1/* 2 * Initial TCG Implementation for aarch64 3 * 4 * Copyright (c) 2013 Huawei Technologies Duesseldorf GmbH 5 * Written by Claudio Fontana 6 * 7 * This work is licensed under the terms of the GNU GPL, version 2 or 8 * (at your option) any later version. 9 * 10 * See the COPYING file in the top-level directory for details. 11 */ 12 13#include "qemu/bitops.h" 14 15/* Used for function call generation. */ 16#define TCG_REG_CALL_STACK TCG_REG_SP 17#define TCG_TARGET_STACK_ALIGN 16 18#define TCG_TARGET_CALL_STACK_OFFSET 0 19#define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL 20#define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL 21#ifdef CONFIG_DARWIN 22# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL 23#else 24# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_EVEN 25#endif 26#define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_NORMAL 27 28/* We're going to re-use TCGType in setting of the SF bit, which controls 29 the size of the operation performed. If we know the values match, it 30 makes things much cleaner. */ 31QEMU_BUILD_BUG_ON(TCG_TYPE_I32 != 0 || TCG_TYPE_I64 != 1); 32 33#ifdef CONFIG_DEBUG_TCG 34static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = { 35 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", 36 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", 37 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", 38 "x24", "x25", "x26", "x27", "x28", "fp", "x30", "sp", 39 40 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", 41 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", 42 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", 43 "v24", "v25", "v26", "v27", "v28", "fp", "v30", "v31", 44}; 45#endif /* CONFIG_DEBUG_TCG */ 46 47static const int tcg_target_reg_alloc_order[] = { 48 TCG_REG_X20, TCG_REG_X21, TCG_REG_X22, TCG_REG_X23, 49 TCG_REG_X24, TCG_REG_X25, TCG_REG_X26, TCG_REG_X27, 50 TCG_REG_X28, /* we will reserve this for guest_base if configured */ 51 52 TCG_REG_X8, TCG_REG_X9, TCG_REG_X10, TCG_REG_X11, 53 TCG_REG_X12, TCG_REG_X13, TCG_REG_X14, TCG_REG_X15, 54 55 TCG_REG_X0, TCG_REG_X1, TCG_REG_X2, TCG_REG_X3, 56 TCG_REG_X4, TCG_REG_X5, TCG_REG_X6, TCG_REG_X7, 57 58 /* X16 reserved as temporary */ 59 /* X17 reserved as temporary */ 60 /* X18 reserved by system */ 61 /* X19 reserved for AREG0 */ 62 /* X29 reserved as fp */ 63 /* X30 reserved as temporary */ 64 65 TCG_REG_V0, TCG_REG_V1, TCG_REG_V2, TCG_REG_V3, 66 TCG_REG_V4, TCG_REG_V5, TCG_REG_V6, TCG_REG_V7, 67 /* V8 - V15 are call-saved, and skipped. */ 68 TCG_REG_V16, TCG_REG_V17, TCG_REG_V18, TCG_REG_V19, 69 TCG_REG_V20, TCG_REG_V21, TCG_REG_V22, TCG_REG_V23, 70 TCG_REG_V24, TCG_REG_V25, TCG_REG_V26, TCG_REG_V27, 71 TCG_REG_V28, TCG_REG_V29, TCG_REG_V30, TCG_REG_V31, 72}; 73 74static const int tcg_target_call_iarg_regs[8] = { 75 TCG_REG_X0, TCG_REG_X1, TCG_REG_X2, TCG_REG_X3, 76 TCG_REG_X4, TCG_REG_X5, TCG_REG_X6, TCG_REG_X7 77}; 78 79static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot) 80{ 81 tcg_debug_assert(kind == TCG_CALL_RET_NORMAL); 82 tcg_debug_assert(slot >= 0 && slot <= 1); 83 return TCG_REG_X0 + slot; 84} 85 86#define TCG_REG_TMP0 TCG_REG_X16 87#define TCG_REG_TMP1 TCG_REG_X17 88#define TCG_REG_TMP2 TCG_REG_X30 89#define TCG_VEC_TMP0 TCG_REG_V31 90 91#define TCG_REG_GUEST_BASE TCG_REG_X28 92 93static bool reloc_pc26(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 94{ 95 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 96 ptrdiff_t offset = target - src_rx; 97 98 if (offset == sextract64(offset, 0, 26)) { 99 /* read instruction, mask away previous PC_REL26 parameter contents, 100 set the proper offset, then write back the instruction. */ 101 *src_rw = deposit32(*src_rw, 0, 26, offset); 102 return true; 103 } 104 return false; 105} 106 107static bool reloc_pc19(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 108{ 109 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 110 ptrdiff_t offset = target - src_rx; 111 112 if (offset == sextract64(offset, 0, 19)) { 113 *src_rw = deposit32(*src_rw, 5, 19, offset); 114 return true; 115 } 116 return false; 117} 118 119static bool reloc_pc14(tcg_insn_unit *src_rw, const tcg_insn_unit *target) 120{ 121 const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw); 122 ptrdiff_t offset = target - src_rx; 123 124 if (offset == sextract64(offset, 0, 14)) { 125 *src_rw = deposit32(*src_rw, 5, 14, offset); 126 return true; 127 } 128 return false; 129} 130 131static bool patch_reloc(tcg_insn_unit *code_ptr, int type, 132 intptr_t value, intptr_t addend) 133{ 134 tcg_debug_assert(addend == 0); 135 switch (type) { 136 case R_AARCH64_JUMP26: 137 case R_AARCH64_CALL26: 138 return reloc_pc26(code_ptr, (const tcg_insn_unit *)value); 139 case R_AARCH64_CONDBR19: 140 return reloc_pc19(code_ptr, (const tcg_insn_unit *)value); 141 case R_AARCH64_TSTBR14: 142 return reloc_pc14(code_ptr, (const tcg_insn_unit *)value); 143 default: 144 g_assert_not_reached(); 145 } 146} 147 148#define TCG_CT_CONST_AIMM 0x100 149#define TCG_CT_CONST_LIMM 0x200 150#define TCG_CT_CONST_ZERO 0x400 151#define TCG_CT_CONST_MONE 0x800 152#define TCG_CT_CONST_ORRI 0x1000 153#define TCG_CT_CONST_ANDI 0x2000 154#define TCG_CT_CONST_CMP 0x4000 155 156#define ALL_GENERAL_REGS 0xffffffffu 157#define ALL_VECTOR_REGS 0xffffffff00000000ull 158 159/* Match a constant valid for addition (12-bit, optionally shifted). */ 160static inline bool is_aimm(uint64_t val) 161{ 162 return (val & ~0xfff) == 0 || (val & ~0xfff000) == 0; 163} 164 165/* Match a constant valid for logical operations. */ 166static inline bool is_limm(uint64_t val) 167{ 168 /* Taking a simplified view of the logical immediates for now, ignoring 169 the replication that can happen across the field. Match bit patterns 170 of the forms 171 0....01....1 172 0..01..10..0 173 and their inverses. */ 174 175 /* Make things easier below, by testing the form with msb clear. */ 176 if ((int64_t)val < 0) { 177 val = ~val; 178 } 179 if (val == 0) { 180 return false; 181 } 182 val += val & -val; 183 return (val & (val - 1)) == 0; 184} 185 186/* Return true if v16 is a valid 16-bit shifted immediate. */ 187static bool is_shimm16(uint16_t v16, int *cmode, int *imm8) 188{ 189 if (v16 == (v16 & 0xff)) { 190 *cmode = 0x8; 191 *imm8 = v16 & 0xff; 192 return true; 193 } else if (v16 == (v16 & 0xff00)) { 194 *cmode = 0xa; 195 *imm8 = v16 >> 8; 196 return true; 197 } 198 return false; 199} 200 201/* Return true if v32 is a valid 32-bit shifted immediate. */ 202static bool is_shimm32(uint32_t v32, int *cmode, int *imm8) 203{ 204 if (v32 == (v32 & 0xff)) { 205 *cmode = 0x0; 206 *imm8 = v32 & 0xff; 207 return true; 208 } else if (v32 == (v32 & 0xff00)) { 209 *cmode = 0x2; 210 *imm8 = (v32 >> 8) & 0xff; 211 return true; 212 } else if (v32 == (v32 & 0xff0000)) { 213 *cmode = 0x4; 214 *imm8 = (v32 >> 16) & 0xff; 215 return true; 216 } else if (v32 == (v32 & 0xff000000)) { 217 *cmode = 0x6; 218 *imm8 = v32 >> 24; 219 return true; 220 } 221 return false; 222} 223 224/* Return true if v32 is a valid 32-bit shifting ones immediate. */ 225static bool is_soimm32(uint32_t v32, int *cmode, int *imm8) 226{ 227 if ((v32 & 0xffff00ff) == 0xff) { 228 *cmode = 0xc; 229 *imm8 = (v32 >> 8) & 0xff; 230 return true; 231 } else if ((v32 & 0xff00ffff) == 0xffff) { 232 *cmode = 0xd; 233 *imm8 = (v32 >> 16) & 0xff; 234 return true; 235 } 236 return false; 237} 238 239/* Return true if v32 is a valid float32 immediate. */ 240static bool is_fimm32(uint32_t v32, int *cmode, int *imm8) 241{ 242 if (extract32(v32, 0, 19) == 0 243 && (extract32(v32, 25, 6) == 0x20 244 || extract32(v32, 25, 6) == 0x1f)) { 245 *cmode = 0xf; 246 *imm8 = (extract32(v32, 31, 1) << 7) 247 | (extract32(v32, 25, 1) << 6) 248 | extract32(v32, 19, 6); 249 return true; 250 } 251 return false; 252} 253 254/* Return true if v64 is a valid float64 immediate. */ 255static bool is_fimm64(uint64_t v64, int *cmode, int *imm8) 256{ 257 if (extract64(v64, 0, 48) == 0 258 && (extract64(v64, 54, 9) == 0x100 259 || extract64(v64, 54, 9) == 0x0ff)) { 260 *cmode = 0xf; 261 *imm8 = (extract64(v64, 63, 1) << 7) 262 | (extract64(v64, 54, 1) << 6) 263 | extract64(v64, 48, 6); 264 return true; 265 } 266 return false; 267} 268 269/* 270 * Return non-zero if v32 can be formed by MOVI+ORR. 271 * Place the parameters for MOVI in (cmode, imm8). 272 * Return the cmode for ORR; the imm8 can be had via extraction from v32. 273 */ 274static int is_shimm32_pair(uint32_t v32, int *cmode, int *imm8) 275{ 276 int i; 277 278 for (i = 6; i > 0; i -= 2) { 279 /* Mask out one byte we can add with ORR. */ 280 uint32_t tmp = v32 & ~(0xffu << (i * 4)); 281 if (is_shimm32(tmp, cmode, imm8) || 282 is_soimm32(tmp, cmode, imm8)) { 283 break; 284 } 285 } 286 return i; 287} 288 289/* Return true if V is a valid 16-bit or 32-bit shifted immediate. */ 290static bool is_shimm1632(uint32_t v32, int *cmode, int *imm8) 291{ 292 if (v32 == deposit32(v32, 16, 16, v32)) { 293 return is_shimm16(v32, cmode, imm8); 294 } else { 295 return is_shimm32(v32, cmode, imm8); 296 } 297} 298 299static bool tcg_target_const_match(int64_t val, int ct, 300 TCGType type, TCGCond cond, int vece) 301{ 302 if (ct & TCG_CT_CONST) { 303 return 1; 304 } 305 if (type == TCG_TYPE_I32) { 306 val = (int32_t)val; 307 } 308 309 if (ct & TCG_CT_CONST_CMP) { 310 if (is_tst_cond(cond)) { 311 ct |= TCG_CT_CONST_LIMM; 312 } else { 313 ct |= TCG_CT_CONST_AIMM; 314 } 315 } 316 317 if ((ct & TCG_CT_CONST_AIMM) && (is_aimm(val) || is_aimm(-val))) { 318 return 1; 319 } 320 if ((ct & TCG_CT_CONST_LIMM) && is_limm(val)) { 321 return 1; 322 } 323 if ((ct & TCG_CT_CONST_ZERO) && val == 0) { 324 return 1; 325 } 326 if ((ct & TCG_CT_CONST_MONE) && val == -1) { 327 return 1; 328 } 329 330 switch (ct & (TCG_CT_CONST_ORRI | TCG_CT_CONST_ANDI)) { 331 case 0: 332 break; 333 case TCG_CT_CONST_ANDI: 334 val = ~val; 335 /* fallthru */ 336 case TCG_CT_CONST_ORRI: 337 if (val == deposit64(val, 32, 32, val)) { 338 int cmode, imm8; 339 return is_shimm1632(val, &cmode, &imm8); 340 } 341 break; 342 default: 343 /* Both bits should not be set for the same insn. */ 344 g_assert_not_reached(); 345 } 346 347 return 0; 348} 349 350enum aarch64_cond_code { 351 COND_EQ = 0x0, 352 COND_NE = 0x1, 353 COND_CS = 0x2, /* Unsigned greater or equal */ 354 COND_HS = COND_CS, /* ALIAS greater or equal */ 355 COND_CC = 0x3, /* Unsigned less than */ 356 COND_LO = COND_CC, /* ALIAS Lower */ 357 COND_MI = 0x4, /* Negative */ 358 COND_PL = 0x5, /* Zero or greater */ 359 COND_VS = 0x6, /* Overflow */ 360 COND_VC = 0x7, /* No overflow */ 361 COND_HI = 0x8, /* Unsigned greater than */ 362 COND_LS = 0x9, /* Unsigned less or equal */ 363 COND_GE = 0xa, 364 COND_LT = 0xb, 365 COND_GT = 0xc, 366 COND_LE = 0xd, 367 COND_AL = 0xe, 368 COND_NV = 0xf, /* behaves like COND_AL here */ 369}; 370 371static const enum aarch64_cond_code tcg_cond_to_aarch64[] = { 372 [TCG_COND_EQ] = COND_EQ, 373 [TCG_COND_NE] = COND_NE, 374 [TCG_COND_LT] = COND_LT, 375 [TCG_COND_GE] = COND_GE, 376 [TCG_COND_LE] = COND_LE, 377 [TCG_COND_GT] = COND_GT, 378 /* unsigned */ 379 [TCG_COND_LTU] = COND_LO, 380 [TCG_COND_GTU] = COND_HI, 381 [TCG_COND_GEU] = COND_HS, 382 [TCG_COND_LEU] = COND_LS, 383 /* bit test */ 384 [TCG_COND_TSTEQ] = COND_EQ, 385 [TCG_COND_TSTNE] = COND_NE, 386}; 387 388typedef enum { 389 LDST_ST = 0, /* store */ 390 LDST_LD = 1, /* load */ 391 LDST_LD_S_X = 2, /* load and sign-extend into Xt */ 392 LDST_LD_S_W = 3, /* load and sign-extend into Wt */ 393} AArch64LdstType; 394 395/* We encode the format of the insn into the beginning of the name, so that 396 we can have the preprocessor help "typecheck" the insn vs the output 397 function. Arm didn't provide us with nice names for the formats, so we 398 use the section number of the architecture reference manual in which the 399 instruction group is described. */ 400typedef enum { 401 /* Compare and branch (immediate). */ 402 I3201_CBZ = 0x34000000, 403 I3201_CBNZ = 0x35000000, 404 405 /* Conditional branch (immediate). */ 406 I3202_B_C = 0x54000000, 407 408 /* Test and branch (immediate). */ 409 I3205_TBZ = 0x36000000, 410 I3205_TBNZ = 0x37000000, 411 412 /* Unconditional branch (immediate). */ 413 I3206_B = 0x14000000, 414 I3206_BL = 0x94000000, 415 416 /* Unconditional branch (register). */ 417 I3207_BR = 0xd61f0000, 418 I3207_BLR = 0xd63f0000, 419 I3207_RET = 0xd65f0000, 420 421 /* AdvSIMD load/store single structure. */ 422 I3303_LD1R = 0x0d40c000, 423 424 /* Load literal for loading the address at pc-relative offset */ 425 I3305_LDR = 