1/* 2 * Tiny Code Generator for QEMU 3 * 4 * Copyright (c) 2008 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25#include "../tcg-ldst.c.inc" 26#include "../tcg-pool.c.inc" 27 28#ifdef CONFIG_DEBUG_TCG 29static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { 30#if TCG_TARGET_REG_BITS == 64 31 "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi", 32#else 33 "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi", 34#endif 35 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", 36 "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7", 37#if TCG_TARGET_REG_BITS == 64 38 "%xmm8", "%xmm9", "%xmm10", "%xmm11", 39 "%xmm12", "%xmm13", "%xmm14", "%xmm15", 40#endif 41}; 42#endif 43 44static const int tcg_target_reg_alloc_order[] = { 45#if TCG_TARGET_REG_BITS == 64 46 TCG_REG_RBP, 47 TCG_REG_RBX, 48 TCG_REG_R12, 49 TCG_REG_R13, 50 TCG_REG_R14, 51 TCG_REG_R15, 52 TCG_REG_R10, 53 TCG_REG_R11, 54 TCG_REG_R9, 55 TCG_REG_R8, 56 TCG_REG_RCX, 57 TCG_REG_RDX, 58 TCG_REG_RSI, 59 TCG_REG_RDI, 60 TCG_REG_RAX, 61#else 62 TCG_REG_EBX, 63 TCG_REG_ESI, 64 TCG_REG_EDI, 65 TCG_REG_EBP, 66 TCG_REG_ECX, 67 TCG_REG_EDX, 68 TCG_REG_EAX, 69#endif 70 TCG_REG_XMM0, 71 TCG_REG_XMM1, 72 TCG_REG_XMM2, 73 TCG_REG_XMM3, 74 TCG_REG_XMM4, 75 TCG_REG_XMM5, 76#ifndef _WIN64 77 /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save 78 any of them. Therefore only allow xmm0-xmm5 to be allocated. */ 79 TCG_REG_XMM6, 80 TCG_REG_XMM7, 81#if TCG_TARGET_REG_BITS == 64 82 TCG_REG_XMM8, 83 TCG_REG_XMM9, 84 TCG_REG_XMM10, 85 TCG_REG_XMM11, 86 TCG_REG_XMM12, 87 TCG_REG_XMM13, 88 TCG_REG_XMM14, 89 TCG_REG_XMM15, 90#endif 91#endif 92}; 93 94#define TCG_TMP_VEC TCG_REG_XMM5 95 96static const int tcg_target_call_iarg_regs[] = { 97#if TCG_TARGET_REG_BITS == 64 98#if defined(_WIN64) 99 TCG_REG_RCX, 100 TCG_REG_RDX, 101#else 102 TCG_REG_RDI, 103 TCG_REG_RSI, 104 TCG_REG_RDX, 105 TCG_REG_RCX, 106#endif 107 TCG_REG_R8, 108 TCG_REG_R9, 109#else 110 /* 32 bit mode uses stack based calling convention (GCC default). */ 111#endif 112}; 113 114static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) 115{ 116 switch (kind) { 117 case TCG_CALL_RET_NORMAL: 118 tcg_debug_assert(slot >= 0 && slot <= 1); 119 return slot ? TCG_REG_EDX : TCG_REG_EAX; 120#ifdef _WIN64 121 case TCG_CALL_RET_BY_VEC: 122 tcg_debug_assert(slot == 0); 123 return TCG_REG_XMM0; 124#endif 125 default: 126 g_assert_not_reached(); 127 } 128} 129 130/* Constants we accept. */ 131#define TCG_CT_CONST_S32 0x100 132#define TCG_CT_CONST_U32 0x200 133#define TCG_CT_CONST_I32 0x400 134#define TCG_CT_CONST_WSZ 0x800 135 136/* Registers used with L constraint, which are the first argument 137 registers on x86_64, and two random call clobbered registers on 138 i386. */ 139#if TCG_TARGET_REG_BITS == 64 140# define TCG_REG_L0 tcg_target_call_iarg_regs[0] 141# define TCG_REG_L1 tcg_target_call_iarg_regs[1] 142#else 143# define TCG_REG_L0 TCG_REG_EAX 144# define TCG_REG_L1 TCG_REG_EDX 145#endif 146 147#if TCG_TARGET_REG_BITS == 64 148# define ALL_GENERAL_REGS 0x0000ffffu 149# define ALL_VECTOR_REGS 0xffff0000u 150# define ALL_BYTEL_REGS ALL_GENERAL_REGS 151#else 152# define ALL_GENERAL_REGS 0x000000ffu 153# define ALL_VECTOR_REGS 0x00ff0000u 154# define ALL_BYTEL_REGS 0x0000000fu 155#endif 156#ifdef CONFIG_SOFTMMU 157# define SOFTMMU_RESERVE_REGS ((1 << TCG_REG_L0) | (1 << TCG_REG_L1)) 158#else 159# define SOFTMMU_RESERVE_REGS 0 160#endif 161 162/* For 64-bit, we always know that CMOV is available. */ 163#if TCG_TARGET_REG_BITS == 64 164# define have_cmov true 165#else 166# define have_cmov (cpuinfo & CPUINFO_CMOV) 167#endif 168#define have_bmi2 (cpuinfo & CPUINFO_BMI2) 169#define have_lzcnt (cpuinfo & CPUINFO_LZCNT) 170 171static const tcg_insn_unit *tb_ret_addr; 172 173static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 174 intptr_t value, intptr_t addend) 175{ 176 value += addend; 177 switch(type) { 178 case R_386_PC32: 179 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr); 180 if (value != (int32_t)value) { 181 return false; 182 } 183 /* FALLTHRU */ 184 case R_386_32: 185 tcg_patch32(code_ptr, value); 186 break; 187 case R_386_PC8: 188 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr); 189 if (value != (int8_t)value) { 190 return false; 191 } 192 tcg_patch8(code_ptr, value); 193 break; 194 default: 195 g_assert_not_reached(); 196 } 197 return true; 198} 199 200/* test if a constant matches the constraint */ 201static bool tcg_target_const_match(int64_t val, TCGType type, int ct, int vece) 202{ 203 if (ct & TCG_CT_CONST) { 204 return 1; 205 } 206 if (type == TCG_TYPE_I32) { 207 if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 | TCG_CT_CONST_I32)) { 208 return 1; 209 } 210 } else { 211 if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) { 212 return 1; 213 } 214 if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) { 215 return 1; 216 } 217 if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) { 218 return 1; 219 } 220 } 221 if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) { 222 return 1; 223 } 224 return 0; 225} 226 227# define LOWREGMASK(x) ((x) & 7) 228 229#define P_EXT 0x100 /* 0x0f opcode prefix */ 230#define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */ 231#define P_DATA16 0x400 /* 0x66 opcode prefix */ 232#define P_VEXW 0x1000 /* Set VEX.W = 1 */ 233#if TCG_TARGET_REG_BITS == 64 234# define P_REXW P_VEXW /* Set REX.W = 1; match VEXW */ 235# define P_REXB_R 0x2000 /* REG field as byte register */ 236# define P_REXB_RM 0x4000 /* R/M field as byte register */ 237# define P_GS 0x8000 /* gs segment override */ 238#else 239# define P_REXW 0 240# define P_REXB_R 0 241# define P_REXB_RM 0 242# define P_GS 0 243#endif 244#define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */ 245#define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */ 246#define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */ 247#define P_VEXL 0x80000 /* Set VEX.L = 1 */ 248#define P_EVEX 0x100000 /* Requires EVEX encoding */ 249 250#define OPC_ARITH_EvIz (0x81) 251#define OPC_ARITH_EvIb (0x83) 252#define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */ 253#define OPC_ANDN (0xf2 | P_EXT38) 254#define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3)) 255#define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3)) 256#define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16) 257#define OPC_BSF (0xbc | P_EXT) 258#define OPC_BSR (0xbd | P_EXT) 259#define OPC_BSWAP (0xc8 | P_EXT) 260#define OPC_CALL_Jz (0xe8) 261#define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */ 262#define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3)) 263#define OPC_DEC_r32 (0x48) 264#define OPC_IMUL_GvEv (0xaf | P_EXT) 265#define OPC_IMUL_GvEvIb (0x6b) 266#define OPC_IMUL_GvEvIz (0x69) 267#define OPC_INC_r32 (0x40) 268#define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */ 269#define OPC_JCC_short (0x70) /* ... plus condition code */ 270#define OPC_JMP_long (0xe9) 271#define OPC_JMP_short (0xeb) 272#define OPC_LEA (0x8d) 273#define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3) 274#define OPC_MOVB_EvGv (0x88) /* stores, more or less */ 275#define OPC_MOVL_EvGv (0x89) /* stores, more or less */ 276#define OPC_MOVL_GvEv (0x8b) /* loads, more or less */ 277#define OPC_MOVB_EvIz (0xc6) 278#define OPC_MOVL_EvIz (0xc7) 279#define OPC_MOVB_Ib (0xb0) 280#define OPC_MOVL_Iv (0xb8) 281#define OPC_MOVBE_GyMy (0xf0 | P_EXT38) 282#define OPC_MOVBE_MyGy (0xf1 | P_EXT38) 283#define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16) 284#define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16) 285#define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2) 286#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16) 287#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16) 288#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3) 289#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3) 290#define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3) 291#define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16) 292#define OPC_MOVSBL (0xbe | P_EXT) 293#define OPC_MOVSWL (0xbf | P_EXT) 294#define OPC_MOVSLQ (0x63 | P_REXW) 295#define OPC_MOVZBL (0xb6 | P_EXT) 296#define OPC_MOVZWL (0xb7 | P_EXT) 297#define OPC_PABSB (0x1c | P_EXT38 | P_DATA16) 298#define OPC_PABSW (0x1d | P_EXT38 | P_DATA16) 299#define OPC_PABSD (0x1e | P_EXT38 | P_DATA16) 300#define OPC_VPABSQ (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 301#define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16) 302#define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16) 303#define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16) 304#define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16) 305#define OPC_PADDB (0xfc | P_EXT | P_DATA16) 306#define OPC_PADDW (0xfd | P_EXT | P_DATA16) 307#define OPC_PADDD (0xfe | P_EXT | P_DATA16) 308#define OPC_PADDQ (0xd4 | P_EXT | P_DATA16) 309#define OPC_PADDSB (0xec | P_EXT | P_DATA16) 310#define OPC_PADDSW (0xed | P_EXT | P_DATA16) 311#define OPC_PADDUB (0xdc | P_EXT | P_DATA16) 312#define OPC_PADDUW (0xdd | P_EXT | P_DATA16) 313#define OPC_PAND (0xdb | P_EXT | P_DATA16) 314#define OPC_PANDN (0xdf | P_EXT | P_DATA16) 315#define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16) 316#define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16) 317#define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16) 318#define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16) 319#define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16) 320#define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16) 321#define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16) 322#define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16) 323#define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16) 324#define OPC_PEXTRD (0x16 | P_EXT3A | P_DATA16) 325#define OPC_PINSRD (0x22 | P_EXT3A | P_DATA16) 326#define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16) 327#define OPC_PMAXSW (0xee | P_EXT | P_DATA16) 328#define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16) 329#define OPC_VPMAXSQ (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 330#define OPC_PMAXUB (0xde | P_EXT | P_DATA16) 331#define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16) 332#define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16) 333#define OPC_VPMAXUQ (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 334#define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16) 335#define OPC_PMINSW (0xea | P_EXT | P_DATA16) 336#define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16) 337#define OPC_VPMINSQ (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 338#define OPC_PMINUB (0xda | P_EXT | P_DATA16) 339#define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16) 340#define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16) 341#define OPC_VPMINUQ (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 342#define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16) 343#define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16) 344#define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16) 345#define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16) 346#define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16) 347#define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16) 348#define OPC_PMULLW (0xd5 | P_EXT | P_DATA16) 349#define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16) 350#define OPC_VPMULLQ (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 351#define OPC_POR (0xeb | P_EXT | P_DATA16) 352#define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16) 353#define OPC_PSHUFD (0x70 | P_EXT | P_DATA16) 354#define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2) 355#define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3) 356#define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */ 357#define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */ 358#define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */ 359#define OPC_PSLLW (0xf1 | P_EXT | P_DATA16) 360#define OPC_PSLLD (0xf2 | P_EXT | P_DATA16) 361#define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16) 362#define OPC_PSRAW (0xe1 | P_EXT | P_DATA16) 363#define OPC_PSRAD (0xe2 | P_EXT | P_DATA16) 364#define OPC_VPSRAQ (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX) 365#define OPC_PSRLW (0xd1 | P_EXT | P_DATA16) 366#define OPC_PSRLD (0xd2 | P_EXT | P_DATA16) 367#define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16) 368#define OPC_PSUBB (0xf8 | P_EXT | P_DATA16) 369#define OPC_PSUBW (0xf9 | P_EXT | P_DATA16) 370#define OPC_PSUBD (0xfa | P_EXT | P_DATA16) 371#define OPC_PSUBQ (0xfb | P_EXT | P_DATA16) 372#define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16) 373#define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16) 374#define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16) 375#define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16) 376#define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16) 377#define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16) 378#define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16) 379#define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16) 380#define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16) 381#define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16) 382#define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16) 383#define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16) 384#define OPC_PXOR (0xef | P_EXT | P_DATA16) 385#define OPC_POP_r32 (0x58) 386#define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3) 387#define OPC_PUSH_r32 (0x50) 388#define OPC_PUSH_Iv (0x68) 389#define OPC_PUSH_Ib (0x6a) 390#define OPC_RET (0xc3) 391#define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */ 392#define OPC_SHIFT_1 (0xd1) 393#define OPC_SHIFT_Ib (0xc1) 394#define OPC_SHIFT_cl (0xd3) 395#define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3) 396#define OPC_SHUFPS (0xc6 | P_EXT) 397#define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16) 398#define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2) 399#define OPC_SHRD_Ib (0xac | P_EXT) 400#define OPC_TESTL (0x85) 401#define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3) 402#define OPC_UD2 (0x0b | P_EXT) 403#define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16) 404#define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16) 405#define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16) 406#define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16) 407#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16) 408#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16) 409#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16) 410#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16) 411#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16) 412#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16) 413#define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_VEXW) 414#define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL) 415#define OPC_VPROLVD (0x15 | P_EXT38 | P_DATA16 | P_EVEX) 416#define OPC_VPROLVQ (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 417#define OPC_VPRORVD (0x14 | P_EXT38 | P_DATA16 | P_EVEX) 418#define OPC_VPRORVQ (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 419#define OPC_VPSHLDW (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 420#define OPC_VPSHLDD (0x71 | P_EXT3A | P_DATA16 | P_EVEX) 421#define OPC_VPSHLDQ (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 422#define OPC_VPSHLDVW (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 423#define OPC_VPSHLDVD (0x71 | P_EXT38 | P_DATA16 | P_EVEX) 424#define OPC_VPSHLDVQ (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 425#define OPC_VPSHRDVW (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 426#define OPC_VPSHRDVD (0x73 | P_EXT38 | P_DATA16 | P_EVEX) 427#define OPC_VPSHRDVQ (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 428#define OPC_VPSLLVW (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 429#define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16) 430#define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_VEXW) 431#define OPC_VPSRAVW (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 432#define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16) 433#define OPC_VPSRAVQ (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 434#define OPC_VPSRLVW (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX) 435#define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16) 436#define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_VEXW) 437#define OPC_VPTERNLOGQ (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX) 438#define OPC_VZEROUPPER (0x77 | P_EXT) 439#define OPC_XCHG_ax_r32 (0x90) 440#define OPC_XCHG_EvGv (0x87) 441 442#define OPC_GRP3_Eb (0xf6) 443#define OPC_GRP3_Ev (0xf7) 444#define OPC_GRP5 (0xff) 445#define OPC_GRP14 (0x73 | P_EXT | P_DATA16) 446 447/* Group 1 opcode extensions for 0x80-0x83. 