
206    }
207    return true;
208}
209
210/* test if a constant matches the constraint */
211static bool tcg_target_const_match(int64_t val, int ct,
212                                   TCGType type, TCGCond cond, int vece)
213{
214    if (ct & TCG_CT_CONST) {
215        return 1;
216    }
217    if (type == TCG_TYPE_I32) {
218        if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 |
219                  TCG_CT_CONST_I32 | TCG_CT_CONST_TST)) {
220            return 1;
221        }
222    } else {
223        if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
224            return 1;
225        }
226        if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
227            return 1;
228        }
229        if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
230            return 1;
231        }
232        /*
233         * This will be used in combination with TCG_CT_CONST_S32,
234         * so "normal" TESTQ is already matched.  Also accept:
235         *    TESTQ -> TESTL   (uint32_t)
236         *    TESTQ -> BT      (is_power_of_2)
237         */
238        if ((ct & TCG_CT_CONST_TST)
239            && is_tst_cond(cond)
240            && (val == (uint32_t)val || is_power_of_2(val))) {
241            return 1;
242        }
243    }
244    if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
245        return 1;
246    }
247    if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
248        return 1;
249    }
250    return 0;
251}
252
253# define LOWREGMASK(x)	((x) & 7)
254
255#define P_EXT		0x100		/* 0x0f opcode prefix */
256#define P_EXT38         0x200           /* 0x0f 0x38 opcode prefix */
257#define P_DATA16        0x400           /* 0x66 opcode prefix */
258#define P_VEXW          0x1000          /* Set VEX.W = 1 */
259#if TCG_TARGET_REG_BITS == 64
260# define P_REXW         P_VEXW          /* Set REX.W = 1; match VEXW */
261# define P_REXB_R       0x2000          /* REG field as byte register */
262# define P_REXB_RM      0x4000          /* R/M field as byte register */
263# define P_GS           0x8000          /* gs segment override */
264#else
265# define P_REXW		0
266# define P_REXB_R	0
267# define P_REXB_RM	0
268# define P_GS           0
269#endif
270#define P_EXT3A         0x10000         /* 0x0f 0x3a opcode prefix */
271#define P_SIMDF3        0x20000         /* 0xf3 opcode prefix */
272#define P_SIMDF2        0x40000         /* 0xf2 opcode prefix */
273#define P_VEXL          0x80000         /* Set VEX.L = 1 */
274#define P_EVEX          0x100000        /* Requires EVEX encoding */
275
276#define OPC_ARITH_EbIb	(0x80)
277#define OPC_ARITH_EvIz	(0x81)
278#define OPC_ARITH_EvIb	(0x83)
279#define OPC_ARITH_GvEv	(0x03)		/* ... plus (ARITH_FOO << 3) */
280#define OPC_ANDN        (0xf2 | P_EXT38)
281#define OPC_ADD_GvEv	(OPC_ARITH_GvEv | (ARITH_ADD << 3))
282#define OPC_AND_GvEv    (OPC_ARITH_GvEv | (ARITH_AND << 3))
283#define OPC_BLENDPS     (0x0c | P_EXT3A | P_DATA16)
284#define OPC_BSF         (0xbc | P_EXT)
285#define OPC_BSR         (0xbd | P_EXT)
286#define OPC_BSWAP	(0xc8 | P_EXT)
287#define OPC_CALL_Jz	(0xe8)
288#define OPC_CMOVCC      (0x40 | P_EXT)  /* ... plus condition code */
289#define OPC_CMP_GvEv	(OPC_ARITH_GvEv | (ARITH_CMP << 3))
290#define OPC_DEC_r32	(0x48)
291#define OPC_IMUL_GvEv	(0xaf | P_EXT)
292#define OPC_IMUL_GvEvIb	(0x6b)
293#define OPC_IMUL_GvEvIz	(0x69)
294#define OPC_INC_r32	(0x40)
295#define OPC_JCC_long	(0x80 | P_EXT)	/* ... plus condition code */
296#define OPC_JCC_short	(0x70)		/* ... plus condition code */
297#define OPC_JMP_long	(0xe9)
298#define OPC_JMP_short	(0xeb)
299#define OPC_LEA         (0x8d)
300#define OPC_LZCNT       (0xbd | P_EXT | P_SIMDF3)
301#define OPC_MOVB_EvGv	(0x88)		/* stores, more or less */
302#define OPC_MOVL_EvGv	(0x89)		/* stores, more or less */
303#define OPC_MOVL_GvEv	(0x8b)		/* loads, more or less */
304#define OPC_MOVB_EvIz   (0xc6)
305#define OPC_MOVL_EvIz	(0xc7)
306#define OPC_MOVB_Ib     (0xb0)
307#define OPC_MOVL_Iv     (0xb8)
308#define OPC_MOVBE_GyMy  (0xf0 | P_EXT38)
309#define OPC_MOVBE_MyGy  (0xf1 | P_EXT38)
310#define OPC_MOVD_VyEy   (0x6e | P_EXT | P_DATA16)
311#define OPC_MOVD_EyVy   (0x7e | P_EXT | P_DATA16)
312#define OPC_MOVDDUP     (0x12 | P_EXT | P_SIMDF2)
313#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
314#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
315#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
316#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
317#define OPC_MOVQ_VqWq   (0x7e | P_EXT | P_SIMDF3)
318#define OPC_MOVQ_WqVq   (0xd6 | P_EXT | P_DATA16)
319#define OPC_MOVSBL	(0xbe | P_EXT)
320#define OPC_MOVSWL	(0xbf | P_EXT)
321#define OPC_MOVSLQ	(0x63 | P_REXW)
322#define OPC_MOVZBL	(0xb6 | P_EXT)
323#define OPC_MOVZWL	(0xb7 | P_EXT)
324#define OPC_PABSB       (0x1c | P_EXT38 | P_DATA16)
325#define OPC_PABSW       (0x1d | P_EXT38 | P_DATA16)
326#define OPC_PABSD       (0x1e | P_EXT38 | P_DATA16)
327#define OPC_VPABSQ      (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
328#define OPC_PACKSSDW    (0x6b | P_EXT | P_DATA16)
329#define OPC_PACKSSWB    (0x63 | P_EXT | P_DATA16)
330#define OPC_PACKUSDW    (0x2b | P_EXT38 | P_DATA16)
331#define OPC_PACKUSWB    (0x67 | P_EXT | P_DATA16)
332#define OPC_PADDB       (0xfc | P_EXT | P_DATA16)
333#define OPC_PADDW       (0xfd | P_EXT | P_DATA16)
334#define OPC_PADDD       (0xfe | P_EXT | P_DATA16)
335#define OPC_PADDQ       (0xd4 | P_EXT | P_DATA16)
336#define OPC_PADDSB      (0xec | P_EXT | P_DATA16)
337#define OPC_PADDSW      (0xed | P_EXT | P_DATA16)
338#define OPC_PADDUB      (0xdc | P_EXT | P_DATA16)
339#define OPC_PADDUW      (0xdd | P_EXT | P_DATA16)
340#define OPC_PAND        (0xdb | P_EXT | P_DATA16)
341#define OPC_PANDN       (0xdf | P_EXT | P_DATA16)
342#define OPC_PBLENDW     (0x0e | P_EXT3A | P_DATA16)
343#define OPC_PCMPEQB     (0x74 | P_EXT | P_DATA16)
344#define OPC_PCMPEQW     (0x75 | P_EXT | P_DATA16)
345#define OPC_PCMPEQD     (0x76 | P_EXT | P_DATA16)
346#define OPC_PCMPEQQ     (0x29 | P_EXT38 | P_DATA16)
347#define OPC_PCMPGTB     (0x64 | P_EXT | P_DATA16)
348#define OPC_PCMPGTW     (0x65 | P_EXT | P_DATA16)
349#define OPC_PCMPGTD     (0x66 | P_EXT | P_DATA16)
350#define OPC_PCMPGTQ     (0x37 | P_EXT38 | P_DATA16)
351#define OPC_PEXTRD      (0x16 | P_EXT3A | P_DATA16)
352#define OPC_PINSRD      (0x22 | P_EXT3A | P_DATA16)
353#define OPC_PMAXSB      (0x3c | P_EXT38 | P_DATA16)
354#define OPC_PMAXSW      (0xee | P_EXT | P_DATA16)
355#define OPC_PMAXSD      (0x3d | P_EXT38 | P_DATA16)
356#define OPC_VPMAXSQ     (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
357#define OPC_PMAXUB      (0xde | P_EXT | P_DATA16)
358#define OPC_PMAXUW      (0x3e | P_EXT38 | P_DATA16)
359#define OPC_PMAXUD      (0x3f | P_EXT38 | P_DATA16)
360#define OPC_VPMAXUQ     (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
361#define OPC_PMINSB      (0x38 | P_EXT38 | P_DATA16)
362#define OPC_PMINSW      (0xea | P_EXT | P_DATA16)
363#define OPC_PMINSD      (0x39 | P_EXT38 | P_DATA16)
364#define OPC_VPMINSQ     (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
365#define OPC_PMINUB      (0xda | P_EXT | P_DATA16)
366#define OPC_PMINUW      (0x3a | P_EXT38 | P_DATA16)
367#define OPC_PMINUD      (0x3b | P_EXT38 | P_DATA16)
368#define OPC_VPMINUQ     (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
369#define OPC_PMOVSXBW    (0x20 | P_EXT38 | P_DATA16)
370#define OPC_PMOVSXWD    (0x23 | P_EXT38 | P_DATA16)
371#define OPC_PMOVSXDQ    (0x25 | P_EXT38 | P_DATA16)
372#define OPC_PMOVZXBW    (0x30 | P_EXT38 | P_DATA16)
373#define OPC_PMOVZXWD    (0x33 | P_EXT38 | P_DATA16)
374#define OPC_PMOVZXDQ    (0x35 | P_EXT38 | P_DATA16)
375#define OPC_PMULLW      (0xd5 | P_EXT | P_DATA16)
376#define OPC_PMULLD      (0x40 | P_EXT38 | P_DATA16)
377#define OPC_VPMULLQ     (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
378#define OPC_POR         (0xeb | P_EXT | P_DATA16)
379#define OPC_PSHUFB      (0x00 | P_EXT38 | P_DATA16)
380#define OPC_PSHUFD      (0x70 | P_EXT | P_DATA16)
381#define OPC_PSHUFLW     (0x70 | P_EXT | P_SIMDF2)
382#define OPC_PSHUFHW     (0x70 | P_EXT | P_SIMDF3)
383#define OPC_PSHIFTW_Ib  (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
384#define OPC_PSHIFTD_Ib  (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */
385#define OPC_PSHIFTQ_Ib  (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
386#define OPC_PSLLW       (0xf1 | P_EXT | P_DATA16)
387#define OPC_PSLLD       (0xf2 | P_EXT | P_DATA16)
388#define OPC_PSLLQ       (0xf3 | P_EXT | P_DATA16)
389#define OPC_PSRAW       (0xe1 | P_EXT | P_DATA16)
390#define OPC_PSRAD       (0xe2 | P_EXT | P_DATA16)
391#define OPC_VPSRAQ      (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX)
392#define OPC_PSRLW       (0xd1 | P_EXT | P_DATA16)
393#define OPC_PSRLD       (0xd2 | P_EXT | P_DATA16)
394#define OPC_PSRLQ       (0xd3 | P_EXT | P_DATA16)
395#define OPC_PSUBB       (0xf8 | P_EXT | P_DATA16)
396#define OPC_PSUBW       (0xf9 | P_EXT | P_DATA16)
397#define OPC_PSUBD       (0xfa | P_EXT | P_DATA16)
398#define OPC_PSUBQ       (0xfb | P_EXT | P_DATA16)
399#define OPC_PSUBSB      (0xe8 | P_EXT | P_DATA16)
400#define OPC_PSUBSW      (0xe9 | P_EXT | P_DATA16)
401#define OPC_PSUBUB      (0xd8 | P_EXT | P_DATA16)
402#define OPC_PSUBUW      (0xd9 | P_EXT | P_DATA16)
403#define OPC_PUNPCKLBW   (0x60 | P_EXT | P_DATA16)
404#define OPC_PUNPCKLWD   (0x61 | P_EXT | P_DATA16)
405#define OPC_PUNPCKLDQ   (0x62 | P_EXT | P_DATA16)
406#define OPC_PUNPCKLQDQ  (0x6c | P_EXT | P_DATA16)
407#define OPC_PUNPCKHBW   (0x68 | P_EXT | P_DATA16)
408#define OPC_PUNPCKHWD   (0x69 | P_EXT | P_DATA16)
409#define OPC_PUNPCKHDQ   (0x6a | P_EXT | P_DATA16)
410#define OPC_PUNPCKHQDQ  (0x6d | P_EXT | P_DATA16)
411#define OPC_PXOR        (0xef | P_EXT | P_DATA16)
412#define OPC_POP_r32	(0x58)
413#define OPC_POPCNT      (0xb8 | P_EXT | P_SIMDF3)
414#define OPC_PUSH_r32	(0x50)
415#define OPC_PUSH_Iv	(0x68)
416#define OPC_PUSH_Ib	(0x6a)
417#define OPC_RET		(0xc3)
418#define OPC_SETCC	(0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
419#define OPC_SHIFT_1	(0xd1)
420#define OPC_SHIFT_Ib	(0xc1)
421#define OPC_SHIFT_cl	(0xd3)
422#define OPC_SARX        (0xf7 | P_EXT38 | P_SIMDF3)
423#define OPC_SHUFPS      (0xc6 | P_EXT)
424#define OPC_SHLX        (0xf7 | P_EXT38 | P_DATA16)
425#define OPC_SHRX        (0xf7 | P_EXT38 | P_SIMDF2)
426#define OPC_SHRD_Ib     (0xac | P_EXT)
427#define OPC_TESTB	(0x84)
428#define OPC_TESTL	(0x85)
429#define OPC_TZCNT       (0xbc | P_EXT | P_SIMDF3)
430#define OPC_UD2         (0x0b | P_EXT)
431#define OPC_VPBLENDD    (0x02 | P_EXT3A | P_DATA16)
432#define OPC_VPBLENDVB   (0x4c | P_EXT3A | P_DATA16)
433#define OPC_VPBLENDMB   (0x66 | P_EXT38 | P_DATA16 | P_EVEX)
434#define OPC_VPBLENDMW   (0x66 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
435#define OPC_VPBLENDMD   (0x64 | P_EXT38 | P_DATA16 | P_EVEX)
436#define OPC_VPBLENDMQ   (0x64 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
437#define OPC_VPCMPB      (0x3f | P_EXT3A | P_DATA16 | P_EVEX)
438#define OPC_VPCMPUB     (0x3e | P_EXT3A | P_DATA16 | P_EVEX)
439#define OPC_VPCMPW      (0x3f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
440#define OPC_VPCMPUW     (0x3e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
441#define OPC_VPCMPD      (0x1f | P_EXT3A | P_DATA16 | P_EVEX)
442#define OPC_VPCMPUD     (0x1e | P_EXT3A | P_DATA16 | P_EVEX)
443#define OPC_VPCMPQ      (0x1f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
444#define OPC_VPCMPUQ     (0x1e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
445#define OPC_VPINSRB     (0x20 | P_EXT3A | P_DATA16)
446#define OPC_VPINSRW     (0xc4 | P_EXT | P_DATA16)
447#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
448#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
449#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
450#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
451#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
452#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
453#define OPC_VPMOVM2B    (0x28 | P_EXT38 | P_SIMDF3 | P_EVEX)
454#define OPC_VPMOVM2W    (0x28 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
455#define OPC_VPMOVM2D    (0x38 | P_EXT38 | P_SIMDF3 | P_EVEX)
456#define OPC_VPMOVM2Q    (0x38 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
457#define OPC_VPERMQ      (0x00 | P_EXT3A | P_DATA16 | P_VEXW)
458#define OPC_VPERM2I128  (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
459#define OPC_VPROLVD     (0x15 | P_EXT38 | P_DATA16 | P_EVEX)
460#define OPC_VPROLVQ     (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
461#define OPC_VPRORVD     (0x14 | P_EXT38 | P_DATA16 | P_EVEX)
462#define OPC_VPRORVQ     (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
463#define OPC_VPSHLDW     (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
464#define OPC_VPSHLDD     (0x71 | P_EXT3A | P_DATA16 | P_EVEX)
465#define OPC_VPSHLDQ     (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
466#define OPC_VPSHLDVW    (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
467#define OPC_VPSHLDVD    (0x71 | P_EXT38 | P_DATA16 | P_EVEX)
468#define OPC_VPSHLDVQ    (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
469#define OPC_VPSHRDVW    (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
470#define OPC_VPSHRDVD    (0x73 | P_EXT38 | P_DATA16 | P_EVEX)
471#define OPC_VPSHRDVQ    (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
472#define OPC_VPSLLVW     (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
473#define OPC_VPSLLVD     (0x47 | P_EXT38 | P_DATA16)
474#define OPC_VPSLLVQ     (0x47 | P_EXT38 | P_DATA16 | P_VEXW)
475#define OPC_VPSRAVW     (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
476#define OPC_VPSRAVD     (0x46 | P_EXT38 | P_DATA16)
477#define OPC_VPSRAVQ     (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
478#define OPC_VPSRLVW     (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
479#define OPC_VPSRLVD     (0x45 | P_EXT38 | P_DATA16)
480#define OPC_VPSRLVQ     (0x45 | P_EXT38 | P_DATA16 | P_VEXW)
481#define OPC_VPTERNLOGQ  (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
482#define OPC_VPTESTMB    (0x26 | P_EXT38 | P_DATA16 | P_EVEX)
483#define OPC_VPTESTMW    (0x26 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
484#define OPC_VPTESTMD    (0x27 | P_EXT38 | P_DATA16 | P_EVEX)
485#define OPC_VPTESTMQ    (0x27 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
486#define OPC_VPTESTNMB   (0x26 | P_EXT38 | P_SIMDF3 | P_EVEX)
487#define OPC_VPTESTNMW   (0x26 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
488#define OPC_VPTESTNMD   (0x27 | P_EXT38 | P_SIMDF3 | P_EVEX)
489#define OPC_VPTESTNMQ   (0x27 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
490#define OPC_VZEROUPPER  (0x77 | P_EXT)
491#define OPC_XCHG_ax_r32	(0x90)
492#define OPC_XCHG_EvGv   (0x87)
493
494#define OPC_GRP3_Eb     (0xf6)
495#define OPC_GRP3_Ev     (0xf7)
496#define OPC_GRP5        (0xff)
497#define OPC_GRP14       (0x73 | P_EXT | P_DATA16)
498#define OPC_GRPBT       (0xba | P_EXT)
499
500#define OPC_GRPBT_BT    4
501#define OPC_GRPBT_BTS   5
502#define OPC_GRPBT_BTR   6
503#define OPC_GRPBT_BTC   7
504
505/* Group 1 opcode extensions for 0x80-0x83.