0x58000000, 426 I3305_LDR_v64 = 0x5c000000, 427 I3305_LDR_v128 = 0x9c000000, 428 429 /* Load/store exclusive. */ 430 I3306_LDXP = 0xc8600000, 431 I3306_STXP = 0xc8200000, 432 433 /* Load/store register. Described here as 3.3.12, but the helper 434 that emits them can transform to 3.3.10 or 3.3.13. */ 435 I3312_STRB = 0x38000000 | LDST_ST << 22 | MO_8 << 30, 436 I3312_STRH = 0x38000000 | LDST_ST << 22 | MO_16 << 30, 437 I3312_STRW = 0x38000000 | LDST_ST << 22 | MO_32 << 30, 438 I3312_STRX = 0x38000000 | LDST_ST << 22 | MO_64 << 30, 439 440 I3312_LDRB = 0x38000000 | LDST_LD << 22 | MO_8 << 30, 441 I3312_LDRH = 0x38000000 | LDST_LD << 22 | MO_16 << 30, 442 I3312_LDRW = 0x38000000 | LDST_LD << 22 | MO_32 << 30, 443 I3312_LDRX = 0x38000000 | LDST_LD << 22 | MO_64 << 30, 444 445 I3312_LDRSBW = 0x38000000 | LDST_LD_S_W << 22 | MO_8 << 30, 446 I3312_LDRSHW = 0x38000000 | LDST_LD_S_W << 22 | MO_16 << 30, 447 448 I3312_LDRSBX = 0x38000000 | LDST_LD_S_X << 22 | MO_8 << 30, 449 I3312_LDRSHX = 0x38000000 | LDST_LD_S_X << 22 | MO_16 << 30, 450 I3312_LDRSWX = 0x38000000 | LDST_LD_S_X << 22 | MO_32 << 30, 451 452 I3312_LDRVS = 0x3c000000 | LDST_LD << 22 | MO_32 << 30, 453 I3312_STRVS = 0x3c000000 | LDST_ST << 22 | MO_32 << 30, 454 455 I3312_LDRVD = 0x3c000000 | LDST_LD << 22 | MO_64 << 30, 456 I3312_STRVD = 0x3c000000 | LDST_ST << 22 | MO_64 << 30, 457 458 I3312_LDRVQ = 0x3c000000 | 3 << 22 | 0 << 30, 459 I3312_STRVQ = 0x3c000000 | 2 << 22 | 0 << 30, 460 461 I3312_TO_I3310 = 0x00200800, 462 I3312_TO_I3313 = 0x01000000, 463 464 /* Load/store register pair instructions. */ 465 I3314_LDP = 0x28400000, 466 I3314_STP = 0x28000000, 467 468 /* Add/subtract immediate instructions. */ 469 I3401_ADDI = 0x11000000, 470 I3401_ADDSI = 0x31000000, 471 I3401_SUBI = 0x51000000, 472 I3401_SUBSI = 0x71000000, 473 474 /* Bitfield instructions. */ 475 I3402_BFM = 0x33000000, 476 I3402_SBFM = 0x13000000, 477 I3402_UBFM = 0x53000000, 478 479 /* Extract instruction. */ 480 I3403_EXTR = 0x13800000, 481 482 /* Logical immediate instructions. */ 483 I3404_ANDI = 0x12000000, 484 I3404_ORRI = 0x32000000, 485 I3404_EORI = 0x52000000, 486 I3404_ANDSI = 0x72000000, 487 488 /* Move wide immediate instructions. */ 489 I3405_MOVN = 0x12800000, 490 I3405_MOVZ = 0x52800000, 491 I3405_MOVK = 0x72800000, 492 493 /* PC relative addressing instructions. */ 494 I3406_ADR = 0x10000000, 495 I3406_ADRP = 0x90000000, 496 497 /* Add/subtract extended register instructions. */ 498 I3501_ADD = 0x0b200000, 499 500 /* Add/subtract shifted register instructions (without a shift). */ 501 I3502_ADD = 0x0b000000, 502 I3502_ADDS = 0x2b000000, 503 I3502_SUB = 0x4b000000, 504 I3502_SUBS = 0x6b000000, 505 506 /* Add/subtract shifted register instructions (with a shift). */ 507 I3502S_ADD_LSL = I3502_ADD, 508 509 /* Add/subtract with carry instructions. */ 510 I3503_ADC = 0x1a000000, 511 I3503_SBC = 0x5a000000, 512 513 /* Conditional select instructions. */ 514 I3506_CSEL = 0x1a800000, 515 I3506_CSINC = 0x1a800400, 516 I3506_CSINV = 0x5a800000, 517 I3506_CSNEG = 0x5a800400, 518 519 /* Data-processing (1 source) instructions. */ 520 I3507_CLZ = 0x5ac01000, 521 I3507_RBIT = 0x5ac00000, 522 I3507_REV = 0x5ac00000, /* + size << 10 */ 523 524 /* Data-processing (2 source) instructions. */ 525 I3508_LSLV = 0x1ac02000, 526 I3508_LSRV = 0x1ac02400, 527 I3508_ASRV = 0x1ac02800, 528 I3508_RORV = 0x1ac02c00, 529 I3508_SMULH = 0x9b407c00, 530 I3508_UMULH = 0x9bc07c00, 531 I3508_UDIV = 0x1ac00800, 532 I3508_SDIV = 0x1ac00c00, 533 534 /* Data-processing (3 source) instructions. */ 535 I3509_MADD = 0x1b000000, 536 I3509_MSUB = 0x1b008000, 537 538 /* Logical shifted register instructions (without a shift). */ 539 I3510_AND = 0x0a000000, 540 I3510_BIC = 0x0a200000, 541 I3510_ORR = 0x2a000000, 542 I3510_ORN = 0x2a200000, 543 I3510_EOR = 0x4a000000, 544 I3510_EON = 0x4a200000, 545 I3510_ANDS = 0x6a000000, 546 547 /* Logical shifted register instructions (with a shift). */ 548 I3502S_AND_LSR = I3510_AND | (1 << 22), 549 550 /* AdvSIMD copy */ 551 I3605_DUP = 0x0e000400, 552 I3605_INS = 0x4e001c00, 553 I3605_UMOV = 0x0e003c00, 554 555 /* AdvSIMD modified immediate */ 556 I3606_MOVI = 0x0f000400, 557 I3606_MVNI = 0x2f000400, 558 I3606_BIC = 0x2f001400, 559 I3606_ORR = 0x0f001400, 560 561 /* AdvSIMD scalar shift by immediate */ 562 I3609_SSHR = 0x5f000400, 563 I3609_SSRA = 0x5f001400, 564 I3609_SHL = 0x5f005400, 565 I3609_USHR = 0x7f000400, 566 I3609_USRA = 0x7f001400, 567 I3609_SLI = 0x7f005400, 568 569 /* AdvSIMD scalar three same */ 570 I3611_SQADD = 0x5e200c00, 571 I3611_SQSUB = 0x5e202c00, 572 I3611_CMGT = 0x5e203400, 573 I3611_CMGE = 0x5e203c00, 574 I3611_SSHL = 0x5e204400, 575 I3611_ADD = 0x5e208400, 576 I3611_CMTST = 0x5e208c00, 577 I3611_UQADD = 0x7e200c00, 578 I3611_UQSUB = 0x7e202c00, 579 I3611_CMHI = 0x7e203400, 580 I3611_CMHS = 0x7e203c00, 581 I3611_USHL = 0x7e204400, 582 I3611_SUB = 0x7e208400, 583 I3611_CMEQ = 0x7e208c00, 584 585 /* AdvSIMD scalar two-reg misc */ 586 I3612_CMGT0 = 0x5e208800, 587 I3612_CMEQ0 = 0x5e209800, 588 I3612_CMLT0 = 0x5e20a800, 589 I3612_ABS = 0x5e20b800, 590 I3612_CMGE0 = 0x7e208800, 591 I3612_CMLE0 = 0x7e209800, 592 I3612_NEG = 0x7e20b800, 593 594 /* AdvSIMD shift by immediate */ 595 I3614_SSHR = 0x0f000400, 596 I3614_SSRA = 0x0f001400, 597 I3614_SHL = 0x0f005400, 598 I3614_SLI = 0x2f005400, 599 I3614_USHR = 0x2f000400, 600 I3614_USRA = 0x2f001400, 601 602 /* AdvSIMD three same. */ 603 I3616_ADD = 0x0e208400, 604 I3616_AND = 0x0e201c00, 605 I3616_BIC = 0x0e601c00, 606 I3616_BIF = 0x2ee01c00, 607 I3616_BIT = 0x2ea01c00, 608 I3616_BSL = 0x2e601c00, 609 I3616_EOR = 0x2e201c00, 610 I3616_MUL = 0x0e209c00, 611 I3616_ORR = 0x0ea01c00, 612 I3616_ORN = 0x0ee01c00, 613 I3616_SUB = 0x2e208400, 614 I3616_CMGT = 0x0e203400, 615 I3616_CMGE = 0x0e203c00, 616 I3616_CMTST = 0x0e208c00, 617 I3616_CMHI = 0x2e203400, 618 I3616_CMHS = 0x2e203c00, 619 I3616_CMEQ = 0x2e208c00, 620 I3616_SMAX = 0x0e206400, 621 I3616_SMIN = 0x0e206c00, 622 I3616_SSHL = 0x0e204400, 623 I3616_SQADD = 0x0e200c00, 624 I3616_SQSUB = 0x0e202c00, 625 I3616_UMAX = 0x2e206400, 626 I3616_UMIN = 0x2e206c00, 627 I3616_UQADD = 0x2e200c00, 628 I3616_UQSUB = 0x2e202c00, 629 I3616_USHL = 0x2e204400, 630 631 /* AdvSIMD two-reg misc. */ 632 I3617_CMGT0 = 0x0e208800, 633 I3617_CMEQ0 = 0x0e209800, 634 I3617_CMLT0 = 0x0e20a800, 635 I3617_CMGE0 = 0x2e208800, 636 I3617_CMLE0 = 0x2e209800, 637 I3617_NOT = 0x2e205800, 638 I3617_ABS = 0x0e20b800, 639 I3617_NEG = 0x2e20b800, 640 641 /* System instructions. */ 642 NOP = 0xd503201f, 643 DMB_ISH = 0xd50338bf, 644 DMB_LD = 0x00000100, 645 DMB_ST = 0x00000200, 646 647 BTI_C = 0xd503245f, 648 BTI_J = 0xd503249f, 649 BTI_JC = 0xd50324df, 650} AArch64Insn; 651 652static inline uint32_t tcg_in32(TCGContext *s) 653{ 654 uint32_t v = *(uint32_t *)s->code_ptr; 655 return v; 656} 657 658/* Emit an opcode with "type-checking" of the format. */ 659#define tcg_out_insn(S, FMT, OP, ...) \ 660 glue(tcg_out_insn_,FMT)(S, glue(glue(glue(I,FMT),_),OP), ## __VA_ARGS__) 661 662static void tcg_out_insn_3303(TCGContext *s, AArch64Insn insn, bool q, 663 TCGReg rt, TCGReg rn, unsigned size) 664{ 665 tcg_out32(s, insn | (rt & 0x1f) | (rn << 5) | (size << 10) | (q << 30)); 666} 667 668static void tcg_out_insn_3305(TCGContext *s, AArch64Insn insn, 669 int imm19, TCGReg rt) 670{ 671 tcg_out32(s, insn | (imm19 & 0x7ffff) << 5 | rt); 672} 673 674static void tcg_out_insn_3306(TCGContext *s, AArch64Insn insn, TCGReg rs, 675 TCGReg rt, TCGReg rt2, TCGReg rn) 676{ 677 tcg_out32(s, insn | rs << 16 | rt2 << 10 | rn << 5 | rt); 678} 679 680static void tcg_out_insn_3201(TCGContext *s, AArch64Insn insn, TCGType ext, 681 TCGReg rt, int imm19) 682{ 683 tcg_out32(s, insn | ext << 31 | (imm19 & 0x7ffff) << 5 | rt); 684} 685 686static void tcg_out_insn_3202(TCGContext *s, AArch64Insn insn, 687 TCGCond c, int imm19) 688{ 689 tcg_out32(s, insn | tcg_cond_to_aarch64[c] | (imm19 & 0x7ffff) << 5); 690} 691 692static void tcg_out_insn_3205(TCGContext *s, AArch64Insn insn, 693 TCGReg rt, int imm6, int imm14) 694{ 695 insn |= (imm6 & 0x20) << (31 - 5); 696 insn |= (imm6 & 0x1f) << 19; 697 tcg_out32(s, insn | (imm14 & 0x3fff) << 5 | rt); 698} 699 700static void tcg_out_insn_3206(TCGContext *s, AArch64Insn insn, int imm26) 701{ 702 tcg_out32(s, insn | (imm26 & 0x03ffffff)); 703} 704 705static void tcg_out_insn_3207(TCGContext *s, AArch64Insn insn, TCGReg rn) 706{ 707 tcg_out32(s, insn | rn << 5); 708} 709 710static void tcg_out_insn_3314(TCGContext *s, AArch64Insn insn, 711 TCGReg r1, TCGReg r2, TCGReg rn, 712 tcg_target_long ofs, bool pre, bool w) 713{ 714 insn |= 1u << 31; /* ext */ 715 insn |= pre << 24; 716 insn |= w << 23; 717 718 tcg_debug_assert(ofs >= -0x200 && ofs < 0x200 && (ofs & 7) == 0); 719 insn |= (ofs & (0x7f << 3)) << (15 - 3); 720 721 tcg_out32(s, insn | r2 << 10 | rn << 5 | r1); 722} 723 724static void tcg_out_insn_3401(TCGContext *s, AArch64Insn insn, TCGType ext, 725 TCGReg rd, TCGReg rn, uint64_t aimm) 726{ 727 if (aimm > 0xfff) { 728 tcg_debug_assert((aimm & 0xfff) == 0); 729 aimm >>= 12; 730 tcg_debug_assert(aimm <= 0xfff); 731 aimm |= 1 << 12; /* apply LSL 12 */ 732 } 733 tcg_out32(s, insn | ext << 31 | aimm << 10 | rn << 5 | rd); 734} 735 736/* This function can be used for both 3.4.2 (Bitfield) and 3.4.4 737 (Logical immediate). Both insn groups have N, IMMR and IMMS fields 738 that feed the DecodeBitMasks pseudo function. */ 739static void tcg_out_insn_3402(TCGContext *s, AArch64Insn insn, TCGType ext, 740 TCGReg rd, TCGReg rn, int n, int immr, int imms) 741{ 742 tcg_out32(s, insn | ext << 31 | n << 22 | immr << 16 | imms << 10 743 | rn << 5 | rd); 744} 745 746#define tcg_out_insn_3404 tcg_out_insn_3402 747 748static void tcg_out_insn_3403(TCGContext *s, AArch64Insn insn, TCGType ext, 749 TCGReg rd, TCGReg rn, TCGReg rm, int imms) 750{ 751 tcg_out32(s, insn | ext << 31 | ext << 22 | rm << 16 | imms << 10 752 | rn << 5 | rd); 753} 754 755/* This function is used for the Move (wide immediate) instruction group. 756 Note that SHIFT is a full shift count, not the 2 bit HW field. */ 757static void tcg_out_insn_3405(TCGContext *s, AArch64Insn insn, TCGType ext, 758 TCGReg rd, uint16_t half, unsigned shift) 759{ 760 tcg_debug_assert((shift & ~0x30) == 0); 761 tcg_out32(s, insn | ext << 31 | shift << (21 - 4) | half << 5 | rd); 762} 763 764static void tcg_out_insn_3406(TCGContext *s, AArch64Insn insn, 765 TCGReg rd, int64_t disp) 766{ 767 tcg_out32(s, insn | (disp & 3) << 29 | (disp & 0x1ffffc) << (5 - 2) | rd); 768} 769 770static inline void tcg_out_insn_3501(TCGContext *s, AArch64Insn insn, 771 TCGType sf, TCGReg rd, TCGReg rn, 772 TCGReg rm, int opt, int imm3) 773{ 774 tcg_out32(s, insn | sf << 31 | rm << 16 | opt << 13 | 775 imm3 << 10 | rn << 5 | rd); 776} 777 778/* This function is for both 3.5.2 (Add/Subtract shifted register), for 779 the rare occasion when we actually want to supply a shift amount. */ 780static inline void tcg_out_insn_3502S(TCGContext *s, AArch64Insn insn, 781 TCGType ext, TCGReg rd, TCGReg rn, 782 TCGReg rm, int imm6) 783{ 784 tcg_out32(s, insn | ext << 31 | rm << 16 | imm6 << 10 | rn << 5 | rd); 785} 786 787/* This function is for 3.5.2 (Add/subtract shifted register), 788 and 3.5.10 (Logical shifted register), for the vast majorty of cases 789 when we don't want to apply a shift. Thus it can also be used for 790 3.5.3 (Add/subtract with carry) and 3.5.8 (Data processing 2 source). */ 791static void tcg_out_insn_3502(TCGContext *s, AArch64Insn insn, TCGType ext, 792 TCGReg rd, TCGReg rn, TCGReg rm) 793{ 794 tcg_out32(s, insn | ext << 31 | rm << 16 | rn << 5 | rd); 795} 796 797#define tcg_out_insn_3503 tcg_out_insn_3502 798#define tcg_out_insn_3508 tcg_out_insn_3502 799#define tcg_out_insn_3510 tcg_out_insn_3502 800 801static void tcg_out_insn_3506(TCGContext *s, AArch64Insn insn, TCGType ext, 802 TCGReg rd, TCGReg rn, TCGReg rm, TCGCond c) 803{ 804 tcg_out32(s, insn | ext << 31 | rm << 16 | rn << 5 | rd 805 | tcg_cond_to_aarch64[c] << 12); 806} 807 808static void tcg_out_insn_3507(TCGContext *s, AArch64Insn insn, TCGType ext, 809 TCGReg rd, TCGReg rn) 810{ 811 tcg_out32(s, insn | ext << 31 | rn << 5 | rd); 812} 813 814static void tcg_out_insn_3509(TCGContext *s, AArch64Insn insn, TCGType ext, 815 TCGReg rd, TCGReg rn, TCGReg rm, TCGReg ra) 816{ 817 tcg_out32(s, insn | ext << 31 | rm << 16 | ra << 10 | rn << 5 | rd); 818} 819 820static void tcg_out_insn_3605(TCGContext *s, AArch64Insn insn, bool q, 821 TCGReg rd, TCGReg rn, int dst_idx, int src_idx) 822{ 823 /* Note