1/* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25/* Used for function call generation. */ 26#define TCG_TARGET_STACK_ALIGN 16 27#if defined(_WIN64) 28#define TCG_TARGET_CALL_STACK_OFFSET 32 29#else 30#define TCG_TARGET_CALL_STACK_OFFSET 0 31#endif 32#define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL 33#define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL 34#if defined(_WIN64) 35# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_BY_REF 36# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_BY_VEC 37#elif TCG_TARGET_REG_BITS == 64 38# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL 39# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_NORMAL 40#else 41# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL 42# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_BY_REF 43#endif 44 45#ifdef CONFIG_DEBUG_TCG 46static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { 47#if TCG_TARGET_REG_BITS == 64 48 "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi", 49#else 50 "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi", 51#endif 52 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", 53 "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7", 54#if TCG_TARGET_REG_BITS == 64 55 "%xmm8", "%xmm9", "%xmm10", "%xmm11", 56 "%xmm12", "%xmm13", "%xmm14", "%xmm15", 57#endif 58}; 59#endif 60 61static const int tcg_target_reg_alloc_order[] = { 62#if TCG_TARGET_REG_BITS == 64 63 TCG_REG_RBP, 64 TCG_REG_RBX, 65 TCG_REG_R12, 66 TCG_REG_R13, 67 TCG_REG_R14, 68 TCG_REG_R15, 69 TCG_REG_R10, 70 TCG_REG_R11, 71 TCG_REG_R9, 72 TCG_REG_R8, 73 TCG_REG_RCX, 74 TCG_REG_RDX, 75 TCG_REG_RSI, 76 TCG_REG_RDI, 77 TCG_REG_RAX, 78#else 79 TCG_REG_EBX, 80 TCG_REG_ESI, 81 TCG_REG_EDI, 82 TCG_REG_EBP, 83 TCG_REG_ECX, 84 TCG_REG_EDX, 85 TCG_REG_EAX, 86#endif 87 TCG_REG_XMM0, 88 TCG_REG_XMM1, 89 TCG_REG_XMM2, 90 TCG_REG_XMM3, 91 TCG_REG_XMM4, 92 TCG_REG_XMM5, 93#ifndef _WIN64 94 /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save 95 any of them. Therefore only allow xmm0-xmm5 to be allocated. */ 96 TCG_REG_XMM6, 97 TCG_REG_XMM7, 98#if TCG_TARGET_REG_BITS == 64 99 TCG_REG_XMM8, 100 TCG_REG_XMM9, 101 TCG_REG_XMM10, 102 TCG_REG_XMM11, 103 TCG_REG_XMM12, 104 TCG_REG_XMM13, 105 TCG_REG_XMM14, 106 TCG_REG_XMM15, 107#endif 108#endif 109}; 110 111#define TCG_TMP_VEC TCG_REG_XMM5 112 113static const int tcg_target_call_iarg_regs[] = { 114#if TCG_TARGET_REG_BITS == 64 115#if defined(_WIN64) 116 TCG_REG_RCX, 117 TCG_REG_RDX, 118#else 119 TCG_REG_RDI, 120 TCG_REG_RSI, 121 TCG_REG_RDX, 122 TCG_REG_RCX, 123#endif 124 TCG_REG_R8, 125 TCG_REG_R9, 126#else 127 /* 32 bit mode uses stack based calling convention (GCC default). */ 128#endif 129}; 130 131static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) 132{ 133 switch (kind) { 134 case TCG_CALL_RET_NORMAL: 135 tcg_debug_assert(slot >= 0 && slot <= 1); 136 return slot ? TCG_REG_EDX : TCG_REG_EAX; 137#ifdef _WIN64 138 case TCG_CALL_RET_BY_VEC: 139 tcg_debug_assert(slot == 0); 140 return TCG_REG_XMM0; 141#endif 142 default: 143 g_assert_not_reached(); 144 } 145} 146 147/* Constants we accept. */ 148#define TCG_CT_CONST_S32 0x100 149#define TCG_CT_CONST_U32 0x200 150#define TCG_CT_CONST_I32 0x400 151#define TCG_CT_CONST_WSZ 0x800 152#define TCG_CT_CONST_TST 0x1000 153#define TCG_CT_CONST_ZERO 0x2000 154 155/* Registers used with L constraint, which are the first argument 156 registers on x86_64, and two random call clobbered registers on 157 i386. */ 158#if TCG_TARGET_REG_BITS == 64 159# define TCG_REG_L0 tcg_target_call_iarg_regs[0] 160# define TCG_REG_L1 tcg_target_call_iarg_regs[1] 161#else 162# define TCG_REG_L0 TCG_REG_EAX 163# define TCG_REG_L1 TCG_REG_EDX 164#endif 165 166#if TCG_TARGET_REG_BITS == 64 167# define ALL_GENERAL_REGS 0x0000ffffu 168# define ALL_VECTOR_REGS 0xffff0000u 169# define ALL_BYTEL_REGS ALL_GENERAL_REGS 170#else 171# define ALL_GENERAL_REGS 0x000000ffu 172# define ALL_VECTOR_REGS 0x00ff0000u 173# define ALL_BYTEL_REGS 0x0000000fu 174#endif 175#define SOFTMMU_RESERVE_REGS \ 176 (tcg_use_softmmu ? (1 << TCG_REG_L0) | (1 << TCG_REG_L1) : 0) 177 178#define have_bmi2 (cpuinfo & CPUINFO_BMI2) 179#define have_lzcnt (cpuinfo & CPUINFO_LZCNT) 180 181static const tcg_insn_unit *tb_ret_addr; 182 183static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 184 intptr_t value, intptr_t addend) 185{ 186 value += addend; 187 switch(type) { 188 case R_386_PC32: 189 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr); 190 if (value != (int32_t)value) { 191 return false; 192 } 193 /* FALLTHRU */ 194 case R_386_32: 195 tcg_patch32(code_ptr, value); 196 break; 197 case R_386_PC8: 198 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr); 199 if (value != (int8_t)value) { 200 return false; 201 } 202 tcg_patch8(code_ptr, value); 203 break; 204 default: 205 g_assert_not_reached(); 206 } 207 return true; 208} 209 210/* test if a constant matches the constraint */ 211static bool tcg_target_const_match(int64_t val, int ct, 212 TCGType type, TCGCond cond, int vece) 213{ 214 if (ct & TCG_CT_CONST) { 215 return 1; 216 } 217 if (type == TCG_TYPE_I32) { 218 if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 | 219 TCG_CT_CONST_I32 | TCG_CT_CONST_TST)) { 220 return 1; 221 } 222 } else { 223 if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) { 224 return 1; 225 } 226 if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) { 227 return 1; 228 } 229 if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) { 230 return 1; 231 } 232 /* 233 * This will be used in combination with TCG_CT_CONST_S32, 234 * so "normal" TESTQ is already matched. Also accept: 235 * TESTQ -> TESTL (uint32_t) 236 * TESTQ -> BT (is_power_of_2) 237 */ 238 if ((ct & TCG_CT_CONST_TST) 239 && is_tst_cond(cond) 240 && (val == (uint32_t)val || is_power_of_2(val))) { 241 return 1; 242 } 243 } 244 if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) { 245 return 1; 246 } 247 if ((ct & TCG_CT_CONST_ZERO) && val == 0) { 248 return 1; 249 } 250 return 0; 251} 252 253# define LOWREGMASK(x) ((x) & 7) 254 255#define P_EXT 0x100 /* 0x0f opcode prefix */ 256#define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */ 257#define P_DATA16 0x400 /* 0x66 opcode prefix */ 258#define P_VEXW 0x1000 /* Set VEX.W = 1 */ 259#if TCG_TARGET_REG_BITS == 64 260# define P_REXW P_VEXW /* Set REX.W = 1; match VEXW */ 261# define P_REXB_R 0x2000 /* REG field as byte register */ 262# define P_REXB_RM 0x4000 /* R/M field as byte register */ 263# define P_GS 0x8000 /* gs segment override */ 264#else 265# define P_REXW 0 266# define P_REXB_R 0 267# define P_REXB_RM 0 268# define P_GS 0 269#endif 270#define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */ 271#define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */ 272#define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */ 273#define P_VEXL 0x80000 /* Set VEX.L = 1 */ 274#define P_EVEX 0x100000 /* Requires EVEX encoding */ 275 276#define OPC_ARITH_EbIb (0x80) 277#define OPC_ARITH_EvIz (0x81) 278#define OPC_ARITH_EvIb (0x83) 279#define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */ 280#define OPC_ANDN (0xf2 | P_EXT38) 281#define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3)) 282#define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3)) 283#define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16) 284#define OPC_BSF (0xbc | P_EXT) 285#define OPC_BSR (0xbd | P_EXT) 286#define OPC_BSWAP (0xc8 | P_EXT) 287#define OPC_CALL_Jz (0xe8) 288#define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */ 289#define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3)) 290#define OPC_DEC_r32 (0x48) 291#define OPC_IMUL_GvEv (0xaf | P_EXT) 292#define OPC_IMUL_GvEvIb (0x6b) 293#define OPC_IMUL_GvEvIz (0x69) 294#define OPC_INC_r32 (0x40) 295#define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */ 296#define OPC_JCC_short (0x70) /* ... plus condition code */ 297#define OPC_JMP_long (0xe9) 298#define OPC_JMP_short (0xeb) 299#define OPC_LEA (0x8d) 300#define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3) 301#define OPC_MOVB_EvGv (0x88) /* stores, more or less */ 302#define OPC_MOVL_EvGv (0x89) /* stores, more or less */ 303#define OPC_MOVL_GvEv (0x8b) /* loads, more or less */ 304#define OPC_MOVB_EvIz (0xc6) 305#define OPC_MOVL_EvIz (0xc7) 306#define OPC_MOVB_Ib (0xb0) 307#define OPC_MOVL_Iv (0xb8) 308#define OPC_MOVBE_GyMy (0xf0 | P_EXT38) 309#define OPC_MOVBE_MyGy (0xf1 | P_EXT38) 310#define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16) 311#define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16) 312#define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2) 313#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16) 314#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16) 315#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3) 316#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3) 317#define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3) 318#define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16) 319#define OPC_MOVSBL (0xbe | P_EXT) 320#define OPC_MOVSWL (0xbf | P_EXT) 321#define OPC_MOVSLQ (0x63 | P_REXW) 322#define OPC_MOVZBL (0xb6 | P_EXT) 323#define OPC_MOVZWL (0xb7 | P_EXT) 324#define OPC_PABSB (0x1c | P_EXT38 | P_DATA16) 325#define OPC_PABSW (0x1d | P_EXT38 | P_DATA16) 326#define OPC_PABSD (0x1e | P_EXT38 | P_DATA16) 327#define OPC_VPABSQ (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 328#define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16) 329#define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16) 330#define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16) 331#define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16) 332#define OPC_PADDB (0xfc | P_EXT | P_DATA16) 333#define OPC_PADDW (0xfd | P_EXT | P_DATA16) 334#define OPC_PADDD (0xfe | P_EXT | P_DATA16) 335#define OPC_PADDQ (0xd4 | P_EXT | P_DATA16) 336#define OPC_PADDSB (0xec | P_EXT | P_DATA16) 337#define OPC_PADDSW (0xed | P_EXT | P_DATA16) 338#define OPC_PADDUB (0xdc | P_EXT | P_DATA16) 339#define OPC_PADDUW (0xdd | P_EXT | P_DATA16) 340#define OPC_PAND (0xdb | P_EXT | P_DATA16) 341#define OPC_PANDN (0xdf | P_EXT | P_DATA16) 342#define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16) 343#define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16) 344#define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16) 345#define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16) 346#define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16) 347#define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16) 348#define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16) 349#define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16) 350#define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16) 351#define OPC_PEXTRD (0x16 | P_EXT3A | P_DATA16) 352#define OPC_PINSRD (0x22 | P_EXT3A | P_DATA16) 353#define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16) 354#define OPC_PMAXSW (0xee | P_EXT | P_DATA16) 355#define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16) 356#define OPC_VPMAXSQ (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 357#define OPC_PMAXUB (0xde | P_EXT | P_DATA16) 358#define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16) 359#define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16) 360#define OPC_VPMAXUQ (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 361#define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16) 362#define OPC_PMINSW (0xea | P_EXT | P_DATA16) 363#define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16) 364#define OPC_VPMINSQ (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 365#define OPC_PMINUB (0xda | P_EXT | P_DATA16) 366#define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16) 367#define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16) 368#define OPC_VPMINUQ (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 369#define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16) 370#define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16) 371#define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16) 372#define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16) 373#define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16) 374#define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16) 375#define OPC_PMULLW (0xd5 | P_EXT | P_DATA16) 376#define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16) 377#define OPC_VPMULLQ (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 378#define OPC_POR (0xeb | P_EXT | P_DATA16) 379#define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16) 380#define OPC_PSHUFD (0x70 | P_EXT | P_DATA16) 381#define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2) 382#define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3) 383#define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */ 384#define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */ 385#define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */ 386#define OPC_PSLLW (0xf1 | P_EXT | P_DATA16) 387#define OPC_PSLLD (0xf2 | P_EXT | P_DATA16) 388#define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16) 389#define OPC_PSRAW (0xe1 | P_EXT | P_DATA16) 390#define OPC_PSRAD (0xe2 | P_EXT | P_DATA16) 391#define OPC_VPSRAQ (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX) 392#define OPC_PSRLW (0xd1 | P_EXT | P_DATA16) 393#define OPC_PSRLD (0xd2 | P_EXT | P_DATA16) 394#define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16) 395#define OPC_PSUBB (0xf8 | P_EXT | P_DATA16) 396#define OPC_PSUBW (0xf9 | P_EXT | P_DATA16) 397#define OPC_PSUBD (0xfa | P_EXT | P_DATA16) 398#define OPC_PSUBQ (0xfb | P_EXT | P_DATA16) 399#define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16) 400#define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16) 401#define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16) 402#define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16) 403#define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16) 404#define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16) 405#define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16) 406#define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16) 407#define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16) 408#define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16) 409#define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16) 410#define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16) 411#define OPC_PXOR (0xef | P_EXT | P_DATA16) 412#define OPC_POP_r32 (0x58) 413#define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3) 414#define OPC_PUSH_r32 (0x50) 415#define OPC_PUSH_Iv (0x68) 416#define OPC_PUSH_Ib (0x6a) 417#define OPC_RET (0xc3) 418#define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */ 419#define OPC_SHIFT_1 (0xd1) 420#define OPC_SHIFT_Ib (0xc1) 421#define OPC_SHIFT_cl (0xd3) 422#define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3) 423#define OPC_SHUFPS (0xc6 | P_EXT) 424#define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16) 425#define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2) 426#define OPC_SHRD_Ib (0xac | P_EXT) 427#define OPC_TESTB (0x84) 428#define OPC_TESTL (0x85) 429#define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3) 430#define OPC_UD2 (0x0b | P_EXT) 431#define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16) 432#define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16) 433#define OPC_VPBLENDMB (0x66 | P_EXT38 | P_DATA16 | P_EVEX) 434#define OPC_VPBLENDMW (0x66 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 435#define OPC_VPBLENDMD (0x64 | P_EXT38 | P_DATA16 | P_EVEX) 436#define OPC_VPBLENDMQ (0x64 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 437#define OPC_VPCMPB (0x3f | P_EXT3A | P_DATA16 | P_EVEX) 438#define OPC_VPCMPUB (0x3e | P_EXT3A | P_DATA16 | P_EVEX) 439#define OPC_VPCMPW (0x3f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 440#define OPC_VPCMPUW (0x3e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 441#define OPC_VPCMPD (0x1f | P_EXT3A | P_DATA16 | P_EVEX) 442#define OPC_VPCMPUD (0x1e | P_EXT3A | P_DATA16 | P_EVEX) 443#define OPC_VPCMPQ (0x1f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 444#define OPC_VPCMPUQ (0x1e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 445#define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16) 446#define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16) 447#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16) 448#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16) 449#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16) 450#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16) 451#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16) 452#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16) 453#define OPC_VPMOVM2B (0x28 | P_EXT38 | P_SIMDF3 | P_EVEX) 454#define OPC_VPMOVM2W (0x28 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX) 455#define OPC_VPMOVM2D (0x38 | P_EXT38 | P_SIMDF3 | P_EVEX) 456#define OPC_VPMOVM2Q (0x38 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX) 457#define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_VEXW) 458#define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL) 459#define OPC_VPROLVD (0x15 | P_EXT38 | P_DATA16 | P_EVEX) 460#define OPC_VPROLVQ (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 461#define OPC_VPRORVD (0x14 | P_EXT38 | P_DATA16 | P_EVEX) 462#define OPC_VPRORVQ (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 463#define OPC_VPSHLDW (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 464#define OPC_VPSHLDD (0x71 | P_EXT3A | P_DATA16 | P_EVEX) 465#define OPC_VPSHLDQ (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 466#define OPC_VPSHLDVW (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 467#define OPC_VPSHLDVD (0x71 | P_EXT38 | P_DATA16 | P_EVEX) 468#define OPC_VPSHLDVQ (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 469#define OPC_VPSHRDVW (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 470#define OPC_VPSHRDVD (0x73 | P_EXT38 | P_DATA16 | P_EVEX) 471#define OPC_VPSHRDVQ (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 472#define OPC_VPSLLVW (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 473#define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16) 474#define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_VEXW) 475#define OPC_VPSRAVW (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 476#define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16) 477#define OPC_VPSRAVQ (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 478#define OPC_VPSRLVW (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 479#define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16) 480#define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_VEXW) 481#define OPC_VPTERNLOGQ (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 482#define OPC_VPTESTMB (0x26 | P_EXT38 | P_DATA16 | P_EVEX) 483#define OPC_VPTESTMW (0x26 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 484#define OPC_VPTESTMD (0x27 | P_EXT38 | P_DATA16 | P_EVEX) 485#define OPC_VPTESTMQ (0x27 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 486#define OPC_VPTESTNMB (0x26 | P_EXT38 | P_SIMDF3 | P_EVEX) 487#define OPC_VPTESTNMW (0x26 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX) 488#define OPC_VPTESTNMD (0x27 | P_EXT38 | P_SIMDF3 | P_EVEX) 489#define OPC_VPTESTNMQ (0x27 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX) 490#define OPC_VZEROUPPER (0x77 | P_EXT) 491#define OPC_XCHG_ax_r32 (0x90) 492#define OPC_XCHG_EvGv (0x87) 493 494#define OPC_GRP3_Eb (0xf6) 495#define OPC_GRP3_Ev (0xf7) 496#define OPC_GRP5 (0xff) 497#define OPC_GRP14 (0x73 | P_EXT | P_DATA16) 498#define OPC_GRPBT (0xba | P_EXT) 499 500#define OPC_GRPBT_BT 4 501#define OPC_GRPBT_BTS 5 502#define OPC_GRPBT_BTR 6 503#define OPC_GRPBT_BTC 7 504 505/* Group 1 opcode extensions for 0x80-0x83. 