1/* 2 * Initial TCG Implementation for aarch64 3 * 4 * Copyright (c) 2013 Huawei Technologies Duesseldorf GmbH 5 * Written by Claudio Fontana 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or 8 * (at your option) any later version. 9 * 10 * See the COPYING file in the top-level directory for details. 11 */ 12 13#include "../tcg-ldst.c.inc" 14#include "../tcg-pool.c.inc" 15#include "qemu/bitops.h" 16 17/* We're going to re-use TCGType in setting of the SF bit, which controls 18 the size of the operation performed. If we know the values match, it 19 makes things much cleaner. */ 20QEMU_BUILD_BUG_ON(TCG_TYPE_I32 != 0 || TCG_TYPE_I64 != 1); 21 22#ifdef CONFIG_DEBUG_TCG 23static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { 24 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 25 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 26 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 27 "x24", "x25", "x26", "x27", "x28", "fp", "x30", "sp", 28 29 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", 30 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", 31 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", 32 "v24", "v25", "v26", "v27", "v28", "fp", "v30", "v31", 33}; 34#endif /* CONFIG_DEBUG_TCG */ 35 36static const int tcg_target_reg_alloc_order[] = { 37 TCG_REG_X20, TCG_REG_X21, TCG_REG_X22, TCG_REG_X23, 38 TCG_REG_X24, TCG_REG_X25, TCG_REG_X26, TCG_REG_X27, 39 TCG_REG_X28, /* we will reserve this for guest_base if configured */ 40 41 TCG_REG_X8, TCG_REG_X9, TCG_REG_X10, TCG_REG_X11, 42 TCG_REG_X12, TCG_REG_X13, TCG_REG_X14, TCG_REG_X15, 43 TCG_REG_X16, TCG_REG_X17, 44 45 TCG_REG_X0, TCG_REG_X1, TCG_REG_X2, TCG_REG_X3, 46 TCG_REG_X4, TCG_REG_X5, TCG_REG_X6, TCG_REG_X7, 47 48 /* X18 reserved by system */ 49 /* X19 reserved for AREG0 */ 50 /* X29 reserved as fp */ 51 /* X30 reserved as temporary */ 52 53 TCG_REG_V0, TCG_REG_V1, TCG_REG_V2, TCG_REG_V3, 54 TCG_REG_V4, TCG_REG_V5, TCG_REG_V6, TCG_REG_V7, 55 /* V8 - V15 are call-saved, and skipped. */ 56 TCG_REG_V16, TCG_REG_V17, TCG_REG_V18, TCG_REG_V19, 57 TCG_REG_V20, TCG_REG_V21, TCG_REG_V22, TCG_REG_V23, 58 TCG_REG_V24, TCG_REG_V25, TCG_REG_V26, TCG_REG_V27, 59 TCG_REG_V28, TCG_REG_V29, TCG_REG_V30, TCG_REG_V31, 60}; 61 62static const int tcg_target_call_iarg_regs[8] = { 63 TCG_REG_X0, TCG_REG_X1, TCG_REG_X2, TCG_REG_X3, 64 TCG_REG_X4, TCG_REG_X5, TCG_REG_X6, TCG_REG_X7 65}; 66 67static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) 68{ 69 tcg_debug_assert(kind == TCG_CALL_RET_NORMAL); 70 tcg_debug_assert(slot >= 0 && slot <= 1); 71 return TCG_REG_X0 + slot; 72} 73 74#define TCG_REG_TMP TCG_REG_X30 75#define TCG_VEC_TMP TCG_REG_V31 76 77#ifndef CONFIG_SOFTMMU 78/* Note that XZR cannot be encoded in the address base register slot, 79 as that actaully encodes SP. So if we need to zero-extend the guest 80 address, via the address index register slot, we need to load even 81 a zero guest base into a register. */ 82#define USE_GUEST_BASE (guest_base != 0 || TARGET_LONG_BITS == 32) 83#define TCG_REG_GUEST_BASE TCG_REG_X28 84#endif 85 86static bool reloc_pc26(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 87{ 88 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 89 ptrdiff_t offset = target - src_rx; 90 91 if (offset == sextract64(offset, 0, 26)) { 92 /* read instruction, mask away previous PC_REL26 parameter contents, 93 set the proper offset, then write back the instruction. */ 94 *src_rw = deposit32(*src_rw, 0, 26, offset); 95 return true; 96 } 97 return false; 98} 99 100static bool reloc_pc19(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 101{ 102 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 103 ptrdiff_t offset = target - src_rx; 104 105 if (offset == sextract64(offset, 0, 19)) { 106 *src_rw = deposit32(*src_rw, 5, 19, offset); 107 return true; 108 } 109 return false; 110} 111 112static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 113 intptr_t value, intptr_t addend) 114{ 115 tcg_debug_assert(addend == 0); 116 switch (type) { 117 case R_AARCH64_JUMP26: 118 case R_AARCH64_CALL26: 119 return reloc_pc26(code_ptr, (const tcg_insn_unit *)value); 120 case R_AARCH64_CONDBR19: 121 return reloc_pc19(code_ptr, (const tcg_insn_unit *)value); 122 default: 123 g_assert_not_reached(); 124 } 125} 126 127#define TCG_CT_CONST_AIMM 0x100 128#define TCG_CT_CONST_LIMM 0x200 129#define TCG_CT_CONST_ZERO 0x400 130#define TCG_CT_CONST_MONE 0x800 131#define TCG_CT_CONST_ORRI 0x1000 132#define TCG_CT_CONST_ANDI 0x2000 133 134#define ALL_GENERAL_REGS 0xffffffffu 135#define ALL_VECTOR_REGS 0xffffffff00000000ull 136 137#ifdef CONFIG_SOFTMMU 138#define ALL_QLDST_REGS \ 139 (ALL_GENERAL_REGS & ~((1 << TCG_REG_X0) | (1 << TCG_REG_X1) | \ 140 (1 << TCG_REG_X2) | (1 << TCG_REG_X3))) 141#else 142#define ALL_QLDST_REGS ALL_GENERAL_REGS 143#endif 144 145/* Match a constant valid for addition (12-bit, optionally shifted). */ 146static inline bool is_aimm(uint64_t val) 147{ 148 return (val & ~0xfff) == 0 || (val & ~0xfff000) == 0; 149} 150 151/* Match a constant valid for logical operations. */ 152static inline bool is_limm(uint64_t val) 153{ 154 /* Taking a simplified view of the logical immediates for now, ignoring 155 the replication that can happen across the field. Match bit patterns 156 of the forms 157 0....01....1 158 0..01..10..0 159 and their inverses. */ 160 161 /* Make things easier below, by testing the form with msb clear. */ 162 if ((int64_t)val < 0) { 163 val = ~val; 164 } 165 if (val == 0) { 166 return false; 167 } 168 val += val & -val; 169 return (val & (val - 1)) == 0; 170} 171 172/* Return true if v16 is a valid 16-bit shifted immediate. */ 173static bool is_shimm16(uint16_t v16, int *cmode, int *imm8) 174{ 175 if (v16 == (v16 & 0xff)) { 176 *cmode = 0x8; 177 *imm8 = v16 & 0xff; 178 return true; 179 } else if (v16 == (v16 & 0xff00)) { 180 *cmode = 0xa; 181 *imm8 = v16 >> 8; 182 return true; 183 } 184 return false; 185} 186 187/* Return true if v32 is a valid 32-bit shifted immediate. */ 188static bool is_shimm32(uint32_t v32, int *cmode, int *imm8) 189{ 190 if (v32 == (v32 & 0xff)) { 191 *cmode = 0x0; 192 *imm8 = v32 & 0xff; 193 return true; 194 } else if (v32 == (v32 & 0xff00)) { 195 *cmode = 0x2; 196 *imm8 = (v32 >> 8) & 0xff; 197 return true; 198 } else if (v32 == (v32 & 0xff0000)) { 199 *cmode = 0x4; 200 *imm8 = (v32 >> 16) & 0xff; 201 return true; 202 } else if (v32 == (v32 & 0xff000000)) { 203 *cmode = 0x6; 204 *imm8 = v32 >> 24; 205 return true; 206 } 207 return false; 208} 209 210/* Return true if v32 is a valid 32-bit shifting ones immediate. */ 211static bool is_soimm32(uint32_t v32, int *cmode, int *imm8) 212{ 213 if ((v32 & 0xffff00ff) == 0xff) { 214 *cmode = 0xc; 215 *imm8 = (v32 >> 8) & 0xff; 216 return true; 217 } else if ((v32 & 0xff00ffff) == 0xffff) { 218 *cmode = 0xd; 219 *imm8 = (v32 >> 16) & 0xff; 220 return true; 221 } 222 return false; 223} 224 225/* Return true if v32 is a valid float32 immediate. */ 226static bool is_fimm32(uint32_t v32, int *cmode, int *imm8) 227{ 228 if (extract32(v32, 0, 19) == 0 229 && (extract32(v32, 25, 6) == 0x20 230 || extract32(v32, 25, 6) == 0x1f)) { 231 *cmode = 0xf; 232 *imm8 = (extract32(v32, 31, 1) << 7) 233 | (extract32(v32, 25, 1) << 6) 234 | extract32(v32, 19, 6); 235 return true; 236 } 237 return false; 238} 239 240/* Return true if v64 is a valid float64 immediate. */ 241static bool is_fimm64(uint64_t v64, int *cmode, int *imm8) 242{ 243 if (extract64(v64, 0, 48) == 0 244 && (extract64(v64, 54, 9) == 0x100 245 || extract64(v64, 54, 9) == 0x0ff)) { 246 *cmode = 0xf; 247 *imm8 = (extract64(v64, 63, 1) << 7) 248 | (extract64(v64, 54, 1) << 6) 249 | extract64(v64, 48, 6); 250 return true; 251 } 252 return false; 253} 254 255/* 256 * Return non-zero if v32 can be formed by MOVI+ORR. 257 * Place the parameters for MOVI in (cmode, imm8). 258 * Return the cmode for ORR; the imm8 can be had via extraction from v32. 259 */ 260static int is_shimm32_pair(uint32_t v32, int *cmode, int *imm8) 261{ 262 int i; 263 264 for (i = 6; i > 0; i -= 2) { 265 /* Mask out one byte we can add with ORR. */ 266 uint32_t tmp = v32 & ~(0xffu << (i * 4)); 267 if (is_shimm32(tmp, cmode, imm8) || 268 is_soimm32(tmp, cmode, imm8)) { 269 break; 270 } 271 } 272 return i; 273} 274 275/* Return true if V is a valid 16-bit or 32-bit shifted immediate. */ 276static bool is_shimm1632(uint32_t v32, int *cmode, int *imm8) 277{ 278 if (v32 == deposit32(v32, 16, 16, v32)) { 279 return is_shimm16(v32, cmode, imm8); 280 } else { 281 return is_shimm32(v32, cmode, imm8); 282 } 283} 284 285static bool tcg_target_const_match(int64_t val, TCGType type, int ct) 286{ 287 if (ct & TCG_CT_CONST) { 288 return 1; 289 } 290 if (type == TCG_TYPE_I32) { 291 val = (int32_t)val; 292 } 293 if ((ct & TCG_CT_CONST_AIMM) && (is_aimm(val) || is_aimm(-val))) { 294 return 1; 295 } 296 if ((ct & TCG_CT_CONST_LIMM) && is_limm(val)) { 297 return 1; 298 } 299 if ((ct & TCG_CT_CONST_ZERO) && val == 0) { 300 return 1; 301 } 302 if ((ct & TCG_CT_CONST_MONE) && val == -1) { 303 return 1; 304 } 305 306 switch (ct & (TCG_CT_CONST_ORRI | TCG_CT_CONST_ANDI)) { 307 case 0: 308 break; 309 case TCG_CT_CONST_ANDI: 310 val = ~val; 311 /* fallthru */ 312 case TCG_CT_CONST_ORRI: 313 if (val == deposit64(val, 32, 32, val)) { 314 int cmode, imm8; 315 return is_shimm1632(val, &cmode, &imm8); 316 } 317 break; 318 default: 319 /* Both bits should not be set for the same insn. */ 320 g_assert_not_reached(); 321 } 322 323 return 0; 324} 325 326enum aarch64_cond_code { 327 COND_EQ = 0x0, 328 COND_NE = 0x1, 329 COND_CS = 0x2, /* Unsigned greater or equal */ 330 COND_HS = COND_CS, /* ALIAS greater or equal */ 331 COND_CC = 0x3, /* Unsigned less than */ 332 COND_LO = COND_CC, /* ALIAS Lower */ 333 COND_MI = 0x4, /* Negative */ 334 COND_PL = 0x5, /* Zero or greater */ 335 COND_VS = 0x6, /* Overflow */ 336 COND_VC = 0x7, /* No overflow */ 337 COND_HI = 0x8, /* Unsigned greater than */ 338 COND_LS = 0x9, /* Unsigned less or equal */ 339 COND_GE = 0xa, 340 COND_LT = 0xb, 341 COND_GT = 0xc, 342 COND_LE = 0xd, 343 COND_AL = 0xe, 344 COND_NV = 0xf, /* behaves like COND_AL here */ 345}; 346 347static const enum aarch64_cond_code tcg_cond_to_aarch64[] = { 348 [TCG_COND_EQ] = COND_EQ, 349 [TCG_COND_NE] = COND_NE, 350 [TCG_COND_LT] = COND_LT, 351 [TCG_COND_GE] = COND_GE, 352 [TCG_COND_LE] = COND_LE, 353 [TCG_COND_GT] = COND_GT, 354 /* unsigned */ 355 [TCG_COND_LTU] = COND_LO, 356 [TCG_COND_GTU] = COND_HI, 357 [TCG_COND_GEU] = COND_HS, 358 [TCG_COND_LEU] = COND_LS, 359}; 360 361typedef enum { 362 LDST_ST = 0, /* store */ 363 LDST_LD = 1, /* load */ 364 LDST_LD_S_X = 2, /* load and sign-extend into Xt */ 365 LDST_LD_S_W = 3, /* load and sign-extend into Wt */ 366} AArch64LdstType; 367 368/* We encode the format of the insn into the beginning of the name, so that 369 we can have the preprocessor help "typecheck" the insn vs the output 370 function. Arm didn't provide us with nice names for the formats, so we 371 use the section number of the architecture reference manual in which the 372 instruction group is described. */ 373typedef enum { 374 /* Compare and branch (immediate). */ 375 I3201_CBZ = 0x34000000, 376 I3201_CBNZ = 0x35000000, 377 378 /* Conditional branch (immediate). */ 379 I3202_B_C = 0x54000000, 380 381 /* Unconditional branch (immediate). */ 382 I3206_B = 0x14000000, 383 I3206_BL = 0x94000000, 384 385 /* Unconditional branch (register). */ 386 I3207_BR = 0xd61f0000, 387 I3207_BLR = 0xd63f0000, 388 I3207_RET = 0xd65f0000, 389 390 /* AdvSIMD load/store single structure. */ 391 I3303_LD1R = 0x0d40c000, 392 393 /* Load literal for loading the address at pc-relative