that bit 11 set means general register input. Therefore 824 we can handle both register sets with one function. */ 825 tcg_out32(s, insn | q << 30 | (dst_idx << 16) | (src_idx << 11) 826 | (rd & 0x1f) | (~rn & 0x20) << 6 | (rn & 0x1f) << 5); 827} 828 829static void tcg_out_insn_3606(TCGContext *s, AArch64Insn insn, bool q, 830 TCGReg rd, bool op, int cmode, uint8_t imm8) 831{ 832 tcg_out32(s, insn | q << 30 | op << 29 | cmode << 12 | (rd & 0x1f) 833 | (imm8 & 0xe0) << (16 - 5) | (imm8 & 0x1f) << 5); 834} 835 836static void tcg_out_insn_3609(TCGContext *s, AArch64Insn insn, 837 TCGReg rd, TCGReg rn, unsigned immhb) 838{ 839 tcg_out32(s, insn | immhb << 16 | (rn & 0x1f) << 5 | (rd & 0x1f)); 840} 841 842static void tcg_out_insn_3611(TCGContext *s, AArch64Insn insn, 843 unsigned size, TCGReg rd, TCGReg rn, TCGReg rm) 844{ 845 tcg_out32(s, insn | (size << 22) | (rm & 0x1f) << 16 846 | (rn & 0x1f) << 5 | (rd & 0x1f)); 847} 848 849static void tcg_out_insn_3612(TCGContext *s, AArch64Insn insn, 850 unsigned size, TCGReg rd, TCGReg rn) 851{ 852 tcg_out32(s, insn | (size << 22) | (rn & 0x1f) << 5 | (rd & 0x1f)); 853} 854 855static void tcg_out_insn_3614(TCGContext *s, AArch64Insn insn, bool q, 856 TCGReg rd, TCGReg rn, unsigned immhb) 857{ 858 tcg_out32(s, insn | q << 30 | immhb << 16 859 | (rn & 0x1f) << 5 | (rd & 0x1f)); 860} 861 862static void tcg_out_insn_3616(TCGContext *s, AArch64Insn insn, bool q, 863 unsigned size, TCGReg rd, TCGReg rn, TCGReg rm) 864{ 865 tcg_out32(s, insn | q << 30 | (size << 22) | (rm & 0x1f) << 16 866 | (rn & 0x1f) << 5 | (rd & 0x1f)); 867} 868 869static void tcg_out_insn_3617(TCGContext *s, AArch64Insn insn, bool q, 870 unsigned size, TCGReg rd, TCGReg rn) 871{ 872 tcg_out32(s, insn | q << 30 | (size << 22) 873 | (rn & 0x1f) << 5 | (rd & 0x1f)); 874} 875 876static void tcg_out_insn_3310(TCGContext *s, AArch64Insn insn, 877 TCGReg rd, TCGReg base, TCGType ext, 878 TCGReg regoff) 879{ 880 /* Note the AArch64Insn constants above are for C3.3.12. Adjust. */ 881 tcg_out32(s, insn | I3312_TO_I3310 | regoff << 16 | 882 0x4000 | ext << 13 | base << 5 | (rd & 0x1f)); 883} 884 885static void tcg_out_insn_3312(TCGContext *s, AArch64Insn insn, 886 TCGReg rd, TCGReg rn, intptr_t offset) 887{ 888 tcg_out32(s, insn | (offset & 0x1ff) << 12 | rn << 5 | (rd & 0x1f)); 889} 890 891static void tcg_out_insn_3313(TCGContext *s, AArch64Insn insn, 892 TCGReg rd, TCGReg rn, uintptr_t scaled_uimm) 893{ 894 /* Note the AArch64Insn constants above are for C3.3.12. Adjust. */ 895 tcg_out32(s, insn | I3312_TO_I3313 | scaled_uimm << 10 896 | rn << 5 | (rd & 0x1f)); 897} 898 899static void tcg_out_bti(TCGContext *s, AArch64Insn insn) 900{ 901 /* 902 * While BTI insns are nops on hosts without FEAT_BTI, 903 * there is no point in emitting them in that case either. 904 */ 905 if (cpuinfo & CPUINFO_BTI) { 906 tcg_out32(s, insn); 907 } 908} 909 910/* Register to register move using ORR (shifted register with no shift). */ 911static void tcg_out_movr(TCGContext *s, TCGType ext, TCGReg rd, TCGReg rm) 912{ 913 tcg_out_insn(s, 3510, ORR, ext, rd, TCG_REG_XZR, rm); 914} 915 916/* Register to register move using ADDI (move to/from SP). */ 917static void tcg_out_movr_sp(TCGContext *s, TCGType ext, TCGReg rd, TCGReg rn) 918{ 919 tcg_out_insn(s, 3401, ADDI, ext, rd, rn, 0); 920} 921 922/* This function is used for the Logical (immediate) instruction group. 923 The value of LIMM must satisfy IS_LIMM. See the comment above about 924 only supporting simplified logical immediates. */ 925static void tcg_out_logicali(TCGContext *s, AArch64Insn insn, TCGType ext, 926 TCGReg rd, TCGReg rn, uint64_t limm) 927{ 928 unsigned h, l, r, c; 929 930 tcg_debug_assert(is_limm(limm)); 931 932 h = clz64(limm); 933 l = ctz64(limm); 934 if (l == 0) { 935 r = 0; /* form 0....01....1 */ 936 c = ctz64(~limm) - 1; 937 if (h == 0) { 938 r = clz64(~limm); /* form 1..10..01..1 */ 939 c += r; 940 } 941 } else { 942 r = 64 - l; /* form 1....10....0 or 0..01..10..0 */ 943 c = r - h - 1; 944 } 945 if (ext == TCG_TYPE_I32) { 946 r &= 31; 947 c &= 31; 948 } 949 950 tcg_out_insn_3404(s, insn, ext, rd, rn, ext, r, c); 951} 952 953static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece, 954 TCGReg rd, int64_t v64) 955{ 956 bool q = type == TCG_TYPE_V128; 957 int cmode, imm8, i; 958 959 /* Test all bytes equal first. */ 960 if (vece == MO_8) { 961 imm8 = (uint8_t)v64; 962 tcg_out_insn(s, 3606, MOVI, q, rd, 0, 0xe, imm8); 963 return; 964 } 965 966 /* 967 * Test all bytes 0x00 or 0xff second. This can match cases that 968 * might otherwise take 2 or 3 insns for MO_16 or MO_32 below. 969 */ 970 for (i = imm8 = 0; i < 8; i++) { 971 uint8_t byte = v64 >> (i * 8); 972 if (byte == 0xff) { 973 imm8 |= 1 << i; 974 } else if (byte != 0) { 975 goto fail_bytes; 976 } 977 } 978 tcg_out_insn(s, 3606, MOVI, q, rd, 1, 0xe, imm8); 979 return; 980 fail_bytes: 981 982 /* 983 * Tests for various replications. For each element width, if we 984 * cannot find an expansion there's no point checking a larger 985 * width because we already know by replication it cannot match. 986 */ 987 if (vece == MO_16) { 988 uint16_t v16 = v64; 989 990 if (is_shimm16(v16, &cmode, &imm8)) { 991 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 992 return; 993 } 994 if (is_shimm16(~v16, &cmode, &imm8)) { 995 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 996 return; 997 } 998 999 /* 1000 * Otherwise, all remaining constants can be loaded in two insns: 1001 * rd = v16 & 0xff, rd |= v16 & 0xff00. 1002 */ 1003 tcg_out_insn(s, 3606, MOVI, q, rd, 0, 0x8, v16 & 0xff); 1004 tcg_out_insn(s, 3606, ORR, q, rd, 0, 0xa, v16 >> 8); 1005 return; 1006 } else if (vece == MO_32) { 1007 uint32_t v32 = v64; 1008 uint32_t n32 = ~v32; 1009 1010 if (is_shimm32(v32, &cmode, &imm8) || 1011 is_soimm32(v32, &cmode, &imm8) || 1012 is_fimm32(v32, &cmode, &imm8)) { 1013 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 1014 return; 1015 } 1016 if (is_shimm32(n32, &cmode, &imm8) || 1017 is_soimm32(n32, &cmode, &imm8)) { 1018 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 1019 return; 1020 } 1021 1022 /* 1023 * Restrict the set of constants to those we can load with 1024 * two instructions. Others we load from the pool. 1025 */ 1026 i = is_shimm32_pair(v32, &cmode, &imm8); 1027 if (i) { 1028 tcg_out_insn(s, 3606, MOVI, q, rd, 0, cmode, imm8); 1029 tcg_out_insn(s, 3606, ORR, q, rd, 0, i, extract32(v32, i * 4, 8)); 1030 return; 1031 } 1032 i = is_shimm32_pair(n32, &cmode, &imm8); 1033 if (i) { 1034 tcg_out_insn(s, 3606, MVNI, q, rd, 0, cmode, imm8); 1035 tcg_out_insn(s, 3606, BIC, q, rd, 0, i, extract32(n32, i * 4, 8)); 1036 return; 1037 } 1038 } else if (is_fimm64(v64, &cmode, &imm8)) { 1039 tcg_out_insn(s, 3606, MOVI, q, rd, 1, cmode, imm8); 1040 return; 1041 } 1042 1043 /* 1044 * As a last resort, load from the constant pool. Sadly there 1045 * is no LD1R (literal), so store the full 16-byte vector. 1046 */ 1047 if (type == TCG_TYPE_V128) { 1048 new_pool_l2(s, R_AARCH64_CONDBR19, s->code_ptr, 0, v64, v64); 1049 tcg_out_insn(s, 3305, LDR_v128, 0, rd); 1050 } else { 1051 new_pool_label(s, v64, R_AARCH64_CONDBR19, s->code_ptr, 0); 1052 tcg_out_insn(s, 3305, LDR_v64, 0, rd); 1053 } 1054} 1055 1056static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece, 1057 TCGReg rd, TCGReg rs) 1058{ 1059 int is_q = type - TCG_TYPE_V64; 1060 tcg_out_insn(s, 3605, DUP, is_q, rd, rs, 1 << vece, 0); 1061 return true; 1062} 1063 1064static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece, 1065 TCGReg r, TCGReg base, intptr_t offset) 1066{ 1067 TCGReg temp = TCG_REG_TMP0; 1068 1069 if (offset < -0xffffff || offset > 0xffffff) { 1070 tcg_out_movi(s, TCG_TYPE_PTR, temp, offset); 1071 tcg_out_insn(s, 3502, ADD, 1, temp, temp, base); 1072 base = temp; 1073 } else { 1074 AArch64Insn add_insn = I3401_ADDI; 1075 1076 if (offset < 0) { 1077 add_insn = I3401_SUBI; 1078 offset = -offset; 1079 } 1080 if (offset & 0xfff000) { 1081 tcg_out_insn_3401(s, add_insn, 1, temp, base, offset & 0xfff000); 1082 base = temp; 1083 } 1084 if (offset & 0xfff) { 1085 tcg_out_insn_3401(s, add_insn, 1, temp, base, offset & 0xfff); 1086 base = temp; 1087 } 1088 } 1089 tcg_out_insn(s, 3303, LD1R, type == TCG_TYPE_V128, r, base, vece); 1090 return true; 1091} 1092 1093static void tcg_out_movi(TCGContext *s, TCGType type, TCGReg rd, 1094 tcg_target_long value) 1095{ 1096 tcg_target_long svalue = value; 1097 tcg_target_long ivalue = ~value; 1098 tcg_target_long t0, t1, t2; 1099 int s0, s1; 1100 AArch64Insn opc; 1101 1102 switch (type) { 1103 case TCG_TYPE_I32: 1104 case TCG_TYPE_I64: 1105 tcg_debug_assert(rd < 32); 1106 break; 1107 default: 1108 g_assert_not_reached(); 1109 } 1110 1111 /* For 32-bit values, discard potential garbage in value. For 64-bit 1112 values within [2**31, 2**32-1], we can create smaller sequences by 1113 interpreting this as a negative 32-bit number, while ensuring that 1114 the high 32 bits are cleared by setting SF=0. */ 1115 if (type == TCG_TYPE_I32 || (value & ~0xffffffffull) == 0) { 1116 svalue = (int32_t)value; 1117 value = (uint32_t)value; 1118 ivalue = (uint32_t)ivalue; 1119 type = TCG_TYPE_I32; 1120 } 1121 1122 /* Speed things up by handling the common case of small positive 1123 and negative values specially. */ 1124 if ((value & ~0xffffull) == 0) { 1125 tcg_out_insn(s, 3405, MOVZ, type, rd, value, 0); 1126 return; 1127 } else if ((ivalue & ~0xffffull) == 0) { 1128 tcg_out_insn(s, 3405, MOVN, type, rd, ivalue, 0); 1129 return; 1130 } 1131 1132 /* Check for bitfield immediates. For the benefit of 32-bit quantities, 1133 use the sign-extended value. That lets us match rotated values such 1134 as 0xff0000ff with the same 64-bit logic matching 0xffffffffff0000ff. */ 1135 if (is_limm(svalue)) { 1136 tcg_out_logicali(s, I3404_ORRI, type, rd, TCG_REG_XZR, svalue); 1137 return; 1138 } 1139 1140 /* Look for host pointer values within 4G of the PC. This happens 1141 often when loading pointers to QEMU's own data structures. */ 1142 if (type == TCG_TYPE_I64) { 1143 intptr_t src_rx = (intptr_t)tcg_splitwx_to_rx(s->code_ptr); 1144 tcg_target_long disp = value - src_rx; 1145 if (disp == sextract64(disp, 0, 21)) { 1146 tcg_out_insn(s, 3406, ADR, rd, disp); 1147 return; 1148 } 1149 disp = (value >> 12) - (src_rx >> 12); 1150 if (disp == sextract64(disp, 0, 21)) { 1151 tcg_out_insn(s, 3406, ADRP, rd, disp); 1152 if (value & 0xfff) { 1153 tcg_out_insn(s, 3401, ADDI, type, rd, rd, value & 0xfff); 1154 } 1155 return; 1156 } 1157 } 1158 1159 /* Would it take fewer insns to begin with MOVN? */ 1160 if (ctpop64(value) >= 32) { 1161 t0 = ivalue; 1162 opc = I3405_MOVN; 1163 } else { 1164 t0 = value; 1165 opc = I3405_MOVZ; 1166 } 1167 s0 = ctz64(t0) & (63 & -16); 1168 t1 = t0 & ~(0xffffull << s0); 1169 s1 = ctz64(t1) & (63 & -16); 1170 t2 = t1 & ~(0xffffull << s1); 1171 if (t2 == 0) { 1172 tcg_out_insn_3405(s, opc, type, rd, t0 >> s0, s0); 1173 if (t1 != 0) { 1174 tcg_out_insn(s, 3405, MOVK, type, rd, value >> s1, s1); 1175 } 1176 return; 1177 } 1178 1179 /* For more than 2 insns, dump it into the constant pool. */ 1180 new_pool_label(s, value, R_AARCH64_CONDBR19, s->code_ptr, 0); 1181 tcg_out_insn(s, 3305, LDR, 0, rd); 1182} 1183 1184static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2) 1185{ 1186 return false; 1187} 1188 1189static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs, 1190 tcg_target_long imm) 1191{ 1192 /* This function is only used for passing structs by reference. */ 1193 g_assert_not_reached(); 1194} 1195 1196/* Define something more legible for general use. */ 1197#define tcg_out_ldst_r tcg_out_insn_3310 1198 1199static void tcg_out_ldst(TCGContext *s, AArch64Insn insn, TCGReg rd, 1200 TCGReg rn, intptr_t offset, int lgsize) 1201{ 1202 /* If the offset is naturally aligned and in range, then we can 1203 use the scaled uimm12 encoding */ 1204 if (offset >= 0 && !