1/* 2 * Initial TCG Implementation for aarch64 3 * 4 * Copyright (c) 2013 Huawei Technologies Duesseldorf GmbH 5 * Written by Claudio Fontana 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or 8 * (at your option) any later version. 9 * 10 * See the COPYING file in the top-level directory for details. 11 */ 12 13#include "qemu/bitops.h" 14 15/* Used for function call generation. */ 16#define TCG_REG_CALL_STACK TCG_REG_SP 17#define TCG_TARGET_STACK_ALIGN 16 18#define TCG_TARGET_CALL_STACK_OFFSET 0 19#define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL 20#define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL 21#ifdef CONFIG_DARWIN 22# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL 23#else 24# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_EVEN 25#endif 26#define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_NORMAL 27 28/* We're going to re-use TCGType in setting of the SF bit, which controls 29 the size of the operation performed. If we know the values match, it 30 makes things much cleaner. */ 31QEMU_BUILD_BUG_ON(TCG_TYPE_I32 != 0 || TCG_TYPE_I64 != 1); 32 33#ifdef CONFIG_DEBUG_TCG 34static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { 35 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 36 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 37 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 38 "x24", "x25", "x26", "x27", "x28", "fp", "x30", "sp", 39 40 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", 41 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", 42 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", 43 "v24", "v25", "v26", "v27", "v28", "fp", "v30", "v31", 44}; 45#endif /* CONFIG_DEBUG_TCG */ 46 47static const int tcg_target_reg_alloc_order[] = { 48 TCG_REG_X20, TCG_REG_X21, TCG_REG_X22, TCG_REG_X23, 49 TCG_REG_X24, TCG_REG_X25, TCG_REG_X26, TCG_REG_X27, 50 TCG_REG_X28, /* we will reserve this for guest_base if configured */ 51 52 TCG_REG_X8, TCG_REG_X9, TCG_REG_X10, TCG_REG_X11, 53 TCG_REG_X12, TCG_REG_X13, TCG_REG_X14, TCG_REG_X15, 54 55 TCG_REG_X0, TCG_REG_X1, TCG_REG_X2, TCG_REG_X3, 56 TCG_REG_X4, TCG_REG_X5, TCG_REG_X6, TCG_REG_X7, 57 58 /* X16 reserved as temporary */ 59 /* X17 reserved as temporary */ 60 /* X18 reserved by system */ 61 /* X19 reserved for AREG0 */ 62 /* X29 reserved as fp */ 63 /* X30 reserved as temporary */ 64 65 TCG_REG_V0, TCG_REG_V1, TCG_REG_V2, TCG_REG_V3, 66 TCG_REG_V4, TCG_REG_V5, TCG_REG_V6, TCG_REG_V7, 67 /* V8 - V15 are call-saved, and skipped. */ 68 TCG_REG_V16, TCG_REG_V17, TCG_REG_V18, TCG_REG_V19, 69 TCG_REG_V20, TCG_REG_V21, TCG_REG_V22, TCG_REG_V23, 70 TCG_REG_V24, TCG_REG_V25, TCG_REG_V26, TCG_REG_V27, 71 TCG_REG_V28, TCG_REG_V29, TCG_REG_V30, TCG_REG_V31, 72}; 73 74static const int tcg_target_call_iarg_regs[8] = { 75 TCG_REG_X0, TCG_REG_X1, TCG_REG_X2, TCG_REG_X3, 76 TCG_REG_X4, TCG_REG_X5, TCG_REG_X6, TCG_REG_X7 77}; 78 79static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) 80{ 81 tcg_debug_assert(kind == TCG_CALL_RET_NORMAL); 82 tcg_debug_assert(slot >= 0 && slot <= 1); 83 return TCG_REG_X0 + slot; 84} 85 86#define TCG_REG_TMP0 TCG_REG_X16 87#define TCG_REG_TMP1 TCG_REG_X17 88#define TCG_REG_TMP2 TCG_REG_X30 89#define TCG_VEC_TMP0 TCG_REG_V31 90 91#define TCG_REG_GUEST_BASE TCG_REG_X28 92 93static bool reloc_pc26(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 94{ 95 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 96 ptrdiff_t offset = target - src_rx; 97 98 if (offset == sextract64(offset, 0, 26)) { 99 /* read instruction, mask away previous PC_REL26 parameter contents, 100 set the proper offset, then write back the instruction. */ 101 *src_rw = deposit32(*src_rw, 0, 26, offset); 102 return true; 103 } 104 return false; 105} 106 107static bool reloc_pc19(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 108{ 109 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 110 ptrdiff_t offset = target - src_rx; 111 112 if (offset == sextract64(offset, 0, 19)) { 113 *src_rw = deposit32(*src_rw, 5, 19, offset); 114 return true; 115 } 116 return false; 117} 118 119static bool reloc_pc14(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 120{ 121 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 122 ptrdiff_t offset = target - src_rx; 123 124 if (offset == sextract64(offset, 0, 14)) { 125 *src_rw = deposit32(*src_rw, 5, 14, offset); 126 return true; 127 } 128 return false; 129} 130 131static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 132 intptr_t value, intptr_t addend) 133{ 134 tcg_debug_assert(addend == 0); 135 switch (type) { 136 case R_AARCH64_JUMP26: 137 case R_AARCH64_CALL26: 138 return reloc_pc26(code_ptr, (const tcg_insn_unit *)value); 139 case R_AARCH64_CONDBR19: 140 return reloc_pc19(code_ptr, (const tcg_insn_unit *)value); 141 case R_AARCH64_TSTBR14: 142 return reloc_pc14(code_ptr, (const tcg_insn_unit *)value); 143 default: 144 g_assert_not_reached(); 145 } 146} 147 148#define TCG_CT_CONST_AIMM 0x100 149#define TCG_CT_CONST_LIMM 0x200 150#define TCG_CT_CONST_ZERO 0x400 151#define TCG_CT_CONST_MONE 0x800 152#define TCG_CT_CONST_ORRI 0x1000 153#define TCG_CT_CONST_ANDI 0x2000 154#define TCG_CT_CONST_CMP 0x4000 155 156#define ALL_GENERAL_REGS 0xffffffffu 157#define ALL_VECTOR_REGS 0xffffffff00000000ull 158 159/* Match a constant valid for addition (12-bit, optionally shifted). */ 160static inline bool is_aimm(uint64_t val) 161{ 162 return (val & ~0xfff) == 0 || (val & ~0xfff000) == 0; 163} 164 165/* Match a constant valid for logical operations. */ 166static inline bool is_limm(uint64_t val) 167{ 168 /* Taking a simplified view of the logical immediates for now, ignoring 169 the replication that can happen across the field. Match bit patterns 170 of the forms 171 0....01....1 172 0..01..10..0 173 and their inverses. */ 174 175 /* Make things easier below, by testing the form with msb clear. */ 176 if ((int64_t)val < 0) { 177 val = ~val; 178 } 179 if (val == 0) { 180 return false; 181 } 182 val += val & -val; 183 return (val & (val - 1)) == 0; 184} 185 186/* Return true if v16 is a valid 16-bit shifted immediate. */ 187static bool is_shimm16(uint16_t v16, int *cmode, int *imm8) 188{ 189 if (v16 == (v16 & 0xff)) { 190 *cmode = 0x8; 191 *imm8 = v16 & 0xff; 192 return true; 193 } else if (v16 == (v16 & 0xff00)) { 194 *cmode = 0xa; 195 *imm8 = v16 >> 8; 196 return true; 197 } 198 return false; 199} 200 201/* Return true if v32 is a valid 32-bit shifted immediate. */ 202static bool is_shimm32(uint32_t v32, int *cmode, int *imm8) 203{ 204 if (v32 == (v32 & 0xff)) { 205 *cmode = 0x0; 206 *imm8 = v32 & 0xff; 207 return true; 208 } else if (v32 == (v32 & 0xff00)) { 209 *cmode = 0x2; 210 *imm8 = (v32 >> 8) & 0xff; 211 return true; 212 } else if (v32 == (v32 & 0xff0000)) { 213 *cmode = 0x4; 214 *imm8 = (v32 >> 16) & 0xff; 215 return true; 216 } else if (v32 == (v32 & 0xff000000)) { 217 *cmode = 0x6; 218 *imm8 = v32 >> 24; 219 return true; 220 } 221 return false; 222} 223 224/* Return true if v32 is a valid 32-bit shifting ones immediate. */ 225static bool is_soimm32(uint32_t v32, int *cmode, int *imm8) 226{ 227 if ((v32 & 0xffff00ff) == 0xff) { 228 *cmode = 0xc; 229 *imm8 = (v32 >> 8) & 0xff; 230 return true; 231 } else if ((v32 & 0xff00ffff) == 0xffff) { 232 *cmode = 0xd; 233 *imm8 = (v32 >> 16) & 0xff; 234 return true; 235 } 236 return false; 237} 238 239/* Return true if v32 is a valid float32 immediate. */ 240static bool is_fimm32(uint32_t v32, int *cmode, int *imm8) 241{ 242 if (extract32(v32, 0, 19) == 0 243 && (extract32(v32, 25, 6) == 0x20 244 || extract32(v32, 25, 6) == 0x1f)) { 245 *cmode = 0xf; 246 *imm8 = (extract32(v32, 31, 1) << 7) 247 | (extract32(v32, 25, 1) << 6) 248 | extract32(v32, 19, 6); 249 return true; 250 } 251 return false; 252} 253 254/* Return true if v64 is a valid float64 immediate. */ 255static bool is_fimm64(uint64_t v64, int *cmode, int *imm8) 256{ 257 if (extract64(v64, 0, 48) == 0 258 && (extract64(v64, 54, 9) == 0x100 259 || extract64(v64, 54, 9) == 0x0ff)) { 260 *cmode = 0xf; 261 *imm8 = (extract64(v64, 63, 1) << 7) 262 | (extract64(v64, 54, 1) << 6) 263 | extract64(v64, 48, 6); 264 return true; 265 } 266 return false; 267} 268 269/* 270 * Return non-zero if v32 can be formed by MOVI+ORR. 271 * Place the parameters for MOVI in (cmode, imm8). 272 * Return the cmode for ORR; the imm8 can be had via extraction from v32. 273 */ 274static int is_shimm32_pair(uint32_t v32, int *cmode, int *imm8) 275{ 276 int i; 277 278 for (i = 6; i > 0; i -= 2) { 279 /* Mask out one byte we can add with ORR. */ 280 uint32_t tmp = v32 & ~(0xffu << (i * 4)); 281 if (is_shimm32(tmp, cmode, imm8) || 282 is_soimm32(tmp, cmode, imm8)) { 283 break; 284 } 285 } 286 return i; 287} 288 289/* Return true if V is a valid 16-bit or 32-bit shifted immediate. */ 290static bool is_shimm1632(uint32_t v32, int *cmode, int *imm8) 291{ 292 if (v32 == deposit32(v32, 16, 16, v32)) { 293 return is_shimm16(v32, cmode, imm8); 294 } else { 295 return is_shimm32(v32, cmode, imm8); 296 } 297} 298 299static bool tcg_target_const_match(int64_t val, int ct, 300 TCGType type, TCGCond cond, int vece) 301{ 302 if (ct & TCG_CT_CONST) { 303 return 1; 304 } 305 if (type == TCG_TYPE_I32) { 306 val = (int32_t)val; 307 } 308 309 if (ct & TCG_CT_CONST_CMP) { 310 if (is_tst_cond(cond)) { 311 ct |= TCG_CT_CONST_LIMM; 312 } else { 313 ct |= TCG_CT_CONST_AIMM; 314 } 315 } 316 317 if ((ct & TCG_CT_CONST_AIMM) && (is_aimm(val) || is_aimm(-val))) { 318 return 1; 319 } 320 if ((ct & TCG_CT_CONST_LIMM) && is_limm(val)) { 321 return 1; 322 } 323 if ((ct & TCG_CT_CONST_ZERO) && val == 0) { 324 return 1; 325 } 326 if ((ct & TCG_CT_CONST_MONE) && val == -1) { 327 return 1; 328 } 329 330 switch (ct & (TCG_CT_CONST_ORRI | TCG_CT_CONST_ANDI)) { 331 case 0: 332 break; 333 case TCG_CT_CONST_ANDI: 334 val = ~val; 335 /* fallthru */ 336 case TCG_CT_CONST_ORRI: 337 if (val == deposit64(val, 32, 32, val)) { 338 int cmode, imm8; 339 return is_shimm1632(val, &cmode, &imm8); 340 } 341 break; 342 default: 343 /* Both bits should not be set for the same insn. */ 344 g_assert_not_reached(); 345 } 346 347 return 0; 348} 349 350enum aarch64_cond_code { 351 COND_EQ = 0x0, 352 COND_NE = 0x1, 353 COND_CS = 0x2, /* Unsigned greater or equal */ 354 COND_HS = COND_CS, /* ALIAS greater or equal */ 355 COND_CC = 0x3, /* Unsigned less than */ 356 COND_LO = COND_CC, /* ALIAS Lower */ 357 COND_MI = 0x4, /* Negative */ 358 COND_PL = 0x5, /* Zero or greater */ 359 COND_VS = 0x6, /* Overflow */ 360 COND_VC = 0x7, /* No overflow */ 361 COND_HI = 0x8, /* Unsigned greater than */ 362 COND_LS = 0x9, /* Unsigned less or equal */ 363 COND_GE = 0xa, 364 COND_LT = 0xb, 365 COND_GT = 0xc, 366 COND_LE = 0xd, 367 COND_AL = 0xe, 368 COND_NV = 0xf, /* behaves like COND_AL here */ 369}; 370 371static const enum aarch64_cond_code tcg_cond_to_aarch64[] = { 372 [TCG_COND_EQ] = COND_EQ, 373 [TCG_COND_NE] = COND_NE, 374 [TCG_COND_LT] = COND_LT, 375 [TCG_COND_GE] = COND_GE, 376 [TCG_COND_LE] = COND_LE, 377 [TCG_COND_GT] = COND_GT, 378 /* unsigned */ 379 [TCG_COND_LTU] = COND_LO, 380 [TCG_COND_GTU] = COND_HI, 381 [TCG_COND_GEU] = COND_HS, 382 [TCG_COND_LEU] = COND_LS, 383 /* bit test */ 384 [TCG_COND_TSTEQ] = COND_EQ, 385 [TCG_COND_TSTNE] = COND_NE, 386}; 387 388typedef enum { 389 LDST_ST = 0, /* store */ 390 LDST_LD = 1, /* load */ 391 LDST_LD_S_X = 2, /* load and sign-extend into Xt */ 392 LDST_LD_S_W = 3, /* load and sign-extend into Wt */ 393} AArch64LdstType; 394 395/* We encode the format of the insn into the beginning of the name, so that 396 we can have the preprocessor help "typecheck" the insn vs the output 397 function. Arm didn't provide us with nice names for the formats, so we 398 use the section number of the architecture reference manual in which the 399 instruction group is described. */ 400typedef enum { 401 /* Compare and branch (immediate). */ 402 I3201_CBZ = 0x34000000, 403 I3201_CBNZ = 0x35000000, 404 405 /* Conditional branch (immediate). */ 406 I3202_B_C = 0x54000000, 407 408 /* Test and branch (immediate). */ 409 I3205_TBZ = 0x36000000, 410 I3205_TBNZ = 0x37000000, 411 412 /* Unconditional branch (immediate). */ 413 I3206_B = 0x14000000, 414 I3206_BL = 0x94000000, 415 416 /* Unconditional branch (register). */ 417 I3207_BR = 0xd61f0000, 418 I3207_BLR = 0xd63f0000, 419 I3207_RET = 0xd65f0000, 420 421 /* AdvSIMD load/store single structure. */ 422 I3303_LD1R = 0x0d40c000, 423 424 /* Load literal for loading the address at pc-relative offset */ 425 I3305_LDR = 0x58000000, 426 I3305_LDR_v64 = 0x5c000000, 427 I3305_LDR_v128 = 0x9c000000, 428 429 /* Load/store exclusive. */ 430 I3306_LDXP = 0xc8600000, 431 I3306_STXP = 0xc8200000, 432 433 /* Load/store register. Described here as 3.3.12, but the helper 434 that emits them can transform to 3.3.10 or 3.3.13. */ 435 I3312_STRB = 0x38000000 | LDST_ST << 22 | MO_8 << 30, 436 I3312_STRH = 0x38000000 | LDST_ST << 22 | MO_16 << 30, 437 I3312_STRW = 0x38000000 | LDST_ST << 22 | MO_32 << 30, 438 I3312_STRX = 0x38000000 | LDST_ST << 22 | MO_64 << 30, 439 440 I3312_LDRB = 0x38000000 | LDST_LD << 22 | MO_8 << 30, 441 I3312_LDRH = 0x38000000 | LDST_LD << 22 | MO_16 << 30, 442 I3312_LDRW = 0x38000000 | LDST_LD << 22 | MO_32 << 30, 443 I3312_LDRX = 0x38000000 | LDST_LD << 22 | MO_64 << 30, 444 445 I3312_LDRSBW = 0x38000000 | LDST_LD_S_W << 22 | MO_8 << 30, 446 I3312_LDRSHW = 0x38000000 | LDST_LD_S_W << 22 | MO_16 << 30, 447 448 I3312_LDRSBX = 0x38000000 | LDST_LD_S_X << 22 | MO_8 << 30, 449 I3312_LDRSHX = 0x38000000 | LDST_LD_S_X << 22 | MO_16 << 30, 450 I3312_LDRSWX = 0x38000000 | LDST_LD_S_X << 22 | MO_32 << 30, 451 452 I3312_LDRVS = 0x3c000000 | LDST_LD << 22 | MO_32 << 30, 453 I3312_STRVS = 0x3c000000 | LDST_ST << 22 | MO_32 << 30, 454 455 I3312_LDRVD = 0x3c000000 | LDST_LD << 22 | MO_64 << 30, 456 I3312_STRVD = 0x3c000000 | LDST_ST << 22 | MO_64 << 30, 457 458 I3312_LDRVQ = 0x3c000000 | 3 << 22 | 0 << 30, 459 I3312_STRVQ = 0x3c000000 | 2 << 22 | 0 << 30, 460 461 I3312_TO_I3310 = 0x00200800, 462 I3312_TO_I3313 = 0x01000000, 463 464 /* Load/store register pair instructions. */ 465 I3314_LDP = 0x28400000, 466 I3314_STP = 0x28000000, 467 468 /* Add/subtract immediate instructions. */ 469 I3401_ADDI = 0x11000000, 470 I3401_ADDSI = 0x31000000, 471 I3401_SUBI = 0x51000000, 472 I3401_SUBSI = 0x71000000, 473 474 /* Bitfield instructions. */ 475 I3402_BFM = 0x33000000, 476 I3402_SBFM = 0x13000000, 477 I3402_UBFM = 0x53000000, 478 479 /* Extract instruction. */ 480 I3403_EXTR = 0x13800000, 481 482 /* Logical immediate instructions. */ 483 I3404_ANDI = 0x12000000, 484 I3404_ORRI = 0x32000000, 485 I3404_EORI = 0x52000000, 486 I3404_ANDSI = 0x72000000, 487 488 /* Move wide immediate instructions. */ 489 I3405_MOVN = 0x12800000, 490 I3405_MOVZ = 0x52800000, 491 I3405_MOVK = 0x72800000, 492 493 /* PC relative addressing instructions. */ 494 I3406_ADR = 0x10000000, 495 I3406_ADRP = 0x90000000, 496 497 /* Add/subtract extended register instructions. */ 498 I3501_ADD = 0x0b200000, 499 500 /* Add/subtract shifted register instructions (without a shift). */ 501 I3502_ADD = 0x0b000000, 502 I3502_ADDS = 0x2b000000, 503 I3502_SUB = 0x4b000000, 504 I3502_SUBS = 0x6b000000, 505 506 /* Add/subtract shifted register instructions (with a shift). */ 507 I3502S_ADD_LSL = I3502_ADD, 508 509 /* Add/subtract with carry instructions. */ 510 I3503_ADC = 0x1a000000, 511 I3503_SBC = 0x5a000000, 512 513 /* Conditional select instructions. */ 514 I3506_CSEL = 0x1a800000, 515 I3506_CSINC = 0x1a800400, 516 I3506_CSINV = 0x5a800000, 517 I3506_CSNEG = 0x5a800400, 518 519 /* Data-processing (1 source) instructions. */ 520 I3507_CLZ = 0x5ac01000, 521 I3507_RBIT = 0x5ac00000, 522 I3507_REV = 0x5ac00000, /* + size << 10 */ 523 524 /* Data-processing (2 source) instructions. */ 525 I3508_LSLV = 0x1ac02000, 526 I3508_LSRV = 0x1ac02400, 527 I3508_ASRV = 0x1ac02800, 528 I3508_RORV = 0x1ac02c00, 529 I3508_SMULH = 0x9b407c00, 530 I3508_UMULH = 0x9bc07c00, 531 I3508_UDIV = 0x1ac00800, 532 I3508_SDIV = 0x1ac00c00, 533 534 /* Data-processing (3 source) instructions. */ 535 I3509_MADD = 0x1b000000, 536 I3509_MSUB = 0x1b008000, 537 538 /* Logical shifted register instructions (without a shift). */ 539 I3510_AND = 0x0a000000, 540 I3510_BIC = 0x0a200000, 541 I3510_ORR = 0x2a000000, 542 I3510_ORN = 0x2a200000, 543 I3510_EOR = 0x4a000000, 544 I3510_EON = 0x4a200000, 545 I3510_ANDS = 0x6a000000, 546 547 /* Logical shifted register instructions (with a shift). */ 548 I3502S_AND_LSR = I3510_AND | (1 << 22), 549 550 /* AdvSIMD copy */ 551 I3605_DUP = 0x0e000400, 552 I3605_INS = 0x4e001c00, 553 I3605_UMOV = 0x0e003c00, 554 555 /* AdvSIMD modified immediate */ 556 I3606_MOVI = 0x0f000400, 557 I3606_MVNI = 0x2f000400, 558 I3606_BIC = 0x2f001400, 559 I3606_ORR = 0x0f001400, 560 561 /* AdvSIMD scalar shift by immediate */ 562 I3609_SSHR = 0x5f000400, 563 I3609_SSRA = 0x5f001400, 564 I3609_SHL = 0x5f005400, 565 I3609_USHR = 0x7f000400, 566 I3609_USRA = 0x7f001400, 567 I3609_SLI = 0x7f005400, 568 569 /* AdvSIMD scalar three same */ 570 I3611_SQADD = 0x5e200c00, 571 I3611_SQSUB = 0x5e202c00, 572 I3611_CMGT = 0x5e203400, 573 I3611_CMGE = 0x5e203c00, 574 I3611_SSHL = 0x5e204400, 575 I3611_ADD = 0x5e208400, 576 I3611_CMTST = 0x5e208c00, 577 I3611_UQADD = 0x7e200c00, 578 I3611_UQSUB = 0x7e202c00, 579 I3611_CMHI = 0x7e203400, 580 I3611_CMHS = 0x7e203c00, 581 I3611_USHL = 0x7e204400, 582 I3611_SUB = 0x7e208400, 583 I3611_CMEQ = 0x7e208c00, 584 585 /* AdvSIMD scalar two-reg misc */ 586 I3612_CMGT0 = 0x5e208800, 587 I3612_CMEQ0 = 0x5e209800, 588 I3612_CMLT0 = 0x5e20a800, 589 I3612_ABS = 0x5e20b800, 590 I3612_CMGE0 = 0x7e208800, 591 I3612_CMLE0 = 0x7e209800, 592 I3612_NEG = 0x7e20b800, 593 594 /* AdvSIMD shift by immediate */ 595 I3614_SSHR = 0x0f000400, 596 I3614_SSRA = 0x0f001400, 597 I3614_SHL = 0x0f005400, 598 I3614_SLI = 0x2f005400, 599 I3614_USHR = 0x2f000400, 600 I3614_USRA = 0x2f001400, 601 602 /* AdvSIMD three same. */ 603 I3616_ADD = 0x0e208400, 604 I3616_AND = 0x0e201c00, 605 I3616_BIC = 0x0e601c00, 606 I3616_BIF = 0x2ee01c00, 607 I3616_BIT = 0x2ea01c00, 608 I3616_BSL = 0x2e601c00, 609 I3616_EOR = 0x2e201c00, 610 I3616_MUL = 0x0e209c00, 611 I3616_ORR = 0x0ea01c00, 612 I3616_ORN = 0x0ee01c00, 613 I3616_SUB = 0x2e208400, 614 I3616_CMGT = 0x0e203400, 615 I3616_CMGE = 0x0e203c00, 616 I3616_CMTST = 0x0e208c00, 617 I3616_CMHI = 0x2e203400, 618 I3616_CMHS = 0x2e203c00, 619 I3616_CMEQ = 0x2e208c00, 620 I3616_SMAX = 0x0e206400, 621 I3616_SMIN = 0x0e206c00, 622 I3616_SSHL = 0x0e204400, 623 I3616_SQADD = 0x0e200c00, 624 I3616_SQSUB = 0x0e202c00, 625 I3616_UMAX = 0x2e206400, 626 I3616_UMIN = 0x2e206c00, 627 I3616_UQADD = 0x2e200c00, 628 I3616_UQSUB = 0x2e202c00, 629 I3616_USHL = 0x2e204400, 630 631 /* AdvSIMD two-reg misc. */ 632 I3617_CMGT0 = 0x0e208800, 633 I3617_CMEQ0 = 0x0e209800, 634 I3617_CMLT0 = 0x0e20a800, 635 I3617_CMGE0 = 0x2e208800, 636 I3617_CMLE0 = 0x2e209800, 637 I3617_NOT = 0x2e205800, 638 I3617_ABS = 0x0e20b800, 639 I3617_NEG = 0x2e20b800, 640 641 /* System instructions. */ 642 NOP = 0xd503201f, 643 DMB_ISH = 0xd50338bf, 644 DMB_LD = 0x00000100, 645 DMB_ST = 0x00000200, 646 647 BTI_C = 0xd503245f, 648 BTI_J = 0xd503249f, 649 BTI_JC = 0xd50324df, 650} AArch64Insn; 651 652static inline uint32_t tcg_in32(TCGContext *s) 653{ 654 uint32_t v = *(uint32_t *)s->code_ptr; 655 return v; 656} 657 658/* Emit an opcode with "type-checking" of the format. */ 659#define tcg_out_insn(S, FMT, OP, ...) \ 660 glue(tcg_out_insn_,FMT)(S, glue(glue(glue(I,FMT),_),OP), ## __VA_ARGS__) 661 662static void tcg_out_insn_3303(TCGContext *s, AArch64Insn insn, bool q, 663 TCGReg rt, TCGReg rn, unsigned size) 664{ 665 tcg_out32(s, insn | (rt & 0x1f) | (rn << 5) | (size << 10) | (q << 30)); 666} 667 668static void tcg_out_insn_3305(TCGContext *s, AArch64Insn insn, 669 int imm19, TCGReg rt) 670{ 671 tcg_out32(s, insn | (imm19 & 0x7ffff) << 5 | rt); 672} 673 674static void tcg_out_insn_3306(TCGContext *s, AArch64Insn insn, TCGReg rs, 675 TCGReg rt, TCGReg rt2, TCGReg rn) 676{ 677 tcg_out32(s, insn | rs << 16 | rt2 << 10 | rn << 5 | rt); 678} 679 680static void tcg_out_insn_3201(TCGContext *s, AArch64Insn insn, TCGType ext, 681 TCGReg rt, int imm19) 682{ 683 tcg_out32(s, insn | ext << 31 | (imm19 & 0x7ffff) << 5 | rt); 684} 685 686static void tcg_out_insn_3202(TCGContext *s, AArch64Insn insn, 687 TCGCond c, int imm19) 688{ 689 tcg_out32(s, insn | tcg_cond_to_aarch64[c] | (imm19 & 0x7ffff) << 5); 690} 691 692static void tcg_out_insn_3205(TCGContext *s, AArch64Insn insn, 693 TCGReg rt, int imm6, int imm14) 694{ 695 insn |= (imm6 & 0x20) << (31 - 5); 696 insn |= (imm6 & 0x1f) << 19; 697 tcg_out32(s, insn | (imm14 & 0x3fff) << 5 | rt); 698} 699 700static void tcg_out_insn_3206(TCGContext *s, AArch64Insn insn, int imm26) 701{ 702 tcg_out32(s, insn | (imm26 & 0x03ffffff)); 703} 704 705static void tcg_out_insn_3207(TCGContext *s, AArch64Insn insn, TCGReg rn) 706{ 707 tcg_out32(s, insn | rn << 5); 708} 709 710static void tcg_out_insn_3314(TCGContext *s, AArch64Insn insn, 711 TCGReg r1, TCGReg r2, TCGReg rn, 712 tcg_target_long ofs, bool pre, bool w) 713{ 714 insn |= 1u << 31; /* ext */ 715 insn |= pre << 24; 716 insn |= w << 23; 717 718 tcg_debug_assert(ofs >= -0x200 && ofs < 0x200 && (ofs & 7) == 0); 719 insn |= (ofs & (0x7f << 3)) << (15 - 3); 720 721 tcg_out32(s, insn | r2 << 10 | rn << 5 | r1); 722} 723 724static void tcg_out_insn_3401(TCGContext *s, AArch64Insn insn, TCGType ext, 725 TCGReg rd, TCGReg rn, uint64_t aimm) 726{ 727 if (aimm > 0xfff) { 728 tcg_debug_assert((aimm & 0xfff) == 0); 729 aimm >>= 12; 730 tcg_debug_assert(aimm <= 0xfff); 731 aimm |= 1 << 12; /* apply LSL 12 */ 732 } 733 tcg_out32(s, insn | ext << 31 | aimm << 10 | rn << 5 | rd); 734} 735 736/* This function can be used for both 3.4.2 (Bitfield) and 3.4.4 737 (Logical immediate). Both insn groups have N, IMMR and IMMS fields 738 that feed the DecodeBitMasks pseudo function. */ 739static void tcg_out_insn_3402(TCGContext *s, AArch64Insn insn, TCGType ext, 740 TCGReg rd, TCGReg rn, int n, int immr, int imms) 741{ 742 tcg_out32(s, insn | ext << 31 | n << 22 | immr << 16 | imms << 10 743 | rn << 5 | rd); 744} 745 746#define tcg_out_insn_3404 tcg_out_insn_3402 747 748static void tcg_out_insn_3403(TCGContext *s, AArch64Insn insn, TCGType ext, 749 TCGReg rd, TCGReg rn, TCGReg rm, int imms) 750{ 751 tcg_out32(s, insn | ext << 31 | ext << 22 | rm << 16 | imms << 10 752 | rn << 5 | rd); 753} 754 755/* This function is used for the Move (wide immediate) instruction group. 756 Note that SHIFT is a full shift count, not the 2 bit HW field. */ 757static void tcg_out_insn_3405(TCGContext *s, AArch64Insn insn, TCGType ext, 758 TCGReg rd, uint16_t half, unsigned shift) 759{ 760 tcg_debug_assert((shift & ~0x30) == 0); 761 tcg_out32(s, insn | ext << 31 | shift << (21 - 4) | half << 5 | rd); 762} 763 764static void tcg_out_insn_3406(TCGContext *s, AArch64Insn insn, 765 TCGReg rd, int64_t disp) 766{ 767 tcg_out32(s, insn | (disp & 3) << 29 | (disp & 0x1ffffc) << (5 - 2) | rd); 768} 769 770static inline void tcg_out_insn_3501(TCGContext *s, AArch64Insn insn, 771 TCGType sf, TCGReg rd, TCGReg rn, 772 TCGReg rm, int opt, int imm3) 773{ 774 tcg_out32(s, insn | sf << 31 | rm << 16 | opt << 13 | 775 imm3 << 10 | rn << 5 | rd); 776} 777 778/* This function is for both 3.5.2 (Add/Subtract shifted register), for 779 the rare occasion when we actually want to supply a shift amount. */ 780static inline void tcg_out_insn_3502S(TCGContext *s, AArch64Insn insn, 781 TCGType ext, TCGReg rd, TCGReg rn, 782 TCGReg rm, int imm6) 783{ 784 tcg_out32(s, insn | ext << 31 | rm << 16 | imm6 << 10 | rn << 5 | rd); 785} 786 787/* This function is for 3.5.2 (Add/subtract shifted register), 788 and 3.5.10 (Logical shifted register), for the vast majorty of cases 789 when we don't want to apply a shift. Thus it can also be used for 790 3.5.3 (Add/subtract with carry) and 3.5.8 (Data processing 2 source). */ 791static void tcg_out_insn_3502(TCGContext *s, AArch64Insn insn, TCGType ext, 792 TCGReg rd, TCGReg rn, TCGReg rm) 793{ 794 tcg_out32(s, insn | ext << 31 | rm << 16 | rn << 5 | rd); 795} 796 797#define tcg_out_insn_3503 tcg_out_insn_3502 798#define tcg_out_insn_3508 tcg_out_insn_3502 799#define tcg_out_insn_3510 tcg_out_insn_3502 800 801static void tcg_out_insn_3506(TCGContext *s, AArch64Insn insn, TCGType ext, 802 TCGReg rd, TCGReg rn, TCGReg rm, TCGCond c) 803{ 804 tcg_out32(s, insn | ext << 31 | rm << 16 | rn << 5 | rd 805 | tcg_cond_to_aarch64[c] << 12); 806} 807 808static void tcg_out_insn_3507(TCGContext *s, AArch64Insn insn, TCGType ext, 809 TCGReg rd, TCGReg rn) 810{ 811 tcg_out32(s, insn | ext << 31 | rn << 5 | rd); 812} 813 814static void tcg_out_insn_3509(TCGContext *s, AArch64Insn insn, TCGType ext, 815 TCGReg rd, TCGReg rn, TCGReg rm, TCGReg ra) 816{ 817 tcg_out32(s, insn | ext << 31 | rm << 16 | ra << 10 | rn << 5 | rd); 818} 819 820static void tcg_out_insn_3605(TCGContext *s, AArch64Insn insn, bool q, 821 TCGReg rd, TCGReg rn, int dst_idx, int src_idx) 822{ 823 /* Note that bit 11 set means general register input. Therefore 824 we can handle both register sets with one function. */ 825 tcg_out32(s, insn | q << 30 | (dst_idx << 16) | (src_idx << 11) 826 | (rd & 0x1f) | (~rn & 0x20) << 6 | (rn & 0x1f) << 5); 827} 828 829static void tcg_out_insn_3606(TCGContext *s, AArch64Insn insn, bool