506   These are also used as modifiers for OPC_ARITH.  */
507#define ARITH_ADD 0
508#define ARITH_OR  1
509#define ARITH_ADC 2
510#define ARITH_SBB 3
511#define ARITH_AND 4
512#define ARITH_SUB 5
513#define ARITH_XOR 6
514#define ARITH_CMP 7
515
516/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3.  */
517#define SHIFT_ROL 0
518#define SHIFT_ROR 1
519#define SHIFT_SHL 4
520#define SHIFT_SHR 5
521#define SHIFT_SAR 7
522
523/* Group 3 opcode extensions for 0xf6, 0xf7.  To be used with OPC_GRP3.  */
524#define EXT3_TESTi 0
525#define EXT3_NOT   2
526#define EXT3_NEG   3
527#define EXT3_MUL   4
528#define EXT3_IMUL  5
529#define EXT3_DIV   6
530#define EXT3_IDIV  7
531
532/* Group 5 opcode extensions for 0xff.  To be used with OPC_GRP5.  */
533#define EXT5_INC_Ev	0
534#define EXT5_DEC_Ev	1
535#define EXT5_CALLN_Ev	2
536#define EXT5_JMPN_Ev	4
537
538/* Condition codes to be added to OPC_JCC_{long,short}.  */
539#define JCC_JMP (-1)
540#define JCC_JO  0x0
541#define JCC_JNO 0x1
542#define JCC_JB  0x2
543#define JCC_JAE 0x3
544#define JCC_JE  0x4
545#define JCC_JNE 0x5
546#define JCC_JBE 0x6
547#define JCC_JA  0x7
548#define JCC_JS  0x8
549#define JCC_JNS 0x9
550#define JCC_JP  0xa
551#define JCC_JNP 0xb
552#define JCC_JL  0xc
553#define JCC_JGE 0xd
554#define JCC_JLE 0xe
555#define JCC_JG  0xf
556
557static const uint8_t tcg_cond_to_jcc[] = {
558    [TCG_COND_EQ] = JCC_JE,
559    [TCG_COND_NE] = JCC_JNE,
560    [TCG_COND_LT] = JCC_JL,
561    [TCG_COND_GE] = JCC_JGE,
562    [TCG_COND_LE] = JCC_JLE,
563    [TCG_COND_GT] = JCC_JG,
564    [TCG_COND_LTU] = JCC_JB,
565    [TCG_COND_GEU] = JCC_JAE,
566    [TCG_COND_LEU] = JCC_JBE,
567    [TCG_COND_GTU] = JCC_JA,
568    [TCG_COND_TSTEQ] = JCC_JE,
569    [TCG_COND_TSTNE] = JCC_JNE,
570};
571
572#if TCG_TARGET_REG_BITS == 64
573static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
574{
575    int rex;
576
577    if (opc & P_GS) {
578        tcg_out8(s, 0x65);
579    }
580    if (opc & P_DATA16) {
581        /* We should never be asking for both 16 and 64-bit operation.  */
582        tcg_debug_assert((opc & P_REXW) == 0);
583        tcg_out8(s, 0x66);
584    }
585    if (opc & P_SIMDF3) {
586        tcg_out8(s, 0xf3);
587    } else if (opc & P_SIMDF2) {
588        tcg_out8(s, 0xf2);
589    }
590
591    rex = 0;
592    rex |= (opc & P_REXW) ? 0x8 : 0x0;  /* REX.W */
593    rex |= (r & 8) >> 1;                /* REX.R */
594    rex |= (x & 8) >> 2;                /* REX.X */
595    rex |= (rm & 8) >> 3;               /* REX.B */
596
597    /* P_REXB_{R,RM} indicates that the given register is the low byte.
598       For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
599       as otherwise the encoding indicates %[abcd]h.  Note that the values
600       that are ORed in merely indicate that the REX byte must be present;
601       those bits get discarded in output.  */
602    rex |= opc & (r >= 4 ? P_REXB_R : 0);
603    rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
604
605    if (rex) {
606        tcg_out8(s, (uint8_t)(rex | 0x40));
607    }
608
609    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
610        tcg_out8(s, 0x0f);
611        if (opc & P_EXT38) {
612            tcg_out8(s, 0x38);
613        } else if (opc & P_EXT3A) {
614            tcg_out8(s, 0x3a);
615        }
616    }
617
618    tcg_out8(s, opc);
619}
620#else
621static void tcg_out_opc(TCGContext *s, int opc)
622{
623    if (opc & P_DATA16) {
624        tcg_out8(s, 0x66);
625    }
626    if (opc & P_SIMDF3) {
627        tcg_out8(s, 0xf3);
628    } else if (opc & P_SIMDF2) {
629        tcg_out8(s, 0xf2);
630    }
631    if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
632        tcg_out8(s, 0x0f);
633        if (opc & P_EXT38) {
634            tcg_out8(s, 0x38);
635        } else if (opc & P_EXT3A) {
636            tcg_out8(s, 0x3a);
637        }
638    }
639    tcg_out8(s, opc);
640}
641/* Discard the register arguments to tcg_out_opc early, so as not to penalize
642   the 32-bit compilation paths.  This method works with all versions of gcc,
643   whereas relying on optimization may not be able to exclude them.  */
644#define tcg_out_opc(s, opc, r, rm, x)  (tcg_out_opc)(s, opc)
645#endif
646
647static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
648{
649    tcg_out_opc(s, opc, r, rm, 0);
650    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
651}
652
653static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
654                            int rm, int index)
655{
656    int tmp;
657
658    if (opc & P_GS) {
659        tcg_out8(s, 0x65);
660    }
661    /* Use the two byte form if possible, which cannot encode
662       VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT.  */
663    if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT
664        && ((rm | index) & 8) == 0) {
665        /* Two byte VEX prefix.  */
666        tcg_out8(s, 0xc5);
667
668        tmp = (r & 8 ? 0 : 0x80);              /* VEX.R */
669    } else {
670        /* Three byte VEX prefix.  */
671        tcg_out8(s, 0xc4);
672
673        /* VEX.m-mmmm */
674        if (opc & P_EXT3A) {
675            tmp = 3;
676        } else if (opc & P_EXT38) {
677            tmp = 2;
678        } else if (opc & P_EXT) {
679            tmp = 1;
680        } else {
681            g_assert_not_reached();
682        }
683        tmp |= (r & 8 ? 0 : 0x80);             /* VEX.R */
684        tmp |= (index & 8 ? 0 : 0x40);         /* VEX.X */
685        tmp |= (rm & 8 ? 0 : 0x20);            /* VEX.B */
686        tcg_out8(s, tmp);
687
688        tmp = (opc & P_VEXW ? 0x80 : 0);       /* VEX.W */
689    }
690
691    tmp |= (opc & P_VEXL ? 0x04 : 0);      /* VEX.L */
692    /* VEX.pp */
693    if (opc & P_DATA16) {
694        tmp |= 1;                          /* 0x66 */
695    } else if (opc & P_SIMDF3) {
696        tmp |= 2;                          /* 0xf3 */
697    } else if (opc & P_SIMDF2) {
698        tmp |= 3;                          /* 0xf2 */
699    }
700    tmp |= (~v & 15) << 3;                 /* VEX.vvvv */
701    tcg_out8(s, tmp);
702    tcg_out8(s, opc);
703}
704
705static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v,
706                             int rm, int index, int aaa, bool z)
707{
708    /* The entire 4-byte evex prefix; with R' and V' set. */
709    uint32_t p = 0x08041062;
710    int mm, pp;
711
712    tcg_debug_assert(have_avx512vl);
713
714    /* EVEX.mm */
715    if (opc & P_EXT3A) {
716        mm = 3;
717    } else if (opc & P_EXT38) {
718        mm = 2;
719    } else if (opc & P_EXT) {
720        mm = 1;
721    } else {
722        g_assert_not_reached();
723    }
724
725    /* EVEX.pp */
726    if (opc & P_DATA16) {
727        pp = 1;                          /* 0x66 */
728    } else if (opc & P_SIMDF3) {
729        pp = 2;                          /* 0xf3 */
730    } else if (opc & P_SIMDF2) {
731        pp = 3;                          /* 0xf2 */
732    } else {
733        pp = 0;
734    }
735
736    p = deposit32(p, 8, 2, mm);
737    p = deposit32(p, 13, 1, (rm & 8) == 0);             /* EVEX.RXB.B */
738    p = deposit32(p, 14, 1, (index & 8) == 0);          /* EVEX.RXB.X */
739    p = deposit32(p, 15, 1, (r & 8) == 0);              /* EVEX.RXB.R */
740    p = deposit32(p, 16, 2, pp);
741    p = deposit32(p, 19, 4, ~v);
742    p = deposit32(p, 23, 1, (opc & P_VEXW) != 0);
743    p = deposit32(p, 24, 3, aaa);
744    p = deposit32(p, 29, 2, (opc & P_VEXL) != 0);
745    p = deposit32(p, 31, 1, z);
746
747    tcg_out32(s, p);
748    tcg_out8(s, opc);
749}
750
751static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
752{
753    if (opc & P_EVEX) {
754        tcg_out_evex_opc(s, opc, r, v, rm, 0, 0, false);
755    } else {
756        tcg_out_vex_opc(s, opc, r, v, rm, 0);
757    }
758    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
759}
760
761static void tcg_out_vex_modrm_type(TCGContext *s, int opc,
762                                   int r, int v, int rm, TCGType type)
763{
764    if (type == TCG_TYPE_V256) {
765        opc |= P_VEXL;
766    }
767    tcg_out_vex_modrm(s, opc, r, v, rm);
768}
769
770static void tcg_out_evex_modrm_type(TCGContext *s, int opc, int r, int v,
771                                    int rm, int aaa, bool z, TCGType type)
772{
773    if (type == TCG_TYPE_V256) {
774        opc |= P_VEXL;
775    }
776    tcg_out_evex_opc(s, opc, r, v, rm, 0, aaa, z);
777    tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
778}
779
780/* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
781   We handle either RM and INDEX missing with a negative value.  In 64-bit
782   mode for absolute addresses, ~RM is the size of the immediate operand
783   that will follow the instruction.  */
784
785static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
786                               int shift, intptr_t offset)
787{
788    int mod, len;
789
790    if (index < 0 && rm < 0) {
791        if (TCG_TARGET_REG_BITS == 64) {
792            /* Try for a rip-relative addressing mode.  This has replaced
793               the 32-bit-mode absolute addressing encoding.  */
794            intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
795            intptr_t disp = offset - pc;
796            if (disp == (int32_t)disp) {
797                tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
798                tcg_out32(s, disp);
799                return;
800            }
801
802            /* Try for an absolute address encoding.  This requires the
803               use of the MODRM+SIB encoding and is therefore larger than
804               rip-relative addressing.  */
805            if (offset == (int32_t)offset) {
806                tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
807                tcg_out8(s, (4 << 3) | 5);
808                tcg_out32(s, offset);
809                return;
810            }
811
812            /* ??? The memory isn't directly addressable.  */
813            g_assert_not_reached();
814        } else {
815            /* Absolute address.  */
816            tcg_out8(s, (r << 3) | 5);
817            tcg_out32(s, offset);
818            return;
819        }
820    }
821
822    /* Find the length of the immediate addend.  Note that the encoding
823       that would be used for (%ebp) indicates absolute addressing.  */
824    if (rm < 0) {
825        mod = 0, len = 4, rm = 5;
826    } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
827        mod = 0, len = 0;
828    } else if (offset == (int8_t)offset) {
829        mod = 0x40, len = 1;
830    } else {
831        mod = 0x80, len = 4;
832    }
833
834    /* Use a single byte MODRM format if possible.  Note that the encoding
835       that would be used for %esp is the escape to the two byte form.  */
836    if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
837        /* Single byte MODRM format.  */
838        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
839    } else {
840        /* Two byte MODRM+SIB format.  */
841
842        /* Note that the encoding that would place %esp into the index
843           field indicates no index register.  In 64-bit mode, the REX.X
844           bit counts, so %r12 can be used as the index.  */
845        if (index < 0) {
846            index = 4;
847        } else {
848            tcg_debug_assert(index != TCG_REG_ESP);
849        }
850
851        tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
852        tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
853    }
854
855    if (len == 1) {
856        tcg_out8(s, offset);
857    } else if (len == 4) {
858        tcg_out32(s, offset);
859    }
860}
861
862static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
863                                     int index, int shift, intptr_t offset)
864{
865    tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
866    tcg_out_sib_offset(s, r, rm, index, shift, offset);
867}
868
869static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
870                                         int rm, int index, int shift,
871                                         intptr_t offset)
872{
873    tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
874    tcg_out_sib_offset(s, r, rm, index, shift, offset);
875}
876
877/* A simplification of the above with no index or shift.  */
878static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
879                                        int rm, intptr_t offset)
880{
881    tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
882}
883
884static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
885                                            int v, int rm, intptr_t offset)
886{
887    tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
888}
889
890/* Output an opcode with an expected reference to the constant pool.  */
891static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
892{
893    tcg_out_opc(s, opc, r, 0, 0);
894    /* Absolute for 32-bit, pc-relative for 64-bit.  */
895    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
896    tcg_out32(s, 0);
897}
898
899/* Output an opcode with an expected reference to the constant pool.  */
900static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
901{
902    tcg_out_vex_opc(s, opc, r, 0, 0, 0);
903    /* Absolute for 32-bit, pc-relative for 64-bit.  */
904    tcg_out8(s, LOWREGMASK(r) << 3 | 5);
905    tcg_out32(s, 0);
906}
907
908/* Generate dest op= src.  Uses the same ARITH_* codes as tgen_arithi.  */
909static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
910{
911    /* Propagate an opcode prefix, such as P_REXW.  */
912    int ext = subop & ~0x7;
913    subop &= 0x7;
914
915    tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
916}
917
918static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
919{
920    int rexw = 0;
921
922    if (arg == ret) {
923        return true;
924    }
925    switch (type) {
926    case TCG_TYPE_I64:
927        rexw = P_REXW;
928        /* fallthru */
929    case TCG_TYPE_I32:
930        if (ret < 16) {
931            if (arg < 16) {
932                tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
933            } else {
934                tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
935            }
936        } else {
937            if (arg < 16) {
938                tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
939            } else {
940                tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
941            }
942        }
943        break;
944
945    case TCG_TYPE_V64:
946        tcg_debug_assert(ret >= 16 && arg >= 16);
947        tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
948        break;
949    case TCG_TYPE_V128:
950        tcg_debug_assert(ret >= 16 && arg >= 16);
951        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
952        break;
953    case TCG_TYPE_V256:
954        tcg_debug_assert(ret >= 16 && arg >= 16);
955        tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
956        break;
957
958    default:
959        g_assert_not_reached();
960    }
961    return true;
962}
963
964static const int avx2_dup_insn[4] = {
965    OPC_VPBROADCASTB, OPC_VPBROADCASTW,
966    OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
967};
968
969static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
970                            TCGReg r, TCGReg a)
971{
972    if (have_avx2) {
973        tcg_out_vex_modrm_type(s, avx2_dup_insn[vece], r, 0, a, type);
974    } else {
975        switch (vece) {
976        case MO_8:
977            /* ??? With zero in a register, use PSHUFB.  */
978            tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
979            a = r;
980            /* FALLTHRU */
981        case MO_16:
982            tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
983            a = r;
984            /* FALLTHRU */
985        case MO_32:
986            tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
987            /* imm8 operand: all output lanes selected from input lane 0.  */
988            tcg_out8(s, 0);
989            break;
990        case MO_64:
991            tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
992            break;
993        default:
994            g_assert_not_reached();
995        }
996    }
997    return true;
998}
999
1000static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
1001                             TCGReg r, TCGReg base, intptr_t offset)
1002{
1003    if (have_avx2) {
1004        int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
1005        tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
1006                                 r, 0, base, offset);
1007    } else {
1008        switch (vece) {
1009        case MO_64:
1010            tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
1011            break;
1012        case MO_32:
1013            tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
1014            break;
1015        case MO_16:
1016            tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
1017            tcg_out8(s, 0); /* imm8 */
1018            tcg_out_dup_vec(s, type, vece, r, r);
1019            break;
1020        case MO_8:
1021            tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
1022            tcg_out8(s, 0); /* imm8 */
1023            tcg_out_dup_vec(s, type, vece, r, r);
1024            break;
1025        default:
1026            g_assert_not_reached();
1027        }
1028    }
1029    return true;
1030}
1031
1032static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
1033                             TCGReg ret, int64_t arg)
1034{
1035    int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
1036
1037    if (arg == 0) {
1038        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1039        return;
1040    }
1041    if (arg == -1) {
1042        tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
1043        return;
1044    }
1045
1046    if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) {
1047        if (have_avx2) {
1048            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
1049        } else {
1050            tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
1051        }
1052        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1053    } else {
1054        if (type == TCG_TYPE_V64) {
1055            tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
1056        } else if (have_avx2) {
1057            tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
1058        } else {
1059            tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
1060        }
1061        if (TCG_TARGET_REG_BITS == 64) {
1062            new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1063        } else {
1064            new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32);
1065        }
1066    }
1067}
1068
1069static void tcg_out_movi_vec(TCGContext *s, TCGType type,
1070                             TCGReg ret, tcg_target_long arg)
1071{
1072    if (arg == 0) {
1073        tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1074        return;
1075    }
1076    if (arg == -1) {
1077        tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret);
1078        return;
1079    }
1080
1081    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
1082    tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret);
1083    if (TCG_TARGET_REG_BITS == 64) {
1084        new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1085    } else {
1086        new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1087    }
1088}
1089
1090static void tcg_out_movi_int(TCGContext *s, TCGType type,
1091                             TCGReg ret, tcg_target_long arg)
1092{
1093    tcg_target_long diff;
1094
1095    if (arg == 0) {
1096        tgen_arithr(s, ARITH_XOR, ret, ret);
1097        return;
1098    }
1099    if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
1100        tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
1101        tcg_out32(s, arg);
1102        return;
1103    }
1104    if (arg == (int32_t)arg) {
1105        tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
1106        tcg_out32(s, arg);
1107        return;
1108    }
1109
1110    /* Try a 7 byte pc-relative lea before the 10 byte movq.  */
1111    diff = tcg_pcrel_diff(s, (const void *)arg) - 7;
1112    if (diff == (int32_t)diff) {
1113        tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
1114        tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
1115        tcg_out32(s, diff);
1116        return;
1117    }
1118
1119    tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
1120    tcg_out64(s, arg);
1121}
1122
1123static void tcg_out_movi(TCGContext *s, TCGType type,
1124                         TCGReg ret, tcg_target_long arg)
1125{
1126    switch (type) {
1127    case TCG_TYPE_I32:
1128#if TCG_TARGET_REG_BITS == 64
1129    case TCG_TYPE_I64:
1130#endif
1131        if (ret < 16) {
1132            tcg_out_movi_int(s, type, ret, arg);
1133        } else {
1134            tcg_out_movi_vec(s, type, ret, arg);
1135        }
1136        break;
1137    default:
1138        g_assert_not_reached();
1139    }
1140}
1141
1142static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
1143{
1144    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1145    tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2);
1146    return true;
1147}
1148
1149static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
1150                             tcg_target_long imm)
1151{
1152    /* This function is only used for passing structs by reference. */
1153    tcg_debug_assert(imm == (int32_t)imm);
1154    tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm);
1155}
1156
1157static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
1158{
1159    if (val == (int8_t)val) {
1160        tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
1161        tcg_out8(s, val);
1162    } else if (val == (int32_t)val) {
1163        tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
1164        tcg_out32(s, val);
1165    } else {
1166        g_assert_not_reached();
1167    }
1168}
1169
1170static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
1171{
1172    /* Given the strength of x86 memory ordering, we only need care for
1173       store-load ordering.  Experimentally, "lock orl $0,0(%esp)" is
1174       faster than "mfence", so don't bother with the sse insn.  */
1175    if (a0 & TCG_MO_ST_LD) {
1176        tcg_out8(s, 0xf0);
1177        tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
1178        tcg_out8(s, 0);
1179    }
1180}
1181
1182static inline void tcg_out_push(TCGContext *s, int reg)
1183{
1184    tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
1185}
1186
1187static inline void tcg_out_pop(TCGContext *s, int reg)
1188{
1189    tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
1190}
1191
1192static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1193                       TCGReg arg1, intptr_t arg2)
1194{
1195    switch (type) {
1196    case TCG_TYPE_I32:
1197        if (ret < 16) {
1198            tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
1199        } else {
1200            tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
1201        }
1202        break;
1203    case TCG_TYPE_I64:
1204        if (ret < 16) {
1205            tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
1206            break;
1207        }
1208        /* FALLTHRU */
1209    case TCG_TYPE_V64:
1210        /* There is no instruction that can validate 8-byte alignment.  */
1211        tcg_debug_assert(ret >= 16);
1212        tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
1213        break;
1214    case TCG_TYPE_V128:
1215        /*
1216         * The gvec infrastructure is asserts that v128 vector loads
1217         * and stores use a 16-byte aligned offset.  Validate that the
1218         * final pointer is aligned by using an insn that will SIGSEGV.