(offset & ((1 << lgsize) - 1))) { 1205 uintptr_t scaled_uimm = offset >> lgsize; 1206 if (scaled_uimm <= 0xfff) { 1207 tcg_out_insn_3313(s, insn, rd, rn, scaled_uimm); 1208 return; 1209 } 1210 } 1211 1212 /* Small signed offsets can use the unscaled encoding. */ 1213 if (offset >= -256 && offset < 256) { 1214 tcg_out_insn_3312(s, insn, rd, rn, offset); 1215 return; 1216 } 1217 1218 /* Worst-case scenario, move offset to temp register, use reg offset. */ 1219 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, offset); 1220 tcg_out_ldst_r(s, insn, rd, rn, TCG_TYPE_I64, TCG_REG_TMP0); 1221} 1222 1223static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg) 1224{ 1225 if (ret == arg) { 1226 return true; 1227 } 1228 switch (type) { 1229 case TCG_TYPE_I32: 1230 case TCG_TYPE_I64: 1231 if (ret < 32 && arg < 32) { 1232 tcg_out_movr(s, type, ret, arg); 1233 break; 1234 } else if (ret < 32) { 1235 tcg_out_insn(s, 3605, UMOV, type, ret, arg, 0, 0); 1236 break; 1237 } else if (arg < 32) { 1238 tcg_out_insn(s, 3605, INS, 0, ret, arg, 4 << type, 0); 1239 break; 1240 } 1241 /* FALLTHRU */ 1242 1243 case TCG_TYPE_V64: 1244 tcg_debug_assert(ret >= 32 && arg >= 32); 1245 tcg_out_insn(s, 3616, ORR, 0, 0, ret, arg, arg); 1246 break; 1247 case TCG_TYPE_V128: 1248 tcg_debug_assert(ret >= 32 && arg >= 32); 1249 tcg_out_insn(s, 3616, ORR, 1, 0, ret, arg, arg); 1250 break; 1251 1252 default: 1253 g_assert_not_reached(); 1254 } 1255 return true; 1256} 1257 1258static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, 1259 TCGReg base, intptr_t ofs) 1260{ 1261 AArch64Insn insn; 1262 int lgsz; 1263 1264 switch (type) { 1265 case TCG_TYPE_I32: 1266 insn = (ret < 32 ? I3312_LDRW : I3312_LDRVS); 1267 lgsz = 2; 1268 break; 1269 case TCG_TYPE_I64: 1270 insn = (ret < 32 ? I3312_LDRX : I3312_LDRVD); 1271 lgsz = 3; 1272 break; 1273 case TCG_TYPE_V64: 1274 insn = I3312_LDRVD; 1275 lgsz = 3; 1276 break; 1277 case TCG_TYPE_V128: 1278 insn = I3312_LDRVQ; 1279 lgsz = 4; 1280 break; 1281 default: 1282 g_assert_not_reached(); 1283 } 1284 tcg_out_ldst(s, insn, ret, base, ofs, lgsz); 1285} 1286 1287static void tcg_out_st(TCGContext *s, TCGType type, TCGReg src, 1288 TCGReg base, intptr_t ofs) 1289{ 1290 AArch64Insn insn; 1291 int lgsz; 1292 1293 switch (type) { 1294 case TCG_TYPE_I32: 1295 insn = (src < 32 ? I3312_STRW : I3312_STRVS); 1296 lgsz = 2; 1297 break; 1298 case TCG_TYPE_I64: 1299 insn = (src < 32 ? I3312_STRX : I3312_STRVD); 1300 lgsz = 3; 1301 break; 1302 case TCG_TYPE_V64: 1303 insn = I3312_STRVD; 1304 lgsz = 3; 1305 break; 1306 case TCG_TYPE_V128: 1307 insn = I3312_STRVQ; 1308 lgsz = 4; 1309 break; 1310 default: 1311 g_assert_not_reached(); 1312 } 1313 tcg_out_ldst(s, insn, src, base, ofs, lgsz); 1314} 1315 1316static inline bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val, 1317 TCGReg base, intptr_t ofs) 1318{ 1319 if (type <= TCG_TYPE_I64 && val == 0) { 1320 tcg_out_st(s, type, TCG_REG_XZR, base, ofs); 1321 return true; 1322 } 1323 return false; 1324} 1325 1326static inline void tcg_out_bfm(TCGContext *s, TCGType ext, TCGReg rd, 1327 TCGReg rn, unsigned int a, unsigned int b) 1328{ 1329 tcg_out_insn(s, 3402, BFM, ext, rd, rn, ext, a, b); 1330} 1331 1332static inline void tcg_out_ubfm(TCGContext *s, TCGType ext, TCGReg rd, 1333 TCGReg rn, unsigned int a, unsigned int b) 1334{ 1335 tcg_out_insn(s, 3402, UBFM, ext, rd, rn, ext, a, b); 1336} 1337 1338static inline void tcg_out_sbfm(TCGContext *s, TCGType ext, TCGReg rd, 1339 TCGReg rn, unsigned int a, unsigned int b) 1340{ 1341 tcg_out_insn(s, 3402, SBFM, ext, rd, rn, ext, a, b); 1342} 1343 1344static inline void tcg_out_extr(TCGContext *s, TCGType ext, TCGReg rd, 1345 TCGReg rn, TCGReg rm, unsigned int a) 1346{ 1347 tcg_out_insn(s, 3403, EXTR, ext, rd, rn, rm, a); 1348} 1349 1350static inline void tcg_out_shl(TCGContext *s, TCGType ext, 1351 TCGReg rd, TCGReg rn, unsigned int m) 1352{ 1353 int bits = ext ? 64 : 32; 1354 int max = bits - 1; 1355 tcg_out_ubfm(s, ext, rd, rn, (bits - m) & max, (max - m) & max); 1356} 1357 1358static inline void tcg_out_shr(TCGContext *s, TCGType ext, 1359 TCGReg rd, TCGReg rn, unsigned int m) 1360{ 1361 int max = ext ? 63 : 31; 1362 tcg_out_ubfm(s, ext, rd, rn, m & max, max); 1363} 1364 1365static inline void tcg_out_sar(TCGContext *s, TCGType ext, 1366 TCGReg rd, TCGReg rn, unsigned int m) 1367{ 1368 int max = ext ? 63 : 31; 1369 tcg_out_sbfm(s, ext, rd, rn, m & max, max); 1370} 1371 1372static inline void tcg_out_rotr(TCGContext *s, TCGType ext, 1373 TCGReg rd, TCGReg rn, unsigned int m) 1374{ 1375 int max = ext ? 63 : 31; 1376 tcg_out_extr(s, ext, rd, rn, rn, m & max); 1377} 1378 1379static inline void tcg_out_rotl(TCGContext *s, TCGType ext, 1380 TCGReg rd, TCGReg rn, unsigned int m) 1381{ 1382 int max = ext ? 63 : 31; 1383 tcg_out_extr(s, ext, rd, rn, rn, -m & max); 1384} 1385 1386static inline void tcg_out_dep(TCGContext *s, TCGType ext, TCGReg rd, 1387 TCGReg rn, unsigned lsb, unsigned width) 1388{ 1389 unsigned size = ext ? 64 : 32; 1390 unsigned a = (size - lsb) & (size - 1); 1391 unsigned b = width - 1; 1392 tcg_out_bfm(s, ext, rd, rn, a, b); 1393} 1394 1395static void tcg_out_cmp(TCGContext *s, TCGType ext, TCGCond cond, TCGReg a, 1396 tcg_target_long b, bool const_b) 1397{ 1398 if (is_tst_cond(cond)) { 1399 if (!const_b) { 1400 tcg_out_insn(s, 3510, ANDS, ext, TCG_REG_XZR, a, b); 1401 } else { 1402 tcg_out_logicali(s, I3404_ANDSI, ext, TCG_REG_XZR, a, b); 1403 } 1404 } else { 1405 if (!const_b) { 1406 tcg_out_insn(s, 3502, SUBS, ext, TCG_REG_XZR, a, b); 1407 } else if (b >= 0) { 1408 tcg_debug_assert(is_aimm(b)); 1409 tcg_out_insn(s, 3401, SUBSI, ext, TCG_REG_XZR, a, b); 1410 } else { 1411 tcg_debug_assert(is_aimm(-b)); 1412 tcg_out_insn(s, 3401, ADDSI, ext, TCG_REG_XZR, a, -b); 1413 } 1414 } 1415} 1416 1417static void tcg_out_goto(TCGContext *s, const tcg_insn_unit *target) 1418{ 1419 ptrdiff_t offset = tcg_pcrel_diff(s, target) >> 2; 1420 tcg_debug_assert(offset == sextract64(offset, 0, 26)); 1421 tcg_out_insn(s, 3206, B, offset); 1422} 1423 1424static void tcg_out_call_int(TCGContext *s, const tcg_insn_unit *target) 1425{ 1426 ptrdiff_t offset = tcg_pcrel_diff(s, target) >> 2; 1427 if (offset == sextract64(offset, 0, 26)) { 1428 tcg_out_insn(s, 3206, BL, offset); 1429 } else { 1430 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, (intptr_t)target); 1431 tcg_out_insn(s, 3207, BLR, TCG_REG_TMP0); 1432 } 1433} 1434 1435static void tcg_out_call(TCGContext *s, const tcg_insn_unit *target, 1436 const TCGHelperInfo *info) 1437{ 1438 tcg_out_call_int(s, target); 1439} 1440 1441static inline void tcg_out_goto_label(TCGContext *s, TCGLabel *l) 1442{ 1443 if (!l->has_value) { 1444 tcg_out_reloc(s, s->code_ptr, R_AARCH64_JUMP26, l, 0); 1445 tcg_out_insn(s, 3206, B, 0); 1446 } else { 1447 tcg_out_goto(s, l->u.value_ptr); 1448 } 1449} 1450 1451static void tcg_out_brcond(TCGContext *s, TCGType ext, TCGCond c, TCGArg a, 1452 TCGArg b, bool b_const, TCGLabel *l) 1453{ 1454 int tbit = -1; 1455 bool need_cmp = true; 1456 1457 switch (c) { 1458 case TCG_COND_EQ: 1459 case TCG_COND_NE: 1460 /* cmp xN,0; b.ne L -> cbnz xN,L */ 1461 if (b_const && b == 0) { 1462 need_cmp = false; 1463 } 1464 break; 1465 case TCG_COND_LT: 1466 case TCG_COND_GE: 1467 /* cmp xN,0; b.mi L -> tbnz xN,63,L */ 1468 if (b_const && b == 0) { 1469 c = (c == TCG_COND_LT ? TCG_COND_TSTNE : TCG_COND_TSTEQ); 1470 tbit = ext ? 63 : 31; 1471 need_cmp = false; 1472 } 1473 break; 1474 case TCG_COND_TSTEQ: 1475 case TCG_COND_TSTNE: 1476 /* tst xN,0xffffffff; b.ne L -> cbnz wN,L */ 1477 if (b_const && b == UINT32_MAX) { 1478 c = tcg_tst_eqne_cond(c); 1479 ext = TCG_TYPE_I32; 1480 need_cmp = false; 1481 break; 1482 } 1483 /* tst xN,1<<B; b.ne L -> tbnz xN,B,L */ 1484 if (b_const && is_power_of_2(b)) { 1485 tbit = ctz64(b); 1486 need_cmp = false; 1487 } 1488 break; 1489 default: 1490 break; 1491 } 1492 1493 if (need_cmp) { 1494 tcg_out_cmp(s, ext, c, a, b, b_const); 1495 tcg_out_reloc(s, s->code_ptr, R_AARCH64_CONDBR19, l, 0); 1496 tcg_out_insn(s, 3202, B_C, c, 0); 1497 return; 1498 } 1499 1500 if (tbit >= 0) { 1501 tcg_out_reloc(s, s->code_ptr, R_AARCH64_TSTBR14, l, 0); 1502 switch (c) { 1503 case TCG_COND_TSTEQ: 1504 tcg_out_insn(s, 3205, TBZ, a, tbit, 0); 1505 break; 1506 case TCG_COND_TSTNE: 1507 tcg_out_insn(s, 3205, TBNZ, a, tbit, 0); 1508 break; 1509 default: 1510 g_assert_not_reached(); 1511 } 1512 } else { 1513 tcg_out_reloc(s, s->code_ptr, R_AARCH64_CONDBR19, l, 0); 1514 switch (c) { 1515 case TCG_COND_EQ: 1516 tcg_out_insn(s, 3201, CBZ, ext, a, 0); 1517 break; 1518 case TCG_COND_NE: 1519 tcg_out_insn(s, 3201, CBNZ, ext, a, 0); 1520 break; 1521 default: 1522 g_assert_not_reached(); 1523 } 1524 } 1525} 1526 1527static inline void tcg_out_rev(TCGContext *s, int ext, MemOp s_bits, 1528 TCGReg rd, TCGReg rn) 1529{ 1530 /* REV, REV16, REV32 */ 1531 tcg_out_insn_3507(s, I3507_REV | (s_bits << 10), ext, rd, rn); 1532} 1533 1534static inline void tcg_out_sxt(TCGContext *s, TCGType ext, MemOp s_bits, 1535 TCGReg rd, TCGReg rn) 1536{ 1537 /* Using ALIASes SXTB, SXTH, SXTW, of SBFM Xd, Xn, #0, #7|15|31 */ 1538 int bits = (8 << s_bits) - 1; 1539 tcg_out_sbfm(s, ext, rd, rn, 0, bits); 1540} 1541 1542static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg rd, TCGReg rn) 1543{ 1544 tcg_out_sxt(s, type, MO_8, rd, rn); 1545} 1546 1547static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg rd, TCGReg rn) 1548{ 1549 tcg_out_sxt(s, type, MO_16, rd, rn); 1550} 1551 1552static void tcg_out_ext32s(TCGContext *s, TCGReg rd, TCGReg rn) 1553{ 1554 tcg_out_sxt(s, TCG_TYPE_I64, MO_32, rd, rn); 1555} 1556 1557static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg rd, TCGReg rn) 1558{ 1559 tcg_out_ext32s(s, rd, rn); 1560} 1561 1562static inline void tcg_out_uxt(TCGContext *s, MemOp s_bits, 1563 TCGReg rd, TCGReg rn) 1564{ 1565 /* Using ALIASes UXTB, UXTH of UBFM Wd, Wn, #0, #7|15 */ 1566 int bits = (8 << s_bits) - 1; 1567 tcg_out_ubfm(s, 0, rd, rn, 0, bits); 1568} 1569 1570static void tcg_out_ext8u(TCGContext *s, TCGReg rd, TCGReg rn) 1571{ 1572 tcg_out_uxt(s, MO_8, rd, rn); 1573} 1574 1575static void tcg_out_ext16u(TCGContext *s, TCGReg rd, TCGReg rn) 1576{ 1577 tcg_out_uxt(s, MO_16, rd, rn); 1578} 1579 1580static void tcg_out_ext32u(TCGContext *s, TCGReg rd, TCGReg rn) 1581{ 1582 tcg_out_movr(s, TCG_TYPE_I32, rd, rn); 1583} 1584 1585static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg rd, TCGReg rn) 1586{ 1587 tcg_out_ext32u(s, rd, rn); 1588} 1589 1590static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg rd, TCGReg rn) 1591{ 1592 tcg_out_mov(s, TCG_TYPE_I32, rd, rn); 1593} 1594 1595static void tcg_out_addsub2(TCGContext *s, TCGType ext, TCGReg rl, 1596 TCGReg rh, TCGReg al, TCGReg ah, 1597 tcg_target_long bl, tcg_target_long bh, 1598 bool const_bl, bool const_bh, bool sub) 1599{ 1600 TCGReg orig_rl = rl; 1601 AArch64Insn insn; 1602 1603 if (rl == ah || (!const_bh && rl == bh)) { 1604 rl = TCG_REG_TMP0; 1605 } 1606 1607 if (const_bl) { 1608 if (bl < 0) { 1609 bl = -bl; 1610 insn = sub ? I3401_ADDSI : I3401_SUBSI; 1611 } else { 1612 insn = sub ? I3401_SUBSI : I3401_ADDSI; 1613 } 1614 1615 if (unlikely(al == TCG_REG_XZR)) { 1616 /* ??? We want to allow al to be zero for the benefit of 1617 negation via subtraction. However, that leaves open the 1618 possibility of adding 0+const in the low part, and the 1619 immediate add instructions encode XSP not XZR. Don't try 1620 anything more elaborate here than loading another zero. */ 1621 al = TCG_REG_TMP0; 1622 tcg_out_movi(s, ext, al, 0); 1623 } 1624 tcg_out_insn_3401(s, insn, ext, rl, al, bl); 1625 } else { 1626 tcg_out_insn_3502(s, sub ? I3502_SUBS : I3502_ADDS, ext, rl, al, bl); 1627 } 1628 1629 insn = I3503_ADC; 1630 if (const_bh) { 1631 /* Note that the only two constants we support are 0 and -1, and 1632 that SBC = rn + ~rm + c, so adc -1 is sbc 0, and vice-versa. */ 1633 if ((bh != 0) ^ sub) { 1634 insn = I3503_SBC; 1635 } 1636 bh = TCG_REG_XZR; 1637 } else if (sub) { 1638 insn = I3503_SBC; 1639 } 1640 tcg_out_insn_3503(s, insn, ext, rh, ah, bh); 1641 1642 tcg_out_mov(s, ext, orig_rl, rl); 1643} 1644 1645static inline void tcg_out_mb(TCGContext *s, TCGArg a0) 1646{ 1647 static const uint32_t sync[] = { 1648 [0 ... TCG_MO_ALL] = DMB_ISH | DMB_LD | DMB_ST, 1649 [TCG_MO_ST_ST] = DMB_ISH | DMB_ST, 1650 [TCG_MO_LD_LD] = DMB_ISH | DMB_LD, 1651 [TCG_MO_LD_ST] = DMB_ISH | DMB_LD, 1652 [TCG_MO_LD_ST | TCG_MO_LD_LD] = DMB_ISH | DMB_LD, 1653 }; 1654 tcg_out32(s, sync[a0 & TCG_MO_ALL]); 1655} 1656 1657static void tcg_out_cltz(TCGContext *s, TCGType ext, TCGReg d, 1658 TCGReg a0, TCGArg b, bool const_b, bool is_ctz) 1659{ 1660 TCGReg a1 = a0; 1661 if (is_ctz) { 1662 a1 = TCG_REG_TMP0; 1663 tcg_out_insn(s, 3507, RBIT, ext, a1, a0); 1664 } 1665 if (const_b && b == (ext ? 