q, 830 TCGReg rd, bool op, int cmode, uint8_t imm8) 831{ 832 tcg_out32(s, insn | q << 30 | op << 29 | cmode << 12 | (rd & 0x1f) 833 | (imm8 & 0xe0) << (16 - 5) | (imm8 & 0x1f) << 5); 834} 835 836static void tcg_out_insn_3609(TCGContext *s, AArch64Insn insn, 837 TCGReg rd, TCGReg rn, unsigned immhb) 838{ 839 tcg_out32(s, insn | immhb << 16 | (rn & 0x1f) << 5 | (rd & 0x1f)); 840} 841 842static void tcg_out_insn_3611(TCGContext *s, AArch64Insn insn, 843 unsigned size, TCGReg rd, TCGReg rn, TCGReg rm) 844{ 845 tcg_out32(s, insn | (size << 22) | (rm & 0x1f) << 16 846 | (rn & 0x1f) << 5 | (rd & 0x1f)); 847} 848 849static void tcg_out_insn_3612(TCGContext *s, AArch64Insn insn, 850 unsigned size, TCGReg rd, TCGReg rn) 851{ 852 tcg_out32(s, insn | (size << 22) | (rn & 0x1f) << 5 | (rd & 0x1f)); 853} 854 855static void tcg_out_insn_3614(TCGContext *s, AArch64Insn insn, bool q, 856 TCGReg rd, TCGReg rn, unsigned immhb) 857{ 858 tcg_out32(s, insn | q << 30 | immhb << 16 859 | (rn & 0x1f) << 5 | (rd & 0x1f)); 860} 861 862static void tcg_out_insn_3616(TCGContext *s, AArch64Insn insn, bool q, 863 unsigned size, TCGReg rd, TCGReg rn, TCGReg rm) 864{ 865 tcg_out32(s, insn | q << 30 | (size << 22) | (rm & 0x1f) << 16 866 | (rn & 0x1f) << 5 | (rd & 0x1f)); 867} 868 869static void tcg_out_insn_3617(TCGContext *s, AArch64Insn insn, bool q, 870 unsigned size, TCGReg rd, TCGReg rn) 871{ 872 tcg_out32(s, insn | q << 30 | (size << 22) 873 | (rn & 0x1f) << 5 | (rd & 0x1f)); 874} 875 876static void tcg_out_insn_3310(TCGContext *s, AArch64Insn insn, 877 TCGReg rd, TCGReg base, TCGType ext, 878 TCGReg regoff) 879{ 880 /* Note the AArch64Insn constants above are for C3.3.12. Adjust. */ 881 tcg_out32(s, insn | I3312_TO_I3310 | regoff << 16 | 882 0x4000 | ext << 13 | base << 5 | (rd & 0x1f)); 883} 884 885static void tcg_out_insn_3312(TCGContext *s, AArch64Insn insn, 886 TCGReg rd, TCGReg rn, intptr_t offset) 887{ 888 tcg_out32(s, insn | (offset & 0x1ff) << 12 | rn << 5 | (rd & 0x1f)); 889} 890 891static void tcg_out_insn_3313(TCGContext *s, AArch64Insn insn, 892 TCGReg rd, TCGReg rn, uintptr_t scaled_uimm) 893{ 894 /* Note the AArch64Insn constants above are for C3.3.12. Adjust. */ 895 tcg_out32(s, insn | I3312_TO_I3313 | scaled_uimm << 10 896 | rn << 5 | (rd & 0x1f)); 897} 898 899static void tcg_out_bti(TCGContext *s, AArch64Insn insn) 900{ 901 /* 902 * While BTI insns are nops on hosts without FEAT_BTI, 903 * there is no point in emitting them in that case either. 904 */ 905 if (cpuinfo & CPUINFO_BTI) { 906 tcg_out32(s, insn); 907 } 908} 909 910/* Register to register move using ORR (shifted register with no shift). */ 911static void tcg_out_movr(TCGContext *s, TCGType ext, TCGReg rd, TCGReg rm) 912{ 913 tcg_out_insn(s, 3510, ORR, ext, rd, TCG_REG_XZR, rm); 914} 915 916/* Register to register move using ADDI (move to/from SP). */ 917static void tcg_out_movr_sp(TCGContext *s, TCGType ext, TCGReg rd, TCGReg rn) 918{ 919 tcg_out_insn(s, 3401, ADDI, ext, rd, rn, 0); 920} 921 922/* This function is used for the Logical (immediate) instruction group. 923 The value of LIMM must satisfy IS_LIMM. See the comment above about 924 only supporting simplified logical immediates. */ 925static void tcg_out_logicali(TCGContext *s, AArch64Insn insn, TCGType ext, 926 TCGReg rd, TCGReg rn, uint64_t limm) 927{ 928 unsigned h, l, r, c; 929 930 tcg_debug_assert(is_limm(limm)); 931 932 h = clz64(limm); 933 l = ctz64(limm); 934 if (l == 0) { 935 r = 0; /* form 0....01....1 */ 936 c = ctz64(~limm) - 1; 937 if (h == 0) { 938 r = clz64(~limm); /* form 1..10..01..1 */ 939 c += r; 940 } 941 } else { 942 r = 64 - l; /* form 1....10....0 or 0..01..10..0 */ 943 c = r - h - 1; 944 } 945 if (ext == TCG_TYPE_I32) { 946 r &= 31; 947 c &= 31; 948 } 949 950 tcg_out_insn_3404(s, insn, ext, rd, rn, ext, r, c); 951} 952 953static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 954 TCGReg rd, int64_t v64) 955{ 956 bool q = type == TCG_TYPE_V128; 957 int cmode, imm8, i; 958 959 /* Test all bytes equal first. */ 960 if (vece == MO_8) { 961 imm8 = (uint8_t)v64; 962 tcg_out_insn(s, 3606, MOVI, q, rd, 0, 0xe, imm8); 963 return; 964 } 965 966 /* 967 * Test all bytes 0x00 or 0xff second. This can match cases that 968 * might otherwise take 2 or 3 insns for MO_16 or MO_32 below. 969 */ 970 for (i = imm8 = 0; i < 8; i++) { 971 uint8_t byte = v64 >> (i * 8); 972 if (byte == 0xff) { 973 imm8 |= 1 << i; 974 } else if (byte != 0) { 975 goto fail_bytes; 976 } 977 } 978 tcg_out_insn(s, 3606, MOVI, q, rd, 1, 0xe, imm8); 979 return; 980 fail_bytes: 981 982 /* 983 * Tests for various replications. For each element width, if we 984 * cannot find an expansion there's no point checking a larger 985 * width because we already know by replication it cannot match. 986 */ 987 if (vece == MO_16) { 988 uint16_t v16 = v64; 989 990 if (is_shimm16(v16, &cmode, &imm8)) { 991 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 992 return; 993 } 994 if (is_shimm16(~v16, &cmode, &imm8)) { 995 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 996 return; 997 } 998 999 /* 1000 * Otherwise, all remaining constants can be loaded in two insns: 1001 * rd = v16 & 0xff, rd |= v16 & 0xff00. 1002 */ 1003 tcg_out_insn(s, 3606, MOVI, q, rd, 0, 0x8, v16 & 0xff); 1004 tcg_out_insn(s, 3606, ORR, q, rd, 0, 0xa, v16 >> 8); 1005 return; 1006 } else if (vece == MO_32) { 1007 uint32_t v32 = v64; 1008 uint32_t n32 = ~v32; 1009 1010 if (is_shimm32(v32, &cmode, &imm8) || 1011 is_soimm32(v32, &cmode, &imm8) || 1012 is_fimm32(v32, &cmode, &imm8)) { 1013 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 1014 return; 1015 } 1016 if (is_shimm32(n32, &cmode, &imm8) || 1017 is_soimm32(n32, &cmode, &imm8)) { 1018 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 1019 return; 1020 } 1021 1022 /* 1023 * Restrict the set of constants to those we can load with 1024 * two instructions. Others we load from the pool. 1025 */ 1026 i = is_shimm32_pair(v32, &cmode, &imm8); 1027 if (i) { 1028 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 1029 tcg_out_insn(s, 3606, ORR, q, rd, 0, i, extract32(v32, i * 4, 8)); 1030 return; 1031 } 1032 i = is_shimm32_pair(n32, &cmode, &imm8); 1033 if (i) { 1034 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 1035 tcg_out_insn(s, 3606, BIC, q, rd, 0, i, extract32(n32, i * 4, 8)); 1036 return; 1037 } 1038 } else if (is_fimm64(v64, &cmode, &imm8)) { 1039 tcg_out_insn(s, 3606, MOVI, q, rd, 1, cmode, imm8); 1040 return; 1041 } 1042 1043 /* 1044 * As a last resort, load from the constant pool. Sadly there 1045 * is no LD1R (literal), so store the full 16-byte vector. 1046 */ 1047 if (type == TCG_TYPE_V128) { 1048 new_pool_l2(s, R_AARCH64_CONDBR19, s->code_ptr, 0, v64, v64); 1049 tcg_out_insn(s, 3305, LDR_v128, 0, rd); 1050 } else { 1051 new_pool_label(s, v64, R_AARCH64_CONDBR19, s->code_ptr, 0); 1052 tcg_out_insn(s, 3305, LDR_v64, 0, rd); 1053 } 1054} 1055 1056static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 1057 TCGReg rd, TCGReg rs) 1058{ 1059 int is_q = type - TCG_TYPE_V64; 1060 tcg_out_insn(s, 3605, DUP, is_q, rd, rs, 1 << vece, 0); 1061 return true; 1062} 1063 1064static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 1065 TCGReg r, TCGReg base, intptr_t offset) 1066{ 1067 TCGReg temp = TCG_REG_TMP0; 1068 1069 if (offset < -0xffffff || offset > 0xffffff) { 1070 tcg_out_movi(s, TCG_TYPE_PTR, temp, offset); 1071 tcg_out_insn(s, 3502, ADD, 1, temp, temp, base); 1072 base = temp; 1073 } else { 1074 AArch64Insn add_insn = I3401_ADDI; 1075 1076 if (offset < 0) { 1077 add_insn = I3401_SUBI; 1078 offset = -offset; 1079 } 1080 if (offset & 0xfff000) { 1081 tcg_out_insn_3401(s, add_insn, 1, temp, base, offset & 0xfff000); 1082 base = temp; 1083 } 1084 if (offset & 0xfff) { 1085 tcg_out_insn_3401(s, add_insn, 1, temp, base, offset & 0xfff); 1086 base = temp; 1087 } 1088 } 1089 tcg_out_insn(s, 3303, LD1R, type == TCG_TYPE_V128, r, base, vece); 1090 return true; 1091} 1092 1093static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg rd, 1094 tcg_target_long value) 1095{ 1096 tcg_target_long svalue = value; 1097 tcg_target_long ivalue = ~value; 1098 tcg_target_long t0, t1, t2; 1099 int s0, s1; 1100 AArch64Insn opc; 1101 1102 switch (type) { 1103 case TCG_TYPE_I32: 1104 case TCG_TYPE_I64: 1105 tcg_debug_assert(rd < 32); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 1111 /* For 32-bit values, discard potential garbage in value. For 64-bit 1112 values within [2**31, 2**32-1], we can create smaller sequences by 1113 interpreting this as a negative 32-bit number, while ensuring that 1114 the high 32 bits are cleared by setting SF=0. */ 1115 if (type == TCG_TYPE_I32 || (value & ~0xffffffffull) == 0) { 1116 svalue = (int32_t)value; 1117 value = (uint32_t)value; 1118 ivalue = (uint32_t)ivalue; 1119 type = TCG_TYPE_I32; 1120 } 1121 1122 /* Speed things up by handling the common case of small positive 1123 and negative values specially. */ 1124 if ((value & ~0xffffull) == 0) { 1125 tcg_out_insn(s, 3405, MOVZ, type, rd, value, 0); 1126 return; 1127 } else if ((ivalue & ~0xffffull) == 0) { 1128 tcg_out_insn(s, 3405, MOVN, type, rd, ivalue, 0); 1129 return; 1130 } 1131 1132 /* Check for bitfield immediates. For the benefit of 32-bit quantities, 1133 use the sign-extended value. That lets us match rotated values such 1134 as 0xff0000ff with the same 64-bit logic matching 0xffffffffff0000ff. */ 1135 if (is_limm(svalue)) { 1136 tcg_out_logicali(s, I3404_ORRI, type, rd, TCG_REG_XZR, svalue); 1137 return; 1138 } 1139 1140 /* Look for host pointer values within 4G of the PC. This happens 1141 often when loading pointers to QEMU's own data structures. */ 1142 if (type == TCG_TYPE_I64) { 1143 intptr_t src_rx = (intptr_t)tcg_splitwx_to_rx(s->code_ptr); 1144 tcg_target_long disp = value - src_rx; 1145 if (disp == sextract64(disp, 0, 21)) { 1146 tcg_out_insn(s, 3406, ADR, rd, disp); 1147 return; 1148 } 1149 disp = (value >> 12) - (src_rx >> 12); 1150 if (disp == sextract64(disp, 0, 21)) { 1151 tcg_out_insn(s, 3406, ADRP, rd, disp); 1152 if (value & 0xfff) { 1153 tcg_out_insn(s, 3401, ADDI, type, rd, rd, value & 0xfff); 1154 } 1155 return; 1156 } 1157 } 1158 1159 /* Would it take fewer insns to begin with MOVN? */ 1160 if (ctpop64(value) >= 32) { 1161 t0 = ivalue; 1162 opc = I3405_MOVN; 1163 } else { 1164 t0 = value; 1165 opc = I3405_MOVZ; 1166 } 1167 s0 = ctz64(t0) & (63 & -16); 1168 t1 = t0 & ~(0xffffull << s0); 1169 s1 = ctz64(t1) & (63 & -16); 1170 t2 = t1 & ~(0xffffull << s1); 1171 if (t2 == 0) { 1172 tcg_out_insn_3405(s, opc, type, rd, t0 >> s0, s0); 1173 if (t1 != 0) { 1174 tcg_out_insn(s, 3405, MOVK, type, rd, value >> s1, s1); 1175 } 1176 return; 1177 } 1178 1179 /* For more than 2 insns, dump it into the constant pool. */ 1180 new_pool_label(s, value, R_AARCH64_CONDBR19, s->code_ptr, 0); 1181 tcg_out_insn(s, 3305, LDR, 0, rd); 1182} 1183 1184static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) 1185{ 1186 return false; 1187} 1188 1189static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, 1190 tcg_target_long imm) 1191{ 1192 /* This function is only used for passing structs by reference. */ 1193 g_assert_not_reached(); 1194} 1195 1196/* Define something more legible for general use. */ 1197#define tcg_out_ldst_r tcg_out_insn_3310 1198 1199static void tcg_out_ldst(TCGContext *s, AArch64Insn insn, TCGReg rd, 1200 TCGReg rn, intptr_t offset, int lgsize) 1201{ 1202 /* If the offset is naturally aligned and in range, then we can 1203 use the scaled uimm12 encoding */ 1204 if (offset >= 0 && !