offset */ 394 I3305_LDR = 0x58000000, 395 I3305_LDR_v64 = 0x5c000000, 396 I3305_LDR_v128 = 0x9c000000, 397 398 /* Load/store register. Described here as 3.3.12, but the helper 399 that emits them can transform to 3.3.10 or 3.3.13. */ 400 I3312_STRB = 0x38000000 | LDST_ST << 22 | MO_8 << 30, 401 I3312_STRH = 0x38000000 | LDST_ST << 22 | MO_16 << 30, 402 I3312_STRW = 0x38000000 | LDST_ST << 22 | MO_32 << 30, 403 I3312_STRX = 0x38000000 | LDST_ST << 22 | MO_64 << 30, 404 405 I3312_LDRB = 0x38000000 | LDST_LD << 22 | MO_8 << 30, 406 I3312_LDRH = 0x38000000 | LDST_LD << 22 | MO_16 << 30, 407 I3312_LDRW = 0x38000000 | LDST_LD << 22 | MO_32 << 30, 408 I3312_LDRX = 0x38000000 | LDST_LD << 22 | MO_64 << 30, 409 410 I3312_LDRSBW = 0x38000000 | LDST_LD_S_W << 22 | MO_8 << 30, 411 I3312_LDRSHW = 0x38000000 | LDST_LD_S_W << 22 | MO_16 << 30, 412 413 I3312_LDRSBX = 0x38000000 | LDST_LD_S_X << 22 | MO_8 << 30, 414 I3312_LDRSHX = 0x38000000 | LDST_LD_S_X << 22 | MO_16 << 30, 415 I3312_LDRSWX = 0x38000000 | LDST_LD_S_X << 22 | MO_32 << 30, 416 417 I3312_LDRVS = 0x3c000000 | LDST_LD << 22 | MO_32 << 30, 418 I3312_STRVS = 0x3c000000 | LDST_ST << 22 | MO_32 << 30, 419 420 I3312_LDRVD = 0x3c000000 | LDST_LD << 22 | MO_64 << 30, 421 I3312_STRVD = 0x3c000000 | LDST_ST << 22 | MO_64 << 30, 422 423 I3312_LDRVQ = 0x3c000000 | 3 << 22 | 0 << 30, 424 I3312_STRVQ = 0x3c000000 | 2 << 22 | 0 << 30, 425 426 I3312_TO_I3310 = 0x00200800, 427 I3312_TO_I3313 = 0x01000000, 428 429 /* Load/store register pair instructions. */ 430 I3314_LDP = 0x28400000, 431 I3314_STP = 0x28000000, 432 433 /* Add/subtract immediate instructions. */ 434 I3401_ADDI = 0x11000000, 435 I3401_ADDSI = 0x31000000, 436 I3401_SUBI = 0x51000000, 437 I3401_SUBSI = 0x71000000, 438 439 /* Bitfield instructions. */ 440 I3402_BFM = 0x33000000, 441 I3402_SBFM = 0x13000000, 442 I3402_UBFM = 0x53000000, 443 444 /* Extract instruction. */ 445 I3403_EXTR = 0x13800000, 446 447 /* Logical immediate instructions. */ 448 I3404_ANDI = 0x12000000, 449 I3404_ORRI = 0x32000000, 450 I3404_EORI = 0x52000000, 451 I3404_ANDSI = 0x72000000, 452 453 /* Move wide immediate instructions. */ 454 I3405_MOVN = 0x12800000, 455 I3405_MOVZ = 0x52800000, 456 I3405_MOVK = 0x72800000, 457 458 /* PC relative addressing instructions. */ 459 I3406_ADR = 0x10000000, 460 I3406_ADRP = 0x90000000, 461 462 /* Add/subtract shifted register instructions (without a shift). */ 463 I3502_ADD = 0x0b000000, 464 I3502_ADDS = 0x2b000000, 465 I3502_SUB = 0x4b000000, 466 I3502_SUBS = 0x6b000000, 467 468 /* Add/subtract shifted register instructions (with a shift). */ 469 I3502S_ADD_LSL = I3502_ADD, 470 471 /* Add/subtract with carry instructions. */ 472 I3503_ADC = 0x1a000000, 473 I3503_SBC = 0x5a000000, 474 475 /* Conditional select instructions. */ 476 I3506_CSEL = 0x1a800000, 477 I3506_CSINC = 0x1a800400, 478 I3506_CSINV = 0x5a800000, 479 I3506_CSNEG = 0x5a800400, 480 481 /* Data-processing (1 source) instructions. */ 482 I3507_CLZ = 0x5ac01000, 483 I3507_RBIT = 0x5ac00000, 484 I3507_REV = 0x5ac00000, /* + size << 10 */ 485 486 /* Data-processing (2 source) instructions. */ 487 I3508_LSLV = 0x1ac02000, 488 I3508_LSRV = 0x1ac02400, 489 I3508_ASRV = 0x1ac02800, 490 I3508_RORV = 0x1ac02c00, 491 I3508_SMULH = 0x9b407c00, 492 I3508_UMULH = 0x9bc07c00, 493 I3508_UDIV = 0x1ac00800, 494 I3508_SDIV = 0x1ac00c00, 495 496 /* Data-processing (3 source) instructions. */ 497 I3509_MADD = 0x1b000000, 498 I3509_MSUB = 0x1b008000, 499 500 /* Logical shifted register instructions (without a shift). */ 501 I3510_AND = 0x0a000000, 502 I3510_BIC = 0x0a200000, 503 I3510_ORR = 0x2a000000, 504 I3510_ORN = 0x2a200000, 505 I3510_EOR = 0x4a000000, 506 I3510_EON = 0x4a200000, 507 I3510_ANDS = 0x6a000000, 508 509 /* Logical shifted register instructions (with a shift). */ 510 I3502S_AND_LSR = I3510_AND | (1 << 22), 511 512 /* AdvSIMD copy */ 513 I3605_DUP = 0x0e000400, 514 I3605_INS = 0x4e001c00, 515 I3605_UMOV = 0x0e003c00, 516 517 /* AdvSIMD modified immediate */ 518 I3606_MOVI = 0x0f000400, 519 I3606_MVNI = 0x2f000400, 520 I3606_BIC = 0x2f001400, 521 I3606_ORR = 0x0f001400, 522 523 /* AdvSIMD scalar shift by immediate */ 524 I3609_SSHR = 0x5f000400, 525 I3609_SSRA = 0x5f001400, 526 I3609_SHL = 0x5f005400, 527 I3609_USHR = 0x7f000400, 528 I3609_USRA = 0x7f001400, 529 I3609_SLI = 0x7f005400, 530 531 /* AdvSIMD scalar three same */ 532 I3611_SQADD = 0x5e200c00, 533 I3611_SQSUB = 0x5e202c00, 534 I3611_CMGT = 0x5e203400, 535 I3611_CMGE = 0x5e203c00, 536 I3611_SSHL = 0x5e204400, 537 I3611_ADD = 0x5e208400, 538 I3611_CMTST = 0x5e208c00, 539 I3611_UQADD = 0x7e200c00, 540 I3611_UQSUB = 0x7e202c00, 541 I3611_CMHI = 0x7e203400, 542 I3611_CMHS = 0x7e203c00, 543 I3611_USHL = 0x7e204400, 544 I3611_SUB = 0x7e208400, 545 I3611_CMEQ = 0x7e208c00, 546 547 /* AdvSIMD scalar two-reg misc */ 548 I3612_CMGT0 = 0x5e208800, 549 I3612_CMEQ0 = 0x5e209800, 550 I3612_CMLT0 = 0x5e20a800, 551 I3612_ABS = 0x5e20b800, 552 I3612_CMGE0 = 0x7e208800, 553 I3612_CMLE0 = 0x7e209800, 554 I3612_NEG = 0x7e20b800, 555 556 /* AdvSIMD shift by immediate */ 557 I3614_SSHR = 0x0f000400, 558 I3614_SSRA = 0x0f001400, 559 I3614_SHL = 0x0f005400, 560 I3614_SLI = 0x2f005400, 561 I3614_USHR = 0x2f000400, 562 I3614_USRA = 0x2f001400, 563 564 /* AdvSIMD three same. */ 565 I3616_ADD = 0x0e208400, 566 I3616_AND = 0x0e201c00, 567 I3616_BIC = 0x0e601c00, 568 I3616_BIF = 0x2ee01c00, 569 I3616_BIT = 0x2ea01c00, 570 I3616_BSL = 0x2e601c00, 571 I3616_EOR = 0x2e201c00, 572 I3616_MUL = 0x0e209c00, 573 I3616_ORR = 0x0ea01c00, 574 I3616_ORN = 0x0ee01c00, 575 I3616_SUB = 0x2e208400, 576 I3616_CMGT = 0x0e203400, 577 I3616_CMGE = 0x0e203c00, 578 I3616_CMTST = 0x0e208c00, 579 I3616_CMHI = 0x2e203400, 580 I3616_CMHS = 0x2e203c00, 581 I3616_CMEQ = 0x2e208c00, 582 I3616_SMAX = 0x0e206400, 583 I3616_SMIN = 0x0e206c00, 584 I3616_SSHL = 0x0e204400, 585 I3616_SQADD = 0x0e200c00, 586 I3616_SQSUB = 0x0e202c00, 587 I3616_UMAX = 0x2e206400, 588 I3616_UMIN = 0x2e206c00, 589 I3616_UQADD = 0x2e200c00, 590 I3616_UQSUB = 0x2e202c00, 591 I3616_USHL = 0x2e204400, 592 593 /* AdvSIMD two-reg misc. */ 594 I3617_CMGT0 = 0x0e208800, 595 I3617_CMEQ0 = 0x0e209800, 596 I3617_CMLT0 = 0x0e20a800, 597 I3617_CMGE0 = 0x2e208800, 598 I3617_CMLE0 = 0x2e209800, 599 I3617_NOT = 0x2e205800, 600 I3617_ABS = 0x0e20b800, 601 I3617_NEG = 0x2e20b800, 602 603 /* System instructions. */ 604 NOP = 0xd503201f, 605 DMB_ISH = 0xd50338bf, 606 DMB_LD = 0x00000100, 607 DMB_ST = 0x00000200, 608} AArch64Insn; 609 610static inline uint32_t tcg_in32(TCGContext *s) 611{ 612 uint32_t v = *(uint32_t *)s->code_ptr; 613 return v; 614} 615 616/* Emit an opcode with "type-checking" of the format. */ 617#define tcg_out_insn(S, FMT, OP, ...) \ 618 glue(tcg_out_insn_,FMT)(S, glue(glue(glue(I,FMT),_),OP), ## __VA_ARGS__) 619 620static void tcg_out_insn_3303(TCGContext *s, AArch64Insn insn, bool q, 621 TCGReg rt, TCGReg rn, unsigned size) 622{ 623 tcg_out32(s, insn | (rt & 0x1f) | (rn << 5) | (size << 10) | (q << 30)); 624} 625 626static void tcg_out_insn_3305(TCGContext *s, AArch64Insn insn, 627 int imm19, TCGReg rt) 628{ 629 tcg_out32(s, insn | (imm19 & 0x7ffff) << 5 | rt); 630} 631 632static void tcg_out_insn_3201(TCGContext *s, AArch64Insn insn, TCGType ext, 633 TCGReg rt, int imm19) 634{ 635 tcg_out32(s, insn | ext << 31 | (imm19 & 0x7ffff) << 5 | rt); 636} 637 638static void tcg_out_insn_3202(TCGContext *s, AArch64Insn insn, 639 TCGCond c, int imm19) 640{ 641 tcg_out32(s, insn | tcg_cond_to_aarch64[c] | (imm19 & 0x7ffff) << 5); 642} 643 644static void tcg_out_insn_3206(TCGContext *s, AArch64Insn insn, int imm26) 645{ 646 tcg_out32(s, insn | (imm26 & 0x03ffffff)); 647} 648 649static void tcg_out_insn_3207(TCGContext *s, AArch64Insn insn, TCGReg rn) 650{ 651 tcg_out32(s, insn | rn << 5); 652} 653 654static void tcg_out_insn_3314(TCGContext *s, AArch64Insn insn, 655 TCGReg r1, TCGReg r2, TCGReg rn, 656 tcg_target_long ofs, bool pre, bool w) 657{ 658 insn |= 1u << 31; /* ext */ 659 insn |= pre << 24; 660 insn |= w << 23; 661 662 tcg_debug_assert(ofs >= -0x200 && ofs < 0x200 && (ofs & 7) == 0); 663 insn |= (ofs & (0x7f << 3)) << (15 - 3); 664 665 tcg_out32(s, insn | r2 << 10 | rn << 5 | r1); 666} 667 668static void tcg_out_insn_3401(TCGContext *s, AArch64Insn insn, TCGType ext, 669 TCGReg rd, TCGReg rn, uint64_t aimm) 670{ 671 if (aimm > 0xfff) { 672 tcg_debug_assert((aimm & 0xfff) == 0); 673 aimm >>= 12; 674 tcg_debug_assert(aimm <= 0xfff); 675 aimm |= 1 << 12; /* apply LSL 12 */ 676 } 677 tcg_out32(s, insn | ext << 31 | aimm << 10 | rn << 5 | rd); 678} 679 680/* This function can be used for both 3.4.2 (Bitfield) and 3.4.4 681 (Logical immediate). Both insn groups have N, IMMR and IMMS fields 682 that feed the DecodeBitMasks pseudo function. */ 683static void tcg_out_insn_3402(TCGContext *s, AArch64Insn insn, TCGType ext, 684 TCGReg rd, TCGReg rn, int n, int immr, int imms) 685{ 686 tcg_out32(s, insn | ext << 31 | n << 22 | immr << 16 | imms << 10 687 | rn << 5 | rd); 688} 689 690#define tcg_out_insn_3404 tcg_out_insn_3402 691 692static void tcg_out_insn_3403(TCGContext *s, AArch64Insn insn, TCGType ext, 693 TCGReg rd, TCGReg rn, TCGReg rm, int imms) 694{ 695 tcg_out32(s, insn | ext << 31 | ext << 22 | rm << 16 | imms << 10 696 | rn << 5 | rd); 697} 698 699/* This function is used for the Move (wide immediate) instruction group. 700 Note that SHIFT is a full shift count, not the 2 bit HW field. */ 701static void tcg_out_insn_3405(TCGContext *s, AArch64Insn insn, TCGType ext, 702 TCGReg rd, uint16_t half, unsigned shift) 703{ 704 tcg_debug_assert((shift & ~0x30) == 0); 705 tcg_out32(s, insn | ext << 31 | shift << (21 - 4) | half << 5 | rd); 706} 707 708static void tcg_out_insn_3406(TCGContext *s, AArch64Insn insn, 709 TCGReg rd, int64_t disp) 710{ 711 tcg_out32(s, insn | (disp & 3) << 29 | (disp & 0x1ffffc) << (5 - 2) | rd); 712} 713 714/* This function is for both 3.5.2 (Add/Subtract shifted register), for 715 the rare occasion when we actually want to supply a shift amount. */ 716static inline void tcg_out_insn_3502S(TCGContext *s, AArch64Insn insn, 717 TCGType ext, TCGReg rd, TCGReg rn, 718 TCGReg rm, int imm6) 719{ 720 tcg_out32(s, insn | ext << 31 | rm << 16 | imm6 << 10 | rn << 5 | rd); 721} 722 723/* This function is for 3.5.2 (Add/subtract shifted register), 724 and 3.5.10 (Logical shifted register), for the vast majorty of cases 725 when we don't want to apply a shift. Thus it can also be used for 726 3.5.3 (Add/subtract with carry) and 3.5.8 (Data processing 2 source). */ 727static void tcg_out_insn_3502(TCGContext *s, AArch64Insn insn, TCGType ext, 728 TCGReg rd, TCGReg rn, TCGReg rm) 729{ 730 tcg_out32(s, insn | ext << 31 | rm << 16 | rn << 5 | rd); 731} 732 733#define tcg_out_insn_3503 tcg_out_insn_3502 734#define tcg_out_insn_3508 tcg_out_insn_3502 735#define tcg_out_insn_3510 tcg_out_insn_3502 736 737static void tcg_out_insn_3506(TCGContext *s, AArch64Insn insn, TCGType ext, 738 TCGReg rd, TCGReg rn, TCGReg rm, TCGCond c) 739{ 740 tcg_out32(s, insn | ext << 31 | rm << 16 | rn << 5 | rd 741 | tcg_cond_to_aarch64[c] << 12); 742} 743 744static void tcg_out_insn_3507(TCGContext *s, AArch64Insn insn, TCGType ext, 745 TCGReg rd, TCGReg rn) 746{ 747 tcg_out32(s, insn | ext << 31 | rn << 5 | rd); 748} 749 750static void tcg_out_insn_3509(TCGContext *s, AArch64Insn insn, TCGType ext, 751 TCGReg rd, TCGReg rn, TCGReg rm, TCGReg ra) 752{ 753 tcg_out32(s, insn | ext << 31 | rm << 16 | ra << 10 | rn << 5 | rd); 754} 755 756static void tcg_out_insn_3605(TCGContext *s, AArch64Insn insn, bool q, 757 TCGReg rd, TCGReg rn, int dst_idx, int src_idx) 758{ 759 /* Note that bit 11 set means general