1219         */
1220        tcg_debug_assert(ret >= 16);
1221        tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
1222        break;
1223    case TCG_TYPE_V256:
1224        /*
1225         * The gvec infrastructure only requires 16-byte alignment,
1226         * so here we must use an unaligned load.
1227         */
1228        tcg_debug_assert(ret >= 16);
1229        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
1230                                 ret, 0, arg1, arg2);
1231        break;
1232    default:
1233        g_assert_not_reached();
1234    }
1235}
1236
1237static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1238                       TCGReg arg1, intptr_t arg2)
1239{
1240    switch (type) {
1241    case TCG_TYPE_I32:
1242        if (arg < 16) {
1243            tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
1244        } else {
1245            tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
1246        }
1247        break;
1248    case TCG_TYPE_I64:
1249        if (arg < 16) {
1250            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
1251            break;
1252        }
1253        /* FALLTHRU */
1254    case TCG_TYPE_V64:
1255        /* There is no instruction that can validate 8-byte alignment.  */
1256        tcg_debug_assert(arg >= 16);
1257        tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
1258        break;
1259    case TCG_TYPE_V128:
1260        /*
1261         * The gvec infrastructure is asserts that v128 vector loads
1262         * and stores use a 16-byte aligned offset.  Validate that the
1263         * final pointer is aligned by using an insn that will SIGSEGV.
1264         *
1265         * This specific instance is also used by TCG_CALL_RET_BY_VEC,
1266         * for _WIN64, which must have SSE2 but may not have AVX.
1267         */
1268        tcg_debug_assert(arg >= 16);
1269        if (have_avx1) {
1270            tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
1271        } else {
1272            tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2);
1273        }
1274        break;
1275    case TCG_TYPE_V256:
1276        /*
1277         * The gvec infrastructure only requires 16-byte alignment,
1278         * so here we must use an unaligned store.
1279         */
1280        tcg_debug_assert(arg >= 16);
1281        tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
1282                                 arg, 0, arg1, arg2);
1283        break;
1284    default:
1285        g_assert_not_reached();
1286    }
1287}
1288
1289static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1290                        TCGReg base, intptr_t ofs)
1291{
1292    int rexw = 0;
1293    if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
1294        if (val != (int32_t)val) {
1295            return false;
1296        }
1297        rexw = P_REXW;
1298    } else if (type != TCG_TYPE_I32) {
1299        return false;
1300    }
1301    tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
1302    tcg_out32(s, val);
1303    return true;
1304}
1305
1306static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
1307{
1308    /* Propagate an opcode prefix, such as P_DATA16.  */
1309    int ext = subopc & ~0x7;
1310    subopc &= 0x7;
1311
1312    if (count == 1) {
1313        tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
1314    } else {
1315        tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
1316        tcg_out8(s, count);
1317    }
1318}
1319
1320static inline void tcg_out_bswap32(TCGContext *s, int reg)
1321{
1322    tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
1323}
1324
1325static inline void tcg_out_rolw_8(TCGContext *s, int reg)
1326{
1327    tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
1328}
1329
1330static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src)
1331{
1332    if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
1333        tcg_out_mov(s, TCG_TYPE_I32, dest, src);
1334        if (dest >= 4) {
1335            tcg_out_modrm(s, OPC_ARITH_EvIz, ARITH_AND, dest);
1336            tcg_out32(s, 0xff);
1337            return;
1338        }
1339        src = dest;
1340    }
1341    tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
1342}
1343
1344static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1345{
1346    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1347
1348    if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
1349        tcg_out_mov(s, TCG_TYPE_I32, dest, src);
1350        if (dest >= 4) {
1351            tcg_out_shifti(s, SHIFT_SHL, dest, 24);
1352            tcg_out_shifti(s, SHIFT_SAR, dest, 24);
1353            return;
1354        }
1355        src = dest;
1356    }
1357    tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
1358}
1359
1360static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src)
1361{
1362    /* movzwl */
1363    tcg_out_modrm(s, OPC_MOVZWL, dest, src);
1364}
1365
1366static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
1367{
1368    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
1369    /* movsw[lq] */
1370    tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
1371}
1372
1373static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
1374{
1375    /* 32-bit mov zero extends.  */
1376    tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
1377}
1378
1379static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
1380{
1381    tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
1382    tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
1383}
1384
1385static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1386{
1387    tcg_out_ext32s(s, dest, src);
1388}
1389
1390static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
1391{
1392    if (dest != src) {
1393        tcg_out_ext32u(s, dest, src);
1394    }
1395}
1396
1397static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src)
1398{
1399    tcg_out_ext32u(s, dest, src);
1400}
1401
1402static inline void tcg_out_bswap64(TCGContext *s, int reg)
1403{
1404    tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
1405}
1406
1407static void tgen_arithi(TCGContext *s, int c, int r0,
1408                        tcg_target_long val, int cf)
1409{
1410    int rexw = 0;
1411
1412    if (TCG_TARGET_REG_BITS == 64) {
1413        rexw = c & -8;
1414        c &= 7;
1415    }
1416
1417    switch (c) {
1418    case ARITH_ADD:
1419    case ARITH_SUB:
1420        if (!cf) {
1421            /*
1422             * ??? While INC is 2 bytes shorter than ADDL $1, they also induce
1423             * partial flags update stalls on Pentium4 and are not recommended
1424             * by current Intel optimization manuals.
1425             */
1426            if (val == 1 || val == -1) {
1427                int is_inc = (c == ARITH_ADD) ^ (val < 0);
1428                if (TCG_TARGET_REG_BITS == 64) {
1429                    /*
1430                     * The single-byte increment encodings are re-tasked
1431                     * as the REX prefixes.  Use the MODRM encoding.
1432                     */
1433                    tcg_out_modrm(s, OPC_GRP5 + rexw,
1434                                  (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
1435                } else {
1436                    tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
1437                }
1438                return;
1439            }
1440            if (val == 128) {
1441                /*
1442                 * Facilitate using an 8-bit immediate.  Carry is inverted
1443                 * by this transformation, so do it only if cf == 0.
1444                 */
1445                c ^= ARITH_ADD ^ ARITH_SUB;
1446                val = -128;
1447            }
1448        }
1449        break;
1450
1451    case ARITH_AND:
1452        if (TCG_TARGET_REG_BITS == 64) {
1453            if (val == 0xffffffffu) {
1454                tcg_out_ext32u(s, r0, r0);
1455                return;
1456            }
1457            if (val == (uint32_t)val) {
1458                /* AND with no high bits set can use a 32-bit operation.  */
1459                rexw = 0;
1460            }
1461        }
1462        if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1463            tcg_out_ext8u(s, r0, r0);
1464            return;
1465        }
1466        if (val == 0xffffu) {
1467            tcg_out_ext16u(s, r0, r0);
1468            return;
1469        }
1470        break;
1471
1472    case ARITH_OR:
1473    case ARITH_XOR:
1474        if (val >= 0x80 && val <= 0xff
1475            && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1476            tcg_out_modrm(s, OPC_ARITH_EbIb + P_REXB_RM, c, r0);
1477            tcg_out8(s, val);
1478            return;
1479        }
1480        break;
1481    }
1482
1483    if (val == (int8_t)val) {
1484        tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
1485        tcg_out8(s, val);
1486        return;
1487    }
1488    if (rexw == 0 || val == (int32_t)val) {
1489        tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
1490        tcg_out32(s, val);
1491        return;
1492    }
1493
1494    g_assert_not_reached();
1495}
1496
1497static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
1498{
1499    if (val != 0) {
1500        tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
1501    }
1502}
1503
1504/* Set SMALL to force a short forward branch.  */
1505static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small)
1506{
1507    int32_t val, val1;
1508
1509    if (l->has_value) {
1510        val = tcg_pcrel_diff(s, l->u.value_ptr);
1511        val1 = val - 2;
1512        if ((int8_t)val1 == val1) {
1513            if (opc == -1) {
1514                tcg_out8(s, OPC_JMP_short);
1515            } else {
1516                tcg_out8(s, OPC_JCC_short + opc);
1517            }
1518            tcg_out8(s, val1);
1519        } else {
1520            tcg_debug_assert(!small);
1521            if (opc == -1) {
1522                tcg_out8(s, OPC_JMP_long);
1523                tcg_out32(s, val - 5);
1524            } else {
1525                tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1526                tcg_out32(s, val - 6);
1527            }
1528        }
1529    } else if (small) {
1530        if (opc == -1) {
1531            tcg_out8(s, OPC_JMP_short);
1532        } else {
1533            tcg_out8(s, OPC_JCC_short + opc);
1534        }
1535        tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
1536        s->code_ptr += 1;
1537    } else {
1538        if (opc == -1) {
1539            tcg_out8(s, OPC_JMP_long);
1540        } else {
1541            tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1542        }
1543        tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
1544        s->code_ptr += 4;
1545    }
1546}
1547
1548static int tcg_out_cmp(TCGContext *s, TCGCond cond, TCGArg arg1,
1549                       TCGArg arg2, int const_arg2, int rexw)
1550{
1551    int jz, js;
1552
1553    if (!is_tst_cond(cond)) {
1554        if (!const_arg2) {
1555            tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
1556        } else if (arg2 == 0) {
1557            tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
1558        } else {
1559            tcg_debug_assert(!rexw || arg2 == (int32_t)arg2);
1560            tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
1561        }
1562        return tcg_cond_to_jcc[cond];
1563    }
1564
1565    jz = tcg_cond_to_jcc[cond];
1566    js = (cond == TCG_COND_TSTNE ? JCC_JS : JCC_JNS);
1567
1568    if (!const_arg2) {
1569        tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg2);
1570        return jz;
1571    }
1572
1573    if (arg2 <= 0xff && (TCG_TARGET_REG_BITS == 64 || arg1 < 4)) {
1574        if (arg2 == 0x80) {
1575            tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
1576            return js;
1577        }
1578        if (arg2 == 0xff) {
1579            tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
1580            return jz;
1581        }
1582        tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, arg1);
1583        tcg_out8(s, arg2);
1584        return jz;
1585    }
1586
1587    if ((arg2 & ~0xff00) == 0 && arg1 < 4) {
1588        if (arg2 == 0x8000) {
1589            tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
1590            return js;
1591        }
1592        if (arg2 == 0xff00) {
1593            tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
1594            return jz;
1595        }
1596        tcg_out_modrm(s, OPC_GRP3_Eb, EXT3_TESTi, arg1 + 4);
1597        tcg_out8(s, arg2 >> 8);
1598        return jz;
1599    }
1600
1601    if (arg2 == 0xffff) {
1602        tcg_out_modrm(s, OPC_TESTL | P_DATA16, arg1, arg1);
1603        return jz;
1604    }
1605    if (arg2 == 0xffffffffu) {
1606        tcg_out_modrm(s, OPC_TESTL, arg1, arg1);
1607        return jz;
1608    }
1609
1610    if (is_power_of_2(rexw ? arg2 : (uint32_t)arg2)) {
1611        int jc = (cond == TCG_COND_TSTNE ? JCC_JB : JCC_JAE);
1612        int sh = ctz64(arg2);
1613
1614        rexw = (sh & 32 ? P_REXW : 0);
1615        if ((sh & 31) == 31) {
1616            tcg_out_modrm(s, OPC_TESTL | rexw, arg1, arg1);
1617            return js;
1618        } else {
1619            tcg_out_modrm(s, OPC_GRPBT | rexw, OPC_GRPBT_BT, arg1);
1620            tcg_out8(s, sh);
1621            return jc;
1622        }
1623    }
1624
1625    if (rexw) {
1626        if (arg2 == (uint32_t)arg2) {
1627            rexw = 0;
1628        } else {
1629            tcg_debug_assert(arg2 == (int32_t)arg2);
1630        }
1631    }
1632    tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_TESTi, arg1);
1633    tcg_out32(s, arg2);
1634    return jz;
1635}
1636
1637static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond,
1638                           TCGArg arg1, TCGArg arg2, int const_arg2,
1639                           TCGLabel *label, bool small)
1640{
1641    int jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, rexw);
1642    tcg_out_jxx(s, jcc, label, small);
1643}
1644
1645#if TCG_TARGET_REG_BITS == 32
1646static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
1647                            const int *const_args, bool small)
1648{
1649    TCGLabel *label_next = gen_new_label();
1650    TCGLabel *label_this = arg_label(args[5]);
1651    TCGCond cond = args[4];
1652
1653    switch (cond) {
1654    case TCG_COND_EQ:
1655    case TCG_COND_TSTEQ:
1656        tcg_out_brcond(s, 0, tcg_invert_cond(cond),
1657                       args[0], args[2], const_args[2], label_next, 1);
1658        tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3],
1659                       label_this, small);
1660        break;
1661
1662    case TCG_COND_NE:
1663    case TCG_COND_TSTNE:
1664        tcg_out_brcond(s, 0, cond, args[0], args[2], const_args[2],
1665                       label_this, small);
1666        tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3],
1667                       label_this, small);
1668        break;
1669
1670    default:
1671        tcg_out_brcond(s, 0, tcg_high_cond(cond), args[1],
1672                       args[3], const_args[3], label_this, small);
1673        tcg_out_jxx(s, JCC_JNE, label_next, 1);
1674        tcg_out_brcond(s, 0, tcg_unsigned_cond(cond), args[0],
1675                       args[2], const_args[2], label_this, small);
1676        break;
1677    }
1678    tcg_out_label(s, label_next);
1679}
1680#endif
1681
1682static void tcg_out_setcond(TCGContext *s, int rexw, TCGCond cond,
1683                            TCGArg dest, TCGArg arg1, TCGArg arg2,
1684                            int const_arg2, bool neg)
1685{
1686    int cmp_rexw = rexw;
1687    bool inv = false;
1688    bool cleared;
1689    int jcc;
1690
1691    switch (cond) {
1692    case TCG_COND_NE:
1693        inv = true;
1694        /* fall through */
1695    case TCG_COND_EQ:
1696        /* If arg2 is 0, convert to LTU/GEU vs 1. */
1697        if (const_arg2 && arg2 == 0) {
1698            arg2 = 1;
1699            goto do_ltu;
1700        }
1701        break;
1702
1703    case TCG_COND_TSTNE:
1704        inv = true;
1705        /* fall through */
1706    case TCG_COND_TSTEQ:
1707        /* If arg2 is -1, convert to LTU/GEU vs 1. */
1708        if (const_arg2 && arg2 == 0xffffffffu) {
1709            arg2 = 1;
1710            cmp_rexw = 0;
1711            goto do_ltu;
1712        }
1713        break;
1714
1715    case TCG_COND_LEU:
1716        inv = true;
1717        /* fall through */
1718    case TCG_COND_GTU:
1719        /* If arg2 is a register, swap for LTU/GEU. */
1720        if (!const_arg2) {
1721            TCGReg t = arg1;
1722            arg1 = arg2;
1723            arg2 = t;
1724            goto do_ltu;
1725        }
1726        break;
1727
1728    case TCG_COND_GEU:
1729        inv = true;
1730        /* fall through */
1731    case TCG_COND_LTU:
1732    do_ltu:
1733        /*
1734         * Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU.
1735         * We can then use NEG or INC to produce the desired result.
1736         * This is always smaller than the SETCC expansion.