(offset & ((1 << lgsize) - 1))) { 1205 uintptr_t scaled_uimm = offset >> lgsize; 1206 if (scaled_uimm <= 0xfff) { 1207 tcg_out_insn_3313(s, insn, rd, rn, scaled_uimm); 1208 return; 1209 } 1210 } 1211 1212 /* Small signed offsets can use the unscaled encoding. */ 1213 if (offset >= -256 && offset < 256) { 1214 tcg_out_insn_3312(s, insn, rd, rn, offset); 1215 return; 1216 } 1217 1218 /* Worst-case scenario, move offset to temp register, use reg offset. */ 1219 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, offset); 1220 tcg_out_ldst_r(s, insn, rd, rn, TCG_TYPE_I64, TCG_REG_TMP0); 1221} 1222 1223static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 1224{ 1225 if (ret == arg) { 1226 return true; 1227 } 1228 switch (type) { 1229 case TCG_TYPE_I32: 1230 case TCG_TYPE_I64: 1231 if (ret < 32 && arg < 32) { 1232 tcg_out_movr(s, type, ret, arg); 1233 break; 1234 } else if (ret < 32) { 1235 tcg_out_insn(s, 3605, UMOV, type, ret, arg, 0, 0); 1236 break; 1237 } else if (arg < 32) { 1238 tcg_out_insn(s, 3605, INS, 0, ret, arg, 4 << type, 0); 1239 break; 1240 } 1241 /* FALLTHRU */ 1242 1243 case TCG_TYPE_V64: 1244 tcg_debug_assert(ret >= 32 && arg >= 32); 1245 tcg_out_insn(s, 3616, ORR, 0, 0, ret, arg, arg); 1246 break; 1247 case TCG_TYPE_V128: 1248 tcg_debug_assert(ret >= 32 && arg >= 32); 1249 tcg_out_insn(s, 3616, ORR, 1, 0, ret, arg, arg); 1250 break; 1251 1252 default: 1253 g_assert_not_reached(); 1254 } 1255 return true; 1256} 1257 1258static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, 1259 TCGReg base, intptr_t ofs) 1260{ 1261 AArch64Insn insn; 1262 int lgsz; 1263 1264 switch (type) { 1265 case TCG_TYPE_I32: 1266 insn = (ret < 32 ? I3312_LDRW : I3312_LDRVS); 1267 lgsz = 2; 1268 break; 1269 case TCG_TYPE_I64: 1270 insn = (ret < 32 ? I3312_LDRX : I3312_LDRVD); 1271 lgsz = 3; 1272 break; 1273 case TCG_TYPE_V64: 1274 insn = I3312_LDRVD; 1275 lgsz = 3; 1276 break; 1277 case TCG_TYPE_V128: 1278 insn = I3312_LDRVQ; 1279 lgsz = 4; 1280 break; 1281 default: 1282 g_assert_not_reached(); 1283 } 1284 tcg_out_ldst(s, insn, ret, base, ofs, lgsz); 1285} 1286 1287static void tcg_out_st(TCGContext *s, TCGType type, TCGReg src, 1288 TCGReg base, intptr_t ofs) 1289{ 1290 AArch64Insn insn; 1291 int lgsz; 1292 1293 switch (type) { 1294 case TCG_TYPE_I32: 1295 insn = (src < 32 ? I3312_STRW : I3312_STRVS); 1296 lgsz = 2; 1297 break; 1298 case TCG_TYPE_I64: 1299 insn = (src < 32 ? I3312_STRX : I3312_STRVD); 1300 lgsz = 3; 1301 break; 1302 case TCG_TYPE_V64: 1303 insn = I3312_STRVD; 1304 lgsz = 3; 1305 break; 1306 case TCG_TYPE_V128: 1307 insn = I3312_STRVQ; 1308 lgsz = 4; 1309 break; 1310 default: 1311 g_assert_not_reached(); 1312 } 1313 tcg_out_ldst(s, insn, src, base, ofs, lgsz); 1314} 1315 1316static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 1317 TCGReg base, intptr_t ofs) 1318{ 1319 if (type <= TCG_TYPE_I64 && val == 0) { 1320 tcg_out_st(s, type, TCG_REG_XZR, base, ofs); 1321 return true; 1322 } 1323 return false; 1324} 1325 1326static inline void tcg_out_bfm(TCGContext *s, TCGType ext, TCGReg rd, 1327 TCGReg rn, unsigned int a, unsigned int b) 1328{ 1329 tcg_out_insn(s, 3402, BFM, ext, rd, rn, ext, a, b); 1330} 1331 1332static inline void tcg_out_ubfm(TCGContext *s, TCGType ext, TCGReg rd, 1333 TCGReg rn, unsigned int a, unsigned int b) 1334{ 1335 tcg_out_insn(s, 3402, UBFM, ext, rd, rn, ext, a, b); 1336} 1337 1338static inline void tcg_out_sbfm(TCGContext *s, TCGType ext, TCGReg rd, 1339 TCGReg rn, unsigned int a, unsigned int b) 1340{ 1341 tcg_out_insn(s, 3402, SBFM, ext, rd, rn, ext, a, b); 1342} 1343 1344static inline void tcg_out_extr(TCGContext *s, TCGType ext, TCGReg rd, 1345 TCGReg rn, TCGReg rm, unsigned int a) 1346{ 1347 tcg_out_insn(s, 3403, EXTR, ext, rd, rn, rm, a); 1348} 1349 1350static inline void tcg_out_dep(TCGContext *s, TCGType ext, TCGReg rd, 1351 TCGReg rn, unsigned lsb, unsigned width) 1352{ 1353 unsigned size = ext ? 64 : 32; 1354 unsigned a = (size - lsb) & (size - 1); 1355 unsigned b = width - 1; 1356 tcg_out_bfm(s, ext, rd, rn, a, b); 1357} 1358 1359static void tcg_out_cmp(TCGContext *s, TCGType ext, TCGCond cond, TCGReg a, 1360 tcg_target_long b, bool const_b) 1361{ 1362 if (is_tst_cond(cond)) { 1363 if (!const_b) { 1364 tcg_out_insn(s, 3510, ANDS, ext, TCG_REG_XZR, a, b); 1365 } else { 1366 tcg_out_logicali(s, I3404_ANDSI, ext, TCG_REG_XZR, a, b); 1367 } 1368 } else { 1369 if (!const_b) { 1370 tcg_out_insn(s, 3502, SUBS, ext, TCG_REG_XZR, a, b); 1371 } else if (b >= 0) { 1372 tcg_debug_assert(is_aimm(b)); 1373 tcg_out_insn(s, 3401, SUBSI, ext, TCG_REG_XZR, a, b); 1374 } else { 1375 tcg_debug_assert(is_aimm(-b)); 1376 tcg_out_insn(s, 3401, ADDSI, ext, TCG_REG_XZR, a, -b); 1377 } 1378 } 1379} 1380 1381static void tcg_out_goto(TCGContext *s, const tcg_insn_unit *target) 1382{ 1383 ptrdiff_t offset = tcg_pcrel_diff(s, target) >> 2; 1384 tcg_debug_assert(offset == sextract64(offset, 0, 26)); 1385 tcg_out_insn(s, 3206, B, offset); 1386} 1387 1388static void tcg_out_call_int(TCGContext *s, const tcg_insn_unit *target) 1389{ 1390 ptrdiff_t offset = tcg_pcrel_diff(s, target) >> 2; 1391 if (offset == sextract64(offset, 0, 26)) { 1392 tcg_out_insn(s, 3206, BL, offset); 1393 } else { 1394 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, (intptr_t)target); 1395 tcg_out_insn(s, 3207, BLR, TCG_REG_TMP0); 1396 } 1397} 1398 1399static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target, 1400 const TCGHelperInfo *info) 1401{ 1402 tcg_out_call_int(s, target); 1403} 1404 1405static inline void tcg_out_goto_label(TCGContext *s, TCGLabel *l) 1406{ 1407 if (!l->has_value) { 1408 tcg_out_reloc(s, s->code_ptr, R_AARCH64_JUMP26, l, 0); 1409 tcg_out_insn(s, 3206, B, 0); 1410 } else { 1411 tcg_out_goto(s, l->u.value_ptr); 1412 } 1413} 1414 1415static void tcg_out_brcond(TCGContext *s, TCGType ext, TCGCond c, TCGArg a, 1416 TCGArg b, bool b_const, TCGLabel *l) 1417{ 1418 int tbit = -1; 1419 bool need_cmp = true; 1420 1421 switch (c) { 1422 case TCG_COND_EQ: 1423 case TCG_COND_NE: 1424 /* cmp xN,0; b.ne L -> cbnz xN,L */ 1425 if (b_const && b == 0) { 1426 need_cmp = false; 1427 } 1428 break; 1429 case TCG_COND_LT: 1430 case TCG_COND_GE: 1431 /* cmp xN,0; b.mi L -> tbnz xN,63,L */ 1432 if (b_const && b == 0) { 1433 c = (c == TCG_COND_LT ? TCG_COND_TSTNE : TCG_COND_TSTEQ); 1434 tbit = ext ? 63 : 31; 1435 need_cmp = false; 1436 } 1437 break; 1438 case TCG_COND_TSTEQ: 1439 case TCG_COND_TSTNE: 1440 /* tst xN,0xffffffff; b.ne L -> cbnz wN,L */ 1441 if (b_const && b == UINT32_MAX) { 1442 c = tcg_tst_eqne_cond(c); 1443 ext = TCG_TYPE_I32; 1444 need_cmp = false; 1445 break; 1446 } 1447 /* tst xN,1<<B; b.ne L -> tbnz xN,B,L */ 1448 if (b_const && is_power_of_2(b)) { 1449 tbit = ctz64(b); 1450 need_cmp = false; 1451 } 1452 break; 1453 default: 1454 break; 1455 } 1456 1457 if (need_cmp) { 1458 tcg_out_cmp(s, ext, c, a, b, b_const); 1459 tcg_out_reloc(s, s->code_ptr, R_AARCH64_CONDBR19, l, 0); 1460 tcg_out_insn(s, 3202, B_C, c, 0); 1461 return; 1462 } 1463 1464 if (tbit >= 0) { 1465 tcg_out_reloc(s, s->code_ptr, R_AARCH64_TSTBR14, l, 0); 1466 switch (c) { 1467 case TCG_COND_TSTEQ: 1468 tcg_out_insn(s, 3205, TBZ, a, tbit, 0); 1469 break; 1470 case TCG_COND_TSTNE: 1471 tcg_out_insn(s, 3205, TBNZ, a, tbit, 0); 1472 break; 1473 default: 1474 g_assert_not_reached(); 1475 } 1476 } else { 1477 tcg_out_reloc(s, s->code_ptr, R_AARCH64_CONDBR19, l, 0); 1478 switch (c) { 1479 case TCG_COND_EQ: 1480 tcg_out_insn(s, 3201, CBZ, ext, a, 0); 1481 break; 1482 case TCG_COND_NE: 1483 tcg_out_insn(s, 3201, CBNZ, ext, a, 0); 1484 break; 1485 default: 1486 g_assert_not_reached(); 1487 } 1488 } 1489} 1490 1491static inline void tcg_out_rev(TCGContext *s, int ext, MemOp s_bits, 1492 TCGReg rd, TCGReg rn) 1493{ 1494 /* REV, REV16, REV32 */ 1495 tcg_out_insn_3507(s, I3507_REV | (s_bits << 10), ext, rd, rn); 1496} 1497 1498static inline void tcg_out_sxt(TCGContext *s, TCGType ext, MemOp s_bits, 1499 TCGReg rd, TCGReg rn) 1500{ 1501 /* Using ALIASes SXTB, SXTH, SXTW, of SBFM Xd, Xn, #0, #7|15|31 */ 1502 int bits = (8 << s_bits) - 1; 1503 tcg_out_sbfm(s, ext, rd, rn, 0, bits); 1504} 1505 1506static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg rd, TCGReg rn) 1507{ 1508 tcg_out_sxt(s, type, MO_8, rd, rn); 1509} 1510 1511static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg rd, TCGReg rn) 1512{ 1513 tcg_out_sxt(s, type, MO_16, rd, rn); 1514} 1515 1516static void tcg_out_ext32s(TCGContext *s, TCGReg rd, TCGReg rn) 1517{ 1518 tcg_out_sxt(s, TCG_TYPE_I64, MO_32, rd, rn); 1519} 1520 1521static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg rd, TCGReg rn) 1522{ 1523 tcg_out_ext32s(s, rd, rn); 1524} 1525 1526static inline void tcg_out_uxt(TCGContext *s, MemOp s_bits, 1527 TCGReg rd, TCGReg rn) 1528{ 1529 /* Using ALIASes UXTB, UXTH of UBFM Wd, Wn, #0, #7|15 */ 1530 int bits = (8 << s_bits) - 1; 1531 tcg_out_ubfm(s, 0, rd, rn, 0, bits); 1532} 1533 1534static void tcg_out_ext8u(TCGContext *s, TCGReg rd, TCGReg rn) 1535{ 1536 tcg_out_uxt(s, MO_8, rd, rn); 1537} 1538 1539static void tcg_out_ext16u(TCGContext *s, TCGReg rd, TCGReg rn) 1540{ 1541 tcg_out_uxt(s, MO_16, rd, rn); 1542} 1543 1544static void tcg_out_ext32u(TCGContext *s, TCGReg rd, TCGReg rn) 1545{ 1546 tcg_out_movr(s, TCG_TYPE_I32, rd, rn); 1547} 1548 1549static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg rd, TCGReg rn) 1550{ 1551 tcg_out_ext32u(s, rd, rn); 1552} 1553 1554static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg rd, TCGReg rn) 1555{ 1556 tcg_out_mov(s, TCG_TYPE_I32, rd, rn); 1557} 1558 1559static void tcg_out_addsub2(TCGContext *s, TCGType ext, TCGReg rl, 1560 TCGReg rh, TCGReg al, TCGReg ah, 1561 tcg_target_long bl, tcg_target_long bh, 1562 bool const_bl, bool const_bh, bool sub) 1563{ 1564 TCGReg orig_rl = rl; 1565 AArch64Insn insn; 1566 1567 if (rl == ah || (!const_bh && rl == bh)) { 1568 rl = TCG_REG_TMP0; 1569 } 1570 1571 if (const_bl) { 1572 if (bl < 0) { 1573 bl = -bl; 1574 insn = sub ? I3401_ADDSI : I3401_SUBSI; 1575 } else { 1576 insn = sub ? I3401_SUBSI : I3401_ADDSI; 1577 } 1578 1579 if (unlikely(al == TCG_REG_XZR)) { 1580 /* ??? We want to allow al to be zero for the benefit of 1581 negation via subtraction. However, that leaves open the 1582 possibility of adding 0+const in the low part, and the 1583 immediate add instructions encode XSP not XZR. Don't try 1584 anything more elaborate here than loading another zero. */ 1585 al = TCG_REG_TMP0; 1586 tcg_out_movi(s, ext, al, 0); 1587 } 1588 tcg_out_insn_3401(s, insn, ext, rl, al, bl); 1589 } else { 1590 tcg_out_insn_3502(s, sub ? I3502_SUBS : I3502_ADDS, ext, rl, al, bl); 1591 } 1592 1593 insn = I3503_ADC; 1594 if (const_bh) { 1595 /* Note that the only two constants we support are 0 and -1, and 1596 that SBC = rn + ~rm + c, so adc -1 is sbc 0, and vice-versa. */ 1597 if ((bh != 0) ^ sub) { 1598 insn = I3503_SBC; 1599 } 1600 bh = TCG_REG_XZR; 1601 } else if (sub) { 1602 insn = I3503_SBC; 1603 } 1604 tcg_out_insn_3503(s, insn, ext, rh, ah, bh); 1605 1606 tcg_out_mov(s, ext, orig_rl, rl); 1607} 1608 1609static inline void tcg_out_mb(TCGContext *s, TCGArg a0) 1610{ 1611 static const uint32_t sync[] = { 1612 [0 ... TCG_MO_ALL] = DMB_ISH | DMB_LD | DMB_ST, 1613 [TCG_MO_ST_ST] = DMB_ISH | DMB_ST, 1614 [TCG_MO_LD_LD] = DMB_ISH | DMB_LD, 1615 [TCG_MO_LD_ST] = DMB_ISH | DMB_LD, 1616 [TCG_MO_LD_ST | TCG_MO_LD_LD] = DMB_ISH | DMB_LD, 1617 }; 1618 tcg_out32(s, sync[a0 & TCG_MO_ALL]); 1619} 1620 1621typedef struct { 1622 TCGReg base; 1623 TCGReg index; 1624 TCGType index_ext; 1625 TCGAtomAlign aa; 1626} HostAddress; 1627 1628bool tcg_target_has_memory_bswap(MemOp memop) 1629{ 1630 return false; 1631} 1632 1633static const TCGLdstHelperParam ldst_helper_param = { 1634 .ntmp = 1, .tmp = { TCG_REG_TMP0 } 1635}; 1636 1637static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) 1638{ 1639 MemOp opc = get_memop(lb->oi); 1640 1641 if (!reloc_pc19(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1642 return false; 1643 } 1644 1645 tcg_out_ld_helper_args(s, lb, &ldst_helper_param); 1646 tcg_out_call_int(s, qemu_ld_helpers[opc & MO_SIZE]); 1647 tcg_out_ld_helper_ret(s, lb, false, &ldst_helper_param); 1648 tcg_out_goto(s, lb->raddr); 1649 return true; 1650} 1651 1652static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) 1653{ 1654 MemOp opc = get_memop(lb->oi); 1655 1656 if (!reloc_pc19(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1657 return false; 1658 } 1659 1660 tcg_out_st_helper_args(s, lb, &ldst_helper_param); 1661 tcg_out_call_int(s, qemu_st_helpers[opc & MO_SIZE]); 1662 tcg_out_goto(s, lb->raddr); 1663 return true; 1664} 1665 1666/* We expect to use a 7-bit scaled negative offset from ENV. */ 1667#define MIN_TLB_MASK_TABLE_OFS -512 1668 1669/* 1670 * For system-mode, perform the TLB load and compare. 1671 * For user-mode, perform any required alignment tests. 1672 * In both cases, return a TCGLabelQemuLdst structure if the slow path 1673 * is required and fill in @h with the host address for the fast path. 1674 */ 1675static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h, 1676 TCGReg addr_reg, MemOpIdx oi, 1677 bool is_ld) 1678{ 1679 TCGType addr_type = s->addr_type; 1680 TCGLabelQemuLdst *ldst = NULL; 1681 MemOp opc = get_memop(oi); 1682 MemOp s_bits = opc & MO_SIZE; 1683 unsigned a_mask; 1684 1685 h->aa = atom_and_align_for_opc(s, opc, 1686 have_lse2 ? MO_ATOM_WITHIN16 1687 : MO_ATOM_IFALIGN, 1688 s_bits == MO_128); 1689 a_mask = (1 << h->aa.align) - 1; 1690 1691 if (tcg_use_softmmu) { 1692 unsigned s_mask = (1u << s_bits) - 1; 1693 unsigned mem_index = get_mmuidx(oi); 1694 TCGReg addr_adj; 1695 TCGType mask_type; 1696 uint64_t compare_mask; 1697 1698 ldst = new_ldst_label(s); 1699 ldst->is_ld = is_ld; 1700 ldst->oi = oi; 1701 ldst->addr_reg = addr_reg; 1702 1703 mask_type = (s->page_bits + s->tlb_dyn_max_bits > 32 1704 ? TCG_TYPE_I64 : TCG_TYPE_I32); 1705 1706 /* Load cpu->neg.tlb.f[mmu_idx].