register input. Therefore 760 we can handle both register sets with one function. */ 761 tcg_out32(s, insn | q << 30 | (dst_idx << 16) | (src_idx << 11) 762 | (rd & 0x1f) | (~rn & 0x20) << 6 | (rn & 0x1f) << 5); 763} 764 765static void tcg_out_insn_3606(TCGContext *s, AArch64Insn insn, bool q, 766 TCGReg rd, bool op, int cmode, uint8_t imm8) 767{ 768 tcg_out32(s, insn | q << 30 | op << 29 | cmode << 12 | (rd & 0x1f) 769 | (imm8 & 0xe0) << (16 - 5) | (imm8 & 0x1f) << 5); 770} 771 772static void tcg_out_insn_3609(TCGContext *s, AArch64Insn insn, 773 TCGReg rd, TCGReg rn, unsigned immhb) 774{ 775 tcg_out32(s, insn | immhb << 16 | (rn & 0x1f) << 5 | (rd & 0x1f)); 776} 777 778static void tcg_out_insn_3611(TCGContext *s, AArch64Insn insn, 779 unsigned size, TCGReg rd, TCGReg rn, TCGReg rm) 780{ 781 tcg_out32(s, insn | (size << 22) | (rm & 0x1f) << 16 782 | (rn & 0x1f) << 5 | (rd & 0x1f)); 783} 784 785static void tcg_out_insn_3612(TCGContext *s, AArch64Insn insn, 786 unsigned size, TCGReg rd, TCGReg rn) 787{ 788 tcg_out32(s, insn | (size << 22) | (rn & 0x1f) << 5 | (rd & 0x1f)); 789} 790 791static void tcg_out_insn_3614(TCGContext *s, AArch64Insn insn, bool q, 792 TCGReg rd, TCGReg rn, unsigned immhb) 793{ 794 tcg_out32(s, insn | q << 30 | immhb << 16 795 | (rn & 0x1f) << 5 | (rd & 0x1f)); 796} 797 798static void tcg_out_insn_3616(TCGContext *s, AArch64Insn insn, bool q, 799 unsigned size, TCGReg rd, TCGReg rn, TCGReg rm) 800{ 801 tcg_out32(s, insn | q << 30 | (size << 22) | (rm & 0x1f) << 16 802 | (rn & 0x1f) << 5 | (rd & 0x1f)); 803} 804 805static void tcg_out_insn_3617(TCGContext *s, AArch64Insn insn, bool q, 806 unsigned size, TCGReg rd, TCGReg rn) 807{ 808 tcg_out32(s, insn | q << 30 | (size << 22) 809 | (rn & 0x1f) << 5 | (rd & 0x1f)); 810} 811 812static void tcg_out_insn_3310(TCGContext *s, AArch64Insn insn, 813 TCGReg rd, TCGReg base, TCGType ext, 814 TCGReg regoff) 815{ 816 /* Note the AArch64Insn constants above are for C3.3.12. Adjust. */ 817 tcg_out32(s, insn | I3312_TO_I3310 | regoff << 16 | 818 0x4000 | ext << 13 | base << 5 | (rd & 0x1f)); 819} 820 821static void tcg_out_insn_3312(TCGContext *s, AArch64Insn insn, 822 TCGReg rd, TCGReg rn, intptr_t offset) 823{ 824 tcg_out32(s, insn | (offset & 0x1ff) << 12 | rn << 5 | (rd & 0x1f)); 825} 826 827static void tcg_out_insn_3313(TCGContext *s, AArch64Insn insn, 828 TCGReg rd, TCGReg rn, uintptr_t scaled_uimm) 829{ 830 /* Note the AArch64Insn constants above are for C3.3.12. Adjust. */ 831 tcg_out32(s, insn | I3312_TO_I3313 | scaled_uimm << 10 832 | rn << 5 | (rd & 0x1f)); 833} 834 835/* Register to register move using ORR (shifted register with no shift). */ 836static void tcg_out_movr(TCGContext *s, TCGType ext, TCGReg rd, TCGReg rm) 837{ 838 tcg_out_insn(s, 3510, ORR, ext, rd, TCG_REG_XZR, rm); 839} 840 841/* Register to register move using ADDI (move to/from SP). */ 842static void tcg_out_movr_sp(TCGContext *s, TCGType ext, TCGReg rd, TCGReg rn) 843{ 844 tcg_out_insn(s, 3401, ADDI, ext, rd, rn, 0); 845} 846 847/* This function is used for the Logical (immediate) instruction group. 848 The value of LIMM must satisfy IS_LIMM. See the comment above about 849 only supporting simplified logical immediates. */ 850static void tcg_out_logicali(TCGContext *s, AArch64Insn insn, TCGType ext, 851 TCGReg rd, TCGReg rn, uint64_t limm) 852{ 853 unsigned h, l, r, c; 854 855 tcg_debug_assert(is_limm(limm)); 856 857 h = clz64(limm); 858 l = ctz64(limm); 859 if (l == 0) { 860 r = 0; /* form 0....01....1 */ 861 c = ctz64(~limm) - 1; 862 if (h == 0) { 863 r = clz64(~limm); /* form 1..10..01..1 */ 864 c += r; 865 } 866 } else { 867 r = 64 - l; /* form 1....10....0 or 0..01..10..0 */ 868 c = r - h - 1; 869 } 870 if (ext == TCG_TYPE_I32) { 871 r &= 31; 872 c &= 31; 873 } 874 875 tcg_out_insn_3404(s, insn, ext, rd, rn, ext, r, c); 876} 877 878static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 879 TCGReg rd, int64_t v64) 880{ 881 bool q = type == TCG_TYPE_V128; 882 int cmode, imm8, i; 883 884 /* Test all bytes equal first. */ 885 if (vece == MO_8) { 886 imm8 = (uint8_t)v64; 887 tcg_out_insn(s, 3606, MOVI, q, rd, 0, 0xe, imm8); 888 return; 889 } 890 891 /* 892 * Test all bytes 0x00 or 0xff second. This can match cases that 893 * might otherwise take 2 or 3 insns for MO_16 or MO_32 below. 894 */ 895 for (i = imm8 = 0; i < 8; i++) { 896 uint8_t byte = v64 >> (i * 8); 897 if (byte == 0xff) { 898 imm8 |= 1 << i; 899 } else if (byte != 0) { 900 goto fail_bytes; 901 } 902 } 903 tcg_out_insn(s, 3606, MOVI, q, rd, 1, 0xe, imm8); 904 return; 905 fail_bytes: 906 907 /* 908 * Tests for various replications. For each element width, if we 909 * cannot find an expansion there's no point checking a larger 910 * width because we already know by replication it cannot match. 911 */ 912 if (vece == MO_16) { 913 uint16_t v16 = v64; 914 915 if (is_shimm16(v16, &cmode, &imm8)) { 916 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 917 return; 918 } 919 if (is_shimm16(~v16, &cmode, &imm8)) { 920 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 921 return; 922 } 923 924 /* 925 * Otherwise, all remaining constants can be loaded in two insns: 926 * rd = v16 & 0xff, rd |= v16 & 0xff00. 927 */ 928 tcg_out_insn(s, 3606, MOVI, q, rd, 0, 0x8, v16 & 0xff); 929 tcg_out_insn(s, 3606, ORR, q, rd, 0, 0xa, v16 >> 8); 930 return; 931 } else if (vece == MO_32) { 932 uint32_t v32 = v64; 933 uint32_t n32 = ~v32; 934 935 if (is_shimm32(v32, &cmode, &imm8) || 936 is_soimm32(v32, &cmode, &imm8) || 937 is_fimm32(v32, &cmode, &imm8)) { 938 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 939 return; 940 } 941 if (is_shimm32(n32, &cmode, &imm8) || 942 is_soimm32(n32, &cmode, &imm8)) { 943 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 944 return; 945 } 946 947 /* 948 * Restrict the set of constants to those we can load with 949 * two instructions. Others we load from the pool. 950 */ 951 i = is_shimm32_pair(v32, &cmode, &imm8); 952 if (i) { 953 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 954 tcg_out_insn(s, 3606, ORR, q, rd, 0, i, extract32(v32, i * 4, 8)); 955 return; 956 } 957 i = is_shimm32_pair(n32, &cmode, &imm8); 958 if (i) { 959 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 960 tcg_out_insn(s, 3606, BIC, q, rd, 0, i, extract32(n32, i * 4, 8)); 961 return; 962 } 963 } else if (is_fimm64(v64, &cmode, &imm8)) { 964 tcg_out_insn(s, 3606, MOVI, q, rd, 1, cmode, imm8); 965 return; 966 } 967 968 /* 969 * As a last resort, load from the constant pool. Sadly there 970 * is no LD1R (literal), so store the full 16-byte vector. 971 */ 972 if (type == TCG_TYPE_V128) { 973 new_pool_l2(s, R_AARCH64_CONDBR19, s->code_ptr, 0, v64, v64); 974 tcg_out_insn(s, 3305, LDR_v128, 0, rd); 975 } else { 976 new_pool_label(s, v64, R_AARCH64_CONDBR19, s->code_ptr, 0); 977 tcg_out_insn(s, 3305, LDR_v64, 0, rd); 978 } 979} 980 981static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 982 TCGReg rd, TCGReg rs) 983{ 984 int is_q = type - TCG_TYPE_V64; 985 tcg_out_insn(s, 3605, DUP, is_q, rd, rs, 1 << vece, 0); 986 return true; 987} 988 989static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 990 TCGReg r, TCGReg base, intptr_t offset) 991{ 992 TCGReg temp = TCG_REG_TMP; 993 994 if (offset < -0xffffff || offset > 0xffffff) { 995 tcg_out_movi(s, TCG_TYPE_PTR, temp, offset); 996 tcg_out_insn(s, 3502, ADD, 1, temp, temp, base); 997 base = temp; 998 } else { 999 AArch64Insn add_insn = I3401_ADDI; 1000 1001 if (offset < 0) { 1002 add_insn = I3401_SUBI; 1003 offset = -offset; 1004 } 1005 if (offset & 0xfff000) { 1006 tcg_out_insn_3401(s, add_insn, 1, temp, base, offset & 0xfff000); 1007 base = temp; 1008 } 1009 if (offset & 0xfff) { 1010 tcg_out_insn_3401(s, add_insn, 1, temp, base, offset & 0xfff); 1011 base = temp; 1012 } 1013 } 1014 tcg_out_insn(s, 3303, LD1R, type == TCG_TYPE_V128, r, base, vece); 1015 return true; 1016} 1017 1018static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg rd, 1019 tcg_target_long value) 1020{ 1021 tcg_target_long svalue = value; 1022 tcg_target_long ivalue = ~value; 1023 tcg_target_long t0, t1, t2; 1024 int s0, s1; 1025 AArch64Insn opc; 1026 1027 switch (type) { 1028 case TCG_TYPE_I32: 1029 case TCG_TYPE_I64: 1030 tcg_debug_assert(rd < 32); 1031 break; 1032 default: 1033 g_assert_not_reached(); 1034 } 1035 1036 /* For 32-bit values, discard potential garbage in value. For 64-bit 1037 values within [2**31, 2**32-1], we can create smaller sequences by 1038 interpreting this as a negative 32-bit number, while ensuring that 1039 the high 32 bits are cleared by setting SF=0. */ 1040 if (type == TCG_TYPE_I32 || (value & ~0xffffffffull) == 0) { 1041 svalue = (int32_t)value; 1042 value = (uint32_t)value; 1043 ivalue = (uint32_t)ivalue; 1044 type = TCG_TYPE_I32; 1045 } 1046 1047 /* Speed things up by handling the common case of small positive 1048 and negative values specially. */ 1049 if ((value & ~0xffffull) == 0) { 1050 tcg_out_insn(s, 3405, MOVZ, type, rd, value, 0); 1051 return; 1052 } else if ((ivalue & ~0xffffull) == 0) { 1053 tcg_out_insn(s, 3405, MOVN, type, rd, ivalue, 0); 1054 return; 1055 } 1056 1057 /* Check for bitfield immediates. For the benefit of 32-bit quantities, 1058 use the sign-extended value. That lets us match rotated values such 1059 as 0xff0000ff with the same 64-bit logic matching 0xffffffffff0000ff. */ 1060 if (is_limm(svalue)) { 1061 tcg_out_logicali(s, I3404_ORRI, type, rd, TCG_REG_XZR, svalue); 1062 return; 1063 } 1064 1065 /* Look for host pointer values within 4G of the PC. This happens 1066 often when loading pointers to QEMU's own data structures. */ 1067 if (type == TCG_TYPE_I64) { 1068 intptr_t src_rx = (intptr_t)tcg_splitwx_to_rx(s->code_ptr); 1069 tcg_target_long disp = value - src_rx; 1070 if (disp == sextract64(disp, 0, 21)) { 1071 tcg_out_insn(s, 3406, ADR, rd, disp); 1072 return; 1073 } 1074 disp = (value >> 12) - (src_rx >> 12); 1075 if (disp == sextract64(disp, 0, 21)) { 1076 tcg_out_insn(s, 3406, ADRP, rd, disp); 1077 if (value & 0xfff) { 1078 tcg_out_insn(s, 3401, ADDI, type, rd, rd, value & 0xfff); 1079 } 1080 return; 1081 } 1082 } 1083 1084 /* Would it take fewer insns to begin with MOVN? */ 1085 if (ctpop64(value) >= 32) { 1086 t0 = ivalue; 1087 opc = I3405_MOVN; 1088 } else { 1089 t0 = value; 1090 opc = I3405_MOVZ; 1091 } 1092 s0 = ctz64(t0) & (63 & -16); 1093 t1 = t0 & ~(0xffffull << s0); 1094 s1 = ctz64(t1) & (63 & -16); 1095 t2 = t1 & ~(0xffffull << s1); 1096 if (t2 == 0) { 1097 tcg_out_insn_3405(s, opc, type, rd, t0 >> s0, s0); 1098 if (t1 != 0) { 1099 tcg_out_insn(s, 3405, MOVK, type, rd, value >> s1, s1); 1100 } 1101 return; 1102 } 1103 1104 /* For more than 2 insns, dump it into the constant pool. */ 1105 new_pool_label(s, value, R_AARCH64_CONDBR19, s->code_ptr, 0); 1106 tcg_out_insn(s, 3305, LDR, 0, rd); 1107} 1108 1109static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) 1110{ 1111 return false; 1112} 1113 1114static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, 1115 tcg_target_long imm) 1116{ 1117 /* This function is only used for passing structs by reference. */ 1118 g_assert_not_reached(); 1119} 1120 1121/* Define something more legible for general use. */ 1122#define tcg_out_ldst_r tcg_out_insn_3310 1123 1124static void tcg_out_ldst(TCGContext *s, AArch64Insn insn, TCGReg rd, 1125 TCGReg rn, intptr_t offset, int lgsize) 1126{ 1127 /* If the offset is naturally aligned and in range, then we can 1128 use the scaled uimm12 encoding */ 1129 if (offset >= 0 && !