1737         */
1738        tcg_out_cmp(s, TCG_COND_LTU, arg1, arg2, const_arg2, cmp_rexw);
1739
1740        /* X - X - C = -C = (C ? -1 : 0) */
1741        tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest);
1742        if (inv && neg) {
1743            /* ~(C ? -1 : 0) = (C ? 0 : -1) */
1744            tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
1745        } else if (inv) {
1746            /* (C ? -1 : 0) + 1 = (C ? 0 : 1) */
1747            tgen_arithi(s, ARITH_ADD, dest, 1, 0);
1748        } else if (!neg) {
1749            /* -(C ? -1 : 0) = (C ? 1 : 0) */
1750            tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest);
1751        }
1752        return;
1753
1754    case TCG_COND_GE:
1755        inv = true;
1756        /* fall through */
1757    case TCG_COND_LT:
1758        /* If arg2 is 0, extract the sign bit. */
1759        if (const_arg2 && arg2 == 0) {
1760            tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, dest, arg1);
1761            if (inv) {
1762                tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
1763            }
1764            tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw,
1765                           dest, rexw ? 63 : 31);
1766            return;
1767        }
1768        break;
1769
1770    default:
1771        break;
1772    }
1773
1774    /*
1775     * If dest does not overlap the inputs, clearing it first is preferred.
1776     * The XOR breaks any false dependency for the low-byte write to dest,
1777     * and is also one byte smaller than MOVZBL.
1778     */
1779    cleared = false;
1780    if (dest != arg1 && (const_arg2 || dest != arg2)) {
1781        tgen_arithr(s, ARITH_XOR, dest, dest);
1782        cleared = true;
1783    }
1784
1785    jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, cmp_rexw);
1786    tcg_out_modrm(s, OPC_SETCC | jcc, 0, dest);
1787
1788    if (!cleared) {
1789        tcg_out_ext8u(s, dest, dest);
1790    }
1791    if (neg) {
1792        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest);
1793    }
1794}
1795
1796#if TCG_TARGET_REG_BITS == 32
1797static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1798                             const int *const_args)
1799{
1800    TCGArg new_args[6];
1801    TCGLabel *label_true, *label_over;
1802
1803    memcpy(new_args, args+1, 5*sizeof(TCGArg));
1804
1805    if (args[0] == args[1] || args[0] == args[2]
1806        || (!const_args[3] && args[0] == args[3])
1807        || (!const_args[4] && args[0] == args[4])) {
1808        /* When the destination overlaps with one of the argument
1809           registers, don't do anything tricky.  */
1810        label_true = gen_new_label();
1811        label_over = gen_new_label();
1812
1813        new_args[5] = label_arg(label_true);
1814        tcg_out_brcond2(s, new_args, const_args+1, 1);
1815
1816        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1817        tcg_out_jxx(s, JCC_JMP, label_over, 1);
1818        tcg_out_label(s, label_true);
1819
1820        tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1821        tcg_out_label(s, label_over);
1822    } else {
1823        /* When the destination does not overlap one of the arguments,
1824           clear the destination first, jump if cond false, and emit an
1825           increment in the true case.  This results in smaller code.  */
1826
1827        tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1828
1829        label_over = gen_new_label();
1830        new_args[4] = tcg_invert_cond(new_args[4]);
1831        new_args[5] = label_arg(label_over);
1832        tcg_out_brcond2(s, new_args, const_args+1, 1);
1833
1834        tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1835        tcg_out_label(s, label_over);
1836    }
1837}
1838#endif
1839
1840static void tcg_out_cmov(TCGContext *s, int jcc, int rexw,
1841                         TCGReg dest, TCGReg v1)
1842{
1843    tcg_out_modrm(s, OPC_CMOVCC | jcc | rexw, dest, v1);
1844}
1845
1846static void tcg_out_movcond(TCGContext *s, int rexw, TCGCond cond,
1847                            TCGReg dest, TCGReg c1, TCGArg c2, int const_c2,
1848                            TCGReg v1)
1849{
1850    int jcc = tcg_out_cmp(s, cond, c1, c2, const_c2, rexw);
1851    tcg_out_cmov(s, jcc, rexw, dest, v1);
1852}
1853
1854static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1855                        TCGArg arg2, bool const_a2)
1856{
1857    if (have_bmi1) {
1858        tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1);
1859        if (const_a2) {
1860            tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1861        } else {
1862            tcg_debug_assert(dest != arg2);
1863            tcg_out_cmov(s, JCC_JB, rexw, dest, arg2);
1864        }
1865    } else {
1866        tcg_debug_assert(dest != arg2);
1867        tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1);
1868        tcg_out_cmov(s, JCC_JE, rexw, dest, arg2);
1869    }
1870}
1871
1872static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1873                        TCGArg arg2, bool const_a2)
1874{
1875    if (have_lzcnt) {
1876        tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1);
1877        if (const_a2) {
1878            tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1879        } else {
1880            tcg_debug_assert(dest != arg2);
1881            tcg_out_cmov(s, JCC_JB, rexw, dest, arg2);
1882        }
1883    } else {
1884        tcg_debug_assert(!const_a2);
1885        tcg_debug_assert(dest != arg1);
1886        tcg_debug_assert(dest != arg2);
1887
1888        /* Recall that the output of BSR is the index not the count.  */
1889        tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1);
1890        tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0);
1891
1892        /* Since we have destroyed the flags from BSR, we have to re-test.  */
1893        int jcc = tcg_out_cmp(s, TCG_COND_EQ, arg1, 0, 1, rexw);
1894        tcg_out_cmov(s, jcc, rexw, dest, arg2);
1895    }
1896}
1897
1898static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest)
1899{
1900    intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1901
1902    if (disp == (int32_t)disp) {
1903        tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1904        tcg_out32(s, disp);
1905    } else {
1906        /* rip-relative addressing into the constant pool.
1907           This is 6 + 8 = 14 bytes, as compared to using an
1908           immediate load 10 + 6 = 16 bytes, plus we may
1909           be able to re-use the pool constant for more calls.  */
1910        tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
1911        tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
1912        new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
1913        tcg_out32(s, 0);
1914    }
1915}
1916
1917static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
1918                         const TCGHelperInfo *info)
1919{
1920    tcg_out_branch(s, 1, dest);
1921
1922#ifndef _WIN32
1923    if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) {
1924        /*
1925         * The sysv i386 abi for struct return places a reference as the
1926         * first argument of the stack, and pops that argument with the
1927         * return statement.  Since we want to retain the aligned stack
1928         * pointer for the callee, we do not want to actually push that
1929         * argument before the call but rely on the normal store to the
1930         * stack slot.  But we do need to compensate for the pop in order
1931         * to reset our correct stack pointer value.
1932         * Pushing a garbage value back onto the stack is quickest.
1933         */
1934        tcg_out_push(s, TCG_REG_EAX);
1935    }
1936#endif
1937}
1938
1939static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest)
1940{
1941    tcg_out_branch(s, 0, dest);
1942}
1943
1944static void tcg_out_nopn(TCGContext *s, int n)
1945{
1946    int i;
1947    /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1948     * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1949     * duplicate prefix, and all of the interesting recent cores can
1950     * decode and discard the duplicates in a single cycle.
1951     */
1952    tcg_debug_assert(n >= 1);
1953    for (i = 1; i < n; ++i) {
1954        tcg_out8(s, 0x66);
1955    }
1956    tcg_out8(s, 0x90);
1957}
1958
1959typedef struct {
1960    TCGReg base;
1961    int index;
1962    int ofs;
1963    int seg;
1964    TCGAtomAlign aa;
1965} HostAddress;
1966
1967bool tcg_target_has_memory_bswap(MemOp memop)
1968{
1969    TCGAtomAlign aa;
1970
1971    if (!have_movbe) {
1972        return false;
1973    }
1974    if ((memop & MO_SIZE) < MO_128) {
1975        return true;
1976    }
1977
1978    /*
1979     * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA,
1980     * but do allow a pair of 64-bit operations, i.e. MOVBEQ.
1981     */
1982    aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true);
1983    return aa.atom < MO_128;
1984}
1985
1986/*
1987 * Because i686 has no register parameters and because x86_64 has xchg
1988 * to handle addr/data register overlap, we have placed all input arguments
1989 * before we need might need a scratch reg.
1990 *
1991 * Even then, a scratch is only needed for l->raddr.  Rather than expose
1992 * a general-purpose scratch when we don't actually know it's available,
1993 * use the ra_gen hook to load into RAX if needed.
1994 */
1995#if TCG_TARGET_REG_BITS == 64
1996static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg)
1997{
1998    if (arg < 0) {
1999        arg = TCG_REG_RAX;
2000    }
2001    tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr);
2002    return arg;
2003}
2004static const TCGLdstHelperParam ldst_helper_param = {
2005    .ra_gen = ldst_ra_gen
2006};
2007#else
2008static const TCGLdstHelperParam ldst_helper_param = { };
2009#endif
2010
2011static void tcg_out_vec_to_pair(TCGContext *s, TCGType type,
2012                                TCGReg l, TCGReg h, TCGReg v)
2013{
2014    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2015
2016    /* vpmov{d,q} %v, %l */
2017    tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l);
2018    /* vpextr{d,q} $1, %v, %h */
2019    tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h);
2020    tcg_out8(s, 1);
2021}
2022
2023static void tcg_out_pair_to_vec(TCGContext *s, TCGType type,
2024                                TCGReg v, TCGReg l, TCGReg h)
2025{
2026    int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2027
2028    /* vmov{d,q} %l, %v */
2029    tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l);
2030    /* vpinsr{d,q} $1, %h, %v, %v */
2031    tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h);
2032    tcg_out8(s, 1);
2033}
2034
2035/*
2036 * Generate code for the slow path for a load at the end of block
2037 */
2038static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2039{
2040    MemOp opc = get_memop(l->oi);
2041    tcg_insn_unit **label_ptr = &l->label_ptr[0];
2042
2043    /* resolve label address */
2044    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
2045    if (label_ptr[1]) {
2046        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
2047    }
2048
2049    tcg_out_ld_helper_args(s, l, &ldst_helper_param);
2050    tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]);
2051    tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param);
2052
2053    tcg_out_jmp(s, l->raddr);
2054    return true;
2055}
2056
2057/*
2058 * Generate code for the slow path for a store at the end of block
2059 */
2060static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2061{
2062    MemOp opc = get_memop(l->oi);
2063    tcg_insn_unit **label_ptr = &l->label_ptr[0];
2064
2065    /* resolve label address */
2066    tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
2067    if (label_ptr[1]) {
2068        tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
2069    }
2070
2071    tcg_out_st_helper_args(s, l, &ldst_helper_param);
2072    tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]);
2073
2074    tcg_out_jmp(s, l->raddr);
2075    return true;
2076}
2077
2078#ifdef CONFIG_USER_ONLY
2079static HostAddress x86_guest_base = {
2080    .index = -1
2081};
2082
2083#if defined(__x86_64__) && defined(__linux__)
2084# include <asm/prctl.h>
2085# include <sys/prctl.h>
2086int arch_prctl(int code, unsigned long addr);
2087static inline int setup_guest_base_seg(void)
2088{
2089    if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
2090        return P_GS;
2091    }
2092    return 0;
2093}
2094#define setup_guest_base_seg  setup_guest_base_seg
2095#elif defined(__x86_64__) && \
2096      (defined (__FreeBSD__) || defined (__FreeBSD_kernel__))
2097# include <machine/sysarch.h>
2098static inline int setup_guest_base_seg(void)
2099{
2100    if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
2101        return P_GS;
2102    }
2103    return 0;
2104}
2105#define setup_guest_base_seg  setup_guest_base_seg
2106#endif
2107#else
2108# define x86_guest_base (*(HostAddress *)({ qemu_build_not_reached(); NULL; }))
2109#endif /* CONFIG_USER_ONLY */
2110#ifndef setup_guest_base_seg
2111# define setup_guest_base_seg()  0
2112#endif
2113
2114#define MIN_TLB_MASK_TABLE_OFS  INT_MIN
2115
2116/*
2117 * For softmmu, perform the TLB load and compare.
2118 * For useronly, perform any required alignment tests.
2119 * In both cases, return a TCGLabelQemuLdst structure if the slow path
2120 * is required and fill in @h with the host address for the fast path.
2121 */
2122static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
2123                                           TCGReg addr, MemOpIdx oi, bool is_ld)
2124{
2125    TCGLabelQemuLdst *ldst = NULL;
2126    MemOp opc = get_memop(oi);
2127    MemOp s_bits = opc & MO_SIZE;
2128    unsigned a_mask;
2129
2130    if (tcg_use_softmmu) {
2131        h->index = TCG_REG_L0;
2132        h->ofs = 0;
2133        h->seg = 0;
2134    } else {
2135        *h = x86_guest_base;
2136    }
2137    h->base = addr;
2138    h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128);
2139    a_mask = (1 << h->aa.align) - 1;
2140
2141    if (tcg_use_softmmu) {
2142        int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read)
2143                            : offsetof(CPUTLBEntry, addr_write);
2144        TCGType ttype = TCG_TYPE_I32;
2145        TCGType tlbtype = TCG_TYPE_I32;
2146        int trexw = 0, hrexw = 0, tlbrexw = 0;
2147        unsigned mem_index = get_mmuidx(oi);
2148        unsigned s_mask = (1 << s_bits) - 1;
2149        int fast_ofs = tlb_mask_table_ofs(s, mem_index);
2150        int tlb_mask;
2151
2152        ldst = new_ldst_label(s);
2153        ldst->is_ld = is_ld;
2154        ldst->oi = oi;
2155        ldst->addr_reg = addr;
2156
2157        if (TCG_TARGET_REG_BITS == 64) {
2158            ttype = s->addr_type;
2159            trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW);
2160            if (TCG_TYPE_PTR == TCG_TYPE_I64) {
2161                hrexw = P_REXW;
2162                if (s->page_bits + s->tlb_dyn_max_bits > 32) {
2163                    tlbtype = TCG_TYPE_I64;
2164                    tlbrexw = P_REXW;
2165                }
2166            }
2167        }
2168
2169        tcg_out_mov(s, tlbtype, TCG_REG_L0, addr);
2170        tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0,
2171                       s->page_bits - CPU_TLB_ENTRY_BITS);
2172
2173        tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0,
2174                             fast_ofs + offsetof(CPUTLBDescFast, mask));
2175
2176        tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0,
2177                             fast_ofs + offsetof(CPUTLBDescFast, table));
2178
2179        /*
2180         * If the required alignment is at least as large as the access,
2181         * simply copy the address and mask.  For lesser alignments,
2182         * check that we don't cross pages for the complete access.
2183         */
2184        if (a_mask >= s_mask) {
2185            tcg_out_mov(s, ttype, TCG_REG_L1, addr);
2186        } else {
2187            tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1,
2188                                 addr, s_mask - a_mask);
2189        }
2190        tlb_mask = s->page_mask | a_mask;
2191        tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0);
2192
2193        /* cmp 0(TCG_REG_L0), TCG_REG_L1 */
2194        tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw,
2195                             TCG_REG_L1, TCG_REG_L0, cmp_ofs);
2196
2197        /* jne slow_path */
2198        tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
2199        ldst->label_ptr[0] = s->code_ptr;
2200        s->code_ptr += 4;
2201
2202        /* TLB Hit.  */
2203        tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0,
2204                   offsetof(CPUTLBEntry, addend));
2205    } else if (a_mask) {
2206        int jcc;
2207
2208        ldst = new_ldst_label(s);
2209        ldst->is_ld = is_ld;
2210        ldst->oi = oi;
2211        ldst->addr_reg = addr;
2212
2213        /* jne slow_path */
2214        jcc = tcg_out_cmp(s, TCG_COND_TSTNE, addr, a_mask, true, false);
2215        tcg_out_opc(s, OPC_JCC_long + jcc, 0, 0, 0);
2216        ldst->label_ptr[0] = s->code_ptr;
2217        s->code_ptr += 4;
2218    }
2219
2220    return ldst;
2221}
2222
2223static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2224                                   HostAddress h, TCGType type, MemOp memop)
2225{
2226    bool use_movbe = false;
2227    int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
2228    int movop = OPC_MOVL_GvEv;
2229
2230    /* Do big-endian loads with movbe.  */
2231    if (memop & MO_BSWAP) {
2232        tcg_debug_assert(have_movbe);
2233        use_movbe = true;
2234        movop = OPC_MOVBE_GyMy;
2235    }
2236
2237    switch (memop & MO_SSIZE) {
2238    case MO_UB:
2239        tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo,
2240                                 h.base, h.index, 0, h.ofs);
2241        break;
2242    case MO_SB:
2243        tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo,
2244                                 h.base, h.index, 0, h.ofs);
2245        break;
2246    case MO_UW:
2247        if (use_movbe) {
2248            /* There is no extending movbe; only low 16-bits are modified.  */
2249            if (datalo != h.base && datalo != h.index) {
2250                /* XOR breaks dependency chains.  */
2251                tgen_arithr(s, ARITH_XOR, datalo, datalo);
2252                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2253                                         datalo, h.base, h.index, 0, h.ofs);
2254            } else {
2255                tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2256                                         datalo, h.base, h.index, 0, h.ofs);
2257                tcg_out_ext16u(s, datalo, datalo);
2258            }
2259        } else {
2260            tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo,
2261                                     h.base, h.index, 0, h.ofs);
2262        }
2263        break;
2264    case MO_SW:
2265        if (use_movbe) {
2266            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
2267                                     datalo, h.base, h.index, 0, h.ofs);
2268            tcg_out_ext16s(s, type, datalo, datalo);
2269        } else {
2270            tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg,
2271                                     datalo, h.base, h.index, 0, h.ofs);
2272        }
2273        break;
2274    case MO_UL:
2275        tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2276                                 h.base, h.index, 0, h.ofs);
2277        break;
2278#if TCG_TARGET_REG_BITS == 64
2279    case MO_SL:
2280        if (use_movbe) {
2281            tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo,
2282                                     h.base, h.index, 0, h.ofs);
2283            tcg_out_ext32s(s, datalo, datalo);
2284        } else {
2285            tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo,
2286                                     h.base, h.index, 0, h.ofs);
2287        }
2288        break;
2289#endif
2290    case MO_UQ:
2291        if (TCG_TARGET_REG_BITS == 64) {
2292            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2293                                     h.base, h.index, 0, h.ofs);
2294            break;
2295        }
2296        if (use_movbe) {
2297            TCGReg t = datalo;
2298            datalo = datahi;
2299            datahi = t;
2300        }
2301        if (h.base == datalo || h.index == datalo) {
2302            tcg_out_modrm_sib_offset(s, OPC_LEA, datahi,
2303                                     h.base, h.index, 0, h.ofs);
2304            tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0);
2305            tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4);
2306        } else {
2307            tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2308                                     h.base, h.index, 0, h.ofs);
2309            tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2310                                     h.base, h.index, 0, h.ofs + 4);
2311        }
2312        break;
2313
2314    case MO_128:
2315        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2316
2317        /*
2318         * Without 16-byte atomicity, use integer regs.
2319         * That is where we want the data, and it allows bswaps.