{mask,table} into {tmp0,tmp1}. */ 1707 QEMU_BUILD_BUG_ON(offsetof(CPUTLBDescFast, mask) != 0); 1708 QEMU_BUILD_BUG_ON(offsetof(CPUTLBDescFast, table) != 8); 1709 tcg_out_insn(s, 3314, LDP, TCG_REG_TMP0, TCG_REG_TMP1, TCG_AREG0, 1710 tlb_mask_table_ofs(s, mem_index), 1, 0); 1711 1712 /* Extract the TLB index from the address into X0. */ 1713 tcg_out_insn(s, 3502S, AND_LSR, mask_type == TCG_TYPE_I64, 1714 TCG_REG_TMP0, TCG_REG_TMP0, addr_reg, 1715 s->page_bits - CPU_TLB_ENTRY_BITS); 1716 1717 /* Add the tlb_table pointer, forming the CPUTLBEntry address. */ 1718 tcg_out_insn(s, 3502, ADD, 1, TCG_REG_TMP1, TCG_REG_TMP1, TCG_REG_TMP0); 1719 1720 /* Load the tlb comparator into TMP0, and the fast path addend. */ 1721 QEMU_BUILD_BUG_ON(HOST_BIG_ENDIAN); 1722 tcg_out_ld(s, addr_type, TCG_REG_TMP0, TCG_REG_TMP1, 1723 is_ld ? offsetof(CPUTLBEntry, addr_read) 1724 : offsetof(CPUTLBEntry, addr_write)); 1725 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1, 1726 offsetof(CPUTLBEntry, addend)); 1727 1728 /* 1729 * For aligned accesses, we check the first byte and include 1730 * the alignment bits within the address. For unaligned access, 1731 * we check that we don't cross pages using the address of the 1732 * last byte of the access. 1733 */ 1734 if (a_mask >= s_mask) { 1735 addr_adj = addr_reg; 1736 } else { 1737 addr_adj = TCG_REG_TMP2; 1738 tcg_out_insn(s, 3401, ADDI, addr_type, 1739 addr_adj, addr_reg, s_mask - a_mask); 1740 } 1741 compare_mask = (uint64_t)s->page_mask | a_mask; 1742 1743 /* Store the page mask part of the address into TMP2. */ 1744 tcg_out_logicali(s, I3404_ANDI, addr_type, TCG_REG_TMP2, 1745 addr_adj, compare_mask); 1746 1747 /* Perform the address comparison. */ 1748 tcg_out_cmp(s, addr_type, TCG_COND_NE, TCG_REG_TMP0, TCG_REG_TMP2, 0); 1749 1750 /* If not equal, we jump to the slow path. */ 1751 ldst->label_ptr[0] = s->code_ptr; 1752 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1753 1754 h->base = TCG_REG_TMP1; 1755 h->index = addr_reg; 1756 h->index_ext = addr_type; 1757 } else { 1758 if (a_mask) { 1759 ldst = new_ldst_label(s); 1760 1761 ldst->is_ld = is_ld; 1762 ldst->oi = oi; 1763 ldst->addr_reg = addr_reg; 1764 1765 /* tst addr, #mask */ 1766 tcg_out_logicali(s, I3404_ANDSI, 0, TCG_REG_XZR, addr_reg, a_mask); 1767 1768 /* b.ne slow_path */ 1769 ldst->label_ptr[0] = s->code_ptr; 1770 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1771 } 1772 1773 if (guest_base || addr_type == TCG_TYPE_I32) { 1774 h->base = TCG_REG_GUEST_BASE; 1775 h->index = addr_reg; 1776 h->index_ext = addr_type; 1777 } else { 1778 h->base = addr_reg; 1779 h->index = TCG_REG_XZR; 1780 h->index_ext = TCG_TYPE_I64; 1781 } 1782 } 1783 1784 return ldst; 1785} 1786 1787static void tcg_out_qemu_ld_direct(TCGContext *s, MemOp memop, TCGType ext, 1788 TCGReg data_r, HostAddress h) 1789{ 1790 switch (memop & MO_SSIZE) { 1791 case MO_UB: 1792 tcg_out_ldst_r(s, I3312_LDRB, data_r, h.base, h.index_ext, h.index); 1793 break; 1794 case MO_SB: 1795 tcg_out_ldst_r(s, ext ? I3312_LDRSBX : I3312_LDRSBW, 1796 data_r, h.base, h.index_ext, h.index); 1797 break; 1798 case MO_UW: 1799 tcg_out_ldst_r(s, I3312_LDRH, data_r, h.base, h.index_ext, h.index); 1800 break; 1801 case MO_SW: 1802 tcg_out_ldst_r(s, (ext ? I3312_LDRSHX : I3312_LDRSHW), 1803 data_r, h.base, h.index_ext, h.index); 1804 break; 1805 case MO_UL: 1806 tcg_out_ldst_r(s, I3312_LDRW, data_r, h.base, h.index_ext, h.index); 1807 break; 1808 case MO_SL: 1809 tcg_out_ldst_r(s, I3312_LDRSWX, data_r, h.base, h.index_ext, h.index); 1810 break; 1811 case MO_UQ: 1812 tcg_out_ldst_r(s, I3312_LDRX, data_r, h.base, h.index_ext, h.index); 1813 break; 1814 default: 1815 g_assert_not_reached(); 1816 } 1817} 1818 1819static void tcg_out_qemu_st_direct(TCGContext *s, MemOp memop, 1820 TCGReg data_r, HostAddress h) 1821{ 1822 switch (memop & MO_SIZE) { 1823 case MO_8: 1824 tcg_out_ldst_r(s, I3312_STRB, data_r, h.base, h.index_ext, h.index); 1825 break; 1826 case MO_16: 1827 tcg_out_ldst_r(s, I3312_STRH, data_r, h.base, h.index_ext, h.index); 1828 break; 1829 case MO_32: 1830 tcg_out_ldst_r(s, I3312_STRW, data_r, h.base, h.index_ext, h.index); 1831 break; 1832 case MO_64: 1833 tcg_out_ldst_r(s, I3312_STRX, data_r, h.base, h.index_ext, h.index); 1834 break; 1835 default: 1836 g_assert_not_reached(); 1837 } 1838} 1839 1840static void tcg_out_qemu_ld(TCGContext *s, TCGReg data_reg, TCGReg addr_reg, 1841 MemOpIdx oi, TCGType data_type) 1842{ 1843 TCGLabelQemuLdst *ldst; 1844 HostAddress h; 1845 1846 ldst = prepare_host_addr(s, &h, addr_reg, oi, true); 1847 tcg_out_qemu_ld_direct(s, get_memop(oi), data_type, data_reg, h); 1848 1849 if (ldst) { 1850 ldst->type = data_type; 1851 ldst->datalo_reg = data_reg; 1852 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1853 } 1854} 1855 1856static void tcg_out_qemu_st(TCGContext *s, TCGReg data_reg, TCGReg addr_reg, 1857 MemOpIdx oi, TCGType data_type) 1858{ 1859 TCGLabelQemuLdst *ldst; 1860 HostAddress h; 1861 1862 ldst = prepare_host_addr(s, &h, addr_reg, oi, false); 1863 tcg_out_qemu_st_direct(s, get_memop(oi), data_reg, h); 1864 1865 if (ldst) { 1866 ldst->type = data_type; 1867 ldst->datalo_reg = data_reg; 1868 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1869 } 1870} 1871 1872static void tcg_out_qemu_ldst_i128(TCGContext *s, TCGReg datalo, TCGReg datahi, 1873 TCGReg addr_reg, MemOpIdx oi, bool is_ld) 1874{ 1875 TCGLabelQemuLdst *ldst; 1876 HostAddress h; 1877 TCGReg base; 1878 bool use_pair; 1879 1880 ldst = prepare_host_addr(s, &h, addr_reg, oi, is_ld); 1881 1882 /* Compose the final address, as LDP/STP have no indexing. */ 1883 if (h.index == TCG_REG_XZR) { 1884 base = h.base; 1885 } else { 1886 base = TCG_REG_TMP2; 1887 if (h.index_ext == TCG_TYPE_I32) { 1888 /* add base, base, index, uxtw */ 1889 tcg_out_insn(s, 3501, ADD, TCG_TYPE_I64, base, 1890 h.base, h.index, MO_32, 0); 1891 } else { 1892 /* add base, base, index */ 1893 tcg_out_insn(s, 3502, ADD, 1, base, h.base, h.index); 1894 } 1895 } 1896 1897 use_pair = h.aa.atom < MO_128 || have_lse2; 1898 1899 if (!use_pair) { 1900 tcg_insn_unit *branch = NULL; 1901 TCGReg ll, lh, sl, sh; 1902 1903 /* 1904 * If we have already checked for 16-byte alignment, that's all 1905 * we need. Otherwise we have determined that misaligned atomicity 1906 * may be handled with two 8-byte loads. 1907 */ 1908 if (h.aa.align < MO_128) { 1909 /* 1910 * TODO: align should be MO_64, so we only need test bit 3, 1911 * which means we could use TBNZ instead of ANDS+B_C. 1912 */ 1913 tcg_out_logicali(s, I3404_ANDSI, 0, TCG_REG_XZR, addr_reg, 15); 1914 branch = s->code_ptr; 1915 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1916 use_pair = true; 1917 } 1918 1919 if (is_ld) { 1920 /* 1921 * 16-byte atomicity without LSE2 requires LDXP+STXP loop: 1922 * ldxp lo, hi, [base] 1923 * stxp t0, lo, hi, [base] 1924 * cbnz t0, .-8 1925 * Require no overlap between data{lo,hi} and base. 1926 */ 1927 if (datalo == base || datahi == base) { 1928 tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_TMP2, base); 1929 base = TCG_REG_TMP2; 1930 } 1931 ll = sl = datalo; 1932 lh = sh = datahi; 1933 } else { 1934 /* 1935 * 16-byte atomicity without LSE2 requires LDXP+STXP loop: 1936 * 1: ldxp t0, t1, [base] 1937 * stxp t0, lo, hi, [base] 1938 * cbnz t0, 1b 1939 */ 1940 tcg_debug_assert(base != TCG_REG_TMP0 && base != TCG_REG_TMP1); 1941 ll = TCG_REG_TMP0; 1942 lh = TCG_REG_TMP1; 1943 sl = datalo; 1944 sh = datahi; 1945 } 1946 1947 tcg_out_insn(s, 3306, LDXP, TCG_REG_XZR, ll, lh, base); 1948 tcg_out_insn(s, 3306, STXP, TCG_REG_TMP0, sl, sh, base); 1949 tcg_out_insn(s, 3201, CBNZ, 0, TCG_REG_TMP0, -2); 1950 1951 if (use_pair) { 1952 /* "b .+8", branching across the one insn of use_pair. */ 1953 tcg_out_insn(s, 3206, B, 2); 1954 reloc_pc19(branch, tcg_splitwx_to_rx(s->code_ptr)); 1955 } 1956 } 1957 1958 if (use_pair) { 1959 if (is_ld) { 1960 tcg_out_insn(s, 3314, LDP, datalo, datahi, base, 0, 1, 0); 1961 } else { 1962 tcg_out_insn(s, 3314, STP, datalo, datahi, base, 0, 1, 0); 1963 } 1964 } 1965 1966 if (ldst) { 1967 ldst->type = TCG_TYPE_I128; 1968 ldst->datalo_reg = datalo; 1969 ldst->datahi_reg = datahi; 1970 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1971 } 1972} 1973 1974static const tcg_insn_unit *tb_ret_addr; 1975 1976static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0) 1977{ 1978 const tcg_insn_unit *target; 1979 ptrdiff_t offset; 1980 1981 /* Reuse the zeroing that exists for goto_ptr. */ 1982 if (a0 == 0) { 1983 target = tcg_code_gen_epilogue; 1984 } else { 1985 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_X0, a0); 1986 target = tb_ret_addr; 1987 } 1988 1989 offset = tcg_pcrel_diff(s, target) >> 2; 1990 if (offset == sextract64(offset, 0, 26)) { 1991 tcg_out_insn(s, 3206, B, offset); 1992 } else { 1993 /* 1994 * Only x16/x17 generate BTI type Jump (2), 1995 * other registers generate BTI type Jump|Call (3). 1996 */ 1997 QEMU_BUILD_BUG_ON(TCG_REG_TMP0 != TCG_REG_X16); 1998 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, (intptr_t)target); 1999 tcg_out_insn(s, 3207, BR, TCG_REG_TMP0); 2000 } 2001} 2002 2003static void tcg_out_goto_tb(TCGContext *s, int which) 2004{ 2005 /* 2006 * Direct branch, or indirect address load, will be patched 2007 * by tb_target_set_jmp_target. Assert indirect load offset 2008 * in range early, regardless of direct branch distance. 2009 */ 2010 intptr_t i_off = tcg_pcrel_diff(s, (void *)get_jmp_target_addr(s, which)); 2011 tcg_debug_assert(i_off == sextract64(i_off, 0, 21)); 2012 2013 set_jmp_insn_offset(s, which); 2014 tcg_out32(s, I3206_B); 2015 tcg_out_insn(s, 3207, BR, TCG_REG_TMP0); 2016 set_jmp_reset_offset(s, which); 2017 tcg_out_bti(s, BTI_J); 2018} 2019 2020void tb_target_set_jmp_target(const TranslationBlock *tb, int n, 2021 uintptr_t jmp_rx, uintptr_t jmp_rw) 2022{ 2023 uintptr_t d_addr = tb->jmp_target_addr[n]; 2024 ptrdiff_t d_offset = d_addr - jmp_rx; 2025 tcg_insn_unit insn; 2026 2027 /* Either directly branch, or indirect branch load. */ 2028 if (d_offset == sextract64(d_offset, 0, 28)) { 2029 insn = deposit32(I3206_B, 0, 26, d_offset >> 2); 2030 } else { 2031 uintptr_t i_addr = (uintptr_t)&tb->jmp_target_addr[n]; 2032 ptrdiff_t i_offset = i_addr - jmp_rx; 2033 2034 /* Note that we asserted this in range in tcg_out_goto_tb. */ 2035 insn = deposit32(I3305_LDR | TCG_REG_TMP0, 5, 19, i_offset >> 2); 2036 } 2037 qatomic_set((uint32_t *)jmp_rw, insn); 2038 flush_idcache_range(jmp_rx, jmp_rw, 4); 2039} 2040 2041 2042static void tgen_add(TCGContext *s, TCGType type, 2043 TCGReg a0, TCGReg a1, TCGReg a2) 2044{ 2045 tcg_out_insn(s, 3502, ADD, type, a0, a1, a2); 2046} 2047 2048static void tgen_addi(TCGContext *s, TCGType type, 2049 TCGReg a0, TCGReg a1, tcg_target_long a2) 2050{ 2051 if (a2 >= 0) { 2052 tcg_out_insn(s, 3401, ADDI, type, a0, a1, a2); 2053 } else { 2054 tcg_out_insn(s, 3401, SUBI, type, a0, a1, -a2); 2055 } 2056} 2057 2058static const TCGOutOpBinary outop_add = { 2059 .base.static_constraint = C_O1_I2(r, r, rA), 2060 .out_rrr = tgen_add, 2061 .out_rri = tgen_addi, 2062}; 2063 2064static void tgen_and(TCGContext *s, TCGType type, 2065 TCGReg a0, TCGReg a1, TCGReg a2) 2066{ 2067 tcg_out_insn(s, 3510, AND, type, a0, a1, a2); 2068} 2069 2070static void tgen_andi(TCGContext *s, TCGType type, 2071 TCGReg a0, TCGReg a1, tcg_target_long a2) 2072{ 2073 tcg_out_logicali(s, I3404_ANDI, type, a0, a1, a2); 2074} 2075 2076static const TCGOutOpBinary outop_and = { 2077 .base.static_constraint = C_O1_I2(r, r, rL), 2078 .out_rrr = tgen_and, 2079 .out_rri = tgen_andi, 2080}; 2081 2082static void tgen_andc(TCGContext *s, TCGType type, 2083 TCGReg a0, TCGReg a1, TCGReg a2) 2084{ 2085 tcg_out_insn(s, 3510, BIC, type, a0, a1, a2); 2086} 2087 2088static const TCGOutOpBinary outop_andc = { 2089 .base.static_constraint = C_O1_I2(r, r, r), 2090 .out_rrr = tgen_andc, 2091}; 2092 2093static void tgen_clz(TCGContext *s, TCGType type, 2094 TCGReg a0, TCGReg a1, TCGReg a2) 2095{ 2096 tcg_out_cmp(s, type, TCG_COND_NE, a1, 0, true); 2097 tcg_out_insn(s, 3507, CLZ, type, TCG_REG_TMP0, a1); 2098 tcg_out_insn(s, 3506, CSEL, type, a0, TCG_REG_TMP0, a2, TCG_COND_NE); 2099} 2100 2101static void tgen_clzi(TCGContext *s, TCGType type, 2102 TCGReg a0, TCGReg a1, tcg_target_long a2) 2103{ 2104 if (a2 == (type == TCG_TYPE_I32 ? 