448 These are also used as modifiers for OPC_ARITH. */ 449#define ARITH_ADD 0 450#define ARITH_OR 1 451#define ARITH_ADC 2 452#define ARITH_SBB 3 453#define ARITH_AND 4 454#define ARITH_SUB 5 455#define ARITH_XOR 6 456#define ARITH_CMP 7 457 458/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */ 459#define SHIFT_ROL 0 460#define SHIFT_ROR 1 461#define SHIFT_SHL 4 462#define SHIFT_SHR 5 463#define SHIFT_SAR 7 464 465/* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */ 466#define EXT3_TESTi 0 467#define EXT3_NOT 2 468#define EXT3_NEG 3 469#define EXT3_MUL 4 470#define EXT3_IMUL 5 471#define EXT3_DIV 6 472#define EXT3_IDIV 7 473 474/* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */ 475#define EXT5_INC_Ev 0 476#define EXT5_DEC_Ev 1 477#define EXT5_CALLN_Ev 2 478#define EXT5_JMPN_Ev 4 479 480/* Condition codes to be added to OPC_JCC_{long,short}. */ 481#define JCC_JMP (-1) 482#define JCC_JO 0x0 483#define JCC_JNO 0x1 484#define JCC_JB 0x2 485#define JCC_JAE 0x3 486#define JCC_JE 0x4 487#define JCC_JNE 0x5 488#define JCC_JBE 0x6 489#define JCC_JA 0x7 490#define JCC_JS 0x8 491#define JCC_JNS 0x9 492#define JCC_JP 0xa 493#define JCC_JNP 0xb 494#define JCC_JL 0xc 495#define JCC_JGE 0xd 496#define JCC_JLE 0xe 497#define JCC_JG 0xf 498 499static const uint8_t tcg_cond_to_jcc[] = { 500 [TCG_COND_EQ] = JCC_JE, 501 [TCG_COND_NE] = JCC_JNE, 502 [TCG_COND_LT] = JCC_JL, 503 [TCG_COND_GE] = JCC_JGE, 504 [TCG_COND_LE] = JCC_JLE, 505 [TCG_COND_GT] = JCC_JG, 506 [TCG_COND_LTU] = JCC_JB, 507 [TCG_COND_GEU] = JCC_JAE, 508 [TCG_COND_LEU] = JCC_JBE, 509 [TCG_COND_GTU] = JCC_JA, 510}; 511 512#if TCG_TARGET_REG_BITS == 64 513static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x) 514{ 515 int rex; 516 517 if (opc & P_GS) { 518 tcg_out8(s, 0x65); 519 } 520 if (opc & P_DATA16) { 521 /* We should never be asking for both 16 and 64-bit operation. */ 522 tcg_debug_assert((opc & P_REXW) == 0); 523 tcg_out8(s, 0x66); 524 } 525 if (opc & P_SIMDF3) { 526 tcg_out8(s, 0xf3); 527 } else if (opc & P_SIMDF2) { 528 tcg_out8(s, 0xf2); 529 } 530 531 rex = 0; 532 rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */ 533 rex |= (r & 8) >> 1; /* REX.R */ 534 rex |= (x & 8) >> 2; /* REX.X */ 535 rex |= (rm & 8) >> 3; /* REX.B */ 536 537 /* P_REXB_{R,RM} indicates that the given register is the low byte. 538 For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do, 539 as otherwise the encoding indicates %[abcd]h. Note that the values 540 that are ORed in merely indicate that the REX byte must be present; 541 those bits get discarded in output. */ 542 rex |= opc & (r >= 4 ? P_REXB_R : 0); 543 rex |= opc & (rm >= 4 ? P_REXB_RM : 0); 544 545 if (rex) { 546 tcg_out8(s, (uint8_t)(rex | 0x40)); 547 } 548 549 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) { 550 tcg_out8(s, 0x0f); 551 if (opc & P_EXT38) { 552 tcg_out8(s, 0x38); 553 } else if (opc & P_EXT3A) { 554 tcg_out8(s, 0x3a); 555 } 556 } 557 558 tcg_out8(s, opc); 559} 560#else 561static void tcg_out_opc(TCGContext *s, int opc) 562{ 563 if (opc & P_DATA16) { 564 tcg_out8(s, 0x66); 565 } 566 if (opc & P_SIMDF3) { 567 tcg_out8(s, 0xf3); 568 } else if (opc & P_SIMDF2) { 569 tcg_out8(s, 0xf2); 570 } 571 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) { 572 tcg_out8(s, 0x0f); 573 if (opc & P_EXT38) { 574 tcg_out8(s, 0x38); 575 } else if (opc & P_EXT3A) { 576 tcg_out8(s, 0x3a); 577 } 578 } 579 tcg_out8(s, opc); 580} 581/* Discard the register arguments to tcg_out_opc early, so as not to penalize 582 the 32-bit compilation paths. This method works with all versions of gcc, 583 whereas relying on optimization may not be able to exclude them. */ 584#define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc) 585#endif 586 587static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm) 588{ 589 tcg_out_opc(s, opc, r, rm, 0); 590 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 591} 592 593static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v, 594 int rm, int index) 595{ 596 int tmp; 597 598 if (opc & P_GS) { 599 tcg_out8(s, 0x65); 600 } 601 /* Use the two byte form if possible, which cannot encode 602 VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */ 603 if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT 604 && ((rm | index) & 8) == 0) { 605 /* Two byte VEX prefix. */ 606 tcg_out8(s, 0xc5); 607 608 tmp = (r & 8 ? 0 : 0x80); /* VEX.R */ 609 } else { 610 /* Three byte VEX prefix. */ 611 tcg_out8(s, 0xc4); 612 613 /* VEX.m-mmmm */ 614 if (opc & P_EXT3A) { 615 tmp = 3; 616 } else if (opc & P_EXT38) { 617 tmp = 2; 618 } else if (opc & P_EXT) { 619 tmp = 1; 620 } else { 621 g_assert_not_reached(); 622 } 623 tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */ 624 tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */ 625 tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */ 626 tcg_out8(s, tmp); 627 628 tmp = (opc & P_VEXW ? 0x80 : 0); /* VEX.W */ 629 } 630 631 tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */ 632 /* VEX.pp */ 633 if (opc & P_DATA16) { 634 tmp |= 1; /* 0x66 */ 635 } else if (opc & P_SIMDF3) { 636 tmp |= 2; /* 0xf3 */ 637 } else if (opc & P_SIMDF2) { 638 tmp |= 3; /* 0xf2 */ 639 } 640 tmp |= (~v & 15) << 3; /* VEX.vvvv */ 641 tcg_out8(s, tmp); 642 tcg_out8(s, opc); 643} 644 645static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v, 646 int rm, int index) 647{ 648 /* The entire 4-byte evex prefix; with R' and V' set. */ 649 uint32_t p = 0x08041062; 650 int mm, pp; 651 652 tcg_debug_assert(have_avx512vl); 653 654 /* EVEX.mm */ 655 if (opc & P_EXT3A) { 656 mm = 3; 657 } else if (opc & P_EXT38) { 658 mm = 2; 659 } else if (opc & P_EXT) { 660 mm = 1; 661 } else { 662 g_assert_not_reached(); 663 } 664 665 /* EVEX.pp */ 666 if (opc & P_DATA16) { 667 pp = 1; /* 0x66 */ 668 } else if (opc & P_SIMDF3) { 669 pp = 2; /* 0xf3 */ 670 } else if (opc & P_SIMDF2) { 671 pp = 3; /* 0xf2 */ 672 } else { 673 pp = 0; 674 } 675 676 p = deposit32(p, 8, 2, mm); 677 p = deposit32(p, 13, 1, (rm & 8) == 0); /* EVEX.RXB.B */ 678 p = deposit32(p, 14, 1, (index & 8) == 0); /* EVEX.RXB.X */ 679 p = deposit32(p, 15, 1, (r & 8) == 0); /* EVEX.RXB.R */ 680 p = deposit32(p, 16, 2, pp); 681 p = deposit32(p, 19, 4, ~v); 682 p = deposit32(p, 23, 1, (opc & P_VEXW) != 0); 683 p = deposit32(p, 29, 2, (opc & P_VEXL) != 0); 684 685 tcg_out32(s, p); 686 tcg_out8(s, opc); 687} 688 689static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm) 690{ 691 if (opc & P_EVEX) { 692 tcg_out_evex_opc(s, opc, r, v, rm, 0); 693 } else { 694 tcg_out_vex_opc(s, opc, r, v, rm, 0); 695 } 696 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 697} 698 699/* Output an opcode with a full "rm + (index<<shift) + offset" address mode. 700 We handle either RM and INDEX missing with a negative value. In 64-bit 701 mode for absolute addresses, ~RM is the size of the immediate operand 702 that will follow the instruction. */ 703 704static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index, 705 int shift, intptr_t offset) 706{ 707 int mod, len; 708 709 if (index < 0 && rm < 0) { 710 if (TCG_TARGET_REG_BITS == 64) { 711 /* Try for a rip-relative addressing mode. This has replaced 712 the 32-bit-mode absolute addressing encoding. */ 713 intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm; 714 intptr_t disp = offset - pc; 715 if (disp == (int32_t)disp) { 716 tcg_out8(s, (LOWREGMASK(r) << 3) | 5); 717 tcg_out32(s, disp); 718 return; 719 } 720 721 /* Try for an absolute address encoding. This requires the 722 use of the MODRM+SIB encoding and is therefore larger than 723 rip-relative addressing. */ 724 if (offset == (int32_t)offset) { 725 tcg_out8(s, (LOWREGMASK(r) << 3) | 4); 726 tcg_out8(s, (4 << 3) | 5); 727 tcg_out32(s, offset); 728 return; 729 } 730 731 /* ??? The memory isn't directly addressable. */ 732 g_assert_not_reached(); 733 } else { 734 /* Absolute address. */ 735 tcg_out8(s, (r << 3) | 5); 736 tcg_out32(s, offset); 737 return; 738 } 739 } 740 741 /* Find the length of the immediate addend. Note that the encoding 742 that would be used for (%ebp) indicates absolute addressing. */ 743 if (rm < 0) { 744 mod = 0, len = 4, rm = 5; 745 } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) { 746 mod = 0, len = 0; 747 } else if (offset == (int8_t)offset) { 748 mod = 0x40, len = 1; 749 } else { 750 mod = 0x80, len = 4; 751 } 752 753 /* Use a single byte MODRM format if possible. Note that the encoding 754 that would be used for %esp is the escape to the two byte form. */ 755 if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) { 756 /* Single byte MODRM format. */ 757 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm)); 758 } else { 759 /* Two byte MODRM+SIB format. */ 760 761 /* Note that the encoding that would place %esp into the index 762 field indicates no index register. In 64-bit mode, the REX.X 763 bit counts, so %r12 can be used as the index. */ 764 if (index < 0) { 765 index = 4; 766 } else { 767 tcg_debug_assert(index != TCG_REG_ESP); 768 } 769 770 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4); 771 tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm)); 772 } 773 774 if (len == 1) { 775 tcg_out8(s, offset); 776 } else if (len == 4) { 777 tcg_out32(s, offset); 778 } 779} 780 781static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm, 782 int index, int shift, intptr_t offset) 783{ 784 tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index); 785 tcg_out_sib_offset(s, r, rm, index, shift, offset); 786} 787 788static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v, 789 int rm, int index, int shift, 790 intptr_t offset) 791{ 792 tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index); 793 tcg_out_sib_offset(s, r, rm, index, shift, offset); 794} 795 796/* A simplification of the above with no index or shift. */ 797static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r, 798 int rm, intptr_t offset) 799{ 800 tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset); 801} 802 803static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r, 804 int v, int rm, intptr_t offset) 805{ 806 tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset); 807} 808 809/* Output an opcode with an expected reference to the constant pool. */ 810static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r) 811{ 812 tcg_out_opc(s, opc, r, 0, 0); 813 /* Absolute for 32-bit, pc-relative for 64-bit. */ 814 tcg_out8(s, LOWREGMASK(r) << 3 | 5); 815 tcg_out32(s, 0); 816} 817 818/* Output an opcode with an expected reference to the constant pool. */ 819static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r) 820{ 821 tcg_out_vex_opc(s, opc, r, 0, 0, 0); 822 /* Absolute for 32-bit, pc-relative for 64-bit. */ 823 tcg_out8(s, LOWREGMASK(r) << 3 | 5); 824 tcg_out32(s, 0); 825} 826 827/* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */ 828static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src) 829{ 830 /* Propagate an opcode prefix, such as P_REXW. */ 831 int ext = subop & ~0x7; 832 subop &= 0x7; 833 834 tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src); 835} 836 837static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 838{ 839 int rexw = 0; 840 841 if (arg == ret) { 842 return true; 843 } 844 switch (type) { 845 case TCG_TYPE_I64: 846 rexw = P_REXW; 847 /* fallthru */ 848 case TCG_TYPE_I32: 849 if (ret < 16) { 850 if (arg < 16) { 851 tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg); 852 } else { 853 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret); 854 } 855 } else { 856 if (arg < 16) { 857 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg); 858 } else { 859 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg); 860 } 861 } 862 break; 863 864 case TCG_TYPE_V64: 865 tcg_debug_assert(ret >= 16 && arg >= 16); 866 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg); 867 break; 868 case TCG_TYPE_V128: 869 tcg_debug_assert(ret >= 16 && arg >= 16); 870 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg); 871 break; 872 case TCG_TYPE_V256: 873 tcg_debug_assert(ret >= 16 && arg >= 16); 874 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg); 875 break; 876 877 default: 878 g_assert_not_reached(); 879 } 880 return true; 881} 882 883static const int avx2_dup_insn[4] = { 884 OPC_VPBROADCASTB, OPC_VPBROADCASTW, 885 OPC_VPBROADCASTD, OPC_VPBROADCASTQ, 886}; 887 888static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 889 TCGReg r, TCGReg a) 890{ 891 if (have_avx2) { 892 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); 893 tcg_out_vex_modrm(s, avx2_dup_insn[vece] + vex_l, r, 0, a); 894 } else { 895 switch (vece) { 896 case MO_8: 897 /* ??? With zero in a register, use PSHUFB. */ 898 tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a); 899 a = r; 900 /* FALLTHRU */ 901 case MO_16: 902 tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a); 903 a = r; 904 /* FALLTHRU */ 905 case MO_32: 906 tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a); 907 /* imm8 operand: all output lanes selected from input lane 0. */ 908 tcg_out8(s, 0); 909 break; 910 case MO_64: 911 tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a); 912 break; 913 default: 914 g_assert_not_reached(); 915 } 916 } 917 return true; 918} 919 920static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 921 TCGReg r, TCGReg base, intptr_t offset) 922{ 923 if (have_avx2) { 924 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); 925 tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l, 926 r, 0, base, offset); 927 } else { 928 switch (vece) { 929 case MO_64: 930 tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset); 931 break; 932 case MO_32: 933 tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset); 934 break; 935 case MO_16: 936 tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset); 937 tcg_out8(s, 0); /* imm8 */ 938 tcg_out_dup_vec(s, type, vece, r, r); 939 break; 940 case MO_8: 941 tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset); 942 tcg_out8(s, 0); /* imm8 */ 943 tcg_out_dup_vec(s, type, vece, r, r); 944 break; 945 default: 946 g_assert_not_reached(); 947 } 948 } 949 return true; 950} 951 952static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 953 TCGReg ret, int64_t arg) 954{ 955 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0); 956 957 if (arg == 0) { 958 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret); 959 return; 960 } 961 if (arg == -1) { 962 tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret); 963 return; 964 } 965 966 if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) { 967 if (have_avx2) { 968 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret); 969 } else { 970 tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret); 971 } 972 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0); 973 } else { 974 if (type == TCG_TYPE_V64) { 975 tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret); 976 } else if (have_avx2) { 977 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret); 978 } else { 979 tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret); 980 } 981 if (TCG_TARGET_REG_BITS == 64) { 982 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4); 983 } else { 984 new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32); 985 } 986 } 987} 988 989static void tcg_out_movi_vec(TCGContext *s, TCGType type, 990 TCGReg ret, tcg_target_long arg) 991{ 992 if (arg == 0) { 993 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret); 994 return; 995 } 996 if (arg == -1) { 997 tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret); 998 return; 999 } 1000 1001 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW); 1002 tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret); 1003 if (TCG_TARGET_REG_BITS == 64) { 1004 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4); 1005 } else { 1006 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0); 1007 } 1008} 1009 1010static void tcg_out_movi_int(TCGContext *s, TCGType type, 1011 TCGReg ret, tcg_target_long arg) 1012{ 