506 These are also used as modifiers for OPC_ARITH. */ 507#define ARITH_ADD 0 508#define ARITH_OR 1 509#define ARITH_ADC 2 510#define ARITH_SBB 3 511#define ARITH_AND 4 512#define ARITH_SUB 5 513#define ARITH_XOR 6 514#define ARITH_CMP 7 515 516/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */ 517#define SHIFT_ROL 0 518#define SHIFT_ROR 1 519#define SHIFT_SHL 4 520#define SHIFT_SHR 5 521#define SHIFT_SAR 7 522 523/* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */ 524#define EXT3_TESTi 0 525#define EXT3_NOT 2 526#define EXT3_NEG 3 527#define EXT3_MUL 4 528#define EXT3_IMUL 5 529#define EXT3_DIV 6 530#define EXT3_IDIV 7 531 532/* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */ 533#define EXT5_INC_Ev 0 534#define EXT5_DEC_Ev 1 535#define EXT5_CALLN_Ev 2 536#define EXT5_JMPN_Ev 4 537 538/* Condition codes to be added to OPC_JCC_{long,short}. */ 539#define JCC_JMP (-1) 540#define JCC_JO 0x0 541#define JCC_JNO 0x1 542#define JCC_JB 0x2 543#define JCC_JAE 0x3 544#define JCC_JE 0x4 545#define JCC_JNE 0x5 546#define JCC_JBE 0x6 547#define JCC_JA 0x7 548#define JCC_JS 0x8 549#define JCC_JNS 0x9 550#define JCC_JP 0xa 551#define JCC_JNP 0xb 552#define JCC_JL 0xc 553#define JCC_JGE 0xd 554#define JCC_JLE 0xe 555#define JCC_JG 0xf 556 557static const uint8_t tcg_cond_to_jcc[] = { 558 [TCG_COND_EQ] = JCC_JE, 559 [TCG_COND_NE] = JCC_JNE, 560 [TCG_COND_LT] = JCC_JL, 561 [TCG_COND_GE] = JCC_JGE, 562 [TCG_COND_LE] = JCC_JLE, 563 [TCG_COND_GT] = JCC_JG, 564 [TCG_COND_LTU] = JCC_JB, 565 [TCG_COND_GEU] = JCC_JAE, 566 [TCG_COND_LEU] = JCC_JBE, 567 [TCG_COND_GTU] = JCC_JA, 568 [TCG_COND_TSTEQ] = JCC_JE, 569 [TCG_COND_TSTNE] = JCC_JNE, 570}; 571 572#if TCG_TARGET_REG_BITS == 64 573static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x) 574{ 575 int rex; 576 577 if (opc & P_GS) { 578 tcg_out8(s, 0x65); 579 } 580 if (opc & P_DATA16) { 581 /* We should never be asking for both 16 and 64-bit operation. */ 582 tcg_debug_assert((opc & P_REXW) == 0); 583 tcg_out8(s, 0x66); 584 } 585 if (opc & P_SIMDF3) { 586 tcg_out8(s, 0xf3); 587 } else if (opc & P_SIMDF2) { 588 tcg_out8(s, 0xf2); 589 } 590 591 rex = 0; 592 rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */ 593 rex |= (r & 8) >> 1; /* REX.R */ 594 rex |= (x & 8) >> 2; /* REX.X */ 595 rex |= (rm & 8) >> 3; /* REX.B */ 596 597 /* P_REXB_{R,RM} indicates that the given register is the low byte. 598 For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do, 599 as otherwise the encoding indicates %[abcd]h. Note that the values 600 that are ORed in merely indicate that the REX byte must be present; 601 those bits get discarded in output. */ 602 rex |= opc & (r >= 4 ? P_REXB_R : 0); 603 rex |= opc & (rm >= 4 ? P_REXB_RM : 0); 604 605 if (rex) { 606 tcg_out8(s, (uint8_t)(rex | 0x40)); 607 } 608 609 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) { 610 tcg_out8(s, 0x0f); 611 if (opc & P_EXT38) { 612 tcg_out8(s, 0x38); 613 } else if (opc & P_EXT3A) { 614 tcg_out8(s, 0x3a); 615 } 616 } 617 618 tcg_out8(s, opc); 619} 620#else 621static void tcg_out_opc(TCGContext *s, int opc) 622{ 623 if (opc & P_DATA16) { 624 tcg_out8(s, 0x66); 625 } 626 if (opc & P_SIMDF3) { 627 tcg_out8(s, 0xf3); 628 } else if (opc & P_SIMDF2) { 629 tcg_out8(s, 0xf2); 630 } 631 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) { 632 tcg_out8(s, 0x0f); 633 if (opc & P_EXT38) { 634 tcg_out8(s, 0x38); 635 } else if (opc & P_EXT3A) { 636 tcg_out8(s, 0x3a); 637 } 638 } 639 tcg_out8(s, opc); 640} 641/* Discard the register arguments to tcg_out_opc early, so as not to penalize 642 the 32-bit compilation paths. This method works with all versions of gcc, 643 whereas relying on optimization may not be able to exclude them. */ 644#define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc) 645#endif 646 647static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm) 648{ 649 tcg_out_opc(s, opc, r, rm, 0); 650 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 651} 652 653static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v, 654 int rm, int index) 655{ 656 int tmp; 657 658 if (opc & P_GS) { 659 tcg_out8(s, 0x65); 660 } 661 /* Use the two byte form if possible, which cannot encode 662 VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */ 663 if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT 664 && ((rm | index) & 8) == 0) { 665 /* Two byte VEX prefix. */ 666 tcg_out8(s, 0xc5); 667 668 tmp = (r & 8 ? 0 : 0x80); /* VEX.R */ 669 } else { 670 /* Three byte VEX prefix. */ 671 tcg_out8(s, 0xc4); 672 673 /* VEX.m-mmmm */ 674 if (opc & P_EXT3A) { 675 tmp = 3; 676 } else if (opc & P_EXT38) { 677 tmp = 2; 678 } else if (opc & P_EXT) { 679 tmp = 1; 680 } else { 681 g_assert_not_reached(); 682 } 683 tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */ 684 tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */ 685 tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */ 686 tcg_out8(s, tmp); 687 688 tmp = (opc & P_VEXW ? 0x80 : 0); /* VEX.W */ 689 } 690 691 tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */ 692 /* VEX.pp */ 693 if (opc & P_DATA16) { 694 tmp |= 1; /* 0x66 */ 695 } else if (opc & P_SIMDF3) { 696 tmp |= 2; /* 0xf3 */ 697 } else if (opc & P_SIMDF2) { 698 tmp |= 3; /* 0xf2 */ 699 } 700 tmp |= (~v & 15) << 3; /* VEX.vvvv */ 701 tcg_out8(s, tmp); 702 tcg_out8(s, opc); 703} 704 705static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v, 706 int rm, int index, int aaa, bool z) 707{ 708 /* The entire 4-byte evex prefix; with R' and V' set. */ 709 uint32_t p = 0x08041062; 710 int mm, pp; 711 712 tcg_debug_assert(have_avx512vl); 713 714 /* EVEX.mm */ 715 if (opc & P_EXT3A) { 716 mm = 3; 717 } else if (opc & P_EXT38) { 718 mm = 2; 719 } else if (opc & P_EXT) { 720 mm = 1; 721 } else { 722 g_assert_not_reached(); 723 } 724 725 /* EVEX.pp */ 726 if (opc & P_DATA16) { 727 pp = 1; /* 0x66 */ 728 } else if (opc & P_SIMDF3) { 729 pp = 2; /* 0xf3 */ 730 } else if (opc & P_SIMDF2) { 731 pp = 3; /* 0xf2 */ 732 } else { 733 pp = 0; 734 } 735 736 p = deposit32(p, 8, 2, mm); 737 p = deposit32(p, 13, 1, (rm & 8) == 0); /* EVEX.RXB.B */ 738 p = deposit32(p, 14, 1, (index & 8) == 0); /* EVEX.RXB.X */ 739 p = deposit32(p, 15, 1, (r & 8) == 0); /* EVEX.RXB.R */ 740 p = deposit32(p, 16, 2, pp); 741 p = deposit32(p, 19, 4, ~v); 742 p = deposit32(p, 23, 1, (opc & P_VEXW) != 0); 743 p = deposit32(p, 24, 3, aaa); 744 p = deposit32(p, 29, 2, (opc & P_VEXL) != 0); 745 p = deposit32(p, 31, 1, z); 746 747 tcg_out32(s, p); 748 tcg_out8(s, opc); 749} 750 751static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm) 752{ 753 if (opc & P_EVEX) { 754 tcg_out_evex_opc(s, opc, r, v, rm, 0, 0, false); 755 } else { 756 tcg_out_vex_opc(s, opc, r, v, rm, 0); 757 } 758 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 759} 760 761static void tcg_out_vex_modrm_type(TCGContext *s, int opc, 762 int r, int v, int rm, TCGType type) 763{ 764 if (type == TCG_TYPE_V256) { 765 opc |= P_VEXL; 766 } 767 tcg_out_vex_modrm(s, opc, r, v, rm); 768} 769 770static void tcg_out_evex_modrm_type(TCGContext *s, int opc, int r, int v, 771 int rm, int aaa, bool z, TCGType type) 772{ 773 if (type == TCG_TYPE_V256) { 774 opc |= P_VEXL; 775 } 776 tcg_out_evex_opc(s, opc, r, v, rm, 0, aaa, z); 777 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 778} 779 780/* Output an opcode with a full "rm + (index<<shift) + offset" address mode. 781 We handle either RM and INDEX missing with a negative value. In 64-bit 782 mode for absolute addresses, ~RM is the size of the immediate operand 783 that will follow the instruction. */ 784 785static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index, 786 int shift, intptr_t offset) 787{ 788 int mod, len; 789 790 if (index < 0 && rm < 0) { 791 if (TCG_TARGET_REG_BITS == 64) { 792 /* Try for a rip-relative addressing mode. This has replaced 793 the 32-bit-mode absolute addressing encoding. */ 794 intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm; 795 intptr_t disp = offset - pc; 796 if (disp == (int32_t)disp) { 797 tcg_out8(s, (LOWREGMASK(r) << 3) | 5); 798 tcg_out32(s, disp); 799 return; 800 } 801 802 /* Try for an absolute address encoding. This requires the 803 use of the MODRM+SIB encoding and is therefore larger than 804 rip-relative addressing. */ 805 if (offset == (int32_t)offset) { 806 tcg_out8(s, (LOWREGMASK(r) << 3) | 4); 807 tcg_out8(s, (4 << 3) | 5); 808 tcg_out32(s, offset); 809 return; 810 } 811 812 /* ??? The memory isn't directly addressable. */ 813 g_assert_not_reached(); 814 } else { 815 /* Absolute address. */ 816 tcg_out8(s, (r << 3) | 5); 817 tcg_out32(s, offset); 818 return; 819 } 820 } 821 822 /* Find the length of the immediate addend. Note that the encoding 823 that would be used for (%ebp) indicates absolute addressing. */ 824 if (rm < 0) { 825 mod = 0, len = 4, rm = 5; 826 } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) { 827 mod = 0, len = 0; 828 } else if (offset == (int8_t)offset) { 829 mod = 0x40, len = 1; 830 } else { 831 mod = 0x80, len = 4; 832 } 833 834 /* Use a single byte MODRM format if possible. Note that the encoding 835 that would be used for %esp is the escape to the two byte form. */ 836 if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) { 837 /* Single byte MODRM format. */ 838 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 839 } else { 840 /* Two byte MODRM+SIB format. */ 841 842 /* Note that the encoding that would place %esp into the index 843 field indicates no index register. In 64-bit mode, the REX.X 844 bit counts, so %r12 can be used as the index. */ 845 if (index < 0) { 846 index = 4; 847 } else { 848 tcg_debug_assert(index != TCG_REG_ESP); 849 } 850 851 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4); 852 tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm)); 853 } 854 855 if (len == 1) { 856 tcg_out8(s, offset); 857 } else if (len == 4) { 858 tcg_out32(s, offset); 859 } 860} 861 862static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm, 863 int index, int shift, intptr_t offset) 864{ 865 tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index); 866 tcg_out_sib_offset(s, r, rm, index, shift, offset); 867} 868 869static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v, 870 int rm, int index, int shift, 871 intptr_t offset) 872{ 873 tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index); 874 tcg_out_sib_offset(s, r, rm, index, shift, offset); 875} 876 877/* A simplification of the above with no index or shift. */ 878static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r, 879 int rm, intptr_t offset) 880{ 881 tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset); 882} 883 884static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r, 885 int v, int rm, intptr_t offset) 886{ 887 tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset); 888} 889 890/* Output an opcode with an expected reference to the constant pool. */ 891static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r) 892{ 893 tcg_out_opc(s, opc, r, 0, 0); 894 /* Absolute for 32-bit, pc-relative for 64-bit. */ 895 tcg_out8(s, LOWREGMASK(r) << 3 | 5); 896 tcg_out32(s, 0); 897} 898 899/* Output an opcode with an expected reference to the constant pool. */ 900static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r) 901{ 902 tcg_out_vex_opc(s, opc, r, 0, 0, 0); 903 /* Absolute for 32-bit, pc-relative for 64-bit. */ 904 tcg_out8(s, LOWREGMASK(r) << 3 | 5); 905 tcg_out32(s, 0); 906} 907 908/* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */ 909static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src) 910{ 911 /* Propagate an opcode prefix, such as P_REXW. */ 912 int ext = subop & ~0x7; 913 subop &= 0x7; 914 915 tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src); 916} 917 918static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 919{ 920 int rexw = 0; 921 922 if (arg == ret) { 923 return true; 924 } 925 switch (type) { 926 case TCG_TYPE_I64: 927 rexw = P_REXW; 928 /* fallthru */ 929 case TCG_TYPE_I32: 930 if (ret < 16) { 931 if (arg < 16) { 932 tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg); 933 } else { 934 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret); 935 } 936 } else { 937 if (arg < 16) { 938 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg); 939 } else { 940 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg); 941 } 942 } 943 break; 944 945 case TCG_TYPE_V64: 946 tcg_debug_assert(ret >= 16 && arg >= 16); 947 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg); 948 break; 949 case TCG_TYPE_V128: 950 tcg_debug_assert(ret >= 16 && arg >= 16); 951 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg); 952 break; 953 case TCG_TYPE_V256: 954 tcg_debug_assert(ret >= 16 && arg >= 16); 955 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg); 956 break; 957 958 default: 959 g_assert_not_reached(); 960 } 961 return true; 962} 963 964static const int avx2_dup_insn[4] = { 965 OPC_VPBROADCASTB, OPC_VPBROADCASTW, 966 OPC_VPBROADCASTD, OPC_VPBROADCASTQ, 967}; 968 969static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 970 TCGReg r, TCGReg a) 971{ 972 if (have_avx2) { 973 tcg_out_vex_modrm_type(s, avx2_dup_insn[vece], r, 0, a, type); 974 } else { 975 switch (vece) { 976 case MO_8: 977 /* ??? With zero in a register, use PSHUFB. */ 978 tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a); 979 a = r; 980 /* FALLTHRU */ 981 case MO_16: 982 tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a); 983 a = r; 984 /* FALLTHRU */ 985 case MO_32: 986 tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a); 987 /* imm8 operand: all output lanes selected from input lane 0. */ 988 tcg_out8(s, 0); 989 break; 990 case MO_64: 991 tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a); 992 break; 993 default: 994 g_assert_not_reached(); 995 } 996 } 997 return true; 998} 999 1000static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 1001 TCGReg r, TCGReg base, intptr_t offset) 1002{ 1003 if (have_avx2) { 1004 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); 1005 tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l, 1006 r, 0, base, offset); 1007 } else { 1008 switch (vece) { 1009 case MO_64: 1010 tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset); 1011 break; 1012 case MO_32: 1013 tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset); 1014 break; 1015 case MO_16: 1016 tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset); 1017 tcg_out8(s, 0); /* imm8 */ 1018 tcg_out_dup_vec(s, type, vece, r, r); 1019 break; 1020 case MO_8: 1021 tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset); 1022 tcg_out8(s, 0); /* imm8 */ 1023 tcg_out_dup_vec(s, type, vece, r, r); 1024 break; 1025 default: 1026 g_assert_not_reached(); 1027 } 1028 } 1029 return true; 1030} 1031 1032static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 1033 TCGReg ret, int64_t arg) 1034{ 1035 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); 1036 1037 if (arg == 0) { 1038 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret); 1039 return; 1040 } 1041 if (arg == -1) { 1042 tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret); 1043 return; 1044 } 1045 1046 if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) { 1047 if (have_avx2) { 1048 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret); 1049 } else { 1050 tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret); 1051 } 1052 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0); 1053 } else { 1054 if (type == TCG_TYPE_V64) { 1055 tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret); 1056 } else if (have_avx2) { 1057 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret); 1058 } else { 1059 tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret); 1060 } 1061 if (TCG_TARGET_REG_BITS == 64) { 1062 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4); 1063 } else { 1064 new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32); 1065 } 1066 } 1067} 1068 1069static void tcg_out_movi_vec(TCGContext *s, TCGType type, 1070 TCGReg ret, tcg_target_long arg) 1071{ 1072 if (arg == 0) { 1073 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret); 1074 return; 1075 } 1076 if (arg == -1) { 1077 tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret); 1078 return; 1079 } 1080 1081 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW); 1082 tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret); 1083 if (TCG_TARGET_REG_BITS == 64) { 1084 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4); 1085 } else { 1086 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0); 1087 } 1088} 1089 1090static void tcg_out_movi_int(TCGContext *s, TCGType type, 1091 TCGReg ret, tcg_target_long arg) 1092{ 1093 tcg_target_long diff; 1094 1095 if (arg == 0) { 1096 tgen_arithr(s, ARITH_XOR, ret, ret); 1097 return; 1098 } 1099 if (arg == (uint32_t)arg || type == TCG_TYPE_I32) { 1100 tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0); 1101 tcg_out32(s, arg); 1102 return; 1103 } 1104 if (arg == (int32_t)arg) { 1105 tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret); 1106 tcg_out32(s, arg); 1107 return; 1108 } 1109 1110 /* Try a 7 byte pc-relative lea before the 10 byte movq. */ 1111 diff = tcg_pcrel_diff(s, (const void *)arg) - 7; 1112 if (diff == (int32_t)diff) { 1113 tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0); 1114 tcg_out8(s, (LOWREGMASK(ret) << 3) | 5); 1115 tcg_out32(s, diff); 1116 return; 1117 } 1118 1119 tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0); 1120 tcg_out64(s, arg); 1121} 1122 1123static void tcg_out_movi(TCGContext *s, TCGType type, 1124 TCGReg ret, tcg_target_long arg) 1125{ 1126 switch (type) { 1127 case TCG_TYPE_I32: 1128#if TCG_TARGET_REG_BITS == 64 1129 case TCG_TYPE_I64: 1130#endif 1131 if (ret < 16) { 1132 tcg_out_movi_int(s, type, ret, arg); 1133 } else { 1134 tcg_out_movi_vec(s, type, ret, arg); 1135 } 1136 break; 1137 default: 1138 g_assert_not_reached(); 1139 } 1140} 1141 1142static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) 1143{ 1144 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1145 tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2); 1146 return true; 1147} 1148 1149static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, 1150 tcg_target_long imm) 1151{ 1152 /* This function is only used for passing structs by reference. */ 1153 tcg_debug_assert(imm == (int32_t)imm); 1154 tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm); 1155} 1156 1157static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val) 1158{ 1159 if (val == (int8_t)val) { 1160 tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0); 1161 tcg_out8(s, val); 1162 } else if (val == (int32_t)val) { 1163 tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0); 1164 tcg_out32(s, val); 1165 } else { 1166 g_assert_not_reached(); 1167 } 1168} 1169 1170static inline void tcg_out_mb(TCGContext *s, TCGArg a0) 1171{ 1172 /* Given the strength of x86 memory ordering, we only need care for 1173 store-load ordering. Experimentally, "lock orl $0,0(%esp)" is 1174 faster than "mfence", so don't bother with the sse insn. */ 1175 if (a0 & TCG_MO_ST_LD) { 1176 tcg_out8(s, 0xf0); 1177 tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0); 1178 tcg_out8(s, 0); 1179 } 1180} 1181 1182static inline void tcg_out_push(TCGContext *s, int reg) 1183{ 1184 tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0); 1185} 1186 1187static inline void tcg_out_pop(TCGContext *s, int reg) 1188{ 1189 tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0); 1190} 1191 1192static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, 1193 TCGReg arg1, intptr_t arg2) 1194{ 1195 switch (type) { 1196 case TCG_TYPE_I32: 1197 if (ret < 16) { 1198 tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2); 1199 } else { 1200 tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2); 1201 } 1202 break; 1203 case TCG_TYPE_I64: 1204 if (ret < 16) { 1205 tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2); 1206 break; 1207 } 1208 /* FALLTHRU */ 1209 case TCG_TYPE_V64: 1210 /* There is no instruction that can validate 8-byte alignment. */ 1211 tcg_debug_assert(ret >= 16); 1212 tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2); 1213 break; 1214 case TCG_TYPE_V128: 1215 /* 1216 * The gvec infrastructure is asserts that v128 vector loads 1217 * and stores use a 16-byte aligned offset. Validate that the 1218 * final pointer is aligned by using an insn that will SIGSEGV. 1219 */ 1220 tcg_debug_assert(ret >= 16); 1221 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2); 1222 break; 1223 case TCG_TYPE_V256: 1224 /* 1225 * The gvec infrastructure only requires 16-byte alignment, 1226 * so here we must use an unaligned load. 1227 */ 1228 tcg_debug_assert(ret >= 16); 1229 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL, 1230 ret, 0, arg1, arg2); 1231 break; 1232 default: 1233 g_assert_not_reached(); 1234 } 1235} 1236 1237static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, 1238 TCGReg arg1, intptr_t arg2) 1239{ 1240 switch (type) { 1241 case TCG_TYPE_I32: 1242 if (arg < 16) { 1243 tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2); 1244 } else { 1245 tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2); 1246 } 1247 break; 1248 case TCG_TYPE_I64: 1249 if (arg < 16) { 1250 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2); 1251 break; 1252 } 1253 /* FALLTHRU */ 1254 case TCG_TYPE_V64: 1255 /* There is no instruction that can validate 8-byte alignment. */ 1256 tcg_debug_assert(arg >= 16); 1257 tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2); 1258 break; 1259 case TCG_TYPE_V128: 1260 /* 1261 * The gvec infrastructure is asserts that v128 vector loads 1262 * and stores use a 16-byte aligned offset. Validate that the 1263 * final pointer is aligned by using an insn that will SIGSEGV. 1264 * 1265 * This specific instance is also used by TCG_CALL_RET_BY_VEC, 1266 * for _WIN64, which must have SSE2 but may not have AVX. 1267 */ 1268 tcg_debug_assert(arg >= 16); 1269 if (have_avx1) { 1270 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2); 1271 } else { 1272 tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2); 1273 } 1274 break; 1275 case TCG_TYPE_V256: 1276 /* 1277 * The gvec infrastructure only requires 16-byte alignment, 1278 * so here we must use an unaligned store. 1279 */ 1280 tcg_debug_assert(arg >= 16); 1281 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL, 1282 arg, 0, arg1, arg2); 1283 break; 1284 default: 1285 g_assert_not_reached(); 1286 } 1287} 1288 1289static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 1290 TCGReg base, intptr_t ofs) 1291{ 1292 int rexw = 0; 1293 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) { 1294 if (val != (int32_t)val) { 1295 return false; 1296 } 1297 rexw = P_REXW; 1298 } else if (type != TCG_TYPE_I32) { 1299 return false; 1300 } 1301 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs); 1302 tcg_out32(s, val); 1303 return true; 1304} 1305 1306static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count) 1307{ 1308 /* Propagate an opcode prefix, such as P_DATA16. */ 1309 int ext = subopc & ~0x7; 1310 subopc &= 0x7; 1311 1312 if (count == 1) { 1313 tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg); 1314 } else { 1315 tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg); 1316 tcg_out8(s, count); 1317 } 1318} 1319 1320static inline void tcg_out_bswap32(TCGContext *s, int reg) 1321{ 1322 tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0); 1323} 1324 1325static inline void tcg_out_rolw_8(TCGContext *s, int reg) 1326{ 1327 tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8); 1328} 1329 1330static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src) 1331{ 1332 if (TCG_TARGET_REG_BITS == 32 && src >= 4) { 1333 tcg_out_mov(s, TCG_TYPE_I32, dest, src); 1334 if (dest >= 4) { 1335 tcg_out_modrm(s, OPC_ARITH_EvIz, ARITH_AND, dest); 1336 tcg_out32(s, 0xff); 1337 return; 1338 } 1339 src = dest; 1340 } 1341 tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src); 1342} 1343 1344static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) 1345{ 1346 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1347 1348 if (TCG_TARGET_REG_BITS == 32 && src >= 4) { 1349 tcg_out_mov(s, TCG_TYPE_I32, dest, src); 1350 if (dest >= 4) { 1351 tcg_out_shifti(s, SHIFT_SHL, dest, 24); 1352 tcg_out_shifti(s, SHIFT_SAR, dest, 24); 1353 return; 1354 } 1355 src = dest; 1356 } 1357 tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src); 1358} 1359 1360static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src) 1361{ 1362 /* movzwl */ 1363 tcg_out_modrm(s, OPC_MOVZWL, dest, src); 1364} 1365 1366static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) 1367{ 1368 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1369 /* movsw[lq] */ 1370 tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src); 1371} 1372 1373static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src) 1374{ 1375 /* 32-bit mov zero extends. */ 1376 tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src); 1377} 1378 1379static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src) 1380{ 1381 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 1382 tcg_out_modrm(s, OPC_MOVSLQ, dest, src); 1383} 1384 1385static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src) 1386{ 1387 tcg_out_ext32s(s, dest, src); 1388} 1389 1390static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src) 1391{ 1392 if (dest != src) { 1393 tcg_out_ext32u(s, dest, src); 1394 } 1395} 1396 1397static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src) 1398{ 1399 tcg_out_ext32u(s, dest, src); 1400} 1401 1402static inline void tcg_out_bswap64(TCGContext *s, int reg) 1403{ 1404 tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0); 1405} 1406 1407static void tgen_arithi(TCGContext *s, int c, int r0, 1408 tcg_target_long val, int cf) 1409{ 1410 int rexw = 0; 1411 1412 if (TCG_TARGET_REG_BITS == 64) { 1413 rexw = c & -8; 1414 c &= 7; 1415 } 1416 1417 switch (c) { 1418 case ARITH_ADD: 1419 case ARITH_SUB: 1420 if (!cf) { 1421 /* 1422 * ??? While INC is 2 bytes shorter than ADDL $1, they also induce 1423 * partial flags update stalls on Pentium4 and are not recommended 1424 * by current Intel optimization manuals. 1425 */ 1426 if (val == 1 || val == -1) { 1427 int is_inc = (c == ARITH_ADD) ^ (val < 0); 1428 if (TCG_TARGET_REG_BITS == 64) { 1429 /* 1430 * The single-byte increment encodings are re-tasked 1431 * as the REX prefixes. Use the MODRM encoding. 1432 */ 1433 tcg_out_modrm(s, OPC_GRP5 + rexw, 1434 (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0); 1435 } else { 1436 tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0); 1437 } 1438 return; 1439 } 1440 if (val == 128) { 1441 /* 1442 * Facilitate using an 8-bit immediate. Carry is inverted 1443 * by this transformation, so do it only if cf == 0. 1444 */ 1445 c ^= ARITH_ADD ^ ARITH_SUB; 1446 val = -128; 1447 } 1448 } 1449 break; 1450 1451 case ARITH_AND: 1452 if (TCG_TARGET_REG_BITS == 64) { 1453 if (val == 0xffffffffu) { 1454 tcg_out_ext32u(s, r0, r0); 1455 return; 1456 } 1457 if (val == (uint32_t)val) { 1458 /* AND with no high bits set can use a 32-bit operation. */ 1459 rexw = 0; 1460 } 1461 } 1462 if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) { 1463 tcg_out_ext8u(s, r0, r0); 1464 return; 1465 } 1466 if (val == 0xffffu) { 1467 tcg_out_ext16u(s, r0, r0); 1468 return; 1469 } 1470 break; 1471 1472 case ARITH_OR: 1473 case ARITH_XOR: 1474 if (val >= 0x80 && val <= 0xff 1475 && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) { 1476 tcg_out_modrm(s, OPC_ARITH_EbIb + P_REXB_RM, c, r0); 1477 tcg_out8(s, val); 1478 return; 1479 } 1480 break; 1481 } 1482 1483 if (val == (int8_t)val) { 1484 tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0); 1485 tcg_out8(s, val); 1486 return; 1487 } 1488 if (rexw == 0 || val == (int32_t)val) { 1489 tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0); 1490 tcg_out32(s, val); 1491 return; 1492 } 1493 1494 g_assert_not_reached(); 1495} 1496 1497static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val) 1498{ 1499 if (val != 0) { 1500 tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0); 1501 } 1502} 1503 1504/* Set SMALL to force a short forward branch. */ 1505static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small) 1506{ 1507 int32_t val, val1; 1508 1509 if (l->has_value) { 1510 val = tcg_pcrel_diff(s, l->u.value_ptr); 1511 val1 = val - 2; 1512 if ((int8_t)val1 == val1) { 1513 if (opc == -1) { 1514 tcg_out8(s, OPC_JMP_short); 1515 } else { 1516 tcg_out8(s, OPC_JCC_short + opc); 1517 } 1518 tcg_out8(s, val1); 1519 } else { 1520 tcg_debug_assert(!small); 1521 if (opc == -1) { 1522 tcg_out8(s, OPC_JMP_long); 1523 tcg_out32(s, val - 5); 1524 } else { 1525 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0); 1526 tcg_out32(s, val - 6); 1527 } 1528 } 1529 } else if (small) { 1530 if (opc == -1) { 1531 tcg_out8(s, OPC_JMP_short); 1532 } else { 1533 tcg_out8(s, OPC_JCC_short + opc); 1534 } 1535 tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1); 1536 s->code_ptr += 1; 1537 } else { 1538 if (opc == -1) { 1539 tcg_out8(s, OPC_JMP_long); 1540 } else { 1541 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0); 1542 } 1543 tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4); 1544 s->code_ptr += 4; 1545 } 1546} 1547 1548static int tcg_out_cmp(TCGContext *s, TCGCond cond, TCGArg arg1, 1549 TCGArg arg2, int const_arg2, int rexw) 1550{ 1551 int jz, js; 1552 1553 if (!is_tst_cond(cond)) { 1554 if (!const_arg2) { 1555 tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2); 1556 } else if (arg2 == 0) { 1557 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1); 1558 } else { 1559 tcg_debug_assert(!rexw || arg2 == (int32_t)arg2); 1560 tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0); 1561 } 1562 return tcg_cond_to_jcc[cond]; 1563 } 1564 1565 jz = tcg_cond_to_jcc[cond]; 1566 js = (cond == TCG_COND_TSTNE ? JCC_JS : JCC_JNS); 1567 1568 if (!const_arg2) { 1569 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg2); 1570 return jz; 1571 } 1572 1573 if (arg2 <= 0xff && (TCG_TARGET_REG_BITS == 64 || arg1 < 4)) { 1574 if (arg2 == 0x80) { 1575 tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1); 1576 return js; 1577 } 1578 if (arg2 == 0xff) { 1579 tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1); 1580 return jz; 1581 } 1582 tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, arg1); 1583 tcg_out8(s, arg2); 1584 return jz; 1585 } 1586 1587 if ((arg2 & ~0xff00) == 0 && arg1 < 4) { 1588 if (arg2 == 0x8000) { 1589 tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4); 1590 return js; 1591 } 1592 if (arg2 == 0xff00) { 1593 tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4); 1594 return jz; 1595 } 1596 tcg_out_modrm(s, OPC_GRP3_Eb, EXT3_TESTi, arg1 + 4); 1597 tcg_out8(s, arg2 >> 8); 1598 return jz; 1599 } 1600 1601 if (arg2 == 0xffff) { 1602 tcg_out_modrm(s, OPC_TESTL | P_DATA16, arg1, arg1); 1603 return jz; 1604 } 1605 if (arg2 == 0xffffffffu) { 1606 tcg_out_modrm(s, OPC_TESTL, arg1, arg1); 1607 return jz; 1608 } 1609 1610 if (is_power_of_2(rexw ? arg2 : (uint32_t)arg2)) { 1611 int jc = (cond == TCG_COND_TSTNE ? JCC_JB : JCC_JAE); 1612 int sh = ctz64(arg2); 1613 1614 rexw = (sh & 32 ? P_REXW : 0); 1615 if ((sh & 31) == 31) { 1616 tcg_out_modrm(s, OPC_TESTL | rexw, arg1, arg1); 1617 return js; 1618 } else { 1619 tcg_out_modrm(s, OPC_GRPBT | rexw, OPC_GRPBT_BT, arg1); 1620 tcg_out8(s, sh); 1621 return jc; 1622 } 1623 } 1624 1625 if (rexw) { 1626 if (arg2 == (uint32_t)arg2) { 1627 rexw = 0; 1628 } else { 1629 tcg_debug_assert(arg2 == (int32_t)arg2); 1630 } 1631 } 1632 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_TESTi, arg1); 1633 tcg_out32(s, arg2); 1634 return jz; 1635} 1636 1637static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond, 1638 TCGArg arg1, TCGArg arg2, int const_arg2, 1639 TCGLabel *label, bool small) 1640{ 1641 int jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, rexw); 1642 tcg_out_jxx(s, jcc, label, small); 1643} 1644 1645#if TCG_TARGET_REG_BITS == 32 1646static void tcg_out_brcond2(TCGContext *s, const TCGArg *args, 1647 const int *const_args, bool small) 1648{ 1649 TCGLabel *label_next = gen_new_label(); 1650 TCGLabel *label_this = arg_label(args[5]); 1651 TCGCond cond = args[4]; 1652 1653 switch (cond) { 1654 case TCG_COND_EQ: 1655 case TCG_COND_TSTEQ: 1656 tcg_out_brcond(s, 0, tcg_invert_cond(cond), 1657 args[0], args[2], const_args[2], label_next, 1); 1658 tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3], 1659 label_this, small); 1660 break; 1661 1662 case TCG_COND_NE: 1663 case TCG_COND_TSTNE: 1664 tcg_out_brcond(s, 0, cond, args[0], args[2], const_args[2], 1665 label_this, small); 1666 tcg_out_brcond(s, 0, cond, args[1], args[3], const_args[3], 1667 label_this, small); 1668 break; 1669 1670 default: 1671 tcg_out_brcond(s, 0, tcg_high_cond(cond), args[1], 1672 args[3], const_args[3], label_this, small); 1673 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1674 tcg_out_brcond(s, 0, tcg_unsigned_cond(cond), args[0], 1675 args[2], const_args[2], label_this, small); 1676 break; 1677 } 1678 tcg_out_label(s, label_next); 1679} 1680#endif 1681 1682static void tcg_out_setcond(TCGContext *s, int rexw, TCGCond cond, 1683 TCGArg dest, TCGArg arg1, TCGArg arg2, 1684 int const_arg2, bool neg) 1685{ 1686 int cmp_rexw = rexw; 1687 bool inv = false; 1688 bool cleared; 1689 int jcc; 1690 1691 switch (cond) { 1692 case TCG_COND_NE: 1693 inv = true; 1694 /* fall through */ 1695 case TCG_COND_EQ: 1696 /* If arg2 is 0, convert to LTU/GEU vs 1. */ 1697 if (const_arg2 && arg2 == 0) { 1698 arg2 = 1; 1699 goto do_ltu; 1700 } 1701 break; 1702 1703 case TCG_COND_TSTNE: 1704 inv = true; 1705 /* fall through */ 1706 case TCG_COND_TSTEQ: 1707 /* If arg2 is -1, convert to LTU/GEU vs 1. */ 1708 if (const_arg2 && arg2 == 0xffffffffu) { 1709 arg2 = 1; 1710 cmp_rexw = 0; 1711 goto do_ltu; 1712 } 1713 break; 1714 1715 case TCG_COND_LEU: 1716 inv = true; 1717 /* fall through */ 1718 case TCG_COND_GTU: 1719 /* If arg2 is a register, swap for LTU/GEU. */ 1720 if (!const_arg2) { 1721 TCGReg t = arg1; 1722 arg1 = arg2; 1723 arg2 = t; 1724 goto do_ltu; 1725 } 1726 break; 1727 1728 case TCG_COND_GEU: 1729 inv = true; 1730 /* fall through */ 1731 case TCG_COND_LTU: 1732 do_ltu: 1733 /* 1734 * Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU. 1735 * We can then use NEG or INC to produce the desired result. 