2320         */
2321        if (h.aa.atom < MO_128) {
2322            if (use_movbe) {
2323                TCGReg t = datalo;
2324                datalo = datahi;
2325                datahi = t;
2326            }
2327            if (h.base == datalo || h.index == datalo) {
2328                tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi,
2329                                         h.base, h.index, 0, h.ofs);
2330                tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2331                                     datalo, datahi, 0);
2332                tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
2333                                     datahi, datahi, 8);
2334            } else {
2335                tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2336                                         h.base, h.index, 0, h.ofs);
2337                tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2338                                         h.base, h.index, 0, h.ofs + 8);
2339            }
2340            break;
2341        }
2342
2343        /*
2344         * With 16-byte atomicity, a vector load is required.
2345         * If we already have 16-byte alignment, then VMOVDQA always works.
2346         * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2347         * Else use we require a runtime test for alignment for VMOVDQA;
2348         * use VMOVDQU on the unaligned nonatomic path for simplicity.
2349         */
2350        if (h.aa.align >= MO_128) {
2351            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2352                                         TCG_TMP_VEC, 0,
2353                                         h.base, h.index, 0, h.ofs);
2354        } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2355            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2356                                         TCG_TMP_VEC, 0,
2357                                         h.base, h.index, 0, h.ofs);
2358        } else {
2359            TCGLabel *l1 = gen_new_label();
2360            TCGLabel *l2 = gen_new_label();
2361            int jcc;
2362
2363            jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
2364            tcg_out_jxx(s, jcc, l1, true);
2365
2366            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
2367                                         TCG_TMP_VEC, 0,
2368                                         h.base, h.index, 0, h.ofs);
2369            tcg_out_jxx(s, JCC_JMP, l2, true);
2370
2371            tcg_out_label(s, l1);
2372            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
2373                                         TCG_TMP_VEC, 0,
2374                                         h.base, h.index, 0, h.ofs);
2375            tcg_out_label(s, l2);
2376        }
2377        tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC);
2378        break;
2379
2380    default:
2381        g_assert_not_reached();
2382    }
2383}
2384
2385static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi,
2386                            TCGReg addr, MemOpIdx oi, TCGType data_type)
2387{
2388    TCGLabelQemuLdst *ldst;
2389    HostAddress h;
2390
2391    ldst = prepare_host_addr(s, &h, addr, oi, true);
2392    tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi));
2393
2394    if (ldst) {
2395        ldst->type = data_type;
2396        ldst->datalo_reg = datalo;
2397        ldst->datahi_reg = datahi;
2398        ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2399    }
2400}
2401
2402static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2403                                   HostAddress h, MemOp memop)
2404{
2405    bool use_movbe = false;
2406    int movop = OPC_MOVL_EvGv;
2407
2408    /*
2409     * Do big-endian stores with movbe or system-mode.
2410     * User-only without movbe will have its swapping done generically.
2411     */
2412    if (memop & MO_BSWAP) {
2413        tcg_debug_assert(have_movbe);
2414        use_movbe = true;
2415        movop = OPC_MOVBE_MyGy;
2416    }
2417
2418    switch (memop & MO_SIZE) {
2419    case MO_8:
2420        /* This is handled with constraints on INDEX_op_qemu_st8_i32. */
2421        tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4);
2422        tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg,
2423                                 datalo, h.base, h.index, 0, h.ofs);
2424        break;
2425    case MO_16:
2426        tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo,
2427                                 h.base, h.index, 0, h.ofs);
2428        break;
2429    case MO_32:
2430        tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2431                                 h.base, h.index, 0, h.ofs);
2432        break;
2433    case MO_64:
2434        if (TCG_TARGET_REG_BITS == 64) {
2435            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2436                                     h.base, h.index, 0, h.ofs);
2437        } else {
2438            if (use_movbe) {
2439                TCGReg t = datalo;
2440                datalo = datahi;
2441                datahi = t;
2442            }
2443            tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
2444                                     h.base, h.index, 0, h.ofs);
2445            tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
2446                                     h.base, h.index, 0, h.ofs + 4);
2447        }
2448        break;
2449
2450    case MO_128:
2451        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2452
2453        /*
2454         * Without 16-byte atomicity, use integer regs.
2455         * That is where we have the data, and it allows bswaps.
2456         */
2457        if (h.aa.atom < MO_128) {
2458            if (use_movbe) {
2459                TCGReg t = datalo;
2460                datalo = datahi;
2461                datahi = t;
2462            }
2463            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
2464                                     h.base, h.index, 0, h.ofs);
2465            tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
2466                                     h.base, h.index, 0, h.ofs + 8);
2467            break;
2468        }
2469
2470        /*
2471         * With 16-byte atomicity, a vector store is required.
2472         * If we already have 16-byte alignment, then VMOVDQA always works.
2473         * Else if VMOVDQU has atomicity with dynamic alignment, use that.
2474         * Else use we require a runtime test for alignment for VMOVDQA;
2475         * use VMOVDQU on the unaligned nonatomic path for simplicity.
2476         */
2477        tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi);
2478        if (h.aa.align >= MO_128) {
2479            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2480                                         TCG_TMP_VEC, 0,
2481                                         h.base, h.index, 0, h.ofs);
2482        } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
2483            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2484                                         TCG_TMP_VEC, 0,
2485                                         h.base, h.index, 0, h.ofs);
2486        } else {
2487            TCGLabel *l1 = gen_new_label();
2488            TCGLabel *l2 = gen_new_label();
2489            int jcc;
2490
2491            jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
2492            tcg_out_jxx(s, jcc, l1, true);
2493
2494            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
2495                                         TCG_TMP_VEC, 0,
2496                                         h.base, h.index, 0, h.ofs);
2497            tcg_out_jxx(s, JCC_JMP, l2, true);
2498
2499            tcg_out_label(s, l1);
2500            tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
2501                                         TCG_TMP_VEC, 0,
2502                                         h.base, h.index, 0, h.ofs);
2503            tcg_out_label(s, l2);
2504        }
2505        break;
2506
2507    default:
2508        g_assert_not_reached();
2509    }
2510}
2511
2512static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi,
2513                            TCGReg addr, MemOpIdx oi, TCGType data_type)
2514{
2515    TCGLabelQemuLdst *ldst;
2516    HostAddress h;
2517
2518    ldst = prepare_host_addr(s, &h, addr, oi, false);
2519    tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi));
2520
2521    if (ldst) {
2522        ldst->type = data_type;
2523        ldst->datalo_reg = datalo;
2524        ldst->datahi_reg = datahi;
2525        ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
2526    }
2527}
2528
2529static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
2530{
2531    /* Reuse the zeroing that exists for goto_ptr.  */
2532    if (a0 == 0) {
2533        tcg_out_jmp(s, tcg_code_gen_epilogue);
2534    } else {
2535        tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
2536        tcg_out_jmp(s, tb_ret_addr);
2537    }
2538}
2539
2540static void tcg_out_goto_tb(TCGContext *s, int which)
2541{
2542    /*
2543     * Jump displacement must be aligned for atomic patching;
2544     * see if we need to add extra nops before jump
2545     */
2546    int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr;
2547    if (gap != 1) {
2548        tcg_out_nopn(s, gap - 1);
2549    }
2550    tcg_out8(s, OPC_JMP_long); /* jmp im */
2551    set_jmp_insn_offset(s, which);
2552    tcg_out32(s, 0);
2553    set_jmp_reset_offset(s, which);
2554}
2555
2556void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
2557                              uintptr_t jmp_rx, uintptr_t jmp_rw)
2558{
2559    /* patch the branch destination */
2560    uintptr_t addr = tb->jmp_target_addr[n];
2561    qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4));
2562    /* no need to flush icache explicitly */
2563}
2564
2565static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType type,
2566                       const TCGArg args[TCG_MAX_OP_ARGS],
2567                       const int const_args[TCG_MAX_OP_ARGS])
2568{
2569    TCGArg a0, a1, a2;
2570    int c, const_a2, vexop, rexw;
2571
2572#if TCG_TARGET_REG_BITS == 64
2573# define OP_32_64(x) \
2574        case glue(glue(INDEX_op_, x), _i64): \
2575        case glue(glue(INDEX_op_, x), _i32)
2576#else
2577# define OP_32_64(x) \
2578        case glue(glue(INDEX_op_, x), _i32)
2579#endif
2580
2581    /* Hoist the loads of the most common arguments.  */
2582    a0 = args[0];
2583    a1 = args[1];
2584    a2 = args[2];
2585    const_a2 = const_args[2];
2586    rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
2587
2588    switch (opc) {
2589    case INDEX_op_goto_ptr:
2590        /* jmp to the given host address (could be epilogue) */
2591        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
2592        break;
2593    case INDEX_op_br:
2594        tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
2595        break;
2596    OP_32_64(ld8u):
2597        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
2598        tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
2599        break;
2600    OP_32_64(ld8s):
2601        tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
2602        break;
2603    OP_32_64(ld16u):
2604        /* Note that we can ignore REXW for the zero-extend to 64-bit.  */
2605        tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
2606        break;
2607    OP_32_64(ld16s):
2608        tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
2609        break;
2610#if TCG_TARGET_REG_BITS == 64
2611    case INDEX_op_ld32u_i64:
2612#endif
2613    case INDEX_op_ld_i32:
2614        tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
2615        break;
2616
2617    OP_32_64(st8):
2618        if (const_args[0]) {
2619            tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
2620            tcg_out8(s, a0);
2621        } else {
2622            tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
2623        }
2624        break;
2625    OP_32_64(st16):
2626        if (const_args[0]) {
2627            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
2628            tcg_out16(s, a0);
2629        } else {
2630            tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
2631        }
2632        break;
2633#if TCG_TARGET_REG_BITS == 64
2634    case INDEX_op_st32_i64:
2635#endif
2636    case INDEX_op_st_i32:
2637        if (const_args[0]) {
2638            tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
2639            tcg_out32(s, a0);
2640        } else {
2641            tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
2642        }
2643        break;
2644
2645    OP_32_64(add):
2646        /* For 3-operand addition, use LEA.  */
2647        if (a0 != a1) {
2648            TCGArg c3 = 0;
2649            if (const_a2) {
2650                c3 = a2, a2 = -1;
2651            } else if (a0 == a2) {
2652                /* Watch out for dest = src + dest, since we've removed
2653                   the matching constraint on the add.  */
2654                tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
2655                break;
2656            }
2657
2658            tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3);
2659            break;
2660        }
2661        c = ARITH_ADD;
2662        goto gen_arith;
2663    OP_32_64(sub):
2664        c = ARITH_SUB;
2665        goto gen_arith;
2666    OP_32_64(and):
2667        c = ARITH_AND;
2668        goto gen_arith;
2669    OP_32_64(or):
2670        c = ARITH_OR;
2671        goto gen_arith;
2672    OP_32_64(xor):
2673        c = ARITH_XOR;
2674        goto gen_arith;
2675    gen_arith:
2676        if (const_a2) {
2677            tgen_arithi(s, c + rexw, a0, a2, 0);
2678        } else {
2679            tgen_arithr(s, c + rexw, a0, a2);
2680        }
2681        break;
2682
2683    OP_32_64(andc):
2684        if (const_a2) {
2685            tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2686            tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0);
2687        } else {
2688            tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2689        }
2690        break;
2691
2692    OP_32_64(mul):
2693        if (const_a2) {
2694            int32_t val;
2695            val = a2;
2696            if (val == (int8_t)val) {
2697                tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2698                tcg_out8(s, val);
2699            } else {
2700                tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2701                tcg_out32(s, val);
2702            }
2703        } else {
2704            tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2705        }
2706        break;
2707
2708    OP_32_64(div2):
2709        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]);
2710        break;
2711    OP_32_64(divu2):
2712        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]);
2713        break;
2714
2715    OP_32_64(shl):
2716        /* For small constant 3-operand shift, use LEA.  */
2717        if (const_a2 && a0 != a1 && (a2 - 1) < 3) {
2718            if (a2 - 1 == 0) {
2719                /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2720                tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2721            } else {
2722                /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2723                tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2724            }
2725            break;
2726        }
2727        c = SHIFT_SHL;
2728        vexop = OPC_SHLX;
2729        goto gen_shift_maybe_vex;
2730    OP_32_64(shr):
2731        c = SHIFT_SHR;
2732        vexop = OPC_SHRX;
2733        goto gen_shift_maybe_vex;
2734    OP_32_64(sar):
2735        c = SHIFT_SAR;
2736        vexop = OPC_SARX;
2737        goto gen_shift_maybe_vex;
2738    OP_32_64(rotl):
2739        c = SHIFT_ROL;
2740        goto gen_shift;
2741    OP_32_64(rotr):
2742        c = SHIFT_ROR;
2743        goto gen_shift;
2744    gen_shift_maybe_vex:
2745        if (have_bmi2) {
2746            if (!const_a2) {
2747                tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1);
2748                break;
2749            }
2750            tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2751        }
2752        /* FALLTHRU */
2753    gen_shift:
2754        if (const_a2) {
2755            tcg_out_shifti(s, c + rexw, a0, a2);
2756        } else {
2757            tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0);
2758        }
2759        break;
2760
2761    OP_32_64(ctz):
2762        tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]);
2763        break;
2764    OP_32_64(clz):
2765        tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]);
2766        break;
2767    OP_32_64(ctpop):
2768        tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2769        break;
2770
2771    OP_32_64(brcond):
2772        tcg_out_brcond(s, rexw, a2, a0, a1, const_args[1],
2773                       arg_label(args[3]), 0);
2774        break;
2775    OP_32_64(setcond):
2776        tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, false);
2777        break;
2778    OP_32_64(negsetcond):
2779        tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, true);
2780        break;
2781    OP_32_64(movcond):
2782        tcg_out_movcond(s, rexw, args[5], a0, a1, a2, const_a2, args[3]);
2783        break;
2784
2785    OP_32_64(bswap16):
2786        if (a2 & TCG_BSWAP_OS) {
2787            /* Output must be sign-extended. */
2788            if (rexw) {
2789                tcg_out_bswap64(s, a0);
2790                tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48);
2791            } else {
2792                tcg_out_bswap32(s, a0);
2793                tcg_out_shifti(s, SHIFT_SAR, a0, 16);
2794            }
2795        } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
2796            /* Output must be zero-extended, but input isn't. */
2797            tcg_out_bswap32(s, a0);
2798            tcg_out_shifti(s, SHIFT_SHR, a0, 16);
2799        } else {
2800            tcg_out_rolw_8(s, a0);
2801        }
2802        break;
2803    OP_32_64(bswap32):
2804        tcg_out_bswap32(s, a0);
2805        if (rexw && (a2 & TCG_BSWAP_OS)) {
2806            tcg_out_ext32s(s, a0, a0);
2807        }
2808        break;
2809
2810    OP_32_64(neg):
2811        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
2812        break;
2813    OP_32_64(not):
2814        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
2815        break;
2816
2817    case INDEX_op_qemu_ld_i32:
2818        tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I32);
2819        break;
2820    case INDEX_op_qemu_ld_i64:
2821        if (TCG_TARGET_REG_BITS == 64) {
2822            tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I64);
2823        } else {
2824            tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I64);
2825        }
2826        break;
2827    case INDEX_op_qemu_ld_i128:
2828        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2829        tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I128);
2830        break;
2831
2832    case INDEX_op_qemu_st_i32:
2833    case INDEX_op_qemu_st8_i32:
2834        tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I32);
2835        break;
2836    case INDEX_op_qemu_st_i64:
2837        if (TCG_TARGET_REG_BITS == 64) {
2838            tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I64);
2839        } else {
2840            tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I64);
2841        }
2842        break;
2843    case INDEX_op_qemu_st_i128:
2844        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
2845        tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I128);
2846        break;
2847
2848    OP_32_64(mulu2):
2849        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
2850        break;
2851    OP_32_64(muls2):
2852        tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]);
2853        break;
2854    OP_32_64(add2):
2855        if (const_args[4]) {
2856            tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
2857        } else {
2858            tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
2859        }
2860        if (const_args[5]) {
2861            tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
2862        } else {
2863            tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
2864        }
2865        break;
2866    OP_32_64(sub2):
2867        if (const_args[4]) {
2868            tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
2869        } else {
2870            tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
2871        }
2872        if (const_args[5]) {
2873            tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
2874        } else {
2875            tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
2876        }
2877        break;
2878
2879#if TCG_TARGET_REG_BITS == 32
2880    case INDEX_op_brcond2_i32:
2881        tcg_out_brcond2(s, args, const_args, 0);
2882        break;
2883    case INDEX_op_setcond2_i32:
2884        tcg_out_setcond2(s, args, const_args);
2885        break;
2886#else /* TCG_TARGET_REG_BITS == 64 */
2887    case INDEX_op_ld32s_i64:
2888        tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
2889        break;
2890    case INDEX_op_ld_i64:
2891        tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
2892        break;
2893    case INDEX_op_st_i64:
2894        if (const_args[0]) {
2895            tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
2896            tcg_out32(s, a0);
2897        } else {
2898            tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
2899        }
2900        break;
2901
2902    case INDEX_op_bswap64_i64:
2903        tcg_out_bswap64(s, a0);
2904        break;
2905    case INDEX_op_extrh_i64_i32:
2906        tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
2907        break;
2908#endif
2909
2910    OP_32_64(deposit):
2911        if (args[3] == 0 && args[4] == 8) {
2912            /* load bits 0..7 */
2913            if (const_a2) {
2914                tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0),
2915                            0, a0, 0);
2916                tcg_out8(s, a2);
2917            } else {
2918                tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
2919            }
2920        } else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) {
2921            /* load bits 8..15 */
2922            if (const_a2) {
2923                tcg_out8(s, OPC_MOVB_Ib + a0 + 4);
2924                tcg_out8(s, a2);
2925            } else {
2926                tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
2927            }
2928        } else if (args[3] == 0 && args[4] == 16) {
2929            /* load bits 0..15 */
2930            if (const_a2) {
2931                tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0),
2932                            0, a0, 0);
2933                tcg_out16(s, a2);
2934            } else {
2935                tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
2936            }
2937        } else {
2938            g_assert_not_reached();
2939        }
2940        break;
2941
2942    case INDEX_op_extract_i64:
2943        if (a2 + args[3] == 32) {
2944            if (a2 == 0) {
2945                tcg_out_ext32u(s, a0, a1);
2946                break;
2947            }
2948            /* This is a 32-bit zero-extending right shift.  */
2949            tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
2950            tcg_out_shifti(s, SHIFT_SHR, a0, a2);
2951            break;
2952        }
2953        /* FALLTHRU */
2954    case INDEX_op_extract_i32:
2955        if (a2 == 0 && args[3] == 8) {
2956            tcg_out_ext8u(s, a0, a1);
2957        } else if (a2 == 0 && args[3] == 16) {
2958            tcg_out_ext16u(s, a0, a1);
2959        } else if (a2 == 8 && args[3] == 8) {
2960            /*
2961             * On the off-chance that we can use the high-byte registers.