1013 tcg_target_long diff; 1014 1015 if (arg == 0) { 1016 tgen_arithr(s, ARITH_XOR, ret, ret); 1017 return; 1018 } 1019 if (arg == (uint32_t)arg || type == TCG_TYPE_I32) { 1020 tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0); 1021 tcg_out32(s, arg); 1022 return; 1023 } 1024 if (arg == (int32_t)arg) { 1025 tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret); 1026 tcg_out32(s, arg); 1027 return; 1028 } 1029 1030 /* Try a 7 byte pc-relative lea before the 10 byte movq. */ 1031 diff = tcg_pcrel_diff(s, (const void *)arg) - 7; 1032 if (diff == (int32_t)diff) { 1033 tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0); 1034 tcg_out8(s, (LOWREGMASK(ret) << 3) | 5); 1035 tcg_out32(s, diff); 1036 return; 1037 } 1038 1039 tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0); 1040 tcg_out64(s, arg); 1041} 1042 1043static void tcg_out_movi(TCGContext *s, TCGType type, 1044 TCGReg ret, tcg_target_long arg) 1045{ 1046 switch (type) { 1047 case TCG_TYPE_I32: 1048#if TCG_TARGET_REG_BITS == 64 1049 case TCG_TYPE_I64: 1050#endif 1051 if (ret < 16) { 1052 tcg_out_movi_int(s, type, ret, arg); 1053 } else { 1054 tcg_out_movi_vec(s, type, ret, arg); 1055 } 1056 break; 1057 default: 1058 g_assert_not_reached(); 1059 } 1060} 1061 1062static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) 1063{ 1064 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1065 tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2); 1066 return true; 1067} 1068 1069static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, 1070 tcg_target_long imm) 1071{ 1072 /* This function is only used for passing structs by reference. */ 1073 tcg_debug_assert(imm == (int32_t)imm); 1074 tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm); 1075} 1076 1077static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val) 1078{ 1079 if (val == (int8_t)val) { 1080 tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0); 1081 tcg_out8(s, val); 1082 } else if (val == (int32_t)val) { 1083 tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0); 1084 tcg_out32(s, val); 1085 } else { 1086 g_assert_not_reached(); 1087 } 1088} 1089 1090static inline void tcg_out_mb(TCGContext *s, TCGArg a0) 1091{ 1092 /* Given the strength of x86 memory ordering, we only need care for 1093 store-load ordering. Experimentally, "lock orl $0,0(%esp)" is 1094 faster than "mfence", so don't bother with the sse insn. */ 1095 if (a0 & TCG_MO_ST_LD) { 1096 tcg_out8(s, 0xf0); 1097 tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0); 1098 tcg_out8(s, 0); 1099 } 1100} 1101 1102static inline void tcg_out_push(TCGContext *s, int reg) 1103{ 1104 tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0); 1105} 1106 1107static inline void tcg_out_pop(TCGContext *s, int reg) 1108{ 1109 tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0); 1110} 1111 1112static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, 1113 TCGReg arg1, intptr_t arg2) 1114{ 1115 switch (type) { 1116 case TCG_TYPE_I32: 1117 if (ret < 16) { 1118 tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2); 1119 } else { 1120 tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2); 1121 } 1122 break; 1123 case TCG_TYPE_I64: 1124 if (ret < 16) { 1125 tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2); 1126 break; 1127 } 1128 /* FALLTHRU */ 1129 case TCG_TYPE_V64: 1130 /* There is no instruction that can validate 8-byte alignment. */ 1131 tcg_debug_assert(ret >= 16); 1132 tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2); 1133 break; 1134 case TCG_TYPE_V128: 1135 /* 1136 * The gvec infrastructure is asserts that v128 vector loads 1137 * and stores use a 16-byte aligned offset. Validate that the 1138 * final pointer is aligned by using an insn that will SIGSEGV. 1139 */ 1140 tcg_debug_assert(ret >= 16); 1141 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2); 1142 break; 1143 case TCG_TYPE_V256: 1144 /* 1145 * The gvec infrastructure only requires 16-byte alignment, 1146 * so here we must use an unaligned load. 1147 */ 1148 tcg_debug_assert(ret >= 16); 1149 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL, 1150 ret, 0, arg1, arg2); 1151 break; 1152 default: 1153 g_assert_not_reached(); 1154 } 1155} 1156 1157static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, 1158 TCGReg arg1, intptr_t arg2) 1159{ 1160 switch (type) { 1161 case TCG_TYPE_I32: 1162 if (arg < 16) { 1163 tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2); 1164 } else { 1165 tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2); 1166 } 1167 break; 1168 case TCG_TYPE_I64: 1169 if (arg < 16) { 1170 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2); 1171 break; 1172 } 1173 /* FALLTHRU */ 1174 case TCG_TYPE_V64: 1175 /* There is no instruction that can validate 8-byte alignment. */ 1176 tcg_debug_assert(arg >= 16); 1177 tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2); 1178 break; 1179 case TCG_TYPE_V128: 1180 /* 1181 * The gvec infrastructure is asserts that v128 vector loads 1182 * and stores use a 16-byte aligned offset. Validate that the 1183 * final pointer is aligned by using an insn that will SIGSEGV. 1184 * 1185 * This specific instance is also used by TCG_CALL_RET_BY_VEC, 1186 * for _WIN64, which must have SSE2 but may not have AVX. 1187 */ 1188 tcg_debug_assert(arg >= 16); 1189 if (have_avx1) { 1190 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2); 1191 } else { 1192 tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2); 1193 } 1194 break; 1195 case TCG_TYPE_V256: 1196 /* 1197 * The gvec infrastructure only requires 16-byte alignment, 1198 * so here we must use an unaligned store. 1199 */ 1200 tcg_debug_assert(arg >= 16); 1201 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL, 1202 arg, 0, arg1, arg2); 1203 break; 1204 default: 1205 g_assert_not_reached(); 1206 } 1207} 1208 1209static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 1210 TCGReg base, intptr_t ofs) 1211{ 1212 int rexw = 0; 1213 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) { 1214 if (val != (int32_t)val) { 1215 return false; 1216 } 1217 rexw = P_REXW; 1218 } else if (type != TCG_TYPE_I32) { 1219 return false; 1220 } 1221 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs); 1222 tcg_out32(s, val); 1223 return true; 1224} 1225 1226static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count) 1227{ 1228 /* Propagate an opcode prefix, such as P_DATA16. */ 1229 int ext = subopc & ~0x7; 1230 subopc &= 0x7; 1231 1232 if (count == 1) { 1233 tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg); 1234 } else { 1235 tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg); 1236 tcg_out8(s, count); 1237 } 1238} 1239 1240static inline void tcg_out_bswap32(TCGContext *s, int reg) 1241{ 1242 tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0); 1243} 1244 1245static inline void tcg_out_rolw_8(TCGContext *s, int reg) 1246{ 1247 tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8); 1248} 1249 1250static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src) 1251{ 1252 /* movzbl */ 1253 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64); 1254 tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src); 1255} 1256 1257static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) 1258{ 1259 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1260 /* movsbl */ 1261 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64); 1262 tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src); 1263} 1264 1265static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src) 1266{ 1267 /* movzwl */ 1268 tcg_out_modrm(s, OPC_MOVZWL, dest, src); 1269} 1270 1271static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src) 1272{ 1273 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1274 /* movsw[lq] */ 1275 tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src); 1276} 1277 1278static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src) 1279{ 1280 /* 32-bit mov zero extends. */ 1281 tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src); 1282} 1283 1284static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src) 1285{ 1286 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 1287 tcg_out_modrm(s, OPC_MOVSLQ, dest, src); 1288} 1289 1290static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src) 1291{ 1292 tcg_out_ext32s(s, dest, src); 1293} 1294 1295static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src) 1296{ 1297 if (dest != src) { 1298 tcg_out_ext32u(s, dest, src); 1299 } 1300} 1301 1302static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src) 1303{ 1304 tcg_out_ext32u(s, dest, src); 1305} 1306 1307static inline void tcg_out_bswap64(TCGContext *s, int reg) 1308{ 1309 tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0); 1310} 1311 1312static void tgen_arithi(TCGContext *s, int c, int r0, 1313 tcg_target_long val, int cf) 1314{ 1315 int rexw = 0; 1316 1317 if (TCG_TARGET_REG_BITS == 64) { 1318 rexw = c & -8; 1319 c &= 7; 1320 } 1321 1322 /* ??? While INC is 2 bytes shorter than ADDL $1, they also induce 1323 partial flags update stalls on Pentium4 and are not recommended 1324 by current Intel optimization manuals. */ 1325 if (!cf && (c == ARITH_ADD || c == ARITH_SUB) && (val == 1 || val == -1)) { 1326 int is_inc = (c == ARITH_ADD) ^ (val < 0); 1327 if (TCG_TARGET_REG_BITS == 64) { 1328 /* The single-byte increment encodings are re-tasked as the 1329 REX prefixes. Use the MODRM encoding. */ 1330 tcg_out_modrm(s, OPC_GRP5 + rexw, 1331 (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0); 1332 } else { 1333 tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0); 1334 } 1335 return; 1336 } 1337 1338 if (c == ARITH_AND) { 1339 if (TCG_TARGET_REG_BITS == 64) { 1340 if (val == 0xffffffffu) { 1341 tcg_out_ext32u(s, r0, r0); 1342 return; 1343 } 1344 if (val == (uint32_t)val) { 1345 /* AND with no high bits set can use a 32-bit operation. */ 1346 rexw = 0; 1347 } 1348 } 1349 if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) { 1350 tcg_out_ext8u(s, r0, r0); 1351 return; 1352 } 1353 if (val == 0xffffu) { 1354 tcg_out_ext16u(s, r0, r0); 1355 return; 1356 } 1357 } 1358 1359 if (val == (int8_t)val) { 1360 tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0); 1361 tcg_out8(s, val); 1362 return; 1363 } 1364 if (rexw == 0 || val == (int32_t)val) { 1365 tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0); 1366 tcg_out32(s, val); 1367 return; 1368 } 1369 1370 g_assert_not_reached(); 1371} 1372 1373static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val) 1374{ 1375 if (val != 0) { 1376 tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0); 1377 } 1378} 1379 1380/* Set SMALL to force a short forward branch. */ 1381static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small) 1382{ 1383 int32_t val, val1; 1384 1385 if (l->has_value) { 1386 val = tcg_pcrel_diff(s, l->u.value_ptr); 1387 val1 = val - 2; 1388 if ((int8_t)val1 == val1) { 1389 if (opc == -1) { 1390 tcg_out8(s, OPC_JMP_short); 1391 } else { 1392 tcg_out8(s, OPC_JCC_short + opc); 1393 } 1394 tcg_out8(s, val1); 1395 } else { 1396 tcg_debug_assert(!small); 1397 if (opc == -1) { 1398 tcg_out8(s, OPC_JMP_long); 1399 tcg_out32(s, val - 5); 1400 } else { 1401 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0); 1402 tcg_out32(s, val - 6); 1403 } 1404 } 1405 } else if (small) { 1406 if (opc == -1) { 1407 tcg_out8(s, OPC_JMP_short); 1408 } else { 1409 tcg_out8(s, OPC_JCC_short + opc); 1410 } 1411 tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1); 1412 s->code_ptr += 1; 1413 } else { 1414 if (opc == -1) { 1415 tcg_out8(s, OPC_JMP_long); 1416 } else { 1417 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0); 1418 } 1419 tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4); 1420 s->code_ptr += 4; 1421 } 1422} 1423 1424static void tcg_out_cmp(TCGContext *s, TCGArg arg1, TCGArg arg2, 1425 int const_arg2, int rexw) 1426{ 1427 if (const_arg2) { 1428 if (arg2 == 0) { 1429 /* test r, r */ 1430 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1); 1431 } else { 1432 tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0); 1433 } 1434 } else { 1435 tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2); 1436 } 1437} 1438 1439static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond, 1440 TCGArg arg1, TCGArg arg2, int const_arg2, 1441 TCGLabel *label, bool small) 1442{ 1443 tcg_out_cmp(s, arg1, arg2, const_arg2, rexw); 1444 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small); 1445} 1446 1447#if TCG_TARGET_REG_BITS == 32 1448static void tcg_out_brcond2(TCGContext *s, const TCGArg *args, 1449 const int *const_args, bool small) 1450{ 1451 TCGLabel *label_next = gen_new_label(); 1452 TCGLabel *label_this = arg_label(args[5]); 1453 1454 switch(args[4]) { 1455 case TCG_COND_EQ: 1456 tcg_out_brcond(s, 0, TCG_COND_NE, args[0], args[2], const_args[2], 1457 label_next, 1); 1458 tcg_out_brcond(s, 0, TCG_COND_EQ, args[1], args[3], const_args[3], 1459 label_this, small); 1460 break; 1461 case TCG_COND_NE: 1462 tcg_out_brcond(s, 0, TCG_COND_NE, args[0], args[2], const_args[2], 1463 label_this, small); 1464 tcg_out_brcond(s, 0, TCG_COND_NE, args[1], args[3], const_args[3], 1465 label_this, small); 1466 break; 1467 case TCG_COND_LT: 1468 tcg_out_brcond(s, 0, TCG_COND_LT, args[1], args[3], const_args[3], 1469 label_this, small); 1470 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1471 tcg_out_brcond(s, 0, TCG_COND_LTU, args[0], args[2], const_args[2], 1472 label_this, small); 1473 break; 1474 case TCG_COND_LE: 1475 tcg_out_brcond(s, 0, TCG_COND_LT, args[1], args[3], const_args[3], 1476 label_this, small); 1477 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1478 tcg_out_brcond(s, 0, TCG_COND_LEU, args[0], args[2], const_args[2], 1479 label_this, small); 1480 break; 1481 case TCG_COND_GT: 1482 tcg_out_brcond(s, 0, TCG_COND_GT, args[1], args[3], const_args[3], 1483 label_this, small); 1484 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1485 tcg_out_brcond(s, 0, TCG_COND_GTU, args[0], args[2], const_args[2], 1486 label_this, small); 1487 break; 1488 case TCG_COND_GE: 1489 tcg_out_brcond(s, 0, TCG_COND_GT, args[1], args[3], const_args[3], 1490 label_this, small); 1491 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1492 tcg_out_brcond(s, 0, TCG_COND_GEU, args[0], args[2], const_args[2], 1493 label_this, small); 1494 break; 1495 case TCG_COND_LTU: 1496 tcg_out_brcond(s, 0, TCG_COND_LTU, args[1], args[3], const_args[3], 1497 label_this, small); 1498 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1499 tcg_out_brcond(s, 0, TCG_COND_LTU, args[0], args[2], const_args[2], 1500 label_this, small); 1501 break; 1502 case TCG_COND_LEU: 1503 tcg_out_brcond(s, 0, TCG_COND_LTU, args[1], args[3], const_args[3], 1504 label_this, small); 1505 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1506 tcg_out_brcond(s, 0, TCG_COND_LEU, args[0], args[2], const_args[2], 1507 label_this, small); 1508 break; 1509 case TCG_COND_GTU: 1510 tcg_out_brcond(s, 0, TCG_COND_GTU, args[1], args[3], const_args[3], 1511 label_this, small); 1512 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1513 tcg_out_brcond(s, 0, TCG_COND_GTU, args[0], args[2], const_args[2], 1514 label_this, small); 1515 break; 1516 case TCG_COND_GEU: 1517 tcg_out_brcond(s, 0, TCG_COND_GTU, args[1], args[3], const_args[3], 1518 label_this, small); 1519 tcg_out_jxx(s, JCC_JNE, label_next, 1); 1520 tcg_out_brcond(s, 0, TCG_COND_GEU, args[0], args[2], const_args[2], 1521 label_this, small); 1522 break; 1523 default: 1524 g_assert_not_reached(); 1525 } 1526 tcg_out_label(s, label_next); 1527} 1528#endif 1529 1530static void tcg_out_setcond(TCGContext *s, int rexw, TCGCond cond, 1531 TCGArg dest, TCGArg arg1, TCGArg arg2, 1532 int const_arg2, bool neg) 1533{ 1534 bool inv = false; 1535 bool cleared; 1536 1537 switch (cond) { 1538 case TCG_COND_NE: 1539 inv = true; 1540 /* fall through */ 1541 case TCG_COND_EQ: 1542 /* If arg2 is 0, convert to LTU/GEU vs 1. */ 1543 if (const_arg2 && arg2 == 0) { 1544 arg2 = 1; 1545 goto do_ltu; 1546 } 1547 break; 1548 1549 case TCG_COND_LEU: 1550 inv = true; 1551 /* fall through */ 1552 case TCG_COND_GTU: 1553 /* If arg2 is a register, swap for LTU/GEU. */ 1554 if (!const_arg2) { 1555 TCGReg t = arg1; 1556 arg1 = arg2; 1557 arg2 = t; 1558 goto do_ltu; 1559 } 1560 break; 1561 1562 case TCG_COND_GEU: 1563 inv = true; 1564 /* fall through */ 1565 case TCG_COND_LTU: 1566 do_ltu: 1567 /* 1568 * Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU. 1569 * We can then use NEG or INC to produce the desired result. 