32 : 64)) { 2105 tcg_out_insn(s, 3507, CLZ, type, a0, a1); 2106 return; 2107 } 2108 2109 tcg_out_cmp(s, type, TCG_COND_NE, a1, 0, true); 2110 tcg_out_insn(s, 3507, CLZ, type, a0, a1); 2111 2112 switch (a2) { 2113 case -1: 2114 tcg_out_insn(s, 3506, CSINV, type, a0, a0, TCG_REG_XZR, TCG_COND_NE); 2115 break; 2116 case 0: 2117 tcg_out_insn(s, 3506, CSEL, type, a0, a0, TCG_REG_XZR, TCG_COND_NE); 2118 break; 2119 default: 2120 tcg_out_movi(s, type, TCG_REG_TMP0, a2); 2121 tcg_out_insn(s, 3506, CSEL, type, a0, a0, TCG_REG_TMP0, TCG_COND_NE); 2122 break; 2123 } 2124} 2125 2126static const TCGOutOpBinary outop_clz = { 2127 .base.static_constraint = C_O1_I2(r, r, rAL), 2128 .out_rrr = tgen_clz, 2129 .out_rri = tgen_clzi, 2130}; 2131 2132static const TCGOutOpUnary outop_ctpop = { 2133 .base.static_constraint = C_NotImplemented, 2134}; 2135 2136static void tgen_ctz(TCGContext *s, TCGType type, 2137 TCGReg a0, TCGReg a1, TCGReg a2) 2138{ 2139 tcg_out_insn(s, 3507, RBIT, type, TCG_REG_TMP0, a1); 2140 tgen_clz(s, type, a0, TCG_REG_TMP0, a2); 2141} 2142 2143static void tgen_ctzi(TCGContext *s, TCGType type, 2144 TCGReg a0, TCGReg a1, tcg_target_long a2) 2145{ 2146 tcg_out_insn(s, 3507, RBIT, type, TCG_REG_TMP0, a1); 2147 tgen_clzi(s, type, a0, TCG_REG_TMP0, a2); 2148} 2149 2150static const TCGOutOpBinary outop_ctz = { 2151 .base.static_constraint = C_O1_I2(r, r, rAL), 2152 .out_rrr = tgen_ctz, 2153 .out_rri = tgen_ctzi, 2154}; 2155 2156static void tgen_divs(TCGContext *s, TCGType type, 2157 TCGReg a0, TCGReg a1, TCGReg a2) 2158{ 2159 tcg_out_insn(s, 3508, SDIV, type, a0, a1, a2); 2160} 2161 2162static const TCGOutOpBinary outop_divs = { 2163 .base.static_constraint = C_O1_I2(r, r, r), 2164 .out_rrr = tgen_divs, 2165}; 2166 2167static const TCGOutOpDivRem outop_divs2 = { 2168 .base.static_constraint = C_NotImplemented, 2169}; 2170 2171static void tgen_divu(TCGContext *s, TCGType type, 2172 TCGReg a0, TCGReg a1, TCGReg a2) 2173{ 2174 tcg_out_insn(s, 3508, UDIV, type, a0, a1, a2); 2175} 2176 2177static const TCGOutOpBinary outop_divu = { 2178 .base.static_constraint = C_O1_I2(r, r, r), 2179 .out_rrr = tgen_divu, 2180}; 2181 2182static const TCGOutOpDivRem outop_divu2 = { 2183 .base.static_constraint = C_NotImplemented, 2184}; 2185 2186static void tgen_eqv(TCGContext *s, TCGType type, 2187 TCGReg a0, TCGReg a1, TCGReg a2) 2188{ 2189 tcg_out_insn(s, 3510, EON, type, a0, a1, a2); 2190} 2191 2192static const TCGOutOpBinary outop_eqv = { 2193 .base.static_constraint = C_O1_I2(r, r, r), 2194 .out_rrr = tgen_eqv, 2195}; 2196 2197static void tgen_mul(TCGContext *s, TCGType type, 2198 TCGReg a0, TCGReg a1, TCGReg a2) 2199{ 2200 tcg_out_insn(s, 3509, MADD, type, a0, a1, a2, TCG_REG_XZR); 2201} 2202 2203static const TCGOutOpBinary outop_mul = { 2204 .base.static_constraint = C_O1_I2(r, r, r), 2205 .out_rrr = tgen_mul, 2206}; 2207 2208static const TCGOutOpMul2 outop_muls2 = { 2209 .base.static_constraint = C_NotImplemented, 2210}; 2211 2212static TCGConstraintSetIndex cset_mulh(TCGType type, unsigned flags) 2213{ 2214 return type == TCG_TYPE_I64 ? C_O1_I2(r, r, r) : C_NotImplemented; 2215} 2216 2217static void tgen_mulsh(TCGContext *s, TCGType type, 2218 TCGReg a0, TCGReg a1, TCGReg a2) 2219{ 2220 tcg_out_insn(s, 3508, SMULH, TCG_TYPE_I64, a0, a1, a2); 2221} 2222 2223static const TCGOutOpBinary outop_mulsh = { 2224 .base.static_constraint = C_Dynamic, 2225 .base.dynamic_constraint = cset_mulh, 2226 .out_rrr = tgen_mulsh, 2227}; 2228 2229static const TCGOutOpMul2 outop_mulu2 = { 2230 .base.static_constraint = C_NotImplemented, 2231}; 2232 2233static void tgen_muluh(TCGContext *s, TCGType type, 2234 TCGReg a0, TCGReg a1, TCGReg a2) 2235{ 2236 tcg_out_insn(s, 3508, UMULH, TCG_TYPE_I64, a0, a1, a2); 2237} 2238 2239static const TCGOutOpBinary outop_muluh = { 2240 .base.static_constraint = C_Dynamic, 2241 .base.dynamic_constraint = cset_mulh, 2242 .out_rrr = tgen_muluh, 2243}; 2244 2245static const TCGOutOpBinary outop_nand = { 2246 .base.static_constraint = C_NotImplemented, 2247}; 2248 2249static const TCGOutOpBinary outop_nor = { 2250 .base.static_constraint = C_NotImplemented, 2251}; 2252 2253static void tgen_or(TCGContext *s, TCGType type, 2254 TCGReg a0, TCGReg a1, TCGReg a2) 2255{ 2256 tcg_out_insn(s, 3510, ORR, type, a0, a1, a2); 2257} 2258 2259static void tgen_ori(TCGContext *s, TCGType type, 2260 TCGReg a0, TCGReg a1, tcg_target_long a2) 2261{ 2262 tcg_out_logicali(s, I3404_ORRI, type, a0, a1, a2); 2263} 2264 2265static const TCGOutOpBinary outop_or = { 2266 .base.static_constraint = C_O1_I2(r, r, rL), 2267 .out_rrr = tgen_or, 2268 .out_rri = tgen_ori, 2269}; 2270 2271static void tgen_orc(TCGContext *s, TCGType type, 2272 TCGReg a0, TCGReg a1, TCGReg a2) 2273{ 2274 tcg_out_insn(s, 3510, ORN, type, a0, a1, a2); 2275} 2276 2277static const TCGOutOpBinary outop_orc = { 2278 .base.static_constraint = C_O1_I2(r, r, r), 2279 .out_rrr = tgen_orc, 2280}; 2281 2282static void tgen_rems(TCGContext *s, TCGType type, 2283 TCGReg a0, TCGReg a1, TCGReg a2) 2284{ 2285 tcg_out_insn(s, 3508, SDIV, type, TCG_REG_TMP0, a1, a2); 2286 tcg_out_insn(s, 3509, MSUB, type, a0, TCG_REG_TMP0, a2, a1); 2287} 2288 2289static const TCGOutOpBinary outop_rems = { 2290 .base.static_constraint = C_O1_I2(r, r, r), 2291 .out_rrr = tgen_rems, 2292}; 2293 2294static void tgen_remu(TCGContext *s, TCGType type, 2295 TCGReg a0, TCGReg a1, TCGReg a2) 2296{ 2297 tcg_out_insn(s, 3508, UDIV, type, TCG_REG_TMP0, a1, a2); 2298 tcg_out_insn(s, 3509, MSUB, type, a0, TCG_REG_TMP0, a2, a1); 2299} 2300 2301static const TCGOutOpBinary outop_remu = { 2302 .base.static_constraint = C_O1_I2(r, r, r), 2303 .out_rrr = tgen_remu, 2304}; 2305 2306static const TCGOutOpBinary outop_rotl = { 2307 .base.static_constraint = C_NotImplemented, 2308}; 2309 2310static void tgen_rotr(TCGContext *s, TCGType type, 2311 TCGReg a0, TCGReg a1, TCGReg a2) 2312{ 2313 tcg_out_insn(s, 3508, RORV, type, a0, a1, a2); 2314} 2315 2316static void tgen_rotri(TCGContext *s, TCGType type, 2317 TCGReg a0, TCGReg a1, tcg_target_long a2) 2318{ 2319 int max = type == TCG_TYPE_I32 ? 31 : 63; 2320 tcg_out_extr(s, type, a0, a1, a1, a2 & max); 2321} 2322 2323static const TCGOutOpBinary outop_rotr = { 2324 .base.static_constraint = C_O1_I2(r, r, ri), 2325 .out_rrr = tgen_rotr, 2326 .out_rri = tgen_rotri, 2327}; 2328 2329static void tgen_sar(TCGContext *s, TCGType type, 2330 TCGReg a0, TCGReg a1, TCGReg a2) 2331{ 2332 tcg_out_insn(s, 3508, ASRV, type, a0, a1, a2); 2333} 2334 2335static void tgen_sari(TCGContext *s, TCGType type, 2336 TCGReg a0, TCGReg a1, tcg_target_long a2) 2337{ 2338 int max = type == TCG_TYPE_I32 ? 31 : 63; 2339 tcg_out_sbfm(s, type, a0, a1, a2 & max, max); 2340} 2341 2342static const TCGOutOpBinary outop_sar = { 2343 .base.static_constraint = C_O1_I2(r, r, ri), 2344 .out_rrr = tgen_sar, 2345 .out_rri = tgen_sari, 2346}; 2347 2348static void tgen_shl(TCGContext *s, TCGType type, 2349 TCGReg a0, TCGReg a1, TCGReg a2) 2350{ 2351 tcg_out_insn(s, 3508, LSLV, type, a0, a1, a2); 2352} 2353 2354static void tgen_shli(TCGContext *s, TCGType type, 2355 TCGReg a0, TCGReg a1, tcg_target_long a2) 2356{ 2357 int max = type == TCG_TYPE_I32 ? 31 : 63; 2358 tcg_out_ubfm(s, type, a0, a1, -a2 & max, ~a2 & max); 2359} 2360 2361static const TCGOutOpBinary outop_shl = { 2362 .base.static_constraint = C_O1_I2(r, r, ri), 2363 .out_rrr = tgen_shl, 2364 .out_rri = tgen_shli, 2365}; 2366 2367static void tgen_shr(TCGContext *s, TCGType type, 2368 TCGReg a0, TCGReg a1, TCGReg a2) 2369{ 2370 tcg_out_insn(s, 3508, LSRV, type, a0, a1, a2); 2371} 2372 2373static void tgen_shri(TCGContext *s, TCGType type, 2374 TCGReg a0, TCGReg a1, tcg_target_long a2) 2375{ 2376 int max = type == TCG_TYPE_I32 ? 31 : 63; 2377 tcg_out_ubfm(s, type, a0, a1, a2 & max, max); 2378} 2379 2380static const TCGOutOpBinary outop_shr = { 2381 .base.static_constraint = C_O1_I2(r, r, ri), 2382 .out_rrr = tgen_shr, 2383 .out_rri = tgen_shri, 2384}; 2385 2386static void tgen_sub(TCGContext *s, TCGType type, 2387 TCGReg a0, TCGReg a1, TCGReg a2) 2388{ 2389 tcg_out_insn(s, 3502, SUB, type, a0, a1, a2); 2390} 2391 2392static const TCGOutOpSubtract outop_sub = { 2393 .base.static_constraint = C_O1_I2(r, r, r), 2394 .out_rrr = tgen_sub, 2395}; 2396 2397static void tgen_xor(TCGContext *s, TCGType type, 2398 TCGReg a0, TCGReg a1, TCGReg a2) 2399{ 2400 tcg_out_insn(s, 3510, EOR, type, a0, a1, a2); 2401} 2402 2403static void tgen_xori(TCGContext *s, TCGType type, 2404 TCGReg a0, TCGReg a1, tcg_target_long a2) 2405{ 2406 tcg_out_logicali(s, I3404_EORI, type, a0, a1, a2); 2407} 2408 2409static const TCGOutOpBinary outop_xor = { 2410 .base.static_constraint = C_O1_I2(r, r, rL), 2411 .out_rrr = tgen_xor, 2412 .out_rri = tgen_xori, 2413}; 2414 2415 2416static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2417{ 2418 tgen_sub(s, type, a0, TCG_REG_XZR, a1); 2419} 2420 2421static const TCGOutOpUnary outop_neg = { 2422 .base.static_constraint = C_O1_I1(r, r), 2423 .out_rr = tgen_neg, 2424}; 2425 2426static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2427{ 2428 tgen_orc(s, type, a0, TCG_REG_XZR, a1); 2429} 2430 2431static const TCGOutOpUnary outop_not = { 2432 .base.static_constraint = C_O1_I1(r, r), 2433 .out_rr = tgen_not, 2434}; 2435 2436 2437static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType ext, 2438 const TCGArg args[TCG_MAX_OP_ARGS], 2439 const int const_args[TCG_MAX_OP_ARGS]) 2440{ 2441 /* Hoist the loads of the most common arguments. */ 2442 TCGArg a0 = args[0]; 2443 TCGArg a1 = args[1]; 2444 TCGArg a2 = args[2]; 2445 int c2 = const_args[2]; 2446 2447 switch (opc) { 2448 case INDEX_op_goto_ptr: 2449 tcg_out_insn(s, 3207, BR, a0); 2450 break; 2451 2452 case INDEX_op_br: 2453 tcg_out_goto_label(s, arg_label(a0)); 2454 break; 2455 2456 case INDEX_op_ld8u_i32: 2457 case INDEX_op_ld8u_i64: 2458 tcg_out_ldst(s, I3312_LDRB, a0, a1, a2, 0); 2459 break; 2460 case INDEX_op_ld8s_i32: 2461 tcg_out_ldst(s, I3312_LDRSBW, a0, a1, a2, 0); 2462 break; 2463 case INDEX_op_ld8s_i64: 2464 tcg_out_ldst(s, I3312_LDRSBX, a0, a1, a2, 0); 2465 break; 2466 case INDEX_op_ld16u_i32: 2467 case INDEX_op_ld16u_i64: 2468 tcg_out_ldst(s, I3312_LDRH, a0, a1, a2, 1); 2469 break; 2470 case INDEX_op_ld16s_i32: 2471 tcg_out_ldst(s, I3312_LDRSHW, a0, a1, a2, 1); 2472 break; 2473 case INDEX_op_ld16s_i64: 2474 tcg_out_ldst(s, I3312_LDRSHX, a0, a1, a2, 1); 2475 break; 2476 case INDEX_op_ld_i32: 2477 case INDEX_op_ld32u_i64: 2478 tcg_out_ldst(s, I3312_LDRW, a0, a1, a2, 2); 2479 break; 2480 case INDEX_op_ld32s_i64: 2481 tcg_out_ldst(s, I3312_LDRSWX, a0, a1, a2, 2); 2482 break; 2483 case INDEX_op_ld_i64: 2484 tcg_out_ldst(s, I3312_LDRX, a0, a1, a2, 3); 2485 break; 2486 2487 case INDEX_op_st8_i32: 2488 case INDEX_op_st8_i64: 2489 tcg_out_ldst(s, I3312_STRB, a0, a1, a2, 0); 2490 break; 2491 case INDEX_op_st16_i32: 2492 case INDEX_op_st16_i64: 2493 tcg_out_ldst(s, I3312_STRH, a0, a1, a2, 1); 2494 break; 2495 case INDEX_op_st_i32: 2496 case INDEX_op_st32_i64: 2497 tcg_out_ldst(s, I3312_STRW, a0, a1, a2, 2); 2498 break; 2499 case INDEX_op_st_i64: 2500 tcg_out_ldst(s, I3312_STRX, a0, a1, a2, 3); 2501 break; 2502 2503 case INDEX_op_brcond_i32: 2504 a1 = (int32_t)a1; 2505 /* FALLTHRU */ 2506 case INDEX_op_brcond_i64: 2507 tcg_out_brcond(s, ext, a2, a0, a1, const_args[1], arg_label(args[3])); 2508 break; 2509 2510 case INDEX_op_setcond_i32: 2511 a2 = (int32_t)a2; 2512 /* FALLTHRU */ 2513 case INDEX_op_setcond_i64: 2514 tcg_out_cmp(s, ext, args[3], a1, a2, c2); 2515 /* Use CSET alias of CSINC Wd, WZR, WZR, invert(cond). */ 2516 tcg_out_insn(s, 3506, CSINC, TCG_TYPE_I32, a0, TCG_REG_XZR, 2517 TCG_REG_XZR, tcg_invert_cond(args[3])); 2518 break; 2519 2520 case INDEX_op_negsetcond_i32: 2521 a2 = (int32_t)a2; 2522 /* FALLTHRU */ 2523 case INDEX_op_negsetcond_i64: 2524 tcg_out_cmp(s, ext, args[3], a1, a2, c2); 2525 /* Use CSETM alias of CSINV Wd, WZR, WZR, invert(cond). */ 2526 tcg_out_insn(s, 3506, CSINV, ext, a0, TCG_REG_XZR, 2527 TCG_REG_XZR, tcg_invert_cond(args[3])); 2528 break; 2529 2530 case INDEX_op_movcond_i32: 2531 a2 = (int32_t)a2; 2532 /* FALLTHRU */ 2533 case INDEX_op_movcond_i64: 2534 tcg_out_cmp(s, ext, args[5], a1, a2, c2); 2535 tcg_out_insn(s, 3506, CSEL, ext, a0, args[3], args[4], args[5]); 2536 break; 2537 2538 case INDEX_op_qemu_ld_i32: 2539 case INDEX_op_qemu_ld_i64: 2540 tcg_out_qemu_ld(s, a0, a1, a2, ext); 2541 break; 2542 case INDEX_op_qemu_st_i32: 2543 case INDEX_op_qemu_st_i64: 2544 tcg_out_qemu_st(s, a0, a1, a2, ext); 2545 break; 2546 case INDEX_op_qemu_ld_i128: 2547 tcg_out_qemu_ldst_i128(s, a0, a1, a2, args[3], true); 2548 break; 2549 case INDEX_op_qemu_st_i128: 2550 tcg_out_qemu_ldst_i128(s, a0, a1, a2, args[3], false); 2551 break; 2552 2553 case INDEX_op_bswap64_i64: 2554 tcg_out_rev(s, TCG_TYPE_I64, MO_64, a0, a1); 2555 break; 2556 case INDEX_op_bswap32_i64: 2557 tcg_out_rev(s, TCG_TYPE_I32, MO_32, a0, a1); 2558 if (a2 & TCG_BSWAP_OS) { 2559 