2962             * Otherwise we emit the same ext16 + shift pattern that we
2963             * would have gotten from the normal tcg-op.c expansion.
2964             */
2965            if (a1 < 4 && a0 < 8) {
2966                tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
2967            } else {
2968                tcg_out_ext16u(s, a0, a1);
2969                tcg_out_shifti(s, SHIFT_SHR, a0, 8);
2970            }
2971        } else {
2972            g_assert_not_reached();
2973        }
2974        break;
2975
2976    case INDEX_op_sextract_i64:
2977        if (a2 == 0 && args[3] == 8) {
2978            tcg_out_ext8s(s, TCG_TYPE_I64, a0, a1);
2979        } else if (a2 == 0 && args[3] == 16) {
2980            tcg_out_ext16s(s, TCG_TYPE_I64, a0, a1);
2981        } else if (a2 == 0 && args[3] == 32) {
2982            tcg_out_ext32s(s, a0, a1);
2983        } else {
2984            g_assert_not_reached();
2985        }
2986        break;
2987
2988    case INDEX_op_sextract_i32:
2989        if (a2 == 0 && args[3] == 8) {
2990            tcg_out_ext8s(s, TCG_TYPE_I32, a0, a1);
2991        } else if (a2 == 0 && args[3] == 16) {
2992            tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
2993        } else if (a2 == 8 && args[3] == 8) {
2994            if (a1 < 4 && a0 < 8) {
2995                tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
2996            } else {
2997                tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1);
2998                tcg_out_shifti(s, SHIFT_SAR, a0, 8);
2999            }
3000        } else {
3001            g_assert_not_reached();
3002        }
3003        break;
3004
3005    OP_32_64(extract2):
3006        /* Note that SHRD outputs to the r/m operand.  */
3007        tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
3008        tcg_out8(s, args[3]);
3009        break;
3010
3011    case INDEX_op_mb:
3012        tcg_out_mb(s, a0);
3013        break;
3014    case INDEX_op_mov_i32:  /* Always emitted via tcg_out_mov.  */
3015    case INDEX_op_mov_i64:
3016    case INDEX_op_call:     /* Always emitted via tcg_out_call.  */
3017    case INDEX_op_exit_tb:  /* Always emitted via tcg_out_exit_tb.  */
3018    case INDEX_op_goto_tb:  /* Always emitted via tcg_out_goto_tb.  */
3019    case INDEX_op_ext_i32_i64:  /* Always emitted via tcg_reg_alloc_op.  */
3020    case INDEX_op_extu_i32_i64:
3021    case INDEX_op_extrl_i64_i32:
3022    default:
3023        g_assert_not_reached();
3024    }
3025
3026#undef OP_32_64
3027}
3028
3029static int const umin_insn[4] = {
3030    OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ
3031};
3032
3033static int const umax_insn[4] = {
3034    OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ
3035};
3036
3037static bool tcg_out_cmp_vec_noinv(TCGContext *s, TCGType type, unsigned vece,
3038                                  TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
3039{
3040    static int const cmpeq_insn[4] = {
3041        OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
3042    };
3043    static int const cmpgt_insn[4] = {
3044        OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
3045    };
3046
3047    enum {
3048        NEED_INV  = 1,
3049        NEED_SWAP = 2,
3050        NEED_UMIN = 4,
3051        NEED_UMAX = 8,
3052        INVALID   = 16,
3053    };
3054    static const uint8_t cond_fixup[16] = {
3055        [0 ... 15] = INVALID,
3056        [TCG_COND_EQ] = 0,
3057        [TCG_COND_GT] = 0,
3058        [TCG_COND_NE] = NEED_INV,
3059        [TCG_COND_LE] = NEED_INV,
3060        [TCG_COND_LT] = NEED_SWAP,
3061        [TCG_COND_GE] = NEED_SWAP | NEED_INV,
3062        [TCG_COND_LEU] = NEED_UMIN,
3063        [TCG_COND_GTU] = NEED_UMIN | NEED_INV,
3064        [TCG_COND_GEU] = NEED_UMAX,
3065        [TCG_COND_LTU] = NEED_UMAX | NEED_INV,
3066    };
3067    int fixup = cond_fixup[cond];
3068
3069    assert(!(fixup & INVALID));
3070
3071    if (fixup & NEED_INV) {
3072        cond = tcg_invert_cond(cond);
3073    }
3074
3075    if (fixup & NEED_SWAP) {
3076        TCGReg swap = v1;
3077        v1 = v2;
3078        v2 = swap;
3079        cond = tcg_swap_cond(cond);
3080    }
3081
3082    if (fixup & (NEED_UMIN | NEED_UMAX)) {
3083        int op = (fixup & NEED_UMIN ? umin_insn[vece] : umax_insn[vece]);
3084
3085        /* avx2 does not have 64-bit min/max; adjusted during expand. */
3086        assert(vece <= MO_32);
3087
3088        tcg_out_vex_modrm_type(s, op, TCG_TMP_VEC, v1, v2, type);
3089        v2 = TCG_TMP_VEC;
3090        cond = TCG_COND_EQ;
3091    }
3092
3093    switch (cond) {
3094    case TCG_COND_EQ:
3095        tcg_out_vex_modrm_type(s, cmpeq_insn[vece], v0, v1, v2, type);
3096        break;
3097    case TCG_COND_GT:
3098        tcg_out_vex_modrm_type(s, cmpgt_insn[vece], v0, v1, v2, type);
3099        break;
3100    default:
3101        g_assert_not_reached();
3102    }
3103    return fixup & NEED_INV;
3104}
3105
3106static void tcg_out_cmp_vec_k1(TCGContext *s, TCGType type, unsigned vece,
3107                               TCGReg v1, TCGReg v2, TCGCond cond)
3108{
3109    static const int cmpm_insn[2][4] = {
3110        { OPC_VPCMPB, OPC_VPCMPW, OPC_VPCMPD, OPC_VPCMPQ },
3111        { OPC_VPCMPUB, OPC_VPCMPUW, OPC_VPCMPUD, OPC_VPCMPUQ }
3112    };
3113    static const int testm_insn[4] = {
3114        OPC_VPTESTMB, OPC_VPTESTMW, OPC_VPTESTMD, OPC_VPTESTMQ
3115    };
3116    static const int testnm_insn[4] = {
3117        OPC_VPTESTNMB, OPC_VPTESTNMW, OPC_VPTESTNMD, OPC_VPTESTNMQ
3118    };
3119
3120    static const int cond_ext[16] = {
3121        [TCG_COND_EQ] = 0,
3122        [TCG_COND_NE] = 4,
3123        [TCG_COND_LT] = 1,
3124        [TCG_COND_LTU] = 1,
3125        [TCG_COND_LE] = 2,
3126        [TCG_COND_LEU] = 2,
3127        [TCG_COND_NEVER] = 3,
3128        [TCG_COND_GE] = 5,
3129        [TCG_COND_GEU] = 5,
3130        [TCG_COND_GT] = 6,
3131        [TCG_COND_GTU] = 6,
3132        [TCG_COND_ALWAYS] = 7,
3133    };
3134
3135    switch (cond) {
3136    case TCG_COND_TSTNE:
3137        tcg_out_vex_modrm_type(s, testm_insn[vece], /* k1 */ 1, v1, v2, type);
3138        break;
3139    case TCG_COND_TSTEQ:
3140        tcg_out_vex_modrm_type(s, testnm_insn[vece], /* k1 */ 1, v1, v2, type);
3141        break;
3142    default:
3143        tcg_out_vex_modrm_type(s, cmpm_insn[is_unsigned_cond(cond)][vece],
3144                               /* k1 */ 1, v1, v2, type);
3145        tcg_out8(s, cond_ext[cond]);
3146        break;
3147    }
3148}
3149
3150static void tcg_out_k1_to_vec(TCGContext *s, TCGType type,
3151                              unsigned vece, TCGReg dest)
3152{
3153    static const int movm_insn[] = {
3154        OPC_VPMOVM2B, OPC_VPMOVM2W, OPC_VPMOVM2D, OPC_VPMOVM2Q
3155    };
3156    tcg_out_vex_modrm_type(s, movm_insn[vece], dest, 0, /* k1 */ 1, type);
3157}
3158
3159static void tcg_out_cmp_vec(TCGContext *s, TCGType type, unsigned vece,
3160                            TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
3161{
3162    /*
3163     * With avx512, we have a complete set of comparisons into mask.
3164     * Unless there's a single insn expansion for the comparision,
3165     * expand via a mask in k1.
3166     */
3167    if ((vece <= MO_16 ? have_avx512bw : have_avx512dq)
3168        && cond != TCG_COND_EQ
3169        && cond != TCG_COND_LT
3170        && cond != TCG_COND_GT) {
3171        tcg_out_cmp_vec_k1(s, type, vece, v1, v2, cond);
3172        tcg_out_k1_to_vec(s, type, vece, v0);
3173        return;
3174    }
3175
3176    if (tcg_out_cmp_vec_noinv(s, type, vece, v0, v1, v2, cond)) {
3177        tcg_out_dupi_vec(s, type, vece, TCG_TMP_VEC, -1);
3178        tcg_out_vex_modrm_type(s, OPC_PXOR, v0, v0, TCG_TMP_VEC, type);
3179    }
3180}
3181
3182static void tcg_out_cmpsel_vec_k1(TCGContext *s, TCGType type, unsigned vece,
3183                                  TCGReg v0, TCGReg c1, TCGReg c2,
3184                                  TCGReg v3, TCGReg v4, TCGCond cond)
3185{
3186    static const int vpblendm_insn[] = {
3187        OPC_VPBLENDMB, OPC_VPBLENDMW, OPC_VPBLENDMD, OPC_VPBLENDMQ
3188    };
3189    bool z = false;
3190
3191    /* Swap to place constant in V4 to take advantage of zero-masking. */
3192    if (!v3) {
3193        z = true;
3194        v3 = v4;
3195        cond = tcg_invert_cond(cond);
3196    }
3197
3198    tcg_out_cmp_vec_k1(s, type, vece, c1, c2, cond);
3199    tcg_out_evex_modrm_type(s, vpblendm_insn[vece], v0, v4, v3,
3200                            /* k1 */1, z, type);
3201}
3202
3203static void tcg_out_cmpsel_vec(TCGContext *s, TCGType type, unsigned vece,
3204                               TCGReg v0, TCGReg c1, TCGReg c2,
3205                               TCGReg v3, TCGReg v4, TCGCond cond)
3206{
3207    bool inv;
3208
3209    if (vece <= MO_16 ? have_avx512bw : have_avx512vl) {
3210        tcg_out_cmpsel_vec_k1(s, type, vece, v0, c1, c2, v3, v4, cond);
3211        return;
3212    }
3213
3214    inv = tcg_out_cmp_vec_noinv(s, type, vece, TCG_TMP_VEC, c1, c2, cond);
3215
3216    /*
3217     * Since XMM0 is 16, the only way we get 0 into V3
3218     * is via the constant zero constraint.
3219     */
3220    if (!v3) {
3221        if (inv) {
3222            tcg_out_vex_modrm_type(s, OPC_PAND, v0, TCG_TMP_VEC, v4, type);
3223        } else {
3224            tcg_out_vex_modrm_type(s, OPC_PANDN, v0, TCG_TMP_VEC, v4, type);
3225        }
3226    } else {
3227        if (inv) {
3228            TCGReg swap = v3;
3229            v3 = v4;
3230            v4 = swap;
3231        }
3232        tcg_out_vex_modrm_type(s, OPC_VPBLENDVB, v0, v4, v3, type);
3233        tcg_out8(s, (TCG_TMP_VEC - TCG_REG_XMM0) << 4);
3234    }
3235}
3236
3237static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
3238                           unsigned vecl, unsigned vece,
3239                           const TCGArg args[TCG_MAX_OP_ARGS],
3240                           const int const_args[TCG_MAX_OP_ARGS])
3241{
3242    static int const add_insn[4] = {
3243        OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
3244    };
3245    static int const ssadd_insn[4] = {
3246        OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
3247    };
3248    static int const usadd_insn[4] = {
3249        OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
3250    };
3251    static int const sub_insn[4] = {
3252        OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
3253    };
3254    static int const sssub_insn[4] = {
3255        OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
3256    };
3257    static int const ussub_insn[4] = {
3258        OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
3259    };
3260    static int const mul_insn[4] = {
3261        OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ
3262    };
3263    static int const shift_imm_insn[4] = {
3264        OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
3265    };
3266    static int const punpckl_insn[4] = {
3267        OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
3268    };
3269    static int const punpckh_insn[4] = {
3270        OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
3271    };
3272    static int const packss_insn[4] = {
3273        OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
3274    };
3275    static int const packus_insn[4] = {
3276        OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
3277    };
3278    static int const smin_insn[4] = {
3279        OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ
3280    };
3281    static int const smax_insn[4] = {
3282        OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ
3283    };
3284    static int const rotlv_insn[4] = {
3285        OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ
3286    };
3287    static int const rotrv_insn[4] = {
3288        OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ
3289    };
3290    static int const shlv_insn[4] = {
3291        OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ
3292    };
3293    static int const shrv_insn[4] = {
3294        OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ
3295    };
3296    static int const sarv_insn[4] = {
3297        OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ
3298    };
3299    static int const shls_insn[4] = {
3300        OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
3301    };
3302    static int const shrs_insn[4] = {
3303        OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
3304    };
3305    static int const sars_insn[4] = {
3306        OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ
3307    };
3308    static int const vpshldi_insn[4] = {
3309        OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ
3310    };
3311    static int const vpshldv_insn[4] = {
3312        OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ
3313    };
3314    static int const vpshrdv_insn[4] = {
3315        OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ
3316    };
3317    static int const abs_insn[4] = {
3318        OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ
3319    };
3320
3321    TCGType type = vecl + TCG_TYPE_V64;
3322    int insn, sub;
3323    TCGArg a0, a1, a2, a3;
3324
3325    a0 = args[0];
3326    a1 = args[1];
3327    a2 = args[2];
3328
3329    switch (opc) {
3330    case INDEX_op_add_vec:
3331        insn = add_insn[vece];
3332        goto gen_simd;
3333    case INDEX_op_ssadd_vec:
3334        insn = ssadd_insn[vece];
3335        goto gen_simd;
3336    case INDEX_op_usadd_vec:
3337        insn = usadd_insn[vece];
3338        goto gen_simd;
3339    case INDEX_op_sub_vec:
3340        insn = sub_insn[vece];
3341        goto gen_simd;
3342    case INDEX_op_sssub_vec:
3343        insn = sssub_insn[vece];
3344        goto gen_simd;
3345    case INDEX_op_ussub_vec:
3346        insn = ussub_insn[vece];
3347        goto gen_simd;
3348    case INDEX_op_mul_vec:
3349        insn = mul_insn[vece];
3350        goto gen_simd;
3351    case INDEX_op_and_vec:
3352        insn = OPC_PAND;
3353        goto gen_simd;
3354    case INDEX_op_or_vec:
3355        insn = OPC_POR;
3356        goto gen_simd;
3357    case INDEX_op_xor_vec:
3358        insn = OPC_PXOR;
3359        goto gen_simd;
3360    case INDEX_op_smin_vec:
3361        insn = smin_insn[vece];
3362        goto gen_simd;
3363    case INDEX_op_umin_vec:
3364        insn = umin_insn[vece];
3365        goto gen_simd;
3366    case INDEX_op_smax_vec:
3367        insn = smax_insn[vece];
3368        goto gen_simd;
3369    case INDEX_op_umax_vec:
3370        insn = umax_insn[vece];
3371        goto gen_simd;
3372    case INDEX_op_shlv_vec:
3373        insn = shlv_insn[vece];
3374        goto gen_simd;
3375    case INDEX_op_shrv_vec:
3376        insn = shrv_insn[vece];
3377        goto gen_simd;
3378    case INDEX_op_sarv_vec:
3379        insn = sarv_insn[vece];
3380        goto gen_simd;
3381    case INDEX_op_rotlv_vec:
3382        insn = rotlv_insn[vece];
3383        goto gen_simd;
3384    case INDEX_op_rotrv_vec:
3385        insn = rotrv_insn[vece];
3386        goto gen_simd;
3387    case INDEX_op_shls_vec:
3388        insn = shls_insn[vece];
3389        goto gen_simd;
3390    case INDEX_op_shrs_vec:
3391        insn = shrs_insn[vece];
3392        goto gen_simd;
3393    case INDEX_op_sars_vec:
3394        insn = sars_insn[vece];
3395        goto gen_simd;
3396    case INDEX_op_x86_punpckl_vec:
3397        insn = punpckl_insn[vece];
3398        goto gen_simd;
3399    case INDEX_op_x86_punpckh_vec:
3400        insn = punpckh_insn[vece];
3401        goto gen_simd;
3402    case INDEX_op_x86_packss_vec:
3403        insn = packss_insn[vece];
3404        goto gen_simd;
3405    case INDEX_op_x86_packus_vec:
3406        insn = packus_insn[vece];
3407        goto gen_simd;
3408    case INDEX_op_x86_vpshldv_vec:
3409        insn = vpshldv_insn[vece];
3410        a1 = a2;
3411        a2 = args[3];
3412        goto gen_simd;
3413    case INDEX_op_x86_vpshrdv_vec:
3414        insn = vpshrdv_insn[vece];
3415        a1 = a2;
3416        a2 = args[3];
3417        goto gen_simd;
3418#if TCG_TARGET_REG_BITS == 32
3419    case INDEX_op_dup2_vec:
3420        /* First merge the two 32-bit inputs to a single 64-bit element. */
3421        tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
3422        /* Then replicate the 64-bit elements across the rest of the vector. */
3423        if (type != TCG_TYPE_V64) {
3424            tcg_out_dup_vec(s, type, MO_64, a0, a0);
3425        }
3426        break;
3427#endif
3428    case INDEX_op_abs_vec:
3429        insn = abs_insn[vece];
3430        a2 = a1;
3431        a1 = 0;
3432        goto gen_simd;
3433    gen_simd:
3434        tcg_debug_assert(insn != OPC_UD2);
3435        tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