64 : 32)) { 1666 tcg_out_insn(s, 3507, CLZ, ext, d, a1); 1667 } else { 1668 AArch64Insn sel = I3506_CSEL; 1669 1670 tcg_out_cmp(s, ext, TCG_COND_NE, a0, 0, 1); 1671 tcg_out_insn(s, 3507, CLZ, ext, TCG_REG_TMP0, a1); 1672 1673 if (const_b) { 1674 if (b == -1) { 1675 b = TCG_REG_XZR; 1676 sel = I3506_CSINV; 1677 } else if (b == 0) { 1678 b = TCG_REG_XZR; 1679 } else { 1680 tcg_out_movi(s, ext, d, b); 1681 b = d; 1682 } 1683 } 1684 tcg_out_insn_3506(s, sel, ext, d, TCG_REG_TMP0, b, TCG_COND_NE); 1685 } 1686} 1687 1688typedef struct { 1689 TCGReg base; 1690 TCGReg index; 1691 TCGType index_ext; 1692 TCGAtomAlign aa; 1693} HostAddress; 1694 1695bool tcg_target_has_memory_bswap(MemOp memop) 1696{ 1697 return false; 1698} 1699 1700static const TCGLdstHelperParam ldst_helper_param = { 1701 .ntmp = 1, .tmp = { TCG_REG_TMP0 } 1702}; 1703 1704static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) 1705{ 1706 MemOp opc = get_memop(lb->oi); 1707 1708 if (!reloc_pc19(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1709 return false; 1710 } 1711 1712 tcg_out_ld_helper_args(s, lb, &ldst_helper_param); 1713 tcg_out_call_int(s, qemu_ld_helpers[opc & MO_SIZE]); 1714 tcg_out_ld_helper_ret(s, lb, false, &ldst_helper_param); 1715 tcg_out_goto(s, lb->raddr); 1716 return true; 1717} 1718 1719static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb) 1720{ 1721 MemOp opc = get_memop(lb->oi); 1722 1723 if (!reloc_pc19(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) { 1724 return false; 1725 } 1726 1727 tcg_out_st_helper_args(s, lb, &ldst_helper_param); 1728 tcg_out_call_int(s, qemu_st_helpers[opc & MO_SIZE]); 1729 tcg_out_goto(s, lb->raddr); 1730 return true; 1731} 1732 1733/* We expect to use a 7-bit scaled negative offset from ENV. */ 1734#define MIN_TLB_MASK_TABLE_OFS -512 1735 1736/* 1737 * For system-mode, perform the TLB load and compare. 1738 * For user-mode, perform any required alignment tests. 1739 * In both cases, return a TCGLabelQemuLdst structure if the slow path 1740 * is required and fill in @h with the host address for the fast path. 1741 */ 1742static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h, 1743 TCGReg addr_reg, MemOpIdx oi, 1744 bool is_ld) 1745{ 1746 TCGType addr_type = s->addr_type; 1747 TCGLabelQemuLdst *ldst = NULL; 1748 MemOp opc = get_memop(oi); 1749 MemOp s_bits = opc & MO_SIZE; 1750 unsigned a_mask; 1751 1752 h->aa = atom_and_align_for_opc(s, opc, 1753 have_lse2 ? MO_ATOM_WITHIN16 1754 : MO_ATOM_IFALIGN, 1755 s_bits == MO_128); 1756 a_mask = (1 << h->aa.align) - 1; 1757 1758 if (tcg_use_softmmu) { 1759 unsigned s_mask = (1u << s_bits) - 1; 1760 unsigned mem_index = get_mmuidx(oi); 1761 TCGReg addr_adj; 1762 TCGType mask_type; 1763 uint64_t compare_mask; 1764 1765 ldst = new_ldst_label(s); 1766 ldst->is_ld = is_ld; 1767 ldst->oi = oi; 1768 ldst->addr_reg = addr_reg; 1769 1770 mask_type = (s->page_bits + s->tlb_dyn_max_bits > 32 1771 ? TCG_TYPE_I64 : TCG_TYPE_I32); 1772 1773 /* Load cpu->neg.tlb.f[mmu_idx].{mask,table} into {tmp0,tmp1}. */ 1774 QEMU_BUILD_BUG_ON(offsetof(CPUTLBDescFast, mask) != 0); 1775 QEMU_BUILD_BUG_ON(offsetof(CPUTLBDescFast, table) != 8); 1776 tcg_out_insn(s, 3314, LDP, TCG_REG_TMP0, TCG_REG_TMP1, TCG_AREG0, 1777 tlb_mask_table_ofs(s, mem_index), 1, 0); 1778 1779 /* Extract the TLB index from the address into X0. */ 1780 tcg_out_insn(s, 3502S, AND_LSR, mask_type == TCG_TYPE_I64, 1781 TCG_REG_TMP0, TCG_REG_TMP0, addr_reg, 1782 s->page_bits - CPU_TLB_ENTRY_BITS); 1783 1784 /* Add the tlb_table pointer, forming the CPUTLBEntry address. */ 1785 tcg_out_insn(s, 3502, ADD, 1, TCG_REG_TMP1, TCG_REG_TMP1, TCG_REG_TMP0); 1786 1787 /* Load the tlb comparator into TMP0, and the fast path addend. */ 1788 QEMU_BUILD_BUG_ON(HOST_BIG_ENDIAN); 1789 tcg_out_ld(s, addr_type, TCG_REG_TMP0, TCG_REG_TMP1, 1790 is_ld ? offsetof(CPUTLBEntry, addr_read) 1791 : offsetof(CPUTLBEntry, addr_write)); 1792 tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_TMP1, TCG_REG_TMP1, 1793 offsetof(CPUTLBEntry, addend)); 1794 1795 /* 1796 * For aligned accesses, we check the first byte and include 1797 * the alignment bits within the address. For unaligned access, 1798 * we check that we don't cross pages using the address of the 1799 * last byte of the access. 1800 */ 1801 if (a_mask >= s_mask) { 1802 addr_adj = addr_reg; 1803 } else { 1804 addr_adj = TCG_REG_TMP2; 1805 tcg_out_insn(s, 3401, ADDI, addr_type, 1806 addr_adj, addr_reg, s_mask - a_mask); 1807 } 1808 compare_mask = (uint64_t)s->page_mask | a_mask; 1809 1810 /* Store the page mask part of the address into TMP2. */ 1811 tcg_out_logicali(s, I3404_ANDI, addr_type, TCG_REG_TMP2, 1812 addr_adj, compare_mask); 1813 1814 /* Perform the address comparison. */ 1815 tcg_out_cmp(s, addr_type, TCG_COND_NE, TCG_REG_TMP0, TCG_REG_TMP2, 0); 1816 1817 /* If not equal, we jump to the slow path. */ 1818 ldst->label_ptr[0] = s->code_ptr; 1819 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1820 1821 h->base = TCG_REG_TMP1; 1822 h->index = addr_reg; 1823 h->index_ext = addr_type; 1824 } else { 1825 if (a_mask) { 1826 ldst = new_ldst_label(s); 1827 1828 ldst->is_ld = is_ld; 1829 ldst->oi = oi; 1830 ldst->addr_reg = addr_reg; 1831 1832 /* tst addr, #mask */ 1833 tcg_out_logicali(s, I3404_ANDSI, 0, TCG_REG_XZR, addr_reg, a_mask); 1834 1835 /* b.ne slow_path */ 1836 ldst->label_ptr[0] = s->code_ptr; 1837 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1838 } 1839 1840 if (guest_base || addr_type == TCG_TYPE_I32) { 1841 h->base = TCG_REG_GUEST_BASE; 1842 h->index = addr_reg; 1843 h->index_ext = addr_type; 1844 } else { 1845 h->base = addr_reg; 1846 h->index = TCG_REG_XZR; 1847 h->index_ext = TCG_TYPE_I64; 1848 } 1849 } 1850 1851 return ldst; 1852} 1853 1854static void tcg_out_qemu_ld_direct(TCGContext *s, MemOp memop, TCGType ext, 1855 TCGReg data_r, HostAddress h) 1856{ 1857 switch (memop & MO_SSIZE) { 1858 case MO_UB: 1859 tcg_out_ldst_r(s, I3312_LDRB, data_r, h.base, h.index_ext, h.index); 1860 break; 1861 case MO_SB: 1862 tcg_out_ldst_r(s, ext ? I3312_LDRSBX : I3312_LDRSBW, 1863 data_r, h.base, h.index_ext, h.index); 1864 break; 1865 case MO_UW: 1866 tcg_out_ldst_r(s, I3312_LDRH, data_r, h.base, h.index_ext, h.index); 1867 break; 1868 case MO_SW: 1869 tcg_out_ldst_r(s, (ext ? I3312_LDRSHX : I3312_LDRSHW), 1870 data_r, h.base, h.index_ext, h.index); 1871 break; 1872 case MO_UL: 1873 tcg_out_ldst_r(s, I3312_LDRW, data_r, h.base, h.index_ext, h.index); 1874 break; 1875 case MO_SL: 1876 tcg_out_ldst_r(s, I3312_LDRSWX, data_r, h.base, h.index_ext, h.index); 1877 break; 1878 case MO_UQ: 1879 tcg_out_ldst_r(s, I3312_LDRX, data_r, h.base, h.index_ext, h.index); 1880 break; 1881 default: 1882 g_assert_not_reached(); 1883 } 1884} 1885 1886static void tcg_out_qemu_st_direct(TCGContext *s, MemOp memop, 1887 TCGReg data_r, HostAddress h) 1888{ 1889 switch (memop & MO_SIZE) { 1890 case MO_8: 1891 tcg_out_ldst_r(s, I3312_STRB, data_r, h.base, h.index_ext, h.index); 1892 break; 1893 case MO_16: 1894 tcg_out_ldst_r(s, I3312_STRH, data_r, h.base, h.index_ext, h.index); 1895 break; 1896 case MO_32: 1897 tcg_out_ldst_r(s, I3312_STRW, data_r, h.base, h.index_ext, h.index); 1898 break; 1899 case MO_64: 1900 tcg_out_ldst_r(s, I3312_STRX, data_r, h.base, h.index_ext, h.index); 1901 break; 1902 default: 1903 g_assert_not_reached(); 1904 } 1905} 1906 1907static void tcg_out_qemu_ld(TCGContext *s, TCGReg data_reg, TCGReg addr_reg, 1908 MemOpIdx oi, TCGType data_type) 1909{ 1910 TCGLabelQemuLdst *ldst; 1911 HostAddress h; 1912 1913 ldst = prepare_host_addr(s, &h, addr_reg, oi, true); 1914 tcg_out_qemu_ld_direct(s, get_memop(oi), data_type, data_reg, h); 1915 1916 if (ldst) { 1917 ldst->type = data_type; 1918 ldst->datalo_reg = data_reg; 1919 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1920 } 1921} 1922 1923static void tcg_out_qemu_st(TCGContext *s, TCGReg data_reg, TCGReg addr_reg, 1924 MemOpIdx oi, TCGType data_type) 1925{ 1926 TCGLabelQemuLdst *ldst; 1927 HostAddress h; 1928 1929 ldst = prepare_host_addr(s, &h, addr_reg, oi, false); 1930 tcg_out_qemu_st_direct(s, get_memop(oi), data_reg, h); 1931 1932 if (ldst) { 1933 ldst->type = data_type; 1934 ldst->datalo_reg = data_reg; 1935 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 1936 } 1937} 1938 1939static void tcg_out_qemu_ldst_i128(TCGContext *s, TCGReg datalo, TCGReg datahi, 1940 TCGReg addr_reg, MemOpIdx oi, bool is_ld) 1941{ 1942 TCGLabelQemuLdst *ldst; 1943 HostAddress h; 1944 TCGReg base; 1945 bool use_pair; 1946 1947 ldst = prepare_host_addr(s, &h, addr_reg, oi, is_ld); 1948 1949 /* Compose the final address, as LDP/STP have no indexing. */ 1950 if (h.index == TCG_REG_XZR) { 1951 base = h.base; 1952 } else { 1953 base = TCG_REG_TMP2; 1954 if (h.index_ext == TCG_TYPE_I32) { 1955 /* add base, base, index, uxtw */ 1956 tcg_out_insn(s, 3501, ADD, TCG_TYPE_I64, base, 1957 h.base, h.index, MO_32, 0); 1958 } else { 1959 /* add base, base, index */ 1960 tcg_out_insn(s, 3502, ADD, 1, base, h.base, h.index); 1961 } 1962 } 1963 1964 use_pair = h.aa.atom < MO_128 || have_lse2; 1965 1966 if (!use_pair) { 1967 tcg_insn_unit *branch = NULL; 1968 TCGReg ll, lh, sl, sh; 1969 1970 /* 1971 * If we have already checked for 16-byte alignment, that's all 1972 * we need. Otherwise we have determined that misaligned atomicity 1973 * may be handled with two 8-byte loads. 1974 */ 1975 if (h.aa.align < MO_128) { 1976 /* 1977 * TODO: align should be MO_64, so we only need test bit 3, 1978 * which means we could use TBNZ instead of ANDS+B_C. 1979 */ 1980 tcg_out_logicali(s, I3404_ANDSI, 0, TCG_REG_XZR, addr_reg, 15); 1981 branch = s->code_ptr; 1982 tcg_out_insn(s, 3202, B_C, TCG_COND_NE, 0); 1983 use_pair = true; 1984 } 1985 1986 if (is_ld) { 1987 /* 1988 * 16-byte atomicity without LSE2 requires LDXP+STXP loop: 1989 * ldxp lo, hi, [base] 1990 * stxp t0, lo, hi, [base] 1991 * cbnz t0, .-8 1992 * Require no overlap between data{lo,hi} and base. 1993 */ 1994 if (datalo == base || datahi == base) { 1995 tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_TMP2, base); 1996 base = TCG_REG_TMP2; 1997 } 1998 ll = sl = datalo; 1999 lh = sh = datahi; 2000 } else { 2001 /* 2002 * 16-byte atomicity without LSE2 requires LDXP+STXP loop: 2003 * 1: ldxp t0, t1, [base] 2004 * stxp t0, lo, hi, [base] 2005 * cbnz t0, 1b 2006 */ 2007 tcg_debug_assert(base != TCG_REG_TMP0 && base != TCG_REG_TMP1); 2008 ll = TCG_REG_TMP0; 2009 lh = TCG_REG_TMP1; 2010 sl = datalo; 2011 sh = datahi; 2012 } 2013 2014 tcg_out_insn(s, 3306, LDXP, TCG_REG_XZR, ll, lh, base); 2015 tcg_out_insn(s, 3306, STXP, TCG_REG_TMP0, sl, sh, base); 2016 tcg_out_insn(s, 3201, CBNZ, 0, TCG_REG_TMP0, -2); 2017 2018 if (use_pair) { 2019 /* "b .+8", branching across the one insn of use_pair. */ 2020 tcg_out_insn(s, 3206, B, 2); 2021 reloc_pc19(branch, tcg_splitwx_to_rx(s->code_ptr)); 2022 } 2023 } 2024 2025 if (use_pair) { 2026 if (is_ld) { 2027 tcg_out_insn(s, 3314, LDP, datalo, datahi, base, 0, 1, 0); 2028 } else { 2029 tcg_out_insn(s, 3314, STP, datalo, datahi, base, 0, 1, 0); 2030 } 2031 } 2032 2033 if (ldst) { 2034 ldst->type = TCG_TYPE_I128; 2035 ldst->datalo_reg = datalo; 2036 ldst->datahi_reg = datahi; 2037 ldst->raddr = tcg_splitwx_to_rx(s->code_ptr); 2038 } 2039} 2040 2041static const tcg_insn_unit *tb_ret_addr; 2042 2043static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0) 2044{ 2045 const tcg_insn_unit *target; 2046 ptrdiff_t offset; 2047 2048 /* Reuse the zeroing that exists for goto_ptr. */ 2049 if (a0 == 0) { 2050 target = tcg_code_gen_epilogue; 2051 } else { 2052 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_X0, a0); 2053 target = tb_ret_addr; 2054 } 2055 2056 offset = tcg_pcrel_diff(s, target) >> 2; 2057 if (offset == sextract64(offset, 0, 26)) { 2058 tcg_out_insn(s, 3206, B, offset); 2059 } else { 2060 /* 2061 * Only x16/x17 generate BTI type Jump (2), 2062 * other registers generate BTI type Jump|Call (3). 2063 */ 2064 QEMU_BUILD_BUG_ON(TCG_REG_TMP0 != TCG_REG_X16); 2065 tcg_out_movi(s, TCG_TYPE_I64, TCG_REG_TMP0, (intptr_t)target); 2066 tcg_out_insn(s, 3207, BR, TCG_REG_TMP0); 2067 } 2068} 2069 2070static void tcg_out_goto_tb(TCGContext *s, int which) 2071{ 2072 /* 2073 * Direct branch, or indirect address load, will be patched 2074 * by tb_target_set_jmp_target. Assert indirect load offset 2075 * in range early, regardless of direct branch distance. 