tcg_out_ext32s(s, a0, a0); 2560 } 2561 break; 2562 case INDEX_op_bswap32_i32: 2563 tcg_out_rev(s, TCG_TYPE_I32, MO_32, a0, a1); 2564 break; 2565 case INDEX_op_bswap16_i64: 2566 case INDEX_op_bswap16_i32: 2567 tcg_out_rev(s, TCG_TYPE_I32, MO_16, a0, a1); 2568 if (a2 & TCG_BSWAP_OS) { 2569 /* Output must be sign-extended. */ 2570 tcg_out_ext16s(s, ext, a0, a0); 2571 } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { 2572 /* Output must be zero-extended, but input isn't. */ 2573 tcg_out_ext16u(s, a0, a0); 2574 } 2575 break; 2576 2577 case INDEX_op_deposit_i64: 2578 case INDEX_op_deposit_i32: 2579 tcg_out_dep(s, ext, a0, a2, args[3], args[4]); 2580 break; 2581 2582 case INDEX_op_extract_i64: 2583 case INDEX_op_extract_i32: 2584 if (a2 == 0) { 2585 uint64_t mask = MAKE_64BIT_MASK(0, args[3]); 2586 tcg_out_logicali(s, I3404_ANDI, ext, a0, a1, mask); 2587 } else { 2588 tcg_out_ubfm(s, ext, a0, a1, a2, a2 + args[3] - 1); 2589 } 2590 break; 2591 2592 case INDEX_op_sextract_i64: 2593 case INDEX_op_sextract_i32: 2594 tcg_out_sbfm(s, ext, a0, a1, a2, a2 + args[3] - 1); 2595 break; 2596 2597 case INDEX_op_extract2_i64: 2598 case INDEX_op_extract2_i32: 2599 tcg_out_extr(s, ext, a0, a2, a1, args[3]); 2600 break; 2601 2602 case INDEX_op_add2_i32: 2603 tcg_out_addsub2(s, TCG_TYPE_I32, a0, a1, a2, args[3], 2604 (int32_t)args[4], args[5], const_args[4], 2605 const_args[5], false); 2606 break; 2607 case INDEX_op_add2_i64: 2608 tcg_out_addsub2(s, TCG_TYPE_I64, a0, a1, a2, args[3], args[4], 2609 args[5], const_args[4], const_args[5], false); 2610 break; 2611 case INDEX_op_sub2_i32: 2612 tcg_out_addsub2(s, TCG_TYPE_I32, a0, a1, a2, args[3], 2613 (int32_t)args[4], args[5], const_args[4], 2614 const_args[5], true); 2615 break; 2616 case INDEX_op_sub2_i64: 2617 tcg_out_addsub2(s, TCG_TYPE_I64, a0, a1, a2, args[3], args[4], 2618 args[5], const_args[4], const_args[5], true); 2619 break; 2620 2621 case INDEX_op_mb: 2622 tcg_out_mb(s, a0); 2623 break; 2624 2625 case INDEX_op_call: /* Always emitted via tcg_out_call. */ 2626 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ 2627 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ 2628 case INDEX_op_ext_i32_i64: /* Always emitted via tcg_reg_alloc_op. */ 2629 case INDEX_op_extu_i32_i64: 2630 case INDEX_op_extrl_i64_i32: 2631 default: 2632 g_assert_not_reached(); 2633 } 2634} 2635 2636static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 2637 unsigned vecl, unsigned vece, 2638 const TCGArg args[TCG_MAX_OP_ARGS], 2639 const int const_args[TCG_MAX_OP_ARGS]) 2640{ 2641 static const AArch64Insn cmp_vec_insn[16] = { 2642 [TCG_COND_EQ] = I3616_CMEQ, 2643 [TCG_COND_GT] = I3616_CMGT, 2644 [TCG_COND_GE] = I3616_CMGE, 2645 [TCG_COND_GTU] = I3616_CMHI, 2646 [TCG_COND_GEU] = I3616_CMHS, 2647 }; 2648 static const AArch64Insn cmp_scalar_insn[16] = { 2649 [TCG_COND_EQ] = I3611_CMEQ, 2650 [TCG_COND_GT] = I3611_CMGT, 2651 [TCG_COND_GE] = I3611_CMGE, 2652 [TCG_COND_GTU] = I3611_CMHI, 2653 [TCG_COND_GEU] = I3611_CMHS, 2654 }; 2655 static const AArch64Insn cmp0_vec_insn[16] = { 2656 [TCG_COND_EQ] = I3617_CMEQ0, 2657 [TCG_COND_GT] = I3617_CMGT0, 2658 [TCG_COND_GE] = I3617_CMGE0, 2659 [TCG_COND_LT] = I3617_CMLT0, 2660 [TCG_COND_LE] = I3617_CMLE0, 2661 }; 2662 static const AArch64Insn cmp0_scalar_insn[16] = { 2663 [TCG_COND_EQ] = I3612_CMEQ0, 2664 [TCG_COND_GT] = I3612_CMGT0, 2665 [TCG_COND_GE] = I3612_CMGE0, 2666 [TCG_COND_LT] = I3612_CMLT0, 2667 [TCG_COND_LE] = I3612_CMLE0, 2668 }; 2669 2670 TCGType type = vecl + TCG_TYPE_V64; 2671 unsigned is_q = vecl; 2672 bool is_scalar = !is_q && vece == MO_64; 2673 TCGArg a0, a1, a2, a3; 2674 int cmode, imm8; 2675 2676 a0 = args[0]; 2677 a1 = args[1]; 2678 a2 = args[2]; 2679 2680 switch (opc) { 2681 case INDEX_op_ld_vec: 2682 tcg_out_ld(s, type, a0, a1, a2); 2683 break; 2684 case INDEX_op_st_vec: 2685 tcg_out_st(s, type, a0, a1, a2); 2686 break; 2687 case INDEX_op_dupm_vec: 2688 tcg_out_dupm_vec(s, type, vece, a0, a1, a2); 2689 break; 2690 case INDEX_op_add_vec: 2691 if (is_scalar) { 2692 tcg_out_insn(s, 3611, ADD, vece, a0, a1, a2); 2693 } else { 2694 tcg_out_insn(s, 3616, ADD, is_q, vece, a0, a1, a2); 2695 } 2696 break; 2697 case INDEX_op_sub_vec: 2698 if (is_scalar) { 2699 tcg_out_insn(s, 3611, SUB, vece, a0, a1, a2); 2700 } else { 2701 tcg_out_insn(s, 3616, SUB, is_q, vece, a0, a1, a2); 2702 } 2703 break; 2704 case INDEX_op_mul_vec: 2705 tcg_out_insn(s, 3616, MUL, is_q, vece, a0, a1, a2); 2706 break; 2707 case INDEX_op_neg_vec: 2708 if (is_scalar) { 2709 tcg_out_insn(s, 3612, NEG, vece, a0, a1); 2710 } else { 2711 tcg_out_insn(s, 3617, NEG, is_q, vece, a0, a1); 2712 } 2713 break; 2714 case INDEX_op_abs_vec: 2715 if (is_scalar) { 2716 tcg_out_insn(s, 3612, ABS, vece, a0, a1); 2717 } else { 2718 tcg_out_insn(s, 3617, ABS, is_q, vece, a0, a1); 2719 } 2720 break; 2721 case INDEX_op_and_vec: 2722 if (const_args[2]) { 2723 is_shimm1632(~a2, &cmode, &imm8); 2724 if (a0 == a1) { 2725 tcg_out_insn(s, 3606, BIC, is_q, a0, 0, cmode, imm8); 2726 return; 2727 } 2728 tcg_out_insn(s, 3606, MVNI, is_q, a0, 0, cmode, imm8); 2729 a2 = a0; 2730 } 2731 tcg_out_insn(s, 3616, AND, is_q, 0, a0, a1, a2); 2732 break; 2733 case INDEX_op_or_vec: 2734 if (const_args[2]) { 2735 is_shimm1632(a2, &cmode, &imm8); 2736 if (a0 == a1) { 2737 tcg_out_insn(s, 3606, ORR, is_q, a0, 0, cmode, imm8); 2738 return; 2739 } 2740 tcg_out_insn(s, 3606, MOVI, is_q, a0, 0, cmode, imm8); 2741 a2 = a0; 2742 } 2743 tcg_out_insn(s, 3616, ORR, is_q, 0, a0, a1, a2); 2744 break; 2745 case INDEX_op_andc_vec: 2746 if (const_args[2]) { 2747 is_shimm1632(a2, &cmode, &imm8); 2748 if (a0 == a1) { 2749 tcg_out_insn(s, 3606, BIC, is_q, a0, 0, cmode, imm8); 2750 return; 2751 } 2752 tcg_out_insn(s, 3606, MOVI, is_q, a0, 0, cmode, imm8); 2753 a2 = a0; 2754 } 2755 tcg_out_insn(s, 3616, BIC, is_q, 0, a0, a1, a2); 2756 break; 2757 case INDEX_op_orc_vec: 2758 if (const_args[2]) { 2759 is_shimm1632(~a2, &cmode, &imm8); 2760 if (a0 == a1) { 2761 tcg_out_insn(s, 3606, ORR, is_q, a0, 0, cmode, imm8); 2762 return; 2763 } 2764 tcg_out_insn(s, 3606, MVNI, is_q, a0, 0, cmode, imm8); 2765 a2 = a0; 2766 } 2767 tcg_out_insn(s, 3616, ORN, is_q, 0, a0, a1, a2); 2768 break; 2769 case INDEX_op_xor_vec: 2770 tcg_out_insn(s, 3616, EOR, is_q, 0, a0, a1, a2); 2771 break; 2772 case INDEX_op_ssadd_vec: 2773 if (is_scalar) { 2774 tcg_out_insn(s, 3611, SQADD, vece, a0, a1, a2); 2775 } else { 2776 tcg_out_insn(s, 3616, SQADD, is_q, vece, a0, a1, a2); 2777 } 2778 break; 2779 case INDEX_op_sssub_vec: 2780 if (is_scalar) { 2781 tcg_out_insn(s, 3611, SQSUB, vece, a0, a1, a2); 2782 } else { 2783 tcg_out_insn(s, 3616, SQSUB, is_q, vece, a0, a1, a2); 2784 } 2785 break; 2786 case INDEX_op_usadd_vec: 2787 if (is_scalar) { 2788 tcg_out_insn(s, 3611, UQADD, vece, a0, a1, a2); 2789 } else { 2790 tcg_out_insn(s, 3616, UQADD, is_q, vece, a0, a1, a2); 2791 } 2792 break; 2793 case INDEX_op_ussub_vec: 2794 if (is_scalar) { 2795 tcg_out_insn(s, 3611, UQSUB, vece, a0, a1, a2); 2796 } else { 2797 tcg_out_insn(s, 3616, UQSUB, is_q, vece, a0, a1, a2); 2798 } 2799 break; 2800 case INDEX_op_smax_vec: 2801 tcg_out_insn(s, 3616, SMAX, is_q, vece, a0, a1, a2); 2802 break; 2803 case INDEX_op_smin_vec: 2804 tcg_out_insn(s, 3616, SMIN, is_q, vece, a0, a1, a2); 2805 break; 2806 case INDEX_op_umax_vec: 2807 tcg_out_insn(s, 3616, UMAX, is_q, vece, a0, a1, a2); 2808 break; 2809 case INDEX_op_umin_vec: 2810 tcg_out_insn(s, 3616, UMIN, is_q, vece, a0, a1, a2); 2811 break; 2812 case INDEX_op_not_vec: 2813 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a1); 2814 break; 2815 case INDEX_op_shli_vec: 2816 if (is_scalar) { 2817 tcg_out_insn(s, 3609, SHL, a0, a1, a2 + (8 << vece)); 2818 } else { 2819 tcg_out_insn(s, 3614, SHL, is_q, a0, a1, a2 + (8 << vece)); 2820 } 2821 break; 2822 case INDEX_op_shri_vec: 2823 if (is_scalar) { 2824 tcg_out_insn(s, 3609, USHR, a0, a1, (16 << vece) - a2); 2825 } else { 2826 tcg_out_insn(s, 3614, USHR, is_q, a0, a1, (16 << vece) - a2); 2827 } 2828 break; 2829 case INDEX_op_sari_vec: 2830 if (is_scalar) { 2831 tcg_out_insn(s, 3609, SSHR, a0, a1, (16 << vece) - a2); 2832 } else { 2833 tcg_out_insn(s, 3614, SSHR, is_q, a0, a1, (16 << vece) - a2); 2834 } 2835 break; 2836 case INDEX_op_aa64_sli_vec: 2837 if (is_scalar) { 2838 tcg_out_insn(s, 3609, SLI, a0, a2, args[3] + (8 << vece)); 2839 } else { 2840 tcg_out_insn(s, 3614, SLI, is_q, a0, a2, args[3] + (8 << vece)); 2841 } 2842 break; 2843 case INDEX_op_shlv_vec: 2844 if (is_scalar) { 2845 tcg_out_insn(s, 3611, USHL, vece, a0, a1, a2); 2846 } else { 2847 tcg_out_insn(s, 3616, USHL, is_q, vece, a0, a1, a2); 2848 } 2849 break; 2850 case INDEX_op_aa64_sshl_vec: 2851 if (is_scalar) { 2852 tcg_out_insn(s, 3611, SSHL, vece, a0, a1, a2); 2853 } else { 2854 tcg_out_insn(s, 3616, SSHL, is_q, vece, a0, a1, a2); 2855 } 2856 break; 2857 case INDEX_op_cmp_vec: 2858 { 2859 TCGCond cond = args[3]; 2860 AArch64Insn insn; 2861 2862 switch (cond) { 2863 case TCG_COND_NE: 2864 if (const_args[2]) { 2865 if (is_scalar) { 2866 tcg_out_insn(s, 3611, CMTST, vece, a0, a1, a1); 2867 } else { 2868 tcg_out_insn(s, 3616, CMTST, is_q, vece, a0, a1, a1); 2869 } 2870 } else { 2871 if (is_scalar) { 2872 tcg_out_insn(s, 3611, CMEQ, vece, a0, a1, a2); 2873 } else { 2874 tcg_out_insn(s, 3616, CMEQ, is_q, vece, a0, a1, a2); 2875 } 2876 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a0); 2877 } 2878 break; 2879 2880 case TCG_COND_TSTNE: 2881 case TCG_COND_TSTEQ: 2882 if (const_args[2]) { 2883 /* (x & 0) == 0 */ 2884 tcg_out_dupi_vec(s, type, MO_8, a0, 2885 -(cond == TCG_COND_TSTEQ)); 2886 break; 2887 } 2888 if (is_scalar) { 2889 tcg_out_insn(s, 3611, CMTST, vece, a0, a1, a2); 2890 } else { 2891 tcg_out_insn(s, 3616, CMTST, is_q, vece, a0, a1, a2); 2892 } 2893 if (cond == TCG_COND_TSTEQ) { 2894 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a0); 2895 } 2896 break; 2897 2898 default: 2899 if (const_args[2]) { 2900 if (is_scalar) { 2901 insn = cmp0_scalar_insn[cond]; 2902 if (insn) { 2903 tcg_out_insn_3612(s, insn, vece, a0, a1); 2904 break; 2905 } 2906 } else { 2907 insn = cmp0_vec_insn[cond]; 2908 if (insn) { 2909 tcg_out_insn_3617(s, insn, is_q, vece, a0, a1); 2910 break; 2911 } 2912 } 2913 tcg_out_dupi_vec(s, type, MO_8, TCG_VEC_TMP0, 0); 2914 a2 = TCG_VEC_TMP0; 2915 } 2916 if (is_scalar) { 2917 insn = cmp_scalar_insn[cond]; 2918 if (insn == 0) { 2919 TCGArg t; 2920 t = a1, a1 = a2, a2 = t; 2921 cond = tcg_swap_cond(cond); 2922 insn = cmp_scalar_insn[cond]; 2923 tcg_debug_assert(insn != 0); 2924 } 2925 tcg_out_insn_3611(s, insn, vece, a0, a1, a2); 2926 } else { 2927 insn = cmp_vec_insn[cond]; 2928 if (insn == 0) { 2929 TCGArg t; 2930 t = a1, a1 = a2, a2 = t; 2931 cond = tcg_swap_cond(cond); 2932 insn = cmp_vec_insn[cond]; 2933 tcg_debug_assert(insn != 0); 2934 } 2935 tcg_out_insn_3616(s, insn, is_q, vece, a0, a1, a2); 2936 } 2937 break; 2938 } 2939 } 2940 break; 2941 2942 case INDEX_op_bitsel_vec: 2943 a3 = args[3]; 2944 if (a0 == a3) { 2945 tcg_out_insn(s, 3616, BIT, is_q, 0, a0, a2, a1); 2946 } else if (a0 == a2) { 2947 tcg_out_insn(s, 3616, BIF, is_q, 0, a0, a3, a1); 2948 } else { 2949 if (a0 != a1) { 2950 tcg_out_mov(s, type, a0, a1); 2951 } 2952 tcg_out_insn(s, 3616, BSL, is_q, 0, a0, a2, a3); 2953 } 2954 break; 2955 2956 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ 2957 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ 2958 default: 2959 g_assert_not_reached(); 2960 } 2961} 2962 2963int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) 2964{ 2965 switch (opc) { 2966 case INDEX_op_add_vec: 2967 case INDEX_op_sub_vec: 2968 case INDEX_op_and_vec: 2969 case INDEX_op_or_vec: 2970 case INDEX_op_xor_vec: 2971 case INDEX_op_andc_vec: 2972 case INDEX_op_orc_vec: 2973 case INDEX_op_neg_vec: 2974 case INDEX_op_abs_vec: 2975 case INDEX_op_not_vec: 2976 case INDEX_op_cmp_vec: 2977 case INDEX_op_shli_vec: 2978 case INDEX_op_shri_vec: 2979 case INDEX_op_sari_vec: 2980 case INDEX_op_ssadd_vec: 2981 case INDEX_op_sssub_vec: 2982 case INDEX_op_usadd_vec: 2983 case INDEX_op_ussub_vec: 2984 case INDEX_op_shlv_vec: 2985 case INDEX_op_bitsel_vec: 2986 return 1; 2987 case INDEX_op_rotli_vec: 2988 case INDEX_op_shrv_vec: 2989 case INDEX_op_sarv_vec: 2990 case INDEX_op_rotlv_vec: 2991 case INDEX_op_rotrv_vec: 2992 return -1; 2993 case INDEX_op_mul_vec: 2994 case INDEX_op_smax_vec: 2995 case INDEX_op_smin_vec: 2996 case INDEX_op_umax_vec: 2997 case INDEX_op_umin_vec: 2998 return vece < MO_64; 2999 3000 default: 3001 return 0; 3002 } 3003} 3004 3005void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, 3006 TCGArg a0, ...) 