1736 * This is always smaller than the SETCC expansion. 1737 */ 1738 tcg_out_cmp(s, TCG_COND_LTU, arg1, arg2, const_arg2, cmp_rexw); 1739 1740 /* X - X - C = -C = (C ? -1 : 0) */ 1741 tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest); 1742 if (inv && neg) { 1743 /* ~(C ? -1 : 0) = (C ? 0 : -1) */ 1744 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest); 1745 } else if (inv) { 1746 /* (C ? -1 : 0) + 1 = (C ? 0 : 1) */ 1747 tgen_arithi(s, ARITH_ADD, dest, 1, 0); 1748 } else if (!neg) { 1749 /* -(C ? -1 : 0) = (C ? 1 : 0) */ 1750 tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest); 1751 } 1752 return; 1753 1754 case TCG_COND_GE: 1755 inv = true; 1756 /* fall through */ 1757 case TCG_COND_LT: 1758 /* If arg2 is 0, extract the sign bit. */ 1759 if (const_arg2 && arg2 == 0) { 1760 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, dest, arg1); 1761 if (inv) { 1762 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest); 1763 } 1764 tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw, 1765 dest, rexw ? 63 : 31); 1766 return; 1767 } 1768 break; 1769 1770 default: 1771 break; 1772 } 1773 1774 /* 1775 * If dest does not overlap the inputs, clearing it first is preferred. 1776 * The XOR breaks any false dependency for the low-byte write to dest, 1777 * and is also one byte smaller than MOVZBL. 1778 */ 1779 cleared = false; 1780 if (dest != arg1 && (const_arg2 || dest != arg2)) { 1781 tgen_arithr(s, ARITH_XOR, dest, dest); 1782 cleared = true; 1783 } 1784 1785 jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, cmp_rexw); 1786 tcg_out_modrm(s, OPC_SETCC | jcc, 0, dest); 1787 1788 if (!cleared) { 1789 tcg_out_ext8u(s, dest, dest); 1790 } 1791 if (neg) { 1792 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest); 1793 } 1794} 1795 1796#if TCG_TARGET_REG_BITS == 32 1797static void tcg_out_setcond2(TCGContext *s, const TCGArg *args, 1798 const int *const_args) 1799{ 1800 TCGArg new_args[6]; 1801 TCGLabel *label_true, *label_over; 1802 1803 memcpy(new_args, args+1, 5*sizeof(TCGArg)); 1804 1805 if (args[0] == args[1] || args[0] == args[2] 1806 || (!const_args[3] && args[0] == args[3]) 1807 || (!const_args[4] && args[0] == args[4])) { 1808 /* When the destination overlaps with one of the argument 1809 registers, don't do anything tricky. */ 1810 label_true = gen_new_label(); 1811 label_over = gen_new_label(); 1812 1813 new_args[5] = label_arg(label_true); 1814 tcg_out_brcond2(s, new_args, const_args+1, 1); 1815 1816 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0); 1817 tcg_out_jxx(s, JCC_JMP, label_over, 1); 1818 tcg_out_label(s, label_true); 1819 1820 tcg_out_movi(s, TCG_TYPE_I32, args[0], 1); 1821 tcg_out_label(s, label_over); 1822 } else { 1823 /* When the destination does not overlap one of the arguments, 1824 clear the destination first, jump if cond false, and emit an 1825 increment in the true case. This results in smaller code. */ 1826 1827 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0); 1828 1829 label_over = gen_new_label(); 1830 new_args[4] = tcg_invert_cond(new_args[4]); 1831 new_args[5] = label_arg(label_over); 1832 tcg_out_brcond2(s, new_args, const_args+1, 1); 1833 1834 tgen_arithi(s, ARITH_ADD, args[0], 1, 0); 1835 tcg_out_label(s, label_over); 1836 } 1837} 1838#endif 1839 1840static void tcg_out_cmov(TCGContext *s, int jcc, int rexw, 1841 TCGReg dest, TCGReg v1) 1842{ 1843 tcg_out_modrm(s, OPC_CMOVCC | jcc | rexw, dest, v1); 1844} 1845 1846static void tcg_out_movcond(TCGContext *s, int rexw, TCGCond cond, 1847 TCGReg dest, TCGReg c1, TCGArg c2, int const_c2, 1848 TCGReg v1) 1849{ 1850 int jcc = tcg_out_cmp(s, cond, c1, c2, const_c2, rexw); 1851 tcg_out_cmov(s, jcc, rexw, dest, v1); 1852} 1853 1854static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1, 1855 TCGArg arg2, bool const_a2) 1856{ 1857 if (have_bmi1) { 1858 tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1); 1859 if (const_a2) { 1860 tcg_debug_assert(arg2 == (rexw ? 64 : 32)); 1861 } else { 1862 tcg_debug_assert(dest != arg2); 1863 tcg_out_cmov(s, JCC_JB, rexw, dest, arg2); 1864 } 1865 } else { 1866 tcg_debug_assert(dest != arg2); 1867 tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1); 1868 tcg_out_cmov(s, JCC_JE, rexw, dest, arg2); 1869 } 1870} 1871 1872static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1, 1873 TCGArg arg2, bool const_a2) 1874{ 1875 if (have_lzcnt) { 1876 tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1); 1877 if (const_a2) { 1878 tcg_debug_assert(arg2 == (rexw ? 64 : 32)); 1879 } else { 1880 tcg_debug_assert(dest != arg2); 1881 tcg_out_cmov(s, JCC_JB, rexw, dest, arg2); 1882 } 1883 } else { 1884 tcg_debug_assert(!const_a2); 1885 tcg_debug_assert(dest != arg1); 1886 tcg_debug_assert(dest != arg2); 1887 1888 /* Recall that the output of BSR is the index not the count. */ 1889 tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1); 1890 tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0); 1891 1892 /* Since we have destroyed the flags from BSR, we have to re-test. */ 1893 int jcc = tcg_out_cmp(s, TCG_COND_EQ, arg1, 0, 1, rexw); 1894 tcg_out_cmov(s, jcc, rexw, dest, arg2); 1895 } 1896} 1897 1898static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest) 1899{ 1900 intptr_t disp = tcg_pcrel_diff(s, dest) - 5; 1901 1902 if (disp == (int32_t)disp) { 1903 tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0); 1904 tcg_out32(s, disp); 1905 } else { 1906 /* rip-relative addressing into the constant pool. 1907 This is 6 + 8 = 14 bytes, as compared to using an 1908 immediate load 10 + 6 = 16 bytes, plus we may 1909 be able to re-use the pool constant for more calls. */ 1910 tcg_out_opc(s, OPC_GRP5, 0, 0, 0); 1911 tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5); 1912 new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4); 1913 tcg_out32(s, 0); 1914 } 1915} 1916 1917static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest, 1918 const TCGHelperInfo *info) 1919{ 1920 tcg_out_branch(s, 1, dest); 1921 1922#ifndef _WIN32 1923 if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) { 1924 /* 1925 * The sysv i386 abi for struct return places a reference as the 1926 * first argument of the stack, and pops that argument with the 1927 * return statement. Since we want to retain the aligned stack 1928 * pointer for the callee, we do not want to actually push that 1929 * argument before the call but rely on the normal store to the 1930 * stack slot. But we do need to compensate for the pop in order 1931 * to reset our correct stack pointer value. 1932 * Pushing a garbage value back onto the stack is quickest. 1933 */ 1934 tcg_out_push(s, TCG_REG_EAX); 1935 } 1936#endif 1937} 1938 1939static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest) 1940{ 1941 tcg_out_branch(s, 0, dest); 1942} 1943 1944static void tcg_out_nopn(TCGContext *s, int n) 1945{ 1946 int i; 1947 /* Emit 1 or 2 operand size prefixes for the standard one byte nop, 1948 * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the 1949 * duplicate prefix, and all of the interesting recent cores can 1950 * decode and discard the duplicates in a single cycle. 1951 */ 1952 tcg_debug_assert(n >= 1); 1953 for (i = 1; i < n; ++i) { 1954 tcg_out8(s, 0x66); 1955 } 1956 tcg_out8(s, 0x90); 1957} 1958 1959typedef struct { 1960 TCGReg base; 1961 int index; 1962 int ofs; 1963 int seg; 1964 TCGAtomAlign aa; 1965} HostAddress; 1966 1967bool tcg_target_has_memory_bswap(MemOp memop) 1968{ 1969 TCGAtomAlign aa; 1970 1971 if (!have_movbe) { 1972 return false; 1973 } 1974 if ((memop & MO_SIZE) < MO_128) { 1975 return true; 1976 } 1977 1978 /* 1979 * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA, 1980 * but do allow a pair of 64-bit operations, i.e. MOVBEQ. 1981 */ 1982 aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true); 1983 return aa.atom < MO_128; 1984} 1985 1986/* 1987 * Because i686 has no register parameters and because x86_64 has xchg 1988 * to handle addr/data register overlap, we have placed all input arguments 1989 * before we need might need a scratch reg. 1990 * 1991 * Even then, a scratch is only needed for l->raddr. Rather than expose 1992 * a general-purpose scratch when we don't actually know it's available, 1993 * use the ra_gen hook to load into RAX if needed. 1994 */ 1995#if TCG_TARGET_REG_BITS == 64 1996static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg) 1997{ 1998 if (arg < 0) { 1999 arg = TCG_REG_RAX; 2000 } 2001 tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr); 2002 return arg; 2003} 2004static const TCGLdstHelperParam ldst_helper_param = { 2005 .ra_gen = ldst_ra_gen 2006}; 2007#else 2008static const TCGLdstHelperParam ldst_helper_param = { }; 2009#endif 2010 2011static void tcg_out_vec_to_pair(TCGContext *s, TCGType type, 2012 TCGReg l, TCGReg h, TCGReg v) 2013{ 2014 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2015 2016 /* vpmov{d,q} %v, %l */ 2017 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l); 2018 /* vpextr{d,q} $1, %v, %h */ 2019 tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h); 2020 tcg_out8(s, 1); 2021} 2022 2023static void tcg_out_pair_to_vec(TCGContext *s, TCGType type, 2024 TCGReg v, TCGReg l, TCGReg h) 2025{ 2026 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2027 2028 /* vmov{d,q} %l, %v */ 2029 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l); 2030 /* vpinsr{d,q} $1, %h, %v, %v */ 2031 tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h); 2032 tcg_out8(s, 1); 2033} 2034 2035/* 2036 * Generate code for the slow path for a load at the end of block 2037 */ 2038static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 2039{ 2040 MemOp opc = get_memop(l->oi); 2041 tcg_insn_unit **label_ptr = &l->label_ptr[0]; 2042 2043 /* resolve label address */ 2044 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4); 2045 if (label_ptr[1]) { 2046 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4); 2047 } 2048 2049 tcg_out_ld_helper_args(s, l, &ldst_helper_param); 2050 tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]); 2051 tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param); 2052 2053 tcg_out_jmp(s, l->raddr); 2054 return true; 2055} 2056 2057/* 2058 * Generate code for the slow path for a store at the end of block 2059 */ 2060static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 2061{ 2062 MemOp opc = get_memop(l->oi); 2063 tcg_insn_unit **label_ptr = &l->label_ptr[0]; 2064 2065 /* resolve label address */ 2066 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4); 2067 if (label_ptr[1]) { 2068 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4); 2069 } 2070 2071 tcg_out_st_helper_args(s, l, &ldst_helper_param); 2072 tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]); 2073 2074 tcg_out_jmp(s, l->raddr); 2075 return true; 2076} 2077 2078#ifdef CONFIG_USER_ONLY 2079static HostAddress x86_guest_base = { 2080 .index = -1 2081}; 2082 2083#if defined(__x86_64__) && defined(__linux__) 2084# include <asm/prctl.h> 2085# include <sys/prctl.h> 2086int arch_prctl(int code, unsigned long addr); 2087static inline int setup_guest_base_seg(void) 2088{ 2089 if (arch_prctl(ARCH_SET_GS, guest_base) == 0) { 2090 return P_GS; 2091 } 2092 return 0; 2093} 2094#define setup_guest_base_seg setup_guest_base_seg 2095#elif defined(__x86_64__) && \ 2096 (defined (__FreeBSD__) || defined (__FreeBSD_kernel__)) 2097# include <machine/sysarch.h> 2098static inline int setup_guest_base_seg(void) 2099{ 2100 if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) { 2101 return P_GS; 2102 } 2103 return 0; 2104} 2105#define setup_guest_base_seg setup_guest_base_seg 2106#endif 2107#else 2108# define x86_guest_base (*(HostAddress *)({ qemu_build_not_reached(); NULL; })) 2109#endif /* CONFIG_USER_ONLY */ 2110#ifndef setup_guest_base_seg 2111# define setup_guest_base_seg() 0 2112#endif 2113 2114#define MIN_TLB_MASK_TABLE_OFS INT_MIN 2115 2116/* 2117 * For softmmu, perform the TLB load and compare. 2118 * For useronly, perform any required alignment tests. 2119 * In both cases, return a TCGLabelQemuLdst structure if the slow path 2120 * is required and fill in @h with the host address for the fast path. 2121 */ 2122static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h, 2123 TCGReg addr, MemOpIdx oi, bool is_ld) 2124{ 2125 TCGLabelQemuLdst *ldst = NULL; 2126 MemOp opc = get_memop(oi); 2127 MemOp s_bits = opc & MO_SIZE; 2128 unsigned a_mask; 2129 2130 if (tcg_use_softmmu) { 2131 h->index = TCG_REG_L0; 2132 h->ofs = 0; 2133 h->seg = 0; 2134 } else { 2135 *h = x86_guest_base; 2136 } 2137 h->base = addr; 2138 h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128); 2139 a_mask = (1 << h->aa.align) - 1; 2140 2141 if (tcg_use_softmmu) { 2142 int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read) 2143 : offsetof(CPUTLBEntry, addr_write); 2144 TCGType ttype = TCG_TYPE_I32; 2145 TCGType tlbtype = TCG_TYPE_I32; 2146 int trexw = 0, hrexw = 0, tlbrexw = 0; 2147 unsigned mem_index = get_mmuidx(oi); 2148 unsigned s_mask = (1 << s_bits) - 1; 2149 int fast_ofs = tlb_mask_table_ofs(s, mem_index); 2150 int tlb_mask; 2151 2152 ldst = new_ldst_label(s); 2153 ldst->is_ld = is_ld; 2154 ldst->oi = oi; 2155 ldst->addr_reg = addr; 2156 2157 if (TCG_TARGET_REG_BITS == 64) { 2158 ttype = s->addr_type; 2159 trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW); 2160 if (TCG_TYPE_PTR == TCG_TYPE_I64) { 2161 hrexw = P_REXW; 2162 if (s->page_bits + s->tlb_dyn_max_bits > 32) { 2163 tlbtype = TCG_TYPE_I64; 2164 tlbrexw = P_REXW; 2165 } 2166 } 2167 } 2168 2169 tcg_out_mov(s, tlbtype, TCG_REG_L0, addr); 2170 tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0, 2171 s->page_bits - CPU_TLB_ENTRY_BITS); 2172 2173 tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0, 2174 fast_ofs + offsetof(CPUTLBDescFast, mask)); 2175 2176 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0, 2177 fast_ofs + offsetof(CPUTLBDescFast, table)); 2178 2179 /* 2180 * If the required alignment is at least as large as the access, 2181 * simply copy the address and mask. For lesser alignments, 2182 * check that we don't cross pages for the complete access. 2183 */ 2184 if (a_mask >= s_mask) { 2185 tcg_out_mov(s, ttype, TCG_REG_L1, addr); 2186 } else { 2187 tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1, 2188 addr, s_mask - a_mask); 2189 } 2190 tlb_mask = s->page_mask | a_mask; 2191 tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0); 2192 2193 /* cmp 0(TCG_REG_L0), TCG_REG_L1 */ 2194 tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, 2195 TCG_REG_L1, TCG_REG_L0, cmp_ofs); 2196 2197 /* jne slow_path */ 2198 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); 2199 ldst->label_ptr[0] = s->code_ptr; 2200 s->code_ptr += 4; 2201 2202 /* TLB Hit. */ 2203 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0, 2204 offsetof(CPUTLBEntry, addend)); 2205 } else if (a_mask) { 2206 int jcc; 2207 2208 ldst = new_ldst_label(s); 2209 ldst->is_ld = is_ld; 2210 ldst->oi = oi; 2211 ldst->addr_reg = addr; 2212 2213 /* jne slow_path */ 2214 jcc = tcg_out_cmp(s, TCG_COND_TSTNE, addr, a_mask, true, false); 2215 tcg_out_opc(s, OPC_JCC_long + jcc, 0, 0, 0); 2216 ldst->label_ptr[0] = s->code_ptr; 2217 s->code_ptr += 4; 2218 } 2219 2220 return ldst; 2221} 2222 2223static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, 2224 HostAddress h, TCGType type, MemOp memop) 2225{ 2226 bool use_movbe = false; 2227 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW); 2228 int movop = OPC_MOVL_GvEv; 2229 2230 /* Do big-endian loads with movbe. */ 2231 if (memop & MO_BSWAP) { 2232 tcg_debug_assert(have_movbe); 2233 use_movbe = true; 2234 movop = OPC_MOVBE_GyMy; 2235 } 2236 2237 switch (memop & MO_SSIZE) { 2238 case MO_UB: 2239 tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo, 2240 h.base, h.index, 0, h.ofs); 2241 break; 2242 case MO_SB: 2243 tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo, 2244 h.base, h.index, 0, h.ofs); 2245 break; 2246 case MO_UW: 2247 if (use_movbe) { 2248 /* There is no extending movbe; only low 16-bits are modified. */ 2249 if (datalo != h.base && datalo != h.index) { 2250 /* XOR breaks dependency chains. */ 2251 tgen_arithr(s, ARITH_XOR, datalo, datalo); 2252 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2253 datalo, h.base, h.index, 0, h.ofs); 2254 } else { 2255 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2256 datalo, h.base, h.index, 0, h.ofs); 2257 tcg_out_ext16u(s, datalo, datalo); 2258 } 2259 } else { 2260 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo, 2261 h.base, h.index, 0, h.ofs); 2262 } 2263 break; 2264 case MO_SW: 2265 if (use_movbe) { 2266 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2267 datalo, h.base, h.index, 0, h.ofs); 2268 tcg_out_ext16s(s, type, datalo, datalo); 2269 } else { 2270 tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg, 2271 datalo, h.base, h.index, 0, h.ofs); 2272 } 2273 break; 2274 case MO_UL: 2275 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2276 h.base, h.index, 0, h.ofs); 2277 break; 2278#if TCG_TARGET_REG_BITS == 64 2279 case MO_SL: 2280 if (use_movbe) { 2281 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo, 2282 h.base, h.index, 0, h.ofs); 2283 tcg_out_ext32s(s, datalo, datalo); 2284 } else { 2285 tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo, 2286 h.base, h.index, 0, h.ofs); 2287 } 2288 break; 2289#endif 2290 case MO_UQ: 2291 if (TCG_TARGET_REG_BITS == 64) { 2292 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2293 h.base, h.index, 0, h.ofs); 2294 break; 2295 } 2296 if (use_movbe) { 2297 TCGReg t = datalo; 2298 datalo = datahi; 2299 datahi = t; 2300 } 2301 if (h.base == datalo || h.index == datalo) { 2302 tcg_out_modrm_sib_offset(s, OPC_LEA, datahi, 2303 h.base, h.index, 0, h.ofs); 2304 tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0); 2305 tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4); 2306 } else { 2307 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2308 h.base, h.index, 0, h.ofs); 2309 tcg_out_modrm_sib_offset(s, movop + h.seg, datahi, 2310 h.base, h.index, 0, h.ofs + 4); 2311 } 2312 break; 2313 2314 case MO_128: 2315 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2316 2317 /* 2318 * Without 16-byte atomicity, use integer regs. 2319 * That is where we want the data, and it allows bswaps. 