2076 */ 2077 intptr_t i_off = tcg_pcrel_diff(s, (void *)get_jmp_target_addr(s, which)); 2078 tcg_debug_assert(i_off == sextract64(i_off, 0, 21)); 2079 2080 set_jmp_insn_offset(s, which); 2081 tcg_out32(s, I3206_B); 2082 tcg_out_insn(s, 3207, BR, TCG_REG_TMP0); 2083 set_jmp_reset_offset(s, which); 2084 tcg_out_bti(s, BTI_J); 2085} 2086 2087void tb_target_set_jmp_target(const TranslationBlock *tb, int n, 2088 uintptr_t jmp_rx, uintptr_t jmp_rw) 2089{ 2090 uintptr_t d_addr = tb->jmp_target_addr[n]; 2091 ptrdiff_t d_offset = d_addr - jmp_rx; 2092 tcg_insn_unit insn; 2093 2094 /* Either directly branch, or indirect branch load. */ 2095 if (d_offset == sextract64(d_offset, 0, 28)) { 2096 insn = deposit32(I3206_B, 0, 26, d_offset >> 2); 2097 } else { 2098 uintptr_t i_addr = (uintptr_t)&tb->jmp_target_addr[n]; 2099 ptrdiff_t i_offset = i_addr - jmp_rx; 2100 2101 /* Note that we asserted this in range in tcg_out_goto_tb. */ 2102 insn = deposit32(I3305_LDR | TCG_REG_TMP0, 5, 19, i_offset >> 2); 2103 } 2104 qatomic_set((uint32_t *)jmp_rw, insn); 2105 flush_idcache_range(jmp_rx, jmp_rw, 4); 2106} 2107 2108 2109static void tgen_add(TCGContext *s, TCGType type, 2110 TCGReg a0, TCGReg a1, TCGReg a2) 2111{ 2112 tcg_out_insn(s, 3502, ADD, type, a0, a1, a2); 2113} 2114 2115static void tgen_addi(TCGContext *s, TCGType type, 2116 TCGReg a0, TCGReg a1, tcg_target_long a2) 2117{ 2118 if (a2 >= 0) { 2119 tcg_out_insn(s, 3401, ADDI, type, a0, a1, a2); 2120 } else { 2121 tcg_out_insn(s, 3401, SUBI, type, a0, a1, -a2); 2122 } 2123} 2124 2125static const TCGOutOpBinary outop_add = { 2126 .base.static_constraint = C_O1_I2(r, r, rA), 2127 .out_rrr = tgen_add, 2128 .out_rri = tgen_addi, 2129}; 2130 2131static void tgen_and(TCGContext *s, TCGType type, 2132 TCGReg a0, TCGReg a1, TCGReg a2) 2133{ 2134 tcg_out_insn(s, 3510, AND, type, a0, a1, a2); 2135} 2136 2137static void tgen_andi(TCGContext *s, TCGType type, 2138 TCGReg a0, TCGReg a1, tcg_target_long a2) 2139{ 2140 tcg_out_logicali(s, I3404_ANDI, type, a0, a1, a2); 2141} 2142 2143static const TCGOutOpBinary outop_and = { 2144 .base.static_constraint = C_O1_I2(r, r, rL), 2145 .out_rrr = tgen_and, 2146 .out_rri = tgen_andi, 2147}; 2148 2149static void tgen_andc(TCGContext *s, TCGType type, 2150 TCGReg a0, TCGReg a1, TCGReg a2) 2151{ 2152 tcg_out_insn(s, 3510, BIC, type, a0, a1, a2); 2153} 2154 2155static const TCGOutOpBinary outop_andc = { 2156 .base.static_constraint = C_O1_I2(r, r, r), 2157 .out_rrr = tgen_andc, 2158}; 2159 2160static void tgen_divs(TCGContext *s, TCGType type, 2161 TCGReg a0, TCGReg a1, TCGReg a2) 2162{ 2163 tcg_out_insn(s, 3508, SDIV, type, a0, a1, a2); 2164} 2165 2166static const TCGOutOpBinary outop_divs = { 2167 .base.static_constraint = C_O1_I2(r, r, r), 2168 .out_rrr = tgen_divs, 2169}; 2170 2171static void tgen_eqv(TCGContext *s, TCGType type, 2172 TCGReg a0, TCGReg a1, TCGReg a2) 2173{ 2174 tcg_out_insn(s, 3510, EON, type, a0, a1, a2); 2175} 2176 2177static const TCGOutOpBinary outop_eqv = { 2178 .base.static_constraint = C_O1_I2(r, r, r), 2179 .out_rrr = tgen_eqv, 2180}; 2181 2182static void tgen_mul(TCGContext *s, TCGType type, 2183 TCGReg a0, TCGReg a1, TCGReg a2) 2184{ 2185 tcg_out_insn(s, 3509, MADD, type, a0, a1, a2, TCG_REG_XZR); 2186} 2187 2188static const TCGOutOpBinary outop_mul = { 2189 .base.static_constraint = C_O1_I2(r, r, r), 2190 .out_rrr = tgen_mul, 2191}; 2192 2193static TCGConstraintSetIndex cset_mulh(TCGType type, unsigned flags) 2194{ 2195 return type == TCG_TYPE_I64 ? C_O1_I2(r, r, r) : C_NotImplemented; 2196} 2197 2198static void tgen_mulsh(TCGContext *s, TCGType type, 2199 TCGReg a0, TCGReg a1, TCGReg a2) 2200{ 2201 tcg_out_insn(s, 3508, SMULH, TCG_TYPE_I64, a0, a1, a2); 2202} 2203 2204static const TCGOutOpBinary outop_mulsh = { 2205 .base.static_constraint = C_Dynamic, 2206 .base.dynamic_constraint = cset_mulh, 2207 .out_rrr = tgen_mulsh, 2208}; 2209 2210static void tgen_muluh(TCGContext *s, TCGType type, 2211 TCGReg a0, TCGReg a1, TCGReg a2) 2212{ 2213 tcg_out_insn(s, 3508, UMULH, TCG_TYPE_I64, a0, a1, a2); 2214} 2215 2216static const TCGOutOpBinary outop_muluh = { 2217 .base.static_constraint = C_Dynamic, 2218 .base.dynamic_constraint = cset_mulh, 2219 .out_rrr = tgen_muluh, 2220}; 2221 2222static const TCGOutOpBinary outop_nand = { 2223 .base.static_constraint = C_NotImplemented, 2224}; 2225 2226static const TCGOutOpBinary outop_nor = { 2227 .base.static_constraint = C_NotImplemented, 2228}; 2229 2230static void tgen_or(TCGContext *s, TCGType type, 2231 TCGReg a0, TCGReg a1, TCGReg a2) 2232{ 2233 tcg_out_insn(s, 3510, ORR, type, a0, a1, a2); 2234} 2235 2236static void tgen_ori(TCGContext *s, TCGType type, 2237 TCGReg a0, TCGReg a1, tcg_target_long a2) 2238{ 2239 tcg_out_logicali(s, I3404_ORRI, type, a0, a1, a2); 2240} 2241 2242static const TCGOutOpBinary outop_or = { 2243 .base.static_constraint = C_O1_I2(r, r, rL), 2244 .out_rrr = tgen_or, 2245 .out_rri = tgen_ori, 2246}; 2247 2248static void tgen_orc(TCGContext *s, TCGType type, 2249 TCGReg a0, TCGReg a1, TCGReg a2) 2250{ 2251 tcg_out_insn(s, 3510, ORN, type, a0, a1, a2); 2252} 2253 2254static const TCGOutOpBinary outop_orc = { 2255 .base.static_constraint = C_O1_I2(r, r, r), 2256 .out_rrr = tgen_orc, 2257}; 2258 2259static void tgen_sub(TCGContext *s, TCGType type, 2260 TCGReg a0, TCGReg a1, TCGReg a2) 2261{ 2262 tcg_out_insn(s, 3502, SUB, type, a0, a1, a2); 2263} 2264 2265static const TCGOutOpSubtract outop_sub = { 2266 .base.static_constraint = C_O1_I2(r, r, r), 2267 .out_rrr = tgen_sub, 2268}; 2269 2270static void tgen_xor(TCGContext *s, TCGType type, 2271 TCGReg a0, TCGReg a1, TCGReg a2) 2272{ 2273 tcg_out_insn(s, 3510, EOR, type, a0, a1, a2); 2274} 2275 2276static void tgen_xori(TCGContext *s, TCGType type, 2277 TCGReg a0, TCGReg a1, tcg_target_long a2) 2278{ 2279 tcg_out_logicali(s, I3404_EORI, type, a0, a1, a2); 2280} 2281 2282static const TCGOutOpBinary outop_xor = { 2283 .base.static_constraint = C_O1_I2(r, r, rL), 2284 .out_rrr = tgen_xor, 2285 .out_rri = tgen_xori, 2286}; 2287 2288 2289static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2290{ 2291 tgen_sub(s, type, a0, TCG_REG_XZR, a1); 2292} 2293 2294static const TCGOutOpUnary outop_neg = { 2295 .base.static_constraint = C_O1_I1(r, r), 2296 .out_rr = tgen_neg, 2297}; 2298 2299static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1) 2300{ 2301 tgen_orc(s, type, a0, TCG_REG_XZR, a1); 2302} 2303 2304static const TCGOutOpUnary outop_not = { 2305 .base.static_constraint = C_O1_I1(r, r), 2306 .out_rr = tgen_not, 2307}; 2308 2309 2310static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType ext, 2311 const TCGArg args[TCG_MAX_OP_ARGS], 2312 const int const_args[TCG_MAX_OP_ARGS]) 2313{ 2314 /* Hoist the loads of the most common arguments. */ 2315 TCGArg a0 = args[0]; 2316 TCGArg a1 = args[1]; 2317 TCGArg a2 = args[2]; 2318 int c2 = const_args[2]; 2319 2320 switch (opc) { 2321 case INDEX_op_goto_ptr: 2322 tcg_out_insn(s, 3207, BR, a0); 2323 break; 2324 2325 case INDEX_op_br: 2326 tcg_out_goto_label(s, arg_label(a0)); 2327 break; 2328 2329 case INDEX_op_ld8u_i32: 2330 case INDEX_op_ld8u_i64: 2331 tcg_out_ldst(s, I3312_LDRB, a0, a1, a2, 0); 2332 break; 2333 case INDEX_op_ld8s_i32: 2334 tcg_out_ldst(s, I3312_LDRSBW, a0, a1, a2, 0); 2335 break; 2336 case INDEX_op_ld8s_i64: 2337 tcg_out_ldst(s, I3312_LDRSBX, a0, a1, a2, 0); 2338 break; 2339 case INDEX_op_ld16u_i32: 2340 case INDEX_op_ld16u_i64: 2341 tcg_out_ldst(s, I3312_LDRH, a0, a1, a2, 1); 2342 break; 2343 case INDEX_op_ld16s_i32: 2344 tcg_out_ldst(s, I3312_LDRSHW, a0, a1, a2, 1); 2345 break; 2346 case INDEX_op_ld16s_i64: 2347 tcg_out_ldst(s, I3312_LDRSHX, a0, a1, a2, 1); 2348 break; 2349 case INDEX_op_ld_i32: 2350 case INDEX_op_ld32u_i64: 2351 tcg_out_ldst(s, I3312_LDRW, a0, a1, a2, 2); 2352 break; 2353 case INDEX_op_ld32s_i64: 2354 tcg_out_ldst(s, I3312_LDRSWX, a0, a1, a2, 2); 2355 break; 2356 case INDEX_op_ld_i64: 2357 tcg_out_ldst(s, I3312_LDRX, a0, a1, a2, 3); 2358 break; 2359 2360 case INDEX_op_st8_i32: 2361 case INDEX_op_st8_i64: 2362 tcg_out_ldst(s, I3312_STRB, a0, a1, a2, 0); 2363 break; 2364 case INDEX_op_st16_i32: 2365 case INDEX_op_st16_i64: 2366 tcg_out_ldst(s, I3312_STRH, a0, a1, a2, 1); 2367 break; 2368 case INDEX_op_st_i32: 2369 case INDEX_op_st32_i64: 2370 tcg_out_ldst(s, I3312_STRW, a0, a1, a2, 2); 2371 break; 2372 case INDEX_op_st_i64: 2373 tcg_out_ldst(s, I3312_STRX, a0, a1, a2, 3); 2374 break; 2375 2376 case INDEX_op_divu_i64: 2377 case INDEX_op_divu_i32: 2378 tcg_out_insn(s, 3508, UDIV, ext, a0, a1, a2); 2379 break; 2380 2381 case INDEX_op_rem_i64: 2382 case INDEX_op_rem_i32: 2383 tcg_out_insn(s, 3508, SDIV, ext, TCG_REG_TMP0, a1, a2); 2384 tcg_out_insn(s, 3509, MSUB, ext, a0, TCG_REG_TMP0, a2, a1); 2385 break; 2386 case INDEX_op_remu_i64: 2387 case INDEX_op_remu_i32: 2388 tcg_out_insn(s, 3508, UDIV, ext, TCG_REG_TMP0, a1, a2); 2389 tcg_out_insn(s, 3509, MSUB, ext, a0, TCG_REG_TMP0, a2, a1); 2390 break; 2391 2392 case INDEX_op_shl_i64: 2393 case INDEX_op_shl_i32: 2394 if (c2) { 2395 tcg_out_shl(s, ext, a0, a1, a2); 2396 } else { 2397 tcg_out_insn(s, 3508, LSLV, ext, a0, a1, a2); 2398 } 2399 break; 2400 2401 case INDEX_op_shr_i64: 2402 case INDEX_op_shr_i32: 2403 if (c2) { 2404 tcg_out_shr(s, ext, a0, a1, a2); 2405 } else { 2406 tcg_out_insn(s, 3508, LSRV, ext, a0, a1, a2); 2407 } 2408 break; 2409 2410 case INDEX_op_sar_i64: 2411 case INDEX_op_sar_i32: 2412 if (c2) { 2413 tcg_out_sar(s, ext, a0, a1, a2); 2414 } else { 2415 tcg_out_insn(s, 3508, ASRV, ext, a0, a1, a2); 2416 } 2417 break; 2418 2419 case INDEX_op_rotr_i64: 2420 case INDEX_op_rotr_i32: 2421 if (c2) { 2422 tcg_out_rotr(s, ext, a0, a1, a2); 2423 } else { 2424 tcg_out_insn(s, 3508, RORV, ext, a0, a1, a2); 2425 } 2426 break; 2427 2428 case INDEX_op_rotl_i64: 2429 case INDEX_op_rotl_i32: 2430 if (c2) { 2431 tcg_out_rotl(s, ext, a0, a1, a2); 2432 } else { 2433 tcg_out_insn(s, 3502, SUB, 0, TCG_REG_TMP0, TCG_REG_XZR, a2); 2434 tcg_out_insn(s, 3508, RORV, ext, a0, a1, TCG_REG_TMP0); 2435 } 2436 break; 2437 2438 case INDEX_op_clz_i64: 2439 case INDEX_op_clz_i32: 2440 tcg_out_cltz(s, ext, a0, a1, a2, c2, false); 2441 break; 2442 case INDEX_op_ctz_i64: 2443 case INDEX_op_ctz_i32: 2444 tcg_out_cltz(s, ext, a0, a1, a2, c2, true); 2445 break; 2446 2447 case INDEX_op_brcond_i32: 2448 a1 = (int32_t)a1; 2449 /* FALLTHRU */ 2450 case INDEX_op_brcond_i64: 2451 tcg_out_brcond(s, ext, a2, a0, a1, const_args[1], arg_label(args[3])); 2452 break; 2453 2454 case INDEX_op_setcond_i32: 2455 a2 = (int32_t)a2; 2456 /* FALLTHRU */ 2457 case INDEX_op_setcond_i64: 2458 tcg_out_cmp(s, ext, args[3], a1, a2, c2); 2459 /* Use CSET alias of CSINC Wd, WZR, WZR, invert(cond). */ 2460 tcg_out_insn(s, 3506, CSINC, TCG_TYPE_I32, a0, TCG_REG_XZR, 2461 TCG_REG_XZR, tcg_invert_cond(args[3])); 2462 break; 2463 2464 case INDEX_op_negsetcond_i32: 2465 a2 = (int32_t)a2; 2466 /* FALLTHRU */ 2467 case INDEX_op_negsetcond_i64: 2468 tcg_out_cmp(s, ext, args[3], a1, a2, c2); 2469 /* Use CSETM alias of CSINV Wd, WZR, WZR, invert(cond). */ 2470 tcg_out_insn(s, 3506, CSINV, ext, a0, TCG_REG_XZR, 2471 TCG_REG_XZR, tcg_invert_cond(args[3])); 2472 break; 2473 2474 case INDEX_op_movcond_i32: 2475 a2 = (int32_t)a2; 2476 /* FALLTHRU */ 2477 case INDEX_op_movcond_i64: 2478 tcg_out_cmp(s, ext, args[5], a1, a2, c2); 2479 tcg_out_insn(s, 3506, CSEL, ext, a0, args[3], args[4], args[5]); 2480 break; 2481 2482 case INDEX_op_qemu_ld_i32: 2483 case INDEX_op_qemu_ld_i64: 2484 tcg_out_qemu_ld(s, a0, a1, a2, ext); 2485 break; 2486 case INDEX_op_qemu_st_i32: 2487 case INDEX_op_qemu_st_i64: 2488 tcg_out_qemu_st(s, a0, a1, a2, ext); 2489 break; 2490 case INDEX_op_qemu_ld_i128: 2491 tcg_out_qemu_ldst_i128(s, a0, a1, a2, args[3], true); 2492 break; 2493 case INDEX_op_qemu_st_i128: 2494 tcg_out_qemu_ldst_i128(s, a0, a1, a2, args[3], false); 2495 break; 2496 2497 case INDEX_op_bswap64_i64: 2498 tcg_out_rev(s, TCG_TYPE_I64, MO_64, a0, a1); 2499 break; 2500 case INDEX_op_bswap32_i64: 2501 tcg_out_rev(s, TCG_TYPE_I32, MO_32, a0, a1); 2502 if (a2 & TCG_BSWAP_OS) { 2503 tcg_out_ext32s(s, a0, a0); 2504 } 2505 break; 2506 case INDEX_op_bswap32_i32: 2507 tcg_out_rev(s, TCG_TYPE_I32, MO_32, a0, a1); 2508 break; 2509 case INDEX_op_bswap16_i64: 2510 case INDEX_op_bswap16_i32: 2511 tcg_out_rev(s, TCG_TYPE_I32, MO_16, a0, a1); 2512 if (a2 & TCG_BSWAP_OS) { 2513 /* Output must be sign-extended. */ 2514 tcg_out_ext16s(s, ext, a0, a0); 2515 } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) { 2516 /* Output must be zero-extended, but input isn't. */ 2517 tcg_out_ext16u(s, a0, a0); 2518 } 2519 break; 2520 2521 case INDEX_op_deposit_i64: 2522 case INDEX_op_deposit_i32: 2523 tcg_out_dep(s, ext, a0, a2, args[3], args[4]); 2524 break; 2525 2526 case INDEX_op_extract_i64: 2527 case INDEX_op_extract_i32: 2528 if (a2 == 0) { 2529 uint64_t mask = MAKE_64BIT_MASK(0, args[3]); 2530 tcg_out_logicali(s, I3404_ANDI, ext, a0, a1, mask); 2531 } else { 2532 tcg_out_ubfm(s, ext, a0, a1, a2, a2 + args[3] - 1); 2533 } 2534 break; 2535 2536 case INDEX_op_sextract_i64: 2537 case INDEX_op_sextract_i32: 