(offset & ((1 << lgsize) - 1))) { 1130 uintptr_t scaled_uimm = offset >> lgsize; 1131 if (scaled_uimm <= 0xfff) { 1132 tcg_out_insn_3313(s, insn, rd, rn, scaled_uimm); 1133 return; 1134 } 1135 } 1136 1137 /* Small signed offsets can use the unscaled encoding. */ 1138 if (offset >= -256 && offset < 256) { 1139 tcg_out_insn_3312(s, insn, rd, rn, offset); 1140 return; 1141 } 1142 1143 /* Worst-case scenario, move offset to temp register, use reg offset. */ 1144 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP, offset); 1145 tcg_out_ldst_r(s, insn, rd, rn, TCG_TYPE_I64, TCG_REG_TMP); 1146} 1147 1148static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 1149{ 1150 if (ret == arg) { 1151 return true; 1152 } 1153 switch (type) { 1154 case TCG_TYPE_I32: 1155 case TCG_TYPE_I64: 1156 if (ret < 32 && arg < 32) { 1157 tcg_out_movr(s, type, ret, arg); 1158 break; 1159 } else if (ret < 32) { 1160 tcg_out_insn(s, 3605, UMOV, type, ret, arg, 0, 0); 1161 break; 1162 } else if (arg < 32) { 1163 tcg_out_insn(s, 3605, INS, 0, ret, arg, 4 << type, 0); 1164 break; 1165 } 1166 /* FALLTHRU */ 1167 1168 case TCG_TYPE_V64: 1169 tcg_debug_assert(ret >= 32 && arg >= 32); 1170 tcg_out_insn(s, 3616, ORR, 0, 0, ret, arg, arg); 1171 break; 1172 case TCG_TYPE_V128: 1173 tcg_debug_assert(ret >= 32 && arg >= 32); 1174 tcg_out_insn(s, 3616, ORR, 1, 0, ret, arg, arg); 1175 break; 1176 1177 default: 1178 g_assert_not_reached(); 1179 } 1180 return true; 1181} 1182 1183static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, 1184 TCGReg base, intptr_t ofs) 1185{ 1186 AArch64Insn insn; 1187 int lgsz; 1188 1189 switch (type) { 1190 case TCG_TYPE_I32: 1191 insn = (ret < 32 ? I3312_LDRW : I3312_LDRVS); 1192 lgsz = 2; 1193 break; 1194 case TCG_TYPE_I64: 1195 insn = (ret < 32 ? I3312_LDRX : I3312_LDRVD); 1196 lgsz = 3; 1197 break; 1198 case TCG_TYPE_V64: 1199 insn = I3312_LDRVD; 1200 lgsz = 3; 1201 break; 1202 case TCG_TYPE_V128: 1203 insn = I3312_LDRVQ; 1204 lgsz = 4; 1205 break; 1206 default: 1207 g_assert_not_reached(); 1208 } 1209 tcg_out_ldst(s, insn, ret, base, ofs, lgsz); 1210} 1211 1212static void tcg_out_st(TCGContext *s, TCGType type, TCGReg src, 1213 TCGReg base, intptr_t ofs) 1214{ 1215 AArch64Insn insn; 1216 int lgsz; 1217 1218 switch (type) { 1219 case TCG_TYPE_I32: 1220 insn = (src < 32 ? I3312_STRW : I3312_STRVS); 1221 lgsz = 2; 1222 break; 1223 case TCG_TYPE_I64: 1224 insn = (src < 32 ? I3312_STRX : I3312_STRVD); 1225 lgsz = 3; 1226 break; 1227 case TCG_TYPE_V64: 1228 insn = I3312_STRVD; 1229 lgsz = 3; 1230 break; 1231 case TCG_TYPE_V128: 1232 insn = I3312_STRVQ; 1233 lgsz = 4; 1234 break; 1235 default: 1236 g_assert_not_reached(); 1237 } 1238 tcg_out_ldst(s, insn, src, base, ofs, lgsz); 1239} 1240 1241static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 1242 TCGReg base, intptr_t ofs) 1243{ 1244 if (type <= TCG_TYPE_I64 && val == 0) { 1245 tcg_out_st(s, type, TCG_REG_XZR, base, ofs); 1246 return true; 1247 } 1248 return false; 1249} 1250 1251static inline void tcg_out_bfm(TCGContext *s, TCGType ext, TCGReg rd, 1252 TCGReg rn, unsigned int a, unsigned int b) 1253{ 1254 tcg_out_insn(s, 3402, BFM, ext, rd, rn, ext, a, b); 1255} 1256 1257static inline void tcg_out_ubfm(TCGContext *s, TCGType ext, TCGReg rd, 1258 TCGReg rn, unsigned int a, unsigned int b) 1259{ 1260 tcg_out_insn(s, 3402, UBFM, ext, rd, rn, ext, a, b); 1261} 1262 1263static inline void tcg_out_sbfm(TCGContext *s, TCGType ext, TCGReg rd, 1264 TCGReg rn, unsigned int a, unsigned int b) 1265{ 1266 tcg_out_insn(s, 3402, SBFM, ext, rd, rn, ext, a, b); 1267} 1268 1269static inline void tcg_out_extr(TCGContext *s, TCGType ext, TCGReg rd, 1270 TCGReg rn, TCGReg rm, unsigned int a) 1271{ 1272 tcg_out_insn(s, 3403, EXTR, ext, rd, rn, rm, a); 1273} 1274 1275static inline void tcg_out_shl(TCGContext *s, TCGType ext, 1276 TCGReg rd, TCGReg rn, unsigned int m) 1277{ 1278 int bits = ext ? 64 : 32; 1279 int max = bits - 1; 1280 tcg_out_ubfm(s, ext, rd, rn, (bits - m) & max, (max - m) & max); 1281} 1282 1283static inline void tcg_out_shr(TCGContext *s, TCGType ext, 1284 TCGReg rd, TCGReg rn, unsigned int m) 1285{ 1286 int max = ext ? 63 : 31; 1287 tcg_out_ubfm(s, ext, rd, rn, m & max, max); 1288} 1289 1290static inline void tcg_out_sar(TCGContext *s, TCGType ext, 1291 TCGReg rd, TCGReg rn, unsigned int m) 1292{ 1293 int max = ext ? 63 : 31; 1294 tcg_out_sbfm(s, ext, rd, rn, m & max, max); 1295} 1296 1297static inline void tcg_out_rotr(TCGContext *s, TCGType ext, 1298 TCGReg rd, TCGReg rn, unsigned int m) 1299{ 1300 int max = ext ? 63 : 31; 1301 tcg_out_extr(s, ext, rd, rn, rn, m & max); 1302} 1303 1304static inline void tcg_out_rotl(TCGContext *s, TCGType ext, 1305 TCGReg rd, TCGReg rn, unsigned int m) 1306{ 1307 int max = ext ? 63 : 31; 1308 tcg_out_extr(s, ext, rd, rn, rn, -m & max); 1309} 1310 1311static inline void tcg_out_dep(TCGContext *s, TCGType ext, TCGReg rd, 1312 TCGReg rn, unsigned lsb, unsigned width) 1313{ 1314 unsigned size = ext ? 64 : 32; 1315 unsigned a = (size - lsb) & (size - 1); 1316 unsigned b = width - 1; 1317 tcg_out_bfm(s, ext, rd, rn, a, b); 1318} 1319 1320static void tcg_out_cmp(TCGContext *s, TCGType ext, TCGReg a, 1321 tcg_target_long b, bool const_b) 1322{ 1323 if (const_b) { 1324 /* Using CMP or CMN aliases. */ 1325 if (b >= 0) { 1326 tcg_out_insn(s, 3401, SUBSI, ext, TCG_REG_XZR, a, b); 1327 } else { 1328 tcg_out_insn(s, 3401, ADDSI, ext, TCG_REG_XZR, a, -b); 1329 } 1330 } else { 1331 /* Using CMP alias SUBS wzr, Wn, Wm */ 1332 tcg_out_insn(s, 3502, SUBS, ext, TCG_REG_XZR, a, b); 1333 } 1334} 1335 1336static void tcg_out_goto(TCGContext *s, const tcg_insn_unit *target) 1337{ 1338 ptrdiff_t offset = tcg_pcrel_diff(s, target) >> 2; 1339 tcg_debug_assert(offset == sextract64(offset, 0, 26)); 1340 tcg_out_insn(s, 3206, B, offset); 1341} 1342 1343static void tcg_out_goto_long(TCGContext *s, const tcg_insn_unit *target) 1344{ 1345 ptrdiff_t offset = tcg_pcrel_diff(s, target) >> 2; 1346 if (offset == sextract64(offset, 0, 26)) { 1347 tcg_out_insn(s, 3206, B, offset); 1348 } else { 1349 /* Choose X9 as a call-clobbered non-LR temporary. */ 1350 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_X9, (intptr_t)target); 1351 tcg_out_insn(s, 3207, BR, TCG_REG_X9); 1352 } 1353} 1354 1355static void tcg_out_call_int(TCGContext *s, const tcg_insn_unit *target) 1356{ 1357 ptrdiff_t offset = tcg_pcrel_diff(s, target) >> 2; 1358 if (offset == sextract64(offset, 0, 26)) { 1359 tcg_out_insn(s, 3206, BL, offset); 1360 } else { 1361 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP, (intptr_t)target); 1362 tcg_out_insn(s, 3207, BLR, TCG_REG_TMP); 1363 } 1364} 1365 1366static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target, 1367 const TCGHelperInfo *info) 1368{ 1369 tcg_out_call_int(s, target); 1370} 1371 1372static inline void tcg_out_goto_label(TCGContext *s, TCGLabel *l) 1373{ 1374 if (!l->has_value) { 1375 tcg_out_reloc(s, s->code_ptr, R_AARCH64_JUMP26, l, 0); 1376 tcg_out_insn(s, 3206, B, 0); 1377 } else { 1378 tcg_out_goto(s, l->u.value_ptr); 1379 } 1380} 1381 1382static void tcg_out_brcond(TCGContext *s, TCGType ext, TCGCond c, TCGArg a, 1383 TCGArg b, bool b_const, TCGLabel *l) 1384{ 1385 intptr_t offset; 1386 bool need_cmp; 1387 1388 if (b_const && b == 0 && (c == TCG_COND_EQ || c == TCG_COND_NE)) { 1389 need_cmp = false; 1390 } else { 1391 need_cmp = true; 1392 tcg_out_cmp(s, ext, a, b, b_const); 1393 } 1394 1395 if (!l->has_value) { 1396 tcg_out_reloc(s, s->code_ptr, R_AARCH64_CONDBR19, l, 0); 1397 offset = tcg_in32(s) >> 5; 1398 } else { 1399 offset = tcg_pcrel_diff(s, l->u.value_ptr) >> 2; 1400 tcg_debug_assert(offset == sextract64(offset, 0, 19)); 1401 } 1402 1403 if (need_cmp) { 1404 tcg_out_insn(s, 3202, B_C, c, offset); 1405 } else if (c == TCG_COND_EQ) { 1406 tcg_out_insn(s, 3201, CBZ, ext, a, offset); 1407 } else { 1408 tcg_out_insn(s, 3201, CBNZ, ext, a, offset); 1409 } 1410} 1411 1412static inline void tcg_out_rev(TCGContext *s, int ext, MemOp s_bits, 1413 TCGReg rd, TCGReg rn) 1414{ 1415 /* REV, REV16, REV32 */ 1416 tcg_out_insn_3507(s, I3507_REV | (s_bits << 10), ext, rd, rn); 1417} 1418 1419static inline void tcg_out_sxt(TCGContext *s, TCGType ext, MemOp s_bits, 1420 TCGReg rd, TCGReg rn) 1421{ 1422 /* Using ALIASes SXTB, SXTH, SXTW, of SBFM Xd, Xn, #0, #7|15|31 */ 1423 int bits = (8 << s_bits) - 1; 1424 tcg_out_sbfm(s, ext, rd, rn, 0, bits); 1425} 1426 1427static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg rd, TCGReg rn) 1428{ 1429 tcg_out_sxt(s, type, MO_8, rd, rn); 1430} 1431 1432static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg rd, TCGReg rn) 1433{ 1434 tcg_out_sxt(s, type, MO_16, rd, rn); 1435} 1436 1437static void tcg_out_ext32s(TCGContext *s, TCGReg rd, TCGReg rn) 1438{ 1439 tcg_out_sxt(s, TCG_TYPE_I64, MO_32, rd, rn); 1440} 1441 1442static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg rd, TCGReg rn) 1443{ 1444 tcg_out_ext32s(s, rd, rn); 1445} 1446 1447static inline void tcg_out_uxt(TCGContext *s, MemOp s_bits, 1448 TCGReg rd, TCGReg rn) 1449{ 1450 /* Using ALIASes UXTB, UXTH of UBFM Wd, Wn, #0, #7|15 */ 1451 int bits = (8 << s_bits) - 1; 1452 tcg_out_ubfm(s, 0, rd, rn, 0, bits); 1453} 1454 1455static void tcg_out_ext8u(TCGContext *s, TCGReg rd, TCGReg rn) 1456{ 1457 tcg_out_uxt(s, MO_8, rd, rn); 1458} 1459 1460static void tcg_out_ext16u(TCGContext *s, TCGReg rd, TCGReg rn) 1461{ 1462 tcg_out_uxt(s, MO_16, rd, rn); 1463} 1464 1465static void tcg_out_ext32u(TCGContext *s, TCGReg rd, TCGReg rn) 1466{ 1467 tcg_out_movr(s, TCG_TYPE_I32, rd, rn); 1468} 1469 1470static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg rd, TCGReg rn) 1471{ 1472 tcg_out_ext32u(s, rd, rn); 1473} 1474 1475static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg rd, TCGReg rn) 1476{ 1477 tcg_out_mov(s, TCG_TYPE_I32, rd, rn); 1478} 1479 1480static void tcg_out_addsubi(TCGContext *s, int ext, TCGReg rd, 1481 TCGReg rn, int64_t aimm) 1482{ 1483 if (aimm >= 0) { 1484 tcg_out_insn(s, 3401, ADDI, ext, rd, rn, aimm); 1485 } else { 1486 tcg_out_insn(s, 3401, SUBI, ext, rd, rn, -aimm); 1487 } 1488} 1489 1490static void tcg_out_addsub2(TCGContext *s, TCGType ext, TCGReg rl, 1491 TCGReg rh, TCGReg al, TCGReg ah, 1492 tcg_target_long bl, tcg_target_long bh, 1493 bool const_bl, bool const_bh, bool sub) 1494{ 1495 TCGReg orig_rl = rl; 1496 AArch64Insn insn; 1497 1498 if (rl == ah || (!const_bh && rl == bh)) { 1499 rl = TCG_REG_TMP; 1500 } 1501 1502 if (const_bl) { 1503 if (bl < 0) { 1504 bl = -bl; 1505 insn = sub ? I3401_ADDSI : I3401_SUBSI; 1506 } else { 1507 insn = sub ? I3401_SUBSI : I3401_ADDSI; 1508 } 1509 1510 if (unlikely(al == TCG_REG_XZR)) { 1511 /* ??? We want to allow al to be zero for the benefit of 1512 negation via subtraction. However, that leaves open the 1513 possibility of adding 0+const in the low part, and the 1514 immediate add instructions encode XSP not XZR. Don't try 1515 anything more elaborate here than loading another zero. */ 1516 al = TCG_REG_TMP; 1517 tcg_out_movi(s, ext, al, 0); 1518 } 1519 tcg_out_insn_3401(s, insn, ext, rl, al, bl); 1520 } else { 1521 tcg_out_insn_3502(s, sub ? I3502_SUBS : I3502_ADDS, ext, rl, al, bl); 1522 } 1523 1524 insn = I3503_ADC; 1525 if (const_bh) { 1526 /* Note that the only two constants we support are 0 and -1, and 1527 that SBC = rn + ~rm + c, so adc -1 is sbc 0, and vice-versa. */ 1528 if ((bh != 0) ^ sub) { 1529 insn = I3503_SBC; 1530 } 1531 bh = TCG_REG_XZR; 1532 } else if (sub) { 1533 insn = I3503_SBC; 1534 } 1535 tcg_out_insn_3503(s, insn, ext, rh, ah, bh); 1536 1537 tcg_out_mov(s, ext, orig_rl, rl); 1538} 1539 1540static inline void tcg_out_mb(TCGContext *s, TCGArg a0) 1541{ 1542 static const uint32_t sync[] = { 1543 [0 ... TCG_MO_ALL] = DMB_ISH | DMB_LD | DMB_ST, 1544 [TCG_MO_ST_ST] = DMB_ISH | DMB_ST, 1545 [TCG_MO_LD_LD] = DMB_ISH | DMB_LD, 1546 [TCG_MO_LD_ST] = DMB_ISH | DMB_LD, 1547 [TCG_MO_LD_ST | TCG_MO_LD_LD] = DMB_ISH | DMB_LD, 1548 }; 1549 tcg_out32(s, sync[a0 & TCG_MO_ALL]); 1550} 1551 1552static void tcg_out_cltz(TCGContext *s, TCGType ext, TCGReg d, 1553 TCGReg a0, TCGArg b, bool const_b, bool is_ctz) 1554{ 1555 TCGReg a1 = a0; 1556 if (is_ctz) { 1557 a1 = TCG_REG_TMP; 1558 tcg_out_insn(s, 3507, RBIT, ext, a1, a0); 1559 } 1560 if (const_b && b == (ext ? 