2320 */ 2321 if (h.aa.atom < MO_128) { 2322 if (use_movbe) { 2323 TCGReg t = datalo; 2324 datalo = datahi; 2325 datahi = t; 2326 } 2327 if (h.base == datalo || h.index == datalo) { 2328 tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi, 2329 h.base, h.index, 0, h.ofs); 2330 tcg_out_modrm_offset(s, movop + P_REXW + h.seg, 2331 datalo, datahi, 0); 2332 tcg_out_modrm_offset(s, movop + P_REXW + h.seg, 2333 datahi, datahi, 8); 2334 } else { 2335 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2336 h.base, h.index, 0, h.ofs); 2337 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi, 2338 h.base, h.index, 0, h.ofs + 8); 2339 } 2340 break; 2341 } 2342 2343 /* 2344 * With 16-byte atomicity, a vector load is required. 2345 * If we already have 16-byte alignment, then VMOVDQA always works. 2346 * Else if VMOVDQU has atomicity with dynamic alignment, use that. 2347 * Else use we require a runtime test for alignment for VMOVDQA; 2348 * use VMOVDQU on the unaligned nonatomic path for simplicity. 2349 */ 2350 if (h.aa.align >= MO_128) { 2351 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg, 2352 TCG_TMP_VEC, 0, 2353 h.base, h.index, 0, h.ofs); 2354 } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) { 2355 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg, 2356 TCG_TMP_VEC, 0, 2357 h.base, h.index, 0, h.ofs); 2358 } else { 2359 TCGLabel *l1 = gen_new_label(); 2360 TCGLabel *l2 = gen_new_label(); 2361 int jcc; 2362 2363 jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false); 2364 tcg_out_jxx(s, jcc, l1, true); 2365 2366 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg, 2367 TCG_TMP_VEC, 0, 2368 h.base, h.index, 0, h.ofs); 2369 tcg_out_jxx(s, JCC_JMP, l2, true); 2370 2371 tcg_out_label(s, l1); 2372 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg, 2373 TCG_TMP_VEC, 0, 2374 h.base, h.index, 0, h.ofs); 2375 tcg_out_label(s, l2); 2376 } 2377 tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC); 2378 break; 2379 2380 default: 2381 g_assert_not_reached(); 2382 } 2383} 2384 2385static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi, 2386 TCGReg addr, MemOpIdx oi, TCGType data_type) 2387{ 2388 TCGLabelQemuLdst *ldst; 2389 HostAddress h; 2390 2391 ldst = prepare_host_addr(s, &h, addr, oi, true); 2392 tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi)); 2393 2394 if (ldst) { 2395 ldst->type = data_type; 2396 ldst->datalo_reg = datalo; 2397 ldst->datahi_reg = datahi; 2398 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 2399 } 2400} 2401 2402static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, 2403 HostAddress h, MemOp memop) 2404{ 2405 bool use_movbe = false; 2406 int movop = OPC_MOVL_EvGv; 2407 2408 /* 2409 * Do big-endian stores with movbe or system-mode. 2410 * User-only without movbe will have its swapping done generically. 2411 */ 2412 if (memop & MO_BSWAP) { 2413 tcg_debug_assert(have_movbe); 2414 use_movbe = true; 2415 movop = OPC_MOVBE_MyGy; 2416 } 2417 2418 switch (memop & MO_SIZE) { 2419 case MO_8: 2420 /* This is handled with constraints on INDEX_op_qemu_st8_i32. */ 2421 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4); 2422 tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg, 2423 datalo, h.base, h.index, 0, h.ofs); 2424 break; 2425 case MO_16: 2426 tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo, 2427 h.base, h.index, 0, h.ofs); 2428 break; 2429 case MO_32: 2430 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2431 h.base, h.index, 0, h.ofs); 2432 break; 2433 case MO_64: 2434 if (TCG_TARGET_REG_BITS == 64) { 2435 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2436 h.base, h.index, 0, h.ofs); 2437 } else { 2438 if (use_movbe) { 2439 TCGReg t = datalo; 2440 datalo = datahi; 2441 datahi = t; 2442 } 2443 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2444 h.base, h.index, 0, h.ofs); 2445 tcg_out_modrm_sib_offset(s, movop + h.seg, datahi, 2446 h.base, h.index, 0, h.ofs + 4); 2447 } 2448 break; 2449 2450 case MO_128: 2451 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2452 2453 /* 2454 * Without 16-byte atomicity, use integer regs. 2455 * That is where we have the data, and it allows bswaps. 2456 */ 2457 if (h.aa.atom < MO_128) { 2458 if (use_movbe) { 2459 TCGReg t = datalo; 2460 datalo = datahi; 2461 datahi = t; 2462 } 2463 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2464 h.base, h.index, 0, h.ofs); 2465 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi, 2466 h.base, h.index, 0, h.ofs + 8); 2467 break; 2468 } 2469 2470 /* 2471 * With 16-byte atomicity, a vector store is required. 2472 * If we already have 16-byte alignment, then VMOVDQA always works. 2473 * Else if VMOVDQU has atomicity with dynamic alignment, use that. 2474 * Else use we require a runtime test for alignment for VMOVDQA; 2475 * use VMOVDQU on the unaligned nonatomic path for simplicity. 2476 */ 2477 tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi); 2478 if (h.aa.align >= MO_128) { 2479 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg, 2480 TCG_TMP_VEC, 0, 2481 h.base, h.index, 0, h.ofs); 2482 } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) { 2483 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg, 2484 TCG_TMP_VEC, 0, 2485 h.base, h.index, 0, h.ofs); 2486 } else { 2487 TCGLabel *l1 = gen_new_label(); 2488 TCGLabel *l2 = gen_new_label(); 2489 int jcc; 2490 2491 jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false); 2492 tcg_out_jxx(s, jcc, l1, true); 2493 2494 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg, 2495 TCG_TMP_VEC, 0, 2496 h.base, h.index, 0, h.ofs); 2497 tcg_out_jxx(s, JCC_JMP, l2, true); 2498 2499 tcg_out_label(s, l1); 2500 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg, 2501 TCG_TMP_VEC, 0, 2502 h.base, h.index, 0, h.ofs); 2503 tcg_out_label(s, l2); 2504 } 2505 break; 2506 2507 default: 2508 g_assert_not_reached(); 2509 } 2510} 2511 2512static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi, 2513 TCGReg addr, MemOpIdx oi, TCGType data_type) 2514{ 2515 TCGLabelQemuLdst *ldst; 2516 HostAddress h; 2517 2518 ldst = prepare_host_addr(s, &h, addr, oi, false); 2519 tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi)); 2520 2521 if (ldst) { 2522 ldst->type = data_type; 2523 ldst->datalo_reg = datalo; 2524 ldst->datahi_reg = datahi; 2525 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 2526 } 2527} 2528 2529static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0) 2530{ 2531 /* Reuse the zeroing that exists for goto_ptr. */ 2532 if (a0 == 0) { 2533 tcg_out_jmp(s, tcg_code_gen_epilogue); 2534 } else { 2535 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0); 2536 tcg_out_jmp(s, tb_ret_addr); 2537 } 2538} 2539 2540static void tcg_out_goto_tb(TCGContext *s, int which) 2541{ 2542 /* 2543 * Jump displacement must be aligned for atomic patching; 2544 * see if we need to add extra nops before jump 2545 */ 2546 int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr; 2547 if (gap != 1) { 2548 tcg_out_nopn(s, gap - 1); 2549 } 2550 tcg_out8(s, OPC_JMP_long); /* jmp im */ 2551 set_jmp_insn_offset(s, which); 2552 tcg_out32(s, 0); 2553 set_jmp_reset_offset(s, which); 2554} 2555 2556void tb_target_set_jmp_target(const TranslationBlock *tb, int n, 2557 uintptr_t jmp_rx, uintptr_t jmp_rw) 2558{ 2559 /* patch the branch destination */ 2560 uintptr_t addr = tb->jmp_target_addr[n]; 2561 qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4)); 2562 /* no need to flush icache explicitly */ 2563} 2564 2565 2566static void tgen_add(TCGContext *s, TCGType type, 2567 TCGReg a0, TCGReg a1, TCGReg a2) 2568{ 2569 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2570 2571 if (a0 == a1) { 2572 tgen_arithr(s, ARITH_ADD + rexw, a0, a2); 2573 } else if (a0 == a2) { 2574 tgen_arithr(s, ARITH_ADD + rexw, a0, a1); 2575 } else { 2576 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, 0); 2577 } 2578} 2579 2580static void tgen_addi(TCGContext *s, TCGType type, 2581 TCGReg a0, TCGReg a1, tcg_target_long a2) 2582{ 2583 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2584 2585 if (a0 == a1) { 2586 tgen_arithi(s, ARITH_ADD + rexw, a0, a2, false); 2587 } else { 2588 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, -1, 0, a2); 2589 } 2590} 2591 2592static const TCGOutOpBinary outop_add = { 2593 .base.static_constraint = C_O1_I2(r, r, re), 2594 .out_rrr = tgen_add, 2595 .out_rri = tgen_addi, 2596}; 2597 2598static void tgen_and(TCGContext *s, TCGType type, 2599 TCGReg a0, TCGReg a1, TCGReg a2) 2600{ 2601 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2602 tgen_arithr(s, ARITH_AND + rexw, a0, a2); 2603} 2604 2605static void tgen_andi(TCGContext *s, TCGType type, 2606 TCGReg a0, TCGReg a1, tcg_target_long a2) 2607{ 2608 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2609 tgen_arithi(s, ARITH_AND + rexw, a0, a2, false); 2610} 2611 2612static const TCGOutOpBinary outop_and = { 2613 .base.static_constraint = C_O1_I2(r, 0, reZ), 2614 .out_rrr = tgen_and, 2615 .out_rri = tgen_andi, 2616}; 2617 2618static void tgen_andc(TCGContext *s, TCGType type, 2619 TCGReg a0, TCGReg a1, TCGReg a2) 2620{ 2621 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2622 tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1); 2623} 2624 2625static TCGConstraintSetIndex cset_andc(TCGType type, unsigned flags) 2626{ 2627 return have_bmi1 ? C_O1_I2(r, r, r) : C_NotImplemented; 2628} 2629 2630static const TCGOutOpBinary outop_andc = { 2631 .base.static_constraint = C_Dynamic, 2632 .base.dynamic_constraint = cset_andc, 2633 .out_rrr = tgen_andc, 2634}; 2635 2636static const TCGOutOpBinary outop_divs = { 2637 .base.static_constraint = C_NotImplemented, 2638}; 2639 2640static void tgen_divs2(TCGContext *s, TCGType type, 2641 TCGReg a0, TCGReg a1, TCGReg a4) 2642{ 2643 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2644 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, a4); 2645} 2646 2647static const TCGOutOpDivRem outop_divs2 = { 2648 .base.static_constraint = C_O2_I3(a, d, 0, 1, r), 2649 .out_rr01r = tgen_divs2, 2650}; 2651 2652static const TCGOutOpBinary outop_divu = { 2653 .base.static_constraint = C_NotImplemented, 2654}; 2655 2656static void tgen_divu2(TCGContext *s, TCGType type, 2657 TCGReg a0, TCGReg a1, TCGReg a4) 2658{ 2659 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2660 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, a4); 2661} 2662 2663static const TCGOutOpDivRem outop_divu2 = { 2664 .base.static_constraint = C_O2_I3(a, d, 0, 1, r), 2665 .out_rr01r = tgen_divu2, 2666}; 2667 2668static const TCGOutOpBinary outop_eqv = { 2669 .base.static_constraint = C_NotImplemented, 2670}; 2671 2672static void tgen_mul(TCGContext *s, TCGType type, 2673 TCGReg a0, TCGReg a1, TCGReg a2) 2674{ 2675 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2676 tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2); 2677} 2678 2679static void tgen_muli(TCGContext *s, TCGType type, 2680 TCGReg a0, TCGReg a1, tcg_target_long a2) 2681{ 2682 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2683 2684 if (a2 == (int8_t)a2) { 2685 tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0); 2686 tcg_out8(s, a2); 2687 } else { 2688 tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0); 2689 tcg_out32(s, a2); 2690 } 2691} 2692 2693static const TCGOutOpBinary outop_mul = { 2694 .base.static_constraint = C_O1_I2(r, 0, re), 2695 .out_rrr = tgen_mul, 2696 .out_rri = tgen_muli, 2697}; 2698 2699static const TCGOutOpBinary outop_mulsh = { 2700 .base.static_constraint = C_NotImplemented, 2701}; 2702 2703static const TCGOutOpBinary outop_muluh = { 2704 .base.static_constraint = C_NotImplemented, 2705}; 2706 2707static const TCGOutOpBinary outop_nand = { 2708 .base.static_constraint = C_NotImplemented, 2709}; 2710 2711static const TCGOutOpBinary outop_nor = { 2712 .base.static_constraint = C_NotImplemented, 2713}; 2714 2715static void tgen_or(TCGContext *s, TCGType type, 2716 TCGReg a0, TCGReg a1, TCGReg a2) 2717{ 2718 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2719 tgen_arithr(s, ARITH_OR + rexw, a0, a2); 2720} 2721 2722static void tgen_ori(TCGContext *s, TCGType type, 2723 TCGReg a0, TCGReg a1, tcg_target_long a2) 2724{ 2725 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2726 tgen_arithi(s, ARITH_OR + rexw, a0, a2, false); 2727} 2728 2729static const TCGOutOpBinary outop_or = { 2730 .base.static_constraint = C_O1_I2(r, 0, re), 2731 .out_rrr = tgen_or, 2732 .out_rri = tgen_ori, 2733}; 2734 2735static const TCGOutOpBinary outop_orc = { 2736 .base.static_constraint = C_NotImplemented, 2737}; 2738 2739static const TCGOutOpBinary outop_rems = { 2740 .base.static_constraint = C_NotImplemented, 2741}; 2742 2743static const TCGOutOpBinary outop_remu = { 2744 .base.static_constraint = C_NotImplemented, 2745}; 2746 2747static TCGConstraintSetIndex cset_shift(TCGType type, unsigned flags) 2748{ 2749 return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci); 2750} 2751 2752static void tgen_sar(TCGContext *s, TCGType type, 2753 TCGReg a0, TCGReg a1, TCGReg a2) 2754{ 2755 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2756 if (have_bmi2) { 2757 tcg_out_vex_modrm(s, OPC_SARX + rexw, a0, a2, a1); 2758 } else { 2759 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SAR, a0); 2760 } 2761} 2762 2763static void tgen_sari(TCGContext *s, TCGType type, 2764 TCGReg a0, TCGReg a1, tcg_target_long a2) 2765{ 2766 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2767 2768 tcg_out_mov(s, type, a0, a1); 2769 tcg_out_shifti(s, SHIFT_SAR + rexw, a0, a2); 2770} 2771 2772static const TCGOutOpBinary outop_sar = { 2773 .base.static_constraint = C_Dynamic, 2774 .base.dynamic_constraint = cset_shift, 2775 .out_rrr = tgen_sar, 2776 .out_rri = tgen_sari, 2777}; 2778 2779static void tgen_shl(TCGContext *s, TCGType type, 2780 TCGReg a0, TCGReg a1, TCGReg a2) 2781{ 2782 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2783 if (have_bmi2) { 2784 tcg_out_vex_modrm(s, OPC_SHLX + rexw, a0, a2, a1); 2785 } else { 2786 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SHL, a0); 2787 } 2788} 2789 2790static void tgen_shli(TCGContext *s, TCGType type, 2791 TCGReg a0, TCGReg a1, tcg_target_long a2) 2792{ 2793 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2794 2795 /* For small constant 3-operand shift, use LEA. */ 2796 if (a0 != a1 && a2 >= 1 && a2 <= 3) { 2797 if (a2 == 1) { 2798 /* shl $1,a1,a0 -> lea (a1,a1),a0 */ 2799 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0); 2800 } else { 2801 /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */ 2802 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0); 2803 } 2804 return; 2805 } 2806 tcg_out_mov(s, type, a0, a1); 2807 tcg_out_shifti(s, SHIFT_SHL + rexw, a0, a2); 2808} 2809 2810static const TCGOutOpBinary outop_shl = { 2811 .base.static_constraint = C_Dynamic, 2812 .base.dynamic_constraint = cset_shift, 2813 .out_rrr = tgen_shl, 2814 .out_rri = tgen_shli, 2815}; 2816 2817static void tgen_shr(TCGContext *s, TCGType type, 2818 TCGReg a0, TCGReg a1, TCGReg a2) 2819{ 2820 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2821 if (have_bmi2) { 2822 tcg_out_vex_modrm(s, OPC_SHRX + rexw, a0, a2, a1); 2823 } else { 2824 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SHR, a0); 2825 } 2826} 2827 2828static void tgen_shri(TCGContext *s, TCGType type, 2829 TCGReg a0, TCGReg a1, tcg_target_long a2) 2830{ 2831 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2832 2833 tcg_out_mov(s, type, a0, a1); 2834 tcg_out_shifti(s, SHIFT_SHR + rexw, a0, a2); 2835} 2836 2837static const TCGOutOpBinary outop_shr = { 2838 .base.static_constraint = C_Dynamic, 2839 .base.dynamic_constraint = cset_shift, 2840 .out_rrr = tgen_shr, 2841 .out_rri = tgen_shri, 2842}; 2843 2844static void tgen_sub(TCGContext *s, TCGType type, 2845 TCGReg a0, TCGReg a1, TCGReg a2) 2846{ 2847 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2848 tgen_arithr(s, ARITH_SUB + rexw, a0, a2); 2849} 2850 2851static const TCGOutOpSubtract outop_sub = { 2852 .base.static_constraint = C_O1_I2(r, 0, r), 2853 .out_rrr = tgen_sub, 2854}; 2855 2856static void tgen_xor(TCGContext *s, TCGType type, 2857 TCGReg a0, TCGReg a1, TCGReg a2) 2858{ 2859 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2860 tgen_arithr(s, ARITH_XOR + rexw, a0, a2); 2861} 2862 