1570 * This is always smaller than the SETCC expansion. 1571 */ 1572 tcg_out_cmp(s, arg1, arg2, const_arg2, rexw); 1573 1574 /* X - X - C = -C = (C ? -1 : 0) */ 1575 tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest); 1576 if (inv && neg) { 1577 /* ~(C ? -1 : 0) = (C ? 0 : -1) */ 1578 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest); 1579 } else if (inv) { 1580 /* (C ? -1 : 0) + 1 = (C ? 0 : 1) */ 1581 tgen_arithi(s, ARITH_ADD, dest, 1, 0); 1582 } else if (!neg) { 1583 /* -(C ? -1 : 0) = (C ? 1 : 0) */ 1584 tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest); 1585 } 1586 return; 1587 1588 case TCG_COND_GE: 1589 inv = true; 1590 /* fall through */ 1591 case TCG_COND_LT: 1592 /* If arg2 is 0, extract the sign bit. */ 1593 if (const_arg2 && arg2 == 0) { 1594 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, dest, arg1); 1595 if (inv) { 1596 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest); 1597 } 1598 tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw, 1599 dest, rexw ? 63 : 31); 1600 return; 1601 } 1602 break; 1603 1604 default: 1605 break; 1606 } 1607 1608 /* 1609 * If dest does not overlap the inputs, clearing it first is preferred. 1610 * The XOR breaks any false dependency for the low-byte write to dest, 1611 * and is also one byte smaller than MOVZBL. 1612 */ 1613 cleared = false; 1614 if (dest != arg1 && (const_arg2 || dest != arg2)) { 1615 tgen_arithr(s, ARITH_XOR, dest, dest); 1616 cleared = true; 1617 } 1618 1619 tcg_out_cmp(s, arg1, arg2, const_arg2, rexw); 1620 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest); 1621 1622 if (!cleared) { 1623 tcg_out_ext8u(s, dest, dest); 1624 } 1625 if (neg) { 1626 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest); 1627 } 1628} 1629 1630#if TCG_TARGET_REG_BITS == 32 1631static void tcg_out_setcond2(TCGContext *s, const TCGArg *args, 1632 const int *const_args) 1633{ 1634 TCGArg new_args[6]; 1635 TCGLabel *label_true, *label_over; 1636 1637 memcpy(new_args, args+1, 5*sizeof(TCGArg)); 1638 1639 if (args[0] == args[1] || args[0] == args[2] 1640 || (!const_args[3] && args[0] == args[3]) 1641 || (!const_args[4] && args[0] == args[4])) { 1642 /* When the destination overlaps with one of the argument 1643 registers, don't do anything tricky. */ 1644 label_true = gen_new_label(); 1645 label_over = gen_new_label(); 1646 1647 new_args[5] = label_arg(label_true); 1648 tcg_out_brcond2(s, new_args, const_args+1, 1); 1649 1650 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0); 1651 tcg_out_jxx(s, JCC_JMP, label_over, 1); 1652 tcg_out_label(s, label_true); 1653 1654 tcg_out_movi(s, TCG_TYPE_I32, args[0], 1); 1655 tcg_out_label(s, label_over); 1656 } else { 1657 /* When the destination does not overlap one of the arguments, 1658 clear the destination first, jump if cond false, and emit an 1659 increment in the true case. This results in smaller code. */ 1660 1661 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0); 1662 1663 label_over = gen_new_label(); 1664 new_args[4] = tcg_invert_cond(new_args[4]); 1665 new_args[5] = label_arg(label_over); 1666 tcg_out_brcond2(s, new_args, const_args+1, 1); 1667 1668 tgen_arithi(s, ARITH_ADD, args[0], 1, 0); 1669 tcg_out_label(s, label_over); 1670 } 1671} 1672#endif 1673 1674static void tcg_out_cmov(TCGContext *s, TCGCond cond, int rexw, 1675 TCGReg dest, TCGReg v1) 1676{ 1677 if (have_cmov) { 1678 tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond] | rexw, dest, v1); 1679 } else { 1680 TCGLabel *over = gen_new_label(); 1681 tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1); 1682 tcg_out_mov(s, TCG_TYPE_I32, dest, v1); 1683 tcg_out_label(s, over); 1684 } 1685} 1686 1687static void tcg_out_movcond(TCGContext *s, int rexw, TCGCond cond, 1688 TCGReg dest, TCGReg c1, TCGArg c2, int const_c2, 1689 TCGReg v1) 1690{ 1691 tcg_out_cmp(s, c1, c2, const_c2, rexw); 1692 tcg_out_cmov(s, cond, rexw, dest, v1); 1693} 1694 1695static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1, 1696 TCGArg arg2, bool const_a2) 1697{ 1698 if (have_bmi1) { 1699 tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1); 1700 if (const_a2) { 1701 tcg_debug_assert(arg2 == (rexw ? 64 : 32)); 1702 } else { 1703 tcg_debug_assert(dest != arg2); 1704 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2); 1705 } 1706 } else { 1707 tcg_debug_assert(dest != arg2); 1708 tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1); 1709 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2); 1710 } 1711} 1712 1713static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1, 1714 TCGArg arg2, bool const_a2) 1715{ 1716 if (have_lzcnt) { 1717 tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1); 1718 if (const_a2) { 1719 tcg_debug_assert(arg2 == (rexw ? 64 : 32)); 1720 } else { 1721 tcg_debug_assert(dest != arg2); 1722 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2); 1723 } 1724 } else { 1725 tcg_debug_assert(!const_a2); 1726 tcg_debug_assert(dest != arg1); 1727 tcg_debug_assert(dest != arg2); 1728 1729 /* Recall that the output of BSR is the index not the count. */ 1730 tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1); 1731 tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0); 1732 1733 /* Since we have destroyed the flags from BSR, we have to re-test. */ 1734 tcg_out_cmp(s, arg1, 0, 1, rexw); 1735 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2); 1736 } 1737} 1738 1739static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest) 1740{ 1741 intptr_t disp = tcg_pcrel_diff(s, dest) - 5; 1742 1743 if (disp == (int32_t)disp) { 1744 tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0); 1745 tcg_out32(s, disp); 1746 } else { 1747 /* rip-relative addressing into the constant pool. 1748 This is 6 + 8 = 14 bytes, as compared to using an 1749 immediate load 10 + 6 = 16 bytes, plus we may 1750 be able to re-use the pool constant for more calls. */ 1751 tcg_out_opc(s, OPC_GRP5, 0, 0, 0); 1752 tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5); 1753 new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4); 1754 tcg_out32(s, 0); 1755 } 1756} 1757 1758static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest, 1759 const TCGHelperInfo *info) 1760{ 1761 tcg_out_branch(s, 1, dest); 1762 1763#ifndef _WIN32 1764 if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) { 1765 /* 1766 * The sysv i386 abi for struct return places a reference as the 1767 * first argument of the stack, and pops that argument with the 1768 * return statement. Since we want to retain the aligned stack 1769 * pointer for the callee, we do not want to actually push that 1770 * argument before the call but rely on the normal store to the 1771 * stack slot. But we do need to compensate for the pop in order 1772 * to reset our correct stack pointer value. 1773 * Pushing a garbage value back onto the stack is quickest. 1774 */ 1775 tcg_out_push(s, TCG_REG_EAX); 1776 } 1777#endif 1778} 1779 1780static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest) 1781{ 1782 tcg_out_branch(s, 0, dest); 1783} 1784 1785static void tcg_out_nopn(TCGContext *s, int n) 1786{ 1787 int i; 1788 /* Emit 1 or 2 operand size prefixes for the standard one byte nop, 1789 * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the 1790 * duplicate prefix, and all of the interesting recent cores can 1791 * decode and discard the duplicates in a single cycle. 1792 */ 1793 tcg_debug_assert(n >= 1); 1794 for (i = 1; i < n; ++i) { 1795 tcg_out8(s, 0x66); 1796 } 1797 tcg_out8(s, 0x90); 1798} 1799 1800/* Test register R vs immediate bits I, setting Z flag for EQ/NE. */ 1801static void __attribute__((unused)) 1802tcg_out_testi(TCGContext *s, TCGReg r, uint32_t i) 1803{ 1804 /* 1805 * This is used for testing alignment, so we can usually use testb. 1806 * For i686, we have to use testl for %esi/%edi. 1807 */ 1808 if (i <= 0xff && (TCG_TARGET_REG_BITS == 64 || r < 4)) { 1809 tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, r); 1810 tcg_out8(s, i); 1811 } else { 1812 tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_TESTi, r); 1813 tcg_out32(s, i); 1814 } 1815} 1816 1817typedef struct { 1818 TCGReg base; 1819 int index; 1820 int ofs; 1821 int seg; 1822 TCGAtomAlign aa; 1823} HostAddress; 1824 1825bool tcg_target_has_memory_bswap(MemOp memop) 1826{ 1827 TCGAtomAlign aa; 1828 1829 if (!have_movbe) { 1830 return false; 1831 } 1832 if ((memop & MO_SIZE) < MO_128) { 1833 return true; 1834 } 1835 1836 /* 1837 * Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA, 1838 * but do allow a pair of 64-bit operations, i.e. MOVBEQ. 1839 */ 1840 aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true); 1841 return aa.atom < MO_128; 1842} 1843 1844/* 1845 * Because i686 has no register parameters and because x86_64 has xchg 1846 * to handle addr/data register overlap, we have placed all input arguments 1847 * before we need might need a scratch reg. 1848 * 1849 * Even then, a scratch is only needed for l->raddr. Rather than expose 1850 * a general-purpose scratch when we don't actually know it's available, 1851 * use the ra_gen hook to load into RAX if needed. 1852 */ 1853#if TCG_TARGET_REG_BITS == 64 1854static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg) 1855{ 1856 if (arg < 0) { 1857 arg = TCG_REG_RAX; 1858 } 1859 tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr); 1860 return arg; 1861} 1862static const TCGLdstHelperParam ldst_helper_param = { 1863 .ra_gen = ldst_ra_gen 1864}; 1865#else 1866static const TCGLdstHelperParam ldst_helper_param = { }; 1867#endif 1868 1869static void tcg_out_vec_to_pair(TCGContext *s, TCGType type, 1870 TCGReg l, TCGReg h, TCGReg v) 1871{ 1872 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1873 1874 /* vpmov{d,q} %v, %l */ 1875 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l); 1876 /* vpextr{d,q} $1, %v, %h */ 1877 tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h); 1878 tcg_out8(s, 1); 1879} 1880 1881static void tcg_out_pair_to_vec(TCGContext *s, TCGType type, 1882 TCGReg v, TCGReg l, TCGReg h) 1883{ 1884 int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW; 1885 1886 /* vmov{d,q} %l, %v */ 1887 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l); 1888 /* vpinsr{d,q} $1, %h, %v, %v */ 1889 tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h); 1890 tcg_out8(s, 1); 1891} 1892 1893/* 1894 * Generate code for the slow path for a load at the end of block 1895 */ 1896static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 1897{ 1898 MemOp opc = get_memop(l->oi); 1899 tcg_insn_unit **label_ptr = &l->label_ptr[0]; 1900 1901 /* resolve label address */ 1902 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4); 1903 if (label_ptr[1]) { 1904 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4); 1905 } 1906 1907 tcg_out_ld_helper_args(s, l, &ldst_helper_param); 1908 tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]); 1909 tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param); 1910 1911 tcg_out_jmp(s, l->raddr); 1912 return true; 1913} 1914 1915/* 1916 * Generate code for the slow path for a store at the end of block 1917 */ 1918static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 1919{ 1920 MemOp opc = get_memop(l->oi); 1921 tcg_insn_unit **label_ptr = &l->label_ptr[0]; 1922 1923 /* resolve label address */ 1924 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4); 1925 if (label_ptr[1]) { 1926 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4); 1927 } 1928 1929 tcg_out_st_helper_args(s, l, &ldst_helper_param); 1930 tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]); 1931 1932 tcg_out_jmp(s, l->raddr); 1933 return true; 1934} 1935 1936#ifndef CONFIG_SOFTMMU 1937static HostAddress x86_guest_base = { 1938 .index = -1 1939}; 1940 1941#if defined(__x86_64__) && defined(__linux__) 1942# include <asm/prctl.h> 1943# include <sys/prctl.h> 1944int arch_prctl(int code, unsigned long addr); 1945static inline int setup_guest_base_seg(void) 1946{ 1947 if (arch_prctl(ARCH_SET_GS, guest_base) == 0) { 1948 return P_GS; 1949 } 1950 return 0; 1951} 1952#elif defined(__x86_64__) && \ 1953 (defined (__FreeBSD__) || defined (__FreeBSD_kernel__)) 1954# include <machine/sysarch.h> 1955static inline int setup_guest_base_seg(void) 1956{ 1957 if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) { 1958 return P_GS; 1959 } 1960 return 0; 1961} 1962#else 1963static inline int setup_guest_base_seg(void) 1964{ 1965 return 0; 1966} 1967#endif /* setup_guest_base_seg */ 1968#endif /* !SOFTMMU */ 1969 1970#define MIN_TLB_MASK_TABLE_OFS INT_MIN 1971 1972/* 1973 * For softmmu, perform the TLB load and compare. 1974 * For useronly, perform any required alignment tests. 1975 * In both cases, return a TCGLabelQemuLdst structure if the slow path 1976 * is required and fill in @h with the host address for the fast path. 1977 */ 1978static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h, 1979 TCGReg addrlo, TCGReg addrhi, 1980 MemOpIdx oi, bool is_ld) 1981{ 1982 TCGLabelQemuLdst *ldst = NULL; 1983 MemOp opc = get_memop(oi); 1984 MemOp s_bits = opc & MO_SIZE; 1985 unsigned a_mask; 1986 1987#ifdef CONFIG_SOFTMMU 1988 h->index = TCG_REG_L0; 1989 h->ofs = 0; 1990 h->seg = 0; 1991#else 1992 *h = x86_guest_base; 1993#endif 1994 h->base = addrlo; 1995 h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128); 1996 a_mask = (1 << h->aa.align) - 1; 1997 1998#ifdef CONFIG_SOFTMMU 1999 int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read) 2000 : offsetof(CPUTLBEntry, addr_write); 2001 TCGType ttype = TCG_TYPE_I32; 2002 TCGType tlbtype = TCG_TYPE_I32; 2003 int trexw = 0, hrexw = 0, tlbrexw = 0; 2004 unsigned mem_index = get_mmuidx(oi); 2005 unsigned s_mask = (1 << s_bits) - 1; 2006 int fast_ofs = tlb_mask_table_ofs(s, mem_index); 2007 int tlb_mask; 2008 2009 ldst = new_ldst_label(s); 2010 ldst->is_ld = is_ld; 2011 ldst->oi = oi; 2012 ldst->addrlo_reg = addrlo; 2013 ldst->addrhi_reg = addrhi; 2014 2015 if (TCG_TARGET_REG_BITS == 64) { 2016 ttype = s->addr_type; 2017 trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW); 2018 if (TCG_TYPE_PTR == TCG_TYPE_I64) { 2019 hrexw = P_REXW; 2020 if (s->page_bits + s->tlb_dyn_max_bits > 32) { 2021 tlbtype = TCG_TYPE_I64; 2022 tlbrexw = P_REXW; 2023 } 2024 } 2025 } 2026 2027 tcg_out_mov(s, tlbtype, TCG_REG_L0, addrlo); 2028 tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0, 2029 s->page_bits - CPU_TLB_ENTRY_BITS); 2030 2031 tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0, 2032 fast_ofs + offsetof(CPUTLBDescFast, mask)); 2033 2034 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0, 2035 fast_ofs + offsetof(CPUTLBDescFast, table)); 2036 2037 /* 2038 * If the required alignment is at least as large as the access, simply 2039 * copy the address and mask. For lesser alignments, check that we don't 2040 * cross pages for the complete access. 