3436        break;
3437
3438    case INDEX_op_cmp_vec:
3439        tcg_out_cmp_vec(s, type, vece, a0, a1, a2, args[3]);
3440        break;
3441
3442    case INDEX_op_cmpsel_vec:
3443        tcg_out_cmpsel_vec(s, type, vece, a0, a1, a2,
3444                           args[3], args[4], args[5]);
3445        break;
3446
3447    case INDEX_op_andc_vec:
3448        insn = OPC_PANDN;
3449        tcg_out_vex_modrm_type(s, insn, a0, a2, a1, type);
3450        break;
3451
3452    case INDEX_op_shli_vec:
3453        insn = shift_imm_insn[vece];
3454        sub = 6;
3455        goto gen_shift;
3456    case INDEX_op_shri_vec:
3457        insn = shift_imm_insn[vece];
3458        sub = 2;
3459        goto gen_shift;
3460    case INDEX_op_sari_vec:
3461        if (vece == MO_64) {
3462            insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX;
3463        } else {
3464            insn = shift_imm_insn[vece];
3465        }
3466        sub = 4;
3467        goto gen_shift;
3468    case INDEX_op_rotli_vec:
3469        insn = OPC_PSHIFTD_Ib | P_EVEX;  /* VPROL[DQ] */
3470        if (vece == MO_64) {
3471            insn |= P_VEXW;
3472        }
3473        sub = 1;
3474        goto gen_shift;
3475    gen_shift:
3476        tcg_debug_assert(vece != MO_8);
3477        tcg_out_vex_modrm_type(s, insn, sub, a0, a1, type);
3478        tcg_out8(s, a2);
3479        break;
3480
3481    case INDEX_op_ld_vec:
3482        tcg_out_ld(s, type, a0, a1, a2);
3483        break;
3484    case INDEX_op_st_vec:
3485        tcg_out_st(s, type, a0, a1, a2);
3486        break;
3487    case INDEX_op_dupm_vec:
3488        tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3489        break;
3490
3491    case INDEX_op_x86_shufps_vec:
3492        insn = OPC_SHUFPS;
3493        sub = args[3];
3494        goto gen_simd_imm8;
3495    case INDEX_op_x86_blend_vec:
3496        if (vece == MO_16) {
3497            insn = OPC_PBLENDW;
3498        } else if (vece == MO_32) {
3499            insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
3500        } else {
3501            g_assert_not_reached();
3502        }
3503        sub = args[3];
3504        goto gen_simd_imm8;
3505    case INDEX_op_x86_vperm2i128_vec:
3506        insn = OPC_VPERM2I128;
3507        sub = args[3];
3508        goto gen_simd_imm8;
3509    case INDEX_op_x86_vpshldi_vec:
3510        insn = vpshldi_insn[vece];
3511        sub = args[3];
3512        goto gen_simd_imm8;
3513
3514    case INDEX_op_not_vec:
3515        insn = OPC_VPTERNLOGQ;
3516        a2 = a1;
3517        sub = 0x33; /* !B */
3518        goto gen_simd_imm8;
3519    case INDEX_op_nor_vec:
3520        insn = OPC_VPTERNLOGQ;
3521        sub = 0x11; /* norCB */
3522        goto gen_simd_imm8;
3523    case INDEX_op_nand_vec:
3524        insn = OPC_VPTERNLOGQ;
3525        sub = 0x77; /* nandCB */
3526        goto gen_simd_imm8;
3527    case INDEX_op_eqv_vec:
3528        insn = OPC_VPTERNLOGQ;
3529        sub = 0x99; /* xnorCB */
3530        goto gen_simd_imm8;
3531    case INDEX_op_orc_vec:
3532        insn = OPC_VPTERNLOGQ;
3533        sub = 0xdd; /* orB!C */
3534        goto gen_simd_imm8;
3535
3536    case INDEX_op_bitsel_vec:
3537        insn = OPC_VPTERNLOGQ;
3538        a3 = args[3];
3539        if (a0 == a1) {
3540            a1 = a2;
3541            a2 = a3;
3542            sub = 0xca; /* A?B:C */
3543        } else if (a0 == a2) {
3544            a2 = a3;
3545            sub = 0xe2; /* B?A:C */
3546        } else {
3547            tcg_out_mov(s, type, a0, a3);
3548            sub = 0xb8; /* B?C:A */
3549        }
3550        goto gen_simd_imm8;
3551
3552    gen_simd_imm8:
3553        tcg_debug_assert(insn != OPC_UD2);
3554        tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
3555        tcg_out8(s, sub);
3556        break;
3557
3558    case INDEX_op_x86_psrldq_vec:
3559        tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
3560        tcg_out8(s, a2);
3561        break;
3562
3563    case INDEX_op_mov_vec:  /* Always emitted via tcg_out_mov.  */
3564    case INDEX_op_dup_vec:  /* Always emitted via tcg_out_dup_vec.  */
3565    default:
3566        g_assert_not_reached();
3567    }
3568}
3569
3570static TCGConstraintSetIndex
3571tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags)
3572{
3573    switch (op) {
3574    case INDEX_op_goto_ptr:
3575        return C_O0_I1(r);
3576
3577    case INDEX_op_ld8u_i32:
3578    case INDEX_op_ld8u_i64:
3579    case INDEX_op_ld8s_i32:
3580    case INDEX_op_ld8s_i64:
3581    case INDEX_op_ld16u_i32:
3582    case INDEX_op_ld16u_i64:
3583    case INDEX_op_ld16s_i32:
3584    case INDEX_op_ld16s_i64:
3585    case INDEX_op_ld_i32:
3586    case INDEX_op_ld32u_i64:
3587    case INDEX_op_ld32s_i64:
3588    case INDEX_op_ld_i64:
3589        return C_O1_I1(r, r);
3590
3591    case INDEX_op_st8_i32:
3592    case INDEX_op_st8_i64:
3593        return C_O0_I2(qi, r);
3594
3595    case INDEX_op_st16_i32:
3596    case INDEX_op_st16_i64:
3597    case INDEX_op_st_i32:
3598    case INDEX_op_st32_i64:
3599        return C_O0_I2(ri, r);
3600
3601    case INDEX_op_st_i64:
3602        return C_O0_I2(re, r);
3603
3604    case INDEX_op_add_i32:
3605    case INDEX_op_add_i64:
3606        return C_O1_I2(r, r, re);
3607
3608    case INDEX_op_sub_i32:
3609    case INDEX_op_sub_i64:
3610    case INDEX_op_mul_i32:
3611    case INDEX_op_mul_i64:
3612    case INDEX_op_or_i32:
3613    case INDEX_op_or_i64:
3614    case INDEX_op_xor_i32:
3615    case INDEX_op_xor_i64:
3616        return C_O1_I2(r, 0, re);
3617
3618    case INDEX_op_and_i32:
3619    case INDEX_op_and_i64:
3620        return C_O1_I2(r, 0, reZ);
3621
3622    case INDEX_op_andc_i32:
3623    case INDEX_op_andc_i64:
3624        return C_O1_I2(r, r, rI);
3625
3626    case INDEX_op_shl_i32:
3627    case INDEX_op_shl_i64:
3628    case INDEX_op_shr_i32:
3629    case INDEX_op_shr_i64:
3630    case INDEX_op_sar_i32:
3631    case INDEX_op_sar_i64:
3632        return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci);
3633
3634    case INDEX_op_rotl_i32:
3635    case INDEX_op_rotl_i64:
3636    case INDEX_op_rotr_i32:
3637    case INDEX_op_rotr_i64:
3638        return C_O1_I2(r, 0, ci);
3639
3640    case INDEX_op_brcond_i32:
3641    case INDEX_op_brcond_i64:
3642        return C_O0_I2(r, reT);
3643
3644    case INDEX_op_bswap16_i32:
3645    case INDEX_op_bswap16_i64:
3646    case INDEX_op_bswap32_i32:
3647    case INDEX_op_bswap32_i64:
3648    case INDEX_op_bswap64_i64:
3649    case INDEX_op_neg_i32:
3650    case INDEX_op_neg_i64:
3651    case INDEX_op_not_i32:
3652    case INDEX_op_not_i64:
3653    case INDEX_op_extrh_i64_i32:
3654        return C_O1_I1(r, 0);
3655
3656    case INDEX_op_ext_i32_i64:
3657    case INDEX_op_extu_i32_i64:
3658    case INDEX_op_extrl_i64_i32:
3659    case INDEX_op_extract_i32:
3660    case INDEX_op_extract_i64:
3661    case INDEX_op_sextract_i32:
3662    case INDEX_op_sextract_i64:
3663    case INDEX_op_ctpop_i32:
3664    case INDEX_op_ctpop_i64:
3665        return C_O1_I1(r, r);
3666
3667    case INDEX_op_extract2_i32:
3668    case INDEX_op_extract2_i64:
3669        return C_O1_I2(r, 0, r);
3670
3671    case INDEX_op_deposit_i32:
3672    case INDEX_op_deposit_i64:
3673        return C_O1_I2(q, 0, qi);
3674
3675    case INDEX_op_setcond_i32:
3676    case INDEX_op_setcond_i64:
3677    case INDEX_op_negsetcond_i32:
3678    case INDEX_op_negsetcond_i64:
3679        return C_O1_I2(q, r, reT);
3680
3681    case INDEX_op_movcond_i32:
3682    case INDEX_op_movcond_i64:
3683        return C_O1_I4(r, r, reT, r, 0);
3684
3685    case INDEX_op_div2_i32:
3686    case INDEX_op_div2_i64:
3687    case INDEX_op_divu2_i32:
3688    case INDEX_op_divu2_i64:
3689        return C_O2_I3(a, d, 0, 1, r);
3690
3691    case INDEX_op_mulu2_i32:
3692    case INDEX_op_mulu2_i64:
3693    case INDEX_op_muls2_i32:
3694    case INDEX_op_muls2_i64:
3695        return C_O2_I2(a, d, a, r);
3696
3697    case INDEX_op_add2_i32:
3698    case INDEX_op_add2_i64:
3699    case INDEX_op_sub2_i32:
3700    case INDEX_op_sub2_i64:
3701        return C_N1_O1_I4(r, r, 0, 1, re, re);
3702
3703    case INDEX_op_ctz_i32:
3704    case INDEX_op_ctz_i64:
3705        return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
3706
3707    case INDEX_op_clz_i32:
3708    case INDEX_op_clz_i64:
3709        return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
3710
3711    case INDEX_op_qemu_ld_i32:
3712        return C_O1_I1(r, L);
3713
3714    case INDEX_op_qemu_st_i32:
3715        return C_O0_I2(L, L);
3716    case INDEX_op_qemu_st8_i32:
3717        return C_O0_I2(s, L);
3718
3719    case INDEX_op_qemu_ld_i64:
3720        return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L);
3721
3722    case INDEX_op_qemu_st_i64:
3723        return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L);
3724
3725    case INDEX_op_qemu_ld_i128:
3726        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3727        return C_O2_I1(r, r, L);
3728    case INDEX_op_qemu_st_i128:
3729        tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
3730        return C_O0_I3(L, L, L);
3731
3732    case INDEX_op_brcond2_i32:
3733        return C_O0_I4(r, r, ri, ri);
3734
3735    case INDEX_op_setcond2_i32:
3736        return C_O1_I4(r, r, r, ri, ri);
3737
3738    case INDEX_op_ld_vec:
3739    case INDEX_op_dupm_vec:
3740        return C_O1_I1(x, r);
3741
3742    case INDEX_op_st_vec:
3743        return C_O0_I2(x, r);
3744
3745    case INDEX_op_add_vec:
3746    case INDEX_op_sub_vec:
3747    case INDEX_op_mul_vec:
3748    case INDEX_op_and_vec:
3749    case INDEX_op_or_vec:
3750    case INDEX_op_xor_vec:
3751    case INDEX_op_andc_vec:
3752    case INDEX_op_orc_vec:
3753    case INDEX_op_nand_vec:
3754    case INDEX_op_nor_vec:
3755    case INDEX_op_eqv_vec:
3756    case INDEX_op_ssadd_vec:
3757    case INDEX_op_usadd_vec:
3758    case INDEX_op_sssub_vec:
3759    case INDEX_op_ussub_vec:
3760    case INDEX_op_smin_vec:
3761    case INDEX_op_umin_vec:
3762    case INDEX_op_smax_vec:
3763    case INDEX_op_umax_vec:
3764    case INDEX_op_shlv_vec:
3765    case INDEX_op_shrv_vec:
3766    case INDEX_op_sarv_vec:
3767    case INDEX_op_rotlv_vec:
3768    case INDEX_op_rotrv_vec:
3769    case INDEX_op_shls_vec:
3770    case INDEX_op_shrs_vec:
3771    case INDEX_op_sars_vec:
3772    case INDEX_op_cmp_vec:
3773    case INDEX_op_x86_shufps_vec:
3774    case INDEX_op_x86_blend_vec:
3775    case INDEX_op_x86_packss_vec:
3776    case INDEX_op_x86_packus_vec:
3777    case INDEX_op_x86_vperm2i128_vec:
3778    case INDEX_op_x86_punpckl_vec:
3779    case INDEX_op_x86_punpckh_vec:
3780    case INDEX_op_x86_vpshldi_vec:
3781#if TCG_TARGET_REG_BITS == 32
3782    case INDEX_op_dup2_vec:
3783#endif
3784        return C_O1_I2(x, x, x);
3785
3786    case INDEX_op_abs_vec:
3787    case INDEX_op_dup_vec:
3788    case INDEX_op_not_vec:
3789    case INDEX_op_shli_vec:
3790    case INDEX_op_shri_vec:
3791    case INDEX_op_sari_vec:
3792    case INDEX_op_rotli_vec:
3793    case INDEX_op_x86_psrldq_vec:
3794        return C_O1_I1(x, x);
3795
3796    case INDEX_op_x86_vpshldv_vec:
3797    case INDEX_op_x86_vpshrdv_vec:
3798        return C_O1_I3(x, 0, x, x);
3799
3800    case INDEX_op_bitsel_vec:
3801        return C_O1_I3(x, x, x, x);
3802    case INDEX_op_cmpsel_vec:
3803        return C_O1_I4(x, x, x, xO, x);
3804
3805    default:
3806        return C_NotImplemented;
3807    }
3808}
3809
3810int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
3811{
3812    switch (opc) {
3813    case INDEX_op_add_vec:
3814    case INDEX_op_sub_vec:
3815    case INDEX_op_and_vec:
3816    case INDEX_op_or_vec:
3817    case INDEX_op_xor_vec:
3818    case INDEX_op_andc_vec:
3819    case INDEX_op_orc_vec:
3820    case INDEX_op_nand_vec:
3821    case INDEX_op_nor_vec:
3822    case INDEX_op_eqv_vec:
3823    case INDEX_op_not_vec:
3824    case INDEX_op_bitsel_vec:
3825        return 1;
3826    case INDEX_op_cmp_vec:
3827    case INDEX_op_cmpsel_vec:
3828        return -1;
3829
3830    case INDEX_op_rotli_vec:
3831        return have_avx512vl && vece >= MO_32 ? 1 : -1;
3832
3833    case INDEX_op_shli_vec:
3834    case INDEX_op_shri_vec:
3835        /* We must expand the operation for MO_8.  */
3836        return vece == MO_8 ? -1 : 1;
3837
3838    case INDEX_op_sari_vec:
3839        switch (vece) {
3840        case MO_8:
3841            return -1;
3842        case MO_16:
3843        case MO_32:
3844            return 1;
3845        case MO_64:
3846            if (have_avx512vl) {
3847                return 1;
3848            }
3849            /*
3850             * We can emulate this for MO_64, but it does not pay off
3851             * unless we're producing at least 4 values.
3852             */
3853            return type >= TCG_TYPE_V256 ? -1 : 0;
3854        }
3855        return 0;
3856
3857    case INDEX_op_shls_vec:
3858    case INDEX_op_shrs_vec:
3859        return vece >= MO_16;
3860    case INDEX_op_sars_vec:
3861        switch (vece) {
3862        case MO_16:
3863        case MO_32:
3864            return 1;
3865        case MO_64:
3866            return have_avx512vl;
3867        }
3868        return 0;
3869    case INDEX_op_rotls_vec:
3870        return vece >= MO_16 ? -1 : 0;
3871
3872    case INDEX_op_shlv_vec:
3873    case INDEX_op_shrv_vec:
3874        switch (vece) {
3875        case MO_16:
3876            return have_avx512bw;
3877        case MO_32:
3878        case MO_64:
3879            return have_avx2;
3880        }
3881        return 0;
3882    case INDEX_op_sarv_vec:
3883        switch (vece) {
3884        case MO_16:
3885            return have_avx512bw;
3886        case MO_32:
3887            return have_avx2;
3888        case MO_64:
3889            return have_avx512vl;
3890        }
3891        return 0;
3892    case INDEX_op_rotlv_vec:
3893    case INDEX_op_rotrv_vec:
3894        switch (vece) {
3895        case MO_16:
3896            return have_avx512vbmi2 ? -1 : 0;
3897        case MO_32:
3898        case MO_64:
3899            return have_avx512vl ? 1 : have_avx2 ? -1 : 0;
3900        }
3901        return 0;
3902
3903    case INDEX_op_mul_vec:
3904        switch (vece) {
3905        case MO_8:
3906            return -1;
3907        case MO_64:
3908            return have_avx512dq;
3909        }
3910        return 1;
3911
3912    case INDEX_op_ssadd_vec:
3913    case INDEX_op_usadd_vec:
3914    case INDEX_op_sssub_vec:
3915    case INDEX_op_ussub_vec:
3916        return vece <= MO_16;
3917    case INDEX_op_smin_vec:
3918    case INDEX_op_smax_vec:
3919    case INDEX_op_umin_vec:
3920    case INDEX_op_umax_vec:
3921    case INDEX_op_abs_vec:
3922        return vece <= MO_32 || have_avx512vl;
3923
3924    default:
3925        return 0;
3926    }
3927}
3928
3929static void expand_vec_shi(TCGType type, unsigned vece, bool right,
3930                           TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3931{
3932    uint8_t mask;
3933
3934    tcg_debug_assert(vece == MO_8);
3935    if (right) {
3936        mask = 0xff >> imm;
3937        tcg_gen_shri_vec(MO_16, v0, v1, imm);
3938    } else {
3939        mask = 0xff << imm;
3940        tcg_gen_shli_vec(MO_16, v0, v1, imm);
3941    }
3942    tcg_gen_and_vec(MO_8, v0, v0, tcg_constant_vec(type, MO_8, mask));
3943}
3944
3945static void expand_vec_sari(TCGType type, unsigned vece,
3946                            TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3947{
3948    TCGv_vec t1, t2;
3949
3950    switch (vece) {
3951    case MO_8:
3952        /* Unpack to 16-bit, shift, and repack.  */
3953        t1 = tcg_temp_new_vec(type);
3954        t2 = tcg_temp_new_vec(type);
3955        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3956                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3957        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3958                  tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3959        tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
3960        tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
3961        vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
3962                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3963        tcg_temp_free_vec(t1);
3964        tcg_temp_free_vec(t2);
3965        break;
3966
3967    case MO_64:
3968        t1 = tcg_temp_new_vec(type);
3969        if (imm <= 32) {
3970            /*
3971             * We can emulate a small sign extend by performing an arithmetic
3972             * 32-bit shift and overwriting the high half of a 64-bit logical
3973             * shift.  Note that the ISA says shift of 32 is valid, but TCG
3974             * does not, so we have to bound the smaller shift -- we get the
3975             * same result in the high half either way.