2538 tcg_out_sbfm(s, ext, a0, a1, a2, a2 + args[3] - 1); 2539 break; 2540 2541 case INDEX_op_extract2_i64: 2542 case INDEX_op_extract2_i32: 2543 tcg_out_extr(s, ext, a0, a2, a1, args[3]); 2544 break; 2545 2546 case INDEX_op_add2_i32: 2547 tcg_out_addsub2(s, TCG_TYPE_I32, a0, a1, a2, args[3], 2548 (int32_t)args[4], args[5], const_args[4], 2549 const_args[5], false); 2550 break; 2551 case INDEX_op_add2_i64: 2552 tcg_out_addsub2(s, TCG_TYPE_I64, a0, a1, a2, args[3], args[4], 2553 args[5], const_args[4], const_args[5], false); 2554 break; 2555 case INDEX_op_sub2_i32: 2556 tcg_out_addsub2(s, TCG_TYPE_I32, a0, a1, a2, args[3], 2557 (int32_t)args[4], args[5], const_args[4], 2558 const_args[5], true); 2559 break; 2560 case INDEX_op_sub2_i64: 2561 tcg_out_addsub2(s, TCG_TYPE_I64, a0, a1, a2, args[3], args[4], 2562 args[5], const_args[4], const_args[5], true); 2563 break; 2564 2565 case INDEX_op_mb: 2566 tcg_out_mb(s, a0); 2567 break; 2568 2569 case INDEX_op_call: /* Always emitted via tcg_out_call. */ 2570 case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */ 2571 case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */ 2572 case INDEX_op_ext_i32_i64: /* Always emitted via tcg_reg_alloc_op. */ 2573 case INDEX_op_extu_i32_i64: 2574 case INDEX_op_extrl_i64_i32: 2575 default: 2576 g_assert_not_reached(); 2577 } 2578} 2579 2580static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, 2581 unsigned vecl, unsigned vece, 2582 const TCGArg args[TCG_MAX_OP_ARGS], 2583 const int const_args[TCG_MAX_OP_ARGS]) 2584{ 2585 static const AArch64Insn cmp_vec_insn[16] = { 2586 [TCG_COND_EQ] = I3616_CMEQ, 2587 [TCG_COND_GT] = I3616_CMGT, 2588 [TCG_COND_GE] = I3616_CMGE, 2589 [TCG_COND_GTU] = I3616_CMHI, 2590 [TCG_COND_GEU] = I3616_CMHS, 2591 }; 2592 static const AArch64Insn cmp_scalar_insn[16] = { 2593 [TCG_COND_EQ] = I3611_CMEQ, 2594 [TCG_COND_GT] = I3611_CMGT, 2595 [TCG_COND_GE] = I3611_CMGE, 2596 [TCG_COND_GTU] = I3611_CMHI, 2597 [TCG_COND_GEU] = I3611_CMHS, 2598 }; 2599 static const AArch64Insn cmp0_vec_insn[16] = { 2600 [TCG_COND_EQ] = I3617_CMEQ0, 2601 [TCG_COND_GT] = I3617_CMGT0, 2602 [TCG_COND_GE] = I3617_CMGE0, 2603 [TCG_COND_LT] = I3617_CMLT0, 2604 [TCG_COND_LE] = I3617_CMLE0, 2605 }; 2606 static const AArch64Insn cmp0_scalar_insn[16] = { 2607 [TCG_COND_EQ] = I3612_CMEQ0, 2608 [TCG_COND_GT] = I3612_CMGT0, 2609 [TCG_COND_GE] = I3612_CMGE0, 2610 [TCG_COND_LT] = I3612_CMLT0, 2611 [TCG_COND_LE] = I3612_CMLE0, 2612 }; 2613 2614 TCGType type = vecl + TCG_TYPE_V64; 2615 unsigned is_q = vecl; 2616 bool is_scalar = !is_q && vece == MO_64; 2617 TCGArg a0, a1, a2, a3; 2618 int cmode, imm8; 2619 2620 a0 = args[0]; 2621 a1 = args[1]; 2622 a2 = args[2]; 2623 2624 switch (opc) { 2625 case INDEX_op_ld_vec: 2626 tcg_out_ld(s, type, a0, a1, a2); 2627 break; 2628 case INDEX_op_st_vec: 2629 tcg_out_st(s, type, a0, a1, a2); 2630 break; 2631 case INDEX_op_dupm_vec: 2632 tcg_out_dupm_vec(s, type, vece, a0, a1, a2); 2633 break; 2634 case INDEX_op_add_vec: 2635 if (is_scalar) { 2636 tcg_out_insn(s, 3611, ADD, vece, a0, a1, a2); 2637 } else { 2638 tcg_out_insn(s, 3616, ADD, is_q, vece, a0, a1, a2); 2639 } 2640 break; 2641 case INDEX_op_sub_vec: 2642 if (is_scalar) { 2643 tcg_out_insn(s, 3611, SUB, vece, a0, a1, a2); 2644 } else { 2645 tcg_out_insn(s, 3616, SUB, is_q, vece, a0, a1, a2); 2646 } 2647 break; 2648 case INDEX_op_mul_vec: 2649 tcg_out_insn(s, 3616, MUL, is_q, vece, a0, a1, a2); 2650 break; 2651 case INDEX_op_neg_vec: 2652 if (is_scalar) { 2653 tcg_out_insn(s, 3612, NEG, vece, a0, a1); 2654 } else { 2655 tcg_out_insn(s, 3617, NEG, is_q, vece, a0, a1); 2656 } 2657 break; 2658 case INDEX_op_abs_vec: 2659 if (is_scalar) { 2660 tcg_out_insn(s, 3612, ABS, vece, a0, a1); 2661 } else { 2662 tcg_out_insn(s, 3617, ABS, is_q, vece, a0, a1); 2663 } 2664 break; 2665 case INDEX_op_and_vec: 2666 if (const_args[2]) { 2667 is_shimm1632(~a2, &cmode, &imm8); 2668 if (a0 == a1) { 2669 tcg_out_insn(s, 3606, BIC, is_q, a0, 0, cmode, imm8); 2670 return; 2671 } 2672 tcg_out_insn(s, 3606, MVNI, is_q, a0, 0, cmode, imm8); 2673 a2 = a0; 2674 } 2675 tcg_out_insn(s, 3616, AND, is_q, 0, a0, a1, a2); 2676 break; 2677 case INDEX_op_or_vec: 2678 if (const_args[2]) { 2679 is_shimm1632(a2, &cmode, &imm8); 2680 if (a0 == a1) { 2681 tcg_out_insn(s, 3606, ORR, is_q, a0, 0, cmode, imm8); 2682 return; 2683 } 2684 tcg_out_insn(s, 3606, MOVI, is_q, a0, 0, cmode, imm8); 2685 a2 = a0; 2686 } 2687 tcg_out_insn(s, 3616, ORR, is_q, 0, a0, a1, a2); 2688 break; 2689 case INDEX_op_andc_vec: 2690 if (const_args[2]) { 2691 is_shimm1632(a2, &cmode, &imm8); 2692 if (a0 == a1) { 2693 tcg_out_insn(s, 3606, BIC, is_q, a0, 0, cmode, imm8); 2694 return; 2695 } 2696 tcg_out_insn(s, 3606, MOVI, is_q, a0, 0, cmode, imm8); 2697 a2 = a0; 2698 } 2699 tcg_out_insn(s, 3616, BIC, is_q, 0, a0, a1, a2); 2700 break; 2701 case INDEX_op_orc_vec: 2702 if (const_args[2]) { 2703 is_shimm1632(~a2, &cmode, &imm8); 2704 if (a0 == a1) { 2705 tcg_out_insn(s, 3606, ORR, is_q, a0, 0, cmode, imm8); 2706 return; 2707 } 2708 tcg_out_insn(s, 3606, MVNI, is_q, a0, 0, cmode, imm8); 2709 a2 = a0; 2710 } 2711 tcg_out_insn(s, 3616, ORN, is_q, 0, a0, a1, a2); 2712 break; 2713 case INDEX_op_xor_vec: 2714 tcg_out_insn(s, 3616, EOR, is_q, 0, a0, a1, a2); 2715 break; 2716 case INDEX_op_ssadd_vec: 2717 if (is_scalar) { 2718 tcg_out_insn(s, 3611, SQADD, vece, a0, a1, a2); 2719 } else { 2720 tcg_out_insn(s, 3616, SQADD, is_q, vece, a0, a1, a2); 2721 } 2722 break; 2723 case INDEX_op_sssub_vec: 2724 if (is_scalar) { 2725 tcg_out_insn(s, 3611, SQSUB, vece, a0, a1, a2); 2726 } else { 2727 tcg_out_insn(s, 3616, SQSUB, is_q, vece, a0, a1, a2); 2728 } 2729 break; 2730 case INDEX_op_usadd_vec: 2731 if (is_scalar) { 2732 tcg_out_insn(s, 3611, UQADD, vece, a0, a1, a2); 2733 } else { 2734 tcg_out_insn(s, 3616, UQADD, is_q, vece, a0, a1, a2); 2735 } 2736 break; 2737 case INDEX_op_ussub_vec: 2738 if (is_scalar) { 2739 tcg_out_insn(s, 3611, UQSUB, vece, a0, a1, a2); 2740 } else { 2741 tcg_out_insn(s, 3616, UQSUB, is_q, vece, a0, a1, a2); 2742 } 2743 break; 2744 case INDEX_op_smax_vec: 2745 tcg_out_insn(s, 3616, SMAX, is_q, vece, a0, a1, a2); 2746 break; 2747 case INDEX_op_smin_vec: 2748 tcg_out_insn(s, 3616, SMIN, is_q, vece, a0, a1, a2); 2749 break; 2750 case INDEX_op_umax_vec: 2751 tcg_out_insn(s, 3616, UMAX, is_q, vece, a0, a1, a2); 2752 break; 2753 case INDEX_op_umin_vec: 2754 tcg_out_insn(s, 3616, UMIN, is_q, vece, a0, a1, a2); 2755 break; 2756 case INDEX_op_not_vec: 2757 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a1); 2758 break; 2759 case INDEX_op_shli_vec: 2760 if (is_scalar) { 2761 tcg_out_insn(s, 3609, SHL, a0, a1, a2 + (8 << vece)); 2762 } else { 2763 tcg_out_insn(s, 3614, SHL, is_q, a0, a1, a2 + (8 << vece)); 2764 } 2765 break; 2766 case INDEX_op_shri_vec: 2767 if (is_scalar) { 2768 tcg_out_insn(s, 3609, USHR, a0, a1, (16 << vece) - a2); 2769 } else { 2770 tcg_out_insn(s, 3614, USHR, is_q, a0, a1, (16 << vece) - a2); 2771 } 2772 break; 2773 case INDEX_op_sari_vec: 2774 if (is_scalar) { 2775 tcg_out_insn(s, 3609, SSHR, a0, a1, (16 << vece) - a2); 2776 } else { 2777 tcg_out_insn(s, 3614, SSHR, is_q, a0, a1, (16 << vece) - a2); 2778 } 2779 break; 2780 case INDEX_op_aa64_sli_vec: 2781 if (is_scalar) { 2782 tcg_out_insn(s, 3609, SLI, a0, a2, args[3] + (8 << vece)); 2783 } else { 2784 tcg_out_insn(s, 3614, SLI, is_q, a0, a2, args[3] + (8 << vece)); 2785 } 2786 break; 2787 case INDEX_op_shlv_vec: 2788 if (is_scalar) { 2789 tcg_out_insn(s, 3611, USHL, vece, a0, a1, a2); 2790 } else { 2791 tcg_out_insn(s, 3616, USHL, is_q, vece, a0, a1, a2); 2792 } 2793 break; 2794 case INDEX_op_aa64_sshl_vec: 2795 if (is_scalar) { 2796 tcg_out_insn(s, 3611, SSHL, vece, a0, a1, a2); 2797 } else { 2798 tcg_out_insn(s, 3616, SSHL, is_q, vece, a0, a1, a2); 2799 } 2800 break; 2801 case INDEX_op_cmp_vec: 2802 { 2803 TCGCond cond = args[3]; 2804 AArch64Insn insn; 2805 2806 switch (cond) { 2807 case TCG_COND_NE: 2808 if (const_args[2]) { 2809 if (is_scalar) { 2810 tcg_out_insn(s, 3611, CMTST, vece, a0, a1, a1); 2811 } else { 2812 tcg_out_insn(s, 3616, CMTST, is_q, vece, a0, a1, a1); 2813 } 2814 } else { 2815 if (is_scalar) { 2816 tcg_out_insn(s, 3611, CMEQ, vece, a0, a1, a2); 2817 } else { 2818 tcg_out_insn(s, 3616, CMEQ, is_q, vece, a0, a1, a2); 2819 } 2820 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a0); 2821 } 2822 break; 2823 2824 case TCG_COND_TSTNE: 2825 case TCG_COND_TSTEQ: 2826 if (const_args[2]) { 2827 /* (x & 0) == 0 */ 2828 tcg_out_dupi_vec(s, type, MO_8, a0, 2829 -(cond == TCG_COND_TSTEQ)); 2830 break; 2831 } 2832 if (is_scalar) { 2833 tcg_out_insn(s, 3611, CMTST, vece, a0, a1, a2); 2834 } else { 2835 tcg_out_insn(s, 3616, CMTST, is_q, vece, a0, a1, a2); 2836 } 2837 if (cond == TCG_COND_TSTEQ) { 2838 tcg_out_insn(s, 3617, NOT, is_q, 0, a0, a0); 2839 } 2840 break; 2841 2842 default: 2843 if (const_args[2]) { 2844 if (is_scalar) { 2845 insn = cmp0_scalar_insn[cond]; 2846 if (insn) { 2847 tcg_out_insn_3612(s, insn, vece, a0, a1); 2848 break; 2849 } 2850 } else { 2851 insn = cmp0_vec_insn[cond]; 2852 if (insn) { 2853 tcg_out_insn_3617(s, insn, is_q, vece, a0, a1); 2854 break; 2855 } 2856 } 2857 tcg_out_dupi_vec(s, type, MO_8, TCG_VEC_TMP0, 0); 2858 a2 = TCG_VEC_TMP0; 2859 } 2860 if (is_scalar) { 2861 insn = cmp_scalar_insn[cond]; 2862 if (insn == 0) { 2863 TCGArg t; 2864 t = a1, a1 = a2, a2 = t; 2865 cond = tcg_swap_cond(cond); 2866 insn = cmp_scalar_insn[cond]; 2867 tcg_debug_assert(insn != 0); 2868 } 2869 tcg_out_insn_3611(s, insn, vece, a0, a1, a2); 2870 } else { 2871 insn = cmp_vec_insn[cond]; 2872 if (insn == 0) { 2873 TCGArg t; 2874 t = a1, a1 = a2, a2 = t; 2875 cond = tcg_swap_cond(cond); 2876 insn = cmp_vec_insn[cond]; 2877 tcg_debug_assert(insn != 0); 2878 } 2879 tcg_out_insn_3616(s, insn, is_q, vece, a0, a1, a2); 2880 } 2881 break; 2882 } 2883 } 2884 break; 2885 2886 case INDEX_op_bitsel_vec: 2887 a3 = args[3]; 2888 if (a0 == a3) { 2889 tcg_out_insn(s, 3616, BIT, is_q, 0, a0, a2, a1); 2890 } else if (a0 == a2) { 2891 tcg_out_insn(s, 3616, BIF, is_q, 0, a0, a3, a1); 2892 } else { 2893 if (a0 != a1) { 2894 tcg_out_mov(s, type, a0, a1); 2895 } 2896 tcg_out_insn(s, 3616, BSL, is_q, 0, a0, a2, a3); 2897 } 2898 break; 2899 2900 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */ 2901 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */ 2902 default: 2903 g_assert_not_reached(); 2904 } 2905} 2906 2907int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece) 2908{ 2909 switch (opc) { 2910 case INDEX_op_add_vec: 2911 case INDEX_op_sub_vec: 2912 case INDEX_op_and_vec: 2913 case INDEX_op_or_vec: 2914 case INDEX_op_xor_vec: 2915 case INDEX_op_andc_vec: 2916 case INDEX_op_orc_vec: 2917 case INDEX_op_neg_vec: 2918 case INDEX_op_abs_vec: 2919 case INDEX_op_not_vec: 2920 case INDEX_op_cmp_vec: 2921 case INDEX_op_shli_vec: 2922 case INDEX_op_shri_vec: 2923 case INDEX_op_sari_vec: 2924 case INDEX_op_ssadd_vec: 2925 case INDEX_op_sssub_vec: 2926 case INDEX_op_usadd_vec: 2927 case INDEX_op_ussub_vec: 2928 case INDEX_op_shlv_vec: 2929 case INDEX_op_bitsel_vec: 2930 return 1; 2931 case INDEX_op_rotli_vec: 2932 case INDEX_op_shrv_vec: 2933 case INDEX_op_sarv_vec: 2934 case INDEX_op_rotlv_vec: 2935 case INDEX_op_rotrv_vec: 2936 return -1; 2937 case INDEX_op_mul_vec: 2938 case INDEX_op_smax_vec: 2939 case INDEX_op_smin_vec: 2940 case INDEX_op_umax_vec: 2941 case INDEX_op_umin_vec: 2942 return vece < MO_64; 2943 2944 default: 2945 return 0; 2946 } 2947} 2948 2949void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece, 2950 TCGArg a0, ...) 