2041 */ 2042 if (a_mask >= s_mask) { 2043 tcg_out_mov(s, ttype, TCG_REG_L1, addrlo); 2044 } else { 2045 tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1, 2046 addrlo, s_mask - a_mask); 2047 } 2048 tlb_mask = s->page_mask | a_mask; 2049 tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0); 2050 2051 /* cmp 0(TCG_REG_L0), TCG_REG_L1 */ 2052 tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, 2053 TCG_REG_L1, TCG_REG_L0, cmp_ofs); 2054 2055 /* jne slow_path */ 2056 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); 2057 ldst->label_ptr[0] = s->code_ptr; 2058 s->code_ptr += 4; 2059 2060 if (TCG_TARGET_REG_BITS == 32 && s->addr_type == TCG_TYPE_I64) { 2061 /* cmp 4(TCG_REG_L0), addrhi */ 2062 tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, TCG_REG_L0, cmp_ofs + 4); 2063 2064 /* jne slow_path */ 2065 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); 2066 ldst->label_ptr[1] = s->code_ptr; 2067 s->code_ptr += 4; 2068 } 2069 2070 /* TLB Hit. */ 2071 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0, 2072 offsetof(CPUTLBEntry, addend)); 2073#else 2074 if (a_mask) { 2075 ldst = new_ldst_label(s); 2076 2077 ldst->is_ld = is_ld; 2078 ldst->oi = oi; 2079 ldst->addrlo_reg = addrlo; 2080 ldst->addrhi_reg = addrhi; 2081 2082 tcg_out_testi(s, addrlo, a_mask); 2083 /* jne slow_path */ 2084 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0); 2085 ldst->label_ptr[0] = s->code_ptr; 2086 s->code_ptr += 4; 2087 } 2088#endif 2089 2090 return ldst; 2091} 2092 2093static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, 2094 HostAddress h, TCGType type, MemOp memop) 2095{ 2096 bool use_movbe = false; 2097 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW); 2098 int movop = OPC_MOVL_GvEv; 2099 2100 /* Do big-endian loads with movbe. */ 2101 if (memop & MO_BSWAP) { 2102 tcg_debug_assert(have_movbe); 2103 use_movbe = true; 2104 movop = OPC_MOVBE_GyMy; 2105 } 2106 2107 switch (memop & MO_SSIZE) { 2108 case MO_UB: 2109 tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo, 2110 h.base, h.index, 0, h.ofs); 2111 break; 2112 case MO_SB: 2113 tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo, 2114 h.base, h.index, 0, h.ofs); 2115 break; 2116 case MO_UW: 2117 if (use_movbe) { 2118 /* There is no extending movbe; only low 16-bits are modified. */ 2119 if (datalo != h.base && datalo != h.index) { 2120 /* XOR breaks dependency chains. */ 2121 tgen_arithr(s, ARITH_XOR, datalo, datalo); 2122 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2123 datalo, h.base, h.index, 0, h.ofs); 2124 } else { 2125 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2126 datalo, h.base, h.index, 0, h.ofs); 2127 tcg_out_ext16u(s, datalo, datalo); 2128 } 2129 } else { 2130 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo, 2131 h.base, h.index, 0, h.ofs); 2132 } 2133 break; 2134 case MO_SW: 2135 if (use_movbe) { 2136 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg, 2137 datalo, h.base, h.index, 0, h.ofs); 2138 tcg_out_ext16s(s, type, datalo, datalo); 2139 } else { 2140 tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg, 2141 datalo, h.base, h.index, 0, h.ofs); 2142 } 2143 break; 2144 case MO_UL: 2145 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2146 h.base, h.index, 0, h.ofs); 2147 break; 2148#if TCG_TARGET_REG_BITS == 64 2149 case MO_SL: 2150 if (use_movbe) { 2151 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo, 2152 h.base, h.index, 0, h.ofs); 2153 tcg_out_ext32s(s, datalo, datalo); 2154 } else { 2155 tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo, 2156 h.base, h.index, 0, h.ofs); 2157 } 2158 break; 2159#endif 2160 case MO_UQ: 2161 if (TCG_TARGET_REG_BITS == 64) { 2162 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2163 h.base, h.index, 0, h.ofs); 2164 break; 2165 } 2166 if (use_movbe) { 2167 TCGReg t = datalo; 2168 datalo = datahi; 2169 datahi = t; 2170 } 2171 if (h.base == datalo || h.index == datalo) { 2172 tcg_out_modrm_sib_offset(s, OPC_LEA, datahi, 2173 h.base, h.index, 0, h.ofs); 2174 tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0); 2175 tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4); 2176 } else { 2177 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2178 h.base, h.index, 0, h.ofs); 2179 tcg_out_modrm_sib_offset(s, movop + h.seg, datahi, 2180 h.base, h.index, 0, h.ofs + 4); 2181 } 2182 break; 2183 2184 case MO_128: 2185 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2186 2187 /* 2188 * Without 16-byte atomicity, use integer regs. 2189 * That is where we want the data, and it allows bswaps. 2190 */ 2191 if (h.aa.atom < MO_128) { 2192 if (use_movbe) { 2193 TCGReg t = datalo; 2194 datalo = datahi; 2195 datahi = t; 2196 } 2197 if (h.base == datalo || h.index == datalo) { 2198 tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi, 2199 h.base, h.index, 0, h.ofs); 2200 tcg_out_modrm_offset(s, movop + P_REXW + h.seg, 2201 datalo, datahi, 0); 2202 tcg_out_modrm_offset(s, movop + P_REXW + h.seg, 2203 datahi, datahi, 8); 2204 } else { 2205 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2206 h.base, h.index, 0, h.ofs); 2207 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi, 2208 h.base, h.index, 0, h.ofs + 8); 2209 } 2210 break; 2211 } 2212 2213 /* 2214 * With 16-byte atomicity, a vector load is required. 2215 * If we already have 16-byte alignment, then VMOVDQA always works. 2216 * Else if VMOVDQU has atomicity with dynamic alignment, use that. 2217 * Else use we require a runtime test for alignment for VMOVDQA; 2218 * use VMOVDQU on the unaligned nonatomic path for simplicity. 2219 */ 2220 if (h.aa.align >= MO_128) { 2221 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg, 2222 TCG_TMP_VEC, 0, 2223 h.base, h.index, 0, h.ofs); 2224 } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) { 2225 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg, 2226 TCG_TMP_VEC, 0, 2227 h.base, h.index, 0, h.ofs); 2228 } else { 2229 TCGLabel *l1 = gen_new_label(); 2230 TCGLabel *l2 = gen_new_label(); 2231 2232 tcg_out_testi(s, h.base, 15); 2233 tcg_out_jxx(s, JCC_JNE, l1, true); 2234 2235 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg, 2236 TCG_TMP_VEC, 0, 2237 h.base, h.index, 0, h.ofs); 2238 tcg_out_jxx(s, JCC_JMP, l2, true); 2239 2240 tcg_out_label(s, l1); 2241 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg, 2242 TCG_TMP_VEC, 0, 2243 h.base, h.index, 0, h.ofs); 2244 tcg_out_label(s, l2); 2245 } 2246 tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC); 2247 break; 2248 2249 default: 2250 g_assert_not_reached(); 2251 } 2252} 2253 2254static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi, 2255 TCGReg addrlo, TCGReg addrhi, 2256 MemOpIdx oi, TCGType data_type) 2257{ 2258 TCGLabelQemuLdst *ldst; 2259 HostAddress h; 2260 2261 ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, true); 2262 tcg_out_qemu_ld_direct(s, datalo, datahi, h, data_type, get_memop(oi)); 2263 2264 if (ldst) { 2265 ldst->type = data_type; 2266 ldst->datalo_reg = datalo; 2267 ldst->datahi_reg = datahi; 2268 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 2269 } 2270} 2271 2272static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi, 2273 HostAddress h, MemOp memop) 2274{ 2275 bool use_movbe = false; 2276 int movop = OPC_MOVL_EvGv; 2277 2278 /* 2279 * Do big-endian stores with movbe or system-mode. 2280 * User-only without movbe will have its swapping done generically. 2281 */ 2282 if (memop & MO_BSWAP) { 2283 tcg_debug_assert(have_movbe); 2284 use_movbe = true; 2285 movop = OPC_MOVBE_MyGy; 2286 } 2287 2288 switch (memop & MO_SIZE) { 2289 case MO_8: 2290 /* This is handled with constraints on INDEX_op_qemu_st8_i32. */ 2291 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4); 2292 tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg, 2293 datalo, h.base, h.index, 0, h.ofs); 2294 break; 2295 case MO_16: 2296 tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo, 2297 h.base, h.index, 0, h.ofs); 2298 break; 2299 case MO_32: 2300 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2301 h.base, h.index, 0, h.ofs); 2302 break; 2303 case MO_64: 2304 if (TCG_TARGET_REG_BITS == 64) { 2305 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2306 h.base, h.index, 0, h.ofs); 2307 } else { 2308 if (use_movbe) { 2309 TCGReg t = datalo; 2310 datalo = datahi; 2311 datahi = t; 2312 } 2313 tcg_out_modrm_sib_offset(s, movop + h.seg, datalo, 2314 h.base, h.index, 0, h.ofs); 2315 tcg_out_modrm_sib_offset(s, movop + h.seg, datahi, 2316 h.base, h.index, 0, h.ofs + 4); 2317 } 2318 break; 2319 2320 case MO_128: 2321 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2322 2323 /* 2324 * Without 16-byte atomicity, use integer regs. 2325 * That is where we have the data, and it allows bswaps. 2326 */ 2327 if (h.aa.atom < MO_128) { 2328 if (use_movbe) { 2329 TCGReg t = datalo; 2330 datalo = datahi; 2331 datahi = t; 2332 } 2333 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo, 2334 h.base, h.index, 0, h.ofs); 2335 tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi, 2336 h.base, h.index, 0, h.ofs + 8); 2337 break; 2338 } 2339 2340 /* 2341 * With 16-byte atomicity, a vector store is required. 2342 * If we already have 16-byte alignment, then VMOVDQA always works. 2343 * Else if VMOVDQU has atomicity with dynamic alignment, use that. 2344 * Else use we require a runtime test for alignment for VMOVDQA; 2345 * use VMOVDQU on the unaligned nonatomic path for simplicity. 2346 */ 2347 tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi); 2348 if (h.aa.align >= MO_128) { 2349 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg, 2350 TCG_TMP_VEC, 0, 2351 h.base, h.index, 0, h.ofs); 2352 } else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) { 2353 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg, 2354 TCG_TMP_VEC, 0, 2355 h.base, h.index, 0, h.ofs); 2356 } else { 2357 TCGLabel *l1 = gen_new_label(); 2358 TCGLabel *l2 = gen_new_label(); 2359 2360 tcg_out_testi(s, h.base, 15); 2361 tcg_out_jxx(s, JCC_JNE, l1, true); 2362 2363 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg, 2364 TCG_TMP_VEC, 0, 2365 h.base, h.index, 0, h.ofs); 2366 tcg_out_jxx(s, JCC_JMP, l2, true); 2367 2368 tcg_out_label(s, l1); 2369 tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg, 2370 TCG_TMP_VEC, 0, 2371 h.base, h.index, 0, h.ofs); 2372 tcg_out_label(s, l2); 2373 } 2374 break; 2375 2376 default: 2377 g_assert_not_reached(); 2378 } 2379} 2380 2381static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi, 2382 TCGReg addrlo, TCGReg addrhi, 2383 MemOpIdx oi, TCGType data_type) 2384{ 2385 TCGLabelQemuLdst *ldst; 2386 HostAddress h; 2387 2388 ldst = prepare_host_addr(s, &h, addrlo, addrhi, oi, false); 2389 tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi)); 2390 2391 if (ldst) { 2392 ldst->type = data_type; 2393 ldst->datalo_reg = datalo; 2394 ldst->datahi_reg = datahi; 2395 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 2396 } 2397} 2398 2399static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0) 2400{ 2401 /* Reuse the zeroing that exists for goto_ptr. */ 2402 if (a0 == 0) { 2403 tcg_out_jmp(s, tcg_code_gen_epilogue); 2404 } else { 2405 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0); 2406 tcg_out_jmp(s, tb_ret_addr); 2407 } 2408} 2409 2410static void tcg_out_goto_tb(TCGContext *s, int which) 2411{ 2412 /* 2413 * Jump displacement must be aligned for atomic patching; 2414 * see if we need to add extra nops before jump 2415 */ 2416 int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr; 2417 if (gap != 1) { 2418 tcg_out_nopn(s, gap - 1); 2419 } 2420 tcg_out8(s, OPC_JMP_long); /* jmp im */ 2421 set_jmp_insn_offset(s, which); 2422 tcg_out32(s, 0); 2423 set_jmp_reset_offset(s, which); 2424} 2425 2426void tb_target_set_jmp_target(const TranslationBlock *tb, int n, 2427 uintptr_t jmp_rx, uintptr_t jmp_rw) 2428{ 2429 /* patch the branch destination */ 2430 uintptr_t addr = tb->jmp_target_addr[n]; 2431 qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4)); 2432 /* no need to flush icache explicitly */ 2433} 2434 2435static inline void tcg_out_op(TCGContext *s, TCGOpcode opc, 2436 const TCGArg args[TCG_MAX_OP_ARGS], 2437 const int const_args[TCG_MAX_OP_ARGS]) 2438{ 2439 TCGArg a0, a1, a2; 2440 int c, const_a2, vexop, rexw = 0; 2441 2442#if TCG_TARGET_REG_BITS == 64 2443# define OP_32_64(x) \ 2444 case glue(glue(INDEX_op_, x), _i64): \ 2445 rexw = P_REXW; /* FALLTHRU */ \ 2446 case glue(glue(INDEX_op_, x), _i32) 2447#else 2448# define OP_32_64(x) \ 2449 case glue(glue(INDEX_op_, x), _i32) 2450#endif 2451 2452 /* Hoist the loads of the most common arguments. */ 2453 a0 = args[0]; 2454 a1 = args[1]; 2455 a2 = args[2]; 2456 const_a2 = const_args[2]; 2457 2458 switch (opc) { 2459 case INDEX_op_goto_ptr: 2460 /* jmp to the given host address (could be epilogue) */ 2461 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0); 2462 break; 2463 case INDEX_op_br: 2464 tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0); 2465 break; 2466 OP_32_64(ld8u): 2467 /* Note that we can ignore REXW for the zero-extend to 64-bit. */ 2468 tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2); 2469 break; 2470 OP_32_64(ld8s): 2471 tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2); 2472 break; 2473 OP_32_64(ld16u): 2474 /* Note that we can ignore REXW for the zero-extend to 64-bit. */ 2475 tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2); 2476 break; 2477 OP_32_64(ld16s): 2478 tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2); 2479 break; 2480#if TCG_TARGET_REG_BITS == 64 2481 case INDEX_op_ld32u_i64: 2482#endif 2483 case INDEX_op_ld_i32: 2484 tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2); 2485 break; 2486 2487 OP_32_64(st8): 2488 if (const_args[0]) { 2489 tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2); 2490 tcg_out8(s, a0); 2491 } else { 2492 tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2); 2493 } 2494 break; 2495 OP_32_64(st16): 2496 if (const_args[0]) { 2497 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2); 2498 tcg_out16(s, a0); 2499 } else { 2500 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2); 2501 } 2502 break; 2503#if TCG_TARGET_REG_BITS == 64 2504 case INDEX_op_st32_i64: 2505#endif 2506 case INDEX_op_st_i32: 2507 if (const_args[0]) { 2508 tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2); 2509 tcg_out32(s, a0); 2510 } else { 2511 tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2); 2512 } 2513 break; 2514 2515 OP_32_64(add): 2516 /* For 3-operand addition, use LEA. */ 2517 if (a0 != a1) { 2518 TCGArg c3 = 0; 2519 if (const_a2) { 2520 c3 = a2, a2 = -1; 2521 } else if (a0 == a2) { 2522 /* Watch out for dest = src + dest, since we've removed 2523 the matching constraint on the add. */ 2524 tgen_arithr(s, ARITH_ADD + rexw, a0, a1); 2525 break; 2526 } 2527 2528 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3); 2529 break; 2530 } 2531 c = ARITH_ADD; 2532 goto gen_arith; 2533 OP_32_64(sub): 2534 c = ARITH_SUB; 2535 goto gen_arith; 2536 OP_32_64(and): 2537 c = ARITH_AND; 2538 goto gen_arith; 2539 OP_32_64(or): 2540 c = ARITH_OR; 2541 goto gen_arith; 2542 OP_32_64(xor): 2543 c = ARITH_XOR; 2544 goto gen_arith; 2545 gen_arith: 2546 if (const_a2) { 2547 tgen_arithi(s, c + rexw, a0, a2, 0); 2548 } else { 2549 tgen_arithr(s, c + rexw, a0, a2); 2550 } 2551 break; 2552 2553 OP_32_64(andc): 2554 if (const_a2) { 2555 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1); 2556 tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0); 2557 } else { 2558 tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1); 2559 } 2560 break; 2561 2562 OP_32_64(mul): 2563 if (const_a2) { 2564 int32_t val; 2565 val = a2; 2566 if (val == (int8_t)val) { 2567 tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0); 2568 tcg_out8(s, val); 2569 } else { 2570 tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0); 2571 tcg_out32(s, val); 2572 } 2573 } else { 2574 tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2); 2575 } 2576 break; 2577 2578 OP_32_64(div2): 2579 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]); 2580 break; 2581 OP_32_64(divu2): 2582 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]); 2583 break; 2584 2585 OP_32_64(shl): 2586 /* For small constant 3-operand shift, use LEA. */ 2587 if (const_a2 && a0 != a1 && (a2 - 1) < 3) { 2588 if (a2 - 1 == 0) { 2589 /* shl $1,a1,a0 -> lea (a1,a1),a0 */ 2590 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0); 2591 } else { 2592 /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */ 2593 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0); 2594 } 2595 break; 2596 } 2597 c = SHIFT_SHL; 2598 vexop = OPC_SHLX; 2599 goto gen_shift_maybe_vex; 2600 OP_32_64(shr): 2601 c = SHIFT_SHR; 2602 vexop = OPC_SHRX; 2603 goto gen_shift_maybe_vex; 2604 OP_32_64(sar): 2605 c = SHIFT_SAR; 2606 vexop = OPC_SARX; 2607 goto gen_shift_maybe_vex; 2608 OP_32_64(rotl): 2609 c = SHIFT_ROL; 2610 goto gen_shift; 2611 OP_32_64(rotr): 2612 c = SHIFT_ROR; 2613 goto gen_shift; 2614 gen_shift_maybe_vex: 2615 if (have_bmi2) { 2616 if (!const_a2) { 2617 tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1); 2618 break; 2619 } 2620 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1); 2621 } 2622 /* FALLTHRU */ 2623 gen_shift: 2624 if (const_a2) { 2625 tcg_out_shifti(s, c + rexw, a0, a2); 2626 } else { 2627 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0); 2628 } 2629 break; 2630 2631 OP_32_64(ctz): 2632 tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]); 2633 break; 2634 OP_32_64(clz): 2635 tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]); 2636 break; 2637 OP_32_64(ctpop): 2638 tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1); 2639 break; 2640 2641 OP_32_64(brcond): 2642 tcg_out_brcond(s, rexw, a2, a0, a1, const_args[1], 2643 arg_label(args[3]), 0); 2644 break; 2645 OP_32_64(setcond): 2646 tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, false); 2647 break; 2648 OP_32_64(negsetcond): 2649 tcg_out_setcond(s, rexw, args[3], a0, a1, a2, const_a2, true); 2650 break; 2651 OP_32_64(movcond): 2652 tcg_out_movcond(s, rexw, args[5], a0, a1, a2, const_a2, args[3]); 2653 break; 2654 2655 OP_32_64(bswap16): 2656 if (a2 & TCG_BSWAP_OS) { 2657 /* Output must be sign-extended. */ 2658 if (rexw) { 2659 tcg_out_bswap64(s, a0); 2660 tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48); 2661 } else { 2662 tcg_out_bswap32(s, a0); 2663 tcg_out_shifti(s, SHIFT_SAR, a0, 16); 2664 } 2665 } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { 2666 /* Output must be zero-extended, but input isn't. */ 2667 tcg_out_bswap32(s, a0); 2668 tcg_out_shifti(s, SHIFT_SHR, a0, 16); 2669 } else { 2670 tcg_out_rolw_8(s, a0); 2671 } 2672 break; 2673 OP_32_64(bswap32): 2674 tcg_out_bswap32(s, a0); 2675 if (rexw && (a2 & TCG_BSWAP_OS)) { 2676 tcg_out_ext32s(s, a0, a0); 2677 } 2678 break; 2679 2680 OP_32_64(neg): 2681 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0); 2682 break; 2683 OP_32_64(not): 2684 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0); 2685 break; 2686 2687 case INDEX_op_qemu_ld_a64_i32: 2688 if (TCG_TARGET_REG_BITS == 32) { 2689 tcg_out_qemu_ld(s, a0, -1, a1, a2, args[3], TCG_TYPE_I32); 2690 break; 2691 } 2692 /* fall through */ 2693 case INDEX_op_qemu_ld_a32_i32: 2694 tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I32); 2695 break; 2696 case INDEX_op_qemu_ld_a32_i64: 2697 if (TCG_TARGET_REG_BITS == 64) { 2698 tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); 2699 } else { 2700 tcg_out_qemu_ld(s, a0, a1, a2, -1, args[3], TCG_TYPE_I64); 2701 } 2702 break; 2703 case INDEX_op_qemu_ld_a64_i64: 2704 if (TCG_TARGET_REG_BITS == 64) { 2705 tcg_out_qemu_ld(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); 2706 } else { 2707 tcg_out_qemu_ld(s, a0, a1, a2, args[3], args[4], TCG_TYPE_I64); 2708 } 2709 break; 2710 case INDEX_op_qemu_ld_a32_i128: 2711 case INDEX_op_qemu_ld_a64_i128: 2712 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2713 tcg_out_qemu_ld(s, a0, a1, a2, -1, args[3], TCG_TYPE_I128); 2714 break; 2715 2716 case INDEX_op_qemu_st_a64_i32: 2717 case INDEX_op_qemu_st8_a64_i32: 2718 if (TCG_TARGET_REG_BITS == 32) { 2719 tcg_out_qemu_st(s, a0, -1, a1, a2, args[3], TCG_TYPE_I32); 2720 break; 2721 } 2722 /* fall through */ 2723 case INDEX_op_qemu_st_a32_i32: 2724 case INDEX_op_qemu_st8_a32_i32: 2725 tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I32); 2726 break; 2727 case INDEX_op_qemu_st_a32_i64: 2728 if (TCG_TARGET_REG_BITS == 64) { 2729 tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); 2730 } else { 2731 tcg_out_qemu_st(s, a0, a1, a2, -1, args[3], TCG_TYPE_I64); 2732 } 2733 break; 2734 case INDEX_op_qemu_st_a64_i64: 2735 if (TCG_TARGET_REG_BITS == 64) { 2736 tcg_out_qemu_st(s, a0, -1, a1, -1, a2, TCG_TYPE_I64); 2737 } else { 2738 tcg_out_qemu_st(s, a0, a1, a2, args[3], args[4], TCG_TYPE_I64); 2739 } 2740 break; 2741 case INDEX_op_qemu_st_a32_i128: 2742 case INDEX_op_qemu_st_a64_i128: 2743 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 2744 tcg_out_qemu_st(s, a0, a1, a2, -1, args[3], TCG_TYPE_I128); 2745 break; 2746 2747 OP_32_64(mulu2): 2748 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]); 2749 break; 2750 OP_32_64(muls2): 2751 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]); 2752 break; 2753 OP_32_64(add2): 2754 if (const_args[4]) { 2755 tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1); 2756 } else { 2757 tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]); 2758 } 2759 if (const_args[5]) { 2760 tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1); 2761 } else { 2762 tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]); 2763 } 2764 break; 2765 OP_32_64(sub2): 2766 if (const_args[4]) { 2767 tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1); 2768 } else { 2769 tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]); 2770 } 2771 if (const_args[5]) { 2772 tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1); 2773 } else { 2774 tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]); 2775 } 2776 break; 2777 2778#if TCG_TARGET_REG_BITS == 32 2779 case INDEX_op_brcond2_i32: 2780 tcg_out_brcond2(s, args, const_args, 0); 2781 break; 2782 case INDEX_op_setcond2_i32: 2783 tcg_out_setcond2(s, args, const_args); 2784 break; 2785#else /* TCG_TARGET_REG_BITS == 64 */ 2786 case INDEX_op_ld32s_i64: 2787 tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2); 2788 break; 2789 case INDEX_op_ld_i64: 2790 tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2); 2791 break; 2792 case INDEX_op_st_i64: 2793 if (const_args[0]) { 2794 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2); 2795 tcg_out32(s, a0); 2796 } else { 2797 tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2); 2798 } 2799 break; 2800 2801 case INDEX_op_bswap64_i64: 2802 tcg_out_bswap64(s, a0); 2803 break; 2804 case INDEX_op_extrh_i64_i32: 2805 tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32); 2806 break; 2807#endif 2808 2809 OP_32_64(deposit): 2810 if (args[3] == 0 && args[4] == 8) { 2811 /* load bits 0..7 */ 2812 if (const_a2) { 2813 tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0), 2814 0, a0, 0); 2815 tcg_out8(s, a2); 2816 } else { 2817 tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0); 2818 } 2819 } else if (TCG_TARGET_REG_BITS == 32 && args[3] == 8 && args[4] == 8) { 2820 /* load bits 8..15 */ 2821 if (const_a2) { 2822 tcg_out8(s, OPC_MOVB_Ib + a0 + 4); 2823 tcg_out8(s, a2); 2824 } else { 2825 tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4); 2826 } 2827 } else if (args[3] == 0 && args[4] == 16) { 2828 /* load bits 0..15 */ 2829 if (const_a2) { 2830 tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0), 2831 0, a0, 0); 2832 tcg_out16(s, a2); 2833 } else { 2834 tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0); 2835 } 2836 } else { 2837 g_assert_not_reached(); 2838 } 2839 break; 2840 2841 case INDEX_op_extract_i64: 2842 if (a2 + args[3] == 32) { 2843 /* This is a 32-bit zero-extending right shift. */ 2844 tcg_out_mov(s, TCG_TYPE_I32, a0, a1); 2845 tcg_out_shifti(s, SHIFT_SHR, a0, a2); 2846 break; 2847 } 2848 /* FALLTHRU */ 2849 case INDEX_op_extract_i32: 2850 /* On the off-chance that we can use the high-byte registers. 2851 Otherwise we emit the same ext16 + shift pattern that we 2852 would have gotten from the normal tcg-op.c expansion. */ 2853 tcg_debug_assert(a2 == 8 && args[3] == 8); 2854 if (a1 < 4 && a0 < 8) { 2855 tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4); 2856 } else { 2857 tcg_out_ext16u(s, a0, a1); 2858 tcg_out_shifti(s, SHIFT_SHR, a0, 8); 2859 } 2860 break; 2861 2862 case INDEX_op_sextract_i32: 2863 /* We don't implement sextract_i64, as we cannot sign-extend to 2864 64-bits without using the REX prefix that explicitly excludes 2865 access to the high-byte registers. */ 2866 tcg_debug_assert(a2 == 8 && args[3] == 8); 2867 if (a1 < 4 && a0 < 8) { 2868 tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4); 2869 } else { 2870 tcg_out_ext16s(s, TCG_TYPE_I32, a0, a1); 2871 tcg_out_shifti(s, SHIFT_SAR, a0, 8); 2872 } 2873 break; 2874 2875 OP_32_64(extract2): 2876 /* Note that SHRD outputs to the r/m operand. */ 2877 tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0); 2878 tcg_out8(s, args[3]); 2879 break; 2880 2881 case INDEX_op_mb: 2882 tcg_out_mb(s, a0); 2883 break; 2884 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */ 2885 case INDEX_op_mov_i64: 2886 case INDEX_op_call: /* Always emitted via tcg_out_call. */ 2887 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ 2888 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ 2889 case INDEX_op_ext8s_i32: /* Always emitted via tcg_reg_alloc_op. */ 2890 case INDEX_op_ext8s_i64: 2891 case INDEX_op_ext8u_i32: 2892 case INDEX_op_ext8u_i64: 2893 case INDEX_op_ext16s_i32: 2894 case INDEX_op_ext16s_i64: 2895 case INDEX_op_ext16u_i32: 2896 case INDEX_op_ext16u_i64: 2897 case INDEX_op_ext32s_i64: 2898 case INDEX_op_ext32u_i64: 2899 case INDEX_op_ext_i32_i64: 2900 case INDEX_op_extu_i32_i64: 2901 case INDEX_op_extrl_i64_i32: 2902 default: 2903 g_assert_not_reached(); 2904 } 2905 2906#undef OP_32_64 2907} 2908 2909static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 2910 unsigned vecl, unsigned vece, 2911 const TCGArg args[TCG_MAX_OP_ARGS], 2912 const int const_args[TCG_MAX_OP_ARGS]) 2913{ 2914 static int const add_insn[4] = { 2915 OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ 2916 }; 2917 static int const ssadd_insn[4] = { 2918 OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2 2919 }; 2920 static int const usadd_insn[4] = { 2921 OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2 2922 }; 2923 static int const sub_insn[4] = { 2924 OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ 2925 }; 2926 static int const sssub_insn[4] = { 2927 OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2 2928 }; 2929 static int const ussub_insn[4] = { 2930 OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2 2931 }; 2932 static int const mul_insn[4] = { 2933 OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ 2934 }; 2935 static int const shift_imm_insn[4] = { 2936 OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib 2937 }; 2938 static int const cmpeq_insn[4] = { 2939 OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ 2940 }; 2941 static int const cmpgt_insn[4] = { 2942 OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ 2943 }; 2944 static int const punpckl_insn[4] = { 2945 OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ 2946 }; 2947 static int const punpckh_insn[4] = { 2948 OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ 2949 }; 2950 static int const packss_insn[4] = { 2951 OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2 2952 }; 2953 static int const packus_insn[4] = { 2954 OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2 2955 }; 2956 static int const smin_insn[4] = { 2957 OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ 2958 }; 2959 static int const smax_insn[4] = { 2960 OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ 2961 }; 2962 static int const umin_insn[4] = { 2963 OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ 2964 }; 2965 static int const umax_insn[4] = { 2966 OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ 2967 }; 2968 static int const rotlv_insn[4] = { 2969 OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ 2970 }; 2971 static int const rotrv_insn[4] = { 2972 OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ 2973 }; 2974 static int const shlv_insn[4] = { 2975 OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ 2976 }; 2977 static int const shrv_insn[4] = { 2978 OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ 2979 }; 2980 static int const sarv_insn[4] = { 2981 OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ 2982 }; 2983 static int const shls_insn[4] = { 2984 OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ 2985 }; 2986 static int const shrs_insn[4] = { 2987 OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ 2988 }; 2989 static int const sars_insn[4] = { 2990 OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ 2991 }; 2992 static int const vpshldi_insn[4] = { 2993 OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ 2994 }; 2995 static int const vpshldv_insn[4] = { 2996 OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ 2997 }; 2998 static int const vpshrdv_insn[4] = { 2999 OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ 3000 }; 3001 static int const abs_insn[4] = { 3002 OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ 3003 }; 3004 3005 TCGType type = vecl + TCG_TYPE_V64; 3006 int insn, sub; 3007 TCGArg a0, a1, a2, a3; 3008 3009 a0 = args[0]; 3010 a1 = args[1]; 3011 a2 = args[2]; 3012 3013 switch (opc) { 3014 case INDEX_op_add_vec: 3015 insn = add_insn[vece]; 3016 goto gen_simd; 3017 case INDEX_op_ssadd_vec: 3018 insn = ssadd_insn[vece]; 3019 goto gen_simd; 3020 case INDEX_op_usadd_vec: 3021 insn = usadd_insn[vece]; 3022 goto gen_simd; 3023 case INDEX_op_sub_vec: 3024 insn = sub_insn[vece]; 3025 goto gen_simd; 3026 case INDEX_op_sssub_vec: 3027 insn = sssub_insn[vece]; 3028 goto gen_simd; 3029 case INDEX_op_ussub_vec: 3030 insn = ussub_insn[vece]; 3031 goto gen_simd; 3032 case INDEX_op_mul_vec: 3033 insn = mul_insn[vece]; 3034 goto gen_simd; 3035 case INDEX_op_and_vec: 3036 insn = OPC_PAND; 3037 goto gen_simd; 3038 case INDEX_op_or_vec: 3039 insn = OPC_POR; 3040 goto gen_simd; 3041 case INDEX_op_xor_vec: 3042 insn = OPC_PXOR; 3043 goto gen_simd; 3044 case INDEX_op_smin_vec: 3045 insn = smin_insn[vece]; 3046 goto gen_simd; 3047 case INDEX_op_umin_vec: 3048 insn = umin_insn[vece]; 3049 goto gen_simd; 3050 case INDEX_op_smax_vec: 3051 insn = smax_insn[vece]; 3052 goto gen_simd; 3053 case INDEX_op_umax_vec: 3054 insn = umax_insn[vece]; 3055 goto gen_simd; 3056 case INDEX_op_shlv_vec: 3057 insn = shlv_insn[vece]; 3058 goto gen_simd; 3059 case INDEX_op_shrv_vec: 3060 insn = shrv_insn[vece]; 3061 goto gen_simd; 3062 case INDEX_op_sarv_vec: 3063 insn = sarv_insn[vece]; 3064 goto gen_simd; 3065 case INDEX_op_rotlv_vec: 3066 insn = rotlv_insn[vece]; 3067 goto gen_simd; 3068 case INDEX_op_rotrv_vec: 3069 insn = rotrv_insn[vece]; 3070 goto gen_simd; 3071 case INDEX_op_shls_vec: 3072 insn = shls_insn[vece]; 3073 goto gen_simd; 3074 case INDEX_op_shrs_vec: 3075 insn = shrs_insn[vece]; 3076 goto gen_simd; 3077 case INDEX_op_sars_vec: 3078 insn = sars_insn[vece]; 3079 goto gen_simd; 3080 case INDEX_op_x86_punpckl_vec: 3081 insn = punpckl_insn[vece]; 3082 goto gen_simd; 3083 case INDEX_op_x86_punpckh_vec: 3084 insn = punpckh_insn[vece]; 3085 goto gen_simd; 3086 case INDEX_op_x86_packss_vec: 3087 insn = packss_insn[vece]; 3088 goto gen_simd; 3089 case INDEX_op_x86_packus_vec: 3090 insn = packus_insn[vece]; 3091 goto gen_simd; 3092 case INDEX_op_x86_vpshldv_vec: 3093 insn = vpshldv_insn[vece]; 3094 a1 = a2; 3095 a2 = args[3]; 3096 goto gen_simd; 3097 case INDEX_op_x86_vpshrdv_vec: 3098 insn = vpshrdv_insn[vece]; 3099 a1 = a2; 3100 a2 = args[3]; 3101 goto gen_simd; 3102#if TCG_TARGET_REG_BITS == 32 3103 case INDEX_op_dup2_vec: 3104 /* First merge the two 32-bit inputs to a single 64-bit element. */ 3105 tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2); 3106 /* Then replicate the 64-bit elements across the rest of the vector. */ 3107 if (type != TCG_TYPE_V64) { 3108 tcg_out_dup_vec(s, type, MO_64, a0, a0); 3109 } 3110 break; 3111#endif 3112 case INDEX_op_abs_vec: 3113 insn = abs_insn[vece]; 3114 a2 = a1; 3115 a1 = 0; 3116 goto gen_simd; 3117 gen_simd: 3118 tcg_debug_assert(insn != OPC_UD2); 3119 if (type == TCG_TYPE_V256) { 3120 insn |= P_VEXL; 3121 } 3122 tcg_out_vex_modrm(s, insn, a0, a1, a2); 3123 break; 3124 3125 case INDEX_op_cmp_vec: 3126 sub = args[3]; 3127 if (sub == TCG_COND_EQ) { 3128 insn = cmpeq_insn[vece]; 3129 } else if (sub == TCG_COND_GT) { 3130 insn = cmpgt_insn[vece]; 3131 } else { 3132 g_assert_not_reached(); 3133 } 3134 goto gen_simd; 3135 3136 case INDEX_op_andc_vec: 3137 insn = OPC_PANDN; 3138 if (type == TCG_TYPE_V256) { 3139 insn |= P_VEXL; 3140 } 3141 tcg_out_vex_modrm(s, insn, a0, a2, a1); 3142 break; 3143 3144 case INDEX_op_shli_vec: 3145 insn = shift_imm_insn[vece]; 3146 sub = 6; 3147 goto gen_shift; 3148 case INDEX_op_shri_vec: 3149 insn = shift_imm_insn[vece]; 3150 sub = 2; 3151 goto gen_shift; 3152 case INDEX_op_sari_vec: 3153 if (vece == MO_64) { 3154 insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX; 3155 } else { 3156 insn = shift_imm_insn[vece]; 3157 } 3158 sub = 4; 3159 goto gen_shift; 3160 case INDEX_op_rotli_vec: 3161 insn = OPC_PSHIFTD_Ib | P_EVEX; /* VPROL[DQ] */ 3162 if (vece == MO_64) { 3163 insn |= P_VEXW; 3164 } 3165 sub = 1; 3166 goto gen_shift; 3167 gen_shift: 3168 tcg_debug_assert(vece != MO_8); 3169 if (type == TCG_TYPE_V256) { 3170 insn |= P_VEXL; 3171 } 3172 tcg_out_vex_modrm(s, insn, sub, a0, a1); 3173 tcg_out8(s, a2); 3174 break; 3175 3176 case INDEX_op_ld_vec: 3177 tcg_out_ld(s, type, a0, a1, a2); 3178 break; 3179 case INDEX_op_st_vec: 3180 tcg_out_st(s, type, a0, a1, a2); 3181 break; 3182 case INDEX_op_dupm_vec: 3183 tcg_out_dupm_vec(s, type, vece, a0, a1, a2); 3184 break; 3185 3186 case INDEX_op_x86_shufps_vec: 3187 insn = OPC_SHUFPS; 3188 sub = args[3]; 3189 goto gen_simd_imm8; 3190 case INDEX_op_x86_blend_vec: 3191 if (vece == MO_16) { 3192 insn = OPC_PBLENDW; 3193 } else if (vece == MO_32) { 3194 insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS); 3195 } else { 3196 g_assert_not_reached(); 3197 } 3198 sub = args[3]; 3199 goto gen_simd_imm8; 3200 case INDEX_op_x86_vperm2i128_vec: 3201 insn = OPC_VPERM2I128; 3202 sub = args[3]; 3203 goto gen_simd_imm8; 3204 case INDEX_op_x86_vpshldi_vec: 3205 insn = vpshldi_insn[vece]; 3206 sub = args[3]; 