64 : 32)) { 1561 tcg_out_insn(s, 3507, CLZ, ext, d, a1); 1562 } else { 1563 AArch64Insn sel = I3506_CSEL; 1564 1565 tcg_out_cmp(s, ext, a0, 0, 1); 1566 tcg_out_insn(s, 3507, CLZ, ext, TCG_REG_TMP, a1); 1567 1568 if (const_b) { 1569 if (b == -1) { 1570 b = TCG_REG_XZR; 1571 sel = I3506_CSINV; 1572 } else if (b == 0) { 1573 b = TCG_REG_XZR; 1574 } else { 1575 tcg_out_movi(s, ext, d, b); 1576 b = d; 1577 } 1578 } 1579 tcg_out_insn_3506(s, sel, ext, d, TCG_REG_TMP, b, TCG_COND_NE); 1580 } 1581} 1582 1583typedef struct { 1584 TCGReg base; 1585 TCGReg index; 1586 TCGType index_ext; 1587} HostAddress; 1588 1589#ifdef CONFIG_SOFTMMU 1590/* helper signature: helper_ret_ld_mmu(CPUState *env, target_ulong addr, 1591 * MemOpIdx oi, uintptr_t ra) 1592 */ 1593static void * const qemu_ld_helpers[MO_SIZE + 1] = { 1594 [MO_8] = helper_ret_ldub_mmu, 1595#if HOST_BIG_ENDIAN 1596 [MO_16] = helper_be_lduw_mmu, 1597 [MO_32] = helper_be_ldul_mmu, 1598 [MO_64] = helper_be_ldq_mmu, 1599#else 1600 [MO_16] = helper_le_lduw_mmu, 1601 [MO_32] = helper_le_ldul_mmu, 1602 [MO_64] = helper_le_ldq_mmu, 1603#endif 1604}; 1605 1606/* helper signature: helper_ret_st_mmu(CPUState *env, target_ulong addr, 1607 * uintxx_t val, MemOpIdx oi, 1608 * uintptr_t ra) 1609 */ 1610static void * const qemu_st_helpers[MO_SIZE + 1] = { 1611 [MO_8] = helper_ret_stb_mmu, 1612#if HOST_BIG_ENDIAN 1613 [MO_16] = helper_be_stw_mmu, 1614 [MO_32] = helper_be_stl_mmu, 1615 [MO_64] = helper_be_stq_mmu, 1616#else 1617 [MO_16] = helper_le_stw_mmu, 1618 [MO_32] = helper_le_stl_mmu, 1619 [MO_64] = helper_le_stq_mmu, 1620#endif 1621}; 1622 1623static const TCGLdstHelperParam ldst_helper_param = { 1624 .ntmp = 1, .tmp = { TCG_REG_TMP } 1625}; 1626 1627static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) 1628{ 1629 MemOp opc = get_memop(lb->oi); 1630 1631 if (!reloc_pc19(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1632 return false; 1633 } 1634 1635 tcg_out_ld_helper_args(s, lb, &ldst_helper_param); 1636 tcg_out_call_int(s, qemu_ld_helpers[opc & MO_SIZE]); 1637 tcg_out_ld_helper_ret(s, lb, false, &ldst_helper_param); 1638 tcg_out_goto(s, lb->raddr); 1639 return true; 1640} 1641 1642static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) 1643{ 1644 MemOp opc = get_memop(lb->oi); 1645 1646 if (!reloc_pc19(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1647 return false; 1648 } 1649 1650 tcg_out_st_helper_args(s, lb, &ldst_helper_param); 1651 tcg_out_call_int(s, qemu_st_helpers[opc & MO_SIZE]); 1652 tcg_out_goto(s, lb->raddr); 1653 return true; 1654} 1655#else 1656static void tcg_out_adr(TCGContext *s, TCGReg rd, const void *target) 1657{ 1658 ptrdiff_t offset = tcg_pcrel_diff(s, target); 1659 tcg_debug_assert(offset == sextract64(offset, 0, 21)); 1660 tcg_out_insn(s, 3406, ADR, rd, offset); 1661} 1662 1663static bool tcg_out_fail_alignment(TCGContext *s, TCGLabelQemuLdst *l) 1664{ 1665 if (!reloc_pc19(l->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1666 return false; 1667 } 1668 1669 tcg_out_mov(s, TCG_TYPE_TL, TCG_REG_X1, l->addrlo_reg); 1670 tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_X0, TCG_AREG0); 1671 1672 /* "Tail call" to the helper, with the return address back inline. */ 1673 tcg_out_adr(s, TCG_REG_LR, l->raddr); 1674 tcg_out_goto_long(s, (const void *)(l->is_ld ? helper_unaligned_ld 1675 : helper_unaligned_st)); 1676 return true; 1677} 1678 1679static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 1680{ 1681 return tcg_out_fail_alignment(s, l); 1682} 1683 1684static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l) 1685{ 1686 return tcg_out_fail_alignment(s, l); 1687} 1688#endif /* CONFIG_SOFTMMU */ 1689 1690/* 1691 * For softmmu, perform the TLB load and compare. 1692 * For useronly, perform any required alignment tests. 1693 * In both cases, return a TCGLabelQemuLdst structure if the slow path 1694 * is required and fill in @h with the host address for the fast path. 1695 */ 1696static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h, 1697 TCGReg addr_reg, MemOpIdx oi, 1698 bool is_ld) 1699{ 1700 TCGType addr_type = TARGET_LONG_BITS == 64 ? TCG_TYPE_I64 : TCG_TYPE_I32; 1701 TCGLabelQemuLdst *ldst = NULL; 1702 MemOp opc = get_memop(oi); 1703 unsigned a_bits = get_alignment_bits(opc); 1704 unsigned a_mask = (1u << a_bits) - 1; 1705 1706#ifdef CONFIG_SOFTMMU 1707 unsigned s_bits = opc & MO_SIZE; 1708 unsigned s_mask = (1u << s_bits) - 1; 1709 unsigned mem_index = get_mmuidx(oi); 1710 TCGReg x3; 1711 TCGType mask_type; 1712 uint64_t compare_mask; 1713 1714 ldst = new_ldst_label(s); 1715 ldst->is_ld = is_ld; 1716 ldst->oi = oi; 1717 ldst->addrlo_reg = addr_reg; 1718 1719 mask_type = (TARGET_PAGE_BITS + CPU_TLB_DYN_MAX_BITS > 32 1720 ? TCG_TYPE_I64 : TCG_TYPE_I32); 1721 1722 /* Load env_tlb(env)->f[mmu_idx].{mask,table} into {x0,x1}. */ 1723 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) > 0); 1724 QEMU_BUILD_BUG_ON(TLB_MASK_TABLE_OFS(0) < -512); 1725 QEMU_BUILD_BUG_ON(offsetof(CPUTLBDescFast, mask) != 0); 1726 QEMU_BUILD_BUG_ON(offsetof(CPUTLBDescFast, table) != 8); 1727 tcg_out_insn(s, 3314, LDP, TCG_REG_X0, TCG_REG_X1, TCG_AREG0, 1728 TLB_MASK_TABLE_OFS(mem_index), 1, 0); 1729 1730 /* Extract the TLB index from the address into X0. */ 1731 tcg_out_insn(s, 3502S, AND_LSR, mask_type == TCG_TYPE_I64, 1732 TCG_REG_X0, TCG_REG_X0, addr_reg, 1733 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS); 1734 1735 /* Add the tlb_table pointer, creating the CPUTLBEntry address into X1. */ 1736 tcg_out_insn(s, 3502, ADD, 1, TCG_REG_X1, TCG_REG_X1, TCG_REG_X0); 1737 1738 /* Load the tlb comparator into X0, and the fast path addend into X1. */ 1739 tcg_out_ld(s, TCG_TYPE_TL, TCG_REG_X0, TCG_REG_X1, 1740 is_ld ? offsetof(CPUTLBEntry, addr_read) 1741 : offsetof(CPUTLBEntry, addr_write)); 1742 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_X1, TCG_REG_X1, 1743 offsetof(CPUTLBEntry, addend)); 1744 1745 /* 1746 * For aligned accesses, we check the first byte and include the alignment 1747 * bits within the address. For unaligned access, we check that we don't 1748 * cross pages using the address of the last byte of the access. 1749 */ 1750 if (a_bits >= s_bits) { 1751 x3 = addr_reg; 1752 } else { 1753 tcg_out_insn(s, 3401, ADDI, TARGET_LONG_BITS == 64, 1754 TCG_REG_X3, addr_reg, s_mask - a_mask); 1755 x3 = TCG_REG_X3; 1756 } 1757 compare_mask = (uint64_t)TARGET_PAGE_MASK | a_mask; 1758 1759 /* Store the page mask part of the address into X3. */ 1760 tcg_out_logicali(s, I3404_ANDI, TARGET_LONG_BITS == 64, 1761 TCG_REG_X3, x3, compare_mask); 1762 1763 /* Perform the address comparison. */ 1764 tcg_out_cmp(s, TARGET_LONG_BITS == 64, TCG_REG_X0, TCG_REG_X3, 0); 1765 1766 /* If not equal, we jump to the slow path. */ 1767 ldst->label_ptr[0] = s->code_ptr; 1768 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1769 1770 *h = (HostAddress){ 1771 .base = TCG_REG_X1, 1772 .index = addr_reg, 1773 .index_ext = addr_type 1774 }; 1775#else 1776 if (a_mask) { 1777 ldst = new_ldst_label(s); 1778 1779 ldst->is_ld = is_ld; 1780 ldst->oi = oi; 1781 ldst->addrlo_reg = addr_reg; 1782 1783 /* tst addr, #mask */ 1784 tcg_out_logicali(s, I3404_ANDSI, 0, TCG_REG_XZR, addr_reg, a_mask); 1785 1786 /* b.ne slow_path */ 1787 ldst->label_ptr[0] = s->code_ptr; 1788 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1789 } 1790 1791 if (USE_GUEST_BASE) { 1792 *h = (HostAddress){ 1793 .base = TCG_REG_GUEST_BASE, 1794 .index = addr_reg, 1795 .index_ext = addr_type 1796 }; 1797 } else { 1798 *h = (HostAddress){ 1799 .base = addr_reg, 1800 .index = TCG_REG_XZR, 1801 .index_ext = TCG_TYPE_I64 1802 }; 1803 } 1804#endif 1805 1806 return ldst; 1807} 1808 1809static void tcg_out_qemu_ld_direct(TCGContext *s, MemOp memop, TCGType ext, 1810 TCGReg data_r, HostAddress h) 1811{ 1812 switch (memop & MO_SSIZE) { 1813 case MO_UB: 1814 tcg_out_ldst_r(s, I3312_LDRB, data_r, h.base, h.index_ext, h.index); 1815 break; 1816 case MO_SB: 1817 tcg_out_ldst_r(s, ext ? I3312_LDRSBX : I3312_LDRSBW, 1818 data_r, h.base, h.index_ext, h.index); 1819 break; 1820 case MO_UW: 1821 tcg_out_ldst_r(s, I3312_LDRH, data_r, h.base, h.index_ext, h.index); 1822 break; 1823 case MO_SW: 1824 tcg_out_ldst_r(s, (ext ? I3312_LDRSHX : I3312_LDRSHW), 1825 data_r, h.base, h.index_ext, h.index); 1826 break; 1827 case MO_UL: 1828 tcg_out_ldst_r(s, I3312_LDRW, data_r, h.base, h.index_ext, h.index); 1829 break; 1830 case MO_SL: 1831 tcg_out_ldst_r(s, I3312_LDRSWX, data_r, h.base, h.index_ext, h.index); 1832 break; 1833 case MO_UQ: 1834 tcg_out_ldst_r(s, I3312_LDRX, data_r, h.base, h.index_ext, h.index); 1835 break; 1836 default: 1837 g_assert_not_reached(); 1838 } 1839} 1840 1841static void tcg_out_qemu_st_direct(TCGContext *s, MemOp memop, 1842 TCGReg data_r, HostAddress h) 1843{ 1844 switch (memop & MO_SIZE) { 1845 case MO_8: 1846 tcg_out_ldst_r(s, I3312_STRB, data_r, h.base, h.index_ext, h.index); 1847 break; 1848 case MO_16: 1849 tcg_out_ldst_r(s, I3312_STRH, data_r, h.base, h.index_ext, h.index); 1850 break; 1851 case MO_32: 1852 tcg_out_ldst_r(s, I3312_STRW, data_r, h.base, h.index_ext, h.index); 1853 break; 1854 case MO_64: 1855 tcg_out_ldst_r(s, I3312_STRX, data_r, h.base, h.index_ext, h.index); 1856 break; 1857 default: 1858 g_assert_not_reached(); 1859 } 1860} 1861 1862static void tcg_out_qemu_ld(TCGContext *s, TCGReg data_reg, TCGReg addr_reg, 1863 MemOpIdx oi, TCGType data_type) 1864{ 1865 TCGLabelQemuLdst *ldst; 1866 HostAddress h; 1867 1868 ldst = prepare_host_addr(s, &h, addr_reg, oi, true); 1869 tcg_out_qemu_ld_direct(s, get_memop(oi), data_type, data_reg, h); 1870 1871 if (ldst) { 1872 ldst->type = data_type; 1873 ldst->datalo_reg = data_reg; 1874 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1875 } 1876} 1877 1878static void tcg_out_qemu_st(TCGContext *s, TCGReg data_reg, TCGReg addr_reg, 1879 MemOpIdx oi, TCGType data_type) 1880{ 1881 TCGLabelQemuLdst *ldst; 1882 HostAddress h; 1883 1884 ldst = prepare_host_addr(s, &h, addr_reg, oi, false); 1885 tcg_out_qemu_st_direct(s, get_memop(oi), data_reg, h); 1886 1887 if (ldst) { 1888 ldst->type = data_type; 1889 ldst->datalo_reg = data_reg; 1890 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1891 } 1892} 1893 1894static const tcg_insn_unit *tb_ret_addr; 1895 1896static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0) 1897{ 1898 /* Reuse the zeroing that exists for goto_ptr. */ 1899 if (a0 == 0) { 1900 tcg_out_goto_long(s, tcg_code_gen_epilogue); 1901 } else { 1902 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_X0, a0); 1903 tcg_out_goto_long(s, tb_ret_addr); 1904 } 1905} 1906 1907static void tcg_out_goto_tb(TCGContext *s, int which) 1908{ 1909 /* 1910 * Direct branch, or indirect address load, will be patched 1911 * by tb_target_set_jmp_target. Assert indirect load offset 1912 * in range early, regardless of direct branch distance. 