2951{ 2952 va_list va; 2953 TCGv_vec v0, v1, v2, t1, t2, c1; 2954 TCGArg a2; 2955 2956 va_start(va, a0); 2957 v0 = temp_tcgv_vec(arg_temp(a0)); 2958 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg))); 2959 a2 = va_arg(va, TCGArg); 2960 va_end(va); 2961 2962 switch (opc) { 2963 case INDEX_op_rotli_vec: 2964 t1 = tcg_temp_new_vec(type); 2965 tcg_gen_shri_vec(vece, t1, v1, -a2 & ((8 << vece) - 1)); 2966 vec_gen_4(INDEX_op_aa64_sli_vec, type, vece, 2967 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(v1), a2); 2968 tcg_temp_free_vec(t1); 2969 break; 2970 2971 case INDEX_op_shrv_vec: 2972 case INDEX_op_sarv_vec: 2973 /* Right shifts are negative left shifts for AArch64. */ 2974 v2 = temp_tcgv_vec(arg_temp(a2)); 2975 t1 = tcg_temp_new_vec(type); 2976 tcg_gen_neg_vec(vece, t1, v2); 2977 opc = (opc == INDEX_op_shrv_vec 2978 ? INDEX_op_shlv_vec : INDEX_op_aa64_sshl_vec); 2979 vec_gen_3(opc, type, vece, tcgv_vec_arg(v0), 2980 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 2981 tcg_temp_free_vec(t1); 2982 break; 2983 2984 case INDEX_op_rotlv_vec: 2985 v2 = temp_tcgv_vec(arg_temp(a2)); 2986 t1 = tcg_temp_new_vec(type); 2987 c1 = tcg_constant_vec(type, vece, 8 << vece); 2988 tcg_gen_sub_vec(vece, t1, v2, c1); 2989 /* Right shifts are negative left shifts for AArch64. */ 2990 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t1), 2991 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 2992 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(v0), 2993 tcgv_vec_arg(v1), tcgv_vec_arg(v2)); 2994 tcg_gen_or_vec(vece, v0, v0, t1); 2995 tcg_temp_free_vec(t1); 2996 break; 2997 2998 case INDEX_op_rotrv_vec: 2999 v2 = temp_tcgv_vec(arg_temp(a2)); 3000 t1 = tcg_temp_new_vec(type); 3001 t2 = tcg_temp_new_vec(type); 3002 c1 = tcg_constant_vec(type, vece, 8 << vece); 3003 tcg_gen_neg_vec(vece, t1, v2); 3004 tcg_gen_sub_vec(vece, t2, c1, v2); 3005 /* Right shifts are negative left shifts for AArch64. */ 3006 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t1), 3007 tcgv_vec_arg(v1), tcgv_vec_arg(t1)); 3008 vec_gen_3(INDEX_op_shlv_vec, type, vece, tcgv_vec_arg(t2), 3009 tcgv_vec_arg(v1), tcgv_vec_arg(t2)); 3010 tcg_gen_or_vec(vece, v0, t1, t2); 3011 tcg_temp_free_vec(t1); 3012 tcg_temp_free_vec(t2); 3013 break; 3014 3015 default: 3016 g_assert_not_reached(); 3017 } 3018} 3019 3020static TCGConstraintSetIndex 3021tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags) 3022{ 3023 switch (op) { 3024 case INDEX_op_goto_ptr: 3025 return C_O0_I1(r); 3026 3027 case INDEX_op_ld8u_i32: 3028 case INDEX_op_ld8s_i32: 3029 case INDEX_op_ld16u_i32: 3030 case INDEX_op_ld16s_i32: 3031 case INDEX_op_ld_i32: 3032 case INDEX_op_ld8u_i64: 3033 case INDEX_op_ld8s_i64: 3034 case INDEX_op_ld16u_i64: 3035 case INDEX_op_ld16s_i64: 3036 case INDEX_op_ld32u_i64: 3037 case INDEX_op_ld32s_i64: 3038 case INDEX_op_ld_i64: 3039 case INDEX_op_bswap16_i32: 3040 case INDEX_op_bswap32_i32: 3041 case INDEX_op_bswap16_i64: 3042 case INDEX_op_bswap32_i64: 3043 case INDEX_op_bswap64_i64: 3044 case INDEX_op_ext_i32_i64: 3045 case INDEX_op_extu_i32_i64: 3046 case INDEX_op_extract_i32: 3047 case INDEX_op_extract_i64: 3048 case INDEX_op_sextract_i32: 3049 case INDEX_op_sextract_i64: 3050 return C_O1_I1(r, r); 3051 3052 case INDEX_op_st8_i32: 3053 case INDEX_op_st16_i32: 3054 case INDEX_op_st_i32: 3055 case INDEX_op_st8_i64: 3056 case INDEX_op_st16_i64: 3057 case INDEX_op_st32_i64: 3058 case INDEX_op_st_i64: 3059 return C_O0_I2(rz, r); 3060 3061 case INDEX_op_setcond_i32: 3062 case INDEX_op_setcond_i64: 3063 case INDEX_op_negsetcond_i32: 3064 case INDEX_op_negsetcond_i64: 3065 return C_O1_I2(r, r, rC); 3066 3067 case INDEX_op_divu_i32: 3068 case INDEX_op_divu_i64: 3069 case INDEX_op_rem_i32: 3070 case INDEX_op_rem_i64: 3071 case INDEX_op_remu_i32: 3072 case INDEX_op_remu_i64: 3073 return C_O1_I2(r, r, r); 3074 3075 case INDEX_op_shl_i32: 3076 case INDEX_op_shr_i32: 3077 case INDEX_op_sar_i32: 3078 case INDEX_op_rotl_i32: 3079 case INDEX_op_rotr_i32: 3080 case INDEX_op_shl_i64: 3081 case INDEX_op_shr_i64: 3082 case INDEX_op_sar_i64: 3083 case INDEX_op_rotl_i64: 3084 case INDEX_op_rotr_i64: 3085 return C_O1_I2(r, r, ri); 3086 3087 case INDEX_op_clz_i32: 3088 case INDEX_op_ctz_i32: 3089 case INDEX_op_clz_i64: 3090 case INDEX_op_ctz_i64: 3091 return C_O1_I2(r, r, rAL); 3092 3093 case INDEX_op_brcond_i32: 3094 case INDEX_op_brcond_i64: 3095 return C_O0_I2(r, rC); 3096 3097 case INDEX_op_movcond_i32: 3098 case INDEX_op_movcond_i64: 3099 return C_O1_I4(r, r, rC, rz, rz); 3100 3101 case INDEX_op_qemu_ld_i32: 3102 case INDEX_op_qemu_ld_i64: 3103 return C_O1_I1(r, r); 3104 case INDEX_op_qemu_ld_i128: 3105 return C_O2_I1(r, r, r); 3106 case INDEX_op_qemu_st_i32: 3107 case INDEX_op_qemu_st_i64: 3108 return C_O0_I2(rz, r); 3109 case INDEX_op_qemu_st_i128: 3110 return C_O0_I3(rz, rz, r); 3111 3112 case INDEX_op_deposit_i32: 3113 case INDEX_op_deposit_i64: 3114 return C_O1_I2(r, 0, rz); 3115 3116 case INDEX_op_extract2_i32: 3117 case INDEX_op_extract2_i64: 3118 return C_O1_I2(r, rz, rz); 3119 3120 case INDEX_op_add2_i32: 3121 case INDEX_op_add2_i64: 3122 case INDEX_op_sub2_i32: 3123 case INDEX_op_sub2_i64: 3124 return C_O2_I4(r, r, rz, rz, rA, rMZ); 3125 3126 case INDEX_op_add_vec: 3127 case INDEX_op_sub_vec: 3128 case INDEX_op_mul_vec: 3129 case INDEX_op_xor_vec: 3130 case INDEX_op_ssadd_vec: 3131 case INDEX_op_sssub_vec: 3132 case INDEX_op_usadd_vec: 3133 case INDEX_op_ussub_vec: 3134 case INDEX_op_smax_vec: 3135 case INDEX_op_smin_vec: 3136 case INDEX_op_umax_vec: 3137 case INDEX_op_umin_vec: 3138 case INDEX_op_shlv_vec: 3139 case INDEX_op_shrv_vec: 3140 case INDEX_op_sarv_vec: 3141 case INDEX_op_aa64_sshl_vec: 3142 return C_O1_I2(w, w, w); 3143 case INDEX_op_not_vec: 3144 case INDEX_op_neg_vec: 3145 case INDEX_op_abs_vec: 3146 case INDEX_op_shli_vec: 3147 case INDEX_op_shri_vec: 3148 case INDEX_op_sari_vec: 3149 return C_O1_I1(w, w); 3150 case INDEX_op_ld_vec: 3151 case INDEX_op_dupm_vec: 3152 return C_O1_I1(w, r); 3153 case INDEX_op_st_vec: 3154 return C_O0_I2(w, r); 3155 case INDEX_op_dup_vec: 3156 return C_O1_I1(w, wr); 3157 case INDEX_op_or_vec: 3158 case INDEX_op_andc_vec: 3159 return C_O1_I2(w, w, wO); 3160 case INDEX_op_and_vec: 3161 case INDEX_op_orc_vec: 3162 return C_O1_I2(w, w, wN); 3163 case INDEX_op_cmp_vec: 3164 return C_O1_I2(w, w, wZ); 3165 case INDEX_op_bitsel_vec: 3166 return C_O1_I3(w, w, w, w); 3167 case INDEX_op_aa64_sli_vec: 3168 return C_O1_I2(w, 0, w); 3169 3170 default: 3171 return C_NotImplemented; 3172 } 3173} 3174 3175static void tcg_target_init(TCGContext *s) 3176{ 3177 tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffffu; 3178 tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffffu; 3179 tcg_target_available_regs[TCG_TYPE_V64] = 0xffffffff00000000ull; 3180 tcg_target_available_regs[TCG_TYPE_V128] = 0xffffffff00000000ull; 3181 3182 tcg_target_call_clobber_regs = -1ull; 3183 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X19); 3184 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X20); 3185 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X21); 3186 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X22); 3187 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X23); 3188 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X24); 3189 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X25); 3190 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X26); 3191 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X27); 3192 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X28); 3193 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_X29); 3194 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V8); 3195 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V9); 3196 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V10); 3197 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V11); 3198 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V12); 3199 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V13); 3200 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V14); 3201 tcg_regset_reset_reg(tcg_target_call_clobber_regs, TCG_REG_V15); 3202 3203 s->reserved_regs = 0; 3204 tcg_regset_set_reg(s->reserved_regs, TCG_REG_SP); 3205 tcg_regset_set_reg(s->reserved_regs, TCG_REG_FP); 3206 tcg_regset_set_reg(s->reserved_regs, TCG_REG_X18); /* platform register */ 3207 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP0); 3208 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP1); 3209 tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP2); 3210 tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP0); 3211} 3212 3213/* Saving pairs: (X19, X20) .. (X27, X28), (X29(fp), X30(lr)). */ 3214#define PUSH_SIZE ((30 - 19 + 1) * 8) 3215 3216#define FRAME_SIZE \ 3217 ((PUSH_SIZE \ 3218 + TCG_STATIC_CALL_ARGS_SIZE \ 3219 + CPU_TEMP_BUF_NLONGS * sizeof(long) \ 3220 + TCG_TARGET_STACK_ALIGN - 1) \ 3221 & ~(TCG_TARGET_STACK_ALIGN - 1)) 3222 3223/* We're expecting a 2 byte uleb128 encoded value. */ 3224QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14)); 3225 3226/* We're expecting to use a single ADDI insn. */ 3227QEMU_BUILD_BUG_ON(FRAME_SIZE - PUSH_SIZE > 0xfff); 3228 3229static void tcg_target_qemu_prologue(TCGContext *s) 3230{ 3231 TCGReg r; 3232 3233 tcg_out_bti(s, BTI_C); 3234 3235 /* Push (FP, LR) and allocate space for all saved registers. */ 3236 tcg_out_insn(s, 3314, STP, TCG_REG_FP, TCG_REG_LR, 3237 TCG_REG_SP, -PUSH_SIZE, 1, 1); 3238 3239 /* Set up frame pointer for canonical unwinding. */ 3240 tcg_out_movr_sp(s, TCG_TYPE_I64, TCG_REG_FP, TCG_REG_SP); 3241 3242 /* Store callee-preserved regs x19..x28. */ 3243 for (r = TCG_REG_X19; r <= TCG_REG_X27; r += 2) { 3244 int ofs = (r - TCG_REG_X19 + 2) * 8; 3245 tcg_out_insn(s, 3314, STP, r, r + 1, TCG_REG_SP, ofs, 1, 0); 3246 } 3247 3248 /* Make stack space for TCG locals. */ 3249 tcg_out_insn(s, 3401, SUBI, TCG_TYPE_I64, TCG_REG_SP, TCG_REG_SP, 3250 FRAME_SIZE - PUSH_SIZE); 3251 3252 /* Inform TCG about how to find TCG locals with register, offset, size. */ 3253 tcg_set_frame(s, TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE, 3254 CPU_TEMP_BUF_NLONGS * sizeof(long)); 3255 3256 if (!tcg_use_softmmu) { 3257 /* 3258 * Note that XZR cannot be encoded in the address base register slot, 3259 * as that actually encodes SP. Depending on the guest, we may need 3260 * to zero-extend the guest address via the address index register slot, 3261 * therefore we need to load even a zero guest base into a register. 3262 */ 3263 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_GUEST_BASE, guest_base); 3264 tcg_regset_set_reg(s->reserved_regs, TCG_REG_GUEST_BASE); 3265 } 3266 3267 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]); 3268 tcg_out_insn(s, 3207, BR, tcg_target_call_iarg_regs[1]); 3269 3270 /* 3271 * Return path for goto_ptr. Set return value to 0, a-la exit_tb, 3272 * and fall through to the rest of the epilogue. 3273 */ 3274 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr); 3275 tcg_out_bti(s, BTI_J); 3276 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_X0, 0); 3277 3278 /* TB epilogue */ 3279 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr); 3280 tcg_out_bti(s, BTI_J); 3281 3282 /* Remove TCG locals stack space. */ 3283 tcg_out_insn(s, 3401, ADDI, TCG_TYPE_I64, TCG_REG_SP, TCG_REG_SP, 3284 FRAME_SIZE - PUSH_SIZE); 3285 3286 /* Restore registers x19..x28. */ 3287 for (r = TCG_REG_X19; r <= TCG_REG_X27; r += 2) { 3288 int ofs = (r - TCG_REG_X19 + 2) * 8; 3289 tcg_out_insn(s, 3314, LDP, r, r + 1, TCG_REG_SP, ofs, 1, 0); 3290 } 3291 3292 /* Pop (FP, LR), restore SP to previous frame. */ 3293 tcg_out_insn(s, 3314, LDP, TCG_REG_FP, TCG_REG_LR, 3294 TCG_REG_SP, PUSH_SIZE, 0, 1); 3295 tcg_out_insn(s, 3207, RET, TCG_REG_LR); 3296} 3297 3298static void tcg_out_tb_start(TCGContext *s) 3299{ 3300 tcg_out_bti(s, BTI_J); 3301} 3302 3303static void tcg_out_nop_fill(tcg_insn_unit *p, int count) 3304{ 3305 int i; 3306 for (i = 0; i < count; ++i) { 3307 p[i] = NOP; 3308 } 3309} 3310 3311typedef struct { 3312 DebugFrameHeader h; 3313 uint8_t fde_def_cfa[4]; 3314 uint8_t fde_reg_ofs[24]; 3315} DebugFrame; 3316 3317#define ELF_HOST_MACHINE EM_AARCH64 3318 3319static const DebugFrame debug_frame = { 3320 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */ 3321 .h.cie.id = -1, 3322 .h.cie.version = 1, 3323 .h.cie.code_align = 1, 3324 .h.cie.data_align = 0x78, /* sleb128 -8 */ 3325 .h.cie.return_column = TCG_REG_LR, 3326 3327 /* Total FDE size does not include the "len" member. */ 3328 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset), 3329 3330 .fde_def_cfa = { 3331 12, TCG_REG_SP, /* DW_CFA_def_cfa sp, ... */ 3332 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */ 3333 (FRAME_SIZE >> 7) 3334 }, 3335 .fde_reg_ofs = { 3336 0x80 + 28, 1, /* DW_CFA_offset, x28, -8 */ 3337 0x80 + 27, 2, /* DW_CFA_offset, x27, -16 */ 3338 0x80 + 26, 3, /* DW_CFA_offset, x26, -24 */ 3339 0x80 + 25, 4, /* DW_CFA_offset, x25, -32 */ 3340 0x80 + 24, 5, /* DW_CFA_offset, x24, -40 */ 3341 0x80 + 23, 6, /* DW_CFA_offset, x23, -48 */ 3342 0x80 + 22, 7, /* DW_CFA_offset, x22, -56 */ 3343 0x80 + 21, 8, /* DW_CFA_offset, x21, -64 */ 3344 0x80 + 20, 9, /* DW_CFA_offset, x20, -72 */ 3345 0x80 + 19, 10, /* DW_CFA_offset, x1p, -80 */ 3346 0x80 + 30, 11, /* DW_CFA_offset, lr, -88 */ 3347 0x80 + 29, 12, /* DW_CFA_offset, fp, -96 */ 3348 } 3349}; 3350 3351void tcg_register_jit(const void *buf, size_t buf_size) 3352{ 3353 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame)); 3354} 3355