3207 goto gen_simd_imm8; 3208 3209 case INDEX_op_not_vec: 3210 insn = OPC_VPTERNLOGQ; 3211 a2 = a1; 3212 sub = 0x33; /* !B */ 3213 goto gen_simd_imm8; 3214 case INDEX_op_nor_vec: 3215 insn = OPC_VPTERNLOGQ; 3216 sub = 0x11; /* norCB */ 3217 goto gen_simd_imm8; 3218 case INDEX_op_nand_vec: 3219 insn = OPC_VPTERNLOGQ; 3220 sub = 0x77; /* nandCB */ 3221 goto gen_simd_imm8; 3222 case INDEX_op_eqv_vec: 3223 insn = OPC_VPTERNLOGQ; 3224 sub = 0x99; /* xnorCB */ 3225 goto gen_simd_imm8; 3226 case INDEX_op_orc_vec: 3227 insn = OPC_VPTERNLOGQ; 3228 sub = 0xdd; /* orB!C */ 3229 goto gen_simd_imm8; 3230 3231 case INDEX_op_bitsel_vec: 3232 insn = OPC_VPTERNLOGQ; 3233 a3 = args[3]; 3234 if (a0 == a1) { 3235 a1 = a2; 3236 a2 = a3; 3237 sub = 0xca; /* A?B:C */ 3238 } else if (a0 == a2) { 3239 a2 = a3; 3240 sub = 0xe2; /* B?A:C */ 3241 } else { 3242 tcg_out_mov(s, type, a0, a3); 3243 sub = 0xb8; /* B?C:A */ 3244 } 3245 goto gen_simd_imm8; 3246 3247 gen_simd_imm8: 3248 tcg_debug_assert(insn != OPC_UD2); 3249 if (type == TCG_TYPE_V256) { 3250 insn |= P_VEXL; 3251 } 3252 tcg_out_vex_modrm(s, insn, a0, a1, a2); 3253 tcg_out8(s, sub); 3254 break; 3255 3256 case INDEX_op_x86_vpblendvb_vec: 3257 insn = OPC_VPBLENDVB; 3258 if (type == TCG_TYPE_V256) { 3259 insn |= P_VEXL; 3260 } 3261 tcg_out_vex_modrm(s, insn, a0, a1, a2); 3262 tcg_out8(s, args[3] << 4); 3263 break; 3264 3265 case INDEX_op_x86_psrldq_vec: 3266 tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1); 3267 tcg_out8(s, a2); 3268 break; 3269 3270 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ 3271 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ 3272 default: 3273 g_assert_not_reached(); 3274 } 3275} 3276 3277static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op) 3278{ 3279 switch (op) { 3280 case INDEX_op_goto_ptr: 3281 return C_O0_I1(r); 3282 3283 case INDEX_op_ld8u_i32: 3284 case INDEX_op_ld8u_i64: 3285 case INDEX_op_ld8s_i32: 3286 case INDEX_op_ld8s_i64: 3287 case INDEX_op_ld16u_i32: 3288 case INDEX_op_ld16u_i64: 3289 case INDEX_op_ld16s_i32: 3290 case INDEX_op_ld16s_i64: 3291 case INDEX_op_ld_i32: 3292 case INDEX_op_ld32u_i64: 3293 case INDEX_op_ld32s_i64: 3294 case INDEX_op_ld_i64: 3295 return C_O1_I1(r, r); 3296 3297 case INDEX_op_st8_i32: 3298 case INDEX_op_st8_i64: 3299 return C_O0_I2(qi, r); 3300 3301 case INDEX_op_st16_i32: 3302 case INDEX_op_st16_i64: 3303 case INDEX_op_st_i32: 3304 case INDEX_op_st32_i64: 3305 return C_O0_I2(ri, r); 3306 3307 case INDEX_op_st_i64: 3308 return C_O0_I2(re, r); 3309 3310 case INDEX_op_add_i32: 3311 case INDEX_op_add_i64: 3312 return C_O1_I2(r, r, re); 3313 3314 case INDEX_op_sub_i32: 3315 case INDEX_op_sub_i64: 3316 case INDEX_op_mul_i32: 3317 case INDEX_op_mul_i64: 3318 case INDEX_op_or_i32: 3319 case INDEX_op_or_i64: 3320 case INDEX_op_xor_i32: 3321 case INDEX_op_xor_i64: 3322 return C_O1_I2(r, 0, re); 3323 3324 case INDEX_op_and_i32: 3325 case INDEX_op_and_i64: 3326 return C_O1_I2(r, 0, reZ); 3327 3328 case INDEX_op_andc_i32: 3329 case INDEX_op_andc_i64: 3330 return C_O1_I2(r, r, rI); 3331 3332 case INDEX_op_shl_i32: 3333 case INDEX_op_shl_i64: 3334 case INDEX_op_shr_i32: 3335 case INDEX_op_shr_i64: 3336 case INDEX_op_sar_i32: 3337 case INDEX_op_sar_i64: 3338 return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci); 3339 3340 case INDEX_op_rotl_i32: 3341 case INDEX_op_rotl_i64: 3342 case INDEX_op_rotr_i32: 3343 case INDEX_op_rotr_i64: 3344 return C_O1_I2(r, 0, ci); 3345 3346 case INDEX_op_brcond_i32: 3347 case INDEX_op_brcond_i64: 3348 return C_O0_I2(r, re); 3349 3350 case INDEX_op_bswap16_i32: 3351 case INDEX_op_bswap16_i64: 3352 case INDEX_op_bswap32_i32: 3353 case INDEX_op_bswap32_i64: 3354 case INDEX_op_bswap64_i64: 3355 case INDEX_op_neg_i32: 3356 case INDEX_op_neg_i64: 3357 case INDEX_op_not_i32: 3358 case INDEX_op_not_i64: 3359 case INDEX_op_extrh_i64_i32: 3360 return C_O1_I1(r, 0); 3361 3362 case INDEX_op_ext8s_i32: 3363 case INDEX_op_ext8s_i64: 3364 case INDEX_op_ext8u_i32: 3365 case INDEX_op_ext8u_i64: 3366 return C_O1_I1(r, q); 3367 3368 case INDEX_op_ext16s_i32: 3369 case INDEX_op_ext16s_i64: 3370 case INDEX_op_ext16u_i32: 3371 case INDEX_op_ext16u_i64: 3372 case INDEX_op_ext32s_i64: 3373 case INDEX_op_ext32u_i64: 3374 case INDEX_op_ext_i32_i64: 3375 case INDEX_op_extu_i32_i64: 3376 case INDEX_op_extrl_i64_i32: 3377 case INDEX_op_extract_i32: 3378 case INDEX_op_extract_i64: 3379 case INDEX_op_sextract_i32: 3380 case INDEX_op_ctpop_i32: 3381 case INDEX_op_ctpop_i64: 3382 return C_O1_I1(r, r); 3383 3384 case INDEX_op_extract2_i32: 3385 case INDEX_op_extract2_i64: 3386 return C_O1_I2(r, 0, r); 3387 3388 case INDEX_op_deposit_i32: 3389 case INDEX_op_deposit_i64: 3390 return C_O1_I2(q, 0, qi); 3391 3392 case INDEX_op_setcond_i32: 3393 case INDEX_op_setcond_i64: 3394 case INDEX_op_negsetcond_i32: 3395 case INDEX_op_negsetcond_i64: 3396 return C_O1_I2(q, r, re); 3397 3398 case INDEX_op_movcond_i32: 3399 case INDEX_op_movcond_i64: 3400 return C_O1_I4(r, r, re, r, 0); 3401 3402 case INDEX_op_div2_i32: 3403 case INDEX_op_div2_i64: 3404 case INDEX_op_divu2_i32: 3405 case INDEX_op_divu2_i64: 3406 return C_O2_I3(a, d, 0, 1, r); 3407 3408 case INDEX_op_mulu2_i32: 3409 case INDEX_op_mulu2_i64: 3410 case INDEX_op_muls2_i32: 3411 case INDEX_op_muls2_i64: 3412 return C_O2_I2(a, d, a, r); 3413 3414 case INDEX_op_add2_i32: 3415 case INDEX_op_add2_i64: 3416 case INDEX_op_sub2_i32: 3417 case INDEX_op_sub2_i64: 3418 return C_N1_O1_I4(r, r, 0, 1, re, re); 3419 3420 case INDEX_op_ctz_i32: 3421 case INDEX_op_ctz_i64: 3422 return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r); 3423 3424 case INDEX_op_clz_i32: 3425 case INDEX_op_clz_i64: 3426 return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r); 3427 3428 case INDEX_op_qemu_ld_a32_i32: 3429 return C_O1_I1(r, L); 3430 case INDEX_op_qemu_ld_a64_i32: 3431 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O1_I2(r, L, L); 3432 3433 case INDEX_op_qemu_st_a32_i32: 3434 return C_O0_I2(L, L); 3435 case INDEX_op_qemu_st_a64_i32: 3436 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L); 3437 case INDEX_op_qemu_st8_a32_i32: 3438 return C_O0_I2(s, L); 3439 case INDEX_op_qemu_st8_a64_i32: 3440 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(s, L) : C_O0_I3(s, L, L); 3441 3442 case INDEX_op_qemu_ld_a32_i64: 3443 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I1(r, r, L); 3444 case INDEX_op_qemu_ld_a64_i64: 3445 return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L) : C_O2_I2(r, r, L, L); 3446 3447 case INDEX_op_qemu_st_a32_i64: 3448 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I3(L, L, L); 3449 case INDEX_op_qemu_st_a64_i64: 3450 return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L) : C_O0_I4(L, L, L, L); 3451 3452 case INDEX_op_qemu_ld_a32_i128: 3453 case INDEX_op_qemu_ld_a64_i128: 3454 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 3455 return C_O2_I1(r, r, L); 3456 case INDEX_op_qemu_st_a32_i128: 3457 case INDEX_op_qemu_st_a64_i128: 3458 tcg_debug_assert(TCG_TARGET_REG_BITS == 64); 3459 return C_O0_I3(L, L, L); 3460 3461 case INDEX_op_brcond2_i32: 3462 return C_O0_I4(r, r, ri, ri); 3463 3464 case INDEX_op_setcond2_i32: 3465 return C_O1_I4(r, r, r, ri, ri); 3466 3467 case INDEX_op_ld_vec: 3468 case INDEX_op_dupm_vec: 3469 return C_O1_I1(x, r); 3470 3471 case INDEX_op_st_vec: 3472 return C_O0_I2(x, r); 3473 3474 case INDEX_op_add_vec: 3475 case INDEX_op_sub_vec: 3476 case INDEX_op_mul_vec: 3477 case INDEX_op_and_vec: 3478 case INDEX_op_or_vec: 3479 case INDEX_op_xor_vec: 3480 case INDEX_op_andc_vec: 3481 case INDEX_op_orc_vec: 3482 case INDEX_op_nand_vec: 3483 case INDEX_op_nor_vec: 3484 case INDEX_op_eqv_vec: 3485 case INDEX_op_ssadd_vec: 3486 case INDEX_op_usadd_vec: 3487 case INDEX_op_sssub_vec: 3488 case INDEX_op_ussub_vec: 3489 case INDEX_op_smin_vec: 3490 case INDEX_op_umin_vec: 3491 case INDEX_op_smax_vec: 3492 case INDEX_op_umax_vec: 3493 case INDEX_op_shlv_vec: 3494 case INDEX_op_shrv_vec: 3495 case INDEX_op_sarv_vec: 3496 case INDEX_op_rotlv_vec: 3497 case INDEX_op_rotrv_vec: 3498 case INDEX_op_shls_vec: 3499 case INDEX_op_shrs_vec: 3500 case INDEX_op_sars_vec: 3501 case INDEX_op_cmp_vec: 3502 case INDEX_op_x86_shufps_vec: 3503 case INDEX_op_x86_blend_vec: 3504 case INDEX_op_x86_packss_vec: 3505 case INDEX_op_x86_packus_vec: 3506 case INDEX_op_x86_vperm2i128_vec: 3507 case INDEX_op_x86_punpckl_vec: 3508 case INDEX_op_x86_punpckh_vec: 3509 case INDEX_op_x86_vpshldi_vec: 3510#if TCG_TARGET_REG_BITS == 32 3511 case INDEX_op_dup2_vec: 3512#endif 3513 return C_O1_I2(x, x, x); 3514 3515 case INDEX_op_abs_vec: 3516 case INDEX_op_dup_vec: 3517 case INDEX_op_not_vec: 3518 case INDEX_op_shli_vec: 3519 case INDEX_op_shri_vec: 3520 case INDEX_op_sari_vec: 3521 case INDEX_op_rotli_vec: 3522 case INDEX_op_x86_psrldq_vec: 3523 return C_O1_I1(x, x); 3524 3525 case INDEX_op_x86_vpshldv_vec: 3526 case INDEX_op_x86_vpshrdv_vec: 3527 return C_O1_I3(x, 0, x, x); 3528 3529 case INDEX_op_bitsel_vec: 3530 case INDEX_op_x86_vpblendvb_vec: 3531 return C_O1_I3(x, x, x, x); 3532 3533 default: 3534 g_assert_not_reached(); 3535 } 3536} 3537 3538int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) 3539{ 3540 switch (opc) { 3541 case INDEX_op_add_vec: 3542 case INDEX_op_sub_vec: 3543 case INDEX_op_and_vec: 3544 case INDEX_op_or_vec: 3545 case INDEX_op_xor_vec: 3546 case INDEX_op_andc_vec: 3547 case INDEX_op_orc_vec: 3548 case INDEX_op_nand_vec: 3549 case INDEX_op_nor_vec: 3550 case INDEX_op_eqv_vec: 3551 case INDEX_op_not_vec: 3552 case INDEX_op_bitsel_vec: 3553 return 1; 3554 case INDEX_op_cmp_vec: 3555 case INDEX_op_cmpsel_vec: 3556 return -1; 3557 3558 case INDEX_op_rotli_vec: 3559 return have_avx512vl && vece >= MO_32 ? 1 : -1; 3560 3561 case INDEX_op_shli_vec: 3562 case INDEX_op_shri_vec: 3563 /* We must expand the operation for MO_8. */ 3564 return vece == MO_8 ? -1 : 1; 3565 3566 case INDEX_op_sari_vec: 3567 switch (vece) { 3568 case MO_8: 3569 return -1; 3570 case MO_16: 3571 case MO_32: 3572 return 1; 3573 case MO_64: 3574 if (have_avx512vl) { 3575 return 1; 3576 } 3577 /* 3578 * We can emulate this for MO_64, but it does not pay off 3579 * unless we're producing at least 4 values. 3580 */ 3581 return type >= TCG_TYPE_V256 ? -1 : 0; 3582 } 3583 return 0; 3584 3585 case INDEX_op_shls_vec: 3586 case INDEX_op_shrs_vec: 3587 return vece >= MO_16; 3588 case INDEX_op_sars_vec: 3589 switch (vece) { 3590 case MO_16: 3591 case MO_32: 3592 return 1; 3593 case MO_64: 3594 return have_avx512vl; 3595 } 3596 return 0; 3597 case INDEX_op_rotls_vec: 3598 return vece >= MO_16 ? -1 : 0; 3599 3600 case INDEX_op_shlv_vec: 3601 case INDEX_op_shrv_vec: 3602 switch (vece) { 3603 case MO_16: 3604 return have_avx512bw; 3605 case MO_32: 3606 case MO_64: 3607 return have_avx2; 3608 } 3609 return 0; 3610 case INDEX_op_sarv_vec: 3611 switch (vece) { 3612 case MO_16: 3613 return have_avx512bw; 3614 case MO_32: 3615 return have_avx2; 3616 case MO_64: 3617 return have_avx512vl; 3618 } 3619 return 0; 3620 case INDEX_op_rotlv_vec: 3621 case INDEX_op_rotrv_vec: 3622 switch (vece) { 3623 case MO_16: 3624 return have_avx512vbmi2 ? -1 : 0; 3625 case MO_32: 3626 case MO_64: 3627 return have_avx512vl ? 1 : have_avx2 ? -1 : 0; 3628 } 3629 return 0; 3630 3631 case INDEX_op_mul_vec: 3632 switch (vece) { 3633 case MO_8: 3634 return -1; 3635 case MO_64: 3636 return have_avx512dq; 3637 } 3638 return 1; 3639 3640 case INDEX_op_ssadd_vec: 3641 case INDEX_op_usadd_vec: 3642 case INDEX_op_sssub_vec: 3643 case INDEX_op_ussub_vec: 3644 return vece <= MO_16; 3645 case INDEX_op_smin_vec: 3646 case INDEX_op_smax_vec: 3647 case INDEX_op_umin_vec: 3648 case INDEX_op_umax_vec: 3649 case INDEX_op_abs_vec: 3650 return vece <= MO_32 || have_avx512vl; 3651 3652 default: 3653 return 0; 3654 } 3655} 3656 3657static void expand_vec_shi(TCGType type, unsigned vece, TCGOpcode opc, 3658 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 3659{ 3660 TCGv_vec t1, t2; 3661 3662 tcg_debug_assert(vece == MO_8); 3663 3664 t1 = tcg_temp_new_vec(type); 3665 t2 = tcg_temp_new_vec(type); 3666 3667 /* 3668 * Unpack to W, shift, and repack. Tricky bits: 3669 * (1) Use punpck*bw x,x to produce DDCCBBAA, 3670 * i.e. duplicate in other half of the 16-bit lane. 3671 * (2) For right-shift, add 8 so that the high half of the lane 3672 * becomes zero. For left-shift, and left-rotate, we must 3673 * shift up and down again. 3674 * (3) Step 2 leaves high half zero such that PACKUSWB 3675 * (pack with unsigned saturation) does not modify 3676 * the quantity. 3677 */ 3678 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 3679 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 3680 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 3681 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 3682 3683 if (opc != INDEX_op_rotli_vec) { 3684 imm += 8; 3685 } 3686 if (opc == INDEX_op_shri_vec) { 3687 tcg_gen_shri_vec(MO_16, t1, t1, imm); 3688 tcg_gen_shri_vec(MO_16, t2, t2, imm); 3689 } else { 3690 tcg_gen_shli_vec(MO_16, t1, t1, imm); 3691 tcg_gen_shli_vec(MO_16, t2, t2, imm); 3692 tcg_gen_shri_vec(MO_16, t1, t1, 8); 3693 tcg_gen_shri_vec(MO_16, t2, t2, 8); 3694 } 3695 3696 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8, 3697 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2)); 3698 tcg_temp_free_vec(t1); 3699 tcg_temp_free_vec(t2); 3700} 3701 3702static void expand_vec_sari(TCGType type, unsigned vece, 3703 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 3704{ 3705 TCGv_vec t1, t2; 3706 3707 switch (vece) { 3708 case MO_8: 3709 /* Unpack to W, shift, and repack, as in expand_vec_shi. */ 3710 t1 = tcg_temp_new_vec(type); 3711 t2 = tcg_temp_new_vec(type); 3712 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 3713 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 3714 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 3715 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1)); 3716 tcg_gen_sari_vec(MO_16, t1, t1, imm + 8); 3717 tcg_gen_sari_vec(MO_16, t2, t2, imm + 8); 3718 vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8, 3719 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2)); 3720 tcg_temp_free_vec(t1); 3721 tcg_temp_free_vec(t2); 3722 break; 3723 3724 case MO_64: 3725 t1 = tcg_temp_new_vec(type); 3726 if (imm <= 32) { 3727 /* 3728 * We can emulate a small sign extend by performing an arithmetic 3729 * 32-bit shift and overwriting the high half of a 64-bit logical 3730 * shift. Note that the ISA says shift of 32 is valid, but TCG 3731 * does not, so we have to bound the smaller shift -- we get the 3732 * same result in the high half either way. 3733 */ 3734 tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31)); 3735 tcg_gen_shri_vec(MO_64, v0, v1, imm); 3736 vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32, 3737 tcgv_vec_arg(v0), tcgv_vec_arg(v0), 3738 tcgv_vec_arg(t1), 0xaa); 3739 } else { 3740 /* Otherwise we will need to use a compare vs 0 to produce 3741 * the sign-extend, shift and merge. 3742 */ 3743 tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1, 3744 tcg_constant_vec(type, MO_64, 0), v1); 3745 tcg_gen_shri_vec(MO_64, v0, v1, imm); 3746 tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm); 3747 tcg_gen_or_vec(MO_64, v0, v0, t1); 3748 } 3749 tcg_temp_free_vec(t1); 3750 break; 3751 3752 default: 3753 g_assert_not_reached(); 3754 } 3755} 3756 3757static void expand_vec_rotli(TCGType type, unsigned vece, 3758 TCGv_vec v0, TCGv_vec v1, TCGArg imm) 3759{ 3760 TCGv_vec t; 3761 3762 if (vece == MO_8) { 3763 expand_vec_shi(type, vece, INDEX_op_rotli_vec, v0, v1, imm); 3764 return; 3765 } 3766 3767 if (have_avx512vbmi2) { 3768 vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece, 3769 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm); 3770 return; 3771 } 3772 3773 t = tcg_temp_new_vec(type); 3774 tcg_gen_shli_vec(vece, t, v1, imm); 3775 tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm); 3776 tcg_gen_or_vec(vece, v0, v0, t); 3777 tcg_temp_free_vec(t); 3778} 3779 3780static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0, 3781 TCGv_vec v1, TCGv_vec sh, bool right) 3782{ 3783 TCGv_vec t; 3784 3785 if (have_avx512vbmi2) { 3786 vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec, 3787 type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1), 3788 tcgv_vec_arg(v1), tcgv_vec_arg(sh)); 3789 return; 3790 } 3791 3792 t = tcg_temp_new_vec(type); 3793 tcg_gen_dupi_vec(vece, t, 8 << vece); 3794 tcg_gen_sub_vec(vece, t, t, sh); 3795 if (right) { 3796 tcg_gen_shlv_vec(vece, t, v1, t); 3797 tcg_gen_shrv_vec(vece, v0, v1, sh); 3798 } else { 3799 tcg_gen_shrv_vec(vece, t, v1, t); 3800 tcg_gen_shlv_vec(vece, v0, v1, sh); 3801 } 3802 tcg_gen_or_vec(vece, v0, v0, t); 3803 tcg_temp_free_vec(t); 3804} 3805 3806static void expand_vec_rotls(TCGType type, unsigned vece, 3807 TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh) 3808{ 3809 TCGv_vec t = tcg_temp_new_vec(type); 3810 3811 tcg_debug_assert(vece != MO_8); 3812 3813 if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) { 3814 tcg_gen_dup_i32_vec(vece, t, lsh); 3815 if (vece >= MO_32) { 3816 tcg_gen_rotlv_vec(vece, v0, v1, t); 3817 } else { 3818 expand_vec_rotv(type, vece, v0, v1, t, false); 3819 } 3820 } else { 3821 TCGv_i32 rsh = tcg_temp_new_i32(); 3822 3823 tcg_gen_neg_i32(rsh, lsh); 3824 tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1); 3825 tcg_gen_shls_vec(vece, t, v1, lsh); 3826 tcg_gen_shrs_vec(vece, v0, v1, rsh); 3827 tcg_gen_or_vec(vece, v0, v0, t); 3828 3829 tcg_temp_free_i32(rsh); 3830 } 3831 3832 tcg_temp_free_vec(t); 3833} 3834 3835static void expand_vec_mul(TCGType type, unsigned vece, 3836 TCGv_vec v0, TCGv_vec v1, TCGv_vec v2) 3837{ 3838 TCGv_vec t1, t2, t3, t4, zero; 3839 3840 tcg_debug_assert(vece == MO_8); 3841 3842 /* 3843 * Unpack v1 bytes to words, 0 | x. 3844 * Unpack v2 bytes to words, y | 0. 