1913 */ 1914 intptr_t i_off = tcg_pcrel_diff(s, (void *)get_jmp_target_addr(s, which)); 1915 tcg_debug_assert(i_off == sextract64(i_off, 0, 21)); 1916 1917 set_jmp_insn_offset(s, which); 1918 tcg_out32(s, I3206_B); 1919 tcg_out_insn(s, 3207, BR, TCG_REG_TMP); 1920 set_jmp_reset_offset(s, which); 1921} 1922 1923void tb_target_set_jmp_target(const TranslationBlock *tb, int n, 1924 uintptr_t jmp_rx, uintptr_t jmp_rw) 1925{ 1926 uintptr_t d_addr = tb->jmp_target_addr[n]; 1927 ptrdiff_t d_offset = d_addr - jmp_rx; 1928 tcg_insn_unit insn; 1929 1930 /* Either directly branch, or indirect branch load. */ 1931 if (d_offset == sextract64(d_offset, 0, 28)) { 1932 insn = deposit32(I3206_B, 0, 26, d_offset >> 2); 1933 } else { 1934 uintptr_t i_addr = (uintptr_t)&tb->jmp_target_addr[n]; 1935 ptrdiff_t i_offset = i_addr - jmp_rx; 1936 1937 /* Note that we asserted this in range in tcg_out_goto_tb. */ 1938 insn = deposit32(I3305_LDR | TCG_REG_TMP, 5, 19, i_offset >> 2); 1939 } 1940 qatomic_set((uint32_t *)jmp_rw, insn); 1941 flush_idcache_range(jmp_rx, jmp_rw, 4); 1942} 1943 1944static void tcg_out_op(TCGContext *s, TCGOpcode opc, 1945 const TCGArg args[TCG_MAX_OP_ARGS], 1946 const int const_args[TCG_MAX_OP_ARGS]) 1947{ 1948 /* 99% of the time, we can signal the use of extension registers 1949 by looking to see if the opcode handles 64-bit data. */ 1950 TCGType ext = (tcg_op_defs[opc].flags & TCG_OPF_64BIT) != 0; 1951 1952 /* Hoist the loads of the most common arguments. */ 1953 TCGArg a0 = args[0]; 1954 TCGArg a1 = args[1]; 1955 TCGArg a2 = args[2]; 1956 int c2 = const_args[2]; 1957 1958 /* Some operands are defined with "rZ" constraint, a register or 1959 the zero register. These need not actually test args[I] == 0. */ 1960#define REG0(I) (const_args[I] ? TCG_REG_XZR : (TCGReg)args[I]) 1961 1962 switch (opc) { 1963 case INDEX_op_goto_ptr: 1964 tcg_out_insn(s, 3207, BR, a0); 1965 break; 1966 1967 case INDEX_op_br: 1968 tcg_out_goto_label(s, arg_label(a0)); 1969 break; 1970 1971 case INDEX_op_ld8u_i32: 1972 case INDEX_op_ld8u_i64: 1973 tcg_out_ldst(s, I3312_LDRB, a0, a1, a2, 0); 1974 break; 1975 case INDEX_op_ld8s_i32: 1976 tcg_out_ldst(s, I3312_LDRSBW, a0, a1, a2, 0); 1977 break; 1978 case INDEX_op_ld8s_i64: 1979 tcg_out_ldst(s, I3312_LDRSBX, a0, a1, a2, 0); 1980 break; 1981 case INDEX_op_ld16u_i32: 1982 case INDEX_op_ld16u_i64: 1983 tcg_out_ldst(s, I3312_LDRH, a0, a1, a2, 1); 1984 break; 1985 case INDEX_op_ld16s_i32: 1986 tcg_out_ldst(s, I3312_LDRSHW, a0, a1, a2, 1); 1987 break; 1988 case INDEX_op_ld16s_i64: 1989 tcg_out_ldst(s, I3312_LDRSHX, a0, a1, a2, 1); 1990 break; 1991 case INDEX_op_ld_i32: 1992 case INDEX_op_ld32u_i64: 1993 tcg_out_ldst(s, I3312_LDRW, a0, a1, a2, 2); 1994 break; 1995 case INDEX_op_ld32s_i64: 1996 tcg_out_ldst(s, I3312_LDRSWX, a0, a1, a2, 2); 1997 break; 1998 case INDEX_op_ld_i64: 1999 tcg_out_ldst(s, I3312_LDRX, a0, a1, a2, 3); 2000 break; 2001 2002 case INDEX_op_st8_i32: 2003 case INDEX_op_st8_i64: 2004 tcg_out_ldst(s, I3312_STRB, REG0(0), a1, a2, 0); 2005 break; 2006 case INDEX_op_st16_i32: 2007 case INDEX_op_st16_i64: 2008 tcg_out_ldst(s, I3312_STRH, REG0(0), a1, a2, 1); 2009 break; 2010 case INDEX_op_st_i32: 2011 case INDEX_op_st32_i64: 2012 tcg_out_ldst(s, I3312_STRW, REG0(0), a1, a2, 2); 2013 break; 2014 case INDEX_op_st_i64: 2015 tcg_out_ldst(s, I3312_STRX, REG0(0), a1, a2, 3); 2016 break; 2017 2018 case INDEX_op_add_i32: 2019 a2 = (int32_t)a2; 2020 /* FALLTHRU */ 2021 case INDEX_op_add_i64: 2022 if (c2) { 2023 tcg_out_addsubi(s, ext, a0, a1, a2); 2024 } else { 2025 tcg_out_insn(s, 3502, ADD, ext, a0, a1, a2); 2026 } 2027 break; 2028 2029 case INDEX_op_sub_i32: 2030 a2 = (int32_t)a2; 2031 /* FALLTHRU */ 2032 case INDEX_op_sub_i64: 2033 if (c2) { 2034 tcg_out_addsubi(s, ext, a0, a1, -a2); 2035 } else { 2036 tcg_out_insn(s, 3502, SUB, ext, a0, a1, a2); 2037 } 2038 break; 2039 2040 case INDEX_op_neg_i64: 2041 case INDEX_op_neg_i32: 2042 tcg_out_insn(s, 3502, SUB, ext, a0, TCG_REG_XZR, a1); 2043 break; 2044 2045 case INDEX_op_and_i32: 2046 a2 = (int32_t)a2; 2047 /* FALLTHRU */ 2048 case INDEX_op_and_i64: 2049 if (c2) { 2050 tcg_out_logicali(s, I3404_ANDI, ext, a0, a1, a2); 2051 } else { 2052 tcg_out_insn(s, 3510, AND, ext, a0, a1, a2); 2053 } 2054 break; 2055 2056 case INDEX_op_andc_i32: 2057 a2 = (int32_t)a2; 2058 /* FALLTHRU */ 2059 case INDEX_op_andc_i64: 2060 if (c2) { 2061 tcg_out_logicali(s, I3404_ANDI, ext, a0, a1, ~a2); 2062 } else { 2063 tcg_out_insn(s, 3510, BIC, ext, a0, a1, a2); 2064 } 2065 break; 2066 2067 case INDEX_op_or_i32: 2068 a2 = (int32_t)a2; 2069 /* FALLTHRU */ 2070 case INDEX_op_or_i64: 2071 if (c2) { 2072 tcg_out_logicali(s, I3404_ORRI, ext, a0, a1, a2); 2073 } else { 2074 tcg_out_insn(s, 3510, ORR, ext, a0, a1, a2); 2075 } 2076 break; 2077 2078 case INDEX_op_orc_i32: 2079 a2 = (int32_t)a2; 2080 /* FALLTHRU */ 2081 case INDEX_op_orc_i64: 2082 if (c2) { 2083 tcg_out_logicali(s, I3404_ORRI, ext, a0, a1, ~a2); 2084 } else { 2085 tcg_out_insn(s, 3510, ORN, ext, a0, a1, a2); 2086 } 2087 break; 2088 2089 case INDEX_op_xor_i32: 2090 a2 = (int32_t)a2; 2091 /* FALLTHRU */ 2092 case INDEX_op_xor_i64: 2093 if (c2) { 2094 tcg_out_logicali(s, I3404_EORI, ext, a0, a1, a2); 2095 } else { 2096 tcg_out_insn(s, 3510, EOR, ext, a0, a1, a2); 2097 } 2098 break; 2099 2100 case INDEX_op_eqv_i32: 2101 a2 = (int32_t)a2; 2102 /* FALLTHRU */ 2103 case INDEX_op_eqv_i64: 2104 if (c2) { 2105 tcg_out_logicali(s, I3404_EORI, ext, a0, a1, ~a2); 2106 } else { 2107 tcg_out_insn(s, 3510, EON, ext, a0, a1, a2); 2108 } 2109 break; 2110 2111 case INDEX_op_not_i64: 2112 case INDEX_op_not_i32: 2113 tcg_out_insn(s, 3510, ORN, ext, a0, TCG_REG_XZR, a1); 2114 break; 2115 2116 case INDEX_op_mul_i64: 2117 case INDEX_op_mul_i32: 2118 tcg_out_insn(s, 3509, MADD, ext, a0, a1, a2, TCG_REG_XZR); 2119 break; 2120 2121 case INDEX_op_div_i64: 2122 case INDEX_op_div_i32: 2123 tcg_out_insn(s, 3508, SDIV, ext, a0, a1, a2); 2124 break; 2125 case INDEX_op_divu_i64: 2126 case INDEX_op_divu_i32: 2127 tcg_out_insn(s, 3508, UDIV, ext, a0, a1, a2); 2128 break; 2129 2130 case INDEX_op_rem_i64: 2131 case INDEX_op_rem_i32: 2132 tcg_out_insn(s, 3508, SDIV, ext, TCG_REG_TMP, a1, a2); 2133 tcg_out_insn(s, 3509, MSUB, ext, a0, TCG_REG_TMP, a2, a1); 2134 break; 2135 case INDEX_op_remu_i64: 2136 case INDEX_op_remu_i32: 2137 tcg_out_insn(s, 3508, UDIV, ext, TCG_REG_TMP, a1, a2); 2138 tcg_out_insn(s, 3509, MSUB, ext, a0, TCG_REG_TMP, a2, a1); 2139 break; 2140 2141 case INDEX_op_shl_i64: 2142 case INDEX_op_shl_i32: 2143 if (c2) { 2144 tcg_out_shl(s, ext, a0, a1, a2); 2145 } else { 2146 tcg_out_insn(s, 3508, LSLV, ext, a0, a1, a2); 2147 } 2148 break; 2149 2150 case INDEX_op_shr_i64: 2151 case INDEX_op_shr_i32: 2152 if (c2) { 2153 tcg_out_shr(s, ext, a0, a1, a2); 2154 } else { 2155 tcg_out_insn(s, 3508, LSRV, ext, a0, a1, a2); 2156 } 2157 break; 2158 2159 case INDEX_op_sar_i64: 2160 case INDEX_op_sar_i32: 2161 if (c2) { 2162 tcg_out_sar(s, ext, a0, a1, a2); 2163 } else { 2164 tcg_out_insn(s, 3508, ASRV, ext, a0, a1, a2); 2165 } 2166 break; 2167 2168 case INDEX_op_rotr_i64: 2169 case INDEX_op_rotr_i32: 2170 if (c2) { 2171 tcg_out_rotr(s, ext, a0, a1, a2); 2172 } else { 2173 tcg_out_insn(s, 3508, RORV, ext, a0, a1, a2); 2174 } 2175 break; 2176 2177 case INDEX_op_rotl_i64: 2178 case INDEX_op_rotl_i32: 2179 if (c2) { 2180 tcg_out_rotl(s, ext, a0, a1, a2); 2181 } else { 2182 tcg_out_insn(s, 3502, SUB, 0, TCG_REG_TMP, TCG_REG_XZR, a2); 2183 tcg_out_insn(s, 3508, RORV, ext, a0, a1, TCG_REG_TMP); 2184 } 2185 break; 2186 2187 case INDEX_op_clz_i64: 2188 case INDEX_op_clz_i32: 2189 tcg_out_cltz(s, ext, a0, a1, a2, c2, false); 2190 break; 2191 case INDEX_op_ctz_i64: 2192 case INDEX_op_ctz_i32: 2193 tcg_out_cltz(s, ext, a0, a1, a2, c2, true); 2194 break; 2195 2196 case INDEX_op_brcond_i32: 2197 a1 = (int32_t)a1; 2198 /* FALLTHRU */ 2199 case INDEX_op_brcond_i64: 2200 tcg_out_brcond(s, ext, a2, a0, a1, const_args[1], arg_label(args[3])); 2201 break; 2202 2203 case INDEX_op_setcond_i32: 2204 a2 = (int32_t)a2; 2205 /* FALLTHRU */ 2206 case INDEX_op_setcond_i64: 2207 tcg_out_cmp(s, ext, a1, a2, c2); 2208 /* Use CSET alias of CSINC Wd, WZR, WZR, invert(cond). */ 2209 tcg_out_insn(s, 3506, CSINC, TCG_TYPE_I32, a0, TCG_REG_XZR, 2210 TCG_REG_XZR, tcg_invert_cond(args[3])); 2211 break; 2212 2213 case INDEX_op_movcond_i32: 2214 a2 = (int32_t)a2; 2215 /* FALLTHRU */ 2216 case INDEX_op_movcond_i64: 2217 tcg_out_cmp(s, ext, a1, a2, c2); 2218 tcg_out_insn(s, 3506, CSEL, ext, a0, REG0(3), REG0(4), args[5]); 2219 break; 2220 2221 case INDEX_op_qemu_ld_i32: 2222 case INDEX_op_qemu_ld_i64: 2223 tcg_out_qemu_ld(s, a0, a1, a2, ext); 2224 break; 2225 case INDEX_op_qemu_st_i32: 2226 case INDEX_op_qemu_st_i64: 2227 tcg_out_qemu_st(s, REG0(0), a1, a2, ext); 2228 break; 2229 2230 case INDEX_op_bswap64_i64: 2231 tcg_out_rev(s, TCG_TYPE_I64, MO_64, a0, a1); 2232 break; 2233 case INDEX_op_bswap32_i64: 2234 tcg_out_rev(s, TCG_TYPE_I32, MO_32, a0, a1); 2235 if (a2 & TCG_BSWAP_OS) { 2236 tcg_out_ext32s(s, a0, a0); 2237 } 2238 break; 2239 case INDEX_op_bswap32_i32: 2240 tcg_out_rev(s, TCG_TYPE_I32, MO_32, a0, a1); 2241 break; 2242 case INDEX_op_bswap16_i64: 2243 case INDEX_op_bswap16_i32: 2244 tcg_out_rev(s, TCG_TYPE_I32, MO_16, a0, a1); 2245 if (a2 & TCG_BSWAP_OS) { 2246 /* Output must be sign-extended. */ 2247 tcg_out_ext16s(s, ext, a0, a0); 2248 } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { 2249 /* Output must be zero-extended, but input isn't. */ 2250 tcg_out_ext16u(s, a0, a0); 2251 } 2252 break; 2253 2254 case INDEX_op_deposit_i64: 2255 case INDEX_op_deposit_i32: 2256 tcg_out_dep(s, ext, a0, REG0(2), args[3], args[4]); 2257 break; 2258 2259 case INDEX_op_extract_i64: 2260 case INDEX_op_extract_i32: 2261 tcg_out_ubfm(s, ext, a0, a1, a2, a2 + args[3] - 1); 2262 break; 2263 2264 case INDEX_op_sextract_i64: 2265 case INDEX_op_sextract_i32: 2266 tcg_out_sbfm(s, ext, a0, a1, a2, a2 + args[3] - 1); 2267 break; 2268 2269 case INDEX_op_extract2_i64: 2270 case INDEX_op_extract2_i32: 2271 tcg_out_extr(s, ext, a0, REG0(2), REG0(1), args[3]); 2272 break; 2273 2274 case INDEX_op_add2_i32: 2275 tcg_out_addsub2(s, TCG_TYPE_I32, a0, a1, REG0(2), REG0(3), 2276 (int32_t)args[4], args[5], const_args[4], 2277 const_args[5], false); 2278 break; 2279 case INDEX_op_add2_i64: 2280 tcg_out_addsub2(s, TCG_TYPE_I64, a0, a1, REG0(2), REG0(3), args[4], 2281 args[5], const_args[4], const_args[5], false); 2282 break; 2283 case INDEX_op_sub2_i32: 2284 tcg_out_addsub2(s, TCG_TYPE_I32, a0, a1, REG0(2), REG0(3), 2285 (int32_t)args[4], args[5], const_args[4], 2286 const_args[5], true); 2287 break; 2288 case INDEX_op_sub2_i64: 2289 tcg_out_addsub2(s, TCG_TYPE_I64, a0, a1, REG0(2), REG0(3), args[4], 2290 args[5], const_args[4], const_args[5], true); 2291 break; 2292 2293 case INDEX_op_muluh_i64: 2294 tcg_out_insn(s, 3508, UMULH, TCG_TYPE_I64, a0, a1, a2); 2295 break; 2296 case INDEX_op_mulsh_i64: 2297 tcg_out_insn(s, 3508, SMULH, TCG_TYPE_I64, a0, a1, a2); 2298 break; 2299 2300 case INDEX_op_mb: 2301 tcg_out_mb(s, a0); 2302 break; 2303 2304 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */ 2305 case INDEX_op_mov_i64: 2306 case INDEX_op_call: /* Always emitted via tcg_out_call. */ 2307 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ 2308 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ 2309 case INDEX_op_ext8s_i32: /* Always emitted via tcg_reg_alloc_op. */ 2310 case INDEX_op_ext8s_i64: 2311 case INDEX_op_ext8u_i32: 2312 case INDEX_op_ext8u_i64: 2313 case INDEX_op_ext16s_i64: 2314 case INDEX_op_ext16s_i32: 2315 case INDEX_op_ext16u_i64: 2316 case INDEX_op_ext16u_i32: 2317 case INDEX_op_ext32s_i64: 2318 case INDEX_op_ext32u_i64: 2319 case INDEX_op_ext_i32_i64: 2320 case INDEX_op_extu_i32_i64: 2321 case INDEX_op_extrl_i64_i32: 2322 default: 2323 g_assert_not_reached(); 2324 } 2325 2326#undef REG0 2327} 2328 2329static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 2330 unsigned vecl, unsigned vece, 2331 const TCGArg args[TCG_MAX_OP_ARGS], 