2863static void tgen_xori(TCGContext *s, TCGType type, 2864 TCGReg a0, TCGReg a1, tcg_target_long a2) 2865{ 2866 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2867 tgen_arithi(s, ARITH_XOR + rexw, a0, a2, false); 2868} 2869 2870static const TCGOutOpBinary outop_xor = { 2871 .base.static_constraint = C_O1_I2(r, 0, re), 2872 .out_rrr = tgen_xor, 2873 .out_rri = tgen_xori, 2874}; 2875 2876static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2877{ 2878 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2879 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0); 2880} 2881 2882static const TCGOutOpUnary outop_neg = { 2883 .base.static_constraint = C_O1_I1(r, 0), 2884 .out_rr = tgen_neg, 2885}; 2886 2887static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2888{ 2889 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2890 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0); 2891} 2892 2893static const TCGOutOpUnary outop_not = { 2894 .base.static_constraint = C_O1_I1(r, 0), 2895 .out_rr = tgen_not, 2896}; 2897 2898 2899static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType type, 2900 const TCGArg args[TCG_MAX_OP_ARGS], 2901 const int const_args[TCG_MAX_OP_ARGS]) 2902{ 2903 TCGArg a0, a1, a2; 2904 int c, const_a2, rexw; 2905 2906#if TCG_TARGET_REG_BITS == 64 2907# define OP_32_64(x) \ 2908 case glue(glue(INDEX_op_, x), _i64): \ 2909 case glue(glue(INDEX_op_, x), _i32) 2910#else 2911# define OP_32_64(x) \ 2912 case glue(glue(INDEX_op_, x), _i32) 2913#endif 2914 2915 /* Hoist the loads of the most common arguments. */ 2916 a0 = args[0]; 2917 a1 = args[1]; 2918 a2 = args[2]; 2919 const_a2 = const_args[2]; 2920 rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 2921 2922 switch (opc) { 2923 case INDEX_op_goto_ptr: 2924 /* jmp to the given host address (could be epilogue) */ 2925 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0); 2926 break; 2927 case INDEX_op_br: 2928 tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0); 2929 break; 2930 OP_32_64(ld8u): 2931 /* Note that we can ignore REXW for the zero-extend to 64-bit. */ 2932 tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2); 2933 break; 2934 OP_32_64(ld8s): 2935 tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2); 2936 break; 2937 OP_32_64(ld16u): 2938 /* Note that we can ignore REXW for the zero-extend to 64-bit. */ 2939 tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2); 2940 break; 2941 OP_32_64(ld16s): 2942 tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2); 2943 break; 2944#if TCG_TARGET_REG_BITS == 64 2945 case INDEX_op_ld32u_i64: 2946#endif 2947 case INDEX_op_ld_i32: 2948 tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2); 2949 break; 2950 2951 OP_32_64(st8): 2952 if (const_args[0]) { 2953 tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2); 2954 tcg_out8(s, a0); 2955 } else { 2956 tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2); 2957 } 2958 break; 2959 OP_32_64(st16): 2960 if (const_args[0]) { 2961 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2); 2962 tcg_out16(s, a0); 2963 } else { 2964 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2); 2965 } 2966 break; 2967#if TCG_TARGET_REG_BITS == 64 2968 case INDEX_op_st32_i64: 2969#endif 2970 case INDEX_op_st_i32: 2971 if (const_args[0]) { 2972 tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2); 2973 tcg_out32(s, a0); 2974 } else { 2975 tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2); 2976 } 2977 break; 2978 2979 OP_32_64(rotl): 2980 c = SHIFT_ROL; 2981 goto gen_shift; 2982 OP_32_64(rotr): 2983 c = SHIFT_ROR; 2984 goto gen_shift; 2985 gen_shift: 2986 if (const_a2) { 2987 tcg_out_shifti(s, c + rexw, a0, a2); 2988 } else { 2989 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0); 2990 } 2991 break; 2992 2993 OP_32_64(ctz): 2994 tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]); 2995 break; 2996 OP_32_64(clz): 2997 tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]); 2998 break; 2999 OP_32_64(ctpop): 3000 tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1); 3001 break; 3002 3003 OP_32_64(brcond): 3004 tcg_out_brcond(s, rexw, a2, a0, a1, const_args[1], 3005 arg_label(args[3]), 0); 3006 break; 3007 OP_32_64(setcond): 3008 tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, false); 3009 break; 3010 OP_32_64(negsetcond): 3011 tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, true); 3012 break; 3013 OP_32_64(movcond): 3014 tcg_out_movcond(s, rexw, args[5], a0, a1, a2, const_a2, args[3]); 3015 break; 3016 3017 OP_32_64(bswap16): 3018 if (a2 & TCG_BSWAP_OS) { 3019 /* Output must be sign-extended. */ 3020 if (rexw) { 3021 tcg_out_bswap64(s, a0); 3022 tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48); 3023 } else { 3024 tcg_out_bswap32(s, a0); 3025 tcg_out_shifti(s, SHIFT_SAR, a0, 16); 3026 } 3027 } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { 3028 /* Output must be zero-extended, but input isn't. */ 3029 tcg_out_bswap32(s, a0); 3030 tcg_out_shifti(s, SHIFT_SHR, a0, 16); 3031 } else { 3032 tcg_out_rolw_8(s, a0); 3033 } 3034 break; 3035 OP_32_64(bswap32): 3036 tcg_out_bswap32(s, a0); 3037 if (rexw && (a2 & TCG_BSWAP_OS)) { 3038 tcg_out_ext32s(s, a0, a0); 3039 } 3040 break; 3041 3042 case INDEX_op_qemu_ld_i32: 3043 tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I32); 3044 break; 3045 case INDEX_op_qemu_ld_i64: 3046 if (TCG_TARGET_REG_BITS == 64) { 3047 tcg_out_qemu_ld(s, a0, -1, a1, a2, TCG_TYPE_I64); 3048 } else { 3049 tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I64); 3050 } 3051 break; 3052 case INDEX_op_qemu_ld_i128: 3053 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 3054 tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I128); 3055 break; 3056 3057 case INDEX_op_qemu_st_i32: 3058 case INDEX_op_qemu_st8_i32: 3059 tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I32); 3060 break; 3061 case INDEX_op_qemu_st_i64: 3062 if (TCG_TARGET_REG_BITS == 64) { 3063 tcg_out_qemu_st(s, a0, -1, a1, a2, TCG_TYPE_I64); 3064 } else { 3065 tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I64); 3066 } 3067 break; 3068 case INDEX_op_qemu_st_i128: 3069 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 3070 tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I128); 3071 break; 3072 3073 OP_32_64(mulu2): 3074 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]); 3075 break; 3076 OP_32_64(muls2): 3077 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]); 3078 break; 3079 OP_32_64(add2): 3080 if (const_args[4]) { 3081 tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1); 3082 } else { 3083 tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]); 3084 } 3085 if (const_args[5]) { 3086 tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1); 3087 } else { 3088 tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]); 3089 } 3090 break; 3091 OP_32_64(sub2): 3092 if (const_args[4]) { 3093 tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1); 3094 } else { 3095 tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]); 3096 } 3097 if (const_args[5]) { 3098 tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1); 3099 } else { 3100 tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]); 3101 } 3102 break; 3103 3104#if TCG_TARGET_REG_BITS == 32 3105 case INDEX_op_brcond2_i32: 3106 tcg_out_brcond2(s, args, const_args, 0); 3107 break; 3108 case INDEX_op_setcond2_i32: 3109 tcg_out_setcond2(s, args, const_args); 3110 break; 3111#else /* TCG_TARGET_REG_BITS == 64 */ 3112 case INDEX_op_ld32s_i64: 3113 tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2); 3114 break; 3115 case INDEX_op_ld_i64: 3116 tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2); 3117 break; 3118 case INDEX_op_st_i64: 3119 if (const_args[0]) { 3120 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2); 3121 tcg_out32(s, a0); 3122 } else { 3123 tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2); 3124 } 3125 break; 3126 3127 case INDEX_op_bswap64_i64: 3128 tcg_out_bswap64(s, a0); 3129 break; 3130 case INDEX_op_extrh_i64_i32: 3131 tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32); 3132 break; 3133#endif 3134 3135 OP_32_64(deposit): 3136 if (args[3] == 0 && args[4] == 8) { 3137 /* load bits 0..7 */ 3138 if (const_a2) { 3139 tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0), 3140 0, a0, 0); 3141 tcg_out8(s, a2); 3142 } else { 3143 tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0); 3144 } 3145 } else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) { 3146 /* load bits 8..15 */ 3147 if (const_a2) { 3148 tcg_out8(s, OPC_MOVB_Ib + a0 + 4); 3149 tcg_out8(s, a2); 3150 } else { 3151 tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4); 3152 } 3153 } else if (args[3] == 0 && args[4] == 16) { 3154 /* load bits 0..15 */ 3155 if (const_a2) { 3156 tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0), 3157 0, a0, 0); 3158 tcg_out16(s, a2); 3159 } else { 3160 tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0); 3161 } 3162 } else { 3163 g_assert_not_reached(); 3164 } 3165 break; 3166 3167 case INDEX_op_extract_i64: 3168 if (a2 + args[3] == 32) { 3169 if (a2 == 0) { 3170 tcg_out_ext32u(s, a0, a1); 3171 break; 3172 } 3173 /* This is a 32-bit zero-extending right shift. */ 3174 tcg_out_mov(s, TCG_TYPE_I32, a0, a1); 3175 tcg_out_shifti(s, SHIFT_SHR, a0, a2); 3176 break; 3177 } 3178 /* FALLTHRU */ 3179 case INDEX_op_extract_i32: 3180 if (a2 == 0 && args[3] == 8) { 3181 tcg_out_ext8u(s, a0, a1); 3182 } else if (a2 == 0 && args[3] == 16) { 3183 tcg_out_ext16u(s, a0, a1); 3184 } else if (a2 == 8 && args[3] == 8) { 3185 /* 3186 * On the off-chance that we can use the high-byte registers. 3187 * Otherwise we emit the same ext16 + shift pattern that we 3188 * would have gotten from the normal tcg-op.c expansion. 3189 */ 3190 if (a1 < 4 && a0 < 8) { 3191 tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4); 3192 } else { 3193 tcg_out_ext16u(s, a0, a1); 3194 tcg_out_shifti(s, SHIFT_SHR, a0, 8); 3195 } 3196 } else { 3197 g_assert_not_reached(); 3198 } 3199 break; 3200 3201 case INDEX_op_sextract_i64: 3202 if (a2 == 0 && args[3] == 8) { 3203 tcg_out_ext8s(s, TCG_TYPE_I64, a0, a1); 3204 } else if (a2 == 0 && args[3] == 16) { 3205 tcg_out_ext16s(s, TCG_TYPE_I64, a0, a1); 3206 } else if (a2 == 0 && args[3] == 32) { 3207 tcg_out_ext32s(s, a0, a1); 3208 } else { 3209 g_assert_not_reached(); 3210 } 3211 break; 3212 3213 case INDEX_op_sextract_i32: 3214 if (a2 == 0 && args[3] == 8) { 3215 tcg_out_ext8s(s, TCG_TYPE_I32, a0, a1); 3216 } else if (a2 == 0 && args[3] == 16) { 3217 tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1); 3218 } else if (a2 == 8 && args[3] == 8) { 3219 if (a1 < 4 && a0 < 8) { 3220 tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4); 3221 } else { 3222 tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1); 3223 tcg_out_shifti(s, SHIFT_SAR, a0, 8); 3224 } 3225 } else { 3226 g_assert_not_reached(); 3227 } 3228 break; 3229 3230 OP_32_64(extract2): 3231 /* Note that SHRD outputs to the r/m operand. */ 3232 tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0); 3233 tcg_out8(s, args[3]); 3234 break; 3235 3236 case INDEX_op_mb: 3237 tcg_out_mb(s, a0); 3238 break; 3239 case INDEX_op_call: /* Always emitted via tcg_out_call. */ 3240 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ 3241 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ 3242 case INDEX_op_ext_i32_i64: /* Always emitted via tcg_reg_alloc_op. */ 3243 case INDEX_op_extu_i32_i64: 3244 case INDEX_op_extrl_i64_i32: 3245 default: 3246 g_assert_not_reached(); 3247 } 3248 3249#undef OP_32_64 3250} 3251 3252static int const umin_insn[4] = { 3253 OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ 3254}; 3255 3256static int const umax_insn[4] = { 3257 OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ 3258}; 3259 3260static bool tcg_out_cmp_vec_noinv(TCGContext *s, TCGType type, unsigned vece, 3261 TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond) 3262{ 3263 static int const cmpeq_insn[4] = { 3264 OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ 3265 }; 3266 static int const cmpgt_insn[4] = { 3267 OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ 3268 }; 3269 3270 enum { 3271 NEED_INV = 1, 3272 NEED_SWAP = 2, 3273 NEED_UMIN = 4, 3274 NEED_UMAX = 8, 3275 INVALID = 16, 3276 }; 3277 static const uint8_t cond_fixup[16] = { 3278 [0 ... 15] = INVALID, 3279 [TCG_COND_EQ] = 0, 3280 [TCG_COND_GT] = 0, 3281 [TCG_COND_NE] = NEED_INV, 3282 [TCG_COND_LE] = NEED_INV, 3283 [TCG_COND_LT] = NEED_SWAP, 3284 [TCG_COND_GE] = NEED_SWAP | NEED_INV, 3285 [TCG_COND_LEU] = NEED_UMIN, 3286 [TCG_COND_GTU] = NEED_UMIN | NEED_INV, 3287 [TCG_COND_GEU] = NEED_UMAX, 3288 [TCG_COND_LTU] = NEED_UMAX | NEED_INV, 3289 }; 3290 int fixup = cond_fixup[cond]; 3291 3292 assert(!(fixup & INVALID)); 3293 3294 if (fixup & NEED_INV) { 3295 cond = tcg_invert_cond(cond); 3296 } 3297 3298 if (fixup & NEED_SWAP) { 3299 TCGReg swap = v1; 3300 v1 = v2; 3301 v2 = swap; 3302 cond = tcg_swap_cond(cond); 3303 } 3304 3305 if (fixup & (NEED_UMIN | NEED_UMAX)) { 3306 int op = (fixup & NEED_UMIN ? umin_insn[vece] : umax_insn[vece]); 3307 3308 /* avx2 does not have 64-bit min/max; adjusted during expand. */ 3309 assert(vece <= MO_32); 3310 3311 tcg_out_vex_modrm_type(s, op, TCG_TMP_VEC, v1, v2, type); 3312 v2 = TCG_TMP_VEC; 3313 cond = TCG_COND_EQ; 3314 } 3315 3316 switch (cond) { 3317 case TCG_COND_EQ: 3318 tcg_out_vex_modrm_type(s, cmpeq_insn[vece], v0, v1, v2, type); 3319 break; 3320 case TCG_COND_GT: 3321 tcg_out_vex_modrm_type(s, cmpgt_insn[vece], v0, v1, v2, type); 3322 break; 3323 default: 3324 g_assert_not_reached(); 3325 } 3326 return fixup & NEED_INV; 3327} 3328 3329static void tcg_out_cmp_vec_k1(TCGContext *s, TCGType type, unsigned vece, 3330 TCGReg v1, TCGReg v2, TCGCond cond) 3331{ 3332 static const int cmpm_insn[2][4] = { 3333 { OPC_VPCMPB, OPC_VPCMPW, OPC_VPCMPD, OPC_VPCMPQ }, 3334 { OPC_VPCMPUB, OPC_VPCMPUW, OPC_VPCMPUD, OPC_VPCMPUQ } 3335 }; 3336 static const int testm_insn[4] = { 3337 OPC_VPTESTMB, OPC_VPTESTMW, OPC_VPTESTMD, OPC_VPTESTMQ 3338 }; 3339 static const int testnm_insn[4] = { 3340 OPC_VPTESTNMB, OPC_VPTESTNMW, OPC_VPTESTNMD, OPC_VPTESTNMQ 3341 }; 3342 3343 static const int cond_ext[16] = { 3344 [TCG_COND_EQ] = 0, 3345 [TCG_COND_NE] = 4, 3346 [TCG_COND_LT] = 1, 3347 [TCG_COND_LTU] = 1, 3348 [TCG_COND_LE] = 2, 3349 [TCG_COND_LEU] = 2, 3350 [TCG_COND_NEVER] = 3, 3351 [TCG_COND_GE] = 5, 3352 [TCG_COND_GEU] = 5, 3353 [TCG_COND_GT] = 6, 3354 [TCG_COND_GTU] = 6, 3355 [TCG_COND_ALWAYS] = 7, 3356 }; 3357 3358 switch (cond) { 3359 case TCG_COND_TSTNE: 3360 tcg_out_vex_modrm_type(s, testm_insn[vece], /* k1 */ 1, v1, v2, type); 3361 break; 3362 case TCG_COND_TSTEQ: 3363 tcg_out_vex_modrm_type(s, testnm_insn[vece], /* k1 */ 1, v1, v2, type); 3364 break; 3365 default: 3366 tcg_out_vex_modrm_type(s, cmpm_insn[is_unsigned_cond(cond)][vece], 3367 /* k1 */ 1, v1, v2, type); 3368 tcg_out8(s, cond_ext[cond]); 3369 break; 3370 } 3371} 3372 3373static void tcg_out_k1_to_vec(TCGContext *s, TCGType type, 3374 unsigned vece, TCGReg dest) 3375{ 3376 static const int movm_insn[] = { 3377 OPC_VPMOVM2B, OPC_VPMOVM2W, OPC_VPMOVM2D, OPC_VPMOVM2Q 3378 }; 3379 tcg_out_vex_modrm_type(s, movm_insn[vece], dest, 0, /* k1 */ 1, type); 3380} 3381 3382static void tcg_out_cmp_vec(TCGContext *s, TCGType type, unsigned vece, 3383 TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond) 3384{ 3385 /* 3386 * With avx512, we have a complete set of comparisons into mask. 3387 * Unless there's a single insn expansion for the comparision, 3388 * expand via a mask in k1. 3389 */ 3390 if ((vece <= MO_16 ? have_avx512bw : have_avx512dq) 3391 && cond != TCG_COND_EQ 3392 && cond != TCG_COND_LT 3393 && cond != TCG_COND_GT) { 3394 tcg_out_cmp_vec_k1(s, type, vece, v1, v2, cond); 3395 tcg_out_k1_to_vec(s, type, vece, v0); 3396 return; 3397 } 3398 3399 if (tcg_out_cmp_vec_noinv(s, type, vece, v0, v1, v2, cond)) { 3400 tcg_out_dupi_vec(s, type, vece, TCG_TMP_VEC, -1); 3401 tcg_out_vex_modrm_type(s, OPC_PXOR, v0, v0, TCG_TMP_VEC, type); 3402 } 3403} 3404 3405static void tcg_out_cmpsel_vec_k1(TCGContext *s, TCGType type, unsigned vece, 3406 TCGReg v0, TCGReg c1, TCGReg c2, 3407 TCGReg v3, TCGReg v4, TCGCond cond) 3408{ 3409 static const int vpblendm_insn[] = { 3410 OPC_VPBLENDMB, OPC_VPBLENDMW, OPC_VPBLENDMD, OPC_VPBLENDMQ 3411 }; 3412 bool z = false; 3413 3414 /* Swap to place constant in V4 to take advantage of zero-masking. */ 3415 if (!v3) { 3416 z = true; 3417 v3 = v4; 3418 cond = tcg_invert_cond(cond); 3419 } 3420 3421 tcg_out_cmp_vec_k1(s, type, vece, c1, c2, cond); 3422 tcg_out_evex_modrm_type(s, vpblendm_insn[vece], v0, v4, v3, 3423 /* k1 */1, z, type); 3424} 3425 3426static void tcg_out_cmpsel_vec(TCGContext *s, TCGType type, unsigned vece, 3427 TCGReg v0, TCGReg c1, TCGReg c2, 3428 TCGReg v3, TCGReg v4, TCGCond cond) 3429{ 3430 bool inv; 3431 3432 if (vece <= MO_16 ? have_avx512bw : have_avx512vl) { 3433 tcg_out_cmpsel_vec_k1(s, type, vece, v0, c1, c2, v3, v4, cond); 3434 return; 3435 } 3436 3437 inv = tcg_out_cmp_vec_noinv(s, type, vece, TCG_TMP_VEC, c1, c2, cond); 3438 3439 /* 3440 * Since XMM0 is 16, the only way we get 0 into V3 3441 * is via the constant zero constraint. 