3845 * This leaves the 8-bit result, x * y, with 8 bits of right padding. 3846 * Shift logical right by 8 bits to clear the high 8 bytes before 3847 * using an unsigned saturated pack. 3848 * 3849 * The difference between the V64, V128 and V256 cases is merely how 3850 * we distribute the expansion between temporaries. 3851 */ 3852 switch (type) { 3853 case TCG_TYPE_V64: 3854 t1 = tcg_temp_new_vec(TCG_TYPE_V128); 3855 t2 = tcg_temp_new_vec(TCG_TYPE_V128); 3856 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0); 3857 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8, 3858 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 3859 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8, 3860 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 3861 tcg_gen_mul_vec(MO_16, t1, t1, t2); 3862 tcg_gen_shri_vec(MO_16, t1, t1, 8); 3863 vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8, 3864 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1)); 3865 tcg_temp_free_vec(t1); 3866 tcg_temp_free_vec(t2); 3867 break; 3868 3869 case TCG_TYPE_V128: 3870 case TCG_TYPE_V256: 3871 t1 = tcg_temp_new_vec(type); 3872 t2 = tcg_temp_new_vec(type); 3873 t3 = tcg_temp_new_vec(type); 3874 t4 = tcg_temp_new_vec(type); 3875 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0); 3876 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 3877 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 3878 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8, 3879 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 3880 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 3881 tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero)); 3882 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8, 3883 tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2)); 3884 tcg_gen_mul_vec(MO_16, t1, t1, t2); 3885 tcg_gen_mul_vec(MO_16, t3, t3, t4); 3886 tcg_gen_shri_vec(MO_16, t1, t1, 8); 3887 tcg_gen_shri_vec(MO_16, t3, t3, 8); 3888 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8, 3889 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3)); 3890 tcg_temp_free_vec(t1); 3891 tcg_temp_free_vec(t2); 3892 tcg_temp_free_vec(t3); 3893 tcg_temp_free_vec(t4); 3894 break; 3895 3896 default: 3897 g_assert_not_reached(); 3898 } 3899} 3900 3901static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0, 3902 TCGv_vec v1, TCGv_vec v2, TCGCond cond) 3903{ 3904 enum { 3905 NEED_INV = 1, 3906 NEED_SWAP = 2, 3907 NEED_BIAS = 4, 3908 NEED_UMIN = 8, 3909 NEED_UMAX = 16, 3910 }; 3911 TCGv_vec t1, t2, t3; 3912 uint8_t fixup; 3913 3914 switch (cond) { 3915 case TCG_COND_EQ: 3916 case TCG_COND_GT: 3917 fixup = 0; 3918 break; 3919 case TCG_COND_NE: 3920 case TCG_COND_LE: 3921 fixup = NEED_INV; 3922 break; 3923 case TCG_COND_LT: 3924 fixup = NEED_SWAP; 3925 break; 3926 case TCG_COND_GE: 3927 fixup = NEED_SWAP | NEED_INV; 3928 break; 3929 case TCG_COND_LEU: 3930 if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) { 3931 fixup = NEED_UMIN; 3932 } else { 3933 fixup = NEED_BIAS | NEED_INV; 3934 } 3935 break; 3936 case TCG_COND_GTU: 3937 if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) { 3938 fixup = NEED_UMIN | NEED_INV; 3939 } else { 3940 fixup = NEED_BIAS; 3941 } 3942 break; 3943 case TCG_COND_GEU: 3944 if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) { 3945 fixup = NEED_UMAX; 3946 } else { 3947 fixup = NEED_BIAS | NEED_SWAP | NEED_INV; 3948 } 3949 break; 3950 case TCG_COND_LTU: 3951 if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) { 3952 fixup = NEED_UMAX | NEED_INV; 3953 } else { 3954 fixup = NEED_BIAS | NEED_SWAP; 3955 } 3956 break; 3957 default: 3958 g_assert_not_reached(); 3959 } 3960 3961 if (fixup & NEED_INV) { 3962 cond = tcg_invert_cond(cond); 3963 } 3964 if (fixup & NEED_SWAP) { 3965 t1 = v1, v1 = v2, v2 = t1; 3966 cond = tcg_swap_cond(cond); 3967 } 3968 3969 t1 = t2 = NULL; 3970 if (fixup & (NEED_UMIN | NEED_UMAX)) { 3971 t1 = tcg_temp_new_vec(type); 3972 if (fixup & NEED_UMIN) { 3973 tcg_gen_umin_vec(vece, t1, v1, v2); 3974 } else { 3975 tcg_gen_umax_vec(vece, t1, v1, v2); 3976 } 3977 v2 = t1; 3978 cond = TCG_COND_EQ; 3979 } else if (fixup & NEED_BIAS) { 3980 t1 = tcg_temp_new_vec(type); 3981 t2 = tcg_temp_new_vec(type); 3982 t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1)); 3983 tcg_gen_sub_vec(vece, t1, v1, t3); 3984 tcg_gen_sub_vec(vece, t2, v2, t3); 3985 v1 = t1; 3986 v2 = t2; 3987 cond = tcg_signed_cond(cond); 3988 } 3989 3990 tcg_debug_assert(cond == TCG_COND_EQ || cond == TCG_COND_GT); 3991 /* Expand directly; do not recurse. */ 3992 vec_gen_4(INDEX_op_cmp_vec, type, vece, 3993 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond); 3994 3995 if (t1) { 3996 tcg_temp_free_vec(t1); 3997 if (t2) { 3998 tcg_temp_free_vec(t2); 3999 } 4000 } 4001 return fixup & NEED_INV; 4002} 4003 4004static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0, 4005 TCGv_vec v1, TCGv_vec v2, TCGCond cond) 4006{ 4007 if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) { 4008 tcg_gen_not_vec(vece, v0, v0); 4009 } 4010} 4011 4012static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0, 4013 TCGv_vec c1, TCGv_vec c2, 4014 TCGv_vec v3, TCGv_vec v4, TCGCond cond) 4015{ 4016 TCGv_vec t = tcg_temp_new_vec(type); 4017 4018 if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) { 4019 /* Invert the sense of the compare by swapping arguments. */ 4020 TCGv_vec x; 4021 x = v3, v3 = v4, v4 = x; 4022 } 4023 vec_gen_4(INDEX_op_x86_vpblendvb_vec, type, vece, 4024 tcgv_vec_arg(v0), tcgv_vec_arg(v4), 4025 tcgv_vec_arg(v3), tcgv_vec_arg(t)); 4026 tcg_temp_free_vec(t); 4027} 4028 4029void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, 4030 TCGArg a0, ...) 4031{ 4032 va_list va; 4033 TCGArg a2; 4034 TCGv_vec v0, v1, v2, v3, v4; 4035 4036 va_start(va, a0); 4037 v0 = temp_tcgv_vec(arg_temp(a0)); 4038 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 4039 a2 = va_arg(va, TCGArg); 4040 4041 switch (opc) { 4042 case INDEX_op_shli_vec: 4043 case INDEX_op_shri_vec: 4044 expand_vec_shi(type, vece, opc, v0, v1, a2); 4045 break; 4046 4047 case INDEX_op_sari_vec: 4048 expand_vec_sari(type, vece, v0, v1, a2); 4049 break; 4050 4051 case INDEX_op_rotli_vec: 4052 expand_vec_rotli(type, vece, v0, v1, a2); 4053 break; 4054 4055 case INDEX_op_rotls_vec: 4056 expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2))); 4057 break; 4058 4059 case INDEX_op_rotlv_vec: 4060 v2 = temp_tcgv_vec(arg_temp(a2)); 4061 expand_vec_rotv(type, vece, v0, v1, v2, false); 4062 break; 4063 case INDEX_op_rotrv_vec: 4064 v2 = temp_tcgv_vec(arg_temp(a2)); 4065 expand_vec_rotv(type, vece, v0, v1, v2, true); 4066 break; 4067 4068 case INDEX_op_mul_vec: 4069 v2 = temp_tcgv_vec(arg_temp(a2)); 4070 expand_vec_mul(type, vece, v0, v1, v2); 4071 break; 4072 4073 case INDEX_op_cmp_vec: 4074 v2 = temp_tcgv_vec(arg_temp(a2)); 4075 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg)); 4076 break; 4077 4078 case INDEX_op_cmpsel_vec: 4079 v2 = temp_tcgv_vec(arg_temp(a2)); 4080 v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 4081 v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 4082 expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg)); 4083 break; 4084 4085 default: 4086 break; 4087 } 4088 4089 va_end(va); 4090} 4091 4092static const int tcg_target_callee_save_regs[] = { 4093#if TCG_TARGET_REG_BITS == 64 4094 TCG_REG_RBP, 4095 TCG_REG_RBX, 4096#if defined(_WIN64) 4097 TCG_REG_RDI, 4098 TCG_REG_RSI, 4099#endif 4100 TCG_REG_R12, 4101 TCG_REG_R13, 4102 TCG_REG_R14, /* Currently used for the global env. */ 4103 TCG_REG_R15, 4104#else 4105 TCG_REG_EBP, /* Currently used for the global env. */ 4106 TCG_REG_EBX, 4107 TCG_REG_ESI, 4108 TCG_REG_EDI, 4109#endif 4110}; 4111 4112/* Compute frame size via macros, to share between tcg_target_qemu_prologue 4113 and tcg_register_jit. */ 4114 4115#define PUSH_SIZE \ 4116 ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \ 4117 * (TCG_TARGET_REG_BITS / 8)) 4118 4119#define FRAME_SIZE \ 4120 ((PUSH_SIZE \ 4121 + TCG_STATIC_CALL_ARGS_SIZE \ 4122 + CPU_TEMP_BUF_NLONGS * sizeof(long) \ 4123 + TCG_TARGET_STACK_ALIGN - 1) \ 4124 & ~(TCG_TARGET_STACK_ALIGN - 1)) 4125 4126/* Generate global QEMU prologue and epilogue code */ 4127static void tcg_target_qemu_prologue(TCGContext *s) 4128{ 4129 int i, stack_addend; 4130 4131 /* TB prologue */ 4132 4133 /* Reserve some stack space, also for TCG temps. */ 4134 stack_addend = FRAME_SIZE - PUSH_SIZE; 4135 tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE, 4136 CPU_TEMP_BUF_NLONGS * sizeof(long)); 4137 4138 /* Save all callee saved registers. */ 4139 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) { 4140 tcg_out_push(s, tcg_target_callee_save_regs[i]); 4141 } 4142 4143#if TCG_TARGET_REG_BITS == 32 4144 tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, 4145 (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4); 4146 tcg_out_addi(s, TCG_REG_ESP, -stack_addend); 4147 /* jmp *tb. */ 4148 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP, 4149 (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4 4150 + stack_addend); 4151#else 4152# if !defined(CONFIG_SOFTMMU) 4153 if (guest_base) { 4154 int seg = setup_guest_base_seg(); 4155 if (seg != 0) { 4156 x86_guest_base.seg = seg; 4157 } else if (guest_base == (int32_t)guest_base) { 4158 x86_guest_base.ofs = guest_base; 4159 } else { 4160 /* Choose R12 because, as a base, it requires a SIB byte. */ 4161 x86_guest_base.index = TCG_REG_R12; 4162 tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base); 4163 tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index); 4164 } 4165 } 4166# endif 4167 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); 4168 tcg_out_addi(s, TCG_REG_ESP, -stack_addend); 4169 /* jmp *tb. */ 4170 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]); 4171#endif 4172 4173 /* 4174 * Return path for goto_ptr. Set return value to 0, a-la exit_tb, 4175 * and fall through to the rest of the epilogue. 4176 */ 4177 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); 4178 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0); 4179 4180 /* TB epilogue */ 4181 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr); 4182 4183 tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend); 4184 4185 if (have_avx2) { 4186 tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0); 4187 } 4188 for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) { 4189 tcg_out_pop(s, tcg_target_callee_save_regs[i]); 4190 } 4191 tcg_out_opc(s, OPC_RET, 0, 0, 0); 4192} 4193 4194static void tcg_out_tb_start(TCGContext *s) 4195{ 4196 /* nothing to do */ 4197} 4198 4199static void tcg_out_nop_fill(tcg_insn_unit *p, int count) 4200{ 4201 memset(p, 0x90, count); 4202} 4203 4204static void tcg_target_init(TCGContext *s) 4205{ 4206 tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS; 4207 if (TCG_TARGET_REG_BITS == 64) { 4208 tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS; 4209 } 4210 if (have_avx1) { 4211 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS; 4212 tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS; 4213 } 4214 if (have_avx2) { 4215 tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS; 4216 } 4217 4218 tcg_target_call_clobber_regs = ALL_VECTOR_REGS; 4219 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX); 4220 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX); 4221 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX); 4222 if (TCG_TARGET_REG_BITS == 64) { 4223#if !defined(_WIN64) 4224 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI); 4225 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI); 4226#endif 4227 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8); 4228 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9); 4229 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10); 4230 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11); 4231 } 4232 4233 s->reserved_regs = 0; 4234 tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK); 4235 tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC); 4236#ifdef _WIN64 4237 /* These are call saved, and we don't save them, so don't use them. */ 4238 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6); 4239 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7); 4240 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8); 4241 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9); 4242 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10); 4243 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11); 4244 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12); 4245 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13); 4246 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14); 4247 tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15); 4248#endif 4249} 4250 4251typedef struct { 4252 DebugFrameHeader h; 4253 uint8_t fde_def_cfa[4]; 4254 uint8_t fde_reg_ofs[14]; 4255} DebugFrame; 4256 4257/* We're expecting a 2 byte uleb128 encoded value. */ 4258QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); 4259 4260#if !defined(__ELF__) 4261 /* Host machine without ELF. */ 4262#elif TCG_TARGET_REG_BITS == 64 4263#define ELF_HOST_MACHINE EM_X86_64 4264static const DebugFrame debug_frame = { 4265 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 4266 .h.cie.id = -1, 4267 .h.cie.version = 1, 4268 .h.cie.code_align = 1, 4269 .h.cie.data_align = 0x78, /* sleb128 -8 */ 4270 .h.cie.return_column = 16, 4271 4272 /* Total FDE size does not include the "len" member. */ 4273 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 4274 4275 .fde_def_cfa = { 4276 12, 7, /* DW_CFA_def_cfa %rsp, ... */ 4277 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 4278 (FRAME_SIZE >> 7) 4279 }, 4280 .fde_reg_ofs = { 4281 0x90, 1, /* DW_CFA_offset, %rip, -8 */ 4282 /* The following ordering must match tcg_target_callee_save_regs. */ 4283 0x86, 2, /* DW_CFA_offset, %rbp, -16 */ 4284 0x83, 3, /* DW_CFA_offset, %rbx, -24 */ 4285 0x8c, 4, /* DW_CFA_offset, %r12, -32 */ 4286 0x8d, 5, /* DW_CFA_offset, %r13, -40 */ 4287 0x8e, 6, /* DW_CFA_offset, %r14, -48 */ 4288 0x8f, 7, /* DW_CFA_offset, %r15, -56 */ 4289 } 4290}; 4291#else 4292#define ELF_HOST_MACHINE EM_386 4293static const DebugFrame debug_frame = { 4294 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 4295 .h.cie.id = -1, 4296 .h.cie.version = 1, 4297 .h.cie.code_align = 1, 4298 .h.cie.data_align = 0x7c, /* sleb128 -4 */ 4299 .h.cie.return_column = 8, 4300 4301 /* Total FDE size does not include the "len" member. */ 4302 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 4303 4304 .fde_def_cfa = { 4305 12, 4, /* DW_CFA_def_cfa %esp, ... */ 4306 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 4307 (FRAME_SIZE >> 7) 4308 }, 4309 .fde_reg_ofs = { 4310 0x88, 1, /* DW_CFA_offset, %eip, -4 */ 4311 /* The following ordering must match tcg_target_callee_save_regs. */ 4312 0x85, 2, /* DW_CFA_offset, %ebp, -8 */ 4313 0x83, 3, /* DW_CFA_offset, %ebx, -12 */ 4314 0x86, 4, /* DW_CFA_offset, %esi, -16 */ 4315 0x87, 5, /* DW_CFA_offset, %edi, -20 */ 4316 } 4317}; 4318#endif 4319 4320#if defined(ELF_HOST_MACHINE) 4321void tcg_register_jit(const void *buf, size_t buf_size) 4322{ 4323 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); 4324} 4325#endif 4326