2332 const int const_args[TCG_MAX_OP_ARGS]) 2333{ 2334 static const AArch64Insn cmp_vec_insn[16] = { 2335 [TCG_COND_EQ] = I3616_CMEQ, 2336 [TCG_COND_GT] = I3616_CMGT, 2337 [TCG_COND_GE] = I3616_CMGE, 2338 [TCG_COND_GTU] = I3616_CMHI, 2339 [TCG_COND_GEU] = I3616_CMHS, 2340 }; 2341 static const AArch64Insn cmp_scalar_insn[16] = { 2342 [TCG_COND_EQ] = I3611_CMEQ, 2343 [TCG_COND_GT] = I3611_CMGT, 2344 [TCG_COND_GE] = I3611_CMGE, 2345 [TCG_COND_GTU] = I3611_CMHI, 2346 [TCG_COND_GEU] = I3611_CMHS, 2347 }; 2348 static const AArch64Insn cmp0_vec_insn[16] = { 2349 [TCG_COND_EQ] = I3617_CMEQ0, 2350 [TCG_COND_GT] = I3617_CMGT0, 2351 [TCG_COND_GE] = I3617_CMGE0, 2352 [TCG_COND_LT] = I3617_CMLT0, 2353 [TCG_COND_LE] = I3617_CMLE0, 2354 }; 2355 static const AArch64Insn cmp0_scalar_insn[16] = { 2356 [TCG_COND_EQ] = I3612_CMEQ0, 2357 [TCG_COND_GT] = I3612_CMGT0, 2358 [TCG_COND_GE] = I3612_CMGE0, 2359 [TCG_COND_LT] = I3612_CMLT0, 2360 [TCG_COND_LE] = I3612_CMLE0, 2361 }; 2362 2363 TCGType type = vecl + TCG_TYPE_V64; 2364 unsigned is_q = vecl; 2365 bool is_scalar = !is_q && vece == MO_64; 2366 TCGArg a0, a1, a2, a3; 2367 int cmode, imm8; 2368 2369 a0 = args[0]; 2370 a1 = args[1]; 2371 a2 = args[2]; 2372 2373 switch (opc) { 2374 case INDEX_op_ld_vec: 2375 tcg_out_ld(s, type, a0, a1, a2); 2376 break; 2377 case INDEX_op_st_vec: 2378 tcg_out_st(s, type, a0, a1, a2); 2379 break; 2380 case INDEX_op_dupm_vec: 2381 tcg_out_dupm_vec(s, type, vece, a0, a1, a2); 2382 break; 2383 case INDEX_op_add_vec: 2384 if (is_scalar) { 2385 tcg_out_insn(s, 3611, ADD, vece, a0, a1, a2); 2386 } else { 2387 tcg_out_insn(s, 3616, ADD, is_q, vece, a0, a1, a2); 2388 } 2389 break; 2390 case INDEX_op_sub_vec: 2391 if (is_scalar) { 2392 tcg_out_insn(s, 3611, SUB, vece, a0, a1, a2); 2393 } else { 2394 tcg_out_insn(s, 3616, SUB, is_q, vece, a0, a1, a2); 2395 } 2396 break; 2397 case INDEX_op_mul_vec: 2398 tcg_out_insn(s, 3616, MUL, is_q, vece, a0, a1, a2); 2399 break; 2400 case INDEX_op_neg_vec: 2401 if (is_scalar) { 2402 tcg_out_insn(s, 3612, NEG, vece, a0, a1); 2403 } else { 2404 tcg_out_insn(s, 3617, NEG, is_q, vece, a0, a1); 2405 } 2406 break; 2407 case INDEX_op_abs_vec: 2408 if (is_scalar) { 2409 tcg_out_insn(s, 3612, ABS, vece, a0, a1); 2410 } else { 2411 tcg_out_insn(s, 3617, ABS, is_q, vece, a0, a1); 2412 } 2413 break; 2414 case INDEX_op_and_vec: 2415 if (const_args[2]) { 2416 is_shimm1632(~a2, &cmode, &imm8); 2417 if (a0 == a1) { 2418 tcg_out_insn(s, 3606, BIC, is_q, a0, 0, cmode, imm8); 2419 return; 2420 } 2421 tcg_out_insn(s, 3606, MVNI, is_q, a0, 0, cmode, imm8); 2422 a2 = a0; 2423 } 2424 tcg_out_insn(s, 3616, AND, is_q, 0, a0, a1, a2); 2425 break; 2426 case INDEX_op_or_vec: 2427 if (const_args[2]) { 2428 is_shimm1632(a2, &cmode, &imm8); 2429 if (a0 == a1) { 2430 tcg_out_insn(s, 3606, ORR, is_q, a0, 0, cmode, imm8); 2431 return; 2432 } 2433 tcg_out_insn(s, 3606, MOVI, is_q, a0, 0, cmode, imm8); 2434 a2 = a0; 2435 } 2436 tcg_out_insn(s, 3616, ORR, is_q, 0, a0, a1, a2); 2437 break; 2438 case INDEX_op_andc_vec: 2439 if (const_args[2]) { 2440 is_shimm1632(a2, &cmode, &imm8); 2441 if (a0 == a1) { 2442 tcg_out_insn(s, 3606, BIC, is_q, a0, 0, cmode, imm8); 2443 return; 2444 } 2445 tcg_out_insn(s, 3606, MOVI, is_q, a0, 0, cmode, imm8); 2446 a2 = a0; 2447 } 2448 tcg_out_insn(s, 3616, BIC, is_q, 0, a0, a1, a2); 2449 break; 2450 case INDEX_op_orc_vec: 2451 if (const_args[2]) { 2452 is_shimm1632(~a2, &cmode, &imm8); 2453 if (a0 == a1) { 2454 tcg_out_insn(s, 3606, ORR, is_q, a0, 0, cmode, imm8); 2455 return; 2456 } 2457 tcg_out_insn(s, 3606, MVNI, is_q, a0, 0, cmode, imm8); 2458 a2 = a0; 2459 } 2460 tcg_out_insn(s, 3616, ORN, is_q, 0, a0, a1, a2); 2461 break; 2462 case INDEX_op_xor_vec: 2463 tcg_out_insn(s, 3616, EOR, is_q, 0, a0, a1, a2); 2464 break; 2465 case INDEX_op_ssadd_vec: 2466 if (is_scalar) { 2467 tcg_out_insn(s, 3611, SQADD, vece, a0, a1, a2); 2468 } else { 2469 tcg_out_insn(s, 3616, SQADD, is_q, vece, a0, a1, a2); 2470 } 2471 break; 2472 case INDEX_op_sssub_vec: 2473 if (is_scalar) { 2474 tcg_out_insn(s, 3611, SQSUB, vece, a0, a1, a2); 2475 } else { 2476 tcg_out_insn(s, 3616, SQSUB, is_q, vece, a0, a1, a2); 2477 } 2478 break; 2479 case INDEX_op_usadd_vec: 2480 if (is_scalar) { 2481 tcg_out_insn(s, 3611, UQADD, vece, a0, a1, a2); 2482 } else { 2483 tcg_out_insn(s, 3616, UQADD, is_q, vece, a0, a1, a2); 2484 } 2485 break; 2486 case INDEX_op_ussub_vec: 2487 if (is_scalar) { 2488 tcg_out_insn(s, 3611, UQSUB, vece, a0, a1, a2); 2489 } else { 2490 tcg_out_insn(s, 3616, UQSUB, is_q, vece, a0, a1, a2); 2491 } 2492 break; 2493 case INDEX_op_smax_vec: 2494 tcg_out_insn(s, 3616, SMAX, is_q, vece, a0, a1, a2); 2495 break; 2496 case INDEX_op_smin_vec: 2497 tcg_out_insn(s, 3616, SMIN, is_q, vece, a0, a1, a2); 2498 break; 2499 case INDEX_op_umax_vec: 2500 tcg_out_insn(s, 3616, UMAX, is_q, vece, a0, a1, a2); 2501 break; 2502 case INDEX_op_umin_vec: 2503 tcg_out_insn(s, 3616, UMIN, is_q, vece, a0, a1, a2); 2504 break; 2505 case INDEX_op_not_vec: 2506 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a1); 2507 break; 2508 case INDEX_op_shli_vec: 2509 if (is_scalar) { 2510 tcg_out_insn(s, 3609, SHL, a0, a1, a2 + (8 << vece)); 2511 } else { 2512 tcg_out_insn(s, 3614, SHL, is_q, a0, a1, a2 + (8 << vece)); 2513 } 2514 break; 2515 case INDEX_op_shri_vec: 2516 if (is_scalar) { 2517 tcg_out_insn(s, 3609, USHR, a0, a1, (16 << vece) - a2); 2518 } else { 2519 tcg_out_insn(s, 3614, USHR, is_q, a0, a1, (16 << vece) - a2); 2520 } 2521 break; 2522 case INDEX_op_sari_vec: 2523 if (is_scalar) { 2524 tcg_out_insn(s, 3609, SSHR, a0, a1, (16 << vece) - a2); 2525 } else { 2526 tcg_out_insn(s, 3614, SSHR, is_q, a0, a1, (16 << vece) - a2); 2527 } 2528 break; 2529 case INDEX_op_aa64_sli_vec: 2530 if (is_scalar) { 2531 tcg_out_insn(s, 3609, SLI, a0, a2, args[3] + (8 << vece)); 2532 } else { 2533 tcg_out_insn(s, 3614, SLI, is_q, a0, a2, args[3] + (8 << vece)); 2534 } 2535 break; 2536 case INDEX_op_shlv_vec: 2537 if (is_scalar) { 2538 tcg_out_insn(s, 3611, USHL, vece, a0, a1, a2); 2539 } else { 2540 tcg_out_insn(s, 3616, USHL, is_q, vece, a0, a1, a2); 2541 } 2542 break; 2543 case INDEX_op_aa64_sshl_vec: 2544 if (is_scalar) { 2545 tcg_out_insn(s, 3611, SSHL, vece, a0, a1, a2); 2546 } else { 2547 tcg_out_insn(s, 3616, SSHL, is_q, vece, a0, a1, a2); 2548 } 2549 break; 2550 case INDEX_op_cmp_vec: 2551 { 2552 TCGCond cond = args[3]; 2553 AArch64Insn insn; 2554 2555 if (cond == TCG_COND_NE) { 2556 if (const_args[2]) { 2557 if (is_scalar) { 2558 tcg_out_insn(s, 3611, CMTST, vece, a0, a1, a1); 2559 } else { 2560 tcg_out_insn(s, 3616, CMTST, is_q, vece, a0, a1, a1); 2561 } 2562 } else { 2563 if (is_scalar) { 2564 tcg_out_insn(s, 3611, CMEQ, vece, a0, a1, a2); 2565 } else { 2566 tcg_out_insn(s, 3616, CMEQ, is_q, vece, a0, a1, a2); 2567 } 2568 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a0); 2569 } 2570 } else { 2571 if (const_args[2]) { 2572 if (is_scalar) { 2573 insn = cmp0_scalar_insn[cond]; 2574 if (insn) { 2575 tcg_out_insn_3612(s, insn, vece, a0, a1); 2576 break; 2577 } 2578 } else { 2579 insn = cmp0_vec_insn[cond]; 2580 if (insn) { 2581 tcg_out_insn_3617(s, insn, is_q, vece, a0, a1); 2582 break; 2583 } 2584 } 2585 tcg_out_dupi_vec(s, type, MO_8, TCG_VEC_TMP, 0); 2586 a2 = TCG_VEC_TMP; 2587 } 2588 if (is_scalar) { 2589 insn = cmp_scalar_insn[cond]; 2590 if (insn == 0) { 2591 TCGArg t; 2592 t = a1, a1 = a2, a2 = t; 2593 cond = tcg_swap_cond(cond); 2594 insn = cmp_scalar_insn[cond]; 2595 tcg_debug_assert(insn != 0); 2596 } 2597 tcg_out_insn_3611(s, insn, vece, a0, a1, a2); 2598 } else { 2599 insn = cmp_vec_insn[cond]; 2600 if (insn == 0) { 2601 TCGArg t; 2602 t = a1, a1 = a2, a2 = t; 2603 cond = tcg_swap_cond(cond); 2604 insn = cmp_vec_insn[cond]; 2605 tcg_debug_assert(insn != 0); 2606 } 2607 tcg_out_insn_3616(s, insn, is_q, vece, a0, a1, a2); 2608 } 2609 } 2610 } 2611 break; 2612 2613 case INDEX_op_bitsel_vec: 2614 a3 = args[3]; 2615 if (a0 == a3) { 2616 tcg_out_insn(s, 3616, BIT, is_q, 0, a0, a2, a1); 2617 } else if (a0 == a2) { 2618 tcg_out_insn(s, 3616, BIF, is_q, 0, a0, a3, a1); 2619 } else { 2620 if (a0 != a1) { 2621 tcg_out_mov(s, type, a0, a1); 2622 } 2623 tcg_out_insn(s, 3616, BSL, is_q, 0, a0, a2, a3); 2624 } 2625 break; 2626 2627 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ 2628 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ 2629 default: 2630 g_assert_not_reached(); 2631 } 2632} 2633 2634int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) 2635{ 2636 switch (opc) { 2637 case INDEX_op_add_vec: 2638 case INDEX_op_sub_vec: 2639 case INDEX_op_and_vec: 2640 case INDEX_op_or_vec: 2641 case INDEX_op_xor_vec: 2642 case INDEX_op_andc_vec: 2643 case INDEX_op_orc_vec: 2644 case INDEX_op_neg_vec: 2645 case INDEX_op_abs_vec: 2646 case INDEX_op_not_vec: 2647 case INDEX_op_cmp_vec: 2648 case INDEX_op_shli_vec: 2649 case INDEX_op_shri_vec: 2650 case INDEX_op_sari_vec: 2651 case INDEX_op_ssadd_vec: 2652 case INDEX_op_sssub_vec: 2653 case INDEX_op_usadd_vec: 2654 case INDEX_op_ussub_vec: 2655 case INDEX_op_shlv_vec: 2656 case INDEX_op_bitsel_vec: 2657 return 1; 2658 case INDEX_op_rotli_vec: 2659 case INDEX_op_shrv_vec: 2660 case INDEX_op_sarv_vec: 2661 case INDEX_op_rotlv_vec: 2662 case INDEX_op_rotrv_vec: 2663 return -1; 2664 case INDEX_op_mul_vec: 2665 case INDEX_op_smax_vec: 2666 case INDEX_op_smin_vec: 2667 case INDEX_op_umax_vec: 2668 case INDEX_op_umin_vec: 2669 return vece < MO_64; 2670 2671 default: 2672 return 0; 2673 } 2674} 2675 2676void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, 2677 TCGArg a0, ...) 2678{ 2679 va_list va; 2680 TCGv_vec v0, v1, v2, t1, t2, c1; 2681 TCGArg a2; 2682 2683 va_start(va, a0); 2684 v0 = temp_tcgv_vec(arg_temp(a0)); 2685 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 2686 a2 = va_arg(va, TCGArg); 2687 va_end(va); 2688 2689 switch (opc) { 2690 case INDEX_op_rotli_vec: 2691 t1 = tcg_temp_new_vec(type); 2692 tcg_gen_shri_vec(vece, t1, v1, -a2 & ((8 << vece) - 1)); 2693 vec_gen_4(INDEX_op_aa64_sli_vec, type, vece, 2694 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(v1), a2); 2695 tcg_temp_free_vec(t1); 2696 break; 2697 2698 case INDEX_op_shrv_vec: 2699 case INDEX_op_sarv_vec: 2700 /* Right shifts are negative left shifts for AArch64. */ 2701 v2 = temp_tcgv_vec(arg_temp(a2)); 2702 t1 = tcg_temp_new_vec(type); 2703 tcg_gen_neg_vec(vece, t1, v2); 2704 opc = (opc == INDEX_op_shrv_vec 2705 ? INDEX_op_shlv_vec : INDEX_op_aa64_sshl_vec); 2706 vec_gen_3(opc, type, vece, tcgv_vec_arg(v0), 2707 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 2708 tcg_temp_free_vec(t1); 2709 break; 2710 2711 case INDEX_op_rotlv_vec: 2712 v2 = temp_tcgv_vec(arg_temp(a2)); 2713 t1 = tcg_temp_new_vec(type); 2714 c1 = tcg_constant_vec(type, vece, 8 << vece); 2715 tcg_gen_sub_vec(vece, t1, v2, c1); 2716 /* Right shifts are negative left shifts for AArch64. */ 2717 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t1), 2718 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 2719 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(v0), 2720 tcgv_vec_arg(v1), tcgv_vec_arg(v2)); 2721 tcg_gen_or_vec(vece, v0, v0, t1); 2722 tcg_temp_free_vec(t1); 2723 break; 2724 2725 case INDEX_op_rotrv_vec: 2726 v2 = temp_tcgv_vec(arg_temp(a2)); 2727 t1 = tcg_temp_new_vec(type); 2728 t2 = tcg_temp_new_vec(type); 2729 c1 = tcg_constant_vec(type, vece, 8 << vece); 2730 tcg_gen_neg_vec(vece, t1, v2); 2731 tcg_gen_sub_vec(vece, t2, c1, v2); 2732 /* Right shifts are negative left shifts for AArch64. */ 2733 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t1), 2734 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 2735 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t2), 