3442 */ 3443 if (!v3) { 3444 if (inv) { 3445 tcg_out_vex_modrm_type(s, OPC_PAND, v0, TCG_TMP_VEC, v4, type); 3446 } else { 3447 tcg_out_vex_modrm_type(s, OPC_PANDN, v0, TCG_TMP_VEC, v4, type); 3448 } 3449 } else { 3450 if (inv) { 3451 TCGReg swap = v3; 3452 v3 = v4; 3453 v4 = swap; 3454 } 3455 tcg_out_vex_modrm_type(s, OPC_VPBLENDVB, v0, v4, v3, type); 3456 tcg_out8(s, (TCG_TMP_VEC - TCG_REG_XMM0) << 4); 3457 } 3458} 3459 3460static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 3461 unsigned vecl, unsigned vece, 3462 const TCGArg args[TCG_MAX_OP_ARGS], 3463 const int const_args[TCG_MAX_OP_ARGS]) 3464{ 3465 static int const add_insn[4] = { 3466 OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ 3467 }; 3468 static int const ssadd_insn[4] = { 3469 OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2 3470 }; 3471 static int const usadd_insn[4] = { 3472 OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2 3473 }; 3474 static int const sub_insn[4] = { 3475 OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ 3476 }; 3477 static int const sssub_insn[4] = { 3478 OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2 3479 }; 3480 static int const ussub_insn[4] = { 3481 OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2 3482 }; 3483 static int const mul_insn[4] = { 3484 OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ 3485 }; 3486 static int const shift_imm_insn[4] = { 3487 OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib 3488 }; 3489 static int const punpckl_insn[4] = { 3490 OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ 3491 }; 3492 static int const punpckh_insn[4] = { 3493 OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ 3494 }; 3495 static int const packss_insn[4] = { 3496 OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2 3497 }; 3498 static int const packus_insn[4] = { 3499 OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2 3500 }; 3501 static int const smin_insn[4] = { 3502 OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ 3503 }; 3504 static int const smax_insn[4] = { 3505 OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ 3506 }; 3507 static int const rotlv_insn[4] = { 3508 OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ 3509 }; 3510 static int const rotrv_insn[4] = { 3511 OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ 3512 }; 3513 static int const shlv_insn[4] = { 3514 OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ 3515 }; 3516 static int const shrv_insn[4] = { 3517 OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ 3518 }; 3519 static int const sarv_insn[4] = { 3520 OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ 3521 }; 3522 static int const shls_insn[4] = { 3523 OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ 3524 }; 3525 static int const shrs_insn[4] = { 3526 OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ 3527 }; 3528 static int const sars_insn[4] = { 3529 OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ 3530 }; 3531 static int const vpshldi_insn[4] = { 3532 OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ 3533 }; 3534 static int const vpshldv_insn[4] = { 3535 OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ 3536 }; 3537 static int const vpshrdv_insn[4] = { 3538 OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ 3539 }; 3540 static int const abs_insn[4] = { 3541 OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ 3542 }; 3543 3544 TCGType type = vecl + TCG_TYPE_V64; 3545 int insn, sub; 3546 TCGArg a0, a1, a2, a3; 3547 3548 a0 = args[0]; 3549 a1 = args[1]; 3550 a2 = args[2]; 3551 3552 switch (opc) { 3553 case INDEX_op_add_vec: 3554 insn = add_insn[vece]; 3555 goto gen_simd; 3556 case INDEX_op_ssadd_vec: 3557 insn = ssadd_insn[vece]; 3558 goto gen_simd; 3559 case INDEX_op_usadd_vec: 3560 insn = usadd_insn[vece]; 3561 goto gen_simd; 3562 case INDEX_op_sub_vec: 3563 insn = sub_insn[vece]; 3564 goto gen_simd; 3565 case INDEX_op_sssub_vec: 3566 insn = sssub_insn[vece]; 3567 goto gen_simd; 3568 case INDEX_op_ussub_vec: 3569 insn = ussub_insn[vece]; 3570 goto gen_simd; 3571 case INDEX_op_mul_vec: 3572 insn = mul_insn[vece]; 3573 goto gen_simd; 3574 case INDEX_op_and_vec: 3575 insn = OPC_PAND; 3576 goto gen_simd; 3577 case INDEX_op_or_vec: 3578 insn = OPC_POR; 3579 goto gen_simd; 3580 case INDEX_op_xor_vec: 3581 insn = OPC_PXOR; 3582 goto gen_simd; 3583 case INDEX_op_smin_vec: 3584 insn = smin_insn[vece]; 3585 goto gen_simd; 3586 case INDEX_op_umin_vec: 3587 insn = umin_insn[vece]; 3588 goto gen_simd; 3589 case INDEX_op_smax_vec: 3590 insn = smax_insn[vece]; 3591 goto gen_simd; 3592 case INDEX_op_umax_vec: 3593 insn = umax_insn[vece]; 3594 goto gen_simd; 3595 case INDEX_op_shlv_vec: 3596 insn = shlv_insn[vece]; 3597 goto gen_simd; 3598 case INDEX_op_shrv_vec: 3599 insn = shrv_insn[vece]; 3600 goto gen_simd; 3601 case INDEX_op_sarv_vec: 3602 insn = sarv_insn[vece]; 3603 goto gen_simd; 3604 case INDEX_op_rotlv_vec: 3605 insn = rotlv_insn[vece]; 3606 goto gen_simd; 3607 case INDEX_op_rotrv_vec: 3608 insn = rotrv_insn[vece]; 3609 goto gen_simd; 3610 case INDEX_op_shls_vec: 3611 insn = shls_insn[vece]; 3612 goto gen_simd; 3613 case INDEX_op_shrs_vec: 3614 insn = shrs_insn[vece]; 3615 goto gen_simd; 3616 case INDEX_op_sars_vec: 3617 insn = sars_insn[vece]; 3618 goto gen_simd; 3619 case INDEX_op_x86_punpckl_vec: 3620 insn = punpckl_insn[vece]; 3621 goto gen_simd; 3622 case INDEX_op_x86_punpckh_vec: 3623 insn = punpckh_insn[vece]; 3624 goto gen_simd; 3625 case INDEX_op_x86_packss_vec: 3626 insn = packss_insn[vece]; 3627 goto gen_simd; 3628 case INDEX_op_x86_packus_vec: 3629 insn = packus_insn[vece]; 3630 goto gen_simd; 3631 case INDEX_op_x86_vpshldv_vec: 3632 insn = vpshldv_insn[vece]; 3633 a1 = a2; 3634 a2 = args[3]; 3635 goto gen_simd; 3636 case INDEX_op_x86_vpshrdv_vec: 3637 insn = vpshrdv_insn[vece]; 3638 a1 = a2; 3639 a2 = args[3]; 3640 goto gen_simd; 3641#if TCG_TARGET_REG_BITS == 32 3642 case INDEX_op_dup2_vec: 3643 /* First merge the two 32-bit inputs to a single 64-bit element. */ 3644 tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2); 3645 /* Then replicate the 64-bit elements across the rest of the vector. */ 3646 if (type != TCG_TYPE_V64) { 3647 tcg_out_dup_vec(s, type, MO_64, a0, a0); 3648 } 3649 break; 3650#endif 3651 case INDEX_op_abs_vec: 3652 insn = abs_insn[vece]; 3653 a2 = a1; 3654 a1 = 0; 3655 goto gen_simd; 3656 gen_simd: 3657 tcg_debug_assert(insn != OPC_UD2); 3658 tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type); 3659 break; 3660 3661 case INDEX_op_cmp_vec: 3662 tcg_out_cmp_vec(s, type, vece, a0, a1, a2, args[3]); 3663 break; 3664 3665 case INDEX_op_cmpsel_vec: 3666 tcg_out_cmpsel_vec(s, type, vece, a0, a1, a2, 3667 args[3], args[4], args[5]); 3668 break; 3669 3670 case INDEX_op_andc_vec: 3671 insn = OPC_PANDN; 3672 tcg_out_vex_modrm_type(s, insn, a0, a2, a1, type); 3673 break; 3674 3675 case INDEX_op_shli_vec: 3676 insn = shift_imm_insn[vece]; 3677 sub = 6; 3678 goto gen_shift; 3679 case INDEX_op_shri_vec: 3680 insn = shift_imm_insn[vece]; 3681 sub = 2; 3682 goto gen_shift; 3683 case INDEX_op_sari_vec: 3684 if (vece == MO_64) { 3685 insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX; 3686 } else { 3687 insn = shift_imm_insn[vece]; 3688 } 3689 sub = 4; 3690 goto gen_shift; 3691 case INDEX_op_rotli_vec: 3692 insn = OPC_PSHIFTD_Ib | P_EVEX; /* VPROL[DQ] */ 3693 if (vece == MO_64) { 3694 insn |= P_VEXW; 3695 } 3696 sub = 1; 3697 goto gen_shift; 3698 gen_shift: 3699 tcg_debug_assert(vece != MO_8); 3700 tcg_out_vex_modrm_type(s, insn, sub, a0, a1, type); 3701 tcg_out8(s, a2); 3702 break; 3703 3704 case INDEX_op_ld_vec: 3705 tcg_out_ld(s, type, a0, a1, a2); 3706 break; 3707 case INDEX_op_st_vec: 3708 tcg_out_st(s, type, a0, a1, a2); 3709 break; 3710 case INDEX_op_dupm_vec: 3711 tcg_out_dupm_vec(s, type, vece, a0, a1, a2); 3712 break; 3713 3714 case INDEX_op_x86_shufps_vec: 3715 insn = OPC_SHUFPS; 3716 sub = args[3]; 3717 goto gen_simd_imm8; 3718 case INDEX_op_x86_blend_vec: 3719 if (vece == MO_16) { 3720 insn = OPC_PBLENDW; 3721 } else if (vece == MO_32) { 3722 insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS); 3723 } else { 3724 g_assert_not_reached(); 3725 } 3726 sub = args[3]; 3727 goto gen_simd_imm8; 3728 case INDEX_op_x86_vperm2i128_vec: 3729 insn = OPC_VPERM2I128; 3730 sub = args[3]; 3731 goto gen_simd_imm8; 3732 case INDEX_op_x86_vpshldi_vec: 3733 insn = vpshldi_insn[vece]; 3734 sub = args[3]; 3735 goto gen_simd_imm8; 3736 3737 case INDEX_op_not_vec: 3738 insn = OPC_VPTERNLOGQ; 3739 a2 = a1; 3740 sub = 0x33; /* !B */ 3741 goto gen_simd_imm8; 3742 case INDEX_op_nor_vec: 3743 insn = OPC_VPTERNLOGQ; 3744 sub = 0x11; /* norCB */ 3745 goto gen_simd_imm8; 3746 case INDEX_op_nand_vec: 3747 insn = OPC_VPTERNLOGQ; 3748 sub = 0x77; /* nandCB */ 3749 goto gen_simd_imm8; 3750 case INDEX_op_eqv_vec: 3751 insn = OPC_VPTERNLOGQ; 3752 sub = 0x99; /* xnorCB */ 3753 goto gen_simd_imm8; 3754 case INDEX_op_orc_vec: 3755 insn = OPC_VPTERNLOGQ; 3756 sub = 0xdd; /* orB!C */ 3757 goto gen_simd_imm8; 3758 3759 case INDEX_op_bitsel_vec: 3760 insn = OPC_VPTERNLOGQ; 3761 a3 = args[3]; 3762 if (a0 == a1) { 3763 a1 = a2; 3764 a2 = a3; 3765 sub = 0xca; /* A?B:C */ 3766 } else if (a0 == a2) { 3767 a2 = a3; 3768 sub = 0xe2; /* B?A:C */ 3769 } else { 3770 tcg_out_mov(s, type, a0, a3); 3771 sub = 0xb8; /* B?C:A */ 3772 } 3773 goto gen_simd_imm8; 3774 3775 gen_simd_imm8: 3776 tcg_debug_assert(insn != OPC_UD2); 3777 tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type); 3778 tcg_out8(s, sub); 3779 break; 3780 3781 case INDEX_op_x86_psrldq_vec: 3782 tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1); 3783 tcg_out8(s, a2); 3784 break; 3785 3786 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ 3787 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ 3788 default: 3789 g_assert_not_reached(); 3790 } 3791} 3792 3793static TCGConstraintSetIndex 3794tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags) 3795{ 3796 switch (op) { 3797 case INDEX_op_goto_ptr: 3798 return C_O0_I1(r); 3799 3800 case INDEX_op_ld8u_i32: 3801 case INDEX_op_ld8u_i64: 3802 case INDEX_op_ld8s_i32: 3803 case INDEX_op_ld8s_i64: 3804 case INDEX_op_ld16u_i32: 3805 case INDEX_op_ld16u_i64: 3806 case INDEX_op_ld16s_i32: 3807 case INDEX_op_ld16s_i64: 3808 case INDEX_op_ld_i32: 3809 case INDEX_op_ld32u_i64: 3810 case INDEX_op_ld32s_i64: 3811 case INDEX_op_ld_i64: 3812 return C_O1_I1(r, r); 3813 3814 case INDEX_op_st8_i32: 3815 case INDEX_op_st8_i64: 3816 return C_O0_I2(qi, r); 3817 3818 case INDEX_op_st16_i32: 3819 case INDEX_op_st16_i64: 3820 case INDEX_op_st_i32: 3821 case INDEX_op_st32_i64: 3822 return C_O0_I2(ri, r); 3823 3824 case INDEX_op_st_i64: 3825 return C_O0_I2(re, r); 3826 3827 case INDEX_op_rotl_i32: 3828 case INDEX_op_rotl_i64: 3829 case INDEX_op_rotr_i32: 3830 case INDEX_op_rotr_i64: 3831 return C_O1_I2(r, 0, ci); 3832 3833 case INDEX_op_brcond_i32: 3834 case INDEX_op_brcond_i64: 3835 return C_O0_I2(r, reT); 3836 3837 case INDEX_op_bswap16_i32: 3838 case INDEX_op_bswap16_i64: 3839 case INDEX_op_bswap32_i32: 3840 case INDEX_op_bswap32_i64: 3841 case INDEX_op_bswap64_i64: 3842 case INDEX_op_extrh_i64_i32: 3843 return C_O1_I1(r, 0); 3844 3845 case INDEX_op_ext_i32_i64: 3846 case INDEX_op_extu_i32_i64: 3847 case INDEX_op_extrl_i64_i32: 3848 case INDEX_op_extract_i32: 3849 case INDEX_op_extract_i64: 3850 case INDEX_op_sextract_i32: 3851 case INDEX_op_sextract_i64: 3852 case INDEX_op_ctpop_i32: 3853 case INDEX_op_ctpop_i64: 3854 return C_O1_I1(r, r); 3855 3856 case INDEX_op_extract2_i32: 3857 case INDEX_op_extract2_i64: 3858 return C_O1_I2(r, 0, r); 3859 3860 case INDEX_op_deposit_i32: 3861 case INDEX_op_deposit_i64: 3862 return C_O1_I2(q, 0, qi); 3863 3864 case INDEX_op_setcond_i32: 3865 case INDEX_op_setcond_i64: 3866 case INDEX_op_negsetcond_i32: 3867 case INDEX_op_negsetcond_i64: 3868 return C_O1_I2(q, r, reT); 3869 3870 case INDEX_op_movcond_i32: 3871 case INDEX_op_movcond_i64: 3872 return C_O1_I4(r, r, reT, r, 0); 3873 3874 case INDEX_op_mulu2_i32: 3875 case INDEX_op_mulu2_i64: 3876 case INDEX_op_muls2_i32: 3877 case INDEX_op_muls2_i64: 3878 return C_O2_I2(a, d, a, r); 3879 3880 case INDEX_op_add2_i32: 3881 case INDEX_op_add2_i64: 3882 case INDEX_op_sub2_i32: 3883 case INDEX_op_sub2_i64: 3884 return C_N1_O1_I4(r, r, 0, 1, re, re); 3885 3886 case INDEX_op_ctz_i32: 3887 case INDEX_op_ctz_i64: 3888 return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r); 3889 3890 case INDEX_op_clz_i32: 3891 case INDEX_op_clz_i64: 3892 return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r); 3893 3894 case INDEX_op_qemu_ld_i32: 3895 return C_O1_I1(r, L); 3896 3897 case INDEX_op_qemu_st_i32: 3898 return C_O0_I2(L, L); 3899 case INDEX_op_qemu_st8_i32: 3900 return C_O0_I2(s, L); 3901 3902 case INDEX_op_qemu_ld_i64: 3903 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L); 3904 3905 case INDEX_op_qemu_st_i64: 3906 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L); 3907 3908 case INDEX_op_qemu_ld_i128: 3909 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 3910 return C_O2_I1(r, r, L); 3911 case INDEX_op_qemu_st_i128: 3912 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 3913 return C_O0_I3(L, L, L); 3914 3915 case INDEX_op_brcond2_i32: 3916 return C_O0_I4(r, r, ri, ri); 3917 3918 case INDEX_op_setcond2_i32: 3919 return C_O1_I4(r, r, r, ri, ri); 3920 3921 case INDEX_op_ld_vec: 3922 case INDEX_op_dupm_vec: 3923 return C_O1_I1(x, r); 3924 3925 case INDEX_op_st_vec: 3926 return C_O0_I2(x, r); 3927 3928 case INDEX_op_add_vec: 3929 case INDEX_op_sub_vec: 3930 case INDEX_op_mul_vec: 3931 case INDEX_op_and_vec: 3932 case INDEX_op_or_vec: 3933 case INDEX_op_xor_vec: 3934 case INDEX_op_andc_vec: 3935 case INDEX_op_orc_vec: 3936 case INDEX_op_nand_vec: 3937 case INDEX_op_nor_vec: 3938 case INDEX_op_eqv_vec: 3939 case INDEX_op_ssadd_vec: 3940 case INDEX_op_usadd_vec: 3941 case INDEX_op_sssub_vec: 3942 case INDEX_op_ussub_vec: 3943 case INDEX_op_smin_vec: 3944 case INDEX_op_umin_vec: 3945 case INDEX_op_smax_vec: 3946 case INDEX_op_umax_vec: 3947 case INDEX_op_shlv_vec: 3948 case INDEX_op_shrv_vec: 3949 case INDEX_op_sarv_vec: 3950 case INDEX_op_rotlv_vec: 3951 case INDEX_op_rotrv_vec: 3952 case INDEX_op_shls_vec: 3953 case INDEX_op_shrs_vec: 3954 case INDEX_op_sars_vec: 3955 case INDEX_op_cmp_vec: 3956 case INDEX_op_x86_shufps_vec: 3957 case INDEX_op_x86_blend_vec: 3958 case INDEX_op_x86_packss_vec: 3959 case INDEX_op_x86_packus_vec: 3960 case INDEX_op_x86_vperm2i128_vec: 3961 case INDEX_op_x86_punpckl_vec: 3962 case INDEX_op_x86_punpckh_vec: 3963 case INDEX_op_x86_vpshldi_vec: 3964#if TCG_TARGET_REG_BITS == 32 3965 case INDEX_op_dup2_vec: 3966#endif 3967 return C_O1_I2(x, x, x); 3968 3969 case INDEX_op_abs_vec: 3970 case INDEX_op_dup_vec: 3971 case INDEX_op_not_vec: 3972 case INDEX_op_shli_vec: 3973 case INDEX_op_shri_vec: 3974 case INDEX_op_sari_vec: 3975 case INDEX_op_rotli_vec: 3976 case INDEX_op_x86_psrldq_vec: 3977 return C_O1_I1(x, x); 3978 3979 case INDEX_op_x86_vpshldv_vec: 3980 case INDEX_op_x86_vpshrdv_vec: 3981 return C_O1_I3(x, 0, x, x); 3982 3983 case INDEX_op_bitsel_vec: 3984 return C_O1_I3(x, x, x, x); 3985 case INDEX_op_cmpsel_vec: 3986 return C_O1_I4(x, x, x, xO, x); 3987 3988 default: 3989 return C_NotImplemented; 3990 } 3991} 3992 3993int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) 3994{ 3995 switch (opc) { 3996 case INDEX_op_add_vec: 3997 case INDEX_op_sub_vec: 3998 case INDEX_op_and_vec: 3999 case INDEX_op_or_vec: 4000 case INDEX_op_xor_vec: 4001 case INDEX_op_andc_vec: 4002 case INDEX_op_orc_vec: 4003 case INDEX_op_nand_vec: 4004 case INDEX_op_nor_vec: 4005 case INDEX_op_eqv_vec: 4006 case INDEX_op_not_vec: 4007 case INDEX_op_bitsel_vec: 4008 return 1; 4009 case INDEX_op_cmp_vec: 4010 case INDEX_op_cmpsel_vec: 4011 return -1; 4012 4013 case INDEX_op_rotli_vec: 4014 return have_avx512vl && vece >= MO_32 ? 1 : -1; 4015 4016 case INDEX_op_shli_vec: 4017 case INDEX_op_shri_vec: 4018 /* We must expand the operation for MO_8. */ 4019 return vece == MO_8 ? -1 : 1; 4020 4021 case INDEX_op_sari_vec: 4022 switch (vece) { 4023 case MO_8: 4024 return -1; 4025 case MO_16: 4026 case MO_32: 4027 return 1; 4028 case MO_64: 4029 if (have_avx512vl) { 4030 return 1; 4031 } 4032 /* 4033 * We can emulate this for MO_64, but it does not pay off 4034 * unless we're producing at least 4 values. 4035 */ 4036 return type >= TCG_TYPE_V256 ? -1 : 0; 4037 } 4038 return 0; 4039 4040 case INDEX_op_shls_vec: 4041 case INDEX_op_shrs_vec: 4042 return vece >= MO_16; 4043 case INDEX_op_sars_vec: 4044 switch (vece) { 4045 case MO_16: 4046 case MO_32: 4047 return 1; 4048 case MO_64: 4049 return have_avx512vl; 4050 } 4051 return 0; 4052 case INDEX_op_rotls_vec: 4053 return vece >= MO_16 ? -1 : 0; 4054 4055 case INDEX_op_shlv_vec: 4056 case INDEX_op_shrv_vec: 4057 switch (vece) { 4058 case MO_16: 4059 return have_avx512bw; 4060 case MO_32: 4061 case MO_64: 4062 return have_avx2; 4063 } 4064 return 0; 4065 case INDEX_op_sarv_vec: 4066 switch (vece) { 4067 case MO_16: 4068 return have_avx512bw; 4069 case MO_32: 4070 return have_avx2; 4071 case MO_64: 4072 return have_avx512vl; 4073 } 4074 return 0; 4075 case INDEX_op_rotlv_vec: 4076 case INDEX_op_rotrv_vec: 4077 switch (vece) { 4078 case MO_16: 4079 return have_avx512vbmi2 ? -1 : 0; 4080 case MO_32: 4081 case MO_64: 4082 return have_avx512vl ? 