3007{ 3008 va_list va; 3009 TCGv_vec v0, v1, v2, t1, t2, c1; 3010 TCGArg a2; 3011 3012 va_start(va, a0); 3013 v0 = temp_tcgv_vec(arg_temp(a0)); 3014 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 3015 a2 = va_arg(va, TCGArg); 3016 va_end(va); 3017 3018 switch (opc) { 3019 case INDEX_op_rotli_vec: 3020 t1 = tcg_temp_new_vec(type); 3021 tcg_gen_shri_vec(vece, t1, v1, -a2 & ((8 << vece) - 1)); 3022 vec_gen_4(INDEX_op_aa64_sli_vec, type, vece, 3023 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(v1), a2); 3024 tcg_temp_free_vec(t1); 3025 break; 3026 3027 case INDEX_op_shrv_vec: 3028 case INDEX_op_sarv_vec: 3029 /* Right shifts are negative left shifts for AArch64. */ 3030 v2 = temp_tcgv_vec(arg_temp(a2)); 3031 t1 = tcg_temp_new_vec(type); 3032 tcg_gen_neg_vec(vece, t1, v2); 3033 opc = (opc == INDEX_op_shrv_vec 3034 ? INDEX_op_shlv_vec : INDEX_op_aa64_sshl_vec); 3035 vec_gen_3(opc, type, vece, tcgv_vec_arg(v0), 3036 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 3037 tcg_temp_free_vec(t1); 3038 break; 3039 3040 case INDEX_op_rotlv_vec: 3041 v2 = temp_tcgv_vec(arg_temp(a2)); 3042 t1 = tcg_temp_new_vec(type); 3043 c1 = tcg_constant_vec(type, vece, 8 << vece); 3044 tcg_gen_sub_vec(vece, t1, v2, c1); 3045 /* Right shifts are negative left shifts for AArch64. */ 3046 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t1), 3047 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 3048 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(v0), 3049 tcgv_vec_arg(v1), tcgv_vec_arg(v2)); 3050 tcg_gen_or_vec(vece, v0, v0, t1); 3051 tcg_temp_free_vec(t1); 3052 break; 3053 3054 case INDEX_op_rotrv_vec: 3055 v2 = temp_tcgv_vec(arg_temp(a2)); 3056 t1 = tcg_temp_new_vec(type); 3057 t2 = tcg_temp_new_vec(type); 3058 c1 = tcg_constant_vec(type, vece, 8 << vece); 3059 tcg_gen_neg_vec(vece, t1, v2); 3060 tcg_gen_sub_vec(vece, t2, c1, v2); 3061 /* Right shifts are negative left shifts for AArch64. */ 3062 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t1), 3063 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 3064 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t2), 3065 tcgv_vec_arg(v1), tcgv_vec_arg(t2)); 3066 tcg_gen_or_vec(vece, v0, t1, t2); 3067 tcg_temp_free_vec(t1); 3068 tcg_temp_free_vec(t2); 3069 break; 3070 3071 default: 3072 g_assert_not_reached(); 3073 } 3074} 3075 3076static TCGConstraintSetIndex 3077tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags) 3078{ 3079 switch (op) { 3080 case INDEX_op_goto_ptr: 3081 return C_O0_I1(r); 3082 3083 case INDEX_op_ld8u_i32: 3084 case INDEX_op_ld8s_i32: 3085 case INDEX_op_ld16u_i32: 3086 case INDEX_op_ld16s_i32: 3087 case INDEX_op_ld_i32: 3088 case INDEX_op_ld8u_i64: 3089 case INDEX_op_ld8s_i64: 3090 case INDEX_op_ld16u_i64: 3091 case INDEX_op_ld16s_i64: 3092 case INDEX_op_ld32u_i64: 3093 case INDEX_op_ld32s_i64: 3094 case INDEX_op_ld_i64: 3095 case INDEX_op_bswap16_i32: 3096 case INDEX_op_bswap32_i32: 3097 case INDEX_op_bswap16_i64: 3098 case INDEX_op_bswap32_i64: 3099 case INDEX_op_bswap64_i64: 3100 case INDEX_op_ext_i32_i64: 3101 case INDEX_op_extu_i32_i64: 3102 case INDEX_op_extract_i32: 3103 case INDEX_op_extract_i64: 3104 case INDEX_op_sextract_i32: 3105 case INDEX_op_sextract_i64: 3106 return C_O1_I1(r, r); 3107 3108 case INDEX_op_st8_i32: 3109 case INDEX_op_st16_i32: 3110 case INDEX_op_st_i32: 3111 case INDEX_op_st8_i64: 3112 case INDEX_op_st16_i64: 3113 case INDEX_op_st32_i64: 3114 case INDEX_op_st_i64: 3115 return C_O0_I2(rz, r); 3116 3117 case INDEX_op_setcond_i32: 3118 case INDEX_op_setcond_i64: 3119 case INDEX_op_negsetcond_i32: 3120 case INDEX_op_negsetcond_i64: 3121 return C_O1_I2(r, r, rC); 3122 3123 case INDEX_op_brcond_i32: 3124 case INDEX_op_brcond_i64: 3125 return C_O0_I2(r, rC); 3126 3127 case INDEX_op_movcond_i32: 3128 case INDEX_op_movcond_i64: 3129 return C_O1_I4(r, r, rC, rz, rz); 3130 3131 case INDEX_op_qemu_ld_i32: 3132 case INDEX_op_qemu_ld_i64: 3133 return C_O1_I1(r, r); 3134 case INDEX_op_qemu_ld_i128: 3135 return C_O2_I1(r, r, r); 3136 case INDEX_op_qemu_st_i32: 3137 case INDEX_op_qemu_st_i64: 3138 return C_O0_I2(rz, r); 3139 case INDEX_op_qemu_st_i128: 3140 return C_O0_I3(rz, rz, r); 3141 3142 case INDEX_op_deposit_i32: 3143 case INDEX_op_deposit_i64: 3144 return C_O1_I2(r, 0, rz); 3145 3146 case INDEX_op_extract2_i32: 3147 case INDEX_op_extract2_i64: 3148 return C_O1_I2(r, rz, rz); 3149 3150 case INDEX_op_add2_i32: 3151 case INDEX_op_add2_i64: 3152 case INDEX_op_sub2_i32: 3153 case INDEX_op_sub2_i64: 3154 return C_O2_I4(r, r, rz, rz, rA, rMZ); 3155 3156 case INDEX_op_add_vec: 3157 case INDEX_op_sub_vec: 3158 case INDEX_op_mul_vec: 3159 case INDEX_op_xor_vec: 3160 case INDEX_op_ssadd_vec: 3161 case INDEX_op_sssub_vec: 3162 case INDEX_op_usadd_vec: 3163 case INDEX_op_ussub_vec: 3164 case INDEX_op_smax_vec: 3165 case INDEX_op_smin_vec: 3166 case INDEX_op_umax_vec: 3167 case INDEX_op_umin_vec: 3168 case INDEX_op_shlv_vec: 3169 case INDEX_op_shrv_vec: 3170 case INDEX_op_sarv_vec: 3171 case INDEX_op_aa64_sshl_vec: 3172 return C_O1_I2(w, w, w); 3173 case INDEX_op_not_vec: 3174 case INDEX_op_neg_vec: 3175 case INDEX_op_abs_vec: 3176 case INDEX_op_shli_vec: 3177 case INDEX_op_shri_vec: 3178 case INDEX_op_sari_vec: 3179 return C_O1_I1(w, w); 3180 case INDEX_op_ld_vec: 3181 case INDEX_op_dupm_vec: 3182 return C_O1_I1(w, r); 3183 case INDEX_op_st_vec: 3184 return C_O0_I2(w, r); 3185 case INDEX_op_dup_vec: 3186 return C_O1_I1(w, wr); 3187 case INDEX_op_or_vec: 3188 case INDEX_op_andc_vec: 3189 return C_O1_I2(w, w, wO); 3190 case INDEX_op_and_vec: 3191 case INDEX_op_orc_vec: 3192 return C_O1_I2(w, w, wN); 3193 case INDEX_op_cmp_vec: 3194 return C_O1_I2(w, w, wZ); 3195 case INDEX_op_bitsel_vec: 3196 return C_O1_I3(w, w, w, w); 3197 case INDEX_op_aa64_sli_vec: 3198 return C_O1_I2(w, 0, w); 3199 3200 default: 3201 return C_NotImplemented; 3202 } 3203} 3204 3205static void tcg_target_init(TCGContext *s) 3206{ 3207 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffffu; 3208 tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffffu; 3209 tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull; 3210 tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull; 3211 3212 tcg_target_call_clobber_regs = -1ull; 3213 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X19); 3214 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X20); 3215 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X21); 3216 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X22); 3217 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X23); 3218 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X24); 3219 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X25); 3220 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X26); 3221 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X27); 3222 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X28); 3223 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X29); 3224 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V8); 3225 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V9); 3226 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V10); 3227 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V11); 3228 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V12); 3229 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V13); 3230 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V14); 3231 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V15); 3232 3233 s->reserved_regs = 0; 3234 tcg_regset_set_reg(s->reserved_regs, TCG_REG_SP); 3235 tcg_regset_set_reg(s->reserved_regs, TCG_REG_FP); 3236 tcg_regset_set_reg(s->reserved_regs, TCG_REG_X18); /* platform register */ 3237 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP0); 3238 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1); 3239 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP2); 3240 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP0); 3241} 3242 3243/* Saving pairs: (X19, X20) .. (X27, X28), (X29(fp), X30(lr)). */ 3244#define PUSH_SIZE ((30 - 19 + 1) * 8) 3245 3246#define FRAME_SIZE \ 3247 ((PUSH_SIZE \ 3248 + TCG_STATIC_CALL_ARGS_SIZE \ 3249 + CPU_TEMP_BUF_NLONGS * sizeof(long) \ 3250 + TCG_TARGET_STACK_ALIGN - 1) \ 3251 & ~(TCG_TARGET_STACK_ALIGN - 1)) 3252 3253/* We're expecting a 2 byte uleb128 encoded value. */ 3254QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); 3255 3256/* We're expecting to use a single ADDI insn. */ 3257QEMU_BUILD_BUG_ON(FRAME_SIZE - PUSH_SIZE > 0xfff); 3258 3259static void tcg_target_qemu_prologue(TCGContext *s) 3260{ 3261 TCGReg r; 3262 3263 tcg_out_bti(s, BTI_C); 3264 3265 /* Push (FP, LR) and allocate space for all saved registers. */ 3266 tcg_out_insn(s, 3314, STP, TCG_REG_FP, TCG_REG_LR, 3267 TCG_REG_SP, -PUSH_SIZE, 1, 1); 3268 3269 /* Set up frame pointer for canonical unwinding. */ 3270 tcg_out_movr_sp(s, TCG_TYPE_I64, TCG_REG_FP, TCG_REG_SP); 3271 3272 /* Store callee-preserved regs x19..x28. */ 3273 for (r = TCG_REG_X19; r <= TCG_REG_X27; r += 2) { 3274 int ofs = (r - TCG_REG_X19 + 2) * 8; 3275 tcg_out_insn(s, 3314, STP, r, r + 1, TCG_REG_SP, ofs, 1, 0); 3276 } 3277 3278 /* Make stack space for TCG locals. */ 3279 tcg_out_insn(s, 3401, SUBI, TCG_TYPE_I64, TCG_REG_SP, TCG_REG_SP, 3280 FRAME_SIZE - PUSH_SIZE); 3281 3282 /* Inform TCG about how to find TCG locals with register, offset, size. */ 3283 tcg_set_frame(s, TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE, 3284 CPU_TEMP_BUF_NLONGS * sizeof(long)); 3285 3286 if (!tcg_use_softmmu) { 3287 /* 3288 * Note that XZR cannot be encoded in the address base register slot, 3289 * as that actually encodes SP. Depending on the guest, we may need 3290 * to zero-extend the guest address via the address index register slot, 3291 * therefore we need to load even a zero guest base into a register. 3292 */ 3293 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_GUEST_BASE, guest_base); 3294 tcg_regset_set_reg(s->reserved_regs, TCG_REG_GUEST_BASE); 3295 } 3296 3297 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); 3298 tcg_out_insn(s, 3207, BR, tcg_target_call_iarg_regs[1]); 3299 3300 /* 3301 * Return path for goto_ptr. Set return value to 0, a-la exit_tb, 3302 * and fall through to the rest of the epilogue. 3303 */ 3304 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); 3305 tcg_out_bti(s, BTI_J); 3306 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_X0, 0); 3307 3308 /* TB epilogue */ 3309 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr); 3310 tcg_out_bti(s, BTI_J); 3311 3312 /* Remove TCG locals stack space. */ 3313 tcg_out_insn(s, 3401, ADDI, TCG_TYPE_I64, TCG_REG_SP, TCG_REG_SP, 3314 FRAME_SIZE - PUSH_SIZE); 3315 3316 /* Restore registers x19..x28. */ 3317 for (r = TCG_REG_X19; r <= TCG_REG_X27; r += 2) { 3318 int ofs = (r - TCG_REG_X19 + 2) * 8; 3319 tcg_out_insn(s, 3314, LDP, r, r + 1, TCG_REG_SP, ofs, 1, 0); 3320 } 3321 3322 /* Pop (FP, LR), restore SP to previous frame. */ 3323 tcg_out_insn(s, 3314, LDP, TCG_REG_FP, TCG_REG_LR, 3324 TCG_REG_SP, PUSH_SIZE, 0, 1); 3325 tcg_out_insn(s, 3207, RET, TCG_REG_LR); 3326} 3327 3328static void tcg_out_tb_start(TCGContext *s) 3329{ 3330 tcg_out_bti(s, BTI_J); 3331} 3332 3333static void tcg_out_nop_fill(tcg_insn_unit *p, int count) 3334{ 3335 int i; 3336 for (i = 0; i < count; ++i) { 3337 p[i] = NOP; 3338 } 3339} 3340 3341typedef struct { 3342 DebugFrameHeader h; 3343 uint8_t fde_def_cfa[4]; 3344 uint8_t fde_reg_ofs[24]; 3345} DebugFrame; 3346 3347#define ELF_HOST_MACHINE EM_AARCH64 3348 3349static const DebugFrame debug_frame = { 3350 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 3351 .h.cie.id = -1, 3352 .h.cie.version = 1, 3353 .h.cie.code_align = 1, 3354 .h.cie.data_align = 0x78, /* sleb128 -8 */ 3355 .h.cie.return_column = TCG_REG_LR, 3356 3357 /* Total FDE size does not include the "len" member. */ 3358 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 3359 3360 .fde_def_cfa = { 3361 12, TCG_REG_SP, /* DW_CFA_def_cfa sp, ... */ 3362 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 3363 (FRAME_SIZE >> 7) 3364 }, 3365 .fde_reg_ofs = { 3366 0x80 + 28, 1, /* DW_CFA_offset, x28, -8 */ 3367 0x80 + 27, 2, /* DW_CFA_offset, x27, -16 */ 3368 0x80 + 26, 3, /* DW_CFA_offset, x26, -24 */ 3369 0x80 + 25, 4, /* DW_CFA_offset, x25, -32 */ 3370 0x80 + 24, 5, /* DW_CFA_offset, x24, -40 */ 3371 0x80 + 23, 6, /* DW_CFA_offset, x23, -48 */ 3372 0x80 + 22, 7, /* DW_CFA_offset, x22, -56 */ 3373 0x80 + 21, 8, /* DW_CFA_offset, x21, -64 */ 3374 0x80 + 20, 9, /* DW_CFA_offset, x20, -72 */ 3375 0x80 + 19, 10, /* DW_CFA_offset, x1p, -80 */ 3376 0x80 + 30, 11, /* DW_CFA_offset, lr, -88 */ 3377 0x80 + 29, 12, /* DW_CFA_offset, fp, -96 */ 3378 } 3379}; 3380 3381void tcg_register_jit(const void *buf, size_t buf_size) 3382{ 3383 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); 3384} 3385