2736 tcgv_vec_arg(v1), tcgv_vec_arg(t2)); 2737 tcg_gen_or_vec(vece, v0, t1, t2); 2738 tcg_temp_free_vec(t1); 2739 tcg_temp_free_vec(t2); 2740 break; 2741 2742 default: 2743 g_assert_not_reached(); 2744 } 2745} 2746 2747static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op) 2748{ 2749 switch (op) { 2750 case INDEX_op_goto_ptr: 2751 return C_O0_I1(r); 2752 2753 case INDEX_op_ld8u_i32: 2754 case INDEX_op_ld8s_i32: 2755 case INDEX_op_ld16u_i32: 2756 case INDEX_op_ld16s_i32: 2757 case INDEX_op_ld_i32: 2758 case INDEX_op_ld8u_i64: 2759 case INDEX_op_ld8s_i64: 2760 case INDEX_op_ld16u_i64: 2761 case INDEX_op_ld16s_i64: 2762 case INDEX_op_ld32u_i64: 2763 case INDEX_op_ld32s_i64: 2764 case INDEX_op_ld_i64: 2765 case INDEX_op_neg_i32: 2766 case INDEX_op_neg_i64: 2767 case INDEX_op_not_i32: 2768 case INDEX_op_not_i64: 2769 case INDEX_op_bswap16_i32: 2770 case INDEX_op_bswap32_i32: 2771 case INDEX_op_bswap16_i64: 2772 case INDEX_op_bswap32_i64: 2773 case INDEX_op_bswap64_i64: 2774 case INDEX_op_ext8s_i32: 2775 case INDEX_op_ext16s_i32: 2776 case INDEX_op_ext8u_i32: 2777 case INDEX_op_ext16u_i32: 2778 case INDEX_op_ext8s_i64: 2779 case INDEX_op_ext16s_i64: 2780 case INDEX_op_ext32s_i64: 2781 case INDEX_op_ext8u_i64: 2782 case INDEX_op_ext16u_i64: 2783 case INDEX_op_ext32u_i64: 2784 case INDEX_op_ext_i32_i64: 2785 case INDEX_op_extu_i32_i64: 2786 case INDEX_op_extract_i32: 2787 case INDEX_op_extract_i64: 2788 case INDEX_op_sextract_i32: 2789 case INDEX_op_sextract_i64: 2790 return C_O1_I1(r, r); 2791 2792 case INDEX_op_st8_i32: 2793 case INDEX_op_st16_i32: 2794 case INDEX_op_st_i32: 2795 case INDEX_op_st8_i64: 2796 case INDEX_op_st16_i64: 2797 case INDEX_op_st32_i64: 2798 case INDEX_op_st_i64: 2799 return C_O0_I2(rZ, r); 2800 2801 case INDEX_op_add_i32: 2802 case INDEX_op_add_i64: 2803 case INDEX_op_sub_i32: 2804 case INDEX_op_sub_i64: 2805 case INDEX_op_setcond_i32: 2806 case INDEX_op_setcond_i64: 2807 return C_O1_I2(r, r, rA); 2808 2809 case INDEX_op_mul_i32: 2810 case INDEX_op_mul_i64: 2811 case INDEX_op_div_i32: 2812 case INDEX_op_div_i64: 2813 case INDEX_op_divu_i32: 2814 case INDEX_op_divu_i64: 2815 case INDEX_op_rem_i32: 2816 case INDEX_op_rem_i64: 2817 case INDEX_op_remu_i32: 2818 case INDEX_op_remu_i64: 2819 case INDEX_op_muluh_i64: 2820 case INDEX_op_mulsh_i64: 2821 return C_O1_I2(r, r, r); 2822 2823 case INDEX_op_and_i32: 2824 case INDEX_op_and_i64: 2825 case INDEX_op_or_i32: 2826 case INDEX_op_or_i64: 2827 case INDEX_op_xor_i32: 2828 case INDEX_op_xor_i64: 2829 case INDEX_op_andc_i32: 2830 case INDEX_op_andc_i64: 2831 case INDEX_op_orc_i32: 2832 case INDEX_op_orc_i64: 2833 case INDEX_op_eqv_i32: 2834 case INDEX_op_eqv_i64: 2835 return C_O1_I2(r, r, rL); 2836 2837 case INDEX_op_shl_i32: 2838 case INDEX_op_shr_i32: 2839 case INDEX_op_sar_i32: 2840 case INDEX_op_rotl_i32: 2841 case INDEX_op_rotr_i32: 2842 case INDEX_op_shl_i64: 2843 case INDEX_op_shr_i64: 2844 case INDEX_op_sar_i64: 2845 case INDEX_op_rotl_i64: 2846 case INDEX_op_rotr_i64: 2847 return C_O1_I2(r, r, ri); 2848 2849 case INDEX_op_clz_i32: 2850 case INDEX_op_ctz_i32: 2851 case INDEX_op_clz_i64: 2852 case INDEX_op_ctz_i64: 2853 return C_O1_I2(r, r, rAL); 2854 2855 case INDEX_op_brcond_i32: 2856 case INDEX_op_brcond_i64: 2857 return C_O0_I2(r, rA); 2858 2859 case INDEX_op_movcond_i32: 2860 case INDEX_op_movcond_i64: 2861 return C_O1_I4(r, r, rA, rZ, rZ); 2862 2863 case INDEX_op_qemu_ld_i32: 2864 case INDEX_op_qemu_ld_i64: 2865 return C_O1_I1(r, l); 2866 case INDEX_op_qemu_st_i32: 2867 case INDEX_op_qemu_st_i64: 2868 return C_O0_I2(lZ, l); 2869 2870 case INDEX_op_deposit_i32: 2871 case INDEX_op_deposit_i64: 2872 return C_O1_I2(r, 0, rZ); 2873 2874 case INDEX_op_extract2_i32: 2875 case INDEX_op_extract2_i64: 2876 return C_O1_I2(r, rZ, rZ); 2877 2878 case INDEX_op_add2_i32: 2879 case INDEX_op_add2_i64: 2880 case INDEX_op_sub2_i32: 2881 case INDEX_op_sub2_i64: 2882 return C_O2_I4(r, r, rZ, rZ, rA, rMZ); 2883 2884 case INDEX_op_add_vec: 2885 case INDEX_op_sub_vec: 2886 case INDEX_op_mul_vec: 2887 case INDEX_op_xor_vec: 2888 case INDEX_op_ssadd_vec: 2889 case INDEX_op_sssub_vec: 2890 case INDEX_op_usadd_vec: 2891 case INDEX_op_ussub_vec: 2892 case INDEX_op_smax_vec: 2893 case INDEX_op_smin_vec: 2894 case INDEX_op_umax_vec: 2895 case INDEX_op_umin_vec: 2896 case INDEX_op_shlv_vec: 2897 case INDEX_op_shrv_vec: 2898 case INDEX_op_sarv_vec: 2899 case INDEX_op_aa64_sshl_vec: 2900 return C_O1_I2(w, w, w); 2901 case INDEX_op_not_vec: 2902 case INDEX_op_neg_vec: 2903 case INDEX_op_abs_vec: 2904 case INDEX_op_shli_vec: 2905 case INDEX_op_shri_vec: 2906 case INDEX_op_sari_vec: 2907 return C_O1_I1(w, w); 2908 case INDEX_op_ld_vec: 2909 case INDEX_op_dupm_vec: 2910 return C_O1_I1(w, r); 2911 case INDEX_op_st_vec: 2912 return C_O0_I2(w, r); 2913 case INDEX_op_dup_vec: 2914 return C_O1_I1(w, wr); 2915 case INDEX_op_or_vec: 2916 case INDEX_op_andc_vec: 2917 return C_O1_I2(w, w, wO); 2918 case INDEX_op_and_vec: 2919 case INDEX_op_orc_vec: 2920 return C_O1_I2(w, w, wN); 2921 case INDEX_op_cmp_vec: 2922 return C_O1_I2(w, w, wZ); 2923 case INDEX_op_bitsel_vec: 2924 return C_O1_I3(w, w, w, w); 2925 case INDEX_op_aa64_sli_vec: 2926 return C_O1_I2(w, 0, w); 2927 2928 default: 2929 g_assert_not_reached(); 2930 } 2931} 2932 2933static void tcg_target_init(TCGContext *s) 2934{ 2935 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffffu; 2936 tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffffu; 2937 tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull; 2938 tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull; 2939 2940 tcg_target_call_clobber_regs = -1ull; 2941 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X19); 2942 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X20); 2943 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X21); 2944 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X22); 2945 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X23); 2946 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X24); 2947 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X25); 2948 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X26); 2949 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X27); 2950 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X28); 2951 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X29); 2952 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V8); 2953 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V9); 2954 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V10); 2955 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V11); 2956 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V12); 2957 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V13); 2958 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V14); 2959 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V15); 2960 2961 s->reserved_regs = 0; 2962 tcg_regset_set_reg(s->reserved_regs, TCG_REG_SP); 2963 tcg_regset_set_reg(s->reserved_regs, TCG_REG_FP); 2964 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP); 2965 tcg_regset_set_reg(s->reserved_regs, TCG_REG_X18); /* platform register */ 2966 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP); 2967} 2968 2969/* Saving pairs: (X19, X20) .. (X27, X28), (X29(fp), X30(lr)). */ 2970#define PUSH_SIZE ((30 - 19 + 1) * 8) 2971 2972#define FRAME_SIZE \ 2973 ((PUSH_SIZE \ 2974 + TCG_STATIC_CALL_ARGS_SIZE \ 2975 + CPU_TEMP_BUF_NLONGS * sizeof(long) \ 2976 + TCG_TARGET_STACK_ALIGN - 1) \ 2977 & ~(TCG_TARGET_STACK_ALIGN - 1)) 2978 2979/* We're expecting a 2 byte uleb128 encoded value. */ 2980QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); 2981 2982/* We're expecting to use a single ADDI insn. */ 2983QEMU_BUILD_BUG_ON(FRAME_SIZE - PUSH_SIZE > 0xfff); 2984 2985static void tcg_target_qemu_prologue(TCGContext *s) 2986{ 2987 TCGReg r; 2988 2989 /* Push (FP, LR) and allocate space for all saved registers. */ 2990 tcg_out_insn(s, 3314, STP, TCG_REG_FP, TCG_REG_LR, 2991 TCG_REG_SP, -PUSH_SIZE, 1, 1); 2992 2993 /* Set up frame pointer for canonical unwinding. */ 2994 tcg_out_movr_sp(s, TCG_TYPE_I64, TCG_REG_FP, TCG_REG_SP); 2995 2996 /* Store callee-preserved regs x19..x28. */ 2997 for (r = TCG_REG_X19; r <= TCG_REG_X27; r += 2) { 2998 int ofs = (r - TCG_REG_X19 + 2) * 8; 2999 tcg_out_insn(s, 3314, STP, r, r + 1, TCG_REG_SP, ofs, 1, 0); 3000 } 3001 3002 /* Make stack space for TCG locals. */ 3003 tcg_out_insn(s, 3401, SUBI, TCG_TYPE_I64, TCG_REG_SP, TCG_REG_SP, 3004 FRAME_SIZE - PUSH_SIZE); 3005 3006 /* Inform TCG about how to find TCG locals with register, offset, size. */ 3007 tcg_set_frame(s, TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE, 3008 CPU_TEMP_BUF_NLONGS * sizeof(long)); 3009 3010#if !defined(CONFIG_SOFTMMU) 3011 if (USE_GUEST_BASE) { 3012 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_GUEST_BASE, guest_base); 3013 tcg_regset_set_reg(s->reserved_regs, TCG_REG_GUEST_BASE); 3014 } 3015#endif 3016 3017 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); 3018 tcg_out_insn(s, 3207, BR, tcg_target_call_iarg_regs[1]); 3019 3020 /* 3021 * Return path for goto_ptr. Set return value to 0, a-la exit_tb, 3022 * and fall through to the rest of the epilogue. 3023 */ 3024 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); 3025 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_X0, 0); 3026 3027 /* TB epilogue */ 3028 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr); 3029 3030 /* Remove TCG locals stack space. */ 3031 tcg_out_insn(s, 3401, ADDI, TCG_TYPE_I64, TCG_REG_SP, TCG_REG_SP, 3032 FRAME_SIZE - PUSH_SIZE); 3033 3034 /* Restore registers x19..x28. */ 3035 for (r = TCG_REG_X19; r <= TCG_REG_X27; r += 2) { 3036 int ofs = (r - TCG_REG_X19 + 2) * 8; 3037 tcg_out_insn(s, 3314, LDP, r, r + 1, TCG_REG_SP, ofs, 1, 0); 3038 } 3039 3040 /* Pop (FP, LR), restore SP to previous frame. */ 3041 tcg_out_insn(s, 3314, LDP, TCG_REG_FP, TCG_REG_LR, 3042 TCG_REG_SP, PUSH_SIZE, 0, 1); 3043 tcg_out_insn(s, 3207, RET, TCG_REG_LR); 3044} 3045 3046static void tcg_out_nop_fill(tcg_insn_unit *p, int count) 3047{ 3048 int i; 3049 for (i = 0; i < count; ++i) { 3050 p[i] = NOP; 3051 } 3052} 3053 3054typedef struct { 3055 DebugFrameHeader h; 3056 uint8_t fde_def_cfa[4]; 3057 uint8_t fde_reg_ofs[24]; 3058} DebugFrame; 3059 3060#define ELF_HOST_MACHINE EM_AARCH64 3061 3062static const DebugFrame debug_frame = { 3063 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 3064 .h.cie.id = -1, 3065 .h.cie.version = 1, 3066 .h.cie.code_align = 1, 3067 .h.cie.data_align = 0x78, /* sleb128 -8 */ 3068 .h.cie.return_column = TCG_REG_LR, 3069 3070 /* Total FDE size does not include the "len" member. */ 3071 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 3072 3073 .fde_def_cfa = { 3074 12, TCG_REG_SP, /* DW_CFA_def_cfa sp, ... */ 3075 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 3076 (FRAME_SIZE >> 7) 3077 }, 3078 .fde_reg_ofs = { 3079 0x80 + 28, 1, /* DW_CFA_offset, x28, -8 */ 3080 0x80 + 27, 2, /* DW_CFA_offset, x27, -16 */ 3081 0x80 + 26, 3, /* DW_CFA_offset, x26, -24 */ 3082 0x80 + 25, 4, /* DW_CFA_offset, x25, -32 */ 3083 0x80 + 24, 5, /* DW_CFA_offset, x24, -40 */ 3084 0x80 + 23, 6, /* DW_CFA_offset, x23, -48 */ 3085 0x80 + 22, 7, /* DW_CFA_offset, x22, -56 */ 3086 0x80 + 21, 8, /* DW_CFA_offset, x21, -64 */ 3087 0x80 + 20, 9, /* DW_CFA_offset, x20, -72 */ 3088 0x80 + 19, 10, /* DW_CFA_offset, x1p, -80 */ 3089 0x80 + 30, 11, /* DW_CFA_offset, lr, -88 */ 3090 0x80 + 29, 12, /* DW_CFA_offset, fp, -96 */ 3091 } 3092}; 3093 3094void tcg_register_jit(const void *buf, size_t buf_size) 3095{ 3096 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); 3097} 3098