1 : have_avx2 ? -1 : 0; 4083 } 4084 return 0; 4085 4086 case INDEX_op_mul_vec: 4087 switch (vece) { 4088 case MO_8: 4089 return -1; 4090 case MO_64: 4091 return have_avx512dq; 4092 } 4093 return 1; 4094 4095 case INDEX_op_ssadd_vec: 4096 case INDEX_op_usadd_vec: 4097 case INDEX_op_sssub_vec: 4098 case INDEX_op_ussub_vec: 4099 return vece <= MO_16; 4100 case INDEX_op_smin_vec: 4101 case INDEX_op_smax_vec: 4102 case INDEX_op_umin_vec: 4103 case INDEX_op_umax_vec: 4104 case INDEX_op_abs_vec: 4105 return vece <= MO_32 || have_avx512vl; 4106 4107 default: 4108 return 0; 4109 } 4110} 4111 4112static void expand_vec_shi(TCGType type, unsigned vece, bool right, 4113 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 4114{ 4115 uint8_t mask; 4116 4117 tcg_debug_assert(vece == MO_8); 4118 if (right) { 4119 mask = 0xff >> imm; 4120 tcg_gen_shri_vec(MO_16, v0, v1, imm); 4121 } else { 4122 mask = 0xff << imm; 4123 tcg_gen_shli_vec(MO_16, v0, v1, imm); 4124 } 4125 tcg_gen_and_vec(MO_8, v0, v0, tcg_constant_vec(type, MO_8, mask)); 4126} 4127 4128static void expand_vec_sari(TCGType type, unsigned vece, 4129 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 4130{ 4131 TCGv_vec t1, t2; 4132 4133 switch (vece) { 4134 case MO_8: 4135 /* Unpack to 16-bit, shift, and repack. */ 4136 t1 = tcg_temp_new_vec(type); 4137 t2 = tcg_temp_new_vec(type); 4138 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 4139 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 4140 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 4141 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 4142 tcg_gen_sari_vec(MO_16, t1, t1, imm + 8); 4143 tcg_gen_sari_vec(MO_16, t2, t2, imm + 8); 4144 vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8, 4145 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2)); 4146 tcg_temp_free_vec(t1); 4147 tcg_temp_free_vec(t2); 4148 break; 4149 4150 case MO_64: 4151 t1 = tcg_temp_new_vec(type); 4152 if (imm <= 32) { 4153 /* 4154 * We can emulate a small sign extend by performing an arithmetic 4155 * 32-bit shift and overwriting the high half of a 64-bit logical 4156 * shift. Note that the ISA says shift of 32 is valid, but TCG 4157 * does not, so we have to bound the smaller shift -- we get the 4158 * same result in the high half either way. 4159 */ 4160 tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31)); 4161 tcg_gen_shri_vec(MO_64, v0, v1, imm); 4162 vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32, 4163 tcgv_vec_arg(v0), tcgv_vec_arg(v0), 4164 tcgv_vec_arg(t1), 0xaa); 4165 } else { 4166 /* Otherwise we will need to use a compare vs 0 to produce 4167 * the sign-extend, shift and merge. 4168 */ 4169 tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1, 4170 tcg_constant_vec(type, MO_64, 0), v1); 4171 tcg_gen_shri_vec(MO_64, v0, v1, imm); 4172 tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm); 4173 tcg_gen_or_vec(MO_64, v0, v0, t1); 4174 } 4175 tcg_temp_free_vec(t1); 4176 break; 4177 4178 default: 4179 g_assert_not_reached(); 4180 } 4181} 4182 4183static void expand_vec_rotli(TCGType type, unsigned vece, 4184 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 4185{ 4186 TCGv_vec t; 4187 4188 if (vece != MO_8 && have_avx512vbmi2) { 4189 vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece, 4190 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm); 4191 return; 4192 } 4193 4194 t = tcg_temp_new_vec(type); 4195 tcg_gen_shli_vec(vece, t, v1, imm); 4196 tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm); 4197 tcg_gen_or_vec(vece, v0, v0, t); 4198 tcg_temp_free_vec(t); 4199} 4200 4201static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0, 4202 TCGv_vec v1, TCGv_vec sh, bool right) 4203{ 4204 TCGv_vec t; 4205 4206 if (have_avx512vbmi2) { 4207 vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec, 4208 type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1), 4209 tcgv_vec_arg(v1), tcgv_vec_arg(sh)); 4210 return; 4211 } 4212 4213 t = tcg_temp_new_vec(type); 4214 tcg_gen_dupi_vec(vece, t, 8 << vece); 4215 tcg_gen_sub_vec(vece, t, t, sh); 4216 if (right) { 4217 tcg_gen_shlv_vec(vece, t, v1, t); 4218 tcg_gen_shrv_vec(vece, v0, v1, sh); 4219 } else { 4220 tcg_gen_shrv_vec(vece, t, v1, t); 4221 tcg_gen_shlv_vec(vece, v0, v1, sh); 4222 } 4223 tcg_gen_or_vec(vece, v0, v0, t); 4224 tcg_temp_free_vec(t); 4225} 4226 4227static void expand_vec_rotls(TCGType type, unsigned vece, 4228 TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh) 4229{ 4230 TCGv_vec t = tcg_temp_new_vec(type); 4231 4232 tcg_debug_assert(vece != MO_8); 4233 4234 if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) { 4235 tcg_gen_dup_i32_vec(vece, t, lsh); 4236 if (vece >= MO_32) { 4237 tcg_gen_rotlv_vec(vece, v0, v1, t); 4238 } else { 4239 expand_vec_rotv(type, vece, v0, v1, t, false); 4240 } 4241 } else { 4242 TCGv_i32 rsh = tcg_temp_new_i32(); 4243 4244 tcg_gen_neg_i32(rsh, lsh); 4245 tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1); 4246 tcg_gen_shls_vec(vece, t, v1, lsh); 4247 tcg_gen_shrs_vec(vece, v0, v1, rsh); 4248 tcg_gen_or_vec(vece, v0, v0, t); 4249 4250 tcg_temp_free_i32(rsh); 4251 } 4252 4253 tcg_temp_free_vec(t); 4254} 4255 4256static void expand_vec_mul(TCGType type, unsigned vece, 4257 TCGv_vec v0, TCGv_vec v1, TCGv_vec v2) 4258{ 4259 TCGv_vec t1, t2, t3, t4, zero; 4260 4261 tcg_debug_assert(vece == MO_8); 4262 4263 /* 4264 * Unpack v1 bytes to words, 0 | x. 4265 * Unpack v2 bytes to words, y | 0. 4266 * This leaves the 8-bit result, x * y, with 8 bits of right padding. 4267 * Shift logical right by 8 bits to clear the high 8 bytes before 4268 * using an unsigned saturated pack. 4269 * 4270 * The difference between the V64, V128 and V256 cases is merely how 4271 * we distribute the expansion between temporaries. 4272 */ 4273 switch (type) { 4274 case TCG_TYPE_V64: 4275 t1 = tcg_temp_new_vec(TCG_TYPE_V128); 4276 t2 = tcg_temp_new_vec(TCG_TYPE_V128); 4277 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0); 4278 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8, 4279 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 4280 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8, 4281 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 4282 tcg_gen_mul_vec(MO_16, t1, t1, t2); 4283 tcg_gen_shri_vec(MO_16, t1, t1, 8); 4284 vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8, 4285 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1)); 4286 tcg_temp_free_vec(t1); 4287 tcg_temp_free_vec(t2); 4288 break; 4289 4290 case TCG_TYPE_V128: 4291 case TCG_TYPE_V256: 4292 t1 = tcg_temp_new_vec(type); 4293 t2 = tcg_temp_new_vec(type); 4294 t3 = tcg_temp_new_vec(type); 4295 t4 = tcg_temp_new_vec(type); 4296 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0); 4297 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 4298 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 4299 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 4300 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 4301 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 4302 tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 4303 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 4304 tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 4305 tcg_gen_mul_vec(MO_16, t1, t1, t2); 4306 tcg_gen_mul_vec(MO_16, t3, t3, t4); 4307 tcg_gen_shri_vec(MO_16, t1, t1, 8); 4308 tcg_gen_shri_vec(MO_16, t3, t3, 8); 4309 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8, 4310 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3)); 4311 tcg_temp_free_vec(t1); 4312 tcg_temp_free_vec(t2); 4313 tcg_temp_free_vec(t3); 4314 tcg_temp_free_vec(t4); 4315 break; 4316 4317 default: 4318 g_assert_not_reached(); 4319 } 4320} 4321 4322static TCGCond expand_vec_cond(TCGType type, unsigned vece, 4323 TCGArg *a1, TCGArg *a2, TCGCond cond) 4324{ 4325 /* 4326 * Without AVX512, there are no 64-bit unsigned comparisons. 4327 * We must bias the inputs so that they become signed. 4328 * All other swapping and inversion are handled during code generation. 4329 */ 4330 if (vece == MO_64 && !have_avx512dq && is_unsigned_cond(cond)) { 4331 TCGv_vec v1 = temp_tcgv_vec(arg_temp(*a1)); 4332 TCGv_vec v2 = temp_tcgv_vec(arg_temp(*a2)); 4333 TCGv_vec t1 = tcg_temp_new_vec(type); 4334 TCGv_vec t2 = tcg_temp_new_vec(type); 4335 TCGv_vec t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1)); 4336 4337 tcg_gen_sub_vec(vece, t1, v1, t3); 4338 tcg_gen_sub_vec(vece, t2, v2, t3); 4339 *a1 = tcgv_vec_arg(t1); 4340 *a2 = tcgv_vec_arg(t2); 4341 cond = tcg_signed_cond(cond); 4342 } 4343 return cond; 4344} 4345 4346static void expand_vec_cmp(TCGType type, unsigned vece, TCGArg a0, 4347 TCGArg a1, TCGArg a2, TCGCond cond) 4348{ 4349 cond = expand_vec_cond(type, vece, &a1, &a2, cond); 4350 /* Expand directly; do not recurse. */ 4351 vec_gen_4(INDEX_op_cmp_vec, type, vece, a0, a1, a2, cond); 4352} 4353 4354static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGArg a0, 4355 TCGArg a1, TCGArg a2, 4356 TCGArg a3, TCGArg a4, TCGCond cond) 4357{ 4358 cond = expand_vec_cond(type, vece, &a1, &a2, cond); 4359 /* Expand directly; do not recurse. */ 4360 vec_gen_6(INDEX_op_cmpsel_vec, type, vece, a0, a1, a2, a3, a4, cond); 4361} 4362 4363void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, 4364 TCGArg a0, ...) 4365{ 4366 va_list va; 4367 TCGArg a1, a2, a3, a4, a5; 4368 TCGv_vec v0, v1, v2; 4369 4370 va_start(va, a0); 4371 a1 = va_arg(va, TCGArg); 4372 a2 = va_arg(va, TCGArg); 4373 v0 = temp_tcgv_vec(arg_temp(a0)); 4374 v1 = temp_tcgv_vec(arg_temp(a1)); 4375 4376 switch (opc) { 4377 case INDEX_op_shli_vec: 4378 expand_vec_shi(type, vece, false, v0, v1, a2); 4379 break; 4380 case INDEX_op_shri_vec: 4381 expand_vec_shi(type, vece, true, v0, v1, a2); 4382 break; 4383 case INDEX_op_sari_vec: 4384 expand_vec_sari(type, vece, v0, v1, a2); 4385 break; 4386 4387 case INDEX_op_rotli_vec: 4388 expand_vec_rotli(type, vece, v0, v1, a2); 4389 break; 4390 4391 case INDEX_op_rotls_vec: 4392 expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2))); 4393 break; 4394 4395 case INDEX_op_rotlv_vec: 4396 v2 = temp_tcgv_vec(arg_temp(a2)); 4397 expand_vec_rotv(type, vece, v0, v1, v2, false); 4398 break; 4399 case INDEX_op_rotrv_vec: 4400 v2 = temp_tcgv_vec(arg_temp(a2)); 4401 expand_vec_rotv(type, vece, v0, v1, v2, true); 4402 break; 4403 4404 case INDEX_op_mul_vec: 4405 v2 = temp_tcgv_vec(arg_temp(a2)); 4406 expand_vec_mul(type, vece, v0, v1, v2); 4407 break; 4408 4409 case INDEX_op_cmp_vec: 4410 a3 = va_arg(va, TCGArg); 4411 expand_vec_cmp(type, vece, a0, a1, a2, a3); 4412 break; 4413 4414 case INDEX_op_cmpsel_vec: 4415 a3 = va_arg(va, TCGArg); 4416 a4 = va_arg(va, TCGArg); 4417 a5 = va_arg(va, TCGArg); 4418 expand_vec_cmpsel(type, vece, a0, a1, a2, a3, a4, a5); 4419 break; 4420 4421 default: 4422 break; 4423 } 4424 4425 va_end(va); 4426} 4427 4428static const int tcg_target_callee_save_regs[] = { 4429#if TCG_TARGET_REG_BITS == 64 4430 TCG_REG_RBP, 4431 TCG_REG_RBX, 4432#if defined(_WIN64) 4433 TCG_REG_RDI, 4434 TCG_REG_RSI, 4435#endif 4436 TCG_REG_R12, 4437 TCG_REG_R13, 4438 TCG_REG_R14, /* Currently used for the global env. */ 4439 TCG_REG_R15, 4440#else 4441 TCG_REG_EBP, /* Currently used for the global env. */ 4442 TCG_REG_EBX, 4443 TCG_REG_ESI, 4444 TCG_REG_EDI, 4445#endif 4446}; 4447 4448/* Compute frame size via macros, to share between tcg_target_qemu_prologue 4449 and tcg_register_jit. */ 4450 4451#define PUSH_SIZE \ 4452 ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \ 4453 * (TCG_TARGET_REG_BITS / 8)) 4454 4455#define FRAME_SIZE \ 4456 ((PUSH_SIZE \ 4457 + TCG_STATIC_CALL_ARGS_SIZE \ 4458 + CPU_TEMP_BUF_NLONGS * sizeof(long) \ 4459 + TCG_TARGET_STACK_ALIGN - 1) \ 4460 & ~(TCG_TARGET_STACK_ALIGN - 1)) 4461 4462/* Generate global QEMU prologue and epilogue code */ 4463static void tcg_target_qemu_prologue(TCGContext *s) 4464{ 4465 int i, stack_addend; 4466 4467 /* TB prologue */ 4468 4469 /* Reserve some stack space, also for TCG temps. */ 4470 stack_addend = FRAME_SIZE - PUSH_SIZE; 4471 tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE, 4472 CPU_TEMP_BUF_NLONGS * sizeof(long)); 4473 4474 /* Save all callee saved registers. */ 4475 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) { 4476 tcg_out_push(s, tcg_target_callee_save_regs[i]); 4477 } 4478 4479 if (!tcg_use_softmmu && guest_base) { 4480 int seg = setup_guest_base_seg(); 4481 if (seg != 0) { 4482 x86_guest_base.seg = seg; 4483 } else if (guest_base == (int32_t)guest_base) { 4484 x86_guest_base.ofs = guest_base; 4485 } else { 4486 assert(TCG_TARGET_REG_BITS == 64); 4487 /* Choose R12 because, as a base, it requires a SIB byte. */ 4488 x86_guest_base.index = TCG_REG_R12; 4489 tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base); 4490 tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index); 4491 } 4492 } 4493 4494 if (TCG_TARGET_REG_BITS == 32) { 4495 tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, 4496 (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4); 4497 tcg_out_addi(s, TCG_REG_ESP, -stack_addend); 4498 /* jmp *tb. */ 4499 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP, 4500 (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4 4501 + stack_addend); 4502 } else { 4503 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); 4504 tcg_out_addi(s, TCG_REG_ESP, -stack_addend); 4505 /* jmp *tb. */ 4506 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]); 4507 } 4508 4509 /* 4510 * Return path for goto_ptr. Set return value to 0, a-la exit_tb, 4511 * and fall through to the rest of the epilogue. 4512 */ 4513 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); 4514 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0); 4515 4516 /* TB epilogue */ 4517 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr); 4518 4519 tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend); 4520 4521 if (have_avx2) { 4522 tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0); 4523 } 4524 for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) { 4525 tcg_out_pop(s, tcg_target_callee_save_regs[i]); 4526 } 4527 tcg_out_opc(s, OPC_RET, 0, 0, 0); 4528} 4529 4530static void tcg_out_tb_start(TCGContext *s) 4531{ 4532 /* nothing to do */ 4533} 4534 4535static void tcg_out_nop_fill(tcg_insn_unit *p, int count) 4536{ 4537 memset(p, 0x90, count); 4538} 4539 4540static void tcg_target_init(TCGContext *s) 4541{ 4542 tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS; 4543 if (TCG_TARGET_REG_BITS == 64) { 4544 tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS; 4545 } 4546 if (have_avx1) { 4547 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS; 4548 tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS; 4549 } 4550 if (have_avx2) { 4551 tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS; 4552 } 4553 4554 tcg_target_call_clobber_regs = ALL_VECTOR_REGS; 4555 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX); 4556 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX); 4557 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX); 4558 if (TCG_TARGET_REG_BITS == 64) { 4559#if !defined(_WIN64) 4560 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI); 4561 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI); 4562#endif 4563 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8); 4564 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9); 4565 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10); 4566 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11); 4567 } 4568 4569 s->reserved_regs = 0; 4570 tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK); 4571 tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC); 4572#ifdef _WIN64 4573 /* These are call saved, and we don't save them, so don't use them. */ 4574 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6); 4575 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7); 4576 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8); 4577 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9); 4578 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10); 4579 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11); 4580 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12); 4581 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13); 4582 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14); 4583 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15); 4584#endif 4585} 4586 4587typedef struct { 4588 DebugFrameHeader h; 4589 uint8_t fde_def_cfa[4]; 4590 uint8_t fde_reg_ofs[14]; 4591} DebugFrame; 4592 4593/* We're expecting a 2 byte uleb128 encoded value. */ 4594QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); 4595 4596#if !defined(__ELF__) 4597 /* Host machine without ELF. */ 4598#elif TCG_TARGET_REG_BITS == 64 4599#define ELF_HOST_MACHINE EM_X86_64 4600static const DebugFrame debug_frame = { 4601 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 4602 .h.cie.id = -1, 4603 .h.cie.version = 1, 4604 .h.cie.code_align = 1, 4605 .h.cie.data_align = 0x78, /* sleb128 -8 */ 4606 .h.cie.return_column = 16, 4607 4608 /* Total FDE size does not include the "len" member. */ 4609 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 4610 4611 .fde_def_cfa = { 4612 12, 7, /* DW_CFA_def_cfa %rsp, ... */ 4613 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 4614 (FRAME_SIZE >> 7) 4615 }, 4616 .fde_reg_ofs = { 4617 0x90, 1, /* DW_CFA_offset, %rip, -8 */ 4618 /* The following ordering must match tcg_target_callee_save_regs. */ 4619 0x86, 2, /* DW_CFA_offset, %rbp, -16 */ 4620 0x83, 3, /* DW_CFA_offset, %rbx, -24 */ 4621 0x8c, 4, /* DW_CFA_offset, %r12, -32 */ 4622 0x8d, 5, /* DW_CFA_offset, %r13, -40 */ 4623 0x8e, 6, /* DW_CFA_offset, %r14, -48 */ 4624 0x8f, 7, /* DW_CFA_offset, %r15, -56 */ 4625 } 4626}; 4627#else 4628#define ELF_HOST_MACHINE EM_386 4629static const DebugFrame debug_frame = { 4630 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 4631 .h.cie.id = -1, 4632 .h.cie.version = 1, 4633 .h.cie.code_align = 1, 4634 .h.cie.data_align = 0x7c, /* sleb128 -4 */ 4635 .h.cie.return_column = 8, 4636 4637 /* Total FDE size does not include the "len" member. */ 4638 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 4639 4640 .fde_def_cfa = { 4641 12, 4, /* DW_CFA_def_cfa %esp, ... */ 4642 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 4643 (FRAME_SIZE >> 7) 4644 }, 4645 .fde_reg_ofs = { 4646 0x88, 1, /* DW_CFA_offset, %eip, -4 */ 4647 /* The following ordering must match tcg_target_callee_save_regs. */ 4648 0x85, 2, /* DW_CFA_offset, %ebp, -8 */ 4649 0x83, 3, /* DW_CFA_offset, %ebx, -12 */ 4650 0x86, 4, /* DW_CFA_offset, %esi, -16 */ 4651 0x87, 5, /* DW_CFA_offset, %edi, -20 */ 4652 } 4653}; 4654#endif 4655 4656#if defined(ELF_HOST_MACHINE) 4657void tcg_register_jit(const void *buf, size_t buf_size) 4658{ 4659 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); 4660} 4661#endif 4662