3976             */
3977            tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
3978            tcg_gen_shri_vec(MO_64, v0, v1, imm);
3979            vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
3980                      tcgv_vec_arg(v0), tcgv_vec_arg(v0),
3981                      tcgv_vec_arg(t1), 0xaa);
3982        } else {
3983            /* Otherwise we will need to use a compare vs 0 to produce
3984             * the sign-extend, shift and merge.
3985             */
3986            tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1,
3987                            tcg_constant_vec(type, MO_64, 0), v1);
3988            tcg_gen_shri_vec(MO_64, v0, v1, imm);
3989            tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
3990            tcg_gen_or_vec(MO_64, v0, v0, t1);
3991        }
3992        tcg_temp_free_vec(t1);
3993        break;
3994
3995    default:
3996        g_assert_not_reached();
3997    }
3998}
3999
4000static void expand_vec_rotli(TCGType type, unsigned vece,
4001                             TCGv_vec v0, TCGv_vec v1, TCGArg imm)
4002{
4003    TCGv_vec t;
4004
4005    if (vece != MO_8 && have_avx512vbmi2) {
4006        vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece,
4007                  tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm);
4008        return;
4009    }
4010
4011    t = tcg_temp_new_vec(type);
4012    tcg_gen_shli_vec(vece, t, v1, imm);
4013    tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
4014    tcg_gen_or_vec(vece, v0, v0, t);
4015    tcg_temp_free_vec(t);
4016}
4017
4018static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
4019                            TCGv_vec v1, TCGv_vec sh, bool right)
4020{
4021    TCGv_vec t;
4022
4023    if (have_avx512vbmi2) {
4024        vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec,
4025                  type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1),
4026                  tcgv_vec_arg(v1), tcgv_vec_arg(sh));
4027        return;
4028    }
4029
4030    t = tcg_temp_new_vec(type);
4031    tcg_gen_dupi_vec(vece, t, 8 << vece);
4032    tcg_gen_sub_vec(vece, t, t, sh);
4033    if (right) {
4034        tcg_gen_shlv_vec(vece, t, v1, t);
4035        tcg_gen_shrv_vec(vece, v0, v1, sh);
4036    } else {
4037        tcg_gen_shrv_vec(vece, t, v1, t);
4038        tcg_gen_shlv_vec(vece, v0, v1, sh);
4039    }
4040    tcg_gen_or_vec(vece, v0, v0, t);
4041    tcg_temp_free_vec(t);
4042}
4043
4044static void expand_vec_rotls(TCGType type, unsigned vece,
4045                             TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
4046{
4047    TCGv_vec t = tcg_temp_new_vec(type);
4048
4049    tcg_debug_assert(vece != MO_8);
4050
4051    if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) {
4052        tcg_gen_dup_i32_vec(vece, t, lsh);
4053        if (vece >= MO_32) {
4054            tcg_gen_rotlv_vec(vece, v0, v1, t);
4055        } else {
4056            expand_vec_rotv(type, vece, v0, v1, t, false);
4057        }
4058    } else {
4059        TCGv_i32 rsh = tcg_temp_new_i32();
4060
4061        tcg_gen_neg_i32(rsh, lsh);
4062        tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
4063        tcg_gen_shls_vec(vece, t, v1, lsh);
4064        tcg_gen_shrs_vec(vece, v0, v1, rsh);
4065        tcg_gen_or_vec(vece, v0, v0, t);
4066
4067        tcg_temp_free_i32(rsh);
4068    }
4069
4070    tcg_temp_free_vec(t);
4071}
4072
4073static void expand_vec_mul(TCGType type, unsigned vece,
4074                           TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
4075{
4076    TCGv_vec t1, t2, t3, t4, zero;
4077
4078    tcg_debug_assert(vece == MO_8);
4079
4080    /*
4081     * Unpack v1 bytes to words, 0 | x.
4082     * Unpack v2 bytes to words, y | 0.
4083     * This leaves the 8-bit result, x * y, with 8 bits of right padding.
4084     * Shift logical right by 8 bits to clear the high 8 bytes before
4085     * using an unsigned saturated pack.
4086     *
4087     * The difference between the V64, V128 and V256 cases is merely how
4088     * we distribute the expansion between temporaries.
4089     */
4090    switch (type) {
4091    case TCG_TYPE_V64:
4092        t1 = tcg_temp_new_vec(TCG_TYPE_V128);
4093        t2 = tcg_temp_new_vec(TCG_TYPE_V128);
4094        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
4095        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
4096                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4097        vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
4098                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4099        tcg_gen_mul_vec(MO_16, t1, t1, t2);
4100        tcg_gen_shri_vec(MO_16, t1, t1, 8);
4101        vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
4102                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
4103        tcg_temp_free_vec(t1);
4104        tcg_temp_free_vec(t2);
4105        break;
4106
4107    case TCG_TYPE_V128:
4108    case TCG_TYPE_V256:
4109        t1 = tcg_temp_new_vec(type);
4110        t2 = tcg_temp_new_vec(type);
4111        t3 = tcg_temp_new_vec(type);
4112        t4 = tcg_temp_new_vec(type);
4113        zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
4114        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4115                  tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4116        vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
4117                  tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4118        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4119                  tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
4120        vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
4121                  tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
4122        tcg_gen_mul_vec(MO_16, t1, t1, t2);
4123        tcg_gen_mul_vec(MO_16, t3, t3, t4);
4124        tcg_gen_shri_vec(MO_16, t1, t1, 8);
4125        tcg_gen_shri_vec(MO_16, t3, t3, 8);
4126        vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
4127                  tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
4128        tcg_temp_free_vec(t1);
4129        tcg_temp_free_vec(t2);
4130        tcg_temp_free_vec(t3);
4131        tcg_temp_free_vec(t4);
4132        break;
4133
4134    default:
4135        g_assert_not_reached();
4136    }
4137}
4138
4139static TCGCond expand_vec_cond(TCGType type, unsigned vece,
4140                               TCGArg *a1, TCGArg *a2, TCGCond cond)
4141{
4142    /*
4143     * Without AVX512, there are no 64-bit unsigned comparisons.
4144     * We must bias the inputs so that they become signed.
4145     * All other swapping and inversion are handled during code generation.
4146     */
4147    if (vece == MO_64 && !have_avx512dq && is_unsigned_cond(cond)) {
4148        TCGv_vec v1 = temp_tcgv_vec(arg_temp(*a1));
4149        TCGv_vec v2 = temp_tcgv_vec(arg_temp(*a2));
4150        TCGv_vec t1 = tcg_temp_new_vec(type);
4151        TCGv_vec t2 = tcg_temp_new_vec(type);
4152        TCGv_vec t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1));
4153
4154        tcg_gen_sub_vec(vece, t1, v1, t3);
4155        tcg_gen_sub_vec(vece, t2, v2, t3);
4156        *a1 = tcgv_vec_arg(t1);
4157        *a2 = tcgv_vec_arg(t2);
4158        cond = tcg_signed_cond(cond);
4159    }
4160    return cond;
4161}
4162
4163static void expand_vec_cmp(TCGType type, unsigned vece, TCGArg a0,
4164                           TCGArg a1, TCGArg a2, TCGCond cond)
4165{
4166    cond = expand_vec_cond(type, vece, &a1, &a2, cond);
4167    /* Expand directly; do not recurse.  */
4168    vec_gen_4(INDEX_op_cmp_vec, type, vece, a0, a1, a2, cond);
4169}
4170
4171static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGArg a0,
4172                              TCGArg a1, TCGArg a2,
4173                              TCGArg a3, TCGArg a4, TCGCond cond)
4174{
4175    cond = expand_vec_cond(type, vece, &a1, &a2, cond);
4176    /* Expand directly; do not recurse.  */
4177    vec_gen_6(INDEX_op_cmpsel_vec, type, vece, a0, a1, a2, a3, a4, cond);
4178}
4179
4180void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
4181                       TCGArg a0, ...)
4182{
4183    va_list va;
4184    TCGArg a1, a2, a3, a4, a5;
4185    TCGv_vec v0, v1, v2;
4186
4187    va_start(va, a0);
4188    a1 = va_arg(va, TCGArg);
4189    a2 = va_arg(va, TCGArg);
4190    v0 = temp_tcgv_vec(arg_temp(a0));
4191    v1 = temp_tcgv_vec(arg_temp(a1));
4192
4193    switch (opc) {
4194    case INDEX_op_shli_vec:
4195        expand_vec_shi(type, vece, false, v0, v1, a2);
4196        break;
4197    case INDEX_op_shri_vec:
4198        expand_vec_shi(type, vece, true, v0, v1, a2);
4199        break;
4200    case INDEX_op_sari_vec:
4201        expand_vec_sari(type, vece, v0, v1, a2);
4202        break;
4203
4204    case INDEX_op_rotli_vec:
4205        expand_vec_rotli(type, vece, v0, v1, a2);
4206        break;
4207
4208    case INDEX_op_rotls_vec:
4209        expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
4210        break;
4211
4212    case INDEX_op_rotlv_vec:
4213        v2 = temp_tcgv_vec(arg_temp(a2));
4214        expand_vec_rotv(type, vece, v0, v1, v2, false);
4215        break;
4216    case INDEX_op_rotrv_vec:
4217        v2 = temp_tcgv_vec(arg_temp(a2));
4218        expand_vec_rotv(type, vece, v0, v1, v2, true);
4219        break;
4220
4221    case INDEX_op_mul_vec:
4222        v2 = temp_tcgv_vec(arg_temp(a2));
4223        expand_vec_mul(type, vece, v0, v1, v2);
4224        break;
4225
4226    case INDEX_op_cmp_vec:
4227        a3 = va_arg(va, TCGArg);
4228        expand_vec_cmp(type, vece, a0, a1, a2, a3);
4229        break;
4230
4231    case INDEX_op_cmpsel_vec:
4232        a3 = va_arg(va, TCGArg);
4233        a4 = va_arg(va, TCGArg);
4234        a5 = va_arg(va, TCGArg);
4235        expand_vec_cmpsel(type, vece, a0, a1, a2, a3, a4, a5);
4236        break;
4237
4238    default:
4239        break;
4240    }
4241
4242    va_end(va);
4243}
4244
4245static const int tcg_target_callee_save_regs[] = {
4246#if TCG_TARGET_REG_BITS == 64
4247    TCG_REG_RBP,
4248    TCG_REG_RBX,
4249#if defined(_WIN64)
4250    TCG_REG_RDI,
4251    TCG_REG_RSI,
4252#endif
4253    TCG_REG_R12,
4254    TCG_REG_R13,
4255    TCG_REG_R14, /* Currently used for the global env. */
4256    TCG_REG_R15,
4257#else
4258    TCG_REG_EBP, /* Currently used for the global env. */
4259    TCG_REG_EBX,
4260    TCG_REG_ESI,
4261    TCG_REG_EDI,
4262#endif
4263};
4264
4265/* Compute frame size via macros, to share between tcg_target_qemu_prologue
4266   and tcg_register_jit.  */
4267
4268#define PUSH_SIZE \
4269    ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
4270     * (TCG_TARGET_REG_BITS / 8))
4271
4272#define FRAME_SIZE \
4273    ((PUSH_SIZE \
4274      + TCG_STATIC_CALL_ARGS_SIZE \
4275      + CPU_TEMP_BUF_NLONGS * sizeof(long) \
4276      + TCG_TARGET_STACK_ALIGN - 1) \
4277     & ~(TCG_TARGET_STACK_ALIGN - 1))
4278
4279/* Generate global QEMU prologue and epilogue code */
4280static void tcg_target_qemu_prologue(TCGContext *s)
4281{
4282    int i, stack_addend;
4283
4284    /* TB prologue */
4285
4286    /* Reserve some stack space, also for TCG temps.  */
4287    stack_addend = FRAME_SIZE - PUSH_SIZE;
4288    tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
4289                  CPU_TEMP_BUF_NLONGS * sizeof(long));
4290
4291    /* Save all callee saved registers.  */
4292    for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
4293        tcg_out_push(s, tcg_target_callee_save_regs[i]);
4294    }
4295
4296    if (!tcg_use_softmmu && guest_base) {
4297        int seg = setup_guest_base_seg();
4298        if (seg != 0) {
4299            x86_guest_base.seg = seg;
4300        } else if (guest_base == (int32_t)guest_base) {
4301            x86_guest_base.ofs = guest_base;
4302        } else {
4303            assert(TCG_TARGET_REG_BITS == 64);
4304            /* Choose R12 because, as a base, it requires a SIB byte. */
4305            x86_guest_base.index = TCG_REG_R12;
4306            tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base);
4307            tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index);
4308        }
4309    }
4310
4311    if (TCG_TARGET_REG_BITS == 32) {
4312        tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
4313                   (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
4314        tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4315        /* jmp *tb.  */
4316        tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
4317                             (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
4318                             + stack_addend);
4319    } else {
4320        tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
4321        tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4322        /* jmp *tb.  */
4323        tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
4324    }
4325
4326    /*
4327     * Return path for goto_ptr. Set return value to 0, a-la exit_tb,
4328     * and fall through to the rest of the epilogue.
4329     */
4330    tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
4331    tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
4332
4333    /* TB epilogue */
4334    tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
4335
4336    tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
4337
4338    if (have_avx2) {
4339        tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
4340    }
4341    for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
4342        tcg_out_pop(s, tcg_target_callee_save_regs[i]);
4343    }
4344    tcg_out_opc(s, OPC_RET, 0, 0, 0);
4345}
4346
4347static void tcg_out_tb_start(TCGContext *s)
4348{
4349    /* nothing to do */
4350}
4351
4352static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
4353{
4354    memset(p, 0x90, count);
4355}
4356
4357static void tcg_target_init(TCGContext *s)
4358{
4359    tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
4360    if (TCG_TARGET_REG_BITS == 64) {
4361        tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
4362    }
4363    if (have_avx1) {
4364        tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
4365        tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
4366    }
4367    if (have_avx2) {
4368        tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
4369    }
4370
4371    tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
4372    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
4373    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
4374    tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
4375    if (TCG_TARGET_REG_BITS == 64) {
4376#if !defined(_WIN64)
4377        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
4378        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
4379#endif
4380        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
4381        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
4382        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
4383        tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
4384    }
4385
4386    s->reserved_regs = 0;
4387    tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
4388    tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC);
4389#ifdef _WIN64
4390    /* These are call saved, and we don't save them, so don't use them. */
4391    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6);
4392    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7);
4393    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8);
4394    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9);
4395    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10);
4396    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11);
4397    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12);
4398    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13);
4399    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14);
4400    tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15);
4401#endif
4402}
4403
4404typedef struct {
4405    DebugFrameHeader h;
4406    uint8_t fde_def_cfa[4];
4407    uint8_t fde_reg_ofs[14];
4408} DebugFrame;
4409
4410/* We're expecting a 2 byte uleb128 encoded value.  */
4411QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
4412
4413#if !defined(__ELF__)
4414    /* Host machine without ELF. */
4415#elif TCG_TARGET_REG_BITS == 64
4416#define ELF_HOST_MACHINE EM_X86_64
4417static const DebugFrame debug_frame = {
4418    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4419    .h.cie.id = -1,
4420    .h.cie.version = 1,
4421    .h.cie.code_align = 1,
4422    .h.cie.data_align = 0x78,             /* sleb128 -8 */
4423    .h.cie.return_column = 16,
4424
4425    /* Total FDE size does not include the "len" member.  */
4426    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4427
4428    .fde_def_cfa = {
4429        12, 7,                          /* DW_CFA_def_cfa %rsp, ... */
4430        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4431        (FRAME_SIZE >> 7)
4432    },
4433    .fde_reg_ofs = {
4434        0x90, 1,                        /* DW_CFA_offset, %rip, -8 */
4435        /* The following ordering must match tcg_target_callee_save_regs.  */
4436        0x86, 2,                        /* DW_CFA_offset, %rbp, -16 */
4437        0x83, 3,                        /* DW_CFA_offset, %rbx, -24 */
4438        0x8c, 4,                        /* DW_CFA_offset, %r12, -32 */
4439        0x8d, 5,                        /* DW_CFA_offset, %r13, -40 */
4440        0x8e, 6,                        /* DW_CFA_offset, %r14, -48 */
4441        0x8f, 7,                        /* DW_CFA_offset, %r15, -56 */
4442    }
4443};
4444#else
4445#define ELF_HOST_MACHINE EM_386
4446static const DebugFrame debug_frame = {
4447    .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4448    .h.cie.id = -1,
4449    .h.cie.version = 1,
4450    .h.cie.code_align = 1,
4451    .h.cie.data_align = 0x7c,             /* sleb128 -4 */
4452    .h.cie.return_column = 8,
4453
4454    /* Total FDE size does not include the "len" member.  */
4455    .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4456
4457    .fde_def_cfa = {
4458        12, 4,                          /* DW_CFA_def_cfa %esp, ... */
4459        (FRAME_SIZE & 0x7f) | 0x80,     /* ... uleb128 FRAME_SIZE */
4460        (FRAME_SIZE >> 7)
4461    },
4462    .fde_reg_ofs = {
4463        0x88, 1,                        /* DW_CFA_offset, %eip, -4 */
4464        /* The following ordering must match tcg_target_callee_save_regs.  */
4465        0x85, 2,                        /* DW_CFA_offset, %ebp, -8 */
4466        0x83, 3,                        /* DW_CFA_offset, %ebx, -12 */
4467        0x86, 4,                        /* DW_CFA_offset, %esi, -16 */
4468        0x87, 5,                        /* DW_CFA_offset, %edi, -20 */
4469    }
4470};
4471#endif
4472
4473#if defined(ELF_HOST_MACHINE)
4474void tcg_register_jit(const void *buf